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Abstract
Randomized differential testing of compilers has had great

success in finding compiler crashes and silent miscompila-

tions. In this paper we investigate whether we can use similar

techniques to improve the quality of the generated code: Can

we compare the code generated by different compilers to

find optimizations performed by one but missed by another?

We have developed a set of tools for running such tests.

We compile C code generated by standard random program

generators and use a custom binary analysis tool to compare

the output programs. Depending on the optimization of in-

terest, the tool can be configured to compare features such as

the number of total instructions, multiply or divide instruc-

tions, function calls, stack accesses, and more. A standard

test case reduction tool produces minimal examples once an

interesting difference has been found.

We have used our tools to compare the code generated by

GCC, Clang, and CompCert. We have found previously un-

reported missing arithmetic optimizations in all three com-

pilers, as well as individual cases of unnecessary register

spilling, missed opportunities for register coalescing, dead

stores, redundant computations, and missing instruction se-

lection patterns.

CCS Concepts • Software and its engineering→Com-
pilers; Software performance; Software testing and debugging;

Keywords optimization, differential testing, randomized

testing
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int fn1(int p, int q) {
return q + (p % 6) / 9;

}

Figure 1. Missed optimization example: (p % 6) / 9 is

zero. Clang used to be unable to eliminate this computation.

1 Motivation
Over the last few years, randomized differential testing has

become a standard method for testing programming tools.

Hundreds of compiler bugs, both compiler crashes and silent

generation of incorrect code, have been found by random

testing in many mature compilers for various programming

languages [Eide and Regehr 2008; Lidbury et al. 2015; Midt-

gaard et al. 2017; Yang et al. 2011]. The method can be sim-

ilarly effective for finding crashes and correctness bugs in

static analyzers [Cuoq et al. 2012].

In this approach, randomly generated programs satisfying

certain correctness properties are compiled with different

compilers, executed, and their results compared. Different

results for well-defined programs imply a bug in at least one

of the compilers. Such interesting input programs can be

reduced by a test case minimizer to often just a few lines of

code that provoke the bug.

Given the success of this method in finding bugs, we

wanted to test whether it can also be used to find missed

optimizations: Is it possible to build a system that finds mini-

mal examples of missed optimizations by compiling random

C programs, comparing the generated code, and minimizing

the input program?

The answer is yes. Figure 1 shows a small example of

an arithmetic optimization missed by Clang found by our

tool (with small manual modifications). The value of the

expression (p % 6) is always in the interval [−5, 5]. Dividing
any number in this interval by 9, with truncation toward 0 as

prescribed by the C standard, gives a value of 0 for any value

of p. GCC therefore generates code to simply copy q to the

return register and return. Until a recent fix motivated by our

findings, Clang did not perform this arithmetic simplification

and generated code to evaluate the redundant modulo and

divide operations.

In this paper we describe the following contributions:

https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/3178372.3179521
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• a differential testing method for finding missed opti-

mizations in C compilers;

• a set of configurable tools for automating the method;

• an experimental evaluation of the method and tools,

with examples of previously unreported missed opti-

mizations in all three C compilers we tested.

In addition to the examples throughout this paper, an

evolving list of previously unreported missed optimizations

we found is available online at https://github.com/gergo-/
missed-optimizations. We have filed reports or patches for

all compilers tested, and several issues have been fixed.

2 Random Differential Compiler Testing
When searching for miscompilations, randomized differen-

tial compiler testing proceeds by generating random pro-

grams, compiling them with different compilers, executing

them, and comparing the results. In order to make these

results comparable, the random programs must fulfill cer-

tain criteria: They must be complete programs that avoid

invoking any undefined behaviors in the target language, as

well as (for C and similar languages) implementation-defined

features such as the order of evaluation of expressions.

To compare results, Csmith [Yang et al. 2011] generates

programs that compute a checksum over the final values

of all global variables and prints it to the standard output

before exiting; Orange3 [Nagai et al. 2014] precomputes ex-

pected results during generation and adds corresponding

conditional print statements to the program. In either case,

the textual output of the test program compiled with dif-

ferent compilers can easily be compared by a driver script.

Any difference indicates a miscompilation bug in at least

one of the compilers under test. Other random generators

such as CCG [Balestrat 2016] or ldrgen [Barany 2017] do not

generate complete programs that are meant to be executed;

they can still be useful for finding compiler crashes.

The generators mentioned above all target the C program-

ming language, but similar tools exist for other languages,

such as CLsmith for OpenCL [Lidbury et al. 2015], jsfunfuzz

for JavaScript [Ruderman 2015], or efftester for OCaml [Midt-

gaard et al. 2017].

Having found the symptoms of a compiler bug, an impor-

tant final phase is the reduction of the input program to a

minimal example showing the bug. Automatically generated

programs typically contain hundreds or thousands of lines

of code. Finding the cause of a bug in such a large test case

is tedious and often unrealistic. Most bugs also don’t need

large triggers: In a large-scale study of reported compiler

bugs, Sun et al. [2016] found that test cases for compiler bugs

‘are typically small, with 80 % having fewer than 45 lines of

code’.

To help developers identify the actual bug, test case re-

ducers simplify the input program by removing parts or by

char fn2(float p) {
return (char) p;

}

(a) Example input for useless spilling by GCC.

vcvt.u32.f32 s15, s0 ; float -> unsigned int
sub sp, sp, #8 ; allocate stack frame
vstr.32 s15, [sp, #4] ; spill float register
ldrb r0, [sp, #4] ; reload to int register
add sp, sp, #8 ; free stack frame

(b) Annotated ARM code generated by GCC for the float to char
conversion. Spilling is useless, the last four instructions could be

replaced by a single direct copy (vmov r0, s15).

Figure 2. Example of unnecessary spill code generation.

other transformations such as replacing variables by con-

stants. C-Reduce [Regehr et al. 2012] is a generic reducer

for C family programs that is run with a user-provided ‘in-

terestingness test’. This test is a program that returns 0 if

the current version of the program is still ‘interesting’ (i. e.,

shows the buggy behavior one is investigating) and some

other value otherwise. For finding miscompilations, the test

will typically compile the program with the compilers un-

der test and see if the resulting binaries still show different

behavior; for finding compiler crashes, the test will check if

the compiler still crashes. Starting from an initial program,

C-Reduce explores a search space of incrementally reduced

programs that are interesting according to the test provided.

It stops when it has reached aminimal program that it cannot

reduce further.

The Orange3 random generator includes its own special-

ized reduction mode. Both of these reducers work well in

practice. They often produce very small examples, at times

with further opportunities for manual cleanup.

3 Searching for Missed Optimizations
Our goal is to exploit this existing differential testing infras-

tructure in novel ways to find missed optimizations.

Consider the case of inefficient register allocation, result-

ing in more spill code than is strictly needed for a given

function. The amount of spill code can be computed for dif-

ferent compiled programs and can thus form the basis of an

interestingness test. If we can start from a program on which

some compiler generates useless spills, a reducer can then

produce a corresponding program that is minimal but still

shows a difference in spilling between compilers.

Figure 2 shows an example program found by our tool and

part of the ARM assembly code generated for this program

by GCC.
1
The conversion between floating-point and inte-

ger types is performed by the vcvt instruction, which puts

1
In all our ARM examples, we generate code for the ARMv7-A instruction

set with VFPv3-D16 hardware floating-point extensions.

https://github.com/gergo-/missed-optimizations
https://github.com/gergo-/missed-optimizations
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Figure 3. Randomized differential compiler testing.

its result into a floating-point register. This value must be

copied to the integer return register r0. It can then be zero-

extended from 8 bits to implement the truncation to char,
which is unsigned on the target machine. GCC models the

copy and zero extension by spilling an integer word to the

stack and reloading a byte, whereas Clang and CompCert

simply generate a register-to-register copy instruction. We

have reported this issue; a GCC developer found that the

spill is chosen because it is not marked as having higher cost

than a zero-extension pattern with a direct copy.

Our hypothesis was that the process of finding such prob-

lems can (a) be seeded efficiently with randomly generated

programs, (b) be generalized to many kinds of missed opti-

mizations, and (c) reduce programs to reasonably small exam-

ples that show clearly useless code that should be optimized

away. In other differential testing approaches, compilers are

used as ‘correctness oracles’ for each other. In contrast, we

use different compilers’ outputs as optimization oracles.
Our method thus works as illustrated in Figure 3:

• generate a random C program;

• compile the program with different compilers;

• if generated binaries show an ‘interesting’ difference:

– reduce to a minimal program showing the same ‘in-

teresting’ difference

We use randomly generated programs instead of open

source software or known benchmark suites because random

generators provide an unlimited supply of programs with

characteristics of our choice: With or without floating-point

operations, loops, branches, etc., and with tunable parame-

ters such as the number of variables or maximum size of basic

blocks. In particular, we found that loops are problematic

in our current approach (see Section 5). Random generators

allow us to find interesting missed optimizations in loop-free

generated code without having to artificially limit our search

to the subset of loop-free functions in existing software.

int fn4(double c, int *p, int *q) {
int i = (int) c;
*p = i;
*q = i;
return i;

}

(a) Program causing Clang to generate redundant code.

vcvt.s32.f64 s2, d0 ; convert double -> int
vstr s2, [r0] ; store to *p
vcvt.s32.f64 s2, d0 ; convert again
vcvt.s32.f64 s0, d0 ; convert yet again
vmov r0, s0 ; copy to return register
vstr s2, [r1] ; store to *q

(b) Annotated ARM code generated by Clang. The type conversion

is performed three times; one time would suffice.

Figure 4. Redundant repeated type conversions introduced

by Clang for a single conversion in the source.

We also knew from previous experience that the output

of a test case reducer often looks very ‘artificial’, and it is

known that the test case reduction process can ‘jump’ from

one compiler bug to another.
2
These observations mean that

starting reduction from a real benchmark function doesn’t

guarantee that the missed optimization in the final, reduced

result is actually present in the original code: All we know

is that it is interesting according to the same criterion. We

therefore opted for the flexibility of randomly generated

input programs instead of using a fixed benchmark set.

For generating programs, we have experimented with the

Csmith [Yang et al. 2011] and ldrgen [Barany 2017] tools.

By default, Csmith generates a complete application with

a main function and typically several other functions. We

use command line flags to request generation of a single

function and suppress generation of main. We also disable

generation of global variables because we have found that

different compilers generate different code for loading the

addresses of globals; these inessential differences introduced

unnecessary complications when comparing binaries.

Both generators were useful for finding missed optimiza-

tions. Csmith covers a larger subset of the C language than

ldrgen, allowing us to find some issues that could not be

found using ldrgen. On the other hand, Csmith often pro-

duces large amounts of dead code, leading to trivial binary

code generated even for complex-looking input source code.

In contrast, ldrgen tries to avoid generating dead code, and

binaries compiled from ldrgen-generated code are typically

larger and more complex than those compiled from Csmith-

generated code of similar size.

Figure 4 shows one example of a missed optimization

found using a Csmith-generated seed program. This function

2https://blog.regehr.org/archives/1284

https://blog.regehr.org/archives/1284
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receives pointers as arguments and contains assignments to

their target. Clang used to duplicate the type conversion for

each use of the variable i. We have reported this issue, and

a partial fix eliminating the conversions but leaving some

unnecessary copies has been added to Clang. This missed

optimization could not have been found using only ldrgen

because its current version never generates assignments

through pointers.

Our system for interestingness tests on binaries is de-

scribed in the following section. In the spilling example of

Figure 2, the interestingness test searched for different num-

bers of loads through the stack pointer. Other tests consider

features such as function calls or certain classes of arithmetic

instructions.

For reducing to minimal programs showing missed opti-

mizations, we use C-Reduce. C-Reduce has many different

passes that implement different minimizing transformations.

We use the default pass set, except for disabling a pass that

transforms local variables into global ones. The reason is the

same as above: Accesses to globals introduce uninteresting

differences in binaries.

The method sketched above is driven by a script that calls

a generator, the compilers, and the reducer. All the power in

the process comes from these tools. Reduced programs are

checked by a human to see if they are trivial, duplicates, or

really interesting missed optimizations. Reduced programs

could also highlight compiler correctness bugs, although we

have not found such cases.

4 Finding Optimization Differences
As we use standard random program generators and a stan-

dard test case reduction tool, the only optimization-specific

part of our toolchain is the interestingness test. This inter-

estingness test compares the code generated by different

compilers.

There are several possible ways of comparing compiled

code: We might use dynamic approaches measuring execu-

tion time [Chen and Regehr 2010] or recording dynamic

traces of executed instructions [Moseley et al. 2009a,b]. For

this work we decided to try a simpler, static approach based

on analyzing the binary without executing it. This is an ap-

proach that composes better with test case reduction: As we

reduce a program, we would also have to reduce test inputs

along with it if we wanted to execute it for dynamic analysis.

In contrast, for static analysis we do not have to worry about

inputs at all as we never execute the code. In addition, timing

the program under test is inherently non-deterministic, and

any small perturbations could confuse the reducer.

We implemented our static comparisons in a tool we tenta-

tively call optdiff. Our goal was to build a tool that could be
reconfigured for different kinds of missed optimization tests,

in particular for identifying different amounts of spill code.

As spill code in loops is more expensive than outside loops,

we wanted to be able to estimate execution frequencies of

instructions. Finally, we wanted the tool to be retargetable

to at least the ARM and x86-64 architectures.

We use the angr binary analysis framework
3
[Shoshi-

taishvili et al. 2016] as the basis for our tool. This framework

collects various tools useful for cross-platform binary anal-

ysis, such as an executable loader, a library of architecture

descriptions, and predefined program analyses. Its API is

presented as a Python library.

Our optdiff tool is a Python program that uses angr’s

binary loader to load code from the binaries to be compared.

We then use the algorithm of Wei et al. [2007] to construct

a loop nesting tree for the input program and use that as

a basis for basic block frequency estimation. We estimate

frequencies by assigning the function’s entry block the fre-

quency 1, then propagating frequencies such that (a) every

block’s frequency is distributed equally to its successors at

the same loop nesting level, and (b) loop entry blocks get

assigned a frequency of 8 times their predecessors outside

the loop (i. e., we assume that every loop iterates 8 times).

optdiff then uses functions we call checkers to compute

a score for each binary. The score is a number expressing the

prevalence of the feature of interest (e. g., the amount of spill

code) in the input program.

A checker is a function that computes a local score for

each instruction in the input program. The total score for

the program is the sum of the individual instruction scores

weighted by the estimated block frequencies. Thus for a

checker c and an input function f consisting of blocks b
with frequencies (weights)wb containing instructions i , the
total score s is given by:

s =
∑
b ∈f

wb ·
∑
i ∈b

c (i )

Checkers are implemented as small Python functions an-

notated with the @checker decorator. They return a num-

ber or a boolean with True treated as 1, False treated as 0.

Figure 5 shows the source code of two example checkers

predefined in optdiff: the trivial checker for counting in-

structions, and the ARM-specific part of the checker for the

number of memory loads. As ARM has load instructions for

doublewords and a flexible load-multiple instruction, this

checker counts the number of registers written by the in-

struction.

Checkers are normal Python functions that can call each

other. For example, our spill reload checker (not shown)

builds on the loads checker from Figure 5 to identify mem-

ory loads whose address operand uses the stack pointer

register as the base.

Checkers are purely local: they look at each instruction in

isolation, without information about the surrounding code,

or any way of propagating information to other instructions.

3http://angr.io/

http://angr.io/
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@checker
def instructions(arch, instr):

"""Number of instructions."""
return 1

(a) The trivial checker for counting instructions.

@checker
def loads(arch, instr):

"""Number of memory loads."""
op = instr.insn.mnemonic
if is_arm(arch):

if op == 'ldrd':
return 2

elif re.match('ldm.*', op):
return len(instr.insn.operands)-1

return bool(re.match('v?ldr.*', op))
... # other architectures

(b) The checker for counting memory accesses (excerpt).

Figure 5. Two example checkers from optdiff.

This is for simplicity, but it makes some interesting things

impossible. In particular, the tool cannot be used for cycle-

accurate performance estimation, which would necessitate

propagation of information about the states of pipelines and

caches between instructions.

The optdiff tool provides command line flags for cus-

tomizing its operation. It exits with a status indicating ‘in-

teresting’ if the scores s1 and s2 for the input binaries differ.
It also provides a flag for a minimum absolute difference d ,
and flags specifying that only the case s1 < s2, or only the

case s1 > s2, should be considered interesting. The latter

flags allow us to direct the search towards cases where a

specific compiler of interest is strictly better than another.

At the time of writing, optdiff comprises 573 physical

lines of Python code, of which 246 lines compute the loop

nesting tree and estimate basic block frequencies, 171 lines

are checker definitions, and the remaining 156 lines parse

command line arguments, load binaries, call the other com-

ponents to compute scores, and exit with an appropriate

result. There are currently 14 checkers, some of which are

architecture-specific or not yet implemented for all archi-

tectures. We have checkers for the total number of instruc-

tions; memory loads and stores from the stack or from any

address; register copies; additive or multiplicative integer

arithmetic operations; additive, multiplicative, or arbitrary

floating-point arithmetic operations; x86-64 packed (SIMD)

instructions; and function calls.

The x86-64 packed instructions are an interesting case of

a checker where a lower score does not necessarily indicate

a ‘better’ program. Indeed, a higher number of such instruc-

tions may mean that one compiler succeeded in vectorizing

a loop but another didn’t. We have not found such cases so

int N;
double fn6(double *p1) {

int i = 0;
double v = 0;
while (i < N) {
v = p1[i];
i++;

}
return v;

}

Figure 6. Example loop extensively optimized by GCC on

x86-64. Clang simply replaces the loop by a branch.

far, but the search did result in an interesting issue shown

in Figure 6. This function always returns either 0 if N ≤ 0,

or p1[N-1] otherwise. Thus the loop can be replaced by a

simple branch, as only the last iteration matters. Clang is

able to perform this optimization, but GCC is not. Instead,

on x86-64, it generates a complex unrolled loop.

5 Dealing with Undefined Behavior
One particular feature of our system is the absence of checks

for undefined behavior in the programs we generate or re-

duce. Such checks are standard in other randomized differ-

ential approaches that look for miscompilations [McKeeman

1998; Nagai et al. 2014; Yang et al. 2011] since undefined

programs may be compiled differently by different compil-

ers, without this being an indication of a miscompilation.

For this reason, random generators like Csmith or Orange3

exclude certain undefined behaviors at generation time (for

example, Csmith uses flow-sensitive pointer analysis) or gen-

erate code to guard against undefined behavior at runtime

by using a library of safe wrapper functions for arithmetic

operations. For our search for missed optimizations, hiding

most arithmetic operations behind a function call would be

inconvenient: It would prevent almost all arithmetic simpli-

fications that we may want to test for.

As another difference to our approach, differential bug-

finding tools detect differences in compilation by executing

the generated programs. For this, they include concrete in-

puts for their code, typically as initialized global variables.

In contrast, we never execute our programs, only compare

the generated binary code. We therefore do not need input

data. Inputs are function parameters with unknown values

provided by a hypothetical caller. Some values for these pa-

rameters may lead to undefined behavior. For example, in

Figure 6, the pointer p1 may be NULL or otherwise invalid;
in Figure 4, certain values of the double parameter may

overflow the int it is converted to.

This is normal for C programs; compilers expect program-

mers to call such functions with valid arguments and typi-

cally do not give guarantees if such implicit preconditions
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are violated. On the other hand, they do not go out of their

way to pessimize the cases where there are such violations;

they just generate code as if such cases never occurred. For

example, GCC’s useless spill in Figure 2 is present regardless

of guards against overflow. Therefore, pragmatically, we ex-

pected no problems in practice with comparing programs in

which certain input values may cause undefined behavior.

All in all, our experiments confirmed that this was usually

the case for undefined behavior during expression evalua-

tion that was dependent on input values. On the other hand,

we did find cases where the undefined behavior was uncon-

ditional and independent of input data. As a representative

example, we did sometimes observe reduced functions such

as the following:

int fn(int a) {
int x = 0;
int b = a / x;
return b;

}

Neither GCC nor Clang warn about the unconditional

division by zero in this case, although Clang recognizes it

and ‘optimizes’ it to a function that returns immediately.

GCC does not do this, thus the generated binaries differ,

and this program is considered ‘interesting’ by some of our

checkers. However, as the function does not admit any well-

defined execution, we do not consider this an interesting

optimization.

We have experimented with including a static analyzer

in the interestingness test to exclude the cases where every

execution path leads to undefined behavior. We ran the Eva

abstract interpreter [Blazy et al. 2017], part of the Frama-

C program analysis platform [Kirchner et al. 2015]. This

analyzer is effective at flagging unconditionally undefined

cases. However, we found that this only pushes the reduction

process in the direction of slightly more obscure versions of

essentially the same undefined operations.

Avoiding such uninteresting, partially undefined cases

in practice is thus an open problem. For now, we use the

following workarounds:

• These cases are relatively frequent when counting all

instructions, but rarer with more specialized checkers.

We accept that they occur from time to time, as re-

duced cases must be manually inspected and classified

anyway.

• Of the many undefined operations on C, in practice we

mostly had problems with division and pointer deref-

erences. We can configure our program generators to

avoid such operations.

As Figure 1 shows, we are still able to find some interesting

missed optimizations involving divisions. This is also the

case if the divisor is a variable, as in the example of Figure 7.

The division in the if condition can be replaced by a much

unsigned fn7(unsigned a, unsigned p2) {
int b;
b = 3;
if (p2 / a)
b = 7;

return b;
}

Figure 7. In unsigned arithmetic, the condition is true

iff p2 ≥ a. Clang compares directly, GCC divides.

cheaper direct comparison, an optimization GCC fails to

perform on ARM.

Loops are a more problematic case. With our instruction

count checker, C-Reduce likes to reduce functions containing

loops to nonsensical code like the following:

void fn(char p3, int p5) {
double v;
while (p3)

v = !p5;
(int)v & 1;

}

Entering an infinite loop without externally visible side

effects (such as I/O) is undefined in C, and different compil-

ers ‘optimize’ this program differently. This, too, sends our

reduction process down uninteresting paths. We have briefly

experimented with the CPAchecker platform [Beyer and Ker-

emoglu 2011] in the hope that its termination analysis would

catch such cases of functions that do not terminate for all

inputs. Unfortunately, we found that it returned ‘unknown’

in too many cases to be practical for our purposes.

We therefore leave the case of loops as an open problem

for future work. Despite the single interesting find of the

example in Figure 6, the false positive rate due to nontermi-

nating functions was too high for meaningful use. In most of

our experiments we have therefore disabled the generation

of loops.

6 Experimental Evaluation
We have evaluated our method of finding missed optimiza-

tions in a series of unstructured experiments performed occa-

sionally over the course of about five months, incrementally

testing and evolving our optdiff tool and our methods in

response to our observations. We used up-to-date develop-

ment versions of all compilers at optimization level -O3 and

with -fomit-frame-pointer (where supported) to make

spill code easier to identify.

6.1 Development of the Project
We used the Csmith and ldrgen program generators in our ex-

periments. The two generators are complementary: Csmith’s

larger supported fragment of the C language allowed us to
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find the issues in Figures 4 and 8, while arithmetic optimiza-

tions are more quickly found using ldrgen. The library of

optdiff checkers began with a simple checker for counting

instructions and a very simple load checker that gradually

evolved into the more sophisticated form shown in Figure 5.

Other checkers were added as we observed patterns in gener-

ated programs and wanted to focus on more specific features.

As a side-effect of various issues encountered over the

course of the project, we have submitted patches or bug re-

ports to the Csmith, angr, and ldrgen developers. The missed

optimizations we collected were thus found with a mix of

various versions of different tools, reflecting the exploratory

nature of this work. We varied checker definitions and com-

mand line flags to search for issues of various kinds. We

estimate that we inspected about 500 to 1000 reduced test

files over the course of the project.

For most of the project, we focused on comparing GCC

and Clang, mostly generating code for ARM due to famil-

iarity with its assembly language. While we are particularly

interested in register allocation and spilling, it turned out

that searching for differences in spill reloads often finds is-

sues that are not directly related to register allocation. In

particular, we found several arithmetic simplification issues

while trying to find differences in register allocation. A com-

mon pattern was a function with more arguments than fit

in argument registers, having to receive some arguments on

the stack. If a computation on one of these stack arguments

is redundant and is optimized away by one compiler but not

by the other, this will show up in the compiled code as a

difference in the number of reads from the stack. As this

is a roundabout way of searching for arithmetic optimiza-

tion opportunities, we implemented more direct checkers. In

contrast, when searching for actual differences in register al-

location, we typically tell the random code generator to limit

the number of arguments according to the target platform’s

argument registers. Even so, we keep finding more spills

due to differences in arithmetic optimizations (as less opti-

mized code uses more registers) than due to real differences

between register allocators.

6.2 Results
In the early stages of the project, we reported some issues we

found interesting to the compilers’ bug trackers. As these are

not correctness bugs, they are treated with low priority and

mostly remained unfixed. We therefore stopped submitting

them to avoid spamming bug trackers and instead decided to

aggregate all in a public list. After we published this prelimi-

nary list online, there was some renewed interest by LLVM

developers, and some previously reported issues were fixed.

It is difficult to count missed optimizations as we cannot be

sure which seemingly related issues are really caused by the

same piece of code. To the best of our knowledge, we have

identified the following numbers of previously unreported,

struct S0 {
int f0, f1, f2, f3;

};

int fn8(struct S0 p) {
return p.f0;

}

Figure 8. The function returns the structure’s first field,

which on ARM is passed in register r0. This is also the return
register; the function could return immediately. GCC first

generates useless code to spill the structure to the stack, then

reload the first field.

distinct missed optimization issues that we would consider

worth changing and assume to be reasonably simple.

GCC We have identified 19 issues in GCC, for which we

have filed five reports so far, including the examples in Fig-

ures 2, 7, 8, and 9. One of our reports contained two issues

that we now suspect to have separate underlying causes and

that we now count separately. All of our reports were con-

firmed by developers, and one issue has been fixed in GCC’s

development version.

Clang We have identified six issues in Clang/LLVM, of

which two were reported and fixed by the developers (Fig-

ures 1 and 4), and a third one was fixed by a patch we sub-

mitted.

CompCert We have not tested CompCert extensively but

have identified nine separate missed optimizations, some

of which are illustrated in Figure 10. One issue was fixed

by the CompCert developers, two were fixed by patches we

submitted.

6.3 Classification of the Issues Found
The issues we identified fall into several categories. Many

are peephole optimizations of arithmetic or bitwise opera-

tions, such as the examples in Figures 1, 7, and 9. As with

most peephole optimizations, these may appear trivial in

isolation and unlikely to appear in hand-written code. How-

ever, they may be enabled by other optimizations, notably by

function inlining followed by constant propagation; much

of the power of inlining comes from the fact that it exposes

opportunities for specializing the inlined code.

Other issues concern register allocation and spilling, as

in Figure 2. We also found similar code (not shown here

for lack of space) causing GCC to spill although enough

registers are available, and cases where it generates dead

spill code (i.e., it stores values to the stack but never reloads

them). The example in Figure 8 also contains dead stack

stores generated by GCC, but it is due to particular handling

of argument registers, not due to general computations. We



CC’18, February 24–25, 2018, Vienna, Austria Gergö Barany

found a similar (previously known) case where Clang also

generates dead stack stores into structures passed by value.

Some other issues we found (mostly in GCC) include bad

instruction scheduling of load-immediate instructions, in-

creasing register pressure and leading to unnecessary spills;

missed tail-call optimization for compiler intrinsics; and the

much too aggressive loop optimization of Figure 6.
4

6.4 Causes of the Issues Found
We have also tried to identify the underlying reasons for

the missed optimizations we found. Our analysis is based on

the patches we developed ourselves, the patches developed

by compiler maintainers, code inspection, and comments by

maintainers on the issues we reported. We were not able to

classify all issues.

6.4.1 Forgotten/Faulty Rules
Pattern matching rules for instruction selection, arithmetic

simplifications, and in various program analyses are impor-

tant parts of every optimizing compiler. With large numbers

of rules and possible interactions between them, forgetting

rules or getting the associated costs and priorities wrong is

an unsurprising source of mistakes.

Of the examples in this paper, the ones in Figures 1, 2,

and 4 fall into this category. The first one is part of a group

that were considered missing rules in LLVM’s instruction

simplifier by LLVM developers. The second is confirmed by

a GCC developer to be due to a missing cost annotation in a

match rule. The third was due to redundant instruction selec-

tion patterns that, in the words of an LLVM developer, could

‘confuse the cost logic’ in the selector, leading to code duplica-

tion. Another LLVM example we have found and submitted

a patch for was a missing rule for selecting the ARM vnmla
‘floating-point multiply accumulate with negation’ instruc-

tion for expressions of the form −(a ·b) −c ; the selector only
had a pattern for the symmetric case of −c − (a · b).

Five of the issues we identified in CompCert also fall into

this category: a missing constant-folding rule for the modulo

operator; a missing instruction selection rule for ARM’s movw
move-immediate instruction; missing constant folding rules

for the ARM mla integer multiply-add instruction; and miss-

ing reassociation rules for multiplications by constants of

the form c1 · x · c2 to x · (c1 · c2). Our patches for the movw
and mla issues have been merged.

6.4.2 Phase Ordering
Phase ordering issues are a well-known andmuch researched

problem in compiler construction. Some of the problems we

found are due to such ordering problems. One example is

shown in Figure 9. The branch condition in either case is

4
See a more complete list of examples at https://github.com/gergo-/
missed-optimizations.

int fn9_1(int p1) {
int a = 6;
int b = (p1 / 12 == a);
return b;

}

(a) The division and comparison could be optimized to a subtraction

and a comparison, but GCC failed to do this.

int fn9_2(int p1) {
int b = (p1 / 12 == 6);
return b;

}

(b) GCC was able to optimize this equivalent variant.

Figure 9. Example of a confirmed phase-ordering problem

in GCC. The rule for simplifying the division and comparison

used to be run before constant propagation.

equivalent to 72 ≤ p1 < 84 and can be optimized to a sub-

traction and two signed comparisons (or a single unsigned

comparison) instead of the expensive division. GCC man-

aged to do this in the second case, but not the first one. We

reported this issue as a baffling case of seemingly failed con-

stant propagation. It turned out that the matching rule for

this optimization was only run before constant propagation,

but not after. In response to our report, GCC developers have

moved this rule from the early matching phase to a later one.

A trivial phase ordering case we found in CompCert con-

cerns the conditions of useless branching statements such

as if (c) {} else {}. The corresponding useless jump in-

structions are cleaned up by one of the backend passes, but

this pass only runs after dead code elimination. The code

evaluating the condition c was therefore left in the program.

This has been fixed based on our report.

6.4.3 Unimplemented Optimizations
Some optimizations may be missing from compilers simply

because developers have not thought of implementing them,

or have lacked the resources to do so. We collect some such

cases because we find them interesting as opportunities to

learn from other compilers’ behavior. Clearly, these should

not be considered mistakes of the same kind as forgotten

cases or faultily implemented optimizations such as those

discussed above.

We found two such cases, concerning optimization of

floating-point expressions in Clang but not GCC: Clang

can promote some floating-point computations to integers

where the result is known to be an exact integer, such as

in i = i * 10.0 where i is a 32-bit int. Similarly, it can

simplify x + 0, where the double variable x was initialized

from an int and thus cannot be a negative zero, which would
prohibit simplification to x.

https://github.com/gergo-/missed-optimizations
https://github.com/gergo-/missed-optimizations
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6.4.4 Other/Uncategorized Issues
We were not able to conclusively categorize some other is-

sues, such as those of Figures 6, 7, and 8. We suspect that all

of these cases fall into the general category of faulty rules,

either triggering unwanted code transformations or failing

to trigger a presumably existing beneficial transformation.

Another possible source of missed optimizations is simply

bad luck due to the fact that many computationally hard

problems, in particular related to register allocation, must

be solved using heuristics. We do not have any examples

that we can definitely blame on weak or unlucky heuristics,

although Figure 10 may be an example.

In this code, a register is spilled by CompCert but not by

other compilers. Investigating the program, we were sur-

prised to find that the statement v = 4; is dead code (its

result is never used), and it does not correspond to any in-

structions in themachine code (the constant 4 never appears),

yet it was not removed by C-Reduce. We found that the dead

statement is necessary for the spill code interestingness test,

and removing it manually makes the spill of register r4 go
away. This is strange as dead code should never influence

register allocation at all. CompCert’s developers also ex-

pressed puzzlement at this case: While CompCert in general

is not expected to be as powerful as other compilers, its reg-

ister allocator based on iterated register coalescing [George

and Appel 1996] is meant to be competitive. In addition to

the spill, some mov instructions should be coalesced, but

CompCert’s heuristics miss this. (Finally, the mla instruction
computes 0 · r0 + 0, but CompCert missed the opportunity

to constant fold. We submitted a patch for this latter issue,

which was accepted.)

6.5 Case Study: Finding Regressions
The compilers compared by our method do not have to be

completely different, they can also be different versions or

different optimization levels of the same compiler. Such a

comparison can be useful for finding regressions in optimiza-

tions [Iwatsuji et al. 2016].

To see whether our system was able to do this as well,

we tested two development versions of GCC just before and

after the fix for the issue in Figure 9. Searching for cases

where the new version produced more instructions than

the old, in 8 hours we generated 8097 programs, of which

16 matched the interestingness test and were reduced to

minimal examples. (Generating and testing programs is fast;

the bulk of the time is in reduction, which commonly takes

on the order of 15 minutes to an hour.) We found a case that

could be considered a regression: In code like

a = 4;
if (x / a) ...

where the divisor is a power of 2, the division and comparison

against 0 were previously implemented using a single shift

that updated the condition code register. After the change,

int fn10(int p1) {
int a, b, c, d, e, v, f;
a = 0;
b = c = 0;
d = e = p1;
v = 4;
f = e * d | a * p1 + b;
return f;

}

(a) Input source code containing a dead statement v = 4;.

str r4, [sp, #8] ; spill
mov r4, #0
mov r12, #0
mov r1, r0 ; could be coalesced
mov r2, r1 ; could be coalesced
mul r3, r2, r1
mla r2, r4, r0, r12 ; compute 0 * r0 + 0
orr r0, r3, r2 ; compute r3 | 0
ldr r4, [sp, #8] ; reload

(b) The core of the code generated by CompCert. The spill of r4
is caused by dead code, and coalescing and constant folding are

missed.

Figure 10. Example function exposing several missed opti-

mizations in CompCert.

this is no longer treated specially but compiled to two in-

structions (an add and a compare).

6.6 Example of Practical Use
To illustrate how compiler developers might use our tools,

we ran a representative experiment, configuring optdiff
to look for differences of at least 10 instructions in ARM

code generated by GCC and LLVM. Over an 8-hour run on

a laptop with an Intel Core i7 CPU at 2.60 GHz, running

C-Reduce with up to 4 threads, we generated 38 programs.

Of these 34 were found interesting by optdiff and reduced

(average reduction time: 14 minutes). The reduced programs

have on the order of 5 to 15 lines of C code and compile to

about 2 to 30 instructions.

A majority of the reduced programs display duplicates

of issues we know: in 10 cases, the lack of general value

range analysis in LLVM, causing problems like the one in

Figure 1, and 8 cases where GCC prefers to emit sequences

of adds and shifts for multiplications by constants instead of

a single multiply instruction. A minority are ‘false positives’

where the difference between the generated code isn’t actu-

ally interesting. Some of these (7 cases) are due to a current

limitation our basic block frequency estimator, which is mis-

led by functions containing predicated return instructions.

Some others (7 cases) are simplifications of very specific
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forms of expressions or exploitation of signed integer over-

flow that we assume compiler developers would not find

interesting.

Finally, among the 34 reduced cases, we identified two

new issues that we consider missed optimizations of interest

in GCC: One case where its value range analysis appears to

fail, and one case of missed reassociation and canceling in

integer computations of a form similar to (a + x ) − (b + x )
that should be simplified to a − b.

With some experience, inspection of the reduced programs

is very quick: We spend less than a minute per uninteresting

case. In practice, compiler developers can run the genera-

tion/reduction process overnight and quickly sort through

the results in the morning. We note that while our method

provides individual test cases, developers themselves are re-

sponsible for ensuring the correctness and generality of the

optimizations they implement.

7 Related Work
To our knowledge, there has not been much work on di-

rect, (semi-)automatic comparison of the quality of the code

generated by different compilers.

7.1 Assembly-Level Missed Optimization Search
We are aware of a single tool that uses a similar approach to

ours for finding missed optimizations, presented in a short

paper by Iwatsuji et al. [2016]. This system generates random

programs using the Orange3 generator, compiles them with

different compilers, and counts instructions in the generated

assembly code. If the generated codes are sufficiently differ-

ent, Orange3’s built-in test case reducer produces a minimal

example. The authors compared GCC and Clang as well as

two different versions of GCC against each other; they found

differences between the compilers as well as regressions in

the newer version of GCC. Several issues were reported by

the authors and fixed by the compilers’ developers.

While this system is broadly similar to ours, its design

choices are different in almost all respects: Generated pro-

grams are straight-line code without branches. Binaries are

compared by pure (static) instruction count, not by more

specific features such as spill reloads or certain classes of

arithmetic as in our checkers. This limits the tool’s useful-

ness for finding certain kinds of missed optimizations. Its

model of program scores is also more complex than ours, but

it is not clear to us whether this complexity has benefits.

Another difference to our approach is that the Orange3

system always produces well-defined, complete programs

that can be run with inputs provided in global variables. In

contrast, we focus on individual functions without prede-

fined inputs. As we discussed in Section 5, undefined behav-

ior is a double-edged sword, but admitting certain cases of

potentially undefined functions may allow our tools to find

more missed optimizations.

7.2 AST-Based Missed Optimization Search
A different system related to the one discussed above was

presented by Hashimoto and Ishiura [2016]. It also uses the

Orange3 program generation system and its reducer, but

finds missed optimizations with an interesting twist: It gener-

ates random unoptimized C programs, then optimizes these

programs itself on the abstract syntax tree (AST) level. The

unoptimized and optimized ASTs are both unparsed to C

source files, compiled, and the generated assembly codes

compared by counting instructions. One interesting aspect of

this work is that one does not need to compare two different

C compilers; program generation system itself serves as the

optimization oracle. The interestingness test is a refinement

of the model of Iwatsuji et al. [2016]. Although the AST-level

optimization was restricted to constant propagation and fold-

ing, the authors found several missed optimizations in both

GCC and Clang.

7.3 Superoptimization
Superoptimization is a technique introduced by Massalin

[1987] for finding the smallest code sequence equivalent to

a given piece of input code. In the original formulation, a

superoptimizer enumerates all assembly code sequences up

to a given length and checks them for equivalence with the

target function. Exhaustive enumeration is primitive, while

the equivalence check must be engineered to be as efficient

as possible. Modern superoptimizers can be stochastic, sym-

bolic (based on SAT or SMT solvers), or combine several of

these techniques [Buchwald 2015; Phothilimthana et al. 2016;

Sasnauskas et al. 2017].

Superoptimizers are interesting in the context of this work

because they find possibly useful previously missed opti-

mizations in the output of compilers, although using a very

different strategy from ours.

7.4 Dynamic Missed Optimization Search
Dynamic analysis is another approach for finding missed

optimizations. In the work of Chen and Regehr [2010], bench-

mark functions from open source applications were instru-

mented to log input values, then extracted from the applica-

tion, compiled with different compilers, and ran in isolation

on realistic inputs. These runs were carefully timed and used

to compare optimizations across compilers cycle-accurately.

The authors were able to identify very detailed architecture-

specific differences in optimizers, such as Clang generating

an instruction with a 16-bit immediate operand where appar-

ently 8- and 32-bit immediates are to be preferred on x86-64.

Several of the issues found in this work were quickly fixed

in Clang and GCC.

Chainsaw [Moseley et al. 2009a] and OptiScope [Moseley

et al. 2009b] are two tools that record dynamic execution

traces of programs compiled with different compilers, then

correlate those traces to find differences in optimization.
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They found missed optimizations in compilers including

LLVM and GCC, but we do not know if the issues found

were communicated to compiler developers and then fixed.

8 Conclusions
We have presented a methodology and supporting tools for

finding missed optimizations in C compilers. Using stan-

dard tools where possible, we generate random C functions,

compile them using different compilers, compare the gener-

ated binaries statically, and reduce any interesting cases to a

minimal example showing the same interesting property.

The interestingness of programs is determined using a

new, customizable tool that compares binaries according to

various criteria that may be relevant to performance. Exam-

ples of currently implemented criteria are the number of

instructions, the number of arithmetic instructions of cer-

tain types, types of memory accesses such as loads from the

stack indicating register spilling, or function calls. Our binary

checker framework is easily extensible with new criteria for

missed optimizations.

We have found missed optimizations in all three C compil-

ers we tested: GCC, Clang, and CompCert. Several of the is-

sues we reported to bug trackers have been fixed by develop-

ers or by patches submitted by us. The missed optimizations

we found fall into different categories such as unnecessary

register spilling, missed arithmetic optimizations, redundant

computations, and missing instruction selection patterns.

In the future we plan to investigate further the treatment

of possibly nonterminating programs, interprocedural opti-

mizations, new checkers, and combinations of checkers.
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