Optimal and Heuristic Global Code Motion

for Minimal Spilling

Gergd Barany, Andreas Krall

{gergo,andi}@complang.tuwien.ac.at

Institute of Computer Languages compyiiy
Vienna University of Technology [EhilsJuages

CC 2013
March 21, 2013

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilli

This talk

Solve global code motion and register allocation as an integrated
problem.

Given: Scheduling for minimal spilling is good.

Hypothesis: Global code motion for minimal spilling might be good.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

start:
jo =0

10;;':= read() ctart
il = ¢(30, j2)
b:=a+1
j2 1= jl1 + b
s £] oor
compare j2 < ¢
d := j2 x 2
blt loop

end: end
return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

start:
j0 := 0
a := read()
loop:
i1 := $(j0, j2)
loop invariant
j2 := j1 + b
c := f(a)
compare j2 < ¢
d = j2 x 2
blt loop
end:

return d

Global code motion

start:
j0 = 0
a := read()
loop:
i1 = ¢(jO, j2)
loop invariant
j2 := j1 + b
c := f(a)

compare j2 < ¢
partially dead
blt loop
end:
return d

Global code motion

start: start:
jo =0 jo =0
a := read() a := read()

j1 = ¢(30, j2)

j2 1= jl1 + b j2 := j1 + b

c := f(a) c = f(a)

compare j2 < ¢ compare j2 < ¢
blt loop

blt loop
end:

end:

return d return d

Global code motion

start:

jo = 0

a := read()
loop:

jl = ¢(jO, j2)

b:=a+1
j2 := j1 + b
c := f(a)
compare j2 < ¢
d := j2 x 2
blt loop

end:
return d

live range of b

start:
jo =0
a := read()
b:=a+1
loop:
j1 := ¢(jo, j2)
j2 := j1 + b
c := f(a)
compare j2 < ¢
blt loop
end:
d := j2 x 2

return d

Register allocation: conflict graphs

original program

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation: conflict graphs

original program

allocation to 3 registers possible

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation: conflict graphs

original program after global code motion

allocation to 3 registers possible not 3-colorable!

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: .

0 30 := 0 Pair Overlapping placement
. o a, d i7 in loop
Illo.opzzi 1= read() b, ¢ i3 in start

.) . . b, d i3 in start, i7 in loop
!2: jt = ¢(30, j2) b, jO i3 in start

!3: b :=a+1 b, j2 i3 in start
432 = j1+ D c, d i7in loop, i7 before i6
5 ¢ :=1f(a) d, j2 i7 in loop

i6: compare j2 < c
70 d = §2 x 2
i8: blt loop

i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: Pai Overlanoi |
0: §0 := 0 a'rd e a.p?pf"glp acement
i1 a := read() > ook

b, ¢ 13 in start
Lloop: b, d i3 in start, i7 in loop
'2 jt i= ¢(30, j2) b, jO i3 in start
!3- b ‘B a.+ 1 b, j2 i3 in start
!4- j2 :=j1+b c, d i7in loop, i7 before i6
5. c := f(a) d, j2 i7 in loop
16: compare j2 < c
G = j2 X2
G 1oop i7 in loop: overlap!

i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: Ba Overlanpi |
0 jO := 0 T eRE P acement
il a := read() & 1 1N 2ooP

b, ¢ 13 in start
Lloop: b, d i3 in start, i7 in loop
'2 1 i= ?(30, j2) b, jO i3 in start
!3. b = a.+ 1 b, j2 i3 in start
!4- j2 :=j1+b c, d i7in loop, i7 before i6
150 c := f(a) d, j2 i7 in loop
16: compare j2 < c
18: blt loop
ond: i7 not in loop: no overlap

70 d = j2 X 2
i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: _ _

0: 30 := 0 Pair Overlapping placement
1 a = read() a, d i7 in Loop

i3: . - b, ¢ i3 in start

10'0 N b, d i3in start, i7 in loop
) p:)) b, jO i3 in start

!2' J_l 1 é(JO’ j2) b, j2 i3 in start

!4' = 1+ b c, d i7in loop, i7 before i6
i5: ¢ := f(a) d, j2 i7 in loop

i6: compare j2 < c

i - 2 38

i8: blt loop i3 in start, i7 in loop: overlap!

i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: Pai Overlanoi |
0: jo := 0 a'rd ver a.p?pf"glp acement
il: a := read() & 1 n2oop

b, ¢ 13 in start
Lloop: b, d i3 in start, i7 in loop
|2 j1 i= ?(30, j2) b, jO i3 in start
!3- b e a.+ 1 b, j2 i3 in start
!4- j2 :=j1+b c, d i7in loop, i7 before i6
5. ¢ = f(a) d, j2 i7 in loop
i6: compare j2 < c
i7: d = 3j2 x 2
i8: blt loop i3 not in start: no overlap

i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

All avoidable overlaps

start: 5 Sverae: |

0. §0 := 0 a|rd ver a.p7p!ng1p acement
il: a := read() & 1 1N 2ooP

. b, ¢ 13 in start

I3: b:=a+1 o .
. b, d 13 Iin start, i7 in loop
_ p: o b, jO i3 in start

!2' J_l 1 é(JO’ j2) b, j2 i3 in start

!4' j2 =31 +D c, d i7 in Loop, i7 before i6
i5: ¢ := f(a) d, j2 i7 in loop

i6: compare j2 < c

i8: blt loop

end: i7 not in loop: no overlap

70 d = j2 X 2
i19: return d

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Conflict graph with special edges for avoidable overlaps. Allocate to
different registers if possible.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Mini

Register allocation

Conflict graph with special edges for avoidable overlaps. Allocate to
different registers if possible.

5 registers: easy allocation

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Conflict graph with special edges for avoidable overlaps. Allocate to

different registers if possible.

4 registers: place instruction i7 in block end to avoid overlaps

G. Barany, A. Krall (TU Vienna) Global Code Motion for M

Register allocation

Conflict graph with special edges for avoidable overlaps. Allocate to
different registers if possible.

3 registers: place i3 in loop and i7 in end

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement
vl, v9 instruction 23 in block 0
v9, v10 instruction 23 in block 1

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement
vl, v9 instruction 23 in block 0
v9, v10 instruction 23 in block 1

must be in block 0 or 1!

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement Overlapping schedule
vl, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1
p61, v4 instr 3 before instr 0

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement Overlapping schedule
vl, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1
p61, v4 instr 3 before instr 0

v3, v2 instr 0 before instr 3

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement Overlapping schedule
vl, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1
p61, v4 instr 3 before instr 0

v3, v2 instr 0 before instr 3

cyclic dependence!

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. ..

Real-world programs have conflicting avoidable overlaps:

Pair Overlapping placement Overlapping schedule
vl, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1
p61, v4 instr 3 before instr 0

v3, v2 instr 0 before instr 3

= Must select a subset of reuses.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Reuse candidate selection

Which subset to choose?

To minimize spilling, choose valid subset with largest total savings
in spill costs.

Intuition: Hypergraph Maximum Independent Set
Hypergraph (V, H) with:

o Vertices V: reuse candidate pairs

@ Hyperedges H: minimal conflicting sets

Select maximum subset of V that does not contain any h € H.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Greedy heuristics

Idea: Avoid overlaps with larger spill costs.

Greedy heuristic selection

@ Sort candidates by descending spill costs
o For each candidate:
o If no conflict:

o Add candidate to selected set
o Commit to code motions for candidate

If greedy approach causes too many overlaps: use given schedule.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Optimal candidate selection

Can we do better than the greedy heuristics?

Integer linear programming formulation

Variables:
select. Select candidate ¢ with savings w,
place; , Place instruction i in block b
Variables for relative ordering of instructions

Objective function:

maximize E weselect .

c

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Optimal candidate selection

Can we do better than the greedy heuristics?

Integer linear programming formulation

Variables:
select. Select candidate ¢ with savings w,
place; , Place instruction i in block b
Variables for relative ordering of instructions

Objective function:

maximize Z weselect: + Z Z place; ,
c i b

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

CPLEX solver time

Solver time (wall time, seconds)

60

50

40

30

20

10

[]
| I]] " l
» ki v,
0 200 400

600 800 1000
Function size (number of instructions)

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilli

Density of data points (logarithmic)

ueawoah

1sde’|og

=

Jlomi-00g
2dizg952

X8UOA'GGZ

L

suwqued-gsg
uoa'gGge
Jesied /61

A

seon|'egl

T
—1
1

001008} /8|

Global Code Motion for

ayenbagg|

 E—
1

4 ouwrigl
- uesLl
|o6eb-g/ 1

—
1

esow//|

- adrgzy
nidde g/}

L]

pubwg/ L

wims' /L

©
=
=
g
>
]
=
-
3
&
<
B
£
1
3
[ui]
O

asimdnm-gg|

L

‘||—|_|_|ﬁﬁ|—|

7
6
5
4 +
3 F
2
1
0
1
2+
3+
4}
5|
6|
7

w0
s
-
(%2}
=
>3
()
-
>
)
[}
(O]
el
(@)

- dizb'y9L

dnpaads o,

Results:

- ueswoab

1sde’|og

HOMI00E

2dizg952

X8UOA'GGZ

Mwqpued-gsg

,_

o - uosgge

- - Jesied /6L
- SEeoNn|'681
- 00908} /8|
- ayenbagg|
- - owigl
[
_‘

Global Code Motion for

|o6eb-g/ 1

- be6LL
esow//|

- adrgzy
nidde g/}

pubwg/ L

wims' /L

©
=
=
g
>
]
=
-
3
&
<
B
£
1
3
[ui]
O

asimdnm-gg|

- dizb'y9L

dnpaads o,

Future work

Some research directions

@ More freedom for code motion:
maximize Z weselect. + 3 Z Z Boplace; p
c i b

@ Impact of solver time limit

@ Other heuristics

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilli

o Integrate code motion and register allocation by letting the
allocator choose necessary code motions.

o Speedups up to 4% ©)
@ ...but no improvement on average ®

Conclusion: Code motion for minimal spilling seems too restrictive.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilli

o Integrate code motion and register allocation by letting the
allocator choose necessary code motions.

o Speedups up to 4% ©)
@ ...but no improvement on average ®

Conclusion: Code motion for minimal spilling seems too restrictive.
Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Férderung der
wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.

G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilli

