
Optimal and Heuristic Global Code Motion
for Minimal Spilling

Gergö Barany, Andreas Krall

{gergo,andi}@complang.tuwien.ac.at

Institute of Computer Languages
Vienna University of Technology uages

comp
lang

uter

CC 2013
March 21, 2013

1/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

This talk

Solve global code motion and register allocation as an integrated

problem.

Given: Scheduling for minimal spilling is good.

Hypothesis: Global code motion for minimal spilling might be good.

2/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

live range of b

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1 loop invariant

j2 := j1 + b

c := f(a)

compare j2 < c

d := j2 × 2

d := j2 × 2 partially dead

blt loop

end:

return d

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1b := a + 1

j2 := j1 + b

c := f(a)

d := j2 × 2d := j2 × 2

compare j2 < c

blt loop

end:

return d

start

loop

end

3/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

live range of b

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1 loop invariant
j2 := j1 + b

c := f(a)

compare j2 < c

d := j2 × 2

d := j2 × 2 partially dead

blt loop

end:

return d

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1b := a + 1

j2 := j1 + b

c := f(a)

d := j2 × 2d := j2 × 2

compare j2 < c

blt loop

end:

return d

start

loop

end

3/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

live range of b

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1 loop invariant
j2 := j1 + b

c := f(a)

compare j2 < c

d := j2 × 2

d := j2 × 2 partially dead
blt loop

end:

return d

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1b := a + 1

j2 := j1 + b

c := f(a)

d := j2 × 2d := j2 × 2

compare j2 < c

blt loop

end:

return d

start

loop

end

3/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

live range of b

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1

loop invariant

j2 := j1 + b

c := f(a)

compare j2 < c

d := j2 × 2

d := j2 × 2

partially dead

blt loop

end:

return d

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1

j2 := j1 + b

c := f(a)

d := j2 × 2

d := j2 × 2

compare j2 < c

blt loop

end:

return d

start

loop

end

3/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Global code motion

live range of b

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1 loop invariant

j2 := j1 + b

c := f(a)

compare j2 < c

d := j2 × 2

d := j2 × 2 partially dead

blt loop

end:

return d

start:

j0 := 0

a := read()

loop:

j1 := φ(j0, j2)

b := a + 1

b := a + 1

j2 := j1 + b

c := f(a)

d := j2 × 2

d := j2 × 2

compare j2 < c

blt loop

end:

return d

start

loop

end

3/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation: con�ict graphs

original program

a b

c

d

j

a b

c

d

j

allocation to 3 registers possible

after global code motion

a b

c

d

j

not 3-colorable!

4/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation: con�ict graphs

original program

a b

c

d

j

a b

c

d

j

allocation to 3 registers possible

after global code motion

a b

c

d

j

not 3-colorable!

4/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation: con�ict graphs

original program

a b

c

d

j

a b

c

d

j

allocation to 3 registers possible

after global code motion

a b

c

d

j

not 3-colorable!

4/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

i7 in loop: overlap!

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

i7 not in loop: no overlap

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

i3 in start, i7 in loop: overlap!

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

i3 not in start: no overlap

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Compute code motions and overlaps

start:

i0: j0 := 0

i1: a := read()

loop:

loop:

i2: j1 := φ(j0, j2)

i2: j1 := φ(j0, j2)

i3: b := a + 1

i3: b := a + 1

i4: j2 := j1 + b

i5: c := f(a)

i6: compare j2 < c

i7: d := j2 × 2

i7: d := j2 × 2

i8: blt loop

i8: blt loop

end:

end:

i9: return d

All avoidable overlaps

Pair Overlapping placement

a, d i7 in loop

b, c i3 in start

b, d i3 in start, i7 in loop

b, j0 i3 in start

b, j2 i3 in start

c, d i7 in loop, i7 before i6

d, j2 i7 in loop

i7 not in loop: no overlap

5/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

j

=⇒

a b

c

d

j

a b

c

d

j

a b

c

d

j

6 registers

6/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

j =⇒

a b

c

d

j

a b

c

d

j

a b

c

d

j

5 registers: easy allocation

6/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

j =⇒

a b

c

d

j

a b

c

d

j

a b

c

d

j

4 registers: place instruction i7 in block end to avoid overlaps

6/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

j =⇒

a b

c

d

j

a b

c

d

j

a b

c

d

j

3 registers: place i3 in loop and i7 in end

6/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement

Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4 must be in block 0 or 1! instr 3 before instr 0

v3, v2 instr 0 before instr 3

...

cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement

Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4

must be in block 0 or 1!

instr 3 before instr 0

v3, v2 instr 0 before instr 3

...

cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4

must be in block 0 or 1!

instr 3 before instr 0

v3, v2 instr 0 before instr 3

...

cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4

must be in block 0 or 1!

instr 3 before instr 0

v3, v2 instr 0 before instr 3
...

cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4

must be in block 0 or 1!

instr 3 before instr 0

v3, v2 instr 0 before instr 3
... cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

There is just one problem. . .

Real-world programs have con�icting avoidable overlaps:

Pair Overlapping placement Overlapping schedule

v1, v9 instruction 23 in block 0

v9, v10 instruction 23 in block 1

p61, v4

must be in block 0 or 1!

instr 3 before instr 0

v3, v2 instr 0 before instr 3
...

cyclic dependence!

Ù Must select a subset of reuses.

7/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Reuse candidate selection

Which subset to choose?

To minimize spilling, choose valid subset with largest total savings

in spill costs.

Intuition: Hypergraph Maximum Independent Set

Hypergraph 〈V ,H〉 with:
Vertices V : reuse candidate pairs

Hyperedges H: minimal con�icting sets

Select maximum subset of V that does not contain any h ∈ H.

8/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Greedy heuristics

Idea: Avoid overlaps with larger spill costs.

Greedy heuristic selection

Sort candidates by descending spill costs

For each candidate:
If no con�ict:

Add candidate to selected set

Commit to code motions for candidate

If greedy approach causes too many overlaps: use given schedule.

9/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Optimal candidate selection

Can we do better than the greedy heuristics?

Integer linear programming formulation

Variables:

selectc Select candidate c with savings wc

place i ,b Place instruction i in block b

. . . Variables for relative ordering of instructions

Objective function:

maximize
∑
c

wcselectc

+
∑
i

∑
b

place i ,b

10/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Optimal candidate selection

Can we do better than the greedy heuristics?

Integer linear programming formulation

Variables:

selectc Select candidate c with savings wc

place i ,b Place instruction i in block b

. . . Variables for relative ordering of instructions

Objective function:

maximize
∑
c

wcselectc +
∑
i

∑
b

place i ,b

10/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

CPLEX solver time

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

S
o
lv

e
r

ti
m

e
 (

w
a
ll

ti
m

e
,
s
e
c
o
n
d
s
)

Function size (number of instructions)

D
e
n
s
it
y
 o

f
d
a
ta

 p
o
in

ts
 (

lo
g
a
ri
th

m
ic

)

11/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Results: Greedy heuristics

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

1
6
4
.g

z
ip

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
5
.v

p
r

1
7
7
.m

e
s
a

1
7
8
.g

a
lg

e
l

1
7
9
.a

rt

1
8
1
.m

c
f

1
8
3
.e

q
u
a
k
e

1
8
7
.f
a
c
e
re

c

1
8
9
.l
u
c
a
s

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t
w

o
lf

3
0
1
.a

p
s
i

g
e
o
m

e
a
n

%
 s

p
e
e
d
u
p

12/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Results: Optimal (ILP)

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

1
6
4
.g

z
ip

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
5
.v

p
r

1
7
7
.m

e
s
a

1
7
8
.g

a
lg

e
l

1
7
9
.a

rt

1
8
1
.m

c
f

1
8
3
.e

q
u
a
k
e

1
8
7
.f
a
c
e
re

c

1
8
9
.l
u
c
a
s

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t
w

o
lf

3
0
1
.a

p
s
i

g
e
o
m

e
a
n

%
 s

p
e
e
d
u
p

13/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Future work

Some research directions

More freedom for code motion:

maximize
∑
c

wcselectc + β
∑
i

∑
b

βbplace i ,b

Impact of solver time limit

Other heuristics

14/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Summary

Integrate code motion and register allocation by letting the

allocator choose necessary code motions.

Speedups up to 4% ,
. . . but no improvement on average /

Conclusion: Code motion for minimal spilling seems too restrictive.

Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Förderung der

wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.

15/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

Summary

Integrate code motion and register allocation by letting the

allocator choose necessary code motions.

Speedups up to 4% ,
. . . but no improvement on average /

Conclusion: Code motion for minimal spilling seems too restrictive.

Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Förderung der

wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.

15/15 G. Barany, A. Krall (TU Vienna) Global Code Motion for Minimal Spilling

