
Optimal and Heuristic Global Code Motion

for Minimal Spilling

Gergö Barany and Andreas Krall?

{gergo,andi}@complang.tuwien.ac.at

Vienna University of Technology

Abstract. The interaction of register allocation and instruction schedul-
ing is a well-studied problem: Certain ways of arranging instructions
within basic blocks reduce overlaps of live ranges, leading to the inser-
tion of less costly spill code. However, there is little previous research
on the extension of this problem to global code motion, i .e., the motion
of instructions between blocks. We present an algorithm that models
global code motion as an optimization problem with the goal of mini-
mizing overlaps between live ranges in order to minimize spill code.

Our approach analyzes the program to identify the live range overlaps for
all possible placements of instructions in basic blocks and all orderings of
instructions within blocks. Using this information, we formulate an opti-
mization problem to determine code motions and partial local schedules
that minimize the overall cost of live range overlaps. We evaluate so-
lutions of this optimization problem using integer linear programming,
where feasible, and a simple greedy heuristic.

We conclude that global code motion with the sole goal of avoiding spills
rarely leads to performance improvements because code is placed too con-
servatively. On the other hand, purely local optimal instruction schedul-
ing for minimal spilling is e�ective at improving performance when com-
pared to a heuristic scheduler for minimal register use.

1 Introduction

In an optimizing compiler's backend, various code generation passes apply code
transformations with di�erent, con�icting goals in mind. The register allocator
attempts to assign the values used by the program to CPU registers, which are
usually scarce. Where there are not enough registers, spilling must be performed:
Excess values must be stored to memory and reloaded before they can be used.
Memory accesses are slower than most other instructions, so avoiding spill code
is usually bene�cial on modern architectures [GYA+03]. This paper investigates
the applicability of this result to global code motion directed at minimizing live
range overlaps.

? This work is supported by the Austrian Science Fund (FWF) under contract
P21842, Optimal Code Generation for Explicitly Parallel Processors, http://www.
complang.tuwien.ac.at/epicopt/.

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

c := f(a)

i2 := i1 + b

d := i2 × 2

compare i2 < c

blt loop

end:

return d

(a) Original function

start:

i0 := 0

a := read()

b := a + 1

loop:

i1 := φ(i0, i2)

c := f(a)

i2 := i1 + b

compare i2 < c

blt loop

end:

d := i2 × 2

return d

(b) After GCM

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

i2 := i1 + b

c := f(a)

compare i2 < c

blt loop

end:

d := i2 × 2

return d

(c) GCMS for 3 registers

Fig. 1. Optimization using GCM and GCMS for a three-register processor

Register allocation and spilling con�ict with transformations that lengthen
a value's live range, the set of all program points between the value's de�ni-
tion and a subsequent use: Instruction scheduling arranges instructions within
basic blocks. To maximize pipeline utilization, de�nitions and uses of values
can be moved apart by scheduling other instructions between them, but this
lengthens live ranges and can lead to more overlaps between them, which can in
turn lead to excessive register demands and insertion of spill code. Similarly, code
motion techniques that move instructions between basic blocks can increase per-
formance, but may also lead to live range overlaps. In particular, loop-invariant
code motion moves instructions out of loops if their values do not need to be
computed repeatedly. However, for a value de�ned outside a loop but used inside
the loop, this extends its live range across the entire loop, leading to an overlap
with all of the live ranges inside the loop.

This paper introduces our GCMS (global code motion with spilling) algo-
rithm for integrating the code motion, instruction scheduling, and spilling prob-
lems in one formalism. The algorithm is `global' in the sense that it considers
the entire function at once and allows code motion into and out of loops. We
describe both heuristic GCMS and an integer linear programming formulation
for an optimal solution of the problem.

Our algorithm is based on Click's aggressive Global Code Motion (GCM)
algorithm [Cli95]. We use an example to illustrate the di�erences between GCM
and GCMS. Figure 1(a) shows a small program in SSA form adapted from the
original paper on GCM. It is easy to see that the computation of variable b

is loop-invariant and can be hoisted out of the loop; further, the computation
for d is not needed until after the loop. Since the value of its operand i2 is
available at the end of the loop, we can sink this multiplication to the end

block. Figure 1(b) illustrates both of these code motions, which are automatically
performed by GCM. The resulting program contains less code in the loop, which
means it can be expected to run faster than the original.

This expectation fails, however, if there are not enough registers available
in the target processor. Since after GCM variable b is live through the loop, it
con�icts with a, c, and all of {i0, i1, i2}. Both a and c con�ict with each other
and with at least one of the i variables, so after GCM we need four CPU regis-
ters for a spill-free allocation. If the target only has three registers available for
allocation of this program fragment, costly spill code must be inserted into the
loop. As memory accesses are considerably more expensive than simple arith-
metic, GCM would trade o� a small gain through loop invariant code motion
against a larger loss due to spilling.

Compare this to Figure 1(c), which shows the result of applying our GCMS al-
gorithm for a three-register CPU. To avoid the overlap of b with all the variables
in the loop, GCMS leaves its de�nition inside the loop. It also applies another
change to the original program: The overlap between the live ranges of b and c is
avoided by changing the instruction schedule such that c's de�nition is after b's
last use. This ensures that a register limit of 3 can be met. However, GCMS is
not fully conservative: Sinking d out of the loop can be done without adversely
a�ecting the register needs, so this code motion is performed by GCMS. Note,
however, that this result is speci�c to the limit of three registers: If four or more
registers were available, GCMS would detect that unrestricted code motion is
possible, and it would produce the same results as GCM in Figure 1(b).

The idea of GCMS is thus to perform GCM in a way that is more sensitive to
the needs of the spiller. As illustrated in the example, code motion is restricted
by the spilling choices of the register allocator, but only where this is necessary.
In functions (or parts of functions) where there are enough registers available,
GCMS performs unrestricted GCM. Where there is higher register need, GCMS
serializes live ranges to avoid overlaps and spill fewer values. In contrast to most
other work in this area, GCMS does not attempt to estimate the register needs of
the program before or during scheduling. Instead, it computes a set of promising
code motions that could reduce register needs if necessary. An appropriately
encoded register allocation problem ensures that the spiller chooses which code
motions are actually performed. Code motions that are not needed to avoid
spilling are not performed.

The rest of this paper is organized as follows. Section 2 discusses related work
in the areas of optimal instruction scheduling, optimal spilling, and integrated
scheduling and register allocation techniques. Section 3 gives an overview of our
GCMS algorithm. Section 4 describes our analysis for identifying all possible live
range overlaps, and how to apply code motion and scheduling to avoid them.
Section 5 discusses the problem of selecting a subset of possible overlaps to
avoid and shows our integer linear programming (ILP) model for computing
an optimal solution. Section 6 evaluates our implementation and compares the
e�ects of heuristic and optimal GCMS to simpler existing heuristics implemented
in the LLVM compiler suite. Section 7 concludes.

2 Related Work

Instruction scheduling for pipelined architectures was an early target for optimal
approaches [EK91,WLH00]. The goal of such models was usually to optimize for
minimal total schedule length only. However, both the increasing complexity
of modern hardware and the increasing gap between processor and memory
speeds made it necessary to consider register needs as well. An optimal integrated
formulation was given by Chang et al. [CCK97]. More recently, Govindarajan
et al. [GYA+03] concluded that on modern out-of-order superscalar processors,
scheduling to minimize spilling appears to be the most pro�table instruction
scheduling target. Various optimal spillers for a given arrangement of instructions
have also been proposed. Colombet et al. [CBD11] summarize and generalize this
work.

A large body of early work in integrated instruction scheduling and regis-
ter allocation [GH88,NP93,Pin93,AEBK94] aimed at balancing scheduling for
instruction level parallelism against register allocation, with some spilling typi-
cally allowed. As with optimal schedulers, this trend also shifted towards work
that attempted to avoid live range overlaps entirely, typically by adding se-
quencing arcs to basic block dependence graphs, as our GCMS algorithm also
does [Tou01,XT07,Bar11].

All of the work mentioned above considers only local instruction scheduling
within basic blocks, but no global code motion. At an intermediate level between
local and global approaches, software pipelining [Lam88] schedules small loop
kernels for optimal execution on explicitly parallel processors. Here, too, careful
integration of register allocation has proved important over time [CSG01,EK12].

RASER [NP95b] performs register allocation sensitive region scheduling by
�rst using rematerialization (duplication of computations) to reduce register
pressure where needed, and then only applying global code motion operations
(such as loop-invariant code motion) that do not increase register pressure be-
yond the number of available registers. No attempt is made to reduce register
pressure by serializing registers as in our approach. RASER gives impressive im-
provements on machines with arti�cially few registers; later results on a machine
with 16 registers look similar to ours [NP95a].

Johnson and Mycroft [JM03] describe an elegant combined global code mo-
tion and register allocation method based on the Value State Dependence Graph
(VSDG). The VSDG is similar to our acyclic global dependence graph, but it
represents control �ow by using special nodes for conditionals and reducible loops
(their approach does not handle irreducible loops) rather than our lists of legal
blocks for each instruction. The graph is traversed bottom-up in a greedy man-
ner, measuring `liveness width', the number of registers needed at each level.
Excessive register pressure is reduced by adding dependence arcs, by spilling
values, or by duplicating computations. Unfortunately, we are not aware of any
data on the performance of this allocator, nor the quality of the generated code.

The concept of liveness width is similar to Touati's `register saturation', which
is only formulated for basic blocks and pipelined loops. It is natural to try to
adapt this concept to general control �ow graphs, but this is di�cult to do if

instructions may move between blocks and into and out of loops. It appears that
to compute saturation, we would need to build a detailed model of where each
value may be live, and this might quickly lead to combinatorial explosion. Our
method is simpler because it tries to minimize spills without having to take a
concrete number of available registers into account.

Many authors have worked on what they usually refer to as global instruc-
tion scheduling problems, but their solutions are almost invariably con�ned
to acyclic program regions, i. e., they do not perform loop invariant code mo-
tion [BR91,ZJC03]. The notable exception is work by Winkel [Win07] on `real'
global scheduling including moving code into and out of loops, as our algorithm
does. Crucially, Winkel's optimal scheduler runs in two phases, the second of
which has the explicit goal of limiting code motion to avoid lengthening live
ranges too much. Besides considerable improvements in schedule length, Winkel
reports reducing spills by 75% relative to a heuristic global scheduler. In con-
trast to our work, Winkel compiled for the explicitly parallel Itanium processor,
so his reported speedups of 10% cannot be meaningfully compared to our results
on our out-of-order target architecture (ARM Cortex-A9).

3 Global Code Motion for Minimal Spilling

As an extension of GCM, our GCMS algorithm is also based on a program rep-
resentation in SSA form and a global dependence graph. In SSA form [CFR+91],
every value in the program has exactly one de�nition. De�nitions from di�erent
program paths, such as in loops, are merged using special φ pseudo-instructions
that are later replaced by register copies if necessary.

Like GCM, we build a global dependence graph with instructions as nodes
and data dependences as arcs. We also add arcs to capture any ordering de-
pendences due to side e�ects on memory, such as store instructions and func-
tion calls, and any instructions that explicitly access processor registers, such as
moves to and from argument registers around calls. Because we will use this de-
pendence graph to �nd a linear arrangement of instructions within basic blocks,
we must impose an important restriction: The graph must always be acyclic to
ensure that a topological ordering exists. Conveniently, in SSA form the only
cyclic data dependences arise from values that travel along loop backedges to φ
instructions. We can safely ignore these dependences as long as we ensure that
the de�nitions of such values are never sunk out of their loops.

Our dependence graph is also used for code motion. We associate each in-
struction with a set of legal basic blocks as follows: Function calls, any other in-
structions that access memory or explicit CPU registers, and φ instructions are
not movable, their only legal block is the block in which they originally appear.
For all other blocks, we employ the concept of dominance: A block a dominates

a block b i� any path from the function's unique entry block to b must pass
through a. Following Click [Cli95], we say that an instruction is legally placed
in a block b if all of its predecessors in the dependence graph are based in blocks
that dominate b, and all of its successors are in blocks dominated by b. The set

of legal blocks for every instruction is computed in a forward and a backward
pass over the dependence graph.

start

loop

end

0: 0

2: ϕ

 i0

1: call read

3: + 1

a

5: call f

 a

4: +

 i1 b

6: <

c

7: × 2

i2 i2

return

dblt

cc

Fig. 2. Global dependence graph for example program

Figure 2 shows the global dependence graph for the example program from
Figure 1. Data dependences are annotated with the name of the corresponding
value. Note that the cyclic dependence of the φ instruction on i2 is not shown; it
is implicit, and our analysis keeps track of the fact that i2 is live out of the loop
block and live across the loop's backedge.

Recall that function calls, φ instructions, and branches are not movable in
our model. Due to dependence arcs, other instructions become unmovable, too:
Instructions 4 and 6 are `stuck' between the unmovable φ and the branch. This
leaves only instructions 3 and 7 movable into and out of the loop, but as we have
seen before, this is enough to illustrate interesting interactions between global
code motion and spilling.

Given the dependence graph and legal blocks for each instruction, GCMS
proceeds in the following steps:

Overlap analysis determines for every pair of values whether their live ranges
might overlap. The goal of this analysis is similar to traditional liveness
analysis for register allocation, but with the crucial di�erence that in GCMS,
instructions may move. Our overlap analysis must therefore take every legal

placement and every legal ordering of instructions within blocks into account.
For every pair, the analysis determines whether the ranges de�nitely overlap
in all schedules, never overlap in any schedule, or whether they might overlap
for some arrangements of instructions. In the latter case, GCMS computes
a set of code placement restrictions and extra arcs that can be added to the
global dependence graph. Such restrictions ensure that the live ranges do
not overlap in any schedule of the new graph, i. e., they enable reuse of the
same processor register for both values.

Candidate selection chooses a subset of the avoidable overlaps identi�ed in
the previous phase. Not all avoidable overlaps identi�ed by the analysis are
avoidable at the same time: If avoiding overlaps for two register pairs leads
to con�icting code motion restrictions, such as moving an instruction to two
di�erent blocks, or adding arcs that would cause a cycle in the dependence
graph, at least one of the pairs cannot be chosen for reuse. GCMS must
therefore choose a promising set of candidates among all avoidable overlaps.
Only these candidate pairs will be considered for actual overlap avoidance
by code motion and instruction scheduling.
Since our goal is to avoid expensive spilling as far as possible, we try to �nd
a candidate set that maximizes the sum of the spill costs of every pair of
values selected for reuse.

Spilling and code motion use the results of the candidate selection phase by
building a register allocation problem in which the live ranges of reuse can-
didates are treated as non-con�icting. The solution computed by the register
allocator is then used to guide code motion: For any selected candidate whose
live ranges were allocated to the same CPU register, we apply its code motion
restrictions to the dependence graph. The result of this phase is a restricted
graph on which we can perform standard GCM, with the guarantee that
code motion will not introduce excessive overlaps between live ranges.

Each of these phases is discussed in more depth in the following sections.

4 Overlap Analysis

An optimal solution to GCMS requires us to consider all possible ways in which
a pair of values might overlap. That is, we must consider all possible placements
and orderings of all of the instructions de�ning or using either value. To keep
this code simple, we implemented this part of the analysis in Prolog. This allows
us to give simple declarative speci�cations of when values overlap, and Prolog's
built-in backtracking takes care of actually enumerating all con�gurations.

The core of the overlap analysis, simpli�ed from our actual implementation,
is sketched in Figure 3. The Figure shows the three most important cases in the
analysis: The �rst clause deals with the case where values (`virtual registers') A
and B might overlap because A's use is in the same block as B's de�nition, but
there is no dependence ensuring that A's live range ends before B's de�nition.
The second clause applies when A is de�ned and used in di�erent blocks, and B's
de�nition might be placed in an intervening block between A's de�nition and

overlapping_virtreg_pair(virtreg(A), virtreg (B)) :−
% B is de�ned by instruction BDef in BDefBlock, A has a use in
% the same block.
virtreg_def_in(B, BDef, BDefBlock),
virtreg_use(A, AUse, BDefBlock),
% A's use is not identical to B's def , and there is no existing
% dependence from B's def to A's use. That is, B's def might be
% between A's def and use.
AUse \= BDef,
no_dependence(BDef, AUse),
% There is an overlap that might be avoided if B's def were
% scheduled after A's use by adding an arc.
Placement = [AUse−BDefBlock, BDef−BDefBlock],
record_blame(A, B, blame(placement(Placement), no_arc([BDef−AUse]))).

overlapping_virtreg_pair(virtreg(A), virtreg (B)) :−
% A and B have defs ADef and BDef in blocks ADefBlock and
% BDefBlock, respectively.
virtreg_def_in(A, ADef, ADefBlock),
virtreg_def_in(B, BDef, BDefBlock),
% A has a use in a block di�erent from its def .
virtreg_use(A, AUse, AUseBlock),
ADefBlock \= AUseBlock,
% There is a non−empty path from A's def to B's def...
ADefBlock \= BDefBlock,
cfg_forward_path(ADefBlock, BDefBlock),
% ... and a path from B's def to A's use that does not pass
% through a rede�nition of A. That is, B is on a path from A's
% def to its use.
cfg_loopypath_notvia(BDefBlock, AUseBlock, ADefBlock),
% There is an overlap that might be avoided if at least one of
% these instructions were in a di�erent block .
Placement = [ADef−ADefBlock, BDef−BDefBlock, AUse−AUseBlock],
record_blame(A, B, blame(placement(Placement))).

overlapping_virtreg_pair(virtreg(A), virtreg (B)) :−
% A and B are de�ned in the same block.
virtreg_def_in(A, ADef, DefBlock),
virtreg_def_in(B, BDef, DefBlock),
% A has a use in a di�erent block , so it is live out of
% its de�ning block .
virtreg_use(virtreg(A), AUse, AUseBlock),
AUseBlock \= DefBlock,
% B is also live out.
virtreg_use(virtreg(B), BUse, BUseBlock),
BUseBlock \= DefBlock,
% There is an overlap that might be avoided if at least
% one of these instructions were in a di�erent block .
Placement = [ADef−DefBlock, BDef−DefBlock,

AUse−AUseBlock, BUse−BUseBlock],
record_blame(A, B, blame(placement(Placement))).

Fig. 3. Overlap analysis for virtual registers A and B

use. The third clause handles the case where A and B are live at the end of the
same block because they are both de�ned there and used elsewhere.

The code uses three important auxiliary predicates for its checks:

cfg_forward_path(A, B) succeeds if there is a path in the control �ow graph
from block A to block B using only forward edges, i. e., not taking loop
backedges into account.

cfg_loopypath_notvia(A, B, C) succeeds if there is a path, possibly includ-
ing loops, from A to B, but not including C. We use this to check for paths
lacking a rede�nition of values.

no_dependence(A, B) succeeds if there is no existing arc in the dependence
graph from instruction A to B, but it could be added without causing a cycle
in the graph.

If all of the conditions in the clause bodies are satis�ed, a possible overlap
between the values is recorded. Such overlaps are associated with `blame terms',
data structures that capture the reason for the overlap. For any given pair of
values, there might be several di�erent causes for overlap, each associated with
its own blame. An overlap can be avoided if all of the circumstances captured
by the blame terms can be avoided.

There are two kinds of blame. First, there are those blames that record arcs
missing from the dependence graph, computed as in the �rst clause in Figure 3.
If this arc can be added to the dependence graph, B's de�nition will be after A's
use, avoiding this overlap. Alternatively, if these two instructions are not placed
in the same block, the overlap is also avoided. The second kind of blame concerns
only the placement of instructions in basic blocks, as in the second and third
clauses in Figure 3. If all of the instructions are placed in the blocks listed in
the blame term, there is an overlap between the live ranges. If at least one of
them is placed in another block, there is no overlap�at least, not due to this

placement.
As mentioned before, we use Prolog's backtracking to enumerate all invalid

placements and missing dependence arcs. We collect the associated blame terms
and check them for validity: If any of the collected arcs to put a value v before w
can not be added to the dependence graph because it would introduce a cycle,
then the other arcs for putting v before w are useless, so all of these blames are
deleted. Blames for the reversed ordering, scheduling w before v, are retained
because they might still be valid.

Even after this cleanup we might end up with an overlap that cannot be
avoided. For example, for the pair a and b in the example program, the analysis
computes that instruction 3 de�ning b may not be placed in the start block
because it would then be live out of that block and overlap with a's live-out
de�nition; but neither may instruction 3 be placed in the loop block because it
would be on a path from a's de�nition to its repeated use in the loop. As these
two blocks are the only ones where instruction 3 may be placed, the analysis
of all blames for this pair determines that an overlap between a and b cannot
be avoided. Table 1 shows the blame terms computed for the example program
after these checks and some cleanup (removal of unmovable instructions from

Table 1. Blame terms computed for the example program, listing instruction place-
ments and missing dependence arcs that may cause overlaps.

Pair Invalid placements Missing arcs Explanation

a, d 7 in loop a live through loop

b, d 3 in start, 7 in loop b live through loop if de�ned in start

b, i0 3 in start b live out of start if de�ned in start

b, i2 3 in start b live through loop if de�ned in start

c, d 7 in loop 7→ 6 order d's de�nition after c's last use
c, i1 5→ 4 order c's de�nition after i1's last use
d, i2 7 in loop i2 live out of loop (across backedge)

placement blames). Each blame is accompanied by a brief explanation of why
the live ranges would overlap if placed and arranged as stated. Pairs not listed
here are found to be either non-overlapping or de�nitely overlapping.

The analysis discussed so far only considers pairs of values in SSA form. How-
ever, we must also consider overlaps between SSA values and explicitly named
CPU registers, such as argument registers referenced in copy instructions before
function calls. As such copies can occur in several places in a function, these
physical registers are not in SSA form. We assume a representation in which all
uses of such registers are in the same block as their de�nition; this allows us to
treat each of these short live ranges separately, and the analysis becomes similar
to the case for virtual registers.

5 Reuse Candidate Selection

After performing overlap analysis and computing all blames, a subset of reuse
candidates must be selected for reuse.

5.1 Integer Linear Programming Formulation

The optimization problem we must solve is �nding a noncon�icting set of reuse
candidates with maximal weight, where the weight is the sum of the spill costs
of the two values. That is, of all possible overlaps, we want to avoid those that
would lead to the largest total spill costs. We model this as an integer linear
program and use an o�-the-shelf solver (CPLEX) to compute an optimum.

Variables. The variables in the problem are:

� a binary variable selectc for each reuse candidate c; this is 1 i� the candidate
is selected

� a binary variable placei,b for each legal block b for any instruction i occurring
in a placement constraint in any blame; this is 1 i� it is legal to place i in b
in the optimal solution

� a binary variable arci,j for any dependence arc i→ j occurring in any blame;
this is 1 i� the arc must be present in the optimal solution

� a variable instr i for each instruction in the program, constrained to the range
0 ≤ instr i < N where N is the total number of instructions; these are used to
ensure that the dependence graph for the optimal solution does not contain
cycles

Objective function. We want to maximize the weight of the selected candidates;
as a secondary optimization goal, we want to preserve as much freedom of code
motion as possible for a given candidate selection. The objective function is
therefore

maximize
∑
c

wcselectc +
∑
i

∑
b

placei,b

where the �rst sum ranges over all candidates c, wc is the weight of candidate c,
and the second sum ranges over all placement variables for instructions i and
their legal blocks b. In our problem instances, there are typically considerably
more candidate selection variables than placement variables, and the candidate
weights are larger than 1. Thus the �rst sum dominates the second, and this
objective function really treats freedom of code motion as secondary to the
avoidance of overlaps. However, adding weights to the second sum would easily
enable us to investigate trade-o�s between avoiding spills and more aggressive
code motion. We intend to investigate this trade-o� in future work.

Constraints. The constraints in equations (1)�(7) ensure a valid selection. First,
we give the constraints that model the structure of the existing dependence
graph. We need this to detect possible cycles that would arise from selecting
an invalid set of arcs. Therefore, we give a partial ordering of instructions that
corresponds to dependences in the graph. For each instruction i with a direct
predecessor p, the following must hold:

instr i > instrp (1)

Next, we require that all instructions must be placed in some legal block. For
each such instruction i: ∑

placei,b ≥ 1 (2)

where the sum ranges over all valid blocks b for instruction i.
We can now proceed to give the constraints related to selecting a reuse can-

didate. For a candidate c and each of the arcs i→ j associated with it, require

selectc + placei,b + placej,b ≤ 2 + arci,j (3)

to model that if c is selected and both i and j are placed in some common
block b, the arc must be selected as well. For each invalid placement constraint
(instr i1 in b1, . . . , instr in in bn), require:

selectc +
∑

placei,b ≤ n (4)

This ensures that if c is selected, at least one of these placements is not selected.
If an arc is to be selected due to one of the candidates that requires it, ensure

that it can be added to the dependence graph without causing a cycle. That is,
we want to formulate the condition arci,j ⇒ instr i > instr j . If N is the total
number of instructions, this constraint can be written as:

instr i − instr j > N · arci,j −N (5)

If arci,j is selected, this reduces to instr i− instr j > 0, i. e., instr i > instr j . Oth-
erwise, it is instr i−instr j > −N , which is always true for 0 ≤ instr i, instr j < N .
These constraints ensure that the instructions along every path in the depen-
dence graph are always topologically ordered, i. e., there is no cycle in the graph.

Finally, we must take interactions between dependence arcs and instruction
placement into account. An arc instr i → instr j means that instr j may not be
executed after instr i along a program path, so it is not valid to place instr j into
a later block than instr i. Therefore, for all arcs instr i → instr j in the original
dependence graph where instr i may be placed in some block bi, instr j may be
placed in block bj , and there is a non-empty forward path from bj to bi, require

placei,bi + placej,bj ≤ 1 (6)

to ensure that such a placement is not selected.
Similarly, for every selectable arc arci,j and an analogous invalid path:

arci,j + placei,bi + placej,bj ≤ 2 (7)

That is, selecting an arc means that we also ensure that the placement of in-
structions respects the intended ordering.

5.2 Greedy Heuristic Solution

Solving integer linear programming problems is NP-hard. While very power-
ful solvers exist, many problems cannot be solved optimally within reasonable
time limits. We therefore complement our optimal solver with a greedy heuristic
solver. This solver inspects reuse candidates one by one and commits to any can-
didate that it determines to be an avoidable overlap. Committing to a candidate
means immediately applying its instruction placement constraints and depen-
dence arcs; this ensures that the candidate will de�nitely remain avoidable, but
it restricts freedom of code motion for subsequent candidates.

Due to this greedy behavior, it is important to process candidates in an
order that maximizes the chance to pick useful candidates early on. Since a live
range's spill weight is a measure of how bene�cial it is to keep the live range
in a register, we want to avoid as many overlaps between live ranges with large
weights as possible. We therefore order our candidates by decreasing weight
before applying the greedy solver. As a small exception, we have found it useful
to identify very short live ranges with a single use in the same block as the
de�nition in the original program. We order these after all the other ranges
because we have found that committing to such a very short range too early
often destroys pro�table code motion possibilities.

5.3 Spilling and Code Motion

Regardless of whether candidate selection was performed optimally or heuris-
tically, GCMS �nally moves on to the actual spilling phase. We use a spiller
based on the PBQP formalism [SE02,HS06]. For the purposes of this paper,
PBQP is simply a generalization of graph coloring register allocators [Cha82].
The di�erence is that nodes and edges in the con�ict graph are annotated with
weights modeling spill costs and register use constraints such as register pairing
or aliasing.

We build a con�ict graph with con�ict edges both for register pairs whose live
ranges de�nitely overlap as well as register pairs that were not selected by the
candidate selection process. Conversely, any pair that was selected for reuse can
be treated as non-con�icting, so we need not insert con�ict edges for these. In
fact, we want to ensure that any overlap that can be avoided actually is avoided
by the register allocator. Using PBQP's edge cost matrices, we can ensure this
by adding an edge with costs of some very small ε value between any pair of
registers that we want to be allocated to di�erent registers. The PBQP problem
solver then tries to �nd an allocation respecting all of these constraints.

If the solver does not �nd a valid allocation, it returns some values to spill
or rematerialize; we perform these actions and then rerun the entire algorithm
on the modi�ed function. When an allocation is found, we perform our actual
code motion: In the �nal schedule, live ranges selected for reuse may not overlap.
We therefore inspect all selected candidate pairs to see if they were allocated to
the same CPU register. If so, we must restrict code motion and add ordering
arcs to the dependence graph as speci�ed by the pair's blame term. For selected
candidate pairs that were not allocated to the same register, we do not need
to do anything. Thus, GCMS balances the needs of the spiller with aggressive
global code motion: The freedom to move code is only restricted if this is really
needed to avoid spills, but not otherwise.

After applying all the needed constraints, we simply perform unmodi�ed
GCM on the resulting restricted dependence graph: Instructions are placed in
their latest possible blocks in the shallowest loop nest. This keeps instructions out
of loops as far as possible, but prefers to shift them into conditionally executed
blocks.

6 Experimental Evaluation

We have implemented optimal and heuristic GCMS in the LLVM compiler frame-
work's backend. Since LLVM's native frontend, Clang, only handles C and C++,
we use GCC as our frontend and the Dragonegg GCC plugin to generate LLVM
intermediate code from GCC's internal representation. This allows us to apply
our optimization to Fortran programs from the SPEC CPU 2000 benchmark
suite as well. Unfortunately, our version of Dragonegg miscompiles six of the
SPEC benchmarks, but this still leaves us with 20 benchmarks to evaluate. We
generate code for the ARM Cortex-A9 architecture with VFP3 hardware �oating

point support and use the -O3 optimization �ag to apply aggressive optimiza-
tions both at the intermediate code level and in the backend.

The overlap analysis was implemented using SWI-Prolog, and we use CPLEX
as our ILP solver. Whenever CPLEX times out on a problem, we inspect the
best solution it has found up to that point; if its overlap weight is lower than
the weight in the prepass schedule, we use this approximation, and otherwise
fall back to the prepass schedule.

The greedy heuristic solver could in principle be based on the Prolog analysis
as well, but we simply continue using our old C++ implementation. However,
comparing it to the Prolog implementation of essentially the same analysis helped
us considerably in �nding bugs in both.

6.1 Solver Time

We ran our compiler on the SPEC CPU 2000 benchmark suite, applying the
optimal GCMS algorithm on all functions of 1000 or fewer instructions (this
includes more than 97% of all functions in the suite). CPLEX was set to run with
a time limit of 60 seconds of wall clock time per problem. CPLEX automatically
runs as many parallel threads as is appropriate for the hardware platform and can
almost fully utilize the 8 cores on our Xeon CPU, so the timeout corresponds
to typically about 6 to 8 minutes of CPU time. The entire build of our 20
benchmarks with optimal GCMS takes 18 hours of wall clock time.

Figure 4 shows a scatterplot of CPLEX solver times relative to the number
of instructions. Marks at or very near the 60 second line are cases where the
solver reached its time limit and did not return a provably optimal result. We
can see that the majority of problems is solved very quickly. It is di�cult to
pinpoint a general trend, although obviously solving the optimization problem
for larger functions tends to take longer. Note, however, that there are some
quite small functions, some even with fewer than 100 instructions, where CPLEX
does not terminate within the time limit. Inspection of such cases shows that this
typically happens in functions containing relatively large basic blocks with much
scheduling freedom. In the ILP problems for such functions, there are many arc
variables to consider. These a�ect the values of the instr variables, which have
large domains, and we believe that this may be one of the reasons CPLEX is
having di�culties in exploring the search space e�ciently. Nevertheless, we are
able to solve 5287 of 5506 instances (96%) optimally, and 4472 of these (81%
overall) even within a single second.

We do not report times for the Prolog overlap analysis separately, but the
overall distribution is very similar to the one in Figure 4. All blames for almost
all of the functions are computed within a few seconds. Functions with a large
number of basic blocks and many paths in the CFG may take longer due to the
combinatorial explosion of taking all instruction placements into account. We
run the overlap analysis with a 60 second time limit and fall back to the C++
heuristics if the limit is exceeded, but this only happens rarely.

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900 1000

S
o
lv

e
r

ti
m

e
 (

w
a
ll

ti
m

e
,
s
e
c
o
n
d
s
)

Function size (number of instructions)

Fig. 4. Scatterplot of CPLEX solver times relative to function size

6.2 Execution Time Statistics

Table 2 shows a comparison of the execution times of our benchmark programs,
compiled using �ve di�erent code generation methods. Baseline is the con�gura-
tion using LLVM's code motion pass which attempts to perform loop invariant
code motion without exceeding a heuristically determined register usage limit.
Within blocks, instructions are scheduled using a list scheduler that attempts to
minimize live range lengths. The Baseline con�guration is thus a good represen-
tative of modern optimizing compilers.

Heuristic GCMS is our GCMS algorithm, always using the greedy heuristic
solver described in Section 5.2. Optimal GCMS uses the optimal ILP formulation
for functions of up to 1000 instructions with a solver time timit of 60 seconds, as
discussed above. All three con�gurations use the same spiller based on a PBQP
formulation and using LLVM's near-optimal PBQP solver.

The `Local' variants are also GCMS, but restricted by treating every in-
struction as unmovable. Thus the Local algorithm only performs instruction
scheduling within the blocks LLVM chose for each instruction. We evaluate two
Local variants, one with the greedy heuristic scheduler and one with the optimal
ILP formulation of the candidate selection problem, as before. Each time shown
in the table is CPU time, obtained as the minimum of timing �ve runs of each
benchmark in each con�guration. Additionally, the GCMS and Local variants
are shown normalized to Baseline.

Table 2. Execution time statistics for SPEC CPU 2000 benchmark programs, in sec-
onds and relative to Baseline

Benchmark Baseline GCMS Local
Heuristic Optimal Heuristic Optimal

164.gzip 62.82 60.25 0.96 60.31 0.96 60.66 0.97 60.68 0.97
168.wupwise 60.25 59.96 1.00 60.18 1.00 60.30 1.00 60.03 1.00
171.swim 31.84 31.89 1.00 31.85 1.00 31.49 0.99 31.76 1.00
172.mgrid 50.87 52.85 1.04 52.25 1.03 53.08 1.04 51.58 1.01
173.applu 31.00 31.31 1.01 31.24 1.01 31.35 1.01 31.21 1.01
175.vpr 40.72 40.80 1.00 40.71 1.00 40.71 1.00 40.47 0.99
177.mesa 58.89 59.26 1.01 58.15 0.99 58.78 1.00 58.74 1.00
178.galgel 54.07 54.21 1.00 54.33 1.00 53.62 0.99 53.49 0.99
179.art 9.42 9.59 1.02 9.59 1.02 9.69 1.03 9.18 0.97
181.mcf 56.82 57.58 1.01 57.54 1.01 58.29 1.03 57.05 1.00
183.equake 40.81 41.42 1.01 41.14 1.01 42.42 1.04 40.72 1.00
187.facerec 80.42 81.99 1.02 85.91 1.07 82.71 1.03 80.80 1.00
189.lucas 79.48 79.35 1.00 79.24 1.00 79.14 1.00 78.88 0.99
197.parser 13.50 13.46 1.00 13.43 0.99 13.55 1.00 13.50 1.00
252.eon 13.63 13.34 0.98 13.64 1.00 13.80 1.01 13.47 0.99
253.perlbmk 25.12 24.42 0.97 24.27 0.97 26.28 1.05 24.64 0.98
255.vortex 15.32 15.42 1.01 15.68 1.02 15.35 1.00 15.45 1.01
256.bzip2 56.20 56.56 1.01 56.59 1.01 56.53 1.01 56.63 1.01
300.twolf 25.09 25.60 1.02 25.35 1.01 26.19 1.04 24.79 0.99
301.apsi 20.46 20.36 1.00 20.41 1.00 20.42 1.00 20.35 0.99

geometric mean 1.003 1.004 1.011 0.995

The results show interesting e�ects due to the comparison of global code mo-
tion and local scheduling. Our original research goal was to investigate whether
the e�ect observed by Govindarajan et al. [GYA+03], that scheduling for min-
imal register use improves performance, also holds true for global code motion
for minimial spilling. While we see performance improvements due to reduced
spilling and more aggressive code motion in a few cases, in other cases perfor-
mance degrades. These regressions are due to code motions that do reduce spills
but at the same time move instructions to unfavorable basic blocks. We conclude
that although GCMS is careful to restrict the schedule only where this is abso-
lutely necessary to avoid spilling, such restrictions can still have an unfavorable
impact on overall performance in a number of cases. On average, both heuris-
tic and optimal GCMS produce code with comparable performance to LLVM's
simpler heuristics.

This is di�erent for purely local scheduling for minimal spilling: Here, our
optimal variant is often better than LLVM's scheduling heuristic, which also has
the goal of reducing spills by shortening live ranges. On average, we achieve an
improvement of about 0.5%. This local result shows that while LLVM is already
close to optimal, there is still potential to improve the code produced by its
state-of-the-art heuristics, and we believe that more careful global code motion

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

S
e
le

c
ti
o
n
 p

ro
b
a
b
ili

ty

Avoidable overlaps

decreasing weight

Fig. 5. Distribution of selected candidates by weight

operations can be even more bene�cial. We noted in Section 5 that our optimal
algorithm's objective function can easily be extended to balance avoidance of
spills against freedom of code motion. As future work, we intend to evaluate this
design space to �nd a better tradeo� between global code motion and scheduling
to optimize program performance.

6.3 Comparison of Optimal Selection vs. Greedy Heuristics

The quality of our greedy heuristic solution depends on the ordering of register
pairs. If we managed to select an ordering in which all the reuse candidates in
the optimal solution come �rst, applying the greedy algorithm would produce
the optimal solution. The idea behind our ordering by decreasing weight is to
select the most expensive pairs, which make the biggest di�erence in spilling
quality, as early as possible.

To gain insight into whether this is a good idea, we look at the distribution of
candidates actually selected by the optimal solver. If this distribution is skewed
towards candidates of larger weight, this could be a hint that our ordering by
decreasing weight is a sound approach; otherwise, analyzing the distribution
might suggest better alternatives.

Figure 5 shows a histogram representing the distribution of reuse candidates
in the optimal solutions we found. We obtained this �gure by producing a 0-1
`selection vector' for each set of candidates ordered by decreasing weight, where

a 0 entry represents `not selected', and a 1 represents `selected'. We divided each
selection vector into 100 buckets of equal size and computed the population
count (number of 1s) normalized by bucket size for each bucket. The histogram
is the sum of all of these normalized vectors.

Apart from the small peak towards the lower end of the weight scale, the
distribution of the selected candidates is quite even. Thus this analysis does not
suggest a good weight-based ordering for the greedy analysis, although starting
with a certain subset of lower-weight pairs might result in a slightly better overall
selection than with our current ordering by decreasing weight.

7 Summary and Conclusions

In this paper we presented GCMS, a global code motion algorithm for minimal
spilling. In GCMS, we consider all possible overlaps between live ranges in a
function, taking all possible placements of instructions and schedules within
basic blocks into account. From all overlaps that can be avoided, we select a
pro�table candidate set to avoid. These candidates can be removed from the
register allocation problem's con�ict set; if a candidate is chosen for reuse of a
processor register, we apply the associated changes to the dependence graph that
models all code motion and scheduling possibilities. However, if enough registers
are available for an allocation without spilling, we do not restrict scheduling or
code motion and can aggressively move code out of loops.

We evaluate both optimal and greedy heuristic solutions of the candidate
selection problem. Our evaluation shows that global code motion can reduce
spilling and occasionally improve program performance, but it often performs
code motions that can lead to an overall performance regression. On the other
hand, restricting our optimal algorithm to perform only local instruction schedul-
ing leads to consistent improvements in performance over a state-of-the art
heuristic scheduler. Finding a restricted form of GCMS that more carefully bal-
ances the needs of the spiller against aggressive code motion is future work.

References

[AEBK94] Wolfgang Ambrosch, M. Anton Ertl, Felix Beer, and Andreas Krall.
Dependence-conscious global register allocation. In Proceedings of the Inter-
national Conference on Programming Languages and System Architectures,
number 782 in Lecture Notes in Computer Science, pages 125�136, London,
UK, 1994. Springer-Verlag.

[Bar11] Gergö Barany. Register reuse scheduling. In 9th Workshop on Optimizations
for DSP and Embedded Systems (ODES-9), Chamonix, France, April 2011.
Available from http://www.imec.be/odes/.

[BR91] David Bernstein and Michael Rodeh. Global instruction scheduling for su-
perscalar machines. In Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation, PLDI '91, pages 241�
255, New York, NY, USA, 1991. ACM.

[CBD11] Quentin Colombet, Florian Brandner, and Alain Darte. Studying optimal
spilling in the light of ssa. In Proceedings of the 14th international conference
on Compilers, architectures and synthesis for embedded systems, CASES '11,
pages 25�34, New York, NY, USA, 2011. ACM.

[CCK97] Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. Using integer lin-
ear programming for instruction scheduling and register allocation in multi-
issue processors. In Computers and Mathematics with Applications, 1997.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. E�ciently computing static single assignment form and
the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451�
490, 1991.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceed-
ings of the 1982 SIGPLAN symposium on Compiler construction, SIGPLAN
'82, pages 98�105, New York, NY, USA, 1982. ACM.

[Cli95] Cli� Click. Global code motion/global value numbering. In Proceedings of
the ACM SIGPLAN 1995 conference on Programming language design and
implementation, PLDI '95, pages 246�257, 1995.

[CSG01] Josep M. Codina, Jesús Sánchez, and Antonio González. A uni�ed modulo
scheduling and register allocation technique for clustered processors. In
Proceedings of the 2001 International Conference on Parallel Architectures
and Compilation Techniques, PACT '01, pages 175�184, Washington, DC,
USA, 2001. IEEE Computer Society.

[EK91] M. Anton Ertl and Andreas Krall. Optimal instruction scheduling using
constraint logic programming. In Programming Language Implementation
and Logic Programming, volume 528 of Lecture Notes in Computer Science,
1991.

[EK12] Mattias Eriksson and Christoph Kessler. Integrated code generation for
loops. ACM Trans. Embed. Comput. Syst., 11S(1):19:1�19:24, June 2012.

[GH88] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in
large basic blocks. In ICS '88: Proceedings of the 2nd international confer-
ence on Supercomputing, pages 442�452, New York, NY, USA, 1988. ACM.

[GYA+03] R. Govindarajan, Hongbo Yang, J.N. Amaral, Chihong Zhang, and G.R.
Gao. Minimum register instruction sequencing to reduce register spills in
out-of-order issue superscalar architectures. IEEE Transactions on Com-
puters, 52(1):4�20, Jan. 2003.

[HS06] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
PBQP. In David Lightfoot and Clemens Szyperski, editors, Modular Pro-
gramming Languages, number 4228 in Lecture Notes in Computer Science,
pages 346�361. Springer Berlin / Heidelberg, 2006.

[JM03] Neil Johnson and Alan Mycroft. Combined code motion and register alloca-
tion using the value state dependence graph. In Proceedings of the 12th in-
ternational conference on Compiler construction, CC'03, pages 1�16, Berlin,
Heidelberg, 2003. Springer-Verlag.

[Lam88] M. Lam. Software pipelining: an e�ective scheduling technique for VLIW
machines. In Proceedings of the ACM SIGPLAN 1988 conference on Pro-
gramming Language design and Implementation, PLDI '88, pages 318�328,
New York, NY, USA, 1988. ACM.

[NP93] C. Norris and L. L. Pollock. A scheduler-sensitive global register allocator.
In Supercomputing '93: Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 804�813, 1993.

[NP95a] Cindy Norris and Lori L. Pollock. An experimental study of several coopera-
tive register allocation and instruction scheduling strategies. In Proceedings
of the 28th annual international symposium on Microarchitecture, MICRO
28, pages 169�179, Los Alamitos, CA, USA, 1995. IEEE Computer Society
Press.

[NP95b] Cindy Norris and Lori L. Pollock. Register allocation sensitive region
scheduling. In Proceedings of the IFIP WG10.3 working conference on Paral-
lel architectures and compilation techniques, PACT '95, pages 1�10, Manch-
ester, UK, 1995. IFIP Working Group on Algol.

[Pin93] Shlomit S. Pinter. Register allocation with instruction scheduling. In PLDI
'93: Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, pages 248�257, New York, NY, USA,
1993. ACM.

[SE02] Bernhard Scholz and Erik Eckstein. Register allocation for irregular archi-
tectures. In Proceedings of the joint conference on Languages, compilers and
tools for embedded systems: software and compilers for embedded systems,
LCTES/SCOPES '02, pages 139�148, New York, NY, USA, 2002. ACM.

[Tou01] Sid Ahmed Ali Touati. Register saturation in superscalar and VLIW codes.
In CC '01: Proceedings of the 10th International Conference on Compiler
Construction, pages 213�228, 2001.

[Win07] Sebastian Winkel. Optimal versus heuristic global code scheduling. In Pro-
ceedings of the 40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 40, pages 43�55, Washington, DC, USA, 2007. IEEE
Computer Society.

[WLH00] Kent Wilken, Jack Liu, and Mark He�ernan. Optimal instruction scheduling
using integer programming. In Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, PLDI '00,
pages 121�133, New York, NY, USA, 2000. ACM.

[XT07] Weifeng Xu and Russell Tessier. Tetris: a new register pressure control
technique for VLIW processors. In LCTES '07: Proceedings of the 2007
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, pages 113�122, New York, NY, USA, 2007. ACM.

[ZJC03] Huiyang Zhou, Matthew D. Jennings, and Thomas M. Conte. Tree traver-
sal scheduling: A global instruction scheduling technique for VLIW/EPIC
processors. In Languages and Compilers for Parallel Computing (LCPC),
volume 2624 of Lecture Notes in Computer Science, 2003.

