Gforth

Neal Crook
Anton Ertl
David Kuehling
Bernd Paysan
Jens Wilke
Gerald Wodni

for version 0.7.9-20250625, June 25, 2025

This manual is for Gforth (version 0.7.9.20250625, June 25, 2025), a fast and portable
implementation of the Standard Forth language. It serves as reference manual, but it also
contains an introduction to Forth and a Forth tutorial.

Authors: Bernd Paysan, Anton Ertl, Gerald Wodni, Neal Crook, David Kuehling, Jens
Wilke Copyright (© 1995, 1996, 1997, 1998, 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Table of Contents

Preface

This manual documents Gforth. Some introductory material is provided for readers who are
unfamiliar with Forth or who are migrating to Gforth from other Forth compilers. However,
this manual is primarily a reference manual.

1 Goals of Gforth

The goal of the Gforth Project is to develop a standard model for Standard Forth. This
can be split into several subgoals:

e Gforth should conform to the Forth Standard.
e It should be a model, i.e. it should define all the implementation-dependent things.
e It should become standard, i.e. widely accepted and used. This goal is the most difficult
one.
To achieve these goals Gforth should be
e Similar to previous models (fig-Forth, F83)

e Powerful. It should provide for all the things that are considered necessary today and
even some that are not yet considered necessary.

e Kfficient. It should not get the reputation of being exceptionally slow.
e Free.

e Available on many machines/easy to port.

Have we achieved these goals?
Gforth conforms to the Forth-94 (ANS Forth) and Forth-2012 standards.

We have changed some of the internal data structures (in particular, the headers) over
time, so Gforth does not provide the stability of implementation details that we originally
aimed for; they were too constraining for a long-term project like Gforth. However, we still
aim for a high level of stability.

Gforth is quite popular and is treated by some like a de-facto standard.
It has some similarities to and some differences from previous models.

It has powerful features, and the version 1.0 indicates that it can do everything (and
more) that we originally envisioned. That does not mean that we will stop development.

We certainly have achieved and exceeded our execution speed goals (see (undefined)
[Performance|, page (undefined))!.

Gforth is free and available on many platforms.

1.1 Stability Goals

Programs that work on earlier versions of Gforth should also work on newer versions. How-
ever, there are some caveats:

Internal data structures (including the representation of code) of Gforth may change
between versions, unless they are documented.

Moreover, we only feel obliged to keep standard words (i.e., with standard wordset
names) and words documented as stable Gforth extensions (with wordset name gforth or
gforth-<version>, see (undefined) [Notation], page (undefined)). Other words may be
removed in newer releases.

! However, in 1998 the bar was raised when the major commercial Forth vendors switched to native code
compilers.

Chapter 1: Goals of Gforth 3

In particular, you may find a word by using locate or otherwise inspecting Gforth’s
source code. You can see the wordset in a comment right after the stack-effect comment.
E.g.,in

: execute-parsing (... addr u xt -- ...) \ gforth
the wordset is gforth.

If there is no wordset for a word, it is an internal factor and may be removed in a future
version. If the wordset is gforth-experimental, gforth-internal, or gforth-obsolete,
the word may also be removed in a future version. In particular, gforth-experimental
indicates that this is a supported word that we do not consider stable yet; gforth-obsolete
indicates an intent to remove the word in the next version; and gforth-internal (or no
wordset) indicates that we may remove the word as soon as we no longer use it in Gforth.

If you want to use a particular word that is not marked as stable, please let us know,
and we will consider to add the word as stable word (or we may suggest an alternative to
using this word).

2 Gforth Environment

Note: ultimately, the Gforth man page will be auto-generated from the material in this
chapter.

For related information about the creation of images see (undefined) [Image Files],
page (undefined).

2.1 Invoking Gforth

Gforth is made up of two parts; an executable “engine” (named gforth or gforth-fast)
and an image file. To start it, you will usually just say gforth — this automatically loads
the default image file gforth.fi. In many other cases the default Gforth image will be
invoked like this:

gforth [file | -e forth-codel
This interprets the contents of the files and the Forth code in the order they are given.

In addition to the gforth engine, there is also an engine called gforth-fast, which is
faster, but gives less informative error messages (see (undefined) [Error messages|, page (un-
defined)) and may catch some errors (in particular, stack underflows and integer division
errors) later or not at all. You should use it for debugged, performance-critical programs.

Moreover, there is an engine called gforth-itc, which is useful in some backwards-
compatibility situations (see (undefined) [Direct or Indirect Threaded?], page (undefined)).

In general, the command line looks like this:
gforth[-fast] [engine options] [image options]

The engine options must come before the rest of the command line. They are:

--image-file file
-i file Loads the Forth image file instead of the default gforth.fi (see (undefined)
[Image Files], page (undefined)).

--appl-image file
Loads the image file and leaves all further command-line arguments to the
image (instead of processing them as engine options). This is useful for building
executable application images on Unix, built with gforthmi --application

--no-0rc Do not load ~/.config/gforthrcO nor the file specified by GFORTH_ENV.

--path path

-p path Uses path for searching the image file and Forth source code files
instead of the default in the environment variable GFORTHPATH or the
path specified at installation time and the working directory . (e.g.,
/usr/local/share/gforth/0.2.0:.). A path is given as a list of directories,
separated by ‘:’ (previous versions had ‘;’ for other OSes, but since Cygwin
now only accepts /cygdrive/<letter>, and we dropped support for OS/2
and MS-DOS, it is ‘:’ everywhere).

Chapter 2: Gforth Environment 5

--dictionary-size size

-m size Allocate size space for the Forth dictionary space instead of using the default
specified in the image (default: 8M). The size specification for this and subse-
quent options consists of an integer and a unit (e.g., 1G). The unit can be one
of b (bytes), e (element size, in this case Cells), k (kilobytes), M (Megabytes), G
(Gigabytes), and T (Terabytes). If no unit is specified, e is used.

-—data-stack-size size
-d size Allocate size space for the data stack instead of using the default specified in
the image (default: 16K).

-—-return-stack-size size
-r size Allocate size space for the return stack instead of using the default specified in
the image (default: 15K).

--fp-stack-size size

-f size Allocate size space for the floating point stack instead of using the default
specified in the image (default: 15.5K). In this case the unit specifier e refers
to floating point numbers.

--locals-stack-size size
-1 size Allocate size space for the locals stack instead of using the default specified in
the image (default: 14.5K).

--map_32bit
Allocate the dictionary and some other areas in the lower 2GB of the address
space, if possible. The purpose of this option is debugging convenience.

—--vm-commit

Normally, Gforth tries to start up even if there is not enough virtual memory
for the dictionary and the stacks (using MAP_NORESERVE on OSs that support
it); so you can ask for a really big dictionary and/or stacks, and as long as you
don’t use more virtual memory than is available, everything will be fine (but if
you use more, processes get killed). With this option you just use the default
allocation policy of the OS; for OSs that don’t overcommit (e.g., Solaris), this
means that you cannot and should not ask for as big dictionary and stacks, but
once Gforth successfully starts up, out-of-memory won’t kill it.

--hel

-h d Print a message about the command-line options
--version

-v Print version and exit

--diag

-D Checks for and reports some performance problems.

--debug Print some information useful for debugging on startup.

—--debug-mcheck
Try to find and report erroneous usage of allocate, free, and the C functions
malloc(), free(), etc.

Chapter 2: Gforth Environment 6

--offset-image
Start the dictionary at a slightly different position than would be used otherwise
(useful for creating data-relocatable images, see (undefined) [Data-Relocatable
Image Files], page (undefined)).

--no-offset-im
Start the dictionary at the normal position.

--clear-dictionary
Initialize all bytes in the dictionary to 0 before loading the image (see (unde-
fined) [Data-Relocatable Image Files], page (undefined)).

--die-on-signal [number]

Normally Gforth handles most signals (e.g., the user interrupt SIGINT, or the
segmentation violation SIGSEGV) by translating it into a Forth THROW. With
this option, Gforth exits if it receives such a signal. This option is useful when
the engine and/or the image might be severely broken (such that it causes
another signal before recovering from the first); this option avoids endless loops
in such cases. The optional number set the number of signals to be handled;
only the last one will cause Gforth to exit.

--ignore-async-signals
Ignore asynchronous signals (e.g., SIGINT generated with Ctrl-c).

2.1.1 Code generation options

—--no-dynamic

—--dynamic
Disable or enable dynamic superinstructions with replication (see (undefined)
[Dynamic Superinstructions], page (undefined)). Default enabled.

--no-dynamic-image
Disable dynamic native-code generation when loading the Gforth image, but
generate dynamic native code afterwards. This option is useful when debugging
Gforth’s code generator.

--no-super
Disable dynamic superinstructions, use just dynamic replication; this is useful if
you want to patch threaded code (see (undefined) [Dynamic Superinstructions],
page (undefined)).

—-—-ss—number=N
Use only the first N static superinstructions compiled into the engine (default:
use them all; note that only gforth-fast has any). This option is useful for
measuring the performance impact of static superinstructions.

--ss-min-codesize

--ss-min-1s

--ss-min-1lsu

-—-ss—-min-nexts
Use specified metric for determining the cost of a primitive or static superin-
struction for static superinstruction selection. Codesize is the native code size

Chapter 2: Gforth Environment 7

of the primive or static superinstruction, 1s is the number of loads and stores,
lsu is the number of loads, stores, and updates, and nexts is the number
of dispatches (not taking dynamic superinstructions into account), i.e. every
primitive or static superinstruction has cost 1. Default: codesize if you use
dynamic code generation, otherwise nexts.

--ss-greedy

This option is useful for measuring the performance impact of static superin-
structions. By default, an optimal shortest-path algorithm is used for selecting
static superinstructions. With --ss-greedy this algorithm is modified to as-
sume that anything after the static superinstruction currently under considera-
tion is not combined into static superinstructions. With --ss-min-nexts this
produces the same result as a greedy algorithm that always selects the longest
superinstruction available at the moment. E.g., if there are superinstructions
AB and BCD, then for the sequence A B C D the optimal algorithm will select
A BCD and the greedy algorithm will select AB C D.

--opt-ip-updates=n
Set the level of TP-update optimization (default: 31 (7+3*8)). n is computed
as nl+8*n2.

nl indicates the use of IP-update optimization in straight-line code: 0 means
no IP-update optimization, 1 combines IP-update optimizations of primitives
without inline arguments, 2 also eliminates the dead IP updates of ; s, execute-
;s and fast-throw, >2 eliminates the IP updates in front of several frequently-
used primitives with inline arguments.

n2 is the number of ip-updates that can replace a load in a backwards or
unconditional branch; for conditional forward branches only n2/2 ip-updates
replace a load (to avoid too many additional updates in the fall-through path).

--code-block-size=size
Size of native-code blocks (default: 2M). Gforth allocates as many blocks of
this size as necessary.

--print-metrics

On exit from Gforth: Print some metrics used during static superinstruction se-
lection: code size is the actual size of the dynamically generated code. Metric
codesize is the sum of the codesize metrics as seen by static superinstruction
selection; there is a difference from code size, because not all primitives and
static superinstructions are compiled into dynamically generated code, and be-
cause of markers. The other metrics correspond to the ss-min-... options.
This option is useful for evaluating the effects of the --ss-. .. options.

--print-prims
When exiting GforthL: Print the primitives with static usage counts. E.g., one
line might look like:

?branch 1-1 0 21 1575 73 0x5573e4048c33 len= 4+ 25+ 3 send=0R
The colums are, from left to right: name of the primitive, stack-caching state

transition (from a state with 1 stack item in a register to the same state in
the example), IP offset for this version of the primitive (0 for most primitives,

Chapter 2: Gforth Environment 8

but, e.g., for ?branch there are also versions with 0-zero offset), index of the
primitive, index of the corresponding branch-to-IP variant (in case of a branch),
static number of occurences of the primitive in the loaded/compiled code, ad-
dress of the code of the primitive (or (nil) if the primitive is not relocatable),
length of the parts of this code: ip-update+main+dispatch, and whether the
primitive ends a superblock (i.e., an unconditional branch or the like).

--print-nonreloc

When starting Gforth: Print the non-relocatable primitives.

—--print-sequences

When loading the image: For each superblock in the image, print the sequence
of primitives.

-—tpa—-noautomaton
--tpa-noequiv

These options are about using an automaton for speeding up startup and com-
pilation, in particular the shortest-path algorithm used for selecting static su-
perinstructions and stack caching variants; tpa stands for for “tree-parsing au-
tomaton” (although we only have sequences, not trees). In the gforth engine
the default is to use an automaton with state equivalence (state equivalence
reduces the number of states compared to having one state for every sequence
prefix), which is the fastest option and requires the least memory.

With static superinstructions the automaton does not work correctly, so Gforth
falls back to -—tpa-noautomaton in that case unless you ask for --tpa-noequiv
(gforth-fast uses static superinstructions and therefore -—tpa-noautomaton

by default).

-—tpa-noequiv turns off state equivalence, which costs memory and compiles
a little slower than using an automaton.

-—tpa-noautomaton turns off using the automaton. This consumes quite a
bit more compile time, and should in theory use less memory than using an
automaton, but apparently there is a bug in Gforth, and it consumes more
memory.

The following shows the startup speed and memory consumption of Gforth
0.7.9.20240821 run with gforth-fast -e bye (plus the options given in the
table) on a Core-i5 6600K (Skylake):

-—tpa-trace

cycles instructions KB(RSS) other options
23_309_239 43_534_167 9228 --ss-number=0
26_.399_456 51.895_687 11316 --ss—number=0 --tpa-noequiv
40_427_672 93_709_354 10988 --ss—-number=0 --tpa-noautomatonf]
27_599_969 53_126_621 11320
27_732_944 53_128_381 11320 --tpa-noequiv
42_960_520 95_466_840 11044 --tpa-noautomaton

This option produces data about the number of states generated during startup
and compilation.

Chapter 2: Gforth Environment 9

As explained above, the image-specific command-line arguments for the default image
gforth.fi consist of a sequence of filenames and -e forth-code options that are inter-
preted in the sequence in which they are given. The -e forth-code or --evaluate forth-
code option evaluates the Forth code. This option takes only one argument; if you want to
evaluate more Forth words, you have to quote them or use -e several times. To exit after
processing the command line (instead of entering interactive mode) append -e bye to the
command line. You can also process the command-line arguments with a Forth program
(see (undefined) [OS command line arguments|, page (undefined)).

If you have several versions of Gforth installed, gforth will invoke the version that was
installed last. gforth-<version> invokes a specific version. If your environment contains
the variable GFORTHPATH, you may want to override it by using the --path option.

On startup, before processing any of the image option, the user initialization file is
included, if it exists. The user initialization file is ~/.config/gforthrc0, or, if the en-
vironment variable GFORTH_ENV is set, it contains the name of the user initialization file.
You can suppress loading this file with by setting GFORTH_ENV to off, or with the option
--no-0Orc.

After processing all the image options and just before printing the boot message, the
user initialization file ~/.config/gforthrc from your home directory is included, unless
the option --no-rc is given.

Warning levels can be set with

-W Turn off warnings

-Won Turn on warnings (level 1)

-Wall Turn on beginner warnings (level 2)
-Wpedantic

Turn on pedantic warnings (level 3)

-Werror Turn warnings into errors (level 4)

2.2 Leaving Gforth

You can leave Gforth by typing bye or Ctrl-d (at the start of a line) or (if you invoked
Gforth with the --die-on-signal option) Ctrl-c. When you leave Gforth, all of your
definitions and data are discarded. For ways of saving the state of the system before leaving
Gforth see (undefined) [Image Files|, page (undefined).

bye (—) tools-ext
Exit Gforth (with exit status 0).

2.3 Help on Gforth

Gforth has a simple, text-based online help system.
help ("rest-of-line" —) gforth-1.0

If no name is given, show basic help. If a documentation node name is given followed by
"::" show the start of the node. If the name of a word is given, show the documentation of
the word if it exists, or its source code if not. If something else is given that is recognized,

Chapter 2: Gforth Environment 10

shows help on the recognizer. You can then use the same keys and commands as after using
locate (see (undefined) [Locating source code definitions|, page (undefined)).

authors (-) gforth-1.0
show the list of authors

license (—) gforth-0.2
print the license statement

2.4 Command-line editing

Gforth maintains a history file that records every line that you type to the text interpreter.
This file is preserved between sessions, and is used to provide a command-line recall facility;
if you type Ctrl-P repeatedly you can recall successively older commands from this (or
previous) session(s). The full list of command-line editing facilities is:

e Ctrl-p (“previous”) (or up-arrow) to recall successively older lines from the history
buffer.

e Ctrl-n (“next”) (or down-arrow) to recall successively newer lines from the history
buffer. If you moved to an older line earlier and gave it to Gforth for text-interpretation,
asking for the next line as the first editing command gives you the next line after the
one you selected last time.

e Ctrl-f (or right-arrow) to move the cursor right, non-destructively.

e Ctrl-b (or left-arrow) to move the cursor left, non-destructively.

e Ctrl-h (backspace) to delete the character to the left of the cursor, closing up the line.
e Ctrl-k to delete (“kill”) from the cursor to the end of the line.

e Ctrl-a to move the cursor to the start of the line.

e Ctrl-e to move the cursor to the end of the line.

e RET (Ctrl-m) or LFD (Ctrl-j) to submit the current line.

e TAB to step through all possible full-word completions of the word currently being
typed.

e Ctrl-d on an empty line line to terminate Gforth (gracefully, using bye).
e Ctrl-x (or Ctrl-d on a non-empty line) to delete the character under the cursor.
When editing, displayable characters are inserted to the left of the cursor position; the
line is always in “insert” (as opposed to “overstrike”) mode.

On Unix systems, the history file is $H0ME/ .local/share/gforth/history by default!.
You can find out the name and location of your history file using:

history-file type \ Unix-class systems

history-file type \ Other systems
history-dir type
If you enter long definitions by hand, you can use a text editor to paste them out of the
history file into a Forth source file for reuse at a later time.

Gforth never trims the size of the history file, so you should do this periodically, if
necessary.

1'je. it is stored in the user’s home directory.

Chapter 2: Gforth Environment 11

2.5 Environment variables

Gforth uses these environment variables:

GFORTHHIST — (Unix systems only) specifies the path for the history file .gforth-
history. Default: $HOME/.local/share/gforth/history.

GFORTHPATH — specifies the path used when searching for the gforth image file and for
Forth source-code files (usually ‘.’, the current working directory). Path separator is
‘.7, a typical path would be /usr/local/share/gforth/1.0:..

LANG — see LC_CTYPE
LC_ALL — see LC_CTYPE

LC_CTYPE — If this variable contains “UTF-8” on Gforth startup, Gforth uses the UTF-8
encoding for strings internally and expects its input and produces its output in UTF-8
encoding, otherwise the encoding is 8bit (see see (undefined) [Xchars and Unicode],
page (undefined)). If this environment variable is unset, Gforth looks in LC_ALL, and
if that is unset, in LANG.

GFORTHSYSTEMPREFIX — specifies what to prepend to the argument of system before
passing it to C’s system(). Default: "./$COMSPEC /c " on Windows, "" on other OSs.
The prefix and the command are directly concatenated, so if a space between them is
necessary, append it to the prefix.

GFORTH — used by gforthmi, See (undefined) [gforthmi|, page (undefined).

GFORTHD — used by gforthmi, See (undefined) [gforthmi|, page (undefined).

TMP, TEMP - (non-Unix systems only) used as a potential location for the history file.

All the Gforth environment variables default to sensible values if they are not set.

2.6 Gforth files

When you install Gforth on a Unix system, it installs files in these locations by default:

/usr/local/bin/gforth
/usr/local/bin/gforthmi
/usr/local/man/manl/gforth.1 - man page.

/usr/local/info - the Info version of this manual.

/usr/local/lib/gforth/<version>/... - Gforth .fi files.
/usr/local/share/gforth/<version>/TAGS - Emacs TAGS file.
/usr/local/share/gforth/<version>/... - Gforth source files.

.../emacs/site-lisp/gforth.el - Emacs gforth mode.

You can select different places for installation by using configure options (listed with

configure --help).

2.7 Gforth in pipes

Gforth can be used in pipes created elsewhere (described in the following). It can also create
pipes on its own (see (undefined) [Pipes|, page (undefined)).

If you pipe into Gforth, your program should read with read-file or read-line from

stdin (see (undefined) [General files|, page (undefined)). Key does not recognize the end

Chapter 2: Gforth Environment 12

of input. Words like accept echo the input and are therefore usually not useful for reading
from a pipe. You have to invoke the Forth program with an OS command-line option,
as you have no chance to use the Forth command line (the text interpreter would try to
interpret the pipe input).

You can output to a pipe with type, emit, cr etc.

When you write to a pipe that has been closed at the other end, Gforth receives a
SIGPIPE signal (“pipe broken”). Gforth translates this into the exception broken-pipe-
error. If your application does not catch that exception, the system catches it and exits,
usually silently (unless you were working on the Forth command line; then it prints an error
message and exits). This is usually the desired behaviour.

If you do not like this behaviour, you have to catch the exception yourself, and react to
it.
Here’s an example of an invocation of Gforth that is usable in a pipe:
gforth -e ": foo begin pad dup 10 stdin read-file throw dup while \
type repeat ; foo bye"
This example just copies the input verbatim to the output. A very simple pipe containing
this example looks like this:

cat startup.fs |

gforth -e ": foo begin pad dup 80 stdin read-file throw dup while \
type repeat ; foo bye"|

head

Pipes involving Gforth’s stderr output do not work.

2.8 Startup speed

If Gforth is used for CGI scripts or in shell scripts, its startup speed may become a problem.
On a 3GHz Core 2 Duo E8400 under 64-bit Linux 2.6.27.8 with libc-2.7, gforth-fast -e
bye takes 13.1ms user and 1.2ms system time (gforth -e bye is faster on startup with
about 3.4ms user time and 1.2ms system time, because it subsumes some of the options
discussed below).

If startup speed is a problem, you may consider the following ways to improve it; or
you may consider ways to reduce the number of startups (for example, by using Fast-CGI).
Note that the first steps below improve the startup time at the cost of run-time (including
compile-time), so whether they are profitable depends on the balance of these times in your
application.

An easy step that influences Gforth startup speed is the use of a number of options that
increase run-time, but decrease image-loading time.

The first of these that you should try is --ss-number=0 --ss-states=1 because this
option buys relatively little run-time speedup and costs quite a bit of time at startup.
gforth-fast --ss-number=0 --ss-states=1 -e bye takes about 2.8ms user and 1.5ms
system time.

The next option is --no-dynamic which has a substantial impact on run-time
(about a factor of 2-4 on several platforms), but still makes startup speed a little faster:
gforth-fast —-—-ss-number=0 --ss-states=1 --no-dynamic -e bye consumes about
2.6ms user and 1.2ms system time.

Chapter 2: Gforth Environment 13

If the script you want to execute contains a significant amount of code, it may be
profitable to compile it into the image to avoid the cost of compiling it at startup time.

14

3 Forth Tutorial

The difference of this chapter from the Introduction (see (undefined) [Introduction],
page (undefined)) is that this tutorial is more fast-paced, should be used while sitting in
front of a computer, and covers much more material, but does not explain how the Forth
system works.

This tutorial can be used with any Standard-compliant Forth; any Gforth-specific fea-
tures are marked as such and you can skip them if you work with another Forth. This
tutorial does not explain all features of Forth, just enough to get you started and give you
some ideas about the facilities available in Forth. Read the rest of the manual when you
are through this.

The intended way to use this tutorial is that you work through it while sitting in front
of the console, take a look at the examples and predict what they will do, then try them
out; if the outcome is not as expected, find out why (e.g., by trying out variations of the
example), so you understand what’s going on. There are also some assignments that you
should solve.

This tutorial assumes that you have programmed before and know what, e.g., a loop is.

3.1 Starting Gforth
You can start Gforth by typing its name:

gforth

That puts you into interactive mode; you can leave Gforth by typing bye. While in
Gforth, you can edit the command line and access the command line history with cursor
keys, similar to bash.

3.2 Syntax

A word is a sequence of arbitrary characters (except white space). Words are separated by
white space. E.g., each of the following lines contains exactly one word:

word
ro#$%~&x* ()
1234567890
5la

A frequent beginner’s error is to leave out necessary white space, resulting in an error
like ‘Undefined word’; so if you see such an error, check if you have put spaces wherever
necessary.

." hello, world" \ correct
."hello, world" \ gives an "Undefined word" error

Gforth and most other Forth systems ignore differences in case (they are case-insensitive),
i.e., ‘word’ is the same as ‘Word’. If your system is case-sensitive, you may have to type all
the examples given here in upper case.

Chapter 3: Forth Tutorial 15

3.3 Crash Course

Forth does not prevent you from shooting yourself in the foot. Let’s try a few ways to crash
Gforth:

00!

here execute

' catch >body 20 erase abort
' (quitl) >body 20 erase

The last two examples are guaranteed to destroy important parts of Gforth (and most
other systems), so you better leave Gforth afterwards (if it has not finished by itself). On
some systems you may have to kill gforth from outside (e.g., in Unix with kill).

You will find out later what these lines do and then you will get an idea why they produce
crashes.

Now that you know how to produce crashes (and that there’s not much to them), let’s
learn how to produce meaningful programs.

3.4 Stack

The most obvious feature of Forth is the stack. When you type in a number, it is pushed
on the stack. You can display the contents of the stack with .s.

12 .s
3 .s

.s displays the top-of-stack to the right, i.e., the numbers appear in .s output as they
appeared in the input.

You can print the top element of the stack with ..
123.
In general, words consume their stack arguments (.s is an exception).

Assignment: What does the stack contain after 5 6 7 .7

3.5 Arithmetics

The words +, -, *, /, and mod always operate on the top two stack items:

2 2 .s
+ .8
21 - .
7 3 mod .

The operands of -, /, and mod are in the same order as in the corresponding infix
expression (this is generally the case in Forth).

Parentheses are superfluous (and not available), because the order of the words unam-
biguously determines the order of evaluation and the operands:

34+ 5 % .,
345 x +

Chapter 3: Forth Tutorial 16

Assignment: What are the infix expressions corresponding to the Forth code
above? Write 6-7*8+9 in Forth notation?!.

To change the sign, use negate:
2 negate .
Assignment: Convert -(-3)*4-5 to Forth.
/mod performs both / and mod.
7 3 /mod .
Reference: (undefined) [Arithmetic], page (undefined).

3.6 Stack Manipulation

Stack manipulation words rearrange the data on the stack.
1 .s drop .s
1 .s dup .s drop drop .s
1 2 .s over .s drop drop drop
1 2 .s swap .s drop drop
123 .s rot .s drop drop drop
These are the most important stack manipulation words. There are also variants that
manipulate twice as many stack items:
1234 .s 2swap .s 2drop 2drop
Two more stack manipulation words are:
1 2 .s nip .s drop
1 2 .s tuck .s 2drop drop

Assignment: Replace nip and tuck with combinations of other stack manipu-
lation words.

Given: How do you get:
123 321

123 1232
123 1233
123 133

123 213
1234 4321
123 123123
1234 123412
123

123 1234
123 13

5 dup * .

Assignment: Write 1773 and 1774 in Forth, without writing 17 more than once.
Write a piece of Forth code that expects two numbers on the stack (a and b,
with b on top) and computes (a-b) (a+1).

Reference: (undefined) [Stack Manipulation], page (undefined).

1 This notation is also known as Postfix or RPN (Reverse Polish Notation).

Chapter 3: Forth Tutorial 17

3.7 Using files for Forth code

While working at the Forth command line is convenient for one-line examples and short
one-off code, you probably want to store your source code in files for convenient editing
and persistence. You can use your favourite editor (Gforth includes Emacs support, see
(undefined) [Emacs and Gforth], page (undefined)) to create file.fs and use

s" file.fs" included
to load it into your Forth system. The file name extension I use for Forth files is ‘. fs’.
You can easily start Gforth with some files loaded like this:

gforth filel.fs file2.fs

If an error occurs during loading these files, Gforth terminates, whereas an error during
INCLUDED within Gforth usually gives you a Gforth command line. Starting the Forth
system every time gives you a clean start every time, without interference from the results
of earlier tries.

I often put all the tests in a file, then load the code and run the tests with
gforth code.fs tests.fs -e bye

(often by performing this command with C-x C-e in Emacs). The -e bye ensures that
Gforth terminates afterwards so that I can restart this command without ado.

The advantage of this approach is that the tests can be repeated easily every time the
program ist changed, making it easy to catch bugs introduced by the change.

Reference: (undefined) [Forth source files], page (undefined).

3.8 Comments

\ That's a comment; it ends at the end of the line
(Another comment; it ends here:) .s

\ and (are ordinary Forth words and therefore have to be separated with white space
from the following text.

\This gives an "Undefined word" error

The first) ends a comment started with (, so you cannot nest (-comments; and you
cannot comment out text containing a) with (...)2

I use \-comments for descriptive text and for commenting out code of one or more line;
I use (-comments for describing the stack effect, the stack contents, or for commenting out
sub-line pieces of code.

The Emacs mode gforth.el (see (undefined) [Emacs and Gforth], page (undefined))
supports these uses by commenting out a region with C-x \, uncommenting a region with
C-u C-x \, and filling a \-commented region with M-q.

Reference: (undefined) [Comments|, page (undefined).

2 therefore it’s a good idea to avoid) in word names.

Chapter 3: Forth Tutorial 18

3.9 Colon Definitions

are similar to procedures and functions in other programming languages.
: squared (n -- n"2)
dup * ;
5 squared .
7 squared .

: starts the colon definition; its name is squared. The following comment describes its
stack effect. The words dup * are not executed, but compiled into the definition. ; ends
the colon definition.

The newly-defined word can be used like any other word, including using it in other
definitions:
: cubed (n -- n"3)
dup squared * ;
-5 cubed .
: fourth-power (n -- n"4)
squared squared ;
3 fourth-power .

Assignment: Write colon definitions for nip, tuck, negate, and /mod in terms of
other Forth words, and check if they work (hint: test your tests on the originals
first). Don’t let the ‘redefined’-Messages spook you, they are just warnings.

Reference: (undefined) [Colon Definitions], page (undefined).

3.10 Decompilation

You can decompile colon definitions with see:

see squared
see cubed

In Gforth see shows you a reconstruction of the source code from the executable code.
Informations that were present in the source, but not in the executable code, are lost (e.g.,
comments).

You can also decompile the predefined words:

see .
see +

3.11 Stack-Effect Comments

By convention the comment after the name of a definition describes the stack effect: The
part in front of the ‘==’ describes the state of the stack before the execution of the definition,
i.e., the parameters that are passed into the colon definition; the part behind the ‘-=-’ is the
state of the stack after the execution of the definition, i.e., the results of the definition. The
stack comment only shows the top stack items that the definition accesses and/or changes.

You should put a correct stack effect on every definition, even if it is just (==). You
should also add some descriptive comment to more complicated words (I usually do this
in the lines following :). If you don’t do this, your code becomes unreadable (because you
have to work through every definition before you can understand any).

Chapter 3: Forth Tutorial 19

Assignment: The stack effect of swap can be written like this: x1 x2 —- x2 x1.
Describe the stack effect of -, drop, dup, over, rot, nip, and tuck. Hint: When
you are done, you can compare your stack effects to those in this manual (see
(undefined) [Word Index], page (undefined)).

Sometimes programmers put comments at various places in colon definitions that de-
scribe the contents of the stack at that place (stack comments); i.e., they are like the first
part of a stack-effect comment. E.g.,

: cubed (n -- n"3)
dup squared (n n"2) * ;

In this case the stack comment is pretty superfluous, because the word is simple enough.
If you think it would be a good idea to add such a comment to increase readability, you
should also consider factoring the word into several simpler words (see (undefined) [Factor-
ing], page (undefined)), which typically eliminates the need for the stack comment; however,
if you decide not to refactor it, then having such a comment is better than not having it.

The names of the stack items in stack-effect and stack comments in the standard, in this
manual, and in many programs specify the type through a type prefix, similar to Fortran
and Hungarian notation. The most frequent prefixes are:

n signed integer

u unsigned integer

c character

f Boolean flags, i.e. false or true.
a-addr,a-

Cell-aligned address

c-addr,c-
Char-aligned address (note that a Char may have two bytes in Windows NT)

xt Execution token, same size as Cell

W,X Cell, can contain an integer or an address. It usually takes 32, 64 or 16 bits
(depending on your platform and Forth system). A cell is more commonly
known as machine word, but the term word already means something different
in Forth.

d signed double-cell integer

ud unsigned double-cell integer

T Float (on the FP stack)

You can find a more complete list in (undefined) [Notation], page (undefined).

Assignment: Write stack-effect comments for all definitions you have written
up to now.

Chapter 3: Forth Tutorial 20

3.12 Types

In Forth the names of the operations are not overloaded; so similar operations on different
types need different names; e.g., + adds integers, and you have to use £+ to add floating-
point numbers. The following prefixes are often used for related operations on different

types:

(none) signed integer

u unsigned integer

c character

d signed double-cell integer

ud, du unsigned double-cell integer

2 two cells (not-necessarily double-cell numbers)

m, um mixed single-cell and double-cell operations

f floating-point (note that in stack comments ‘f’ represents flags, and ‘r’ repre-

sents FP numbers; also, you need to include the exponent part in literal FP
numbers, see (undefined) [Floating Point Tutorial], page (undefined)).

If there are no differences between the signed and the unsigned variant (e.g., for +), there
is only the prefix-less variant.

Forth does not perform type checking, neither at compile time, nor at run time. If you
use the wrong operation, the data are interpreted incorrectly:

-1 u.

If you have only experience with type-checked languages until now, and have heard how
important type-checking is, don’t panic! In my experience (and that of other Forthers),
type errors in Forth code are usually easy to find (once you get used to it), the increased
vigilance of the programmer tends to catch some harder errors in addition to most type
errors, and you never have to work around the type system, so in most situations the lack
of type-checking seems to be a win (projects to add type checking to Forth have not caught
on).

3.13 Factoring

If you try to write longer definitions, you will soon find it hard to keep track of the stack
contents. Therefore, good Forth programmers tend to write only short definitions (e.g.,
three lines). The art of finding meaningful short definitions is known as factoring (as in
factoring polynomials).

Well-factored programs offer additional advantages: smaller, more general words, are
easier to test and debug and can be reused more and better than larger, specialized words.

So, if you run into difficulties with stack management, when writing code, try to define
meaningful factors for the word, and define the word in terms of those. Even if a factor
contains only two words, it is often helpful.

Good factoring is not easy, and it takes some practice to get the knack for it; but even
experienced Forth programmers often don’t find the right solution right away, but only
when rewriting the program. So, if you don’t come up with a good solution immediately,
keep trying, don’t despair.

Chapter 3: Forth Tutorial 21

3.14 Designing the stack effect

In other languages you can use an arbitrary order of parameters for a function; and since
there is only one result, you don’t have to deal with the order of results, either.

In Forth (and other stack-based languages, e.g., PostScript) the parameter and result
order of a definition is important and should be designed well. The general guideline is
to design the stack effect such that the word is simple to use in most cases, even if that
complicates the implementation of the word. Some concrete rules are:

e Words consume all of their parameters (e.g., .).

e If there is a convention on the order of parameters (e.g., from mathematics or another
programming language), stick with it (e.g., -).

e If one parameter usually requires only a short computation (e.g., it is a constant), pass
it on the top of the stack. Conversely, parameters that usually require a long sequence
of code to compute should be passed as the bottom (i.e., first) parameter. This makes
the code easier to read, because the reader does not need to keep track of the bottom
item through a long sequence of code (or, alternatively, through stack manipulations).
E.g., ! (store, see (undefined) [Memory]|, page (undefined)) expects the address on top
of the stack because it is usually simpler to compute than the stored value (often the
address is just a variable).

e Similarly, results that are usually consumed quickly should be returned on the top of
stack, whereas a result that is often used in long computations should be passed as
bottom result. E.g., the file words like open-file return the error code on the top of
stack, because it is usually consumed quickly by throw; moreover, the error code has
to be checked before doing anything with the other results.

These rules are just general guidelines, don’t lose sight of the overall goal to make the
words easy to use. E.g., if the convention rule conflicts with the computation-length rule,
you might decide in favour of the convention if the word will be used rarely, and in favour
of the computation-length rule if the word will be used frequently (because with frequent
use the cost of breaking the computation-length rule would be quite high, and frequent use
makes it easier to remember an unconventional order).

3.15 Local Variables

You can define local variables (locals) in a colon definition:

:swap {ab--bal
b a;
1 2 swap .s 2drop

(If your Forth system does not support this syntax, include compat/anslocal.fs first).

In this example { a b == b a } is the locals definition; it takes two cells from the stack,
puts the top of stack in b and the next stack element in a. —-- starts a comment ending
with }. After the locals definition, using the name of the local will push its value on the
stack. You can omit the comment part (-- b a):

: swap (x1 x2 -- x2 x1)
{abl}ba;

Chapter 3: Forth Tutorial 22

In Gforth you can have several locals definitions, anywhere in a colon definition; in
contrast, in a standard program you can have only one locals definition per colon definition,
and that locals definition must be outside any control structure.

With locals you can write slightly longer definitions without running into stack trouble.
However, I recommend trying to write colon definitions without locals for exercise purposes
to help you gain the essential factoring skills.

Assignment: Rewrite your definitions until now with locals

Reference: (undefined) [Locals], page (undefined).

3.16 Conditional execution

In Forth you can use control structures only inside colon definitions. An if-structure looks
like this:

: abs (nl —— +n2)
dup 0 < if
negate
endif ;
5 abs .
-5 abs .

if takes a flag from the stack. If the flag is non-zero (true), the following code is
performed, otherwise execution continues after the endif (or else). < compares the top
two stack elements and produces a flag:

=N -
= o= N
AN AN A

Actually the standard name for endif is then. This tutorial presents the examples
using endif, because this is often less confusing for people familiar with other programming
languages where then has a different meaning. If your system does not have endif, define
it with

: endif postpone then ; immediate

You can optionally use an else-part:

:min (n1 n2 -- n)
2dup < if
drop
else
nip
endif ;
2 3 min .
3 2 min .

Assignment: Write min without else-part (hint: what’s the definition of nip?).

Reference: (undefined) [Selection], page (undefined).

Chapter 3: Forth Tutorial 23

3.17 Flags and Comparisons

In a false-flag all bits are clear (0 when interpreted as integer). In a canonical true-flag
all bits are set (-1 as a twos-complement signed integer); in many contexts (e.g., if) any
non-zero value is treated as true flag.

false .
true .
true hex u. decimal

Comparison words produce canonical flags:

11=".

O O =
o

<.

<.

-1 1 u< . \ type error, u< interprets -1 as large unsigned number
-11< .

O =

Gforth supports all combinations of the prefixes 0 u d d0 du £ £O (or none) and the
comparisons = <> < > <= >=. Only a part of these combinations are standard (for details
see the standard, (undefined) [Numeric comparison|, page (undefined), (undefined) [Floating
Point], page (undefined), or (undefined) [Word Index], page (undefined)).

You can use and or xor invert as operations on canonical flags. Actually they are
bitwise operations:

1 2 and .
12 or .
1 3 xor .
1 invert

You can convert a zero/non-zero flag into a canonical flag with 0<> (and complement it
on the way with 0=; indeed, it is more common to use 0= instead of invert for canonical
flags).

1 0= .
1 0<> .

While you can use if without 0<> to test for zero/non-zero, you sometimes need to use
0<> when combining zero/non-zero values with and or xor because of their bitwise nature.
The simplest, least error-prone, and probably clearest way is to use 0<> in all these cases,
but in some cases you can use fewer 0<>s. Here are some stack effects, where fc represents
a canonical flag, and fz represents zero/non-zero (every fc also works as fz):

or (fzl fz2 -- £fz3)
and (fzl fc -- fz2)
and (fc fzl —- fz2)

So, if you see code like this:
(nl n2) 0<> and if

This tests whether nl and n2 are non-zero and if yes, performs the code after if; it
treats nl as zero/non-zero and uses 0<> to convert n2 into a canonical flag; the and then
produces an fz, which is consumed by the if.

Chapter 3: Forth Tutorial 24

You can use the all-bits-set feature of canonical flags and the bitwise operation of the
Boolean operations to avoid ifs:

: foo (n1 -- n2)
0= if
14
else
0
endif ;
0 foo .
1 foo .

: foo (n1 -- n2)
0= 14 and ;

0 foo .

1 foo .

Assignment: Write min without if.

For reference, see (undefined) [Boolean Flags], page (undefined), (undefined) [Numeric
comparison], page (undefined), and (undefined) [Bitwise operations], page (undefined).

3.18 General Loops

The endless loop is the most simple one:

: endless (--)
0 begin
dup . 1+
again ;
endless
Terminate this loop by pressing Ctrl-C (in Gforth). begin does nothing at run-time,
again jumps back to begin.

A loop with one exit at any place looks like this:

: log2 (+nl -- n2)
\ logarithmus dualis of n1>0, rounded down to the next integer
assert(dup 0>)
2/ 0 begin
over 0> while
1+ swap 2/ swap
repeat
nip ;
7 log2 .
8 log2 .

At run-time while consumes a flag; if it is 0, execution continues behind the repeat; if
the flag is non-zero, execution continues behind the while. Repeat jumps back to begin,
just like again.

In Forth there are a number of combinations/abbreviations, like 1+. However, 2/ is not
one of them; it shifts its argument right by one bit (arithmetic shift right), and viewed

Chapter 3: Forth Tutorial 25

as division that always rounds towards negative infinity (floored division), like Gforth’s /
(since Gforth 0.7), but unlike / in many other Forth systems.
52/ .\ -2or -3
-52/ . \ -3
assert(is no standard word, but you can get it on systems other than Gforth by
including compat/assert.fs. You can see what it does by trying
0 log2 .
Here’s a loop with an exit at the end:
: log2 (+nl -- n2)
\ logarithmus dualis of n1>0, rounded down to the next integer
assert(dup 0 >)
-1 begin
1+ swap 2/ swap
over 0 <=
until
nip ;
Until consumes a flag; if it is zero, execution continues at the begin, otherwise after
the until.
Assignment: Write a definition for computing the greatest common divisor.

Reference: (undefined) [General Loops], page (undefined).

3.19 Counted loops

“(nlu--n)
\ n = the uth power of nl
1 swap O u+do
over *
loop
nip ;
32°
4 3 °
U+do (from compat/loops.fs, if your Forth system doesn’t have it) takes two numbers
of the stack (u3 u4 --), and then performs the code between u+do and loop for u3-u4
times (or not at all, if u3-u4<0).
You can see the stack effect design rules at work in the stack effect of the loop start
words: Since the start value of the loop is more frequently constant than the end value, the
start value is passed on the top-of-stack.

You can access the counter of a counted loop with i:

: fac (u -- u!)
1 swap 1+ 1 u+do
i o*
loop ;
5 fac .

7 fac .

Chapter 3: Forth Tutorial 26

There is also +do, which expects signed numbers (important for deciding whether to
enter the loop).

Assignment: Write a definition for computing the nth Fibonacci number.
You can also use increments other than 1:

: up2 (nl n2 —-)
+do
i.
2 +loop ;
10 O up2

: down2 (n1 n2 --)
-do
i
2 -loop ;
0 10 down2

Reference: (undefined) [Counted Loops|, page (undefined).

3.20 Recursion

Usually the name of a definition is not visible in the definition; but earlier definitions are
usually visible:

1 0/ . \ "Floating-point unidentified fault" in Gforth on some platforms]]
:/ (nln2 --n)

dup 0= if
-10 throw \ report division by zero
endif
/ \ o0ld version
10/
For recursive definitions you can use recursive (non-standard) or recurse
: facl (n -- n!) recursive
dup 0> if
dup 1- facl =*
else
drop 1
endif ;
7 facl

: fac2 (n —— n!)
dup 0> if
dup 1- recurse *
else
drop 1
endif ;
8 fac2 .

Chapter 3: Forth Tutorial 27

Assignment: Write a recursive definition for computing the nth Fibonacci num-
ber.

Reference (including indirect recursion): See (undefined) [Calls and returns|, page (un-
defined).

3.21 Leaving definitions or loops

EXIT exits the current definition right away. For every counted loop that is left in this way,
an UNLOOP has to be performed before the EXIT:

. utdo
if
. unloop exit
endif
loop

LEAVE leaves the innermost counted loop right away

. utdo
if
. leave
endif
loop

Reference: (undefined) [Calls and returns], page (undefined), (undefined) [Counted
Loops|, page (undefined).

3.22 Return Stack

In addition to the data stack Forth also has a second stack, the return stack; most Forth
systems store the return addresses of procedure calls there (thus its name). Programmers
can also use this stack:

: foo (n1 n2 ——)
.8
>r .s
r@ .
>r .s
r@ .
r> .
r@ .
r> .
1 2 foo

Chapter 3: Forth Tutorial 28

>r takes an element from the data stack and pushes it onto the return stack; conversely,
r> moves an element from the return to the data stack; r@ pushes a copy of the top of the
return stack on the data stack.

Forth programmers usually use the return stack for storing data temporarily, if using
the data stack alone would be too complex, and factoring and locals are not an option:
: 2swap (x1 %2 x3 x4 -- x3 x4 x1 x2)
rot >r rot r> ;

The return address of the definition and the loop control parameters of counted loops
usually reside on the return stack, so you have to take all items, that you have pushed on the
return stack in a colon definition or counted loop, from the return stack before the definition
or loop ends. You cannot access items that you pushed on the return stack outside some
definition or loop within the definition of loop.

If you miscount the return stack items, this usually ends in a crash:

: crash (n —-)
>ro;
5 crash

You cannot mix using locals and using the return stack (according to the standard,;
Gforth has no problem). However, they solve the same problems, so this shouldn’t be an
issue.

Assignment: Can you rewrite any of the definitions you wrote until now in a
better way using the return stack?

Reference: (undefined) [Return stack], page (undefined).

3.23 Memory

You can create a global variable v with
variable v (-- addr)

v pushes the address of a cell in memory on the stack. This cell was reserved by variable.
You can use ! (store) to store values from the stack into this cell and @ (fetch) to load the
value from memory onto the stack:

v .
5v ! .s
v e .
You can see a raw dump of memory with dump:
v 1 cells .s dump
Cells (nl --n2) gives you the number of bytes (or, more generally, address units
(aus)) that n1 cells occupy. You can also reserve more memory:
create v2 20 cells allot
v2 20 cells dump

creates a variable-like word v2 and reserves 20 uninitialized cells; the address pushed by
v2 points to the start of these 20 cells (see (undefined) [CREATE], page (undefined)). You
can use address arithmetic to access these cells:

3 v2 5 cells + !

Chapter 3: Forth Tutorial 29

v2 20 cells dump
You can reserve and initialize memory with ,:

create v3

5) 4 9 3 ’ 2 b 1 >

v3 @ .

v3 cell+ Q@ .

v3 2 cells + @ .

v3 5 cells dump

Assignment: Write a definition vsum (addr u -- n) that computes the sum

of u cells, with the first of these cells at addr, the next one at addr cell+ etc.
The difference between variable and create is that variable allots a cell, and that

you cannot allot additional memory to a variable in Standard Forth.

You can also reserve memory without creating a new word:

here 10 cells allot .
here .

The first here pushes the start address of the memory area, the second here the address
after the dictionary area. You should store the start address somewhere, or you will have a
hard time finding the memory area again.

Allot manages dictionary memory. The dictionary memory contains the system’s data
structures for words etc. on Gforth and most other Forth systems. It is managed like a
stack: You can free the memory that you have just alloted with

-10 cells allot
here .

Note that you cannot do this if you have created a new word in the meantime (because
then your alloted memory is no longer on the top of the dictionary “stack”).
Alternatively, you can use allocate and free which allow freeing memory in any order:
10 cells allocate throw .s
20 cells allocate throw .s
swap
free throw
free throw
The throws deal with errors (e.g., out of memory).
And there is also a garbage collector (https://www.complang.tuwien.ac.at/forth/
garbage-collection.zip), which eliminates the need to free memory explicitly.

Reference: (undefined) [Memory], page (undefined).

3.24 Characters and Strings

On the stack characters take up a cell, like numbers. In memory they have their own size
(one 8-bit byte on most systems), and therefore require their own words for memory access:
create v4
104 ¢, 97 ¢, 108 c, 108 ¢, 111 c,
v4 4 chars + cQ .
v4 5 chars dump

https://www.complang.tuwien.ac.at/forth/garbage-collection.zip
https://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 3: Forth Tutorial 30

The preferred representation of strings on the stack is addr u-count, where addr is the
address of the first character and u-count is the number of characters in the string.

v4d 5 type
You get a string constant with
s" hello, world" .s
type
Make sure you have a space between s" and the string; s" is a normal Forth word and
must be delimited with white space (try what happens when you remove the space).

However, this interpretive use of s" is quite restricted: the string exists only until the
next call of s" (some Forth systems keep more than one of these strings, but usually they
still have a limited lifetime).

s" hello," s" world" .s
type
type
You can also use s" in a definition, and the resulting strings then live forever (well, for
as long as the definition):
: foo s" hello," s" world"
foo .s
type
type
Assignment: Emit (¢ --) types ¢ as character (not a number). Implement
type (addr u --).
Reference: (undefined) [Memory Blocks|, page (undefined).

3.25 Alignment

On many processors cells have to be aligned in memory, if you want to access them with @
and ! (and even if the processor does not require alignment, access to aligned cells is faster).

Create aligns here (i.e., the place where the next allocation will occur, and that the
created word points to). Likewise, the memory produced by allocate starts at an aligned
address. Adding a number of cells to an aligned address produces another aligned address.

However, address arithmetic involving char+ and chars can create an address that is
not cell-aligned. Aligned (addr -- a-addr) produces the next aligned address:

v3 char+ aligned .s Q@ .
v3 char+ .s @ .

Similarly, align advances here to the next aligned address:

create vb 97 c,
here .

align here .
1000 ,

Note that you should use aligned addresses even if your processor does not require them,
if you want your program to be portable.

Reference: (undefined) [Address arithmetic], page (undefined).

Chapter 3: Forth Tutorial 31

3.26 Floating Point

Floating-point (FP) numbers and arithmetic in Forth works mostly as one might expect,
but there are a few things worth noting:

The first point is not specific to Forth, but so important and yet not universally
known that I mention it here: FP numbers are not reals. Many properties (e.g.,
arithmetic laws) that reals have and that one expects of all kinds of numbers do not
hold for FP numbers. If you want to use FP computations, you should learn about
their problems and how to avoid them; a good starting point is David Goldberg,
What Every Computer Scientist Should Know About Floating-Point Arithmetic
(https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html), ACM
Computing Surveys 23(1):5—48, March 1991.

In Forth source code literal FP numbers need an exponent, e.g., 1e0; this can also be
written shorter as le, longer as +1.0e+0, and many variations in between. The reason
for this is that, for historical reasons, Forth interprets a decimal point alone (e.g., 1.) as
indicating a double-cell integer. Examples:

2e 2e f+ f£.

Another requirement for literal FP numbers is that the current base is decimal; with a
hex base le is interpreted as an integer.

Forth has a separate stack for FP numbers in conformance with Forth-2012. One ad-
vantage of this model is that cells are not in the way when accessing FP values, and vice
versa. Forth has a set of words for manipulating the FP stack: fdup fswap fdrop fover
frot and (non-standard) fnip ftuck fpick.

FP arithmetic words are prefixed with F. There is the usual set £+ £f- £* £/ f*x fnegate
as well as a number of words for other functions, e.g., fsqrt fsin fln fmin. One word that
you might expect is £=; but £= is non-standard, because FP computation results are usually
inaccurate, so exact comparison is usually a mistake, and one should use approximate
comparison. Unfortunately, £~, the standard word for that purpose, is not well designed,
so Gforth provides f~abs and £"rel as well.

And of course there are words for accessing FP numbers in memory (£f@ £!), and for
address arithmetic (floats float+ faligned). There are also variants of these words with
an sf and df prefix for accessing IEEE format single-precision and double-precision numbers
in memory; their main purpose is for accessing external FP data (e.g., that has been read
from or will be written to a file).

Here is an example of a dot-product word and its use:

: vk (f_addrl nstridel f_addr2 nstride2 ucount —— r)
>r swap 2swap swap Oe r> O 7DO
dup f@ over + 2swap dup f@ f*x f+ over + 2swap
LOOP
2drop 2drop ;

create v 1.23e f, 4.56e f, 7.8% f,

v 1 floats v 1 floats 3 wvx f.

Assignment: Write a program to solve a quadratic equation. Then
read Henry G. Baker, You Could Learn a Lot from a Quadratic

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.4448&rep=rep1&type=pdf

Chapter 3: Forth Tutorial 32

(https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.4448&rep=repl&type=pdf),
ACM SIGPLAN Notices, 33(1):30—39, January 1998, and see if you can

improve your program. Finally, find a test case where the original and the

improved version produce different results.

Reference: (undefined) [Floating Point|, page (undefined); (undefined) [Floating point
stack|, page (undefined); (undefined) [Number Conversion|, page (undefined); (undefined)
[Memory Access], page (undefined); (undefined) [Address arithmetic], page (undefined).

3.27 Files

This section gives a short introduction into how to use files inside Forth. It’s broken up
into five easy steps:
1. Open an ASCII text file for input
Open a file for output
Read input file until string matches (or some other condition is met)
Write some lines from input (modified or not) to output
Close the files.

ANl

Reference: (undefined) [General files|, page (undefined).
3.27.1 Open file for input

s" foo.in" r/o open-file throw Value fd-in

3.27.2 Create file for output

s" foo.out" w/o create-file throw Value fd-out
The available file modes are r/o for read-only access, r/w for read-write access, and w/o
for write-only access. You could open both files with r/w, too, if you like. All file words
return error codes; for most applications, it’s best to pass there error codes with throw to
the outer error handler.
If you want words for opening and assigning, define them as follows:
0 Value fd-in
0 Value fd-out
: open—input (addr u --) r/o open-file throw to fd-in ;
: open-output (addr u --) w/o create-file throw to fd-out ;
Usage example:
s" foo.in" open-input
s" foo.out" open-output

3.27.3 Scan file for a particular line

256 Constant max-line
Create line-buffer max-line 2 + allot

: scan—-file (addr u --)
begin
line-buffer max-line fd-in read-line throw

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.4448&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.4448&rep=rep1&type=pdf

Chapter 3: Forth Tutorial 33

while
>r 2dup line-buffer r> compare 0=
until
else
drop
then
2drop ;
read-line (addr ul fd -- u2 flag ior) reads up to ul bytes into the buffer at addr,
and returns the number of bytes read, a flag that is false when the end of file is reached,
and an error code.
compare (addrl ul addr2 u2 -- n) compares two strings and returns zero if both
strings are equal. It returns a positive number if the first string is lexically greater, a
negative if the second string is lexically greater.
We haven’t seen this loop here; it has two exits. Since the while exits with the number
of bytes read on the stack, we have to clean up that separately; that’s after the else.

Usage example:

s" The text I search is here" scan-file

3.27.4 Copy input to output
: copy-file (--)

begin

line-buffer max-line fd-in read-line throw
while

line-buffer swap fd-out write-line throw
repeat
drop ;

3.27.5 Close files
fd-in close-file throw
fd-out close-file throw
Likewise, you can put that into definitions, too:

: close-input (--) fd-in close-file throw ;
: close-output (--) fd-out close-file throw ;

Assignment: How could you modify copy-file so that it copies until a second
line is matched? Can you write a program that extracts a section of a text file,
given the line that starts and the line that terminates that section?

3.28 Interpretation and Compilation Semantics and
Immediacy

When a word is compiled, it behaves differently from being interpreted. E.g., consider +:
12+ .
: foo + ;

These two behaviours are known as compilation and interpretation semantics. For nor-
mal words (e.g., +), the compilation semantics is to append the interpretation semantics to

Chapter 3: Forth Tutorial 34

the currently defined word (foo in the example above). L.e., when foo is executed later,
the interpretation semantics of + (i.e., adding two numbers) will be performed.

However, there are words with non-default compilation semantics, e.g., the control-flow
words like if. You can use immediate to change the compilation semantics of the last
defined word to be equal to the interpretation semantics:

[Fool ¢ -=-)
5 . ; immediate

[FOO]

: bar (--)
[FOO] ;

bar

see bar

Two conventions to mark words with non-default compilation semantics are names with
brackets (more frequently used) and to write them all in upper case (less frequently used).

For some words, such as if, using their interpretation semantics is usually a mistake, so
we mark them as compile-only, and you get a warning when you interpret them.

: flip (-—-)

6 . ; compile-only \ but not immediate
flip

: flop (==)

flip ;

flop

In this example, first the interpretation semantics of £1ip is used (and you get a warn-
ing); the second use of flip uses the compilation semantics (and you get no warning).
You can also see in this example that compile-only is a property that is evaluated at text
interpretation time, not at run-time.

The text interpreter has two states: in interpret state, it performs the interpretation
semantics of words it encounters; in compile state, it performs the compilation semantics of
these words.

Among other things, : switches into compile state, and ; switches back to interpret state.
They contain the factors] (switch to compile state) and [(switch to interpret state), that
do nothing but switch the state.

coxxx (-)

[5 .1

XXX
See XXX

These brackets are also the source of the naming convention mentioned above.

Reference: (undefined) [Interpretation and Compilation Semantics], page (undefined).

Chapter 3: Forth Tutorial 35

3.29 Execution Tokens

' word gives you the execution token (XT) of a word. The XT is a cell representing the
interpretation semantics of a word. You can execute these semantics with execute:
'+ .s
1 2 rot execute
The XT is similar to a function pointer in C. However, parameter passing through the
stack makes it a little more flexible:

: map-array (... addr u xt -- ...)
\ executes xt (... x -— ...) for every element of the array starting
\ at addr and containing u elements

{xt}

cells over + swap 7do
i @ xt execute
1 cells +loop ;

createad , 4,2, -1, 4,

a 5 ' . map-array .s

0 a5 ' + map-array .

s" max-n" environment? drop .s

a 5 ' min map-array .

You can use map-array with the XT's of words that consume one element more than they

produce. In theory you can also use it with other XT's, but the stack effect then depends
on the size of the array, which is hard to understand.

Since XTs are cell-sized, you can store them in memory and manipulate them on the
stack like other cells. You can also compile the XT into a word with compile,:

: fool (nl n2 --n)
[' + compile,] ;
see fool
This is non-standard, because compile, has no compilation semantics in the standard,
but it works in good Forth systems. For the broken ones, use

[compile,] compile, ; immediate

: fool (n1 n2 -- n)
['+] [compile,] ;
see fool
' is a word with default compilation semantics; it parses the next word when its inter-
pretation semantics are executed, not during compilation:
: foo (-- xt)

"

see foo

: bar (... "word" -- ...)
' execute ;

see bar

1 2 bar + .

Chapter 3: Forth Tutorial 36

You often want to parse a word during compilation and compile its XT so it will be
pushed on the stack at run-time. ['] does this:
:xt—+ (-— xt)
'] +;
see xt-+
1 2 xt-+ execute .

Many programmers tend to see ' and the word it parses as one unit, and expect it
to behave like ['] when compiled, and are confused by the actual behaviour. If you are,
just remember that the Forth system just takes ' as one unit and has no idea that it is a
parsing word (attempts to convenience programmers in this issue have usually resulted in
even worse pitfalls, see State-smartness—Why it is evil and How to Exorcise it (https://
www.complang.tuwien.ac.at/papers/ertl98.ps.gz)).

Note that the state of the interpreter does not come into play when creating and execut-
ing XTs. Le., even when you execute ' in compile state, it still gives you the interpretation
semantics. And whatever that state is, execute performs the semantics represented by the
XT (i.e., for XTs produced with ' the interpretation semantics).

Reference: (undefined) [Tokens for Words], page (undefined).

3.30 Exceptions

throw (n --) causes an exception unless n is zero.

100 throw .s

0 throw .s

catch (... xt -— ... n) behaves similar to execute, but it catches exceptions and

pushes the number of the exception on the stack (or 0, if the xt executed without exception).
If there was an exception, the stacks have the same depth as when entering catch:

.8
30 ' / catch .s
32 "' / catch .s

Assignment: Try the same with execute instead of catch.

Throw always jumps to the dynamically next enclosing catch, even if it has to leave
several call levels to achieve this:

: foo 100 throw ;

: fool foo ." after foo" ;
: bar ['] fool catch ;
bar .

It is often important to restore a value upon leaving a definition, even if the definition
is left through an exception. You can ensure this like this:

save-x
['] word-changing-x catch (... n)
restore-x

(... n) throw ;

However, this is still not safe against, e.g., the user pressing Ctrl-C when execution is
between the catch and restore-x.

https://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
https://www.complang.tuwien.ac.at/papers/ertl98.ps.gz

Chapter 3: Forth Tutorial 37

Gforth provides an alternative exception handling syntax that is safe against such cases:
try ... restore ... endtry. If the code between try and endtry has an exception, the
stack depths are restored, the exception number is pushed on the stack, and the execution
continues right after restore.

The safer equivalent to the restoration code above is

save-x
try

word-changing-x 0O
restore

restore-x
endtry
throw ;

Reference: (undefined) [Exception Handling|, page (undefined).

3.31 Defining Words

:, create, and variable are definition words: They define other words. Constant is
another definition word:
5 constant foo
foo .
You can also use the prefixes 2 (double-cell) and £ (floating point) with variable and
constant.
You can also define your own defining words. E.g.:
: variable ("name" --)
create 0 , ;
You can also define defining words that create words that do something other than just
producing their address:
: constant (n "name" --)
create ,

does> (-—- n)
(addr) @ ;

5 constant foo
foo .

The definition of constant above ends at the does>; i.e., does> replaces ;, but it also
does something else: It changes the last defined word such that it pushes the address of the
body of the word and then performs the code after the does> whenever it is called.

In the example above, constant uses , to store 5 into the body of foo. When foo
executes, it pushes the address of the body onto the stack, then (in the code after the
does>) fetches the 5 from there.

The stack comment near the does> reflects the stack effect of the defined word, not the
stack effect of the code after the does> (the difference is that the code expects the address
of the body that the stack comment does not show).

Chapter 3: Forth Tutorial 38

You can use these definition words to do factoring in cases that involve (other) definition
words. E.g., a field offset is always added to an address. Instead of defining

2 cells constant offset-fieldl
and using this like
(addr) offset-fieldl +
you can define a definition word
: simple-field (n "name" --)
create ,

does> (nl -- nl+n)
(addr) @ + ;

Definition and use of field offsets now look like this:

2 cells simple-field fieldl
create mystruct 4 cells allot
mystruct .s fieldl .s drop

If you want to do something with the word without performing the code after the does>,
you can access the body of a created word with >body (xt -- addr):

: value (n "name" --)
create ,

does> (-- nl)
Q ;

: to (n "name" --)
' >body ! ;

5 value foo

foo .

7 to foo

foo

Assignment: Define defer ("name" --), which creates a word that stores
an XT (at the start the XT of abort), and upon execution executes the XT.
Define is (xt "name" --) that stores xt into name, a word defined with defer.

Indirect recursion is one application of defer.
Reference: (undefined) [User-defined Defining Words|, page (undefined).

3.32 Arrays and Records

Forth has no standard words for defining arrays, but you can build them yourself based on
address arithmetic. You can also define words for defining arrays and records (see (unde-
fined) [Defining Words], page (undefined)).

One of the first projects a Forth newcomer sets out upon when learning about defining
words is an array defining word (possibly for n-dimensional arrays). Go ahead and do it,
I did it, too; you will learn something from it. However, don’t be disappointed when you
later learn that you have little use for these words (inappropriate use would be even worse).
I have not found a set of useful array words yet; the needs are just too diverse, and named,
global arrays (the result of naive use of defining words) are often not flexible enough (e.g.,

Chapter 3: Forth Tutorial 39

consider how to pass them as parameters). Another such project is a set of words to help
dealing with strings.

On the other hand, there is a useful set of record words, and it has been defined in
compat/struct.fs; these words are predefined in Gforth. They are explained in depth
elsewhere in this manual (see see (undefined) [Structures|, page (undefined)). The simple-
field example above is simplified variant of fields in this package.

3.33 POSTPONE

You can compile the compilation semantics (instead of compiling the interpretation seman-
tics) of a word with POSTPONE:

: MY-+ (Compilation: -- ; Run-time of compiled code: nl n2 -- n)
POSTPONE + ; immediate

: foo (nl n2 -- n)

MY-+ ;

1 2 foo .

see foo

During the definition of foo the text interpreter performs the compilation semantics of
MY-+, which performs the compilation semantics of +, i.e., it compiles + into foo.

This example also displays separate stack comments for the compilation semantics and
for the stack effect of the compiled code. For words with default compilation semantics
these stack effects are usually not displayed; the stack effect of the compilation semantics
is always (==) for these words, the stack effect for the compiled code is the stack effect of
the interpretation semantics.

Note that the state of the interpreter does not come into play when performing the
compilation semantics in this way. You can also perform it interpretively, e.g.:

: foo2 (n1 n2 -—-n)
[MY-+] ;

1 2 foo .

see foo

However, there are some broken Forth systems where this does not always work, and
therefore this practice was been declared non-standard in 1999.
Here is another example for using POSTPONE:
: MY-- (Compilation: -- ; Run-time of compiled code: nl n2 -- n)
POSTPONE negate POSTPONE + ; immediate compile-only
: bar (nl n2 -- n)
MY-- ;
2 1 bar .
see bar

You can define ENDIF (which you can use instead of THEN) in this way:

: ENDIF (Compilation: orig --)
POSTPONE then ; immediate

Assignment: Write MY-2DUP that has compilation semantics equivalent to 2dup,
but compiles over over.

Chapter 3: Forth Tutorial 40

3.34 Literal

You cannot POSTPONE numbers:
[FOO] POSTPONE 500 ; immediate
Instead, you can use LITERAL (compilation: n --; run-time: --n):

[FOO] (compilation: --; run-time: -- n)
500 POSTPONE literal ; immediate

: flip [FOO] ;
flip .
see flip
LITERAL consumes a number at compile-time (when it’s compilation semantics are exe-
cuted) and pushes it at run-time (when the code it compiled is executed). A frequent use
of LITERAL is to compile a number computed at compile time into the current word:

: bar (-=— n)
[22+] literal ;
see bar

Assignment: Write 1L which allows writing the example above as : bar (=— n
) [22+]1L;

3.35 Advanced macros

Reconsider map-array from (undefined) [Execution Tokens], page (undefined). It frequently
performs execute, a relatively expensive operation in some Forth implementations. You
can use compile, and POSTPONE to eliminate these executes and produce a word that
contains the word to be performed directly:

: compile-map-array (compilation: xt -- ; run-time: ... addr u -- ...)
\ at run-time, execute xt (... x —— ...) for each element of the
\ array beginning at addr and containing u elements

{xt}

POSTPONE cells POSTPONE over POSTPONE + POSTPONE swap POSTPONE 7do
POSTPONE i POSTPONE @ xt compile,
1 cells POSTPONE literal POSTPONE +loop ;

: sum-array (addr u -- n)

0 rot rot [' + compile-map-array] ;
see sum-array
a 5 sum-array .

You can use the full power of Forth for generating the code; here’s an example where
the code is generated in a loop:
: compile-vmul-step (compilation: n --; run-time: nl addrl -- n2 addr2)J
\ n2=ni1+(addrl)*n, addr2=addri+cell
POSTPONE tuck POSTPONE @
POSTPONE literal POSTPONE * POSTPONE +
POSTPONE swap POSTPONE cell+ ;

Chapter 3: Forth Tutorial 41

: compile-vmul (compilation: addrl u -- ; run-time: addr2 -- n)

\ n=v1*v2 (inner product), where the v_i are represented as addr_i u
0 postpone literal postpone swap
[' compile-vmul-step compile-map-array]
postpone drop ;

see compile-vmul

: a-vmul (addr -- n)

\ n=a*v, where v is a vector that's as long as a and starts at addr
[a 5 compile-vmul] ;

see a-vmul

a a-vmul .

This example uses compile-map-array to show off, but you could also use map-array
instead (try it now!).

You can use this technique for efficient multiplication of large matrices. In matrix multi-
plication, you multiply every row of one matrix with every column of the other matrix. You
can generate the code for one row once, and use it for every column. The only downside of
this technique is that it is cumbersome to recover the memory consumed by the generated
code when you are done (and in more complicated cases it is not possible portably).

3.36 Compilation Tokens

This section is Gforth-specific. You can skip it.

' word compile, compiles the interpretation semantics. For words with default compi-
lation semantics this is the same as performing the compilation semantics. To represent
the compilation semantics of other words (e.g., words like if that have no interpretation
semantics), Gforth has the concept of a compilation token (CT, consisting of two cells), and
words comp' and [comp']. You can perform the compilation semantics represented by a
CT with execute:

: foo2 (n1 n2 -—— n)
[comp' + execute] ;
see foo

You can compile the compilation semantics represented by a CT with postpone,:

: foo3 (—-)
[comp' + postpone,] ;
see foo3

[comp' word postpone,] is equivalent to POSTPONE word. comp' is particularly useful
for words that have no interpretation semantics:
' if
comp' if .s 2drop
Reference: (undefined) [Tokens for Words], page (undefined).

3.37 Wordlists and Search Order

The dictionary is not just a memory area that allows you to allocate memory with allot,
it also contains the Forth words, arranged in several wordlists. When searching for a word

Chapter 3: Forth Tutorial 42

in a wordlist, conceptually you start searching at the youngest and proceed towards older
words (in reality most systems nowadays use hash-tables); i.e., if you define a word with
the same name as an older word, the new word shadows the older word.

Which wordlists are searched in which order is determined by the search order. You can
display the search order with order. It displays first the search order, starting with the
wordlist searched first, then it displays the wordlist that will contain newly defined words.

You can create a new, empty wordlist with wordlist (-- wid):
wordlist constant mywords

Set-current (wid --) sets the wordlist that will contain newly defined words (the
current wordlist):

mywords set-current
order

Gforth does not display a name for the wordlist in mywords because this wordlist was
created anonymously with wordlist.

You can get the current wordlist with get-current (-- wid). If you want to put
something into a specific wordlist without overall effect on the current wordlist, this typically
looks like this:

get-current mywords set-current (wid)
create someword
(wid) set-current

You can write the search order with set-order (widl .. widn n --) and read it with
get-order (—- widl .. widn n). The first searched wordlist is topmost.

get-order mywords swap 1+ set-order
order

Yes, the order of wordlists in the output of order is reversed from stack comments and
the output of .s and thus unintuitive.

Assignment: Define >order (wid --) which adds wid as first searched
wordlist to the search order. Define previous (--), which removes the first
searched wordlist from the search order. Experiment with boundary conditions
(you will see some crashes or situations that are hard or impossible to leave).

The search order is a powerful foundation for providing features similar to Modula-
2 modules and C++ namespaces. However, trying to modularize programs in this way
has disadvantages for debugging and reuse/factoring that overcome the advantages in my
experience (I don’t do huge projects, though). These disadvantages are not so clear in
other languages/programming environments, because these languages are not so strong in
debugging and reuse.

Reference: (undefined) [Word Lists], page (undefined).

43

4 An Introduction to Standard Forth

The difference of this chapter from the Tutorial (see (undefined) [Tutorial], page (unde-
fined)) is that it is slower-paced in its examples, but uses them to dive deep into explaining
Forth internals (not covered by the Tutorial). Apart from that, this chapter covers far less
material. It is suitable for reading without using a computer.

The primary purpose of this manual is to document Gforth. However, since Forth
is not a widely-known language and there is a lack of up-to-date teaching material, it
seems worthwhile to provide some introductory material. For other sources of Forth-related
information, see (undefined) [Forth-related information], page (undefined).

The examples in this section should work on any Standard Forth; the output shown
was produced using Gforth. Each example attempts to reproduce the exact output that
Gforth produces. If you try out the examples (and you should), what you should type is
shown like this and Gforth’s response is shown like this. The single exception is that,
where the example shows RET it means that you should press the “carriage return” key.
Unfortunately, some output formats for this manual cannot show the difference between
this and this which will make trying out the examples harder (but not impossible).

Forth is an unusual language. It provides an interactive development environment which
includes both an interpreter and compiler. Forth programming style encourages you to break
a problem down into many small fragments (factoring), and then to develop and test each
fragment interactively. Forth advocates assert that breaking the edit-compile-test cycle
used by conventional programming languages can lead to great productivity improvements.

4.1 Introducing the Text Interpreter

When you invoke the Forth image, you will see a startup banner printed and nothing else
(if you have Gforth installed on your system, try invoking it now, by typing gforthRET).
Forth is now running its command line interpreter, which is called the Text Interpreter
(also known as the Outer Interpreter). (You will learn a lot about the text interpreter
as you read through this chapter, for more detail see (undefined) [The Text Interpreter],
page (undefined)).

Although it’s not obvious, Forth is actually waiting for your input. Type a number and
press the RET key:

45RET ok

Rather than give you a prompt to invite you to input something, the text interpreter
prints a status message after it has processed a line of input. The status message in this case
(“ ok” followed by carriage-return) indicates that the text interpreter was able to process
all of your input successfully. Now type something illegal:

qwer341RET

the terminal:2: Undefined word
>>>quwer341<<<

Backtrace:

$2A95B42A20 throw

$2A95B57FB8 no.extensions

The exact text, other than the “Undefined word” may differ slightly on your system, but
the effect is the same; when the text interpreter detects an error, it discards any remaining

Chapter 4: An Introduction to Standard Forth 44

text on a line, resets certain internal state and prints an error message. For a detailed
description of error messages see (undefined) [Error messages|, page (undefined).

The text interpreter waits for you to press carriage-return, and then processes your
input line. Starting at the beginning of the line, it breaks the line into groups of characters
separated by spaces. For each group of characters in turn, it makes two attempts to do
something:

e [t tries to treat it as a command. It does this by searching a name dictionary. If the
group of characters matches an entry in the name dictionary, the name dictionary pro-
vides the text interpreter with information that allows the text interpreter to perform
some actions. In Forth jargon, we say that the group of characters names a word, that
the dictionary search returns an execution token (xt) corresponding to the definition
of the word, and that the text interpreter executes the xt. Often, the terms word and
definition are used interchangeably.

e If the text interpreter fails to find a match in the name dictionary, it tries to treat the
group of characters as a number in the current number base (when you start up Forth,
the current number base is base 10). If the group of characters legitimately represents
a number, the text interpreter pushes the number onto a stack (we’ll learn more about
that in the next section).

If the text interpreter is unable to do either of these things with any group of characters,
it discards the group of characters and the rest of the line, then prints an error message. If
the text interpreter reaches the end of the line without error, it prints the status message “
ok” followed by carriage-return.

This is the simplest command we can give to the text interpreter:
RET ok

The text interpreter did everything we asked it to do (nothing) without an error, so it
said that everything is “ ok”. Try a slightly longer command:

12 dup fred dupRET

the terminal:3: Undefined word
12 dup >>>fred<<< dup

Backtrace:

$2A95B42A20 throw

$2A95B57FB8 no.extensions

When you press the carriage-return key, the text interpreter starts to work its way along
the line:

e When it gets to the space after the 2, it takes the group of characters 12 and looks
them up in the name dictionary!. There is no match for this group of characters in the
name dictionary, so it tries to treat them as a number. It is able to do this successfully,
so it puts the number, 12, “on the stack” (whatever that means).

e The text interpreter resumes scanning the line and gets the next group of characters,
dup. It looks it up in the name dictionary and (you’ll have to take my word for this)
finds it, and executes the word dup (whatever that means).

1 We can’t tell if it found them or not, but assume for now that it did not

Chapter 4: An Introduction to Standard Forth 45

e Once again, the text interpreter resumes scanning the line and gets the group of char-
acters fred. It looks them up in the name dictionary, but can’t find them. It tries to
treat them as a number, but they don’t represent any legal number.

At this point, the text interpreter gives up and prints an error message. The error
message shows exactly how far the text interpreter got in processing the line. In particular,
it shows that the text interpreter made no attempt to do anything with the final character
group, dup, even though we have good reason to believe that the text interpreter would
have no problem looking that word up and executing it a second time.

4.2 Stacks, postfix notation and parameter passing

In procedural programming languages (like C and Pascal), the building-block of programs is
the function or procedure. These functions or procedures are called with explicit parameters.
For example, in C we might write:

total = total + new_volume(length,height,depth);

where new_volume is a function-call to another piece of code, and total, length, height and
depth are all variables. length, height and depth are parameters to the function-call.

In Forth, the equivalent of the function or procedure is the definition and parameters are
implicitly passed between definitions using a shared stack that is visible to the programmer.
Although Forth does support variables, the existence of the stack means that they are
used far less often than in most other programming languages. When the text interpreter
encounters a number, it will place (push) it on the stack. There are several stacks (the
actual number is implementation-dependent ...) and the particular stack used for any
operation is implied unambiguously by the operation being performed. The stack used
for all integer operations is called the data stack and, since this is the stack used most
commonly, references to “the data stack” are often abbreviated to “the stack”.

The stacks have a last-in, first-out (LIFO) organisation. If you type:
1 2 3RET ok

Then this instructs the text interpreter to placed three numbers on the (data) stack. An
analogy for the behaviour of the stack is to take a pack of playing cards and deal out the
ace (1), 2 and 3 into a pile on the table. The 3 was the last card onto the pile (“last-in”)
and if you take a card off the pile then, unless you’re prepared to fiddle a bit, the card that
you take off will be the 3 (“first-out”). The number that will be first-out of the stack is
called the top of stack, which is often abbreviated to TOS.

To understand how parameters are passed in Forth, consider the behaviour of the defini-
tion + (pronounced “plus”). You will not be surprised to learn that this definition performs
addition. More precisely, it adds two numbers together and produces a result. Where does
it get the two numbers from? It takes the top two numbers off the stack. Where does it
place the result? On the stack. You can act out the behaviour of + with your playing cards
like this:

Pick up two cards from the stack on the table

Stare at them intently and ask yourself “what is the sum of these two numbers”
Decide that the answer is 5
Shuffle the two cards back into the pack and find a 5

Chapter 4: An Introduction to Standard Forth 46

e Put a 5 on the remaining ace that’s on the table.

If you don’t have a pack of cards handy but you do have Forth running, you can use the
definition .s to show the current state of the stack, without affecting the stack. Type:

clearstacks 1 2 3RET ok
.SRET <3> 1 2 3 ok

The text interpreter looks up the word clearstacks and executes it; it tidies up the
stacks (data and floating point stack) and removes any entries that may have been left on
them by earlier examples. The text interpreter pushes each of the three numbers in turn
onto the stack. Finally, the text interpreter looks up the word .s and executes it. The
effect of executing .s is to print the “<3>” (the total number of items on the stack) followed
by a list of all the items on the stack; the item on the far right-hand side is the TOS.

You can now type:
+ .sRET <2> 1 5 ok
which is correct; there are now 2 items on the stack and the result of the addition is 5.

If you’re playing with cards, try doing a second addition: pick up the two cards, work
out that their sum is 6, shuffle them into the pack, look for a 6 and place that on the table.
You now have just one item on the stack. What happens if you try to do a third addition?
Pick up the first card, pick up the second card — ah! There is no second card. This is called
a stack underflow and consitutes an error. If you try to do the same thing with Forth it
often reports an error (probably a Stack Underflow or an Invalid Memory Address error).

The opposite situation to a stack underflow is a stack overflow, which simply accepts
that there is a finite amount of storage space reserved for the stack. To stretch the playing
card analogy, if you had enough packs of cards and you piled the cards up on the table,
you would eventually be unable to add another card; you’d hit the ceiling. Gforth allows
you to set the maximum size of the stacks. In general, the only time that you will get a
stack overflow is because a definition has a bug in it and is generating data on the stack
uncontrollably.

There’s one final use for the playing card analogy. If you model your stack using a pack
of playing cards, the maximum number of items on your stack will be 52 (I assume you
didn’t use the Joker). The maximum value of any item on the stack is 13 (the King). In
fact, the only possible numbers are positive integer numbers 1 through 13; you can’t have
(for example) 0 or 27 or 3.52 or -2. If you change the way you think about some of the
cards, you can accommodate different numbers. For example, you could think of the Jack
as representing 0, the Queen as representing -1 and the King as representing -2. Your range
remains unchanged (you can still only represent a total of 13 numbers) but the numbers
that you can represent are -2 through 10.

In that analogy, the limit was the amount of information that a single stack entry could
hold, and Forth has a similar limit. In Forth, the size of a stack entry is called a cell. The
actual size of a cell is implementation dependent and affects the maximum value that a
stack entry can hold. A Standard Forth provides a cell size of at least 16-bits, and most
desktop systems use a cell size of 32-bits.

Forth does not do any type checking for you, so you are free to manipulate and com-
bine stack items in any way you wish. A convenient way of treating stack items is as 2’s

Chapter 4: An Introduction to Standard Forth 47

complement signed integers, and that is what Standard words like + do. Therefore you can
type:
-6 12 + .sRET <1> 7 ok

If you use numbers and definitions like + in order to turn Forth into a great big pocket
calculator, you will realise that it’s rather different from a normal calculator. Rather than
typing 2 + 3 = you had to type 2 3 + (ignore the fact that you had to use .s to see the
result). The terminology used to describe this difference is to say that your calculator uses
Infix Notation (parameters and operators are mixed) whilst Forth uses Postfix Notation
(parameters and operators are separate), also called Reverse Polish Notation.

Whilst postfix notation might look confusing to begin with, it has several important
advantages:

e it is unambiguous
e it is more concise

e it fits naturally with a stack-based system

To examine these claims in more detail, consider these sums:

6 +5 % 4=
4 x5+ 6 =

If you’re just learning maths or your maths is very rusty, you will probably come up
with the answer 44 for the first and 26 for the second. If you are a bit of a whizz at maths
you will remember the convention that multiplication takes precendence over addition, and
you’d come up with the answer 26 both times. To explain the answer 26 to someone who
got the answer 44, you’d probably rewrite the first sum like this:

6 + (5 % 4) =

If what you really wanted was to perform the addition before the multiplication, you
would have to use parentheses to force it.

If you did the first two sums on a pocket calculator you would probably get the right
answers, unless you were very cautious and entered them using these keystroke sequences:

6+5=*4=4*5=+6=

Postfix notation is unambiguous because the order that the operators are applied is
always explicit; that also means that parentheses are never required. The operators are
active (the act of quoting the operator makes the operation occur) which removes the need

fOI, “:7’ .

The sum 6 + 5 * 4 can be written (in postfix notation) in two equivalent ways:

6 54 % + or:
54 x 6 +

An important thing that you should notice about this notation is that the order of the
numbers does not change; if you want to subtract 2 from 10 you type 10 2 -.

The reason that Forth uses postfix notation is very simple to explain: it makes the
implementation extremely simple, and it follows naturally from using the stack as a mecha-
nism for passing parameters. Another way of thinking about this is to realise that all Forth
definitions are active; they execute as they are encountered by the text interpreter. The
result of this is that the syntax of Forth is trivially simple.

Chapter 4: An Introduction to Standard Forth 48

4.3 Your first Forth definition

Until now, the examples we’ve seen have been trivial; we’ve just been using Forth as a
bigger-than-pocket calculator. Also, each calculation we’ve shown has been a “one-off” —
to repeat it we’'d need to type it in again® In this section we’ll see how to add new words
to Forth’s vocabulary.

The easiest way to create a new word is to use a colon definition. We’ll define a few and
try them out before worrying too much about how they work. Try typing in these examples;
be careful to copy the spaces accurately:

: add-two 2 + . ;
: greet ." Hello and welcome" ;
: demo 5 add-two ;

Now try them out:

greetRET Hello and welcome ok

greet greetRET Hello and welcomeHello and welcome ok
4 add-twoRET 6 ok

demoRET 7 ok

9 greet demo add-twoRET Hello and welcome7 11 ok

The first new thing that we’ve introduced here is the pair of words : and ;. These are
used to start and terminate a new definition, respectively. The first word after the : is the
name for the new definition.

As you can see from the examples, a definition is built up of words that have already
been defined; Forth makes no distinction between definitions that existed when you started
the system up, and those that you define yourself.

The examples also introduce the words . (dot), ." (dot-quote) and dup (dewp). Dot
takes the value from the top of the stack and displays it. It’s like .s except that it only
displays the top item of the stack and it is destructive; after it has executed, the number is
no longer on the stack. There is always one space printed after the number, and no spaces
before it. Dot-quote defines a string (a sequence of characters) that will be printed when
the word is executed. The string can contain any printable characters except ". A " has a
special function; it is not a Forth word but it acts as a delimiter (the way that delimiters
work is described in the next section). Finally, dup duplicates the value at the top of the
stack. Try typing 5 dup .s to see what it does.

We already know that the text interpreter searches through the dictionary to locate
names. If you’ve followed the examples earlier, you will already have a definition called
add-two. Lets try modifying it by typing in a new definition:

: add-two dup . ." + 2 =" 2+ . ;RET redefined add-two ok

Forth recognised that we were defining a word that already exists, and printed a message

to warn us of that fact. Let’s try out the new definition:
9 add-twoRET 9 + 2 = 11 ok

All that we’ve actually done here, though, is to create a new definition, with a particular
name. The fact that there was already a definition with the same name did not make

2 That’s not quite true. If you press the up-arrow key on your keyboard you should be able to scroll back
to any earlier command, edit it and re-enter it.

Chapter 4: An Introduction to Standard Forth 49

any difference to the way that the new definition was created (except that Forth printed
a warning message). The old definition of add-two still exists (try demo again to see that
this is true). Any new definition will use the new definition of add-two, but old definitions
continue to use the version that already existed at the time that they were compiled.

Before you go on to the next section, try defining and redefining some words of your
own.

4.4 How does that work?

Now we’re going to take another look at the definition of add-two from the previous section.
From our knowledge of the way that the text interpreter works, we would have expected
this result when we tried to define add-two:

: add-two 2 + . ;RET
the terminal:4: Undefined word
: >>>add-two<kk< 2 + . ;

The reason that this didn’t happen is bound up in the way that : works. The word :
does two special things. The first special thing that it does is to prevent the text interpreter
from ever seeing the characters add-two. The text interpreter uses a variable called >IN
(pronounced “to-in”) to keep track of where it is in the input line. When it encounters the
word : it behaves in exactly the same way as it does for any other word; it looks it up in
the name dictionary, finds its xt and executes it. When : executes, it looks at the input
buffer, finds the word add-two and advances the value of >IN to point past it. It then does
some other stuff associated with creating the new definition (including creating an entry
for add-two in the name dictionary). When the execution of : completes, control returns
to the text interpreter, which is oblivious to the fact that it has been tricked into ignoring
part of the input line.

Words like : — words that advance the value of >IN and so prevent the text interpreter
from acting on the whole of the input line — are called parsing words.

The second special thing that : does is change the value of a variable called state,
which affects the way that the text interpreter behaves. When Gforth starts up, state has
the value 0, and the text interpreter is said to be interpreting. During a colon definition
(started with :), state is set to -1 and the text interpreter is said to be compiling.

”

In this example, the text interpreter is compiling when it processes the string “2 + . ;”.
It still breaks the string down into character sequences in the same way. However, instead
of pushing the number 2 onto the stack, it lays down (compiles) some magic into the
definition of add-two that will make the number 2 get pushed onto the stack when add-two
is executed. Similarly, the behaviours of + and . are also compiled into the definition.

Certain kinds of words do not get compiled. These so-called immediate words get exe-
cuted (performed now) regardless of whether the text interpreter is interpreting or compil-
ing. The word ; is an immediate word. Rather than being compiled into the definition, it
executes. Its effect is to terminate the current definition, which includes changing the value
of state back to 0.

When you execute add-two, it has a run-time effect that is exactly the same as if you
had typed 2 + . RET outside of a definition.

In Forth, every word or number can be described in terms of two properties:

Chapter 4: An Introduction to Standard Forth 50

e Its interpretation semantics describe how it will behave when the text interpreter en-
counters it in interpret state. The interpretation semantics of a word are represented
by its execution token (see (undefined) [Execution token|, page (undefined)).

e Its compilation semantics describe how it will behave when the text interpreter en-
counters it in compile state. The compilation semantics of a word are represented by
its compilation token (see (undefined) [Compilation token], page (undefined)).

Numbers are always treated in a fixed way:
e When the number is interpreted, its behaviour is to push the number onto the stack.

e When the number is compiled, a piece of code is appended to the current definition
that pushes the number when it runs. (In other words, the compilation semantics of a
number are to postpone its interpretation semantics until the run-time of the definition
that it is being compiled into.)

Words don’t always behave in such a regular way, but most have default semantics which
means that they behave like this:

e The interpretation semantics of the word are to do something useful.

e The compilation semantics of the word are to append its interpretation semantics to
the current definition (so that its run-time behaviour is to do something useful).

The actual behaviour of any particular word can be controlled by using the words
immediate and compile-only when the word is defined. These words set flags in the
name dictionary entry of the most recently defined word, and these flags are retrieved by
the text interpreter when it finds the word in the name dictionary.

A word that is marked as immediate has compilation semantics that are identical to its
interpretation semantics. In other words, it behaves like this:

e The interpretation semantics of the word are to do something useful.

e The compilation semantics of the word are to do something useful (and actually the
same thing); i.e., it is executed during compilation.

Marking a word as compile-only means that the text interpreter produces a warning
when encountering this word in interpretation state; ticking the word (with ' or ['] also
produces a warning.

It is never necessary to use compile-only (and it is not even part of Standard Forth,
though it is provided by many implementations) but it is good etiquette to apply it to a
word that will not behave correctly (and might have unexpected side-effects) in interpret
state. For example, it is only legal to use the conditional word IF within a definition.
If you forget this and try to use it elsewhere, the fact that (in Gforth) it is marked as
compile-only allows the text interpreter to generate a helpful warning.

This example shows the difference between an immediate and a non-immediate word:

: show-state state @ . ;

: show-state—now show-state ; immediate
: wordl show-state ;

: word2 show-state-now ;

The word immediate after the definition of show-state-now makes that word an im-
mediate word. These definitions introduce a new word: @ (pronounced “fetch”). This word

Chapter 4: An Introduction to Standard Forth 51

fetches the value of a variable, and leaves it on the stack. Therefore, the behaviour of
show-state is to print a number that represents the current value of state.

When you execute word1, it prints the number 0, indicating that the system is interpret-
ing. When the text interpreter compiled the definition of word1, it encountered show-state
whose compilation semantics are to append its interpretation semantics to the current def-
inition. When you execute word1, it performs the interpretation semantics of show-state.
At the time that wordl (and therefore show-state) is executed, the system is interpreting.

When you pressed RET after entering the definition of word2, you should have seen the
number -1 printed, followed by “ ok”. When the text interpreter compiled the definition of
word2, it encountered show-state-now, an immediate word, whose compilation semantics
are therefore to perform its interpretation semantics. It is executed straight away (even
before the text interpreter has moved on to process another group of characters; the ; in
this example). The effect of executing it is to display the value of state at the time that the
definition of word2 is being defined. Printing -1 demonstrates that the system is compiling
at this time. If you execute word2 it does nothing at all.

Before leaving the subject of immediate words, consider the behaviour of ." in the
definition of greet, in the previous section. This word is both a parsing word and an
immediate word. Notice that there is a space between ." and the start of the text Hello
and welcome, but that there is no space between the last letter of welcome and the "
character. The reason for this is that ." is a Forth word; it must have a space after it so
that the text interpreter can identify it. The " is not a Forth word; it is a delimiter. The
examples earlier show that, when the string is displayed, there is neither a space before the
H nor after the e. Since ." is an immediate word, it executes at the time that greet is
defined. When it executes, its behaviour is to search forward in the input line looking for
the delimiter. When it finds the delimiter, it updates >IN to point past the delimiter. It
also compiles some magic code into the definition of greet; the xt of a run-time routine
that prints a text string. It compiles the string Hello and welcome into memory so that it
is available to be printed later. When the text interpreter gains control, the next word it
finds in the input stream is ; and so it terminates the definition of greet.

4.5 Forth is written in Forth

When you start up a Forth compiler, a large number of definitions already exist. In Forth,
you develop a new application using bottom-up programming techniques to create new
definitions that are defined in terms of existing definitions. As you create each definition
you can test and debug it interactively.

If you have tried out the examples in this section, you will probably have typed them
in by hand; when you leave Gforth, your definitions will be lost. You can avoid this by
using a text editor to enter Forth source code into a file, and then loading code from the
file using include (see (undefined) [Forth source files], page (undefined)). A Forth source
file is processed by the text interpreter, just as though you had typed it in by hand?®.

Gforth also supports the traditional Forth alternative to using text files for program
entry (see (undefined) [Blocks|, page (undefined)).

3 Actually, there are some subtle differences — see (undefined) [The Text Interpreter], page (undefined).

Chapter 4: An Introduction to Standard Forth 52

In common with many, if not most, Forth compilers, most of Gforth is actually written
in Forth. All of the .fs files in the installation directory* are Forth source files, which you
can study to see examples of Forth programming.

Gforth maintains a history file that records every line that you type to the text inter-
preter. This file is preserved between sessions, and is used to provide a command-line recall
facility. If you enter long definitions by hand, you can use a text editor to paste them out
of the history file into a Forth source file for reuse at a later time (for more information see
(undefined) [Command-line editing], page (undefined)).

4.6 Review - elements of a Forth system

To summarise this chapter:

e Forth programs use factoring to break a problem down into small fragments called
words or definitions.

e Forth program development is an interactive process.

e The main command loop that accepts input, and controls both interpretation and
compilation, is called the text interpreter (also known as the outer interpreter).

e Forth has a very simple syntax, consisting of words and numbers separated by spaces
or carriage-return characters. Any additional syntax is imposed by parsing words.

e Forth uses a stack to pass parameters between words. As a result, it uses postfix
notation.

e To use a word that has previously been defined, the text interpreter searches for the
word in the name dictionary.

e Words have interpretation semantics and compilation semantics.

e The text interpreter uses the value of state to select between the use of the interpre-
tation semantics and the compilation semantics of a word that it encounters.

e The relationship between the interpretation semantics and compilation semantics for
a word depends upon the way in which the word was defined (for example, whether it
is an immediate word).

e Forth definitions can be implemented in Forth (called high-level definitions) or in some
other way (usually a lower-level language and as a result often called low-level defini-
tions, code definitions or primitives).

e Many Forth systems are implemented mainly in Forth.

4.7 Where To Go Next

Amazing as it may seem, if you have read (and understood) this far, you know almost all the
fundamentals about the inner workings of a Forth system. You certainly know enough to be
able to read and understand the rest of this manual and the Standard Forth document, to
learn more about the facilities that Forth in general and Gforth in particular provide. Even
scarier, you know almost enough to implement your own Forth system. However, that’s not
a good idea just yet... better to try writing some programs in Gforth.

4 For example, /usr/local/share/gforth. ..

Chapter 4: An Introduction to Standard Forth 53

Forth has such a rich vocabulary that it can be hard to know where to start in learning
it. This section suggests a few sets of words that are enough to write small but useful
programs. Use the word index in this document to learn more about each word, then try it
out and try to write small definitions using it. Start by experimenting with these words:

e Arithmetic: + - * / /MOD */ ABS INVERT

e Comparison: MIN MAX =

e Logic: AND OR XOR NOT

e Stack manipulation: DUP DROP SWAP OVER

e Loops and decisions: IF ELSE THEN 7DO I LOOP
e Input/Output: . ." EMIT CR KEY

e Defining words: : ; CREATE

e Memory allocation words: ALLOT ,

e Tools: SEE WORDS .S MARKER

When you have mastered those, go on to:
e More defining words: VARIABLE CONSTANT VALUE TO CREATE DOES>
e Memory access: @ !

When you have mastered these, there’s nothing for it but to read through the whole of
this manual and find out what you’ve missed.

4.8 Exercises

TODO: provide a set of programming excercises linked into the stuff done already and
into other sections of the manual. Provide solutions to all the exercises in a .fs file in the
distribution.

54

5 Literals in source code

5.1 Integer and character literals

To push an integer number on the data stack, you write the number in source code, e.g.,
123. You can prefix the digits with - to indicate a negative number, e.g. —123. This works
both inside colon definitions and outside. The number is interpreted according to the value
in base (see (undefined) [Number Conversion], page (undefined)). The digits are 0 to 9 and
a (decimal 10) to z (decimal 35), but only digits smaller than base @ are recognized. The
conversion is case-insensitive, so A and a are the same digit.

You can make the base explicit for the number by using a prefix:
e # — decimal
e 7 — binary
e $ — hexadecimal
e & — decimal (non-standard)

e 0x — hexadecimal, if base<33 (non-standard).

For combinations including base-prefix and sign, the standard order is to have the base-
prefix first (e.g., #-123); Gforth supports both orders.

You can put a decimal point . at the end of a number (or, non-standardly, anywhere
else except before a prefix) to get a double-cell integer (e.g., #-123. or #-.123 (the same
number)). If users experienced in another programming language see or write such a number
without base prefix (e.g., -123.), they may expect that the number represents a floating-
point value. To clear up the confusion early, Gforth warns of such usage; to avoid the
warnings, the best approach is to always write double numbers with a base prefix (e.g.,
#-123.)

Here are some examples, with the equivalent decimal number shown after in braces:

$-41 (-65), %1001101 (205), %1001.0001 (145, a double-precision number), #905 (905),
$abc (2478), $ABC (2478).

You can get the numeric value of a (character) code point by surrounding the character
with ' (e.g., 'a'). The trailing ' is required by the standard, but you can leave it away
in Gforth. Note that this also works for non-ASCII characters. For many uses, it is more
useful to have the character as a string rather than as a cell; see below for the string syntax.

5.2 Floating-point number and complex literals

For floating-point numbers in Forth, you recognize them due to their exponent. I.e. 1. is
a double-cell integer, and 1e0 is a floating-point number; the latter can be (and usually is)
shortened to 1e. Both the significand (the part before the e or E) and the exponent may
have signs (including +); the significand must contain at least one digit and may contain
a decimal point, the exponent can be empty. Floating-point numbers always use decimal
base for both significand and exponent, and are only recognized when the base is decimal.
Examples are: 1e 1e0 1.e 1.e0 +1e+0 (which all represent the same number) +12.E-4.

A Gforth extension (since 1.0) is to write a floating-point number in scaled notation: It
can optionally have a sign, then one or more digits, then use one of the mostly Sl-defined

Chapter 5: Literals in source code 55

scaling symbols (aka metric prefixes) or %, and then optionally more digits. Here’s the full
list of scaling symbols that Gforth accepts:

e () e30 quetta

e R e27 ronna

e Y e24 yotta

o Z e21 zetta

e X el18 exa (not E)
P elb peta

T el2 tera

e G e9 giga

e M e6 mega
k e3 kilo

h e2 hecto
e de-1 deci

% e-2 percent (not c)

m e-3 milli

e u e-6 micro (not u)

e n e-9 nano

p e-12 pico
f e-15 femto
a e—-18 atto

e z e-21 zepto

e y e-24 yocto

e 1 e-27 ronto

q e-30 quecto

Unlike most of the rest of Gforth, scaling symbols are treated case-sensitively. Using
the scaled notation is equivalent to using a decimal point instead of the scaling symbol and
appending the exponential notation at the end. Examples of scaled notation: 6k5 (6500¢)
237 (0.23e).

In Gforth (since 1.0) you can input a complex number with real+imaginaryi, where
both real and imaginary are strings that are recognized as floating-point numbers. E.g.,
le+2ei. This pushes the values 1e and 2e on the floating-point stack, so one might just as
well have written 1e 2e, but 1le+2ei makes the intent obvious.

5.3 String and Environment variable Literals

In Gforth (since 1.0) you can input a string by surrounding it with " (e.g. "abc", "a b").
The result is the starting address and byte (=char) count of the string on the data stack.

You have to escape any " inside the string with \ (e.g., "double-quote->\"<-"). In ad-
dition, this string syntax supports all the ways to write control characters that are supported
by s\" (see (undefined) [String and character literals|, page (undefined)). A disadvantage
of this string syntax is that it is non-standard; for standard programs, use s\" instead.

Chapter 5: Literals in source code 56

In Gforth (since 1.0) you can input an environment variable by surrounding its name
with ${...}, e.g., ${HOME}; the result is a string descriptor on the data stack in the format
described above. This is equivalent to "HOME" getenv, i.e., the environment variable is
resolved at run-time.

5.4 Literals for tokens and addresses

Gforth (since 1.0) also recognizes the following literals:

You can input an execution token (xt) of a word by prefixing the name of the word with
the backquote ~ (e.g., “dup). An advantage over using ' or ['] is you do not need to switch
between them when copying and pasting code from inside to outside a colon definition or
vice versa. A disadvantage is that this syntax is non-standard.

You can input a name token (nt) of a word by prefixing the name of the word with ~°
(e.g., ~~dup). This syntax is also non-standard.

You can input a body address of a word by surrounding it with < and > (e.g., <spaces>).
You can also input an address that is at a positive offset from the body address (typically
an address in that body), by putting + and a number (see syntax above) between the word
name and the closing > (e.g., <spaces+$15>, <spaces+-3>). You will get the body address
plus the number. This feature exists to allow copying and pasting the output of ... (see
(undefined) [Examining data], page (undefined)).

In addition, by default Gforth recognizes words with rec-nt and rec-scope, and stores
in or adds to value-flavoured words with rec-to, but these do not recognize literals, so they
are discussed elsewhere (see (undefined) [Default Recognizers], page (undefined)).

5.5 Disambiguating recognizers

In some cases where two recognizers match the same string, you can specify in Gforth
(since 1.0) which recognizer you want to use, with recognizer?string, where recognizer
is the name of the recognizer without the rec- prefix, and string is the string you want
to recognize. E.g., float?1. uses rec-float to recognize a string that would otherwise
be recognized as a double-cell integer number (because rec-num is earlier in the recognizer
sequence than rec-float).

o7

6 Forth Words

6.1 Notation

The Forth words are described in this section in the glossary notation that has become a
de-facto standard for Forth texts:

word Stack effect wordset pronunciation

Description
word The name of the word.

Stack effect
The stack effect is written in the notation before -- after, where before and
after describe the top of stack entries before and after the execution of the
word. The rest of the stack is not touched by the word. The top of stack is
rightmost, i.e., a stack sequence is written as it is typed in.

Gforth has several stacks, in particular, the data stack, return stack and
floating-point stack. However, it uses a unified stack effect notation, where one
stack effect description describes all three stack effects, and the name of the
item indicates which stack the item is on: floating-point stack items start with
r. Return stack items are prefixed with R:, but are otherwise the same as data
stack items. E.g., in the stack effect (w1 w2 -— R:w1 R:w2) wl is a cell on
the data stack, and R:wl is a cell on the return stack with the same value. So
a unified stack effect

(rl1 n1 R:n2 -- R:n3 n4 r2)
is equivalent to the separated stack effect notation

(nt --n4) (R: n2--n3) (F: r1 --1r2)
The name of a stack item describes the type and/or the function of the item.
See below for a discussion of the types.

Words generally have different stack effects in different contexts. If only one
stack effect is shown, it’s the stack effect for the execution/interpretation se-
mantics.! The stack effect of default compilation semantics is (==) and is not
shown.
The stack-effects of non-default compilation semantics are shown if they are
other than (--). Such words usually also have a run-time semantics, and
their stack effects are then shown as in this example

; (compilation colon-sys -- ; run-time nest-sys --)
Further stack effects, such as those of defined words, of passed xts, are shown
in the description part of the glossary entry.

Also note that in code templates or examples there can be comments in paren-
theses that display the stack picture at this point; there is no -- in these places,
because there is no before-after situation.

1 Gforth 1.0 does not make a difference between interpretation and execution semantics.

Chapter 6: Forth Words 58

pronunciation

wordset

Description

How the word is pronounced.

The wordset specifies if a word has been standardized (indicated by a capital-
ized wordset name), it is an environmental query string (indicated by “environ-
ment”), or if it is a Gforth-specific word (lower case).

The Forth standard is divided into several word sets. In theory, a standard
system need not support all of them, but in practice, serious systems on non-
tiny machines support almost all standardized words (some systems require
explicit loading of some word sets, however), so it does not increase portability
in practice to be parsimonious in using word sets.

For the Gforth-specific words, we have the following categories:
gforth

gforth-<version>
We intend to permanently support this word in Gforth and it has
been available since Gforth <wversion> (possibly not as stable word
at that time).

You see gforth in the source code (e.g., when using locate), and
gforth-<version> in the documentation (e.g., when using help).
So if you want to know since which Gforth version a word is avail-
able, use help word.

library The word belongs to a library that is independent of Gforth, but
is delivered with Gforth and documented in this manual. Gforth
1.0 includes libraries with the following wordset names: mini-oof
mini-oof2 minos2 minos2-bidi objects oof regexp-cg regexp-pattern
regexp-replace cilk

gforth-experimental
This word is available in the present version and may turn into
a stable word or may be removed in a future release of Gforth.
Feedback welcome.

gforth-internal
This word is an internal factor, not a supported word, and it may
be removed in a future release of Gforth. If you see a word in the
source code (e.g., with locate) without a wordset, that word is
also an internal factor.

gforth-obsolete
This word will be removed in a future release of Gforth.

A description of the behaviour of the word.

The type of a stack item is specified by the prefix of the name:

Boolean flags, i.e. false or true.

Char

Chapter 6: Forth Words 59

W
X Cell, can contain an integer or an address

n signed integer

u unsigned integer

d signed double-cell integer

ud unsigned double-cell integer

T Float (on the FP stack)

addr Address without further information

a- Cell-aligned address

c- Char-aligned address, address used to point to a character or start of a string.
f- Float-aligned address

df- Address aligned for IEEE double precision float

sf- Address aligned for IEEE single precision float

xt Execution token, same size as Cell

nt Name token, same size as Cell

wid Word list ID, same size as Cell

ior, wior I/O result code, cell-sized. In Gforth, you can throw iors.
" String in the input stream (not on the stack), typically space-delimited.

' String in the input stream, delimited by the last character before the closing '.
E.g., 'ccc"! indicates a string in the input stream that is terminated by ".

6.2 Case insensitivity

Gforth is case-insensitive for ASCII characters and case-sensitive for non-ASCII characters.
IL.e., you can invoke Standard words using upper, lower or mixed case.

For now, Standard Forth only requires implementations to recognise Standard words
when they are typed entirely in upper case. You can use whatever case you like for words
that you define, but in a Standard program you have to use the words in the same case that
you defined them.

Gforth supports case sensitivity through cs-wordlists (case-sensitive wordlists, see (un-
defined) [Word Lists], page (undefined)).

6.3 Comments

Forth supports two styles of comment; the in-line comment starting with (and ending with
), and the comment to the end of the line line starting with \. Don’t forget the space after
the starting word.

((compilation ’ccc<close-paren>’ — ; run-time —) core,file “paren”

Chapter 6: Forth Words 60

Comment, usually till the next): parse and discard all subsequent characters in the
parse area until ")" is encountered. During interactive input, an end-of-line also acts as
a comment terminator. For file input, it does not; if the end-of-file is encountered whilst
parsing for the ")" delimiter, Gforth will generate a warning.

\ (compilation ’ccc<newline>’ — ; run-time —) core-ext,block-ext “backslash”

Comment until the end of line: parse and discard all remaining characters in the parse
area, except while loading from a block: while loading from a block, parse and discard all
remaining characters in the 64-byte line.

\G (compilation ’ccc<newline>’ — ; run-time —) gforth-0.2 “backslash-gee”

Equivalent to \. Used right below the start of a definition to describe the behaviour of
a word. In Gforth’s source code these comments are those that are then inserted in the
documentation.

6.4 Boolean Flags

A Boolean flag is cell-sized. A cell with all bits clear represents the flag false and a flag
with all bits set represents the flag true. Words that check a flag (for example, IF) will
treat a cell that has any bit set as true.

true (- f) core-ext

Constant — f is a cell with all bits set.
false (- f) core-ext

Constant — f is a cell with all bits clear.
on (a-addr —) gforth-0.2

Set the (value of the) variable at a-addr to true.
off (a-addr —) gforth-0.2

Set the (value of the) variable at a-addr to false.
select ((ul u2 f - u) gforth-1.0 “select”

If f is false, u is w2, otherwise ul.

6.5 Arithmetic

Forth arithmetic is not checked, i.e., you will not hear about integer overflow on addition
or multiplication, you may hear about division by zero if you are lucky. The operator is
written after the operands, but the operands are still in the original order. I.e., the infix
2-1 corresponds to 2 1 -.

6.5.1 Single precision

By default, numbers in Forth are single-precision integers that are one cell (a machine word,
e.g., 64 bits on a 64-bit system) in size. They can be signed or unsigned, depending upon how
you treat them. For the rules used by the text interpreter for recognising single-precision
integers see (undefined) [Literals], page (undefined).

+, 1+, under+, -, 1-, x are defined for signed operands, but they also work for unsigned
numbers. For division words see (undefined) [Integer division], page (undefined).

+(nln2-n) core “plus”

Chapter 6: Forth Words 61

1+ (nl — n2) core “one-plus”

under+ (nl n2 n3 — n n2) gforth-0.3 “under-plus”
add nd to nl (giving n)

- (nln2-n) core “minus”

1- (nl — n2) core “one-minus”

* (nl n2 - n) core “star”

negate (nl — n2) core “negate”

abs (m — u) core “abs”

min (n n2 - n) core “min”

max (nl n2 - n) core “max”

umin (w! u2 - u) gforth-0.5 “umin”

umax (ul u2 — u) gforth-1.0 “umax”

6.5.2 Double precision

For the rules used by the text interpreter for recognising double-precision integers, see
(undefined) [Literals], page (undefined).

A double precision number is represented by a cell pair, with the most significant cell at
the top-of-stack (TOS). It is trivial to convert an unsigned single to a double: simply push
a 0 onto the TOS. Numbers are represented by Gforth using 2’s complement arithmetic,
so converting a signed single to a (signed) double requires sign-extension across the most
significant cell. This can be achieved using s>d. You cannot convert a number from single-
cell to double-cell without knowing whether it represents an unsigned or a signed number.
By contrast, in 2’s complement arithmetic the conversion from double to single just drops
the most significant cell, and d>s just documents the intent.

D+ and d- are defined for signed operands, but also work for unsigned numbers.
s>d (n —d) core “s-to-d”
d>s (d — n) double “d-to-s”
d+ (udl ud2 - ud) double “d-plus”
d- (df d2 - d) double “d-minus”
dnegate (dI — d2) double “d-negate”
dabs (d — ud) double “d-abs”
dmin (dI d2 - d) double “d-min”
dmax (dI d2 - d) double “d-max”

6.5.3 Mixed precision
m+ (dI n — d2) double “m-plus”
m* (nl n2 — d) core “m-star”

um* (ul u2 — ud) core “u-m-star”

Chapter 6: Forth Words 62

6.5.4 Integer division

Below you find a considerable number of words for dealing with divisions. A major difference
between them is in dealing with signed division: Do the words support signed division?
Those with the u prefix do not.

Do signed division words round towards negative infinity (floored division, suffix F), or
towards O (symmetric division, suffix 8). The standard leaves the issue implementation-
defined for most standard words (/ mod /mod */ */mod m*/). Gforth implements these
words as floored (since Gforth 0.7), but there are systems that implement them as sym-
metric. There is only a difference between floored and symmetric division if the dividend
and the divisor have different signs, and the dividend is not a multiple of the divisor. The
following table illustrates the results:

floored symmetric
dividend divisor remainder quotient remainder quotient
10 7 3 1 3 1
-10 7 4 -2 -3 -1
10 =7 -4 -2 3 -1
-10 =7 -3 1 -3 1

The common case where floored vs. symmetric makes a difference is when dividends nl
with varying sign are divided by the same positive divisor n2; in that case you usually want
floored division, because then the remainder is always positive and does not change sign
depending on the dividend; also, with floored division, the quotient always increases by 1
when nl increases by n2, while with symmetric division there is no increase in the quotient
for -n2<n1<n2 (the quotient is 0 in this range).

In any case, if you divide numbers where floored vs. symmetric makes a difference,
you should think about which variant is the right one for you, and then use either the
appropriately suffixed Gforth words, or the standard words fm/mod or sm/rem.

In the following, “remainder” (symmetric) has the same sign as the dividend or is 0,
while “modulus” (floored) has the same sign as the divisor or is 0.

The following words perform single-by-single-cell division:
/ (nln2-n) core “slash”
n=nl/n2
/s (n1 n2 - n) gforth-1.0 “slash-s”
/f (n1n2 - n) gforth-1.0 “slash-f”
u/ (ul u2 - u) gforth-1.0 “u-slash”
mod (nl n2 - n) core
n is the modulus of nl/n2
mods (nI n2 — n) gforth-1.0 “mod-s”
modf (nl n2 — n) gforth-1.0 “modf”
umod (ul u2 — u) gforth-1.0 “umod”
/mod (n1 n2 - n3 n4) core “slash-mod”
nl=n2*n4+n3; n3 is the modulus, n4 the quotient.
/mods (n1 n2 - n3 n4) gforth-1.0 “slash-mod-s”

Chapter 6: Forth Words 63

nl=n2*n4+n3; n3 is the remainder, n4 the quotient
/modf (n1 n2 — n3 n4) gforth-1.0 “slash-mod-f”

nl=n2*n4+n3; n3 is the modulus, n4 the quotient
u/mod (ul u2 — u8 u4) gforth-1.0 “u-slash-mod”

ul=u2*u4+u3; u3 is the modulus, u4 the quotient

The following words perform double-by-single-cell division with single-cell results; these
words are roughly as fast as the words above on some architectures (e.g., AMD64), but
much slower on others (e.g., an order of magnitude on various ARM A64 CPUs).

fm/mod (d1 nl — n2 n3) core “f-m-slash-mod”

Floored division: dI = n3*n1+n2, n1>n2>=0 or 0>=n2>nl.
sm/rem (dI nl - n2 n3) core “s-m-slash-rem”

Symmetric division: dI = n3*ni1+n2, sign(n2)=sign(d1) or 0.
um/mod (ud ul — u2 u3) core “u-m-slash-mod”

ud=u3*ul+u2, 0<=u2<ul
du/mod (d u — n ul) gforth-1.0 “du-slash-mod”

d=n*u+ul, 0<=ul<u; PolyForth style mixed division
*/ ((nl n2n3-n4)core “star-slash”

n4=(n1*n2)/n3, with the intermediate result being double
*/s (nl n2n3 - n4) gforth-1.0 “star-slash-s”

n4=(n1*n2)/n3, with the intermediate result being double
*x/f (nl n2ns - n4) gforth-1.0 “star-slash-f”

n4=(n1*n2)/n3, with the intermediate result being double
ux/ (ul u2 ud — u4) gforth-1.0 “u-star-slash”

ud=(ul*u2)/u3, with the intermediate result being double.
*/mod (n1 n2 n3 —n4 nb) core “star-slash-mod”

nl1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double; n4 is the modulus,
nb the quotient.

*x/mods (nl n2 n3 - n4 nd) gforth-1.0 “star-slash-mod-s”

nl1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double; n4 is the remain-
der, n5 the quotient

*/modf (nl n2 n3 - n4 nd) glorth-1.0 “star-slash-mod-f”

nl1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double; n4 is the modulus,
nb the quotient

ux/mod (ul u2 u3 — uf uy) gforth-1.0 “u-star-slash-mod”
ul*u2=u3*ub+u4, with the intermediate result (ul*u2) being double.

The following words perform division with double-cell results; these words are much
slower than the words above.

ud/mod (ud! u2 — urem udquot) gforth-0.2 “ud-slash-mod”

Chapter 6: Forth Words 64

divide unsigned double udi by u2, resulting in a unsigned double quotient udquot and
a single remainder urem.

m*/ (dI n2 u3 - dquot) double “m-star-slash”

dquot=(d1*n2)/u3, with the intermediate result being triple-precision. In Forth-2012
ud is only allowed to be a positive signed number.

You can use the environmental query floored (see (undefined) [Environmental Queries],
page (undefined)) to learn whether / mod /mod */ */mod m*/ use floored or symmetric di-
vision on the system your program is being loaded on; alternatively, -1 3 / also produces
-1 on floored and 0 on symmetric systems.

One other aspect of the integer division words is that most of them can overflow, and
division by zero is mathematically undefined. What happens if you hit one of these condi-
tions depends on the engine, the hardware, and the operating system: The engine gforth
tries hard to throw the appropriate error -10 (Division by zero) or -11 (Result out of range),
but on some platforms throws -55 (Floating-point unidentified fault). The engine gforth-
fast may produce an inappropriate throw code (and error message), or may produce no
error, just produce a bogus value. I.e., you should not bet on such conditions being thrown,
but for quicker debugging gforth catches more and produces more accurate errors than
gforth-fast.

6.5.5 Two-stage integer division

On most hardware, multiplication is significantly faster than division. So if you have to
divide many numbers by the same divisor, it is usually faster to determine the reciprocal of
the divisor once and multiply the numbers with the reciprocal. If you divide by a constant,
Gforth performs this optimization automatically.

However, for cases where the divisor is not known during compilation, Gforth provides
words that allow you to implement this optimization without to much fuss.

Let’s start with an example: You want to divide all elements of an array of cells by the
same number n. A straightforward way to implement this is:

: array/ (addr u n —-)
-rot cells bounds u+do
i @ over / i !
1 cells +loop
drop ;
A possibly more efficient version looks like this:

: array/ (addr u n --)

{: | recil staged/-size] :}

reci[/f-stagelm

cells bounds u+do

i @ reci[/f-stageZm i !
1 cells +loop ;
This example first creates a local buffer reci[with size staged/-size for storing the

reciprocal data. Then /f-stagelm computes the reciprocal of n and stores it in recil
Finally, inside the loop /f-stage2m uses the data in reci[to compute the quotient.

There are some limitations: Only positive divisors are supported for /f-stagelm; for
u/-stagelm you can use a divisor of 2 or higher. You get an error if you try to use an

Chapter 6: Forth Words 65

unsupported divisor. You must initalize the reciprocal buffer for the floored second-stage
words with /f-stagelm and for the unsigned second-stage words with u/-stageim. You
must not modify the reciprocal buffer between the first stage and the second stage; basically,
don’t treat it as a memory buffer, but as something that is only mutable by the first stage;
the point of this rule is that future versions of Gforth will not consider aliasing of this buffer.

Measurements show that staged division is not always beneficial:

break 100 elem
even speedup core
7 2.09 Skylake (Core i5-6600K)

- 0.94 Rocket Lake (Xeon E-2388G)
40 1.09 Golden Cove (Core i3-1315U P-core)
- 0.85 Gracemont (Core i3-1315U E-core)
6 1.68 Zen2 (Ryzen 9 3900X)
0

.56 Zen3 (Ryzen 7 5800X)
The words are:
staged/-size (— u) gforth-1.0 “staged-slash-size”
Size of buffer for u/-stageim or /f-stagelm.
/f-stagelm (n a-reci —) gforth-1.0 “slash-f-stagelm”

Compute the reciprocal of n and store it in the buffer a-reci of size staged/-size.
Throws an error if n<1.

/f-stage2m (nl a-reci — nquotient) gforth-1.0 “slash-f-stage2m”

Nquotient is the result of dividing n1 by the divisor represented by a-reci, which was
computed by /f-stagelm.

modf-stage2m (nl a-reci — umodulus) gforth-1.0 “mod-f-stage2m”

Umodulus is the remainder of dividing n! by the divisor represented by a-reci, which
was computed by /f-stagelm.

/modf-stage2m (nl a-reci — umodulus nquotient) gforth-1.0 “slash-mod-f-stage2m”

Nquotient is the quotient and umodulus is the remainder of dividing n1 by the divisor
represented by a-reci, which was computed by /f-stagelm.

u/-stagelm (u a-reci —) gforth-1.0 “u-slash-stagelm”

Compute the reciprocal of u and store it in the buffer a-reci of size staged/-size.
Throws an error if u<2.

u/-stage2m (ul a-reci — uquotient) gforth-1.0 “u-slash-stage2m”

Uquotient is the result of dividing u! by the divisor represented by a-reci, which was
computed by u/-stagelim.

umod-stage2m (ul a-reci — umodulus) gforth-1.0 “u-mod-stage2m”

Umodulus is the remainder of dividing u! by the divisor represented by a-reci, which
was computed by u/-stagelm.

u/mod-stage2m (ul a-reci — umodulus uquotient) gforth-1.0 “u-slash-mod-stage2m”

Uquotient is the quotient and umodulus is the remainder of dividing ul by the divisor
represented by a-reci, which was computed by u/-stagelim.

Gforth currently does not support staged symmetrical division.

Chapter 6: Forth Words 66

You can recover the divisor from (the address of) a reciprocal with staged/-divisor @:
staged/-divisor (addrl — addr2) gforth-1.0 “staged-slash-divisor”

Addrl is the address of a reciprocal, addr? is the address containing the divisor from
which the reciprocal was computed.

This can be useful when looking at the decompiler output of Gforth: a division by a
constant is often compiled to a literal containing the address of a reciprocal followed by a
second-stage word.

The performance impact of using these words strongly depends on the architecture (does
it have hardware division?) and the specific implementation (how fast is hardware divi-
sion?), but just to give you an idea about the relative performance of these words, here
are the cycles per iteration of a microbenchmark (which performs the mentioned word once
per iteration) on two AMDG64 implementations; the norm column shows the normal di-
vision word (e.g., u/), while the stg2 column shows the corresponding stage2 word (e.g.,
u/-stage2m):

Skylake Zen2

norm stg2 norm stg2

41.3 15.8 u/ 35.2 21.4 u/

39.8 19.7 umod 36.9 25.8 umod

44.0 25.3 u/mod 43.0 33.9 u/mod

48.7 16.9 /f 36.2 22.5 /f

47.9 20.5 modf 37.9 27.1 modf

53.0 24.6 /modf 45.8 35.4 /modf
227.2 u/stagel 101.9 u/stagel
159.8 /fstagel 97.7 /fstagel

6.5.6 Bitwise operations

and (wl w2 — w) core “and”
or (w!l w2 — w) core “or”

“X—OI‘”

xor (wl w2 - w) core
invert (wl — w2) core “invert”
mux (wl u2 u3 — u) gforth-1.0 “mux”

Multiplex: For every bit in u3: for a 1 bit, select the corresponding bit from u1, otherwise
the corresponding bit from u2. E.g., %0011 %1100 %1010 mux gives %0110

1shift ((ul u — u2) core “l-shift”

Shift w1 left by u bits.
rshift (ul u — u2) core “r-shift”

Shift ul (cell) right by u bits, filling the shifted-in bits with zero (logical /unsigned shift).
arshift (nl u — n2) gforth-1.0 “ar-shift”

Shift n1 (cell) right by w bits, filling the shifted-in bits from the sign bit of n1 (arithmetic
shift).
dlshift (ud! u — ud2) gforth-1.0 “dlshift”

Shift ud1 (double-cell) left by u bits.
drshift (ud! u — ud2) gforth-1.0 “drshift”

Chapter 6: Forth Words 67

Shift wdl (double-cell) right by w bits, filling the shifted-in bits with zero
(logical /unsigned shift).
darshift (dI u — d2) gforth-1.0 “darshift”

Shift d1 (double-cell) right by u bits, filling the shifted-in bits from the sign bit of d1
(arithmetic shift).

2% (nl —n2) core “two-star”
Shift left by 1; also works on unsigned numbers
2/ (nl1 - n2) core “two-slash”

Arithmetic shift right by 1. For signed numbers this is a floored division by 2 (note that
/ is symmetric on some systems, but 2/ always floors).

d2* (d1 — d2) double “d-two-star”

Shift double-cell left by 1; also works on unsigned numbers
d2/ (d1 - d2) double “d-two-slash”

Arithmetic shift right by 1. For signed numbers this is a floored division by 2.
>pow2 ((ul — u2) gforth-1.0 “to-pow2”

u2 is the lowest power-of-2 number with u2>=ul.
log2 (u — n) gforth-1.0 “log2”

N is the rounded-down binary logarithm of wu, i.e., the index of the first set bit; if =0,
n=-1.
pow2? (u — f) gforth-1.0 “pow-two-query”

f is true if and only if u is a power of two, i.e., there is exactly one bit set in w.
ctz (z - u) gforth-1.0 “c-t-z”

count trailing zeros in binary representation of x

Unlike most other operations, rotation of narrower units cannot easily be synthesized
from rotation of wider units, so using cell-wide and double-wide rotation operations
means that the results depend on the cell width. For published algorithms or
cell-width-independent results, you usually need to use a fixed-width rotation operation.

wrol ((ul u — u2) gforth-1.0 “wrol”

Rotate the least significant 16 bits of u1 left by u bits, set the other bits to 0.
wror ((ul u — u2) gforth-1.0 “wror”

Rotate the least significant 16 bits of w1 right by wu bits, set the other bits to 0.
1rol (ul u — u2) gforth-1.0 “Irol”

Rotate the least significant 32 bits of ul left by u bits, set the other bits to 0.
lror ((ul u — u2) gforth-1.0 “lror”

Rotate the least significant 32 bits of w1 right by u bits, set the other bits to 0.
rol (ul u — u2) gforth-1.0 “rol”

Rotate all bits of ul left by u bits.
ror ((ul u — u2) gforth-1.0 “ror”

Rotate all bits of ul right by u bits.
drol (ud! u — ud2) gforth-1.0 “drol”

Chapter 6: Forth Words 68

Rotate all bits of ud! (double-cell) left by u bits.
dror (ud! u — ud2) gforth-1.0 “dror”
Rotate all bits of ud! (double-cell) right by w bits.

6.5.7 Numeric comparison

All these comparison words produce -1 (all bits set) if the condition is true, otherwise 0.
Note that the words that compare for equality (= <> 0= 0<> d= d<> d0= d0<>) work for for
both signed and unsigned numbers.

< (nln2-f)core “less-than”
<= (n1 n2 - f) glorth-0.2 “less-or-equal”
<> (nl n2 - f) core-ext “not-equals”
= (nln2 - f) core “equals”
> (nl n2-f) core “greater-than”
>=(nl n2 - f) gforth-0.2 “greater-or-equal”
0< (m — f) core “zero-less-than”
0<= (n - f) gforth-0.2 “zero-less-or-equal”
0<> (n — f) core-ext “zero-not-equals”
0= (n — f) core “zero-equals”
0> (n — f) core-ext “zero-greater-than”
0>= (n — f) gforth-0.2 “zero-greater-or-equal”
u< (ul u2 - f) core “u-less-than”
u<= ((ul u2 - f) gforth-0.2 “u-less-or-equal”
u> ((ul u2 - f) core-ext “u-greater-than”
w= ((ul u2 - f) glorth-0.2 “u-greater-or-equal”
within (ul u2 u3 - f) core-ext “within”
u2<u3 and ul in [u2,u3) or: u2>=u3 and ul not in [u3,u2). This works for unsigned and
signed numbers (but not a mixture). Another way to think about this word is to consider
the numbers as a circle (wrapping around from max-u to 0 for unsigned, and from max-n
to min-n for signed numbers); now consider the range from u2 towards increasing numbers
up to and excluding u3 (giving an empty range if u2=u3); if ul is in this range, within
returns true.
d< (df d2 - f) double “d-less-than”
d<= (dI d2 -) gforth-0.2 “d-less-or-equal”
d<> (dI d2 - f) gforth-0.2 “d-not-equals”
d= (dI d2 - f) double “d-equals”
d> (dI d2 - f) gforth-0.2 “d-greater-than”
d>= (dI d2 -) gforth-0.2 “d-greater-or-equal”
do< (d — f) double “d-zero-less-than”
do<= (d - f) gforth-0.2 “d-zero-less-or-equal”
do<> (d - f) gforth-0.2 “d-zero-not-equals”

Chapter 6: Forth Words 69

do= (d — f) double “d-zero-equals”

do> (d - f) gforth-0.2 “d-zero-greater-than”

do>= (d - f) gforth-0.2 “d-zero-greater-or-equal”
du< (udl ud2 - f) double-ext “d-u-less-than”

du<= (ud! ud2 - f) gforth-0.2 “d-u-less-or-equal”
du> ((ud! ud2 -) gforth-0.2 “d-u-greater-than”
du>= (ud! ud2 - f) gforth-0.2 “d-u-greater-or-equal”

6.5.8 Floating Point

For the rules used by the text interpreter for recognising floating-point numbers see (unde-
fined) [Number Conversion|, page (undefined).

Gforth has a separate floating point stack, but the documentation uses the unified no-
tation.?

Floating point numbers have a number of unpleasant surprises for the unwary
(e.g., floating point addition is not associative) and even a few for the wary. You
should not use them unless you know what you are doing or you don’t care that the
results you get may be totally bogus. If you want to learn about the problems of
floating point numbers (and how to avoid them), you might start with David Goldberg,
What Every Computer Scientist Should Know About Floating-Point Arithmetic
(https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html), ACM
Computing Surveys 23(1):5—48, March 1991.

Conversion between integers and floating-point:
s>f (n —r) floating-ext “s-to-f”
d>f (d - r) floating “d-to-f”
f>s (r — n) floating-ext “f-to-s”
f>d (r — d) floating “f-to-d”

Arithmetics:
t+ (r1 r2 - r3) floating “f-plus”
f- (r1 r2 - r3) floating “f-minus”
f*x (71 r2 - r3) floating “f-star”

£/ (r1 r2 - r3) floating “f-slash”
fnegate (r1 — r2) floating “f-negate”
fabs (r1 - r2) floating-ext “f-abs”
fcopysign (71 72 — r3) gforth-1.0
r3 takes its absolute value from rl and its sign from r2
fmax (r1 r2 - r3) floating “f-max”
fmin (r1 r2 - r3) floating “f-min”

floor (r1 — r2) floating “floor”

2 It’s easy to generate the separate notation from that by just separating the floating-point numbers out:
eg. (nrlur2--1r3) becomes (nu--) (F: r1r2--r3).

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Chapter 6: Forth Words 70

Round towards the next smaller integral value, i.e., round toward negative infinity.
fround (r1 - r2) floating “f-round”
Round to the nearest integral value.
ftrunc (71 — 2) floating-ext “f~trunc”
round towards 0
fxx (71 72 - r3) floating-ext “f-star-star”
r8 = ri"
fsqrt (r1 - r2) floating-ext “f-square-root”
fexp (r1 - r2) floating-ext “f-e-x-p”

r2 = el

fexpmi (71 - r2) floating-ext “f-e-x-p-m-one”
r2=e™ —1

fln (71 — r2) floating-ext “f-l-n”

Natural logarithm: r1 = e

flnpl (r1 - r2) floating-ext “f-l-n-p-one”
Inverse of fexpmi: ri+l = e'?
flog (r1 — r2) floating-ext “f-log”
The decimal logarithm: r1 = 10"
falog (71 — r2) floating-ext “f-a-log”
r2=10"
2% (r1 - r2) gforth-0.2 “f-two-star”
Multiply r1 by 2.0e0
£2/ (r1 —r2) gforth-0.2 “f~two-slash”
Multiply r1 by 0.5e0
1/f (r1 —r2) gforth-0.2 “one-slash-f”
Divide 1.0e0 by r1.
Vector arithmetics:
vk (f-addrl nstridel f-addr2 nstride2 ucount — r) gforth-0.5 “v-star”

dot-product: r=v1*v2. The first element of v1 is at f_addrl, the next at f_addrl+nstridel
and so on (similar for v2). Both vectors have ucount elements.

faxpy (ra f-z nstridex f-y nstridey ucount —) gforth-0.5 “faxpy”

vy=ra*vx+vy, where vy is the vector starting at f_y with stride nstridey bytes, and vz
is the vector starting at f_z with stride nstridez, and both vectors contain ucount elements.

Angles in floating point operations are given in radians (a full circle has 2 pi radians).
fsin (r1 - r2) floating-ext “f-sine”
fcos (r1 — r2) floating-ext “f-cos”

fsincos (71 — r2 r3) floating-ext “f-sine-cos”

Chapter 6: Forth Words 71

r2=sin(rl1), r8=cos(r1)
ftan (r1 - r2) floating-ext “f-tan”
fasin (1 - r2) floating-ext “f-a-sine”
facos (r1 - r2) floating-ext “f-a-cos”
fatan (1 - r2) floating-ext “f-a-tan”
fatan2 (71 72 - r3) floating-ext “f-a-tan-two”

r1/r2=tan(r3). Forth-2012 does not require, but probably intends this to be the inverse
of fsincos. In Gforth it is.

fsinh (71 - r2) floating-ext “f-cinch”

fcosh (r1 - r2) floating-ext “f-cosh”

ftanh (71 - r2) floating-ext “f~tan-h”

fasinh (71 - r2) floating-ext “f-a-cinch”
facosh (71 - r2) floating-ext “f-a-cosh”
fatanh (71 — r2) floating-ext “f-a-tan-h”
pi (—r) gforth-0.2

Fconstant — r is the value pi; the ratio of a circle’s area to its diameter.

Special values in IEEE754 can be derived by for example dividing by zero. The most
common ones are defined as floating point constants for easy usage.

infinity (- r) gforth-1.0
floating point infinity
inf (- r) gforth-1.0

Synonym of infinity to allow copying and pasting from the output of ..., See (unde-
fined) [Examining data], page (undefined).

-infinity (- r) gforth-1.0
floating point -infinity
-inf (- r) gforth-1.0

Synonym of -infinity to allow copying and pasting from the output of ..., See (un-
defined) [Examining data], page (undefined).

NaN (— r) gforth-1.0
floating point Not a Number

6.6 Floating-point comparisons

One particular problem with floating-point arithmetic is that comparison for equality often
fails when you would expect it to succeed. For this reason approximate equality is often
preferred (but you still have to know what you are doing). Also note that IEEE NaNs may
compare differently from what you might expect. The comparison words are:

f rel (r1 r2 18 — flag) gforth-0.5 “f-tilde-rel”
Approximate equality with relative error: |rl-r2|<r3*|rl+r2].
f~abs (71 72 r3 - flag) gforth-0.5 “f-tilde-abs”

Chapter 6: Forth Words

Approximate equality with absolute error: |rl-r2|<r3.

7 (71 r2 r3 - flag) floating-ext “f-proximate”

Forth-2012 medley for comparing rl and r2 for equality: r3>0: f~abs; r3=0:

comparison; r3<0: fnegate f rel.

f=(r1 r2 - f) gforth-0.2 “f-equals”

£<> (r1 r2 - f) gforth-0.2 “f-not-equals”
f< (71 r2 - f) floating “f-less-than”

f<= (11 r2 - f) gforth-0.2 “f-less-or-equal”
> (r1 r2 - f) gforth-0.2 “f-greater-than”

>=

(
<(

rl r2 — f) gforth-0.2 “f-greater-or-equal”
r — f) floating “f-zero-less-than”

r — f) gforth-0.2 “f-zero-less-or-equal”
r — f) gforth-0.2 “f-zero-not-equals”
£0= (f) floating “f-zero-equals”
£0> (- f)

f0>= (r — f) gforth-0.2 “f-zero-greater-or-equal”

r—
r — f) gforth-0.2 “f-zero-greater-than”

6.7 Stack Manipulation

Gforth maintains a number of separate stacks:

72

bitwise

e A data stack (also known as the parameter stack) — for characters, cells, addresses, and

double cells.
e A floating point stack — for holding floating point (FP) numbers.

e A return stack — for holding the return addresses of colon definitions and other (non-FP)

data.

e A locals stack — for holding local variables.

6.7.1 Data stack

drop (w —) core “drop”

nip (wl w2 - w2) core-ext “nip”

dup (w — w w) core “dupe”

over (wl w2 — wl w2 wl) core “over”

third (w! w2 w8 - wl w2 w3 wil) gforth-1.0 “third”
fourth (w! w2 w3 wj — wl w2 w3 wj wl) gforth-1.0 “fourth”
swap ((wl w2 — w2 wl) core “swap”

rot (wl w2 w3 — w2 w3 wl) core “rote”

-rot (wl w2 w3 — w3 wl w?2) gforth-0.2 “not-rote”
tuck ((w! w2 — w2 wl w2) core-ext “tuck”

pick (S-... w — S:... w) core-ext “pick”

Chapter 6: Forth Words 73

Actually the stack effect is x0 ... xuu --x0 ... xu x0 .
roll (z0 zl .. 2nn —x1 .. an x0) core-ext
?dup (w — S:... w) core “question-dupe”
Actually the stack effect is: (0 == 0 | x\0 -- x x). It performs a dup if x is nonzero.
2drop (wl w2 -) core “two-drop”
2nip ((wl w2 ws wj — w3 w4) gforth-0.2 “two-nip”
2dup (wl w2 — wl w2 wl w2) core “two-dupe”
2over (wl w2 w3 wj — wl w2 w3 wj wl w2) core “two-over”
2swap (wl w2 w3 wj — w3 wj wl w2) core “two-swap”
2rot ((wl w2 w3 w4 w5 w6 — w3 wj w5 w6 wl w2) double-ext “two-rote”
2tuck ((wl w2 w3 wj — w3 wj wl w2 ws wy) gforth-0.2 “two-tuck”

6.7.2 Floating point stack

fdrop (r —) floating “f-drop”

fnip (r1 r2 — r2) gforth-0.2 “f-nip”

fdup (r — r r) floating “f-dupe”

fover (r1 r2 — r1 r2 r1) floating “f-over”

fthird (71 7213 — r1 r2 r3 r1) gforth-1.0 “fthird”
ffourth (71 r2 r8 r4 —r1 r2 r8 r4 rl1) gforth-1.0 “ffourth”
fswap (r1 r2 — r2 r1) floating “f~swap”

frot (r1 r2 r3 — r2 r3 r1) floating “f-rote”

f-rot (71 r2r3 — r3 rl r2) gforth-1.0 “f-not-rote”
ftuck (71 72 — r2 r1 r2) gforth-0.2 “f-tuck”
fpick (fr... u — fr... r) gforth-0.4 “fpick”

Actually the stack effect is r0 ... ruu--r0 ... rur0.

6.7.3 Return stack

The return stack primarily exists for storing system data, such as return addresses and
loop control parameters, but Forth also allows programmers to make use of it, albeit with
restrictions stemming from the other uses. The primary use is for temporary storage of
data; locals also provide this capability, and usually in a more convenient way; some purists
(or puritans) prefer to avoid locals, though.

In Gforth 1.0 you can use the return stack during text interpretation (and you cannot
use locals for that). The only limitation here is that you cannot pass data on the return
stack into or out of an included file, block, or evaluated string. Example:

1 >r
: foo [r>] literal ;
foo . \ prints 1

This interpretive usage of return-stack words is non-standard, and many other Forth
systems do not have support this usage, or limit it to within one line.

Chapter 6: Forth Words 74

In Gforth you can use the return stack for storing data while you also keep and access
data in locals. However, the standard puts restrictions on mixing return stack and locals
usage, for easy locals implementations, and there are systems that actually rely on these
restrictions. So, if you want to produce a standard compliant program and you are using
local variables in a definition, forget about return stack manipulations in that word (refer
to the standard document for the exact rules).

>r (w - R:w) core “to-r”
r> (R:w — w) core “r-from”
r@ (R:w — R:w w) core “r-fetch”
r'e (row rw?2 - row r:w2 w) gforth-1.0 “r-tick-fetch”
The second item on the return stack
rpick (R:wu ... R:w0 u — R:wu ... R:w0 wu) gforth-1.0
wu is the uth element on the return stack; 0 rpick is equivalent to r@.
rdrop (R:w —) gforth-0.2 “rdrop”
2>r (w!l w2 - R:wl R:w2) core-ext “two-to-r”
2r> (R:wl R:w2 — w1l w2) core-ext “two-r-from”
2r@ (R:wl R:w2 — R:wl R:w2 wl w2) core-ext “two-r-fetch”
2rdrop (R:wl R:w2 -) gforth-0.2 “two-r-drop”
n>r (zl .. zn n — R:an..R:xl R:n) tools-ext “n-to-r”

In Standard Forth, the order of items on the return stack is not specified, and the only
thing you can do with the items on the return stack is to use nr>

nr> (R:an..R:xl R:n — x1 .. zn n) tools-ext “n-r-from”

In Standard Forth, the order of items on the return stack is not specified, and the only
thing you can do with the items on the return stack is to use nr>

On some platforms (particularly, 32-bit platforms) floating-point numbers are not nat-
urally aligned on the return stack and this can lead to (usually, but not always) small
performance disadvantages.

f>r (r —) gforth-experimental “f-to-r”
Actual stack effect: (r -— R:r)

fr> (- r) gforth-experimental “f-r-from”
Actual stack effect: (R:r --r)

fre (— r) gforth-experimental “f-r-fetch”
Actual stack effect: (R:r -—-R:rr)

6.7.4 Locals stack

Gforth uses a separate locals stack. It is described, along with the reasons for its existence,
in (undefined) [Locals implementation], page (undefined).

Chapter 6: Forth Words 75

6.7.5 Stack pointer manipulation

9

In the stack effects of the following words, ignore the occurences of “...” in the stack-pointer

fetching words.
spO (— a-addr) gforth-0.4 “sp-zero”

User variable — initial value of the data stack pointer.
sp@ (S:... — a-addr) gforth-0.2 “sp-fetch”
sp! (a-addr — S:...) gforth-0.2 “sp-store”
fpO (- a-addr) gforth-0.4 “fp-zero”

User variable — initial value of the floating-point stack pointer.
fp@ (fr... — f-addr) gforth-0.2 “fp-fetch”
fp! (fraddr — f:...) gforth-0.2 “fp-store”
rp0 (— a-addr) gforth-0.4 “rp-zero”

User variable — initial value of the return stack pointer.
rp@ (— a-addr) gforth-0.2 “rp-fetch”
rp! (a-addr -) gforth-0.2 “rp-store”
1p0 (- a-addr) gforth-0.4 “lp-zero”

User variable — initial value of the locals stack pointer.
1p@ (— c-addr) gforth-0.2 “lp-fetch”

C_addr is the current value of the locals stack pointer.

1p! (c-addr —) gforth-internal “lp-store”

6.8 Memory

In addition to the Standard Forth memory allocation words, there is also a garbage collector
(https://www.complang.tuwien.ac.at/forth/garbage-collection.zip).

6.8.1 Memory model

Standard Forth considers a Forth system as consisting of several address spaces, of which
only data space is managed and accessible with the memory words in standard programs.
Memory not necessarily in data space includes the stacks, the code (called code space) and
the headers (called name space). Gforth allows at least read access to all these logical
spaces, but does not guarantee that code accessing the stacks, the threaded or native code,
or the headers is portable or will work in the next Gforth version; Gforth provides some
accessor words for these purposes, however.

Another division of memory is between dictionary and heap memory.> In heap mem-
ory you can free allocations in arbitrary order, but you cannot grow allocations in-place
(see (undefined) [Heap Allocation], page (undefined)). In dictionary memory deallocation
is impractical for the most part, but you can grow allocations in place (see (undefined)
[Dictionary allocation], page (undefined)). Gforth (since 1.0) allows having several sections

3 The term dictionary is also used to refer to the search data structure embodied in word lists and headers.
The search data (word headers) reside in dictionary memory.

https://www.complang.tuwien.ac.at/forth/garbage-collection.zip
https://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 6: Forth Words 76

of dictionary memory in order to allow more flexibility in this growing (see (undefined)
[Sections], page (undefined)).

One relevant concept in this context is the contiguous region: It means a piece of memory
that is contiguous, without any system data interleaved with it. In heap memory each
allocation forms one contiguous region, and separate allocations are not contiguous with
any other allocations. In dictionary memory all allocations in a section are contiguous,
unless something happens that ends the contiguous region; a typical reason for ending a
contiguous region is defining a word in that section.

Gforth provides one big address space, and address arithmetic can be performed between
any addresses. However, in the dictionary headers or code are interleaved with data, so
almost the only contiguous regions are those described by Standard Forth as contiguous;
but you can be sure that, within a section the dictionary is allocated towards increasing
addresses even between contiguous regions. The memory order of allocations in the heap is
platform-dependent (and possibly different from one run to the next).

6.8.2 Dictionary allocation

Dictionary allocation is a stack-oriented allocation scheme, i.e., if you want to deallocate
X, you also deallocate everything allocated after X.

The allocations using the words below are contiguous and grow the region towards in-
creasing addresses. Other words that allocate dictionary memory of any kind (i.e., defining
words including :noname) in the same section end the contiguous region and start a new
one, but allocating memory in a different section does not end a contiguous region.

In Standard Forth only created words are guaranteed to produce an address that is the
start of the following contiguous region. In particular, the cell allocated by variable is not
guaranteed to be contiguous with following alloted memory.

You can deallocate memory by using allot with a negative argument (with some re-
strictions, see allot). For larger deallocations use marker.

here (— addr) core
Return the address of the next free location in data space.
unused (— u) core-ext

Return the amount of free space remaining (in address units) in the region addressed by
here.

allot (n —) core

Reserve n address units of data space without initialization. n is a signed number,
passing a negative n releases memory. In Forth-2012 you can only deallocate memory from
the current contiguous region in this way. In Gforth you can deallocate anything in this
way but named words. The system does not check this restriction.

->here (addr —) gforth-1.0 “to-here”

Change the value of here to addr.
c, (¢—) core “c-comma”

Reserve data space for one char and store ¢ in the space.
f, (f-) gforth-0.2 “f~comma”

Chapter 6: Forth Words 77

Reserve data space for one floating-point number and store f in the space.
, (w—) core “comma”

Reserve data space for one cell and store w in the space.
2, (w1l w2 -) gforth-0.2 “two-comma”

Reserve data space for two cells and store the double w! w2 there, w2 first (lower
address).

w, (z -) gforth-1.0 “w-comma”

Reserve 2 bytes of data space and store the least significant 16 bits of x there.
1, (-) gforth-1.0 “l-comma”

Reserve 4 bytes of data space and store the least significant 32 bits of x there.
x, (z -) gforth-1.0 “x-comma”

Reserve 8 bytes of data space and store (the least significant 64 bits) of x there. Reserve
8 bytes of data space and store w there.

xd, (zd -) gforth-1.0 “x-d-comma”

Reserve 8 bytes of data space and store the least significant 64 bits of x there.
A, (addr —) gforth-0.2 “a-comma”

Reserve data space for one cell, and store addr there. For our cross-compiler this provides
the type information necessary for a relocatable image; normally, though, this is equivalent
to ,.
mem, (addr v —) gforth-0.6 “mem-comma”

Reserve u bytes of dictionary space and copy u bytes starting at addr there. If you want
the memory to be aligned, precede mem, with an alignment word.

save-mem-dict (addr! u — addr2 u) gforth-0.7

Copy the memory block addri u to a newly alloted memory block of size u; the target
memory block starts at addr2.

Memory accesses have to be aligned (see (undefined) [Address arithmetic|, page (un-
defined)). So of course you should allocate memory in an aligned way, too. I.e., before
allocating a cell, here must be cell-aligned, etc. The words below align here if it is not
already. Basically it is only already aligned for a type, if the last allocation was a multiple
of the size of this type and if here was aligned for this type before.

After freshly createing a word, here is aligned in Standard Forth (maxaligned in

Gforth).
align (—) core

If the data-space pointer is not aligned, reserve enough space to align it.
falign (—) floating “f-align”

If the data-space pointer is not float-aligned, reserve enough space to align it.
sfalign (—) floating-ext “s-f-align”

If the data-space pointer is not single-float-aligned, reserve enough space to align it.
dfalign (—) floating-ext “d-f-align”

If the data-space pointer is not double-float-aligned, reserve enough space to align it.
maxalign (—) gforth-0.2

Align data-space pointer for all Forth alignment requirements.

Chapter 6: Forth Words 78

6.8.3 Sections

If you want to do something that allocates memory from the dictionary or compiles code
in the middle of a contiguous region of another dictionary allocation, or in the middle of a
colon definition, that’s not possible with a single dictionary pointer, leading to complicated
workarounds.

Gforth provides dictionary sections to address this problem. Each section has its own
dictionary pointer, and allocating or compiling something in one section does not interrupt
the contiguity of allocations in other sections. In this respect Gforth’s sections are similar
to sections and segments in assembly languages.

One difference is that the most common usage of sections is as a stack of sections, which
is useful for building nested definitions or dictionary-allocated data structures: Use next-
section for the inner definition or data structure, switch back with previous-section.

Words like latest (see (undefined) [Name token], page (undefined)) and latestxt (see
(undefined) [Anonymous Definitions], page (undefined)) refer to the most recent definition
in the current section. Quotations (see (undefined) [Quotations], page (undefined)) and the
implicit quotation of does> (see (undefined) [User-defined defining words using CREATE],
page (undefined)) are in a different section than the containing definition, so after the
quotation ends (and the section is switched back), words like latest report the outer
definition rather than the quotation.

An example of such a usage of the section stack is:

create my2x2matrix
next-section here 1 , 2 , previous-section ,
next-section here 3 , 4 , previous-section ,

\ now print my2x2matrix[0,1], i.e., "2":
my2x2matrix O cells + @ 1 cells + Q@ .

This works also for allocating section memory while compiling a definition, or defining
a definition during a contiguous region, e.g.:

create mydispatchtable
next-section :noname ." foo" ; previous-section ,
next-section :noname ." bar" ; previous-section ,

\ now dispatch mydispatchtablel[1]
mydispatchtable 1 cells + @ execute

Note that the interpretation semantics of [: (see (undefined) [Quotations], page (unde-
fined)) switches to the next section internally, so you can write mydispatchtable also as
follows:

create mydispatchtable
[: ." foo" ;] ,
[: ." bar" ;] ,

The interpretation semantics of does> uses a separate section, so the does> does not end
the contiguous region, and you can define a word mydispatch that includes the dispatch
code, as follows:

create mydispatch

Chapter 6: Forth Words 79

does> (u --)
(u addr) swap cells + @ execute ;
[: ." foo" ;] ,
[: ." bar" ;] ,

1 mydispatch \ prints "bar"
next-section (—) gforth-1.0

Switch to the next section in the section stack. If there is no such section yet, create it
(with the size being a quarter of the size of the current section).

previous-section (—) gforth-1.0

Switch to the previous section in the section stack; the now-next section continues to
exist with everything that was put there. Throw an exception if there is no previous section.

The bottom section in the section stack has the size given with the --dictionary-size
command-line parameter (see (undefined) [Invoking Gforth], page (undefined)).

In addition to the stack of anonymous sections you can also have named sections that
you define with:

extra-section (usize "name" —) gforth-1.0

Define a new word name and create a section s with at least usize unused bytes.
Name execution (... xt == ...): When calling name, the current section is ¢. Switch
the current section to be s, execute xt, then switch the current section back to c.

As an example, here’s a variant of the my2x2matrix definition:

4 cells extra-section myvec

create my2x2matrix
' here myvec 1 ' , myvec 2 ' , myvec ,
' here myvec 3 ' , myvec 4 ' , myvec ,

Currently a named section does not start a dictionary stack, and using next-section
inside a named section throws an error.

You can show the existing sections with:
.sections (-) gforth-1.0 “dot-sections”
Show all the sections and their status.

At the time of this writing this outputs:

start size used name
$7F9A5A516000 32768 96 noname
$7F9A5A1A1000 131072 208 noname
$7F9A5A1C2000 524288 2128 noname
$7F9A4BDFDO00O 2097152 32680 noname
> $7F9A4BFFE040 8388608 659272 Forth
$7F9A5A51F000 20480 1448 locals-headers

The lines describe the different sections: First the section stack, with sections called
noname and (the bottom) Forth, then the extra-sections. The columns are the start address
of the section, the gross size (including section management overhead), how much of the
section is already used, and the name. The size and used columns are in decimal base.

Chapter 6: Forth Words 80

In the section Forth, not all of the remaining size can be used for allotting memory,
because room must be left for pad (see (undefined) [Memory Blocks], page (undefined)).
The current section is marked with >. Also, if you use word (see (undefined) [The Input
Stream], page (undefined)), you must leave room in the current section for the parsed string
and its length byte.

6.8.4 Heap allocation

Heap allocation supports deallocation of allocated memory in any order. It does not affect

dictionary allocation (i.e., heap allocation does not end a contiguous region). In Gforth,

these words are implemented using the standard C library calls malloc(), free() and realloc().
The memory region produced by one invocation of allocate or resize is internally

contiguous. There is no contiguity between such a region and any other region (including

others allocated from the heap).

allocate (u — a_addr wior) memory

Allocate u address units of contiguous data space. This data space is not initialized. If
the allocation is successful, a-addr is the start address of the allocated region and wior is
0. If the allocation fails, a-addr is arbitrary and wior is a non-zero I/O result code.
free (a-addr — wior) memory

Return the region of data space starting at a-addr to the system. The region must
originally have been obtained using allocate or resize, otherwise the result of free is
unpredictable. If the operation is successful, wior is 0. If the operation fails, wior is a
non-zero I/0 result code.
resize (a-addrl u — a_addr2 wior) memory

Change the size of the allocated area at a-addr! to u address units, possibly moving the
contents to a different area. a-addr2 is the address of the resulting area. If the operation
is successful, wior is 0. If the operation fails, wior is a non-zero 1/0 result code. If a-addr1
is 0, Gforth’s (but not the Standard) resize allocates u address units.

6.8.4.1 Memory blocks and heap allocation

Additional words for dealing with memory blocks are described in (undefined) [Memory
Blocks|, page (undefined). An alternative to the following words are among the $tring
words (see (undefined) [$tring words], page (undefined)).

save-menm (addrl u — addr2 v) gforth-0.2

Copy the memory block addr u to addr2, which is the start of a newly heap allocated
u-byte region.
extend-mem (addrl ul u — addr addr2 u2) gforth-experimental

Addr1 ul is a memory block in heap memory. Increase the size of this memory block
by u aus, possibly reallocating it. C-addr2 u2 is the resulting memory block (u2=ul+u),
addr is the start of the u additional aus (addr=addr2+ul).

free-mem-var (addr —) gforth-experimental

Addr is the address of a 2variable containing a memory block descriptor c-addr v in
heap memory; free-mem-var frees the memory block and stores 0 0 in the 2variable.

Usage example:
2variable myblock

Chapter 6: Forth Words 81

"foo" save-mem myblock 2!

myblock 2@ "bar" tuck >r >r extend-mem myblock 2! r> swap r> move
myblock 2@ type \ prints "foobar"

myblock free-mem-var

6.8.4.2 Growable memory buffers

The following words are useful for growable memory buffers. One can alternatively use
$trings (see (undefined) [$tring words|, page (undefined)), and the differences are: When
the used memory in the buffer shrinks, $trings may resize the buffer, while adjust-buffer
does not, which may be preferable for a buffer that is reused all the time. However, $strings
have one cell less memory overhead, and for longer-term storage the shrinking may be
worthwhile.

buffery, (ul u2 —) gforth-experimental “buffer-percent”
ul is the alignment and w2 is the size of a buffer descriptor.
init-buffer (addr -) gforth-experimental
adjust-buffer (u addr —) gforth-experimental
Adjust buffer% at addr to length u. This may grow the allocated area, but never shrinks
it.
You can get the current address and length of such a buffer with 2e.
Typical usage:

create mybuf buffer’ %allot mybuf init-buffer
s" frobnicate" mybuf adjust-buffer mybuf 2@ move
mybuf 2@ type

s" foo" mybuf adjust-buffer mybuf 2@ move
mybuf 2@ type

6.8.5 Memory Access
@ (a-addr — w) core “fetch”
w is the cell stored at a_addr.
! (w a-addr —) core “store”
Store w into the cell at a-addr.
+! (n a-addr —) core “plus-store”
Add n to the cell at a-addr.
'@ (w! a-addr — w2) gforth-experimental “store-fetch”

Fetch w2 from a_addr, then store wl there. There is also atomic!@ (see (undefined)
[Hardware operations for multi-tasking], page (undefined)).

+10@ (ul a-addr — u2) gforth-experimental “plus-store-fetch”

Fetch u2 from a_addr, then increment this location by ul. There is also atomic+!@ (see
(undefined) [Hardware operations for multi-tasking], page (undefined)).

c@ (c-addr — ¢) core “c-fetch”
¢ is the char stored at c_addr.

c! (¢ c-addr —) core “c-store”

Chapter 6: Forth Words 82

Store ¢ into the char at c-addr.
20 (a-addr — w1 w2) core “two-fetch”

w2 is the content of the cell stored at a-addr, w1 is the content of the next cell.
2! (wl w2 a-addr -) core “two-store”

Store w2 into the cell at c-addr and w1 into the next cell.
f@ (f-addr — r) floating “f-fetch”

r is the float at address f-addr.
f! (r f-addr —) floating “f-store”

Store r into the float at address f-addr.
sf@ (sf-addr — r) floating-ext “s-f-fetch”

Fetch the single-precision IEEE floating-point value r from the address sf-addr.
sf! (r sf-addr —) floating-ext “s-f-store”

Store 1 as single-precision IEEE floating-point value to the address sf-addr.
dfe (df-addr — r) floating-ext “d-f-fetch”

Fetch the double-precision IEEE floating-point value r from the address df-addr.
df! (r df-addr —) floating-ext “d-f-store”

Store r as double-precision IEEE floating-point value to the address df-addr.

6.8.6 Special Memory Accesses

This section is about memory accesses useful for communicating with other software or
other computers. This means that the accesses are of a certain bit width (independent of
Gforth’s cell width), are possibly not naturally aligned and typically have a certain byte
order that may be different from the native byte order of the system that Gforth runs on.

We use the following prefixes:

c 8 bits (character)

W 16 bits

1 32 bits

X 64 bits represented as one cell
xd 64 bits represented as two cells

The x-prefix words do not work properly on 32-bit systems, so for code that is intended
to be portable to 32-bit systems you should use xd-prefix words. Note that xd-prefix words
work on 64-bit systems: there the upper cell is just 0 (for unsigned values) or a sign extension
of the lower cell.

The memory-access words below all work with arbitrarily (un)aligned addresses (unlike
@, !, f@, £!, which require alignment on some hardware), and use native byte order (like
these words),

we (c-addr — u) gforth-0.5 “w-fetch”
u is the zero-extended 16-bit value stored at c_addr.
w! (w c-addr —) gforth-0.7 “w-store”

Chapter 6: Forth Words 83

Store the bottom 16 bits of w at c_addr.
1@ (c-addr — u) gforth-0.7 “l-fetch”

u is the zero-extended 32-bit value stored at c_addr.
1! ((w c-addr -) gforth-0.7 “I-store”

Store the bottom 32 bits of w at c_addr.
%@ (c-addr — u) gforth-1.0 “x-fetch”

u is the zero-extended 64-bit value stored at c_addr.
x! (w c-addr —) gforth-1.0 “x-store”

Store the bottom 64 bits of w at c_addr.
xd@ (c-addr — ud) gforth-1.0 “x-d-fetch”

ud is the zero-extended 64-bit value stored at c_addr.
xd! (ud c-addr -) gforth-1.0 “x-d-store”

Store the bottom 64 bits of ud at c_addr.

For accesses with a specific byte order, you have to perform byte-order adjustment
immediately after a fetch (before the sign-extension), or immediately before the store. The
results of these byte-order adjustment words are always zero-extended.
wbe ((ul —u2) gforth-1.0

Convert 16-bit value in u! from native byte order to big-endian or from big-endian to
native byte order (the same operation)
wle (ul — u2) gforth-1.0

Convert 16-bit value in w1 from native byte order to little-endian or from little-endian
to native byte order (the same operation)
1be ((ul — u2) gforth-1.0

Convert 32-bit value in w1 from native byte order to big-endian or from big-endian to
native byte order (the same operation)
1le (ul — u2) gforth-1.0

Convert 32-bit value in ul from native byte order to little-endian or from little-endian
to native byte order (the same operation)
xbe ((ul — u2) gforth-1.0

Convert 64-bit value in u! from native byte order to big-endian or from big-endian to
native byte order (the same operation)
xle (ul — u2) gforth-1.0

Convert 64-bit value in u! from native byte order to little-endian or from little-endian
to native byte order (the same operation)
xdbe (udl — ud2) gforth-1.0

Convert 64-bit value in ud! from native byte order to big-endian or from big-endian to
native byte order (the same operation)
xdle ((udl — ud2) gforth-1.0

Convert 64-bit value in ud! from native byte order to little-endian or from little-endian
to native byte order (the same operation)

Chapter 6: Forth Words 84

For signed fetches with a specific byte order, you have first have to perform an unsigned
fetch and a byte-order correction, and finally use a sign-extension word:

c>s (z —n) gforth-1.0 “c-to-s”

Sign-extend the 8-bit value in z to cell n.
w>s (z — n) gforth-1.0 “w-to-s”

Sign-extend the 16-bit value in z to cell n.
1>s (z - n) gforth-1.0 “l-to-s”

Sign-extend the 32-bit value in z to cell n.
x>s (z —n) gforth-1.0 “x-to-s”

Sign-extend the 64-bit value in z to cell n.
xd>s (zd - d) gforth-1.0 “xd-to-s”

Sign-extend the 64-bit value in xd to double-cell d.

Overall, this leads to sequences like

w@ wbe w>s \ 16-bit unaligned signed big-endian fetch
>r 1le r> 1! \ 32-bit unaligned little-endian store

6.8.7 Address arithmetic

Address arithmetic is the foundation on which you can build data structures like ar-
rays, records (see (undefined) [Structures], page (undefined)) and objects (see (undefined)
[Object-oriented Forth], page (undefined)).

Standard Forth does not specify the sizes of the data types. Instead, it offers a number
of words (e.g., cells) for computing sizes and doing address arithmetic.

Address arithmetic is performed in terms of address units (aus); on most systems the
address unit is one byte. There is also word-addressed* hardware in some embedded systems,
and on these systems the au is one cell. Finally, Forth-2012 also supports systems where a
char needs more than one au. However, the common practice is that 1 chars produces 1,
and this will be standardized in the next release of the standard.

The basic address arithmetic words are + and -. E.g., if you have the address of a cell,
perform 1 cells +, and you will have the address of the next cell.

Standard Forth also defines words for aligning addresses for specific types. Some hard-
ware requires that accesses to specific data types must only occur at specific addresses; e.g.,
that (4-byte) cells may only be accessed at addresses divisible by 4. Even if a machine
allows unaligned accesses, it can usually perform aligned accesses faster.

For the performance-conscious: alignment operations are usually only necessary during
the definition of a data structure, not during the (more frequent) accesses to it.

Standard Forth defines no words for character-aligning addresses, but given that 1
chars=1 is common practice, that’s not a big loss.

Standard Forth guarantees that addresses returned by CREATEd words are cell-aligned;
in addition, Gforth guarantees that these addresses are aligned for all Forth purposes.®

4 In Forth terminology: cell-addressed.

5 Some SIMD extensions of some instruction sets impose more severe alignment constraints that create
currently does not satisfy.

Chapter 6: Forth Words 85

Note that the Standard Forth word char has nothing to do with address arithmetic.
chars (nl — n2) core

n2 is the number of address units of ni chars.
char+ (c-addrl — c-addr2) core “char-plus”

1 chars +.
char- (c-addrl - c-addr2) gforth-0.7 “char-minus”

1 chars -
cells (n1 — n2) core “cells”

n2 is the number of address units of n1 cells.
cell+ (a-addrl — a-addr?) core “cell-plus”

1 cells +
cell- (a-addrl — a-addr2) core “cell-minus”

1 cells -
cell/ (n1 — n2) gforth-1.0 “cell-divide”

N2 is the number of cells that fit into n1 aus, rounded towards negative infinity.
cell (— u) gforth-0.2

Constant — 1 cells
aligned (c-addr — a-addr) core “aligned”

a-addr is the smallest aligned address greater than or equal to c-addr.
floats (nl — n2) floating “floats”

n2 is the number of address units of ni1 floats.
float+ (f-addrl — f-addr2) floating “float-plus”

1 floats +.
float (— u) gforth-0.3

Constant — the number of address units corresponding to a floating-point number.
float/ (nl — n2) gforth-1.0 “float-divide”

N2 is the number of floats that fit into n1 aus, rounded towards negative infinity.
faligned (c-addr — f-addr) floating “f-aligned”

f-addr is the first float-aligned address greater than or equal to c-addr.
sfloats (nl — n2) floating-ext “s-floats”

n2 is the number of address units of ni single-precision IEEE floating-point numbers.
sfloat+ (sf-addrl — sf-addr2) floating-ext “s-float-plus”

1 sfloats +.
sfloat/ (nl — n2) gforth-1.0 “s-float-divide”

N2 is the number of sfloats that fit into n! aus, rounded towards negative infinity.
sfaligned (c-addr — sf-addr) floating-ext “s-f-aligned”

sf-addr is the first single-float-aligned address greater than or equal to c-addr.
dfloats (nl — n2) floating-ext “d-floats”

Chapter 6: Forth Words 86

n2 is the number of address units of n1 double-precision IEEE floating-point numbers.
dfloat+ (df-addrl — df-addr2) floating-ext “d-float-plus”

1 dfloats +.
dfloat/ (n1 — n2) gforth-1.0 “d-float-divide”

N2 is the number of dfloats that fit into n1 aus, rounded towards negative infinity.
dfaligned (c-addr — df-addr) floating-ext “d-f-aligned”

df-addr is the first double-float-aligned address greater than or equal to c-addr.
maxaligned (addrl — addr?) gforth-0.2

addr? is the first address after addri that satisfies all alignment restrictions.
*aligned (addrl n — addr2) gforth-1.0 “star-aligned”

addr?2 is the aligned version of addrl with respect to the alignment n; n must be a power
of 2.

*align (n —) gforth-1.0 “star-align”

Align here with respect to the alignment n.
waligned (addr — addr’) gforth-1.0

Addr’ is the next even address >= addr.
walign (—) gforth-1.0

Align here to even.
laligned (addr — addr’) gforth-1.0

Addr’ is the next address >= addr divisible by 4.
lalign (—) gforth-1.0

Align here to be divisible by 4.
xaligned (addr — addr’) gforth-1.0

Addr’ is the next address >= addr divisible by 8.
xalign (—) gforth-1.0

Align here to be divisible by 8.

The environmental query address-unit-bits (see (undefined) [Environmental Queries],
page (undefined)) and the following words may be useful to those who want to write software
portable to non-byte-addressed machines.

/w (- u) gforth-0.7 “slash-w”
address units for a 16-bit value
/1 (—u) gforth-0.7 “slash-1”
address units for a 32-bit value
/x (—u) gforth-1.0 “slash-x”

address units for a 64-bit value

Chapter 6: Forth Words 87

6.8.8 Memory Blocks

Memory blocks often represent character strings; For ways of storing character strings
in memory see (undefined) [String representations|, page (undefined). For other string-
processing words see (undefined) [Displaying characters and strings|, page (undefined).

In case you want to write a program that is portable to systems with 1 chars > 1 (not
recommended), you have to note the difference between words that take a number of aus
(e.g., erase) and words that take a number of chars (e.g., blank), and insert chars as
appropriate.

When copying characters between overlapping memory regions, use move. Cmove and
cmove> tend to be slower than a well-implemented move.

move (c-from c-to ucount —) core “move”

Copy the contents of ucount aus at c-from to c-to. move works correctly even if the two
areas overlap.

cmove (c-from c-to u —) string “c-move”

Copy the contents of ucount characters from data space at c-from to c-to. The copy
proceeds char-by-char from low address to high address; i.e., for overlapping areas it is safe
if c-to<=c-from.
cmove> (c-from c-to u —) string “c-move-up”

Copy the contents of ucount characters from data space at c-from to c-to. The copy
proceeds char-by-char from high address to low address; i.e., for overlapping areas it is safe
if e-to>=c-from.
£ill (c-addr u ¢ —) core “fill”

Store ¢ in w chars starting at c-addr.
erase (addr u —) core-ext

Clear all bits in u aus starting at addr.
blank (c-addr u —) string

Store the space character into u chars starting at c-addr.
pad (— c-addr) core-ext

c-addr is the address of a transient region that can be used as temporary data storage.
At least 84 characters of space is available.

6.9 Strings and Characters

6.9.1 Characters

Forth supports chars (aka bytes), used by words such as c@; these can be used to represent
an ASCII character.

Forth also supports extended characters, which may be represented by a sequence of
several bytes (i.e., several chars). A common character encoding is the UTF-8 representation
of Unicode.

In general, most code does not have to worry about extended characters: In the string
representation it does not matter whether a byte is a part of an extended character, or it is
a character by itself, and words that consume chars (like emit) also work when the extended

Chapter 6: Forth Words 88

character is transferred as a sequence of chars. Forth still provides words for dealing with
extended characters (see (undefined) [Xchars and Unicode], page (undefined)).

In Unicode terms, chars are code units, whereas extended characters are code points.
Note that an Unicode abstract character can consist of a sequence of code points, but Forth
(like other programming languages) has no data type for individual abstract characters; of
course, they can be represented as strings.

You can use the usual integer words on chars and Xchars on the stack, but Gforth also
has some words for dealing with chars on the stack:

toupper (¢l — ¢2) gforth-0.2 “toupper”

If ¢1 is a lower-case ASCII character, c¢2 is the equivalent upper-case character, otherwise
c2 is cl.

6.9.2 String representations

Forth commonly represents strings as cell pair c-addr u on the stack; u is the length of the
string in bytes (aka chars), and c-addr is the address of the first byte of the string. Note
that a code point may be represented by a sequence of several chars in the string (and a
Unicode “abstract character” may consist of several code points). See (undefined) [String
words|, page (undefined).

Another string representation is used with the string library of words containing $. It
represents the string on the stack through the address of a cell-sized string handle, which
can be located in, e.g., a variable. See (undefined) [$tring words|, page (undefined).

A legacy string representation are counted strings, represented on the stack by c-addr.
The char addressed by c-addr contains a character-count, n, of the string and the string
occupies the subsequent n char addresses in memory. Counted strings are limited to 255
bytes in length. While counted strings may look attractive due to needing only one stack
item, due to their limitations we recommend avoiding them, especially as input parameters
of words. See (undefined) [Counted string words|, page (undefined).

6.9.3 String and Character literals

The nicest way to write a string literal is to write it as "STRING". For these kinds of string
literals as well as for s\" some sequences are not put in the resulting string as is, but are
replaced as shown below. The sequences are mostly the same as in C (exceptions noted):

\a 7 #bell (alert)

\b 8 #bs (backspace)

\e 27 #esc (escape, not in C99)

\f 12 #£f (form feed)

\1 10 #1£ (line feed, not in C)

\m 13 10 CR LF (not in C)

\n sequence produced by newline (in C this produces a LF)
\q 34 " (double quote, not in C)

\r 13 #cr (carriage return)

Chapter 6: Forth Words 89

\t 9 #tab (horizontal tab)

\uXXXx Unicode code point XXXX (in hex); auto-merges surrogate pairs (not in Forth-
2012 nor C)

\UXXXXXXXX

Unicode code point XXXXXXXX (in hex, not in Forth-2012 nor C)
\v 11 VT (vertical tab)

\xXX raw byte (not code point) XX (in hex)

\z 0 NUL (not in C)

\\ \

\" " (the \" does not terminate the string; not in Forth-2012)
\XXX raw byte; XXX is 1-3 octal digits (not in Forth-2012).

A \ before any other character is reserved.

Note that \xXX produces raw bytes, while \uXXXX and \UXXXXXXXX produce code
points for the current encoding. E.g., if we use UTF-8 encoding and want to encode & (code
point U+00E4), you can write the letter & itself, or write \xc3\xa4 (the UTF-8 bytes for
this code point), \u00e4, or \UO00000e4.

The "STRING" syntax is non-standard, so for portability you may want to use one of the
following words:

s\" (Interpretation ’ccc"’ — c-addr u) core-ext,file-ext “s-backslash-quote”

Interpretation: Parse the string ccc delimited by a " (but not \"), and convert escaped
characters as described above. Store the resulting string in newly allocated heap memory,
and push its descriptor c-addr u.

Compilation ('ccec"' --): Parse the string ccc delimited by a " (but not \"), and convert
escaped characters as described above. Append the run-time semantics below to the current
definition.

Run-time (-- c-addr u): Push a descriptor for the resulting string.

S" (Interpretation ’ccc"’ — c-addr u) core,file “s-quote”

Interpretation: Parse the string ccc delimited by a " (double quote). Store the resulting
string in newly allocated heap memory, and push its descriptor c-addr u.
Compilation ('ccc"' --): Parse the string ccc delimited by a " (double quote). Append
the run-time semantics below to the current definition.
Run-time (== c-addr u): Push a descriptor for the parsed string.

All these ways of interpreting strings consume heap memory; normally you can just live
with the string consuming memory until the end of the Gforth session, but if that is a
problem for some reason, you can free the string when you no longer need it. Forth-2012
only guarantees two buffers of 80 characters each, so in standard programs you should
assume that the string lives only until the next-but-one s".

On the other hand, the compilation semantics of string literals of any form allocates
the string in the dictionary, and you cannot free it, and it lives as long as the word it is
compiled into (also in Forth-2012).

Chapter 6: Forth Words 90

Likewise, You can get the code zc of a character C with 'C'. This way has been
standardized since Forth-2012. An older way to get it is to use one of the following words:

char (<spaces>cce’ — ¢) core,xchar-ext

Skip leading spaces. Parse the string ccc and return ¢, the display code representing the
first character of ccc.

[char] (compilation <spaces>ccc’ — ; run-time — ¢) core,xchar-ext “bracket-char”

Compilation: skip leading spaces. Parse the string ccc. Run-time: return ¢, the display
code representing the first character of ccc. Interpretation semantics for this word are
undefined.

You usually use char outside and [char] inside colon definitions, or you just use 'C"'.
Note that, e.g.,
"C" type
is (slightly) more efficient than
'C' xemit
because the latter converts the code point into a sequence of bytes and individually emits

them. Similarly, dealing with general characters is usually more efficient when representing
them as strings rather than code points.

There are the following words for producing commonly-used characters and strings that
cannot be produced with 8" or 'C':

newline (— c-addr u) gforth-0.5 “newline”

String containing the newline sequence of the host OS
bl (— c-char) core “b-1”

c-char is the character value for a space.
#tab (- ¢) gforth-0.2 “number-tab”

#1f (- ¢) gforth-0.2 “number-1-f”
#cr (- ¢) gforth-0.2 “number-c-r”
#ff (- ¢) gforth-0.2 “number-f-f”
#bs (— ¢) gforth-0.2 “number-b-s”

#del (— ¢) gforth-0.2 “number-del”
#bell (— ¢) gforth-0.2 “number-bell”
#tesc (— ¢) gforth-0.5 “number-esc”
#eof (- ¢) gforth-0.7 “number-e-o-f”
actually EOT (ASCII code 4 aka ~D)

6.9.4 String words

Words that are used for memory blocks are also useful for strings, so for words that move,
copy, and fill strings, see (undefined) [Memory Blocks|, page (undefined). For words that
display characters and strings, see (undefined) [Displaying characters and strings], page (un-
defined).

The following words work on previously existing strings:

compare (c-addrl ul c-addr2 u2 — n) string “compare”

Chapter 6: Forth Words 91

Compare two strings lexicographically, based on the values of the bytes in the strings
(i.e., case-sensitive and without locale-specific collation order). If they are equal, n is 0; if
the string in c_addr! ui is smaller, n is -1; if it is larger, n is 1.

str= (c-addrl ul c-addr2 u2 — f) gforth-0.6 “str-equals”
Bytewise equality

str< (c-addrl ul c-addr2 u2 - f) gforth-0.6 “str-less-than”
Bytewise lexicographic comparison.

string-prefix? (c-addrl ul c-addr2 u2 — f) gforth-0.6 “string-prefix-question”
Is c-addr2 u2 a prefix of c-addrl ul?

string-suffix? (c-addrl ul c-addr2 u2 — f) gforth-1.0 “string-suffix-question”
Is c-addr2 u2 a suffix of c-addrl ul?

search (c-addrl ul c-addr2 u2 — c-addr8 u3 flag) string

Search the string specified by c-addri, ul for the string specified by c-addr2, u2. If flag
is true: match was found at c-addr3 with u3 characters remaining. If flag is false: no match
was found; c-addr3, u8 are equal to c-addri, ul.

scan (c-addrl ul ¢ — c-addr2 u2) gforth-0.2 “scan”

Skip all characters not equal to c. The result starts with c or is empty. Scan is limited
to single-byte (ASCII) characters. Use search to search for multi-byte characters.

scan-back (c-addr ul ¢ — c-addr u2) gforth-0.7
The last occurence of ¢ in c-addr ul is at c-addr+u2—1; if it does not occur, u2=0.
skip (c-addrl ul ¢ — c-addr2 u2) gforth-0.2 “skip”

Skip all characters equal to ¢. The result starts with the first non-c character, or it is
empty. Scan is limited to single-byte (ASCII) characters.

$split (c-addr u char — c-addr ul c-addr2 u2) gforth-0.7 “string-split”

Divides a string c-addr v into two, with char as separator. Ul is the length of the string
up to, but excluding the first occurence of the separator, c-addr2 u2 is the part of the input
string behind the separator. If the separator does not occur in the string, u!=u, u2=0 and
c-addr2=c-addr+u.
nosplit? (addrl ul addr2 u2 — addrl ul addr2 u2 flag) gforth-experimental “nosplit-
question”

Used on the result of $split, flag is true if and only if the separator does not occur in
the input string of $split.

-trailing (c-addr ul — c_addr u2) string “dash-trailing”

Adjust the string specified by c-addr, ul to remove all trailing spaces. u2 is the length
of the modified string.

/string (c-addrl ul n — c-addr2 u2) string “slash-string”

Adjust the string specified by c-addri, u1 to remove n characters from the start of the
string.
safe/string (c-addrl ul n — c-addr2 u2) gforth-1.0 “safe-slash-string”

Adjust the string specified by c-addri, ul to remove n characters from the start of the
string. Unlike /string, safe/string removes at least 0 and at most u! characters.

insert (c-addrl ul c-addr2 u2 -) gforth-0.7

Chapter 6: Forth Words 92

Move the contents of the buffer c-addr2 u2 towards higher addresses by u! chars, and
copy the string c-addri ul into the first ul chars of the buffer.

delete (c-addr u ul —) gforth-0.7

In the memory block c-addr u, delete the first ul chars by copying the contents of the
block starting at c-addr+ul there; fill the w1 characters at the end of the block with blanks.

cstring>sstring (c-addr — c-addr u) gforth-0.2 “cstring-to-sstring”
C-addr is the start address of a zero-terminated string, u is its length.

The following words compare case-insensitively for ASCII characters, but case-sensitively
for non-ASCII characters (like in lookup in wordlists).

capscompare (c-addrl ul c-addr2 u2 — n) gforth-0.7 “capscompare”

Compare two strings lexicographically, based on the values of the bytes in the strings, but
comparing ASCII characters case-insensitively, and non-ASCII characters case-sensitively
and without locale-specific collation order. If they are equal, n is O; if the first string is
smaller, n is -1; if the first string is larger, n is 1.

capsstring-prefix? (c-addrl ul c-addr2 u2 - f) gforth-1.0 “capsstring-prefix-question”

Like string-prefix?, but case-insensitive for ASCII characters: Is c-addr2 u2 a prefix
of c-addrl ul?

capssearch (c-addrl ul c-addr2 u2 — c-addr3 u3 flag) gforth-1.0

Like search, but case-insensitive for ASCII characters: Search for c-addr?2 u2 in c-addri
ul; flag is true if found.

The following words create or extend strings on the heap:
s+ (c-addr! ul c-addr2 u2 — c-addr u) gforth-0.7 “s-plus”

c-addr u is a newly allocated string that contains the concatenation of c-addri ul
(first) and c-addr2 u2 (second).

append (c-addrl ul c-addr2 u2 — c-addr u) gforth-0.7

C-addr u is the concatenation of c-addri ul (first) and c-addr2 u2 (second). c-addrl
ul is an allocated string, and append resizes it (possibly moving it to a new address)
to accomodate u characters.

>string-execute (... t — ... c-addr u) gforth-1.0 “to-string-execute”

Execute zt while the standard output (type, emit, and everything that uses them) is
redirected to a string. The resulting string is c-addr u, which is in heap memory; it is the
responsibility of the caller of >string-execute to free this string.

$tmp (xt — addr v) gforth-1.0 “string-t-m-p”
Like >string-execute, but the result is deallocated when $tmp is invoked the next time,
and you must not free it yourself.
One could define s+ using >string-execute, as follows:
: s+ (c-addrl ul c-addr2 u2 -- c-addr u)
[: 2swap type type ;] >string-execute ;

For concatenating just two strings >string-execute is inefficient, but for concatenating
many strings >string-execute can be more efficient.

Chapter 6: Forth Words 93

6.9.5 $tring words

The following string library stores strings in ordinary cell-size variables (string handles).
These handles contain a pointer to a cell-counted string allocated from the heap. The
string library originates from bigFORTH.

Because there is only one permanent reference to the contents (the one in the handle), the
string can be relocated or deleted without worrying about dangling references; this requires
that the programmer uses references produced by, e.g., $@ only for temporary purposes, i.e.,
these references are not passed out, e.g., as return values or stored in global memory, and
words that may change the handle are not called while these references exist.

This library is complemented by the cell-pair representation: You use the $tring words
for variable strings which are cumbersome with the c-addr u representation. You use the
cell-pair representation for processing (e.g., inspecting) strings while they do not change.

$! (addrl u $addr —) gforth-0.7 “string-store”
stores a newly allocated string buffer at an address, frees the previous buffer if necessary.
$@ (Saddr — addr2 u) gforth-0.7 “string-fetch”
returns the stored string.
$0len ($addr — u) gforth-0.7 “string-fetch-len”
returns the length of the stored string.
$!len (u $addr —) gforth-0.7 “string-store-len”

changes the length of the stored string. Therefore we must change the memory area and
adjust address and count cell as well.

$+!1len (u $addr — addr) gforth-1.0 “string-plus-store-len”

make room for u bytes at the end of the memory area referenced by $addr; addr is the
address of the first of these bytes.

$del ($addr off u —) gforth-0.7 “string-del”
Deletes u bytes at offset off bytes in the string $addr.
$ins (addr! u $addr off —) gforth-0.7 “string-ins”
Inserts string addrl u at offset off bytes in the string $addr.
$+! (addr!l u $addr —) gforth-0.7 “string-plus-store”
appends a string to another.
c$+! (char $addr —) gforth-1.0 “c-string-plus-store”
append a character to a string.
$free ($addr —) gforth-1.0 “string-free”
free the string pointed to by addr, and set addr to 0
$init ($addr —) gforth-1.0 “string-init”
store an empty string there, regardless of what was in before
$iter (.. $addr char at — ..) gforth-0.7 “string-iter”

Splits the string in $addr using char as separator. For each part, its descriptor c-addr u
is pushed and xt (... c-addr u -- ...) is executed.

$over (addr u $addr off —) gforth-1.0 “string-over”

Chapter 6: Forth Words 94

Overwrite u bytes at offset off bytes in the string $addr with the string at addr u.
$exec (xt $addr —) gforth-1.0 “string-exec”

execute xt while the standard output (TYPE, EMIT, and everything that uses them) is
appended to the string in $addr.

$. ($addr —) gforth-1.0 “string-dot”
print a string, shortcut
$slurp (fid $addr —) gforth-1.0 “string-slurp”

Read the file fid until the end (without closing it) and put the read data into the string
at $addr.

$slurp-file (c-addr u $addr —) gforth-1.0 “string-slurp-file”
Put all the data in the file named c-addr u into the string at $addr.
$+slurp (fid $addr —) gforth-1.0 “string-plus-slurp”

Read the file fid until the end (without closing it) and append the read data to the string
at $addr.

$+slurp-file (c-addr u $addr —) gforth-1.0 “string-plus+slurp-file”
Append all the data in the file named c-addr v to the string at $addr.
$[1 (u $/Jaddr — addr’) gforth-1.0 “string-array”

Addr’ is the address of the uth element of the string array $//addr. The array is resized
if needed.

$01! (c-addr u n $[Jaddr —) gforth-1.0 “string-array-store”

Store string c-addr y into the string array $//addr at index n. The array is resized if
needed.

$[1+! (c-addr v n $[Jaddr —) gforth-1.0 “string-array-plus-store”

Append the string c-addr u to the string at index n. The array is resized if needed.
Don’t confuse this with $+[]!.

$+01! (c-addr u $[Jaddr —) gforth-1.0 “string-append-array”

Store the string c-addr u as the new last element of string array $//addr. The array is
resized if needed.

$01@ (n $/Jaddr — addr u) gforth-1.0 “string-array-fetch”

fetch a string from array index n — return the zero string if empty, and don’t accidentally
grow the array.

$01# ($/Jaddr — len) gforth-1.0 “string-array-num”
return the number of elements in an array
$ [Imap ($/laddr «t —) gforth-1.0 “string-array-map”

execute xt for all elements of the string array $[Jaddr. xt is (addr u —), getting one
string at a time

$ [1slurp (fid $/laddr —) gforth-1.0 “string-array-slurp”
slurp a file fid line by line into a string array $/Jaddr
$[1slurp-file (addr u $/jaddr —) gforth-1.0 “string-array-slurp-file”

Chapter 6: Forth Words 95

slurp a named file addr u line by line into a string array $/Jaddr
$01. ($/Jladdr —) gforth-1.0 “string-array-dot”

print all array entries
$[1free ($//addr -) gforth-1.0 “string-array-free”

$[Jaddr contains the address of a cell-counted string that contains the addresses of a
number of cell-counted strings; $[|free frees these strings, frees the array, and sets addr to 0

$Variable ("name" —) gforth-1.0 “string-variable”
Defines a string variable whose content is preserved across savesystem
$[JVariable ("name" —) gforth-1.0 “string-array-variable”

Defines a string array variable whose content is preserved across savesystem

6.9.6 Counted string words

Counted strings store the length as byte at the address pointed to, followed by the bytes of
the string. Their possible length is severely limited, and you cannot create a substring in-
place without destroying the input string. Therefore we recommend against using counted
strings. Nevertheless, if you have to deal with counted strings, here are some words for
that:

count (c-addr!l — c-addr2 u) core “count”
c-addr? is the first character and u the length of the counted string at c-addri.

The following word has no useful interpretation semantics (unlike s") and no interpretive
counterpart (unlike [char]), so you should use it only inside colon definitions (if at all):

C" (compilation "ccc<quote>" — ; run-time — c-addr) core-ext “c-quote”

Compilation: parse a string ccc delimited by a " (double quote). At run-time, return
c-addr which specifies the counted string ccc. Interpretation semantics are undefined.
place (c-addrl u c-addr2 —) gforth-experimental “place”

Create a counted string of length u at c-addr2 and copy the string c-addrl u into that
location. Up to 256 bytes starting at c-addr2 will be written, so make sure that the buffer
at c-addr?2 has that much space (or check that u+1 does not exceed the buffer size before
calling place)

string, (c-addr u —) gforth-0.2 “string-comma”

Reserve u+1 bytes of dictionary space and store the string c-addr u there as counted
string.

6.10 Control Structures

Control structures in Forth cannot be used interpretively, only in a colon definition®. We
do not like this limitation, but have not seen a satisfying way around it yet, although many
schemes have been proposed.

6 To be precise, in Standard Forth the control-flow words have no interpretation semantics, and in Gforth
the interpetation semantics of the control-flow words are not useful for interpretive control flow (see
(undefined) [Interpretation and Compilation Semantics], page (undefined)).

Chapter 6: Forth Words 96

6.10.1 Selection

flag IF
code
THEN

If flag is non-zero (as far as IF etc. are concerned, a non-zero cell represents truth), code
is executed.

You may wonder why then ends an if construct, which is at odds with the usage of
then in some other programming languages, and with the idiom “if ... then ...” in En-
glish. According to Webster’s New Encyclopedic Dictionary, then (adv.) has the following
meanings:

... 2b: following next after in order ... 3d: as a necessary consequence (if you
were there, then you saw them).

Forth’s then has the meaning 2b, whereas THEN in Pascal and many other programming
languages has the meaning 3d. If you do not like this usage of then, Gforth (but not
Standard Forth) also has endif, which can be used in its place. Adding ENDIF to a system
that only supplies THEN is simple:

: ENDIF POSTPONE then ; immediate

flag IF
codel

ELSE
code2

THEN

If flag is true, codel is executed, otherwise code2 is executed.

Gforth also provides the words ?DUP-IF and 7DUP-0=-IF, so you can avoid using ?dup.
Using these alternatives is also more efficient than using ?dup. Definitions in Standard
Forth for ENDIF, ?DUP-IF and 7DUP-0=-IF are provided in compat/control.fs.

X
CASE
x1 OF codel ENDOF
x2 OF code2 ENDOF

(x) default-code (x)
ENDCASE ()

Executes the first codei, where the zi is equal to z. If no zi matches, the optional default-
code is executed. The optional default case can be added by simply writing the code after
the last ENDOF. It may use x, which is on top of the stack, but must not consume it. The
value z is consumed by this construction (either by an OF that matches, or by the ENDCASE,
if no OF matches). Example:

: num-name (n -- c-addr u)
case
0 of s" zero " endof
1 of s" one " endof
2 of s" two " endof

\ default case:

Chapter 6: Forth Words 97

s" other number"
rot \ get n on top so ENDCASE can drop it
endcase ;
Programming style note:

To keep the code understandable, you should ensure that you change the stack in the
same way (wrt. number and types of stack items consumed and pushed) on all paths
through a selection structure.

6.10.2 General Loops

BEGIN
codel
flag WHILE
code2
REPEAT
codel is executed and flag is computed. If it is true, code?2 is executed and the loop is
restarted; If flag is false, execution continues after the REPEAT.
BEGIN
code
flag
UNTIL
code is executed. The loop is restarted if flag is false.
Programming style note:
To keep the code understandable, a complete iteration of the loop should not change the
number and types of the items on the stacks.
BEGIN
code
AGAIN
This is an endless loop. You can leave it by leaving the enclosing colon definition with

exit or throw, or with while (see (undefined) [General loops with multiple exits|, page (un-
defined)).

6.10.3 Counted Loops

The basic counted loop is:

limit start 7DO
body
LOOP
This performs one iteration for every integer, starting from start and up to, but excluding
limit. The counter, or index, can be accessed with i. For example, the loop:
10 0 7DO
i.
LOOP
prints 0123456789

The index of the innermost loop can be accessed with i, the index of the next loop with
j, and the index of the third loop with k.

Chapter 6: Forth Words 98

You can access the limit of the innermost loop with i' and i'-i with delta-i. E.g.,
running

: foo 75 ?do cr i . i' . delta-i . loop ;
prints

572

671

The loop control data are kept on the return stack, so there are some restrictions on
mixing return stack accesses and counted loop words. In particuler, if you put values on
the return stack outside the loop, you cannot read them inside the loop”. If you put values
on the return stack within a loop, you have to remove them before the end of the loop and
before accessing the index of the loop.

There are several variations on the counted loop:

e LEAVE leaves the innermost counted loop immediately; execution continues after the
associated LOOP or NEXT. For example:

10 0 ?DO i DUP . 3 = IF LEAVE THEN LOOP
prints 0 1 2 3

e UNLOOP prepares for an abnormal loop exit, e.g., via EXIT. UNLOOP removes the loop
control parameters from the return stack so EXIT can get to its return address. For
example:

: demo 10 O ?DO i DUP . 3 = IF UNLOOP EXIT THEN LOOP ." Done" ;
prints 0123

o If start is greater than limit, a ?DO loop is entered (and LOOP iterates until they be-
come equal by wrap-around arithmetic). This behaviour is usually not what you want.
Therefore, Gforth offers +D0 and U+D0 (as replacements for ?D0), which do not enter the
loop if start is greater than limit; +D0 is for signed loop parameters, U+D0 for unsigned
loop parameters.

e 7D0 can be replaced by DO. DO always enters the loop, independent of the loop pa-
rameters. Do not use DO, even if you know that the loop is entered in any case. Such
knowledge tends to become invalid during maintenance of a program, and then the DO
will make trouble.

e LOOP can be replaced with n +L0O0P; this updates the index by n instead of by 1. The
loop is terminated when the border between limit-1 and limit is crossed. E.g.:

4 0 +D0 i . 2 +LOOP

prints 0 2
41 +D0 i . 2 +L0O0OP
prints 1 3
e The behaviour of n +L0O0OP is peculiar when n is negative:
-1 070 i . -1 +L0OOP
prints 0 -1
0070 i . -1 +LOOP

" Not in a way that is portable.

Chapter 6: Forth Words 99

prints nothing.
We recommend not combining ?D0 with +L0O0P. Gforth offers several alternatives:

If you want -1 +LO0P’s behaviour of including an iteration where I=limit, start the
loop with -[DO or U-[DO (where the [is inspired by the mathematical notation for
inclusive ranges, e.g., [1,n]):

-1 0 -[D0 i . -1 +L0OP
prints 0 -1.

00 -[D0 i . -1 +LOOP
prints 0.

0 -1-[b0 i . -1 +L0OP

prints nothing.
If you want to exclude the limit, you instead use 1 ~LOOP (or generally u ~LOOP) and

start the loop with ?D0, -DO or U-DO. -LOOP terminates the loop when the border
between limit+1 and limit is crossed. E.g.:

-20-DO0 i . 1 -LOOP
prints 0 -1

-10-DO i . 1 -LOOP
prints 0

00-D0O i . 1 -LOOP
prints nothing.

Unfortunately, +D0, U+D0, -DO, U-DO and -LOOP are not defined in Standard Forth.
However, an implementation for these words that uses only standard words is provided
in compat/loops.fs.

e A common task is to iterate over the elements of an array, forwards or backwards.
Iterating over the addresses of the elements has two benefits: It avoids the need to
keep the start address of the array around, reducing the data stack load; and it avoids
the need to perform address computations in every iteration. The disadvantage is
that, starting with the usual array representations addr uelems or addr ubytes, some
processing is required to produce a start and limit address. Gforth has bounds for
getting there from the addr ubytes representation, so you can write a forward loop
through a cell array v as:

createvi1, 3,7,
: foo v 3 cells bounds U+DO i @ . cell +LOO0OP ;
foo

which prints 1 3 7. Preprocessing the inputs for walking backwards is more involved,
so Gforth provide a loop construct of the form MEM-DO...LOOP that does it for you: It
takes an array in addr ubytes representation and the element size, and iterates over the
addresses of the elements in backwards order:

createvi1, 3,7,
: fool v 3 cell array>mem MEM-DO i @ . LOOP ;
fool

Chapter 6: Forth Words 100

This prints 7 3 1. ARRAY>MEM converts the addr uelems uelemsize representation into
the addr ubytes uelemsize representation expected by MEM-DO. This loop is finished
with LOOP which decrements by uelemsize when it finishes a MEM-DO.

Gforth also adds MEM+DO for completeness. It takes the same parameters as MEM-DO,
but walks forwards through the array:

createvi1, 3,7,
: foo2 v 3 cell array>mem MEM+DO i @ . LOOP ;
foo2

prints 1 3 7.
e Another counted loop is:

n

FOR
body

NEXT

This is the preferred loop of native code compiler writers who are too lazy to optimize
7D0 loops properly. This loop structure is not defined in Standard Forth. In Gforth,
this loop iterates n+1 times; i produces values starting with n and ending with 0.
Other Forth systems may behave differently, even if they support FOR loops. To avoid
problems, don’t use FOR loops.
The counted-loop words are:
?D0 (compilation — do-sys ; run-time w1l w2 — | loop-sys) core-ext “question-do”
See (undefined) [Counted Loops|, page (undefined).
+D0 (compilation — do-sys ; run-time nl n2 — | loop-sys) gforth-0.2 “plus-do”
See (undefined) [Counted Loops|, page (undefined).
U+D0 (compilation — do-sys ; run-time ul u2 — | loop-sys) gforth-0.2 “u-plus-do”
See (undefined) [Counted Loops|, page (undefined).
bounds (ul u2 — u3 ul) gforth-0.2 “bounds”

Given a memory block represented by starting address addr and length « in aus, produce
the end address addr+u and the start address in the right order for u+do or 7do.
-[do (compilation — do-sys ; run-time nl1 n2 — | loop-sys) gforth-experimental “minus-
bracket-do”

Start of a counted loop with negative stride; Skips the loop if n2<nf; such a counted
loop ends with +loop where the increment is negative; it runs as long as I>=nl.
u-[do (compilation — do-sys ; run-time ul u2 — | loop-sys) gforth-experimental “u-minus-
bracket-do”

Start of a counted loop with negative stride; Skips the loop if u2<ul; such a counted
loop ends with +1loop where the increment is negative; it runs as long as I>=ul.

-DO (compilation — do-sys ; run-time nl n2 — | loop-sys) gforth-0.2 “minus-do”
See (undefined) [Counted Loops|, page (undefined).

U-DO (compilation — do-sys ; run-time ul u2 — | loop-sys) gforth-0.2 “u-minus-do”
See (undefined) [Counted Loops|, page (undefined).

array>mem (uelements uelemsize — ubytes uelemsize) gforth-experimental “array-to-mem”

Chapter 6: Forth Words 101

ubytes=uelements*uelemsize

mem+do (compilation — w at do-sys; run-time addr ubytes +nstride —) gforth-experimental “mem-Jj
plus-do”

Starts a counted loop that starts with I as addr and then steps upwards through memory
with nstride wide steps as long as I<addr+ubytes. Must be finished with loop.

mem-do (compilation — w xt do-sys; run-time addr ubytes +nstride —) gforth-experimental “mem-Jj
minus-do”

Starts a counted loop that starts with I as addr+ubytes-ustride and then steps backwards
through memory with -nstride wide steps as long as I>=addr. Must be finished with loop.

DO (compilation — do-sys ; run-time wl w2 — loop-sys) core
See (undefined) [Counted Loops], page (undefined).
FOR (compilation — do-sys ; run-time u — loop-sys) gforth-0.2
See (undefined) [Counted Loops|, page (undefined).
LOOP (compilation do-sys — ; run-time loop-sysl — | loop-sys2) core
See (undefined) [Counted Loops|, page (undefined).
+LO0P (compilation do-sys — ; run-time loop-sysl n — | loop-sys2) core “plus-loop”
See (undefined) [Counted Loops], page (undefined).
-LOOP (compilation do-sys — ; run-time loop-sysl u — | loop-sys2) gforth-0.2 “minus-loop”
See (undefined) [Counted Loops|, page (undefined).
NEXT (compilation do-sys — ; run-time loop-sysl — | loop-sys2) gforth-0.2
See (undefined) [Counted Loops|, page (undefined).
i (R:n - Rmnn) core 07
n is the index of the innermost counted loop.
j (R:n R:wl R:w2 — n R:n R:wl R:w2) core “j”
n is the index of the next-to-innermost counted loop.
k (R:n R:w!l R:w2 R:w8 R:wj —n R:n R:wl R:w2 R:w3 R:wj) gforth-0.3 “k”
n is the index of the third-innermost counted loop.
i' (R:w R:w2 — R:w R:w2 w) gforth-0.2 “i-tick”
The limit of the innermost counted loop
delta-i (r:ulimit r:u — r:ulimit r:u w2) gforth-1.0 “delta-i”
u2=I"'-I (difference between limit and index).
LEAVE (compilation — ; run-time loop-sys —) core
See (undefined) [Counted Loops|, page (undefined).
?LEAVE (compilation — ; run-time f | f loop-sys —) gforth-0.2 “question-leave”
See (undefined) [Counted Loops|, page (undefined).
unloop (R:wl R:w2 —) core “unloop”
DONE (compilation do-sys — ; run-time —) gforth-0.2
resolves all LEAVESs up to the do-sys

The standard does not allow using CS-PICK and CS-ROLL on do-sys. Gforth allows it,
except for the do-sys produced by MEM+DO and MEM-DO, but it’s your job to ensure that for

Chapter 6: Forth Words 102

every 7DO0 etc. there is exactly one UNLOOP on any path through the definition (LOOP etc.
compile an UNLOOP on the fall-through path). Also, you have to ensure that all LEAVES are
resolved (by using one of the loop-ending words or DONE).

6.10.4 General loops with multiple exits

For counted loops, you can use leave in several places. For begin loops, you have the
following options:

Use exit (possibly several times) in the loop to leave not just the loop, but the whole
colon definition. E.g.,:

: foo
begin
conditionl while
condition2 if
exit-code2 exit then
condition3 if
exit-code3d exit then

repeat
exit-codel ;

The disadvantage of this approach is that, if you want to have some common code
afterwards, you either have to wrap foo in another definition that contains the common
code, or you have to call the common code several times, from each exit-code.

Another approach is to use several whiles in a begin loop. You have to append a then
behind the loop for every additional while. E.g.;
begin
conditionl while
condition2 while
condition3 while
again then then then

Here I used again at the end of the loop so that I would have a then for each while;
repeat would result in one less then, but otherwise the same behaviour. For an explanation
of why this works, See (undefined) [Arbitrary control structures|, page (undefined).

We can have common code afterwards, but, as presented above, we cannot have different
exit-codes for the different exits. You can have these different exit-codes, as follows:
begin
conditionl while
condition2 while
conditiond while
again then exit-code3
else exit-code2 then
else exit-codel then

This is relatively hard to comprehend, because the exit-codes are relatively far from the
exit conditions (it does not help that we are not used to such control structures, either).
The following extended case does not have this problem.

Chapter 6: Forth Words 103

6.10.5 General control structures with case

Gforth provides an extended case that solves the problems of the multi-exit loops dis-
cussed above, and offers additional options. You can find a portable implementation of this
extended case in compat/caseext.fs

There are three additional words in the extension. The first is 7of which allows general
tests (rather than just testing for equality) in a case; e.g.,

sgn (n -- -1]0[1)

(n) case
dup 0 < 7of drop -1 endof
dup O > 7of drop 1 endof
\ otherwise leave the 0 on the stack

0 endcase ;

Note that endcase drops a value, which works fine much of the time with of, but usually
not with ?7of, so we leave a 0 on the stack for endcase to drop. The n that is passed into
sgn is also 0 if neither 7of triggers, and that is then passed out.

The second additional word is next-case, which allows turning case into a loop. Our
triple-exit loop becomes:

case
conditionl 7of exit-codel endof
condition2 7of exit-code2 endof
condition3 7of exit-code3 endof

next-case
common code afterwards

As you can see, this solves both problems of the variants discussed above (see (undefined)
[General loops with multiple exits|, page (undefined)). Note that next-case does not drop
a value, unlike endcase.®

The last additional word is contof, which is used instead of endof and starts the next
iteration instead of leaving the loop. This can be used in ways similar to Dijkstra’s guarded
command do, e.g.:

: gcd (nl n2 -- n)
case
2dup > 7of tuck - contof
2dup < 7of over - contof
endcase ;

Here the two 7ofs have different ways of continuing the loop; when neither 7of triggers,
the two numbers are equal and are the gcd. Endcase drops one of them, leaving the other
as n.

You can also combine these words. Here’s an example that uses each of the case words
once, except endcase:

collatz (u --)

8 The name next-case has a -, unlike the other case words, because VFX Forth has a next-case that
works like Gforth’s next-case, but also contains a nextcase that drops a value; in VFX you need to
pair next-case with begincase, however.

Chapter 6: Forth Words 104

\ print the 3n+1 sequence starting at u until we reach 1

case
dup .
1 of endof
dup 1 and 7of 3 * 1+ contof
2/

next-case ;

This example keeps the current value of the sequence on the stack. If it is 1, the of
triggers, drops the value, and leaves the case structure. For odd numbers, the 7of triggers,
computes 3n+1, and starts the next iteration with contof. Otherwise, if the number is
even, it is divided by 2, and the loop is restarted with next-case.

The case words are:
case (compilation - case-sys ; run-time —) core-ext
Start a case structure.
endcase (compilation case-sys — ; run-time x —) core-ext “end-case”

Finish the case structure; drop x, and continue behind the endcase. Dropping x is
useful in the original case construct (with only ofs), but you may have to supply an x in
other cases (especially when using 7of).

next-case (compilation case-sys — ; run-time —) gforth-1.0

Restart the case loop by jumping to the matching case. Note that next-case does not
drop a cell, unlike endcase.

of (compilation - of-sys ; run-time x1 x2 — |zl) core-ext

If x1=x2, continue (dropping both); otherwise, leave x1 on the stack and jump behind
endof or contof.

70f (compilation — of-sys ; run-time f—) gforth-1.0 “question-of”
If f is true, continue; otherwise, jump behind endof or contof.

endof (compilation case-sysl of-sys — case-sys2 ; run-time —) core-ext “end-of”
Exit the enclosing case structure by jumping behind endcase/next-case.

contof (compilation case-sysl of-sys — case-sys2 ; run-time —) gforth-1.0 “cont-of”
Restart the case loop by jumping to the enclosing case.

Internally, of-sys is an orig; and case-sys is a cell and some stack-depth information, 0 or
more origs, and a dest.

6.10.6 Arbitrary control structures

Standard Forth permits and supports using control structures in a non-nested way. Infor-
mation about incomplete control structures is stored on the control-flow stack. This stack
may be implemented on the Forth data stack, and this is what we have done in Gforth.

An orig entry represents an unresolved forward branch, a dest entry represents a back-
ward branch target. A few words are the basis for building any control structure possible
(except control structures that need storage, like calls, coroutines, and backtracking).

IF (compilation — orig ; run-time f —) core

Chapter 6: Forth Words 105

At run-time, if f=0, execution continues after the THEN (or ELSE) that consumes the
orig, otherwise right after the IF (see (undefined) [Selection], page (undefined)).

AHEAD (compilation — orig ; run-time —) tools-ext
At run-time, execution continues after the THEN that consumes the orig.
THEN (compilation orig — ; run-time —) core

The IF, AHEAD, ELSE or WHILE that pushed orig jumps right after the THEN (see (unde-
fined) [Selection|, page (undefined)).

BEGIN (compilation — dest ; run-time —) core

The UNTIL, AGAIN or REPEAT that consumes the dest jumps right behind the BEGIN (see
(undefined) [General Loops]|, page (undefined)).

UNTIL (compilation dest — ; run-time f —) core

At run-time, if f=0, execution continues after the BEGIN that produced dest, otherwise
right after the UNTIL (see (undefined) [General Loops|, page (undefined)).

AGAIN (compilation dest — ; run-time —) core-ext

At run-time, execution continues after the BEGIN that produced the dest (see (undefined)
[General Loops], page (undefined)).
CS-PICK (dest0/orig0 destl/origl ... destu/origu u — ... dest0/orig0) tools-ext “c-s-pick”
CS-ROLL (destu/origu .. dest0/orig0 u — .. dest0/orig0 destu/origu) tools-ext “c-s-roll”
CS-DROP (dest/orig —) gforth-1.0

The Standard words cs-pick and cs-roll allow you to manipulate the control-flow
stack in a portable way. Without them, you would need to know how many stack items are
occupied by a control-flow entry (Many systems use one cell. In Gforth they currently take
four cells, but this may change in the future).

When using cs-pick and cs-drop on an orig, you need to use one cs-drop for every
cs-pick (and vice versa) of a given orig, because the orig must be resolved by then exactly
once.

Some standard control structure words are built from these words:
ELSE (compilation origl — orig2 ; run-time —) core
At run-time, execution continues after the THEN that consumes the orig; the IF, AHEAD,

ELSE or WHILE that pushed orig! jumps right after the ELSE. (see (undefined) [Selection],
page (undefined)).

WHILE (compilation dest — orig dest ; run-time f —) core

At run-time, if f=0, execution continues after the REPEAT (or THEN or ELSE) that con-
sumes the orig, otherwise right after the WHILE (see (undefined) [General Loops|, page (un-
defined)).

REPEAT (compilation orig dest — ; run-time —) core

At run-time, execution continues after the BEGIN that produced the dest; the WHILE, IF,
AHEAD or ELSE that pushed orig jumps right after the REPEAT. (see (undefined) [General
Loops], page (undefined)).

Gforth adds some more control-structure words:

ENDIF (compilation orig — ; run-time —) gforth-0.2

Chapter 6: Forth Words 106

Same as THEN.
?dup-IF (compilation — orig ; run-time n — n|) gforth-0.2 “question-dupe-if”

This is the preferred alternative to the idiom "?DUP IF", since it can be better handled
by tools like stack checkers. Besides, it’s faster.
?DUP-0=-1IF (compilation — orig ; run-time n — n|) gforth-0.2 “question-dupe-zero-equals-
if”

6.10.7 Calls and returns

A definition can be called simply be writing the name of the definition to be called. Normally
a definition is invisible during its own definition. If you want to write a directly recursive
definition, you can use recursive to make the current definition visible, or recurse to call
the current definition directly.

recursive (compilation — ; run-time —) gforth-0.2
Make the current definition visible, enabling it to call itself recursively.

recurse (... — ...) core
Alias to the current definition.

For examples of using these words, See (undefined) [Recursion Tutorial], page (undefined).
Programming style note:

I prefer using recursive to recurse, because calling the definition by name is more
descriptive (if the name is well-chosen) than the somewhat cryptic recurse. E.g., in a
quicksort implementation, it is much better to read (and think) “now sort the partitions”
than to read “now do a recursive call”.

For mutual recursion, Gforth offers the defining word forward. You can use it to create
a forward reference which is resolved automatically, and does not incur additional costs like
the indirection of Defer. However, these forward definitions only work for colon definitions.
Here’s a usage example:

forward foo

tbar (... — ...)
. foo ... ;

: foo (... —— ...) \ resolves the forward definition
. bar ... ;

The words used for forward definitions are:
forward ("name" -) gforth-1.0

Defines a forward reference to a colon definition. Defining a colon definition with the
same name in the same wordlist resolves the forward references. Use .unresolved to check
whether any forwards are unresolved.

.unresolved (—) gforth-1.0 “dot-unresolved”
print all unresolved forward references
In Standard Forth, you use Deferred words for mutual recursion, like this:

Defer foo

Chapter 6: Forth Words 107

tbar (... — ...)
. foo ... ;

:noname (... -— ...)
... bar ... ;
IS foo
Deferred words are discussed in more detail in (undefined) [Deferred Words], page (un-
defined).

The current definition returns control to the calling definition when the end of the
definition is reached or EXIT is encountered.

EXIT (compilation — ; run-time nest-sys —) core

Return to the calling definition; usually used as a way of forcing an early return from a
definition. Before EXITing you must clean up the return stack and UNLOOP any outstanding
7D0...LO0OPs.

7EXIT (-) gforth-0.2 “question-exit”

Return to the calling definition if f is true.

6.10.8 Exception Handling

If a word detects an error condition that it cannot handle, it can throw an exception. In
the simplest case, this will terminate your program, and report an appropriate error.

throw (yI .. ym nerror — yl .. ym / z1 .. zn nerror) exception

If nerror is 0, drop it and continue. Otherwise, transfer control to the next dynamically
enclosing exception handler, reset the stacks accordingly, and push nerror.

fast-throw (... nerror — ... nerror) gforth-experimental “fast-throw”

Lightweight throw variant: only for non-zero nerrors, and does not store a backtrace or
deal with missing catch.

Throw consumes a cell-sized error number on the stack. There are some predefined error
numbers in Standard Forth (see errors.fs). In Gforth (and most other systems) you can
use the iors produced by various words as error numbers (e.g., a typical use of allocate
is allocate throw). Gforth also provides the word exception to define your own error
numbers (with decent error reporting); a Standard Forth version of this word (but without
the error messages) is available in compat/except.fs. And finally, you can use your own
error numbers (anything outside the range -4095..0), but won’t get nice error messages, only
numbers. For example, try:

-10 throw \ Standard defined
-267 throw \ system defined
s" my error" exception throw \ user defined

7 throw \ arbitrary number

exception (addr u — n) gforth-0.2

n is a previously unused throw value in the range (-4095...-256). Consecutive calls to
exception return consecutive decreasing numbers. Gforth uses the string addr u as an
error message.

Chapter 6: Forth Words 108

There are also cases where you have a word (typically modeled after POSIX’ strerror)
for converting an error number into a string. You can use the following word to get these
strings into Gforth’s error handling:
exceptions (ot nl — n2) gforth-1.0

Xt (+n -- c-addr u) converts an error number in the range 0<=n<nl into an error
message. Exceptions reserves nl error codes in the range n2-n1<n3<=n2. When (at some
later point in time) the Gforth error code n3 in that range is thrown, it pushes n2-n3 and
then executes xt to produce the error message.

As an example, if the errno errors (and the conversion using strerror) was not already
directly supported by Gforth, you could tie strerror in as follows:

' strerror 1536 exceptions constant errno-base
: errno-ior (-- n)
\ n is the Gforth ior corresponding to the value in errno, so
\ we have to convert between the ranges here.
\ ERRNO is not a Gforth word, so you would have to use the
\ C interface to access it.
errno errno-base over - swap 0<> and ;

When you call a C function that can set errno (with the C interface, see (undefined)
[C Interface], page (undefined)), you can use one of the following words for converting that
error into a throw:
?errno-throw (f -) gforth-1.0 “question-errno-throw”

If f<>0, throws an error code based on the value of errno.
?ior (z —) gforth-1.0 “question-i-o-r”

If f=-1, throws an error code based on the value of errno.

Which of these you should use depends on how the C function indicates that an error

has happened. When the system then catches a throw performed by one of these words, it
produces the proper error message (such as “Permission denied”).

Note that the errno numbers are not directly used as throw codes (because the Forth
standard specifies that positive throw codes must not be system-defined), but maps them
into a different number range.

A common idiom to THROW a specific err# if a flag is true is this:

(flag) 0<> err# and throw

Your program can provide exception handlers to catch exceptions. An exception handler
can be used to correct the problem, or to clean up some data structures and just throw
the exception to the next exception handler. Note that throw jumps to the dynamically
innermost exception handler. The system’s exception handler is outermost, and just prints
an error and restarts command-line interpretation (or, in batch mode (i.e., while processing
the shell command line), leaves Gforth).

The Standard Forth way to catch exceptions is catch:
catch (xl .. anat —yl .. ym 0 / z1 .. zn error) exception

Executes zt. If execution returns normally, catch pushes 0 on the stack. If execution
returns through throw, all the stacks are reset to the depth on entry to catch, and the TOS
(the xt position) is replaced with the throw code.
catch-nobt (z! .. zn at —yl .. ym 0 / z1 .. zn error) gforth-experimental

Chapter 6: Forth Words 109

perform a catch that does not record backtraces on errors
nothrow (—) gforth-0.7

Use this (or the standard sequence ['] false catch 2drop) after a catch or endtry
that does not rethrow; this ensures that the next throw will record a backtrace.

The most common use of exception handlers is to clean up the state when an error
happens. E.g.,

base @ >r hex \ actually the HEX should be inside foo to protect
\ against exceptions between HEX and CATCH

['] foo catch (nerror|0)

r> base !

(nerror|0) throw \ pass it on

A use of catch for handling the error myerror might look like this:
['] foo catch

CASE

myerror OF ... (do something about it) nothrow ENDOF

dup throw \ default: pass other errors on, do nothing on non-errors
ENDCASE

Having to wrap the code into a separate word is often cumbersome, therefore Gforth
provides an alternative syntax:
TRY
codel
IFERROR
code2
THEN
code3
ENDTRY

This performs codel. If codel completes normally, execution continues with codes. If
there is an exception in codel or before endtry, the stacks are reset to the depth during
try, the throw value is pushed on the data stack, and execution continues at code2, and
finally falls through to code3.

try (compilation - orig ; run-time — R:sysl) gforth-0.5
Start an exception-catching region.
endtry (compilation - ; run-time R:sysl —) gforth-0.5
End an exception-catching region.
iferror (compilation origl — orig2 ; run-time —) gforth-0.7
Starts the exception handling code (executed if there is an exception between try and
endtry). This part has to be finished with then.

If you don’t need code2, you can write restore instead of iferror then:

TRY
codel

RESTORE
code3

ENDTRY

Chapter 6: Forth Words 110

The cleanup example from above in this syntax:

base @ { oldbase }

TRY
hex foo \ now the hex is placed correctly
0 \ value for throw

RESTORE
oldbase base !

ENDTRY

throw

An additional advantage of this variant is that an exception between restore and endtry
(e.g., from the user pressing Ctrl-C) restarts the execution of the code after restore, so
the base will be restored under all circumstances.

However, you have to ensure that this code does not cause an exception itself, otherwise
the iferror/restore code will loop. Moreover, you should also make sure that the stack
contents needed by the iferror/restore code exist everywhere between try and endtry;
in our example this is achived by putting the data in a local before the try (you cannot use
the return stack because the exception frame (sys!) is in the way there).

This kind of usage corresponds to Lisp’s unwind-protect.
If you do not want this exception-restarting behaviour, you achieve this as follows:

TRY
codel
ENDTRY-IFERROR
code2
THEN

If there is an exception in codel, then code2 is executed, otherwise execution continues
behind the then (or in a possible else branch). This corresponds to the construct

TRY
codel

RECOVER
code2

ENDTRY

in Gforth before version 0.7. So you can directly replace recover-using code; however,
we recommend that you check if it would not be better to use one of the other try variants
while you are at it.

To ease the transition, Gforth provides two compatibility files: endtry-iferror.fs
provides the try ... endtry-iferror ... then syntax (but not iferror or restore) for
old systems; recover-endtry.fs provides the try ... recover ... endtry syntax on new
systems, so you can use that file as a stopgap to run old programs. Both files work on any
Gforth (they just do nothing if the system already has the syntax it implements), so you
can unconditionally require one of these files, even if you use a mix old and new Gforths.

restore (compilation origl — ; run-time —) gforth-0.7
Starts restoring code, that is executed if there is an exception, and if there is no exception.

endtry-iferror (compilation origl — orig2 ; run-time R:sysl —) gforth-0.7

Chapter 6: Forth Words 111

End an exception-catching region while starting exception-handling code outside that
region (executed if there is an exception between try and endtry-iferror). This part has
to be finished with then (or else...then).

Here’s the error handling example:

TRY
foo
ENDTRY-IFERROR
CASE
myerror OF ... (do something about it) nothrow ENDOF
throw \ pass other errors on
ENDCASE
THEN

Programming style note:

As usual, you should ensure that the stack depth is statically known at the end: either
after the throw for passing on errors, or after the ENDTRY (or, if you use catch, after the
end of the selection construct for handling the error).

There are two alternatives to throw: Abort" is conditional and you can provide an error
message. Abort just produces an “Aborted” error.

The problem with these words is that exception handlers cannot differentiate between
different abort"s; they just look like -2 throw to them (the error message cannot be ac-
cessed by standard programs). Similarly, abort looks like -1 throw to exception handlers.

ABORT" (compilation ‘ccc"’ — ; run-time ... f —) core,exception-ext “abort-quote”

If any bit of f is non-zero, perform the function of -2 throw, displaying the string ccc if
there is no exception frame on the exception stack.

abort (77 — 77) core,exception-ext
-1 throw.

For problems that are not that awful that you need to abort execution, you can just
display a warning. The variable warnings allows to tune how many warnings you see.

WARNING" (compilation ’ccc"’ — ; run-time f —) gforth-1.0 “warning-quote”
if f is non-zero, display the string ccc as warning message.
warnings (— addr) gforth-0.2

Set warnings level to

0 turns warnings off

-1 turns normal warnings on
-2 turns beginner warnings on
-3 turns pedantic warnings on

-4 turns warnings into errors (including beginner warnings)

Chapter 6: Forth Words 112

6.11 Defining Words

Defining words are used to extend Forth by creating new entries in the dictionary.

6.11.1 CREATE
The simplest defining word is CREATE, used like this:
CREATE new-wordl

CREATE is a parsing word, i.e., it takes an argument from the input stream (new-word1 in
our example). It generates a dictionary entry for new-word1l. When new-word1 is executed,
all that it does is leave an address on the stack. The address represents the value of the
dictionary pointer (HERE) at the time that new-wordl was defined. Therefore, CREATE is a
way of associating a name with the address of a region of memory.

Create ("name" —) core

Note that Standard Forth guarantees only for create that its body is contiguous with
the following dictionary allocations (e.g., allot, see (undefined) [Dictionary allocation],
page (undefined)). Also, in Standard Forth only created words can be modified with
does> (see (undefined) [User-defined Defining Words|, page (undefined)). And in Standard
Forth >body can only be applied to created words.

By extending this example to reserve some memory in data space, we end up with
something like a variable. Here are two different ways to do it:

CREATE new-word2 1 cells allot \ reserve 1 cell without initializing it
CREATE new-word3 4 , \ reserve 1 cell and initialise it (to 4)N
The variable can be examined and modified using @ (“fetch”) and ! (“store”) like this:

new-word2 @ . \ get address, fetch from it and display
1234 new-word2 ! \ new value, get address, store to it

A similar mechanism can be used to create arrays. For example, an 80-character text
buffer:

CREATE text-buf 80 allot \ uninitialized

text-buf 0 + c@ \ the 1st character (offset 0)
text-buf 3 + c@ \ the 4th character (offset 3)

You can build arbitrarily complex data structures by allocating appropriate areas of
memory. For further discussions of this, and to learn about some Gforth tools that make it
easier, See (undefined) [Structures|, page (undefined).

6.11.2 Variables

The previous section showed how a sequence of commands could be used to generate a
variable. As a final refinement, the whole code sequence can be wrapped up in a defining
word, making it easier to create new variables:

: myvariableX ("name" -- a-addr) CREATE 1 cells allot ;
: myvariableO ("name" -- a-addr) CREATE O , ;

myvariableX foo \ variable foo starts off with an unknown value
myvariable0 joe \ whilst joe is initialised to O

Chapter 6: Forth Words 113

45 3 * foo ! \ set foo to 135
1234 joe ! \ set joe to 1234
3 joe +! \ increment joe by 3.. to 1237

Not surprisingly, there is no need to define myvariableX, since Forth already has a
definition Variable. Standard Forth does not guarantee that a Variable is initialised
when it is created (i.e., it may behave like myvariableX). In contrast, Gforth’s Variable
initialises the variable to O (i.e., it behaves exactly like myvariable0). Forth also provides
2Variable and fvariable for double and floating-point variables, respectively — they are
initialised to #0. and Oe in Gforth. If you use a Variable to store a boolean, you can use
on and off to toggle its state (see (undefined) [Boolean Flags], page (undefined)).

Variable ("name" —) core

Define name and reserve a cell at addr.
name execution: (-- addr).

AVariable ("name" -) gforth-0.2

Works like variable, but (when used in cross-compiled code) tells the cross-compiler
that the cell stored in the variable is an address.

2Variable ("name" —) double “two-variable”

Define name and reserve two cells starting at addr.
name execution: (-- addr).

fvariable ("name" —) floating “f-variable”

Define name and reserve a float at f-addr.
name execution: (-- f-addr).

Finally, for buffers of arbitrary length there is
buffer: (u "name" —) core-ext “buffer-colon”

Define name and reserve u bytes starting at addr. Gforth initializes the reserved bytes
to 0, but the standard does not guarantee this.
name execution: (-- addr).

6.11.3 Constants

Constant allows you to declare a fixed value and refer to it by name. For example:

12 Constant INCHES-PER-FOOT \ is integer appropriate
2.54e fconstant CM-PER-INCH

A Variable can be both read and written, so its run-time behaviour is to supply an
address through which its current value can be manipulated. In contrast, the value of a
Constant cannot be changed once it has been declared? so it’s not necessary to supply the
address — it is more efficient to return the value of the constant directly. That’s exactly what
happens; the run-time effect of a constant is to put its value on the top of the stack (You
can find one way of implementing Constant in (undefined) [User-defined Defining Words],
page (undefined)).

9 Well, often it can be — but not in a Standard, portable way. It’s safer to use a Value (read on).

Chapter 6: Forth Words 114

Forth also provides 2Constant and fconstant for defining double and floating-point
constants, respectively.

Constant (w "name" —) core

Define name.
name execution: (- w)

AConstant (addr "name" —) gforth-0.2

Like constant, but defines a constant for an address (this only makes a difference in the
cross-compiler).

2Constant (w! w2 "name" —) double “two-constant”

Define name.
name execution: (- wl w2)

fconstant (7 "name" —) floating “f-constant”

Define name.
name execution: (—r)

6.11.4 Values

A Value behaves like a Constant, but it can be changed. TO and +TO are parsing words
that change a value. Alternatively, you can change a value v by writing ->v (equivalent to
TO v) or +>v (equivalent to +T0 v).

Here are some examples:

12 value apples \ Define APPLES with an initial value of 12
34 to apples \ Change the value of APPLES. TO is a parsing word

34 ->apples \ Change the value of APPLES. Non-standard usage
1 +to apples \ Increment APPLES. Non-standard usage.
1 +>apples \ Increment APPLES. Non-standard usage.
apples \ puts 36 on the top of the stack.
Value (w "name" —) core-ext

Define name with the initial value w
name execution: (— w2) push the current value of name.
to name run-time: (w3 —) change the value of name to w3.
+to name run-time: (nlu -) increment the value of name by nlu

Avalue (w "name" -) gforth-0.6

Like value, but defines a value for an address (this only makes a difference in the cross-
compiler).
2Value (w!l w2 "name" —) double-ext “two-value”

Define name with the initial value w
name execution: (- w3 w4) push the current value of name.
to name run-time: (wH w6 -) change the value of name to w5 wé.
+to name run-time: (d|ud —) increment the value of name by dlud

fvalue (7 "name" —) floating-ext “f-value”

Define name with the initial value r
name execution: (- r2) push the current value of name.

Chapter 6: Forth Words 115

to name run-time: ((r3 —) change the value of name to r3.
+to name run-time: (74 —) increment the value of name by 74

TO (value ... "name" —) core-ext

Name is a value-flavoured word, ... is optional additional addressing information, e.g.,
for a value-flavoured field. At run-time, perform the to name semantics: change name (with
the same additional addressing information) to push wvalue. The type of value depends on
the type of name (see the defining word for name for the actual type). An alternative
syntax is to write ->name.

+T0 (value ... "name" —) gforth-1.0 “plus-TO”

Name is a value-flavoured word, ... is optional additional addressing information, e.g.,
for a value-flavoured field. At run-time, perform the +to name semantics: if name (with the
same additional addressing information) pushed wvalue! before, change it to push value?2,
the sum of the value! and wvalue. The type of value depends on the type of name (see the
defining word for name for the actual type). An alternative syntax is to write +>name.

Words that produce their value on execution and that can be changed with to or +to
are called value-flavoured (in contrast to the variable-flavoured words that produce their
address on execution). They are defined be some of the words listed above, but also by some
locals definitions words (see (undefined) [Locals definition words], page (undefined)) and
some field definition words (see (undefined) [Value-Flavoured and Defer-Flavoured Fields],
page (undefined)).

Sometimes you want to take the address of a value-flavoured word. Because this has
some potential performance disadvantages, Gforth asks you to be explicit about it, and
define the word as addressable. Once you have done that, you can get the address with
addr. The following example is equivalent to the one above:

12 addressable: value apples

34 addr apples ! \ Change the value of APPLES. ADDR is a parsing word
1 +to apples \ Increment APPLES

addr apples @ \ puts 35 on the top of the stack.

addressable: (—) gforth-experimental “addressable-colon”

Addressable: should be used in front of a defining word for a value-flavoured word (e.g.,
value). It allows to use addr on the word defined by that defining word.

addr (interpretation "name" ... — addr; compilation "name" — ; run-time ... — addr) gforth-
1.0

Name is an addressable: value-flavoured word, ... is optional additional addressing
information, e.g., for a value-flavoured field. Addr is the address where the value of name
(taking the additional address information into account) is stored.

For now using addr on a non-addressable: value results in a warning. In the future,
when we change the code generation in a way that results in potentially faster code for non-
addressable: values, but where the use of addr on such values could produce unexpected
results, such usage will result in an error.

6.11.5 Colon Definitions

:name (... —— ...)
wordl word2 word3 ;

Chapter 6: Forth Words 116

Creates a word called name that, upon execution, executes wordl word2 word3. name is a
(colon) definition.

The explanation above is somewhat superficial. For simple examples of colon definitions
see (undefined) [Your first definition], page (undefined). For an in-depth discussion of
some of the issues involved, See (undefined) [Interpretation and Compilation Semantics],
page (undefined).

: ("name" — colon-sys) core “colon”

; (compilation colon-sys — ; run-time nest-sys —) core “semicolon”

6.11.6 Inline Definitions

We plan to to perform automatic inlining eventually, but for now you can perform inlining
with
inline: ("name" — inline:-sys) gforth-experimental “inline-colon”

Start inline colon definition. The code between inline: and ;inline has to compile
(not perform) the code to be inlined, but the resulting definition name is a colon definition
that performs the inlined code. Note that the compiling code must have the stack effect
(==, otherwise you will get an error when Gforth tries to create the colon definition for
name.

;inline (inline:-sys —) gforth-experimental “semi-inline”
end inline definition started with inline:
As an example, you can define an inlined word and use it with

inline: my2dup (a b -—ab a b)
1] over over [[;inline

#1. my2dup 4. d.

: foo my2dup ;
#1. foo d. d.
see foo

Inline words are related to macros (see (undefined) [Macros|, page (undefined)); the
difference is that a macro has immediate compilation semantics while an inline:-defined
word has default compilation semantics; this means that you normally use a macro only
inside a colon definition, while you can use an inline: word also interpretively. But that
also means that you can do some things with macros that you cannot do as an inline:
word. E.g.,

\ Doesn't work:

\ inline: endif]] then [[;inline
\ Instead, write a macro:

: endif]] then [[; immediate

Conversely, for words that would be fine as non-immediate colon definitions, define them
as non-immediate colon definitions or (if utmost performance is required) as inline: words;
don’t define them as macros, because then you cannot properly use them interpretively:

: another2dup 1] over over [[; immediate
\ Doesn't work:
\ #1. another2dup 4. 4.

Chapter 6: Forth Words 117

You may wonder why you have to write compiling code between inline: and ;inline.
That’s because the implementation of an inline word like my2dup above works similar to:

: compile-my2dup (xt --)
drop 11 over over [[;

: my2dup [O compile-my2dup] ;

' compile-my2dup set-optimizer

The DROP and 0 are there because compile-my2dup is the implementation of compile,
for my2dup, and compile, expects an xt (see (undefined) [User-defined compile-commal],
page (undefined)).

6.11.7 Anonymous Definitions

Sometimes you want to define an anonymous word; a word without a name. You can do
this with:

:noname (— at colon-sys) core-ext “colon-no-name”

This leaves the execution token for the word on the stack after the closing ;. Here’s
an example in which a deferred word is initialised with an xt from an anonymous colon
definition:

Defer deferred

:noname (... -— ...)

IS deferred
Gforth provides an alternative way of doing this, using two separate words:
noname (—) gforth-0.2

The next defined word will be anonymous. The defining word will leave the input stream
alone. The xt of the defined word will be given by latestxt, its nt by latestnt (see (un-
defined) [Name token], page (undefined)).

latestxt (— ot) gforth-0.6
xt is the execution token of the most recent word defined in the current section.
The previous example can be rewritten using noname and latestxt:

Defer deferred
noname : (... —— ...)

)

latestxt IS deferred
noname works with any defining word, not just :.

latestxt also works when the last word was not defined as noname. It also has the
useful property that it is valid as soon as the header for a definition has been built. Thus:

latestxt . : foo [latestxt .] ; ' foo .

prints 3 numbers; the last two are the same.

Chapter 6: Forth Words 118

6.11.8 Quotations

A quotation is an anonymous colon definition inside another colon definition. Quotations are
useful when dealing with words that consume an execution token, like catch or outfile-
execute. E.g. consider the following example of using outfile-execute (see (undefined)
[Redirection], page (undefined)):

: some-warning (n --)
cr ." warning# " . ;
: print-some-warning (n --)

['] some-warning stderr outfile-execute ;

Here we defined some-warning as a helper word whose xt we could pass to outfile-
execute. Instead, we can use a quotation to define such a word anonymously inside print-
some-warning:

: print-some-warning (n --)
[: cr ." warning# " . ;] stderr outfile-execute ;

The quotation is bouded by [: and ;]. It produces an execution token at run-time.
[: (compile-time: — quotation-sys flag colon-sys) gforth-1.0 “bracket-colon”

Starts a quotation in the next section.

;1 (compile-time: quotation-sys — ; run-time: — zt) gforth-1.0 “semi-bracket”

Ends a quotation (represented by zt) and switch to the previous section. Latestxt and

latestnt refer to the last word in the current section, i.e., not to the quotation.

6.11.9 Supplying the name of a defined word

By default, a defining word takes the name for the defined word from the input stream.
Sometimes you want to supply the name from a string. You can do this with:

nextname (c-addr u —) gforth-0.2

The next defined word will have the name c-addr u; the defining word will leave the
input stream alone.

For example:
s" foo" nextname create
is equivalent to:
create foo

nextname works with any defining word.

6.11.10 User-defined Defining Words

You can define new defining words in terms of any existing defining word, but : and
create...does>/set-does> are particularly flexible, whereas the children of, e.g., constant
are all just constants.

6.11.10.1 User-defined defining words with colon definitions

Colon definitions are very flexible, so you can write a defining word that defines a new colon
definition at its run-time. Here is an example:

: myconstant {: w -- :}

Chapter 6: Forth Words 119

: w postpone literal postpone ; ;

When defining 5 myconstant five, myconstant first stashes w in a local (for reasons
explained later), then calls :, which starts the definition of five. Then it uses postpone
literal (see (undefined) [Compiling words|, page (undefined)) to compile w (i.e., 5) into
this colon definition, and then postpone ; to end it. You can look at the result with see
five:

: five #5

Can’t we just leave w on the data stack for consumption by postpone literal? No: :
pushes a colon-sys on the data stack, so we have to first move w elsewhere so we can later
access it. In this example, we used a local variable, but moving w on the return stack and
back would also have been an option.

A more convenient, but Gforth-specific way to write myconstant is:
: myconstant {: w -- :}
11w [0

The features used in this code are explained elsewhere (see (undefined) [Macros],
page (undefined)).

A disadvantage of this approach is that it consumes more memory than the approach
of the next section: E.g, here are the memory costs of defining five with the various
implementations:

builtin : does> set-does> opt
48 64 48 48 48 Dbytes header+threaded code
0 23 0 0 0 bytes native code
16 16 32 16 16 compiled threaded code
4 23 34 7 4 compiled native code

Builtin refers to using constant, : to using myconstant (defined above), does> to using
myconstant2, set-does> to using myconstant3 (both from see (undefined) [User-defined
defining words using CREATE], page (undefined)), and opt to using myconstant4 (see
(undefined) [User-defined compile-comma|, page (undefined)).

The lines where the label starts with “bytes” report the space consumption of defining
the word five itself; the native code is for gforth-fast on AMDG64 (native code for the gforth
engine is larger).

The lines where the label starts with “compiled” report the space consumption (also in
bytes) for the invocation of five in the word : foo five * ;. The native code can be bigger
or smaller in other contexts.

6.11.10.2 User-defined defining words using create

If you want the words defined with your defining words to behave differently from words
defined with standard defining words, you can write your defining word like this:

: def-word ("name" --)
CREATE codel

DOES> (... —— ...)
code?2 ;

def-word name

Chapter 6: Forth Words 120

This fragment defines a defining word def-word and then executes it. When def-word
executes, it CREATEs a new word name, and executes the code codel. The code code2 is not
executed at this time. The word name is sometimes called a child of def-word.

When you execute name, the address of the body of name is pushed on the data stack
and code2 is executed. The address of the body of name is the address HERE returns
immediately after the CREATE, i.e., the address a created word returns by default).

You can understand the behaviour of def-word and name by considering the following
definitions:

: def-wordl ("name" --)
CREATE codel ;

: actionl (... —— ...)
code2 ;

def-wordl namel
Using namel actionl is equivalent to using name.

You can use def-word to define a set of child words that behave similarly; they all have
a common run-time behaviour determined by code2. Typically, the codel sequence builds a
data area in the body of the child word. The structure of the data is common to all children
of def-word, but the data values are specific — and private — to each child word.

As an example, here’s how you can define myconstant2 with does>:

: myconstant2 (w "name" --)
create ,

does> (-- w)
e ;

Here create defines a word name, then , stores w in name’s data area, then the does>
changes name’s behaviour and returns to the caller of myconstant2: When name is invoked,
the new behaviour first pushes the address of the data area (as before), but then also
performs the code after the does>. In the present case, this code fetches the value of the
constant from the data area.

The stack effect besides the does reflects the stack effect of name execution, not the stack
effect of the code after the does> (this is not common practice yet but we still recommend
it).

Does> splits the definition into two subdefinitions and has a number of disadvantages.
Alternatively, Gforth allows you to provide the second part as an execution token by using
set-does>. So the general scheme is:

: def-word ("name" -- ; name execution: ... —— ...)
create codel
xt-code2 set-does>
code3 ;

The difference from the definition using does> is that on name execution, after push-
ing the data address, zt-code2 is executed, rather than calling the code after the does>.
This also allows putting code3 in def-word; this is particularly relevant when you want to
also use set-optimizer (see (undefined) [User-defined compile-commal, page (undefined))

Chapter 6: Forth Words 121

on the defined word, because does>/set-does> calls set-optimizer itself, so using set-
optimizer before does>/set-does> has no effect.

Here at-code2 could be the xt of an existing word, or it could be provided through a
quotation (see (undefined) [Quotations|, page (undefined)).

Another advantage of set-does> is that the result is a little more efficient if the execution
token passed to it is that of a primitive. This advantages comes to fruition in:

: myconstant3 (w "name" -- ; name execution: -- w)
create ,
['] @ set-does> ;

During name execution, after pushing the body address of name, @ is executed.

The efficiency advantage shows up in the comparisons of compiled code size (see (unde-
fined) [User-defined defining words with colon definitions], page (undefined)); the execution
time also benefits.

6.11.10.3 Applications of CREATE. .DOES>
You may wonder how to use this feature. Here are some usage patterns:

When you see a sequence of code occurring several times, and you can identify a meaning,
you will factor it out as a colon definition. When you see similar colon definitions, you can
factor them using CREATE..DOES>. E.g., an assembler usually defines several words that
look very similar:

: ori, (reg-target reg-source n —-)
0 asm-reg-reg-imm ;
: andi, (reg-target reg-source n --)

1 asm-reg-reg-imm ;
This could be factored with:
: reg-reg-imm (op-code --)
CREATE ,

DOES> (reg-target reg-source n —-)
@ asm-reg-reg-imm ;

0 reg-reg-imm ori,
1 reg-reg-imm andi,

Another view of CREATE. .DOES> is to consider it as a crude way to supply a part of the
parameters for a word (known as currying in the functional language community). E.g., +
needs two parameters. Creating versions of + with one parameter fixed can be done like
this:

: curry+ (nl "name" --)
CREATE ,

DOES> (n2 -- nl+n2)
e + ;

3 curry+ 3+
-2 curry+ 2-

Chapter 6: Forth Words 122

6.11.10.4 The gory details of CREATE. .DOES>

DOES> (compilation colon-sysl — colon-sys2) core “does”

Changes the current word such that it pushes its body address and then calls the code
behind the does>. Also changes the compile, implementation accordingly. Call set-
optimizer afterwards if you want a more efficient implementation.

You can put the does>-part in a different definition than the create part. This allows
us to, e.g., select among different DOES>-parts:

: doesl
DOES> (... —— ...)
codel ;

: does?2
DOES> (... —— ...)
code?2 ;

: def-word (... —— ...)
Create ...
IF
doesi
ELSE
does?2
THEN ;

In this example, the selection of whether to use does1 or does2 is made at definition-
time, i.e., at the time when the child word is CREATEd.

Note that the property of does> to end the definition makes it necessary to introduce
extra definitions does1 and does2. You can avoid that with set-does>:

: def-word (... —— ...)
create ...
IF
[: codel ;] set-does>
ELSE
[: code2 ;] set-does>
THEN ;

set-does> (ot —) gforth-1.0 “set-does-to”

Changes the current word such that it pushes its body address and then executes xt.
Also changes the compile, implementation accordingly. Call set-optimizer afterwards if
you want a more efficient implementation.

In a standard program you can apply a DOES>-part only if the last word was defined with
CREATE. In Gforth, the DOES>-part will override the behaviour of the last word defined in
any case. In a standard program, you can use DOES> only in a colon definition. In Gforth,
you can also use it in interpretation state, in a kind of one-shot mode; for example:

CREATE name (... —— ...)
initialization
DOES>

Chapter 6: Forth Words 123

code ;
is equivalent to the standard:

:noname
DOES>
code ;
CREATE name EXECUTE (... -- ...)
initialization
Gforth also supports quotations in interpreted code, and quotations save and restore the
current definition, so you can also write the example above also as:

CREATE name (... —— ...)
initialization
[: code ;] set-does>
>body (zt — a-addr) core “to-body”

a-addr is the address of the body (aka parameter field or data field) of the word repre-
sented by zt

You can access the data area of a created word with >body, including words where
the behaviour has been changed with does>/set-does>. So if you know that five has
been defined with, e.g., myconstant3 (see (undefined) [User-defined defining words using
CREATE], page (undefined)), you can change its value with

7 ' five >body !

and performing five will then push 7. By contrast, for words defined with myconstant
(defined using :, see (undefined) [User-defined defining words with colon definitions],
page (undefined)) you cannot change the value in this way.

However, if a word uses set-optimizer (see (undefined) [User-defined compile-commal,
page (undefined)) for a more efficient implementation of the compiled code for a word, in
many cases the compiled code does not read data from the body of this word, and in that
case changing the data by using >body will not have the desired effect. So looking at the
source code of a defining word and seeing create is not enough to conclude that you can
change the data and it will affect all existing uses. An example of that is myconstant4 (see
(undefined) [User-defined compile-comma|, page (undefined)).

So it’s a good idea to document whether the intention behind a defining word using
create is that it’s data should be changeable through >body.

6.11.10.5 Advanced does> usage example

The MIPS disassembler (arch/mips/disasm.fs) contains many words for disassembling
instructions, that follow a very repetetive scheme:

:noname disasm-operands s" inst-name" type ;
entry-num cells table + !

Of course, this inspires the idea to factor out the commonalities to allow a definition like
disasm-operands entry-num table define-inst inst-name

The parameters disasm-operands and table are usually correlated. Moreover, before 1
wrote the disassembler, there already existed code that defines instructions like this:

entry-num inst-format inst-name

Chapter 6: Forth Words 124

This code comes from the assembler and resides in arch/mips/insts.fs.

So I had to define the inst-format words that performed the scheme above when executed.
At first I chose to use run-time code-generation:

inst-format (entry-num "name" -- ; compiled code: addr w --)
:noname Postpone disasm-operands
name Postpone sliteral Postpone type Postpone ;
swap cells table + ! ;

Note that this supplies the other two parameters of the scheme above.

An alternative would have been to write this using create/does>:
inst-format (entry-num "name" --)
here name string, (entry-num c-addr) \ parse and save "name"
noname create , (entry-num)
latestxt swap cells table + !

does> (addr w ——)
\ disassemble instruction w at addr
Q@ >r

disasm-operands
r> count type ;

Somehow the first solution is simpler, mainly because it’s simpler to shift a string from
definition-time to use-time with sliteral than with string, and friends.

I wrote a lot of words following this scheme and soon thought about factoring out the
commonalities among them. Note that this uses a two-level defining word, i.e., a word that
defines ordinary defining words.

This time a solution involving postpone and friends seemed more difficult (try it as an
exercise), so I decided to use a create/does> word; since I was already at it, I also used
create/does> for the lower level (try using postpone etc. as an exercise), resulting in the
following definition:

: define-format (disasm-xt table-xt --)
\ define an instruction format that uses disasm-xt for
\ disassembling and enters the defined instructions into table
\ table-xt
create 2,
does> (u "inst" --)
\ defines an anonymous word for disassembling instruction inst,
\ and enters it as u-th entry into table-xt
2@ swap here name string, (u table-xt disasm-xt c-addr) \ remember string]]

noname create 2, \ define anonymous word
execute latestxt swap ! \ enter xt of defined word into table-xt
does> (addr w --)

\ disassemble instruction w at addr
2@ >r (addr w disasm-xt R: c-addr)
execute (R: c-addr) \ disassemble operands
r> count type ; \ print name
Note that the tables here (in contrast to above) do the cells + by themselves (that’s
why you have to pass an xt). This word is used in the following way:

Chapter 6: Forth Words 125

' disasm-operands ' table define-format inst-format
As shown above, the defined instruction format is then used like this:
entry-num inst-format inst-name

In terms of currying, this kind of two-level defining word provides the parameters in
three stages: first disasm-operands and table, then entry-num and inst-name, finally addr
w, i.e., the instruction to be disassembled.

Of course this did not quite fit all the instruction format names used in insts.fs, so I
had to define a few wrappers that conditioned the parameters into the right form.

If you have trouble following this section, don’t worry. First, this is involved and takes
time (and probably some playing around) to understand; second, this is the first two-
level create/does> word I have written in seventeen years of Forth; and if I did not have
insts.fs to start with, I may well have elected to use just a one-level defining word (with
some repeating of parameters when using the defining word). So it is not necessary to
understand this, but it may improve your understanding of Forth.

6.11.10.6 Words with user-defined to etc.

When you define a word z, you can set its execution semantics with set-does> (see (unde-
fined) [User-defined defining words using CREATE], page (undefined)) or set-execute (see
(undefined) [Header methods]|, page (undefined)). But you can also change the semantics
of

to x \ aka ->x

+to x \ aka +>x

action-of x \ aka “x defer@

is x \ aka “x defer!
addr x

This is all achieved through a common mechanism described in this section. As an
example, let’s define dvalue (it behaves in Gforth exactly like 2value, see (undefined)
[Values|, page (undefined)). The code is as follows, explained below:

: d+! (d addr --)
dup >r 2@ d+ r> 2! ;

\ to +to action-of is addr
to-table: d!-table 2! 4+! n/a n/a [noop]

' >body d!-table to-class: dvalue-to

: dvalue (d "name" --)
create 2,
['] 2@ set-does>
['] dvalue-to set-to ;

#5. dvalue x
#2. +to x
x d. \ prints 7

First, we define the support word d+!.

Chapter 6: Forth Words 126

Next, we define d!-table, a table of the various to-like actions.

For actions that are not supported, we put n/a in the table, and when you try to use,
e.g., is x, exception -21 (unsupported operation) is thrown.

For the to and +to actions, we have to provide words with the stack effect (d addr
--), where addr is the address where the data of the value-flavoured word is stored. For
addr (only supported for addressable: words), we have to provide a word with the stack
effect (addrl -- addr2); in the usual case, both addresses are the same, and we can just
provide [noop]. For the general case, see the description of to-table: below.

Next, the defining word to-class: combines the d!-table with the address-
computation word >body, resulting in the definition of dvalue-to.! The
address-computation word has the stack effect (... xt —— addr). When invoking +to x,
the xt of x is pushed and then the address-computation word (>body) is called; the result
is the address that is then passed on to d+! (from d!-table).

For dvalue that’s all, but in other cases, e.g., value-flavoured fields (see (undefined)
[Value-Flavoured and Defer-Flavoured Fields|, page (undefined)), additional stack items
can be consumed by the address-computation word, and those have to be provided by the
user as stack-top values when invoking, e.g., to field.

Next, we have the definition of dvalue, which is a straightforward create...set-does>
word that also tells name with set-to how it should behave for to etc.

Finally, we use dvalue to define x and use it. The line using +to exercises the set-to
mechanism:

#2. +to x
performs
#2. ' x >body d+!
The >body is the address-computation word given in the definition of dvalue-to, and
the d+! is the +to entry in d!-table.
These are the words mentioned above:

to-table: ("name" "to-word" "+to-word" "addr-word" "action-of-word" "is-word" —) gforth-Jj
experimental “to-table-colon”

Create a table name with entries for TO, +T0, ACTION-OF, IS, and ADDR. The words for
these entries are called with at on the stack, where xt belongs to the word behind to (or
+to etc.). Use n/a to mark unsupported operations. Default entries operations can be left
away at the end of the line; the default is for the addr entry is [noop] while the default for
the other entries is n/a.

The stack effects of the actions are:

e For the to and +to action: (value addr --), where value has the appropriate type
(e.g., a double-cell in our dvalue example).

e For the action-of action: (addr —— xt)

e For the is action: (xt addr —-)

10 The same to-table is often combined with different address computation words (e.g., for global values,
user values, value-flavoured fields and locals), that’s why the definition of the to-table is separated from
the definition of the to-class.

Chapter 6: Forth Words 127

e For the addr action: (addrl -- addr2)

The addr input parameter in all these cases is the address of the memory where the
value of the xt is stored.

The default mechanism means that d!-table could instead have been defined as follows:

\ to +to action-of is addr
to-table: d!-table 2! d+!
n/a (-) gforth-experimental “not-available”

This word can be ticked, but throws an “Operation not supported” exception on inter-
pretation and compilation. Use this for methods etc. that aren’t supported.
to-class: (zt table "name" —) gforth-experimental “to-class-colon”

Create a to-class implementation name, where xt (... xt —— addr) computes the ad-
dress to access the data, and table (created with to-table:) contains the words for accessing
it.
>uvalue (zt — addr) gforth-internal “to-uvalue”

Xt is the xt of a word z defined with uvalue; addr is the address of the data of x in the
current task. This word is useful for building, e.g., uvalue. Do not use it to circumvent
that you cannot get the address of a uvalue with addr; in the future Gforth may perform
optimizations that assume that uvalues can only be accessed through their name.
set-to (to-zt —) gforth-1.0

Changes the implementations of the to-class methods of the most recently defined word
to come from the to-class that has the xt to-at.

6.11.10.7 User-defined compile,

You can also change the implementation of compile, for a word, with
set-optimizer (zt —) gforth-1.0

Changes the current word such that compile,ing it executes zt (with the same stack
contents as passed to compile,). Note that compile, must be consistent with execute, so
you must use set-optimizer only to install a more efficient implementation of the same
behaviour.

opt: (compilation — colon-sys2 ; run-time — nest-sys) gforth-1.0 “opt-colon”
Starts a nameless colon definition; when it is complete, this colon definition will become
the compile, implementation of the latest word (before the opt:).

Note that the resulting compile, must still be equivalent to postpone literal
postpone execute, so set-optimizer is useful for efficiency, not for changing the
behaviour. There is nothing that prevents you from shooting yourself in the foot, however.
You can check whether your uses of set-optimizer are correct by comparing the results
when you use it with the results you get when you disable your uses by first defining

: set-optimizer drop ;
As an example of the use of set-optimizer, we can enhance myconstant3 as follows.

: myconstant4 (n "name" -- ; name: -- n)
create ,
['] @ set-does>

Chapter 6: Forth Words 128

[: >body @ postpone literal ;] set-optimizer
The only change is the addition of the set-optimizer line. When you define a constant
and compile it:

5 myconstant4 five
: foo five ;

the compiled five in foo is now compiled to the literal 5 instead of a generic invocation
of five. The quotation has the same stack effect as compile,: (xt --). The passed xt
belongs to the compile,d word, i.e., five in the example. In the example the xt is first
converted to the body address, then the value 5 at that place is fetched, and that value is
compiled with the postpone literal (see (undefined) [Literals|, page (undefined)).

This use of set-optimizer assumes that the user does not change the value of a con-
stant with, e.g., 6 ' five >body !. While five has been defined with create, that is an
implementation detail of CONSTANT, and if you don’t document it, the user must not rely
on it. And if you use set-optimizer in a way that assumes that the body does not change
(like is done here), you must not document that create is used; and conversely, if you
document it, you have to write the compile, implementation such that it can deal with
changing bodies.

Note that the call to set-optimizer has to be performed after the call to set-does>
(or does>, because set-does> overwrites the compile, implementation itself.

We can also apply set-optimizer to individual words rather than inside a defining word
like constant. In this case, the xt of the word passed to optimizer is usually unnecessary
and is dropped. As an simple example, let’s define a word that is inlined when being
compiled:

: compile-my2dup (xt --)
drop 11 over over [[;

: my2dup over over ;
' compile-my2dup set-optimizer

: foo my2dup ;
see my2dup
An alternative way to define my2dup is:

: my2dup over over ;
opt: drop 1] over over [[;
Opt: starts an anonymous definition that is then (internally) attached to my2dup with
set-optimize.
Finally an even more convenient way to write this is to use inline: (see (undefined)
[Inline Definitions|, page (undefined)), but it is limited to inlining.
The engine gforth-itc uses , for compile, in nearly all cases and set-optimizer

usually has no effect there.
6.11.10.8 Creating from a prototype

In the above we show how to define a word by first using create, and then modifying it
with immediate, set-does>, set-to, set-optimizer etc.

Chapter 6: Forth Words 129

An alternative way is to create a prototype using these words, and then create a new
word from that prototype. This kind of copying does not cover the body, so that has to be
allocated and initialized explicitly. Taking dvalue above, we could instead define it as:

create dvalue-prototype (-- d)
"20 set-does>
“dvalue-to set-to

: dvalue (d "name" -- ; name: —— d)
" “dvalue-prototype create-from 2, reveal ;

An advantage of this approach is that creating words with dvalue is now faster.!! But
this advantage is only relevant if the number of words created with this defining word is
huge.
create-from (nt "name" —) gforth-1.0

Create a word name that behaves like nt, but with an empty body. nt must be the nt of
a named word. The resulting header is not yet revealed; use reveal to reveal it or latest
to get its xt. Creating a word with create-from without using any set- words is faster
than if you create a word using set- words, immediate, or does>. You can use noname
with create-from.

reveal (-) gforth-0.2

Put the current word in the wordlist current at the time of the header definition.
reveal! (xt wid —) core-ext “reveal-store”

Add xt to a wordlist. Mapped to DEFER!.

The performance advantage does not extend to using noname with the defining word.
Therefore we also have

noname-from (zt -) gforth-1.0

Create a nameless word that behaves like zt, but with an empty body. zt must be the
nt of a nameless word.

Here’s a usage example:

" “dvalue-prototype noname create-from
latestnt constant noname-dvalue-prototype

: noname-dvalue (d -- xt ; xt execution: -- d)
noname-dvalue-prototype noname-from 2,
latestxt ;

6.11.10.9 Making a word current

Many words mentioned above, such as immediate or set-optimizer change the “current”
or “most recently defined” word. Sometimes you want to change an earlier word. You can
do this with

make-latest (nt -) gforth-1.0

1 The non-prototype method first duplicates the header methods of create, modify them, and eventually
deduplicate them. The create-from approach eliminates this overhead.

Chapter 6: Forth Words 130

Make nt the latest definition, which can be manipulated by immediate and set-* op-
erations. If you have used (especially compiled) the word referred to by nt already, do
not change the behaviour of the word (only its implementation), otherwise you may get a
surprising mix of behaviours that is not consistent between Gforth engines and versions.

6.11.10.10 Const-does>

A frequent use of create...does> is for transferring some values from definition-time to
run-time. Other ways of achieving this are closures (see (undefined) [Closures], page (unde-
fined)), and with colon definitions (see (undefined) [User-defined defining words with colon
definitions|, page (undefined)), but another way of achieving this is to use

const-does> (run-time: w*uw r*ur uw ur "name" —) gforth-obsolete “const-does”
Defines name and returns.
name execution: pushes w*uw r*ur, then performs the code following the const-does>.

A typical use of this word is:

: curry+ (nl "name" --)
1 0 CONST-DOES> (n2 -- nl+n2)
+ .

3

3 curry+ 3+
Here the 1 0 means that 1 cell and 0 floats are transferred from definition to run-time.
The advantages of using const-does> compared to create?}...@word{does> are:

e You don’t have to deal with storing and retrieving the values, i.e., your program be-
comes more writable and readable.

e When using does>, you have to introduce a @ that cannot be optimized away auto-
matically (because the system does not know whether you allow to access the data
with >body...!). You can address this problem with set-optimizer (see (undefined)
[User-defined compile-comma], page (undefined)), but const-does> avoids it; however,
the current implementation is still not particularly efficient.

A Standard Forth implementation of const-does> is available in compat/const-
does.fs.

6.11.11 Deferred Words

The defining word Defer allows you to define a word by name without defining its behaviour;
the definition of its behaviour is deferred. Here are two situation where this can be useful:

e Where you want to allow the behaviour of a word to be altered later, and for all
precompiled references to the word to change when its behaviour is changed.

e For mutual recursion: See (undefined) [Calls and returns], page (undefined).

In the following example, foo always invokes the version of greet that prints “Good
morning” whilst bar always invokes the version that prints “Hello”. There is no way of
getting foo to use the later version without re-ordering the source code and recompiling it.

: greet ." Good morning" ;
: foo ... greet ... ;
: greet ." Hello" ;

Chapter 6: Forth Words 131

: bar ... greet ... ;

This problem can be solved by defining greet as a Deferred word. The behaviour of a
Deferred word can be defined and redefined at any time by using IS to associate the xt of
a previously-defined word with it. The previous example becomes:

Defer greet (--)

: foo ... greet ... ;
: bar ... greet ... ;
: greetl (--) ." Good morning"

: greet2 (--) ." Hello" ;
' greet2 IS greet \ make greet behave like greet2

Programming style note:

You should write a stack comment for every deferred word, and put only XTs into
deferred words that conform to this stack effect. Otherwise it’s too difficult to use the
deferred word.

One thing to note is that IS has special compilation semantics, such that it parses the
name at compile time (like TO):

: set-greet (xt —-)
IS greet ;

' greetl set-greet
Defer ("name" —) core-ext

Define a deferred word name; you have to set it to an xt before executing it.
name execution: execute the most recent xt that name has been set to.
Is name run-time: (‘zt —) Set name to execute zt.
Action-of name run-time: (— zt) Xt is currently assigned to name.

IS (xt ... "name" —) core-ext

Name is a defer-flavoured word, ... is optional additional addressing information, e.g.,
for a defer-flavoured field. At run-time, perform the is name semantics: change name (with
the same additional addressing information) to execute xt.

You can extract the xt of a deferred word with action-of:
action-of greet (xt) >name id.

action-of (interpretation "name" ... — xt; compilation "name" — ; run-time ... — at) core-
ext

Name is a defer-flavoured word, ... is optional additional addressing information, e.g.,
for a defer-flavoured field. At run-time, perform the action-of name semantics: Push the
at, that name (possibly with additional addressing data on the stack) executes.

One usage for deferred words is the definition of a an action (e.g., initialization) in several
pieces, each piece in a different source file dealing with the matters of that source file. This
can be done with

defer myspeech (--)
:noname cr ." <central message>" ; is myspeech

\ and in every source file where you want to add a piece, something like

Chapter 6: Forth Words 132

:noname (--)
cr ." <introduction>"
[action-of myspeech compile,]
cr ." <conclusion>"
; 1s myspeech
The [action-of myspeech compile,] calls the previous content of myspeech. Gforth
offers the words :is and defers to express the last definition more conveniently:

:is myspeech (--)

cr ." <introduction>"
defers myspeech
cr ." <conclusion>" ;
:is ("name" -) gforth-experimental “colon-is”

define a noname that is assigned to the deffered word name at ;.
defers (compilation "name" — ; run-time ... — ...) gforth-0.2

Compiles the present contents of the deferred word name into the current definition.
Le., this produces static binding as if name was not deferred.

Another usage is to change a deferred word temporarily, and later change it back. Gforth
provides words for supporting this usage. The use of preserve is shown in this example:

smalltalk (--)
greet ." Isn't the weather nice?"

\ here GREET perfroms GREET2

: when-in-rome (xt --)
[: ." Buon Giorno!" ;] is greet
execute

preserve greet \ Equivalent to: ['] greet2 is greet

' greetl is greet
greet \ "Good Morning"
' smalltalk when-in-rome \ "Buon Giorno! Isn't the weather nice?"

greet \ "Hello"
preserve (compilation "name" — ; run-time —) gforth-1.0

Name has to be a defer-flavoured word that does not consume additional stack items for
addressing (i.e., not a defer-flavoured field). Preserve name changes name at run-time to
execute the same XT that it had at compile time. I.e., Preserve name is equivalent to [
action-of name] literal is name.

Preserve is only appropriate when you want to restore the deferred word to a fixed xt.
If you want to change a deferred temporarily and then restore its old run-time value, use
wrap-xt:

: when-in-rome2 (xt --)
[: ." Buon Giormo!" ;] ['] greet rot wrap-xt ;

' greetl is greet

Chapter 6: Forth Words 133

greet \ "Good Morning"
' smalltalk when-in-rome2 \ "Buon Giorno! Isn't the weather nice?"
greet \ "Good Morning"

wrap-xt (... ot zt2 xt3 — ...) gforth-1.0
Set deferred word xt2 to xt1 and execute xt3. Restore afterwards.

For implementing words like wrap-xt to which you pass the xt of a deferred word, you
cannot use is and action-of, which consume a name from the input stream. Instead, you
use the words defer! and defer@.

defer! (xt xt-deferred —) core-ext “defer-store”

xt-deferred belongs to a word defined with defer, it is changed to execute zt on execu-
tion.
If zt-deferred belongs to another defer-flavoured word (e.g., a defer-flavoured field), the lo-
cation associated with ... zt-deferred is changed to execut zt.
If xt-deferred is the xt of a word that is not defer-flavoured, throw -21 (Unsupported oper-
ation).
defer@ (... zt-deferred — zt) core-ext “defer-fetch”

If zt-deferred belongs to a word defined with defer, zt represents the word currently
associated with the deferred word zt-deferred.

If at-deferred belongs to another defer-flavoured word (e.g., a defer-flavoured field), at is
the word associated with the location indicated by ... zt-deferred (e.g., for a defer-flavoured
field ... is the structure address).

If zt-deferred is the xt of a word that is not defer-flavoured, throw -21 (Unsupported oper-
ation).

A deferred word can only inherit execution semantics from the xt (because that is all
that an xt can represent — for more discussion of this see (undefined) [Tokens for Words],
page (undefined)); by default it will have default interpretation and compilation semantics
deriving from this execution semantics. However, you can change the interpretation and
compilation semantics of the deferred word in the usual ways:

: bar ; immediate
Defer fred immediate
Defer jim

" bar IS jim \ jim has default semantics
' bar IS fred \ fred is immediate

6.11.12 Synonyms

The defining word synonym allows you to define a word by name that has the same behaviour
as some other word. Here are two situation where this can be useful:

e When you want access to a word’s definition from a different word list (for an example
of this, see the definitions in the Root word list in the Gforth source).

e When you want to create a synonym; a definition that can be known by either of two
names (for example, THEN and ENDIF can be defined as synonyms).

Synonym ("name" "oldname" —) tools-ext

Chapter 6: Forth Words 134

Define name to behave the same way as oldname: Same interpretation semantics, same
compilation semantics, same to, +to, is, action-of and addr semantics.

Gforth also offers the Gforth-specific alias, that allows to define another word with the
same execution token, but otherwise default semantics (no copying of compilation or other
semantics). You can then change, e.g., the compilation semantics with, e.g., immediate.
Alias (zt "name" —) gforth-0.2

Define name as a word that performs zt. Unlike for deferred words, aliases don’t have
an indirection overhead when compiled.

Example:
: foo ." foo" ; immediate
' foo Alias barl \ barl is not an immediate word
' foo Alias bar2 immediate \ bar2 is an immediate word
synonym bar3 foo \ bar3 is an immediate word
: test-barl barl ; \ no output
test-baril \ "foo"
: test-bar2 bar2 ; \ "foo"
test-bar2 \ no output
: test-bar3 bar3 ; \ "foo"
test-bar3 \ no output

Both synonyms and aliases have a different nt than the original, but ticking it (or using
name>interpret) produces the same xt as the original (see (undefined) [Tokens for Words],
page (undefined)).

6.12 Structures

A structure (aka record) is a collection of fields that are stored together. The fields can
have different types and are accessed by name. There are typically several instances of a
structure, otherwise programmers tend to prefer using a variable or somesuch for each field.

In Forth you can use raw address arithmetic to access fields of structures, but using
field names and defining field access words with the defining words described in this section
makes the code more readable.

6.12.1 Standard Structures
The Forth 2012 standard defines a number of words for defining fields and structures.
A typical example of defining a structure with several fields is:
0 \ offset of first field, O in the usual case

field: intlist-next (intlist -- addrl)
field: intlist-val (intlist -- addr2)
constant intlist (-— u)

An equivalent alternative way of defining this structure is:
begin-structure intlist (-- u)
field: intlist-next (intlist -- addrl)
field: intlist-val (intlist -- addr2)
end-structure

Chapter 6: Forth Words 135

Intlist returns the size of the structure. The convention for the field names here is to
prepend the structure name, so that you don’t run into conflicts when several structures
have next and val fields; in Forth, by default field names are in the same wordlist (i.e., the
same name space) as the other words (including other field names), and trying to use the
search order (see (undefined) [Word Lists|, page (undefined)) for avoiding conflicts is rather
cumbersome (unless you use the scope recognizer see (undefined) [Dealing with existing
Recognizers|, page (undefined)).

You can then use that to allocate an instance of that structure and then use the field
words to access the fields of that instance:

intlist allocate throw constant my-intlistl
0 my-intlistl intlist-next !
5 my-intlistl intlist-val !

intlist allocate throw constant my-intlist2
my-intlistl my-intlist2 intlist-next !
7 my-intlist2 intlist-val !

: intlist-sum (intlist -- n)
\ "intlist" is a pointer to the first element of a linked list
"n" is the sum of the intlist-val fields in the linked list
0 BEGIN (intlistl nl)
over
WHILE (listl nl1)
over intlist-val @ +
swap intlist-next @ swap
REPEAT
nip ;

my-intlist2 intlist-sum . \ prints "12"

In addition to field: for cell-aligned and cell-sized fields, you can define fields sized and
aligned for various types with:

begin-structure ("name" — struct-sys 0) facility-ext

end-structure (struct-sys +n —) facility-ext
end a structure started with begin-structure

cfield: (ul "name" — u2) facility-ext “c-field-colon’
Define a char-sized field

field: (ul "name" — u2) facility-ext “field-colon”
Define an aligned cell-sized field

2field: (ul "name" — u2) gforth-0.7 “two-field-colon’
Define an aligned double-cell-sized field

ffield: (ul "name" — u2) floating-ext “f-field-colon”
Define a faligned float-sized field

sffield: (ul "name" — u2) floating-ext “s-f-field-colon”

Chapter 6: Forth Words 136

Define a sfaligned sfloat-sized field
dffield: (ul "name" — u2) floating-ext “d-f-field-colon”
Define a dfaligned dfloat-sized field
wfield: (ul "name" — u2) gforth-1.0 “w-field-colon”
Define a naturally aligned field for a 16-bit value.
1field: (ul "name" — u2) gforth-1.0 “l-field-colon”
Define a naturally aligned field for a 32-bit value.
xfield: ((ul "name" — u2) gforth-1.0 “x-field-colon”
Define a naturally aligned field for a 64-bit-value.

If you need something beyond these field types, you can use +field to define fields of
arbitrary size. You have to ensure the correct alignment yourself in this case. E.g., if you
want to put one struct inside another struct, you would do it with

0
cfield: nested-foo
aligned intlist +field nested-bar
constant nested

In this example the field nested-bar contains an intlist structure, so the size of intlist
is passed to +field. An intlist must be cell-aligned (it contains cell fields), and this is
achieved by aligning the current field offset with aligned before the field definition. Our
recommendation is to always precede the usage of +field with an appropriate alignment
word (except if character-alignment is good enough for the field); this ensures that the field
will stay correctly aligned even if other fields are later inserted before the +field-defined
field.

+field (noffsetl nsize "name" — noffset2) facility-ext “plus-field”

Defining word; defines name (addrl -- addr2), where addr?2 is addri+noffseti. noff-
set2 is noffseti+nsize.

The first field is at the base address of a structure and the word for this field (e.g.,
list-next) actually does not change the address on the stack. You may be tempted to
leave it away in the interest of run-time and space efficiency. This is not necessary, because
Gforth and other Forth systems optimize this case: If you compile a first-field word, no
code is generated. So, in the interest of readability and maintainability you should include
the word for the field when accessing the field.

6.12.2 Value-Flavoured and Defer-Flavoured Fields

In addition to the variable-flavoured fields that produce an address (see (undefined) [Stan-
dard Structures|, page (undefined)), Gforth also provides value-flavoured fields. Like all
fields, value-flavoured fields consume the start address of the struct, but they produce their
value and you can apply to, +to and (if the field is addressable:, see (undefined) [Values],
page (undefined)) addr on them. E.g., we can do something like the int1list definition (see
(undefined) [Standard Structures|, page (undefined)):

0
value: intlist>next (intlista -- intlistal)
addressable: value: intlist>val (intlista -—- n)

Chapter 6: Forth Words 137

constant intlista (—— u)

This means that there are the following ways of accessing intlist>val:

intlist>val (intlista -- n)
->intlist>val (n intlista --) \ aka to intlist>val
+>intlist>val (n intlista --) \ aka +to intlist>val

addr intlist>val (intlista -- addr)

And here’s the earlier example (see (undefined) [Standard Structures|, page (undefined))
rewritten to use intlista:

intlista allocate throw constant my-intlistal
0 my-intlistal to intlist>next
5 my-intlistal to intlist>val

intlista allocate throw constant my-intlista2
my-intlistal my-intlista2 to intlist>next
7 my-intlista2 to intlist>val

intlista-sum (intlista -- n)
\ "intlista" is a pointer to the first element of a linked list
\ "n" is the sum of the intlist>val fields in the linked list
0 BEGIN (intlistal nl)
over
WHILE (listl nl)
over intlist>val +
swap intlist>next swap
REPEAT
nip ;

my-intlista2 intlista-sum . \ prints "12"

Depending on the type of the field, the value can be something different than a single
cell.

value: (ul "name" — u2) gforth-experimental “value-colon”

Name is a value-flavoured field; in-memory-size: cell; on-stack: cell
cvalue: (ul "name" — u2) gforth-experimental “cvalue-colon”

Name is a value-flavoured field; in-memory-size: char; on-stack: unsigned cell
wvalue: (ul "name" — u2) gforth-experimental “wvalue-colon”

Name is a value-flavoured field; in-memory-size: 16 bits; on-stack: unsigned cell
lvalue: (ul "name" — u2) gforth-experimental “lvalue-colon”

Name is a value-flavoured field; in-memory-size: 32 bits; on-stack: unsigned cell
scvalue: (ul "name" — u2) gforth-experimental “scvalue-colon”

Name is a value-flavoured field; in-memory-size: char; on-stack: signed cell
swvalue: (ul "name" — u2) gforth-experimental “swvalue-colon”

Name is a value-flavoured field; in-memory-size: 16 bits; on-stack: signed cell

slvalue: (ul "name" — u2) gforth-experimental “slvalue-colon”

Chapter 6: Forth Words 138

Name is a value-flavoured field; in-memory-size: 32 bits; on-stack: signed cell
2value: (ul "name" — u2) gforth-experimental “two-value-colon”

Name is a value-flavoured field; in-memory-size: 2 cells; on-stack: 2 cells; +to performs
double-cell addition (d+).

fvalue: (ul "name" — u2) gforth-experimental “fvalue-colon”

Name is a value-flavoured field; in-memory-size: float; on-stack: float
sfvalue: (ul "name" — u2) gforth-experimental “sfvalue-colon”

Name is a value-flavoured field; in-memory-size: 32-bit float; on-stack: float
dfvalue: ((ul "name" — u2) gforth-experimental “dfvalue-colon”

Name is a value-flavoured field; in-memory-size: 64-bit float; on-stack: float
zvalue: (ul "name" — u2) gforth-experimental “zvalue-colon”

Name is a value-flavoured field; in-memory-size: 2 floats; on-stack: 2 floats; +to performs
componentwise addition.

$value: (ul "name" — u2) gforth-experimental “dollar-value-colon”

Name is a value-flavoured field; in-memory-size: cell; on-stack: c-addr u (see (undefined)
[$tring words], page (undefined)); (c-addr u) +to name appends c-addr u to the string in
the field.

Gforth also has field words for dealing with dynamically-sized arrays. A field for such
an array contains just a cell that points to the actual data, and this cell has to be set to
0 before accessing the array the first time. When accessing the field (without operator, or
with to or +to), there has to be the index and the structure address on the stack, with the
structure address on top. Any further items consumed by to or +to are below the index on
the stack. The array expands to the size given by the maximum access; any unset elements
are 0; for $value[] accessing them produces a 0-length (i.e., empty) string.

Here is a usage example:

0
value[]: bla>x[]
$valuel[]: bla>$y[]
constant bla

bla allocate throw constant mybla
mybla bla erase \ set all fields to O

5 2 mybla to bla>x[] \ access at index 2

7 0 mybla to bla>x[] \ access at index 0

2 mybla bla>x[] . \ prints "5"

3 mybla bla>x[] . \ prints "0"

"foo" 2 mybla to bla>$y[] \ access at index 2
"bla" 1 mybla to bla>$y[] \ access at index 1
"bar" 2 mybla +to bla>$y[] \ access at index 2
0 mybla bla>$y[]l . . \ prints "O O"

1 mybla bla>$y[] type \ prints "bla"

2 mybla bla>$y[] type \ prints "foobar"

value[]l: (ul "name" — u2) gforth-experimental “value-left-bracket-right-bracket-colon”

Chapter 6: Forth Words 139

Name is a value-flavoured array field; in-memory-size: cell; on-stack: cell

$valuel]: (ul "name" —u2) gforth-experimental “dollar-value-left-bracket-right-bracket-
colon”

Name is a value-flavoured array field; in-memory-size: cell; on-stack: c-addr u (see (un-
defined) [$tring words|, page (undefined)); (c-addr u) +to name appends c-addr u to the
string in the array element.

Finally, you can define defer-flavoured fields. Here is a usage example:

0
addressable: defer: foo'bar
constant foo

foo allocate throw constant my-foo

:noname ." test" ; my-foo is foo'bar

my-foo foo'bar \ prints "test"
my-foo addr foo'bar @ execute \ prints "test"
my-foo action-of foo'bar execute \ prints "test"
my-foo “foo'bar defer@ execute \ prints "test"
:noname ." testl" ; my-foo “foo'bar defer!

my-foo foo'bar \ prints "testl"

defer: (ul "name" — u2) gforth-experimental “defer-colon”
Name is a defer-flavoured field

For documentation of is, action-of, defer@, defer!, see See (undefined) [Deferred
Words], page (undefined). Note however, that when used on defer-flavoured fields, all these
words consume the start address of the structure, unlike for words defined with defer.

6.12.3 Structure Extension

You can create a new structure starting with an existing structure and its fields. E.g., if we

also want to define floatlist, we can factor out the . ..-next field into a general structure
list without payload, and then define intlist and floatlist as extensions of 1list:!?
0
field: list-next (list -- addr)
constant list (-- u)
list
field: intlist-val (intlist -- addr)
constant intlist (-— u)
list

ffield: floatlist-val (floatlist -- addr)
constant floatlist (-- u)

Note that in this variant there is no intlist-next nor a floatlist-next, just a 1list-
next; so when you use, e.g., a floatlist, the organization through extension of list is

12 This feature is also known as extended records in Oberon.

Chapter 6: Forth Words 140

exposed. This may make it harder to refactor things, so you may prefer to also introduce
synonyms intlist-next and floatlist-next.

If you prefer to use begin-structure...end-structure, you can do the equivalent defi-
nition as follows:
begin-structure list (-- u)
field: list-next (list -- addr)
end-structure

list extend-structure intlist
field: intlist-val (intlist -- addr)
end-structure

list extend-structure floatlist
ffield: floatlist-val (floatlist -- addr)
end-structure

extend-structure (n "name" - struct-sys n) gforth-1.0

Start a new structure name as extension of an existing structure with size n.

6.12.4 Gforth structs

Gforth has had structs before the standard had them; they are a little different, and you
can still use them. One benefit of the Gforth structs is that they propagate knowledge of
alignment requirements, so if you build the nested structure (see (undefined) [Standard
Structures], page (undefined)), you do not need to look inside intlist to find out the
proper alignment, and you also do not need to mention alignment at all. Instead, this
example would look like:

struct
celly, field intlist-next
celly, field intlist-val
end-struct intlist)

struct
char field nested-foo
intlist), field nested-bar
end-struct nested

The fields are variable-flavoured, i.e., they work in the same way as those defined with
field:, +field etc.

A disadvantage of the Gforth structs is that, with the standard going for something
else, you need to learn additional material to write and understand code that uses them.
Another disadvantage of the Gforth structs is that they do not support value-flavoured or
defer-flavoured fields. On the balance, in our opinion the disadvantages now outweigh the
advantages, so we recommend using the standard structure words (see (undefined) [Standard
Structures|, page (undefined)). Nevertheless, here is the documentation for Gforth’s structs.

The 1ist and intlist examples look like this with Gforth structs:

struct

Chapter 6: Forth Words 141

celly, field list-next
end-struct list}

list%
celly, field intlist-val
end-struct intlistY

IntlistY contains information about size and alignment, and you use %size to get the
size, e.g., for allocation:

intlist), %size allocate throw constant my-intlistl
A shorthand for that is
intlist), %alloc constant my-intlistl

The fields behave the same way, so the rest of the example works as with standard
structures.

In addition to specifying single cells with cell’, you can also specify an array of, e.g.,
10 cells like this:

cell), 10 * field bla-blub
\ equivalent to the standard:
\ aligned 10 cells +field bla-blub

You can use celly, 10 * not just with field, but also in other places where an alignment
and size is expected, e.g., with %alloc.

%halign (align size —) gforth-0.4 “percent-align”
Align the data space pointer to the alignment align.
halignment (align size — align) gforth-0.4 “percent-alignment”
The alignment of the structure.
%halloc (align size — addr) gforth-0.4 “percent-alloc”

Allocate size address units with alignment align, giving a data block at addr; throw an
ior code if not successful.

hallocate (align size — addr ior) gforth-0.4 “percent-allocate”
Allocate size address units with alignment align, similar to allocate.
%hallot (align size — addr) gforth-0.4 “percent-allot”

Allot size address units of data space with alignment align; the resulting block of data
is found at addr.

celly (— align size) gforth-0.4 “cell-percent”
char¥% (— align size) gforth-0.4 “char-percent”
dfloat’ (— align size) gforth-0.4 “d-float-percent”
double’, (— align size) gforth-0.4 “double-percent”
end-struct (align size "name" —) gforth-0.2

Define a structure/type descriptor name with alignment align and size sizel (size
rounded up to be a multiple of align).
name execution: — align sizel

field (alignl offsetl align size "name" — align2 offset2) gforth-0.2

Chapter 6: Forth Words 142

Create a field name with offset offsetl, and the type given by align size. offset2 is the
offset of the next field, and align2 is the alignment of all fields.
name execution: addrl — addr2.
addr2=addrl+offset1

float% (— align size) gforth-0.4 “float-percent”
sfloat¥ (— align size) gforth-0.4 “s-float-percent”
hsize (align size — size) gforth-0.4 “percent-size”
The size of the structure.
struct (- align size) gforth-0.2
An empty structure, used to start a structure definition.

6.13 User-defined Stacks

Gforth supports user-defined stacks. They are used for implementing features such as
recognizer sequences, but you can also define stacks for your own purposes. And these
stacks actually support inserting and deleting at both ends, so they are actually double-
ended queues (deques). In addition, they support inserting and deleting in the middle.

In Gforth the stacks grow as necessary, but the interface is designed to also support
resource-constrained systems that allocate fixed-size stacks, where exceeding the stack size
results in an error. So you should provide the size parameter accordingly.

A stacks is represented on the data stack by a cell.
stack (n — stack) gforth-experimental
Create an unnamed stack with at least n cells space.
stack: (n "name" —) gforth-experimental “stack-colon”
Create a named stack with at least n cells space.
stack> (stack — x) gforth-experimental “stack-from”
Pop item z from top of stack.
>stack (z stack —) gforth-experimental “to-stack”
Push z to top of stack.
>back (= stack —) gforth-experimental “to-back”
Insert z at the bottom of stack.
back> (stack — z) gforth-experimental “back-from”
Remove item z from bottom of stack.
+after (21 z2 stack —) gforth-experimental “plus-after”
Insert x1 below every occurence x2 in stack.
-stack (x stack —) gforth-experimental “minus-stack”
Delete every occurence of = from anywhere in stack.
set-stack (zI .. zn n stack —) gforth-experimental

Overwrite the contents of stack with n elements from the data stack, with zn becoming
the top of stack.

get-stack (stack — z1 .. zn n) gforth-experimental

Push the contents of stack on the data stack, with the top element in stack being pushed
as n.

Chapter 6: Forth Words 143

6.14 Interpretation and Compilation Semantics

In Gforth every named word has interpretation and compilation semantics, i.e., separate
actions that are performed in various contexts.

In principle these semantics can be anything and completely independent of each other,
but in practice they are usually connected, and words usually have default compilation
semantics (compile the interpretation semantics) or immediate compilation semantics (per-
form the interpretation semantics); a few have other combinations of interpretation and
compilation semantics (combined words).

The standard also discusses execution semantics, but it uses them only to define inter-
pretation and/or compilation semantics, so they are not as essential as interpretation and
compilation semantics. In particular, for every word in the standard that has both interpre-
tation and execution semantics, they are the same. In Gforth (since 1.0), they are always
the same, and this manual uses the terms interchangeably, usually preferring interpretation
semantics. In the description of defining words, you see “name execution”, which describes
the interpretation/execution semantics of name.

Some named words also have some of to/+to/action-of/is/addr name semantics, but
these are mostly discussed elsewhere (see (undefined) [Values], page (undefined), see (un-
defined) [Deferred Words], page (undefined), see (undefined) [Words with user-defined TO
etc.], page (undefined))

6.14.1 Where are interpretation semantics used?
The most common use of the interpretation semantics of a word w is when w is text-
interpreted in interpretation state, the default state of the text interpreter.
Le., when you start Gforth and type
s" hello" type
the text interpreter performs the interpretation semantics of the words s" and type.

Also, when you get the execution token of a word w with “w, ' wor ['] w (see (undefined)
[Execution token]|, page (undefined)), the execution token represents the interpretation se-
mantics.

When you get the execution token of the most recently defined word with latestxt (see
(undefined) [Anonymous Definitions|, page (undefined)), that also refers to the interpreta-
tion semantics of the word.

Finally, name>interpret (see (undefined) [Name token]|, page (undefined)) produces an
execution token that represents the interpretation semantics of the word.

6.14.2 Where are compilation semantics used?
The most common use of the compilation semantics of a word w is when w is text-interpreted
in compile state, the state right after starting a definition with, e.g., :.
: hello
s" hello" type ;

In this example, the text interpreter performs the compilation semantics of s", type and
; (after first performing the interpretation semantics of :)

When you postpone a word, you also use the compilation semantics.

: compile-+ (--) \ compiled code: (nl n2 -- n)

Chapter 6: Forth Words 144

POSTPONE + ;

: foo (n1 n2 -- n)
[compile-+] ;

see foo

Here the POSTPONE + compiles (rather than performs) the compilation semantics of +
into compile-+. In the definition of foo, (the interpretation semantics of) compile-+ is
performed, which in turn performs the compilation semantics of +, i.e., it compiles + into
foo.

The compilation semantics is represented by a compilation token (see (undefined) [Com-
pilation token], page (undefined)). You can get the compilation token of a word w with ~~w
name>compile, comp' w, or [comp'] w. The first form first gets the name token of w and
then accesses the compilation token with name>compile.

6.14.3 Which semantics do existing words have?
For words built into Gforth, the documentation specifies the semantics.

Most words have default compilation semantics. For such words (e.g., !, see (unde-
fined) [Memory Access]|, page (undefined)) the documentation describes the interpretation
semantics without explicitly labeling as such. The compilation semantics of these words
is to compile the interpretation semantics into the current definition; the stack effect of
performing the default compilation semantics is (==).

Some words have non-default compilation semantics. This is either indicated by labels
for interpretation, compilation, and/or run-time in the stack effects (e.g., for IF, see (unde-
fined) [Arbitrary control structures|, page (undefined)), or by having separate paragraphs
for interpretation, compilation, and/or run-time in the prose (e.g., for S", see (undefined)
[String and character literals], page (undefined)).

You may wonder about the run-time semantics mentioned in the previous paragraphs.
For some words (e.g., if), the compilation semantics compiles something that is not the
interpretation/execution semantics. We (and the standard) describe the behaviour of the
code that these words compile with under the label “run-time semantics”; if you see “run-
time” in a word description (e.g., in its stack effect), that usually refers to run-time semantics
that the compilation semantics of the word compiles.

Concerning the description of the various semantics, both the standard and this manual
describe the interpretation/execution semantics of words with default semantics without
preceding these semantics with a label (the label “execution” or “interpretation” would be
appropriate). The compilation semantics of such words are the implied default compilation
semantics (see (undefined) [What sematics do normal definitions have?], page (undefined)).

For words that have some non-default semantics, the standard specifies the different
semantics of the word in separate subsections, each preceded with a label (“interpretation:”,
“compilation:”, and, if necessary, “execution:” or “run-time:”'?). This manual often takes
a more informal approach. The approach taken in this manual may be more accomodating

13 Tn some cases the standard leaves the subsection for interpretation or compilation semantics away, and
leaves it to the default mechanism to derive those semantics from execution semantics.

Chapter 6: Forth Words 145

for everyday use, while the standard approach is more precise for reasoning about details
of the language.

6.14.4 What sematics do normal definitions have?

Most defining words normally produce words with default interpretation semantics and
default compilation semantics; those that do not (e.g, synonym or interpret/compile:)
are documented appropriately.

The interpretation semantics of the newly defined word name are described in the “name
execution:” part of the description of the defining word. Things are a little more complicated
for colon definitions (see (undefined) [Colon Definitions], page (undefined)) and words using
create...does> (see (undefined) [User-defined defining words using CREATE], page (un-
defined)), but again, the description of what these words do is about the interpretation
semantics.

For a word w with default compilation semantics, the compilation semantics are to com-
pile the interpretation semantics. More formally: to append the interpretation semantics
of w to the interpretation semantics of the current definition. As an example, consider the
definition

: name ... W ... ;

Here the interpretation semantics of w is appended to the interpretation semantics of
name.

6.14.5 How to define immediate words
You can change the compilation semantics of a word to be the same as the interpretation
semantics with
immediate (—) core

Change the compilation semantics of a word to be the same as its interpretation seman-
tics.

A contrived example:

[foo]
" foo" ; immediate

: bar
[fool ; \ prints "foo"
bar \ no output
The immediate causes [foo] to perform the interpretation semantics during the defini-
tion of bar rather than compiling them. A convention sometimes (but not always) used for
immediate words is to have their names in brackets, e.g. ['].

A common use of immediate is to define macros (see (undefined) [Macros|, page (unde-
fined)).

The text interpretation of a macro in interpret state is often a mistake, so you can turn
the macro into a compile-only word with

compile-only (-) gforth-0.2

Mark the last definition as compile-only; as a result, the text interpreter and ' will warn
when they encounter such a word.

Chapter 6: Forth Words 146

Example:
: endif
postpone then ; immediate compile-only

: foo
if ." true" endif ;

endif \ "warning: endif is compile-only"
The warning is followed by a stack underflow error because then wants to consume an
orig (see (undefined) [Arbitrary control structures|, page (undefined)).

Note that compiling code while the text interpreter is in interpret state is not a problem
in itself, even if a number of words are marked compile-only. A more serious problem
is compiling code if the current definition is not an unfinished colon definition: there is
no way to run the resulting code. Gforth warns about that even if a word is not marked
compile-only or if you text-interpret it in compile state:

compile—+
postpone + ;

: foo [compile-+] ; \ no warning; interpretation semantics of compile-+J

compile-+ \ warning: Compiling outside a definition
if \ warning: IF is compile-only

\ warning: Compiling outside a definition
compile-+ \ warning: Compiling outside a definition
then \ warning: THEN is compile-only
1 if \ warning: Compiling outside a definition

+ \ warning: Compiling outside a definition
then
[

Note thet switching to compile state in the last four lines silences the “is compile-only”
warnings, because in these lines the compilation semantics of the words is performed.

Why does then not produce “Compiling outside a definition” warnings in the example
above? Then does not generate any code by itself, it just changes the target of the code
compiled by the matching if or ahead.
restrict (—) gforth-0.2

A synonym for compile-only

6.14.6 How to define combined words

In a few cases (and most of those are a bad idea) you want to define a word that has some
other combination of interpretation and compilation semantics than words with default
compilation semantics or immediate words (a combined word'*). The following contrived
example shows how you can define a combined word:

: foo ." foo" ;

4 Some people call combined words “NDCS”, but immediate words also have non-default compilation
semantics

Chapter 6: Forth Words 147

: bar ." bar" ;
' foo ' bar interpret/compile: foobarl

foobarl \ "foo"

] foobarl [\ "bar"
interpret/compile: (int-zt comp-zt "name" —) gforth-0.2 “interpret-slash-compile-
colon”

Defines name.
Name execution: execute int-xt.
Name compilation: execute comp-zt.

There are two kinds of uses for combined words:

One use of combined words is parsing words that should be copy-pasteable between
interpreted and compiled code; these words should parse at text-interpret time both in
their interpretation and their compilation semantics (like an immediate word), but then
should perform an action in their interpretation semantics and compile that action in their
compilation semantics, like a normal word. An example is ." in Gforth:

.M"-int ('ccec"' --) '"' parse type ;

."-comp ('ccc"' --) '"' parse postpone sliteral postpone type ;
' ."-int ' ."-comp interpret/compile: ."
(interpretation 'ccc"' -- ; compilation 'ccc"' -- ; run-time --)
.ll fooll \ "fOO"
: foo ." foo" ;
foo \ "foo"

The parsing code is the same in both cases, the action type is directly executed in the in-
terpretation semantics and compiled in the compilation semantics. The compilation seman-
tics also contains postpone sliteral to transfer the parsed string from text-interpretation
time to the run-time of the action. This kind of parse/literal/action split with the use of
postpone is typical for the implementations of the compilation semantics of such parsing
words, and the interpretation semantics consist just of the parse and the action parts.

We discourage the definition of additional combined words for copy-pasteability. They
do not work as intended within 11...[[(see (undefined) [Macros|, page (undefined)) and
their behaviour is also confusing in other contexts, e.g., when ticking or postponeing such
a word. A way to achieve copy-pasteability without needing to define combined words is
recognizers (see (undefined) [Recognizers|, page (undefined)). "foo" type uses the string
recognizer (see (undefined) [Dealing with existing Recognizers|, page (undefined)) and can
be copied and pasted between interpreted code, compiled code and code inside]]...[[
without problem.

On the other hand, combined words are still far better than state-smart words.'®

The other kind of use of combined words is for words like [: (see (undefined) [Quota-
tions], page (undefined)). These are not parsing words, but [:...;] sequences should be

15 state-smart words are immediate words that do state-dependent things at run-time. For a more detailed
discussion of this topic, see M. Anton Ertl, State-smartness—Why it is Evil and How to Exorcise it
(https://www.complang.tuwien.ac.at/papers/ertl98.ps.gz), EuroForth 98.

https://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
https://www.complang.tuwien.ac.at/papers/ertl98.ps.gz

Chapter 6: Forth Words 148

copy-pasteable between interpreted and compiled code; the whole sequence pushes an xt at
its run-time. At text-interpret time, it restores the state at the end to what it was at the
start. Ideally we would find a clean way to implement all this without needing combined
words, but for now the implementation is pretty messy, including combined words.

Some people also have the idea to use combined words for optimization. However,
the resulting words do not work as intended with [compile] (see (undefined) [Macros],
page (undefined)). Gforth has a better mechanism for optimization: set-optimizer (see
(undefined) [User-defined compile-commal, page (undefined)).

Some people worry about the aesthetics of interpret/compile: and have proposed
alternative syntaxes, and the following ones are supported in Gforth:

: foobar2

" foo"
[: ." bar" ;] set-compsem
foobar2 \ "foo"

] foobar2 [\ "bar"

: foobar3
n fooll .
.)
compsem:
n barll .
. b

foobar3
] foobar3 [

llfooll
llbarll

~ -

: foobar4
n barll .
.)
intsem:
n fooll .
. b

foobar4d \ "foo"
] foobar4 [\ "bar"

You can use where (see (undefined) [Locating uses of a word], page (undefined)) to find
out how rarely which syntax is used in Gforth.

set-compsenm (at —) gforth-experimental
change compilation semantics of the last defined word
compsem: (—) gforth-experimental “comp-sem-colon”

Changes the compilation semantics of the current definition to perform the definition
starting at the compsem:.

intsem: (—) gforth-experimental “int-sem-colon”

The current definition’s compilation semantics are changed to perform its interpretation
semantics. Then its interpretation semantics are changed to perform the definition starting
at the intsem: (without affecting the compilation semantics). Note that if you then call
immediate, the compilation semantics are changed to perform the word’s new interpretation
semantics.

Chapter 6: Forth Words 149

6.15 Tokens for Words

This section describes the creation and use of tokens that represent words.

6.15.1 Execution token

An execution token (xt) represents some behaviour of a word. You can use execute to invoke
the behaviour represented by the xt and compile, (see (undefined) [Macros|, page (unde-
fined)) to compile it into the current definition. Other uses include deferred words (see
(undefined) [Deferred Words|, page (undefined)).

In particular, there is the execution token of a word that represents its interpretation
semantics (see (undefined) [Interpretation and Compilation Semantics], page (undefined)).

For a named word z, you can use ~x to get its execution token:
5. (nxt)

execute () \ "5"
: foo . execute ;
5 foo \ "5"

However, the tick-recognizer that recognizes the = prefix is a Gforth extension, so you

may prefer to use the Standard Forth words:

" ("name" — xt) core “tick”
xt represents name’s interpretation semantics.

('] (compilation. "name" — ; run-time. — xt) core “bracket-tick”
xt represents name’s interpretation semantics.

These are parsing words (whereas ~x is treated as a literal by a recognizer), and you
may find the behaviour in interpreted and compiled code unintuitive:

5. (nxt)

execute () \ "B"
: foo ['] . ;

5 foo execute \ "5"
: bar ' dup ;

5 bar . drop execute \ "5"

' parses at run-time, so if you put it in a colon definition, as in bar, it does not consume
the next word in the colon definition, but the next word at run-time (i.e., the . in the
invocation of bar). If you want to put a literal xt in a colon definition without writing " x,
write ['] x.

Gforth’s “x, ' and ['] warn when you use them on compile-only words, because such
usage may be non-portable between different Forth systems.

You get the xt of the most recently defined word with latestxt (see (undefined) [Anony-
mous Definitions], page (undefined)). For words defined using noname, this is the usual way
of getting a token.

For words defined with :noname, the definition already pushes the xt, so you do not need
to use latestxt for :noname-defined words.

:noname ." hello" ;

Chapter 6: Forth Words 150

execute
An xt occupies one cell and can be manipulated like any other cell.

In Standard Forth the xt is just an abstract data type (i.e., defined by the operations
that produce or consume it). The concrete implementation (since Gforth 1.0) is the body
address (for old hands: PFA) of the word; in Gforth 0.7 and earlier, the xt was implemented
as code field addres (CFA, 2 cells before the PFA).

execute (zt —) core “execute”
Perform the semantics represented by the execution token, xt.
execute-exit (compilation — ; run-time xt nest-sys —) gforth-1.0

Execute xt and return from the current definition, in a tail-call-optimized way: The
return address nest-sys and the locals are deallocated before executing xt.

perform (a-addr —) gforth-0.2 “perform”
@ execute.
[Noop] is sometimes used as a placeholder execution token:
[noop] (—) gforth-experimental “bracket-noop”
Does nothing, both when executed and when compiled.
noop (—) gforth-0.2 “noop”
Does nothing. However, code generation does not optimize it away; use [noop] for that.

6.15.2 Name token
A name token (nt) represents a word, primarily a named word, but in Gforth since 1.0
unnamed words have a name token, too.

The name token is a cell-sized abstract data type that occurs as argument or result of
the words below.

You get the nt of a word z with ~~x (since Gforth 1.0) or with
find-name (c-addr u — nt | 0) gforth-0.2

Find the name c-addr u in the current search order. Return its nt, if found, otherwise 0.
find-name-in (c-addr u wid — nt | 0) gforth-1.0

Find the name c-addr v in the word list wid. Return its nt, if found, otherwise 0.
latest (— nt) gforth-0.6

nt is the name token of the last word defined in the current section. nt is 0 if the last
word has no name.

latestnt (— nt) gforth-1.0

nt is the name token of the most recent word (named or unnamed) defined in the current
section.
>name (xt — nt| 0) gforth-0.2 “to-name”

nt is the primary name token of the word represented by zt. Returns 0 if z¢ is not an
xt (using a heuristic check that has a small chance of misidentifying a non-xt as xt), or
(before Gforth 1.0) if the primary nt is of an unnamed word. As of Gforth 1.0, every xt has
a primary nt. Several words can have the same xt, but only one of them has the primary
nt of that xt.

xt>name (at — nt) gforth-1.0 “xt-to-name”

Chapter 6: Forth Words 151

Produces the primary nt for an xt. If xf is not an xt, nt is not guaranteed to be an nt.
You can get all the nts in a wordlist with
traverse-wordlist (... ft wid — ...) tools-ext

perform zt (... nt — f ...) once for every word nt in the wordlist wid, until f is false or
the wordlist is exhausted. zt is free to use the stack underneath.

You can use the nt to access the interpretation and compilation semantics of a word, its
name, and the next word in the wordlist:

name>interpret (nt — 2t) tools-ext “name-to-interpret”
xt represents the interpretation semantics of the word nt.
name>compile (nt — w xt) tools-ext “name-to-compile”
w zt is the compilation token for the word nt.
name>string (nt — addr u) tools-ext “name-to-string”
addr count is the name of the word represented by nt.
id. (nt —) gforth-0.6 “i-d-dot”
Print the name of the word represented by nt.
.id (nt -) gforth-0.6 “dot-i-d”
F83 name for id..
compile-only? (nt — flag) gforth-1.0 “compile-only-question”
true if nt is marked as compile-only.
obsolete? (nt — flag) gforth-1.0 “obsolete-question”
true if nt is obsolete, i.e., will be removed in a future version of Gforth.
name>link (ntl — nt2 / 0) gforth-1.0 “name-to-link”

For a word nt1, returns the previous word nt2 in the same wordlist, or 0 if there is no
previous word.

As a usage example, the following code lists all the words in forth-wordlist with
non-default compilation semantics (including immediate words):

: ndcs-words (wid --)
[: dup name>compile ['] compile, <> if over id. then 2drop true ;]
swap traverse-wordlist ;

forth-wordlist ndcs-words

This code assumes that a word has default compilation semantics if the xt part of its
compilation token is the xt of compile,.

Since Gforth 1.0 (but not in earlier versions or many other Forth systems), nameless
words (see (undefined) [Anonymous Definitions|, page (undefined)) have nts, compilation
semantics, and name>string works on them (producing a zero-length name). They are not
in a wordlist, however. You can get the nt of a nameless word with latestnt.

Since Gforth 1.0, for most words the concrete implementation of their nt is the same
address as its xt (this is the primary nt for the xt). However, synonyms, aliases, and
words defined with interpret/compile: get their xt from another word, but still have
an nt of their own (that is different from the xt). Therefore, you cannot use xts and nts

Chapter 6: Forth Words 152

interchangeably, even if you are prepared to write code specific to Gforth 1.0. You do not
get these alternate nts for the xt with >name.

The closest thing to the nt in classic Forth systems like fig-Forth is the name field address
(NFA), but there are significant differences: in older Forth systems each word has a unique
NFA, LFA, CFA and PFA (in this order, or LFA, NFA, CFA, PFA) and there are words
for getting from one to the next. By contrast, in Gforth in general there is an n:1 relation
between name tokens and the xt representing interpretation semantics; i.e., when you pass
different nts to name>interpret, the result may be the same xt.

Morover, all of the header fields of the old system correspond to fields in Gforth, but
Gforth 1.0 has a few additional ones (see (undefined) [Header fields], page (undefined)).
One difference is that the name field usually points to the start of the header, whereas the
nt in Gforth 1.0 points to the body (and header fields are accessed with a negative offset).

6.15.3 Compilation token

The compilation semantics of a named word is represented by a compilation token consisting
of two cells: w zt. The top cell zt is an execution token. The compilation semantics
represented by the compilation token can be performed with execute, which consumes the
whole compilation token, with an additional stack effect determined by the represented
compilation semantics.

At present, the w part of a compilation token is an execution token, and the xt part
represents either execute or compile,'®. However, don’t rely on that knowledge, unless
necessary; future versions of Gforth may introduce unusual compilation tokens (e.g., a
compilation token that represents the compilation semantics of a literal).

You get the compilation token of, e.g., if in a standard way with name>compile, e.g.,
if name>compile, but there are also parsing words to get the compilation token of a
word:

~ s

[COMP'] (compilation "name" — ; run-time — w at) gforth-0.2 “bracket-comp-tick”
Compilation token w zt represents name’s compilation semantics.

COMP' ("name" — w at) gforth-0.2 “comp-tick”
Compilation token w zt represents name’s compilation semantics.

You can perform the compilation semantics represented by the compilation token
with execute. You can compile the compilation semantics with postpone,. le., ~“x
name>compile postpone, is equivalent to postpone x.
postpone, (w zt —) gforth-0.2 “postpone-comma”

Compile the compilation semantics represented by the compilation token w zt.

6.16 Compiling words

In contrast to most other languages, Forth has no strict boundary between compilation and
run-time. E.g., you can run arbitrary code between defining words (or for computing data
used by defining words like constant). Moreover, Immediate (see (undefined) [Interpre-
tation and Compilation Semantics|, page (undefined), and [...] (see below) allow running

16 Depending upon the compilation semantics of the word. If the word has default compilation semantics,
the at will represent compile,. Otherwise (e.g., for immediate words), the zt will represent execute.

Chapter 6: Forth Words 153

arbitrary code while compiling a colon definition (exception: you must not allot dictionary
space in the same section).

6.16.1 Literals

The simplest and most frequent example is to compute a literal during compilation. E.g.,
the following definition prints an array of strings, one string per line:

.strings (addr u --) \ gforth
2% cells bounds U+DO
cr i 2@ type
2 cells +L0O0OP ;

With a simple-minded compiler like Gforth’s, this computes 2 cells on every loop iter-
ation. You can compute this value once and for all at compile time and compile it into the
definition like this:

.strings (addr u --) \ gforth
2% cells bounds U+DO
cr i 20 type
[2 cells] literal +LOOP ;

[switches the text interpreter to interpret state (you will get an ok prompt if you
type this example interactively and insert a newline between [and 1), so it performs the
interpretation semantics of 2 cells; this computes a number.] switches the text interpreter
back into compile state. It then performs Literal’s compilation semantics, which are to
compile this number into the current word. You can decompile the word with see .strings
to see the effect on the compiled code.

You can also optimize the 2% cells into [2 cells] literal * in this way.
[(-) core “left-bracket”

Enter interpretation state. Immediate word.
1 (-) core “right-bracket”

Enter compilation state.
Literal (compilation n — ; run-time —n) core

Compilation semantics: compile the run-time semantics.
Run-time Semantics: push n.
Interpretation semantics: undefined.

ALiteral (compilation addr — ; run-time — addr) gforth-0.2

Works like 1iteral, but (when used in cross-compiled code) tells the cross-compiler that
the literal is an address.

1L (compilation: n — ; run-time: — n) gforth-0.5 “right-bracket-L”

equivalent to] literal

There are also words for compiling other data types than single cells as literals:
2Literal (compilation wl w2 - ; run-time - wl w2) double “two-literal”

Compile appropriate code such that, at run-time, wi w2 are placed on the stack. Inter-
pretation semantics are undefined.

FLiteral (compilation r — ; run-time — r) floating “f-literal”

Chapter 6: Forth Words 154

Compile appropriate code such that, at run-time, r is placed on the (floating-point)
stack. Interpretation semantics are undefined.

SLiteral (Compilation c-addrl u ; run-time — c-addr2 u) string

Compilation: compile the string specified by c-addri, u into the current definition. Run-
time: return c-addr2 u describing the address and length of the string.

You might be tempted to pass data from outside a colon definition to the inside on
the data stack. This does not work, because : puhes a colon-sys, making stuff below
unaccessible. E.g., this does not work:

5 : foo literal ; \ error: "unstructured"
Instead, you have to pass the value in some other way, e.g., through a variable:
variable temp
5 temp !
: foo [temp @] literal ;

6.16.2 Macros

Literal and friends compile data values into the current definition. You can also write
words that compile other words into the current definition. E.g.,
: compile-+ (--) \ compiled code: (nl n2 -- n)
POSTPONE + ;

: foo (nl n2 -- n)
[compile-+] ;
1 2 foo .

This is equivalent to : foo + ; (see foo to check this). What happens in this example?
Postpone compiles the compilation semantics of + into compile—+; later the text interpreter
executes compile-+ and thus the compilation semantics of +, which compile (the execution
semantics of) + into foo.”
postpone ("name" —) core

Compiles the compilation semantics of name.

Compiling words like compile-+ are usually immediate (see (undefined) [How to define
immediate words|, page (undefined)) so you do not have to switch to interpret state to
execute them; modifying the last example accordingly produces:

[compile-+] (compilation: --; interpretation: --)
\ compiled code: (nl n2 -- n)
POSTPONE + ; immediate

: foo (nl n2 -— n)
[compile-+] ;
1 2 foo .
You will occassionally find the need to POSTPONE several words; putting POSTPONE
before each such word is cumbersome, so Gforth provides a more convenient syntax:]]
... L[. This allows us to write [compile-+] as:

1T A recent RFI answer requires that compiling words should only be executed in compile state, so this
example is not guaranteed to work on all standard systems, but on any decent system it will work.

Chapter 6: Forth Words 155

[compile-+] (compilation: --; interpretation: --)
11 + [[; immediate

11 (-) gforth-0.6 “right-bracket-bracket”

Switch into postpone state: All words and recognizers are processed as if they were
preceded by postpone. Postpone state ends when [[is recognized.

The unusual direction of the brackets indicates their function: 1] switches from compi-
lation to postponing (i.e., compilation of compilation), just like] switches from immediate
execution (interpretation) to compilation. Conversely, [[switches from postponing to com-
pilation, ananlogous to [which switches from compilation to immediate execution.

The real advantage of 11 ... [[becomes apparent when there are many words to POST-
PONE. E.g., the word compile-map-array (see (undefined) [Advanced macros Tutorial],
page (undefined)) can be written much shorter as follows:

: compile-map-array (compilation: xt -- ; run-time: ... addr u -- ...
\ at run-time, execute xt (... x -— ...) for each element of the
\ array beginning at addr and containing u elements
{: xt: xt :}
11 cells over + swap 7do
i @ xt 1 cells +loop [[;

: sum-array (addr u -- n)
0 [' + compile-map-array] ;
If you then say see sum-array, it shows the following code:
: sum-array
#0 over + swap 7do
i + #8 +LOOP
In addition to 11...[[, this example shows off some other features:

e It uses a defer-flavoured (defined with xt: local xt; mentioning such a local inside
11...[[results in compile,ing the xt in the local

e Not used in the example, but related to the previous point: For a value-flavoured local,
using it inside 1]...[[compiles the value of the local, i.e., 11 1 [[is equivalent to 1 1]
literal [[.

e It uses the literal 1 inside 1]...[[. This results in postponeing the 1, i.e. compiling it
when compile-map-array is run.

e When compile-map-array is run, 1 cells is compiled and optimized into #8 by
Gforth’s constant folding.

Note that parsing words such as s\" don’t parse at postpone time and therefore not
inside 1]...[[. Instead of s\" mystring\n" you can use the string recognizer and write
"mystring\n", which works inside]]...[[. Likewise for the parsing word ['] and the
recognizer notation starting with .

But if you prefer to use s\" (or have a parsing word that has no recognizer replacement),
you can do it by switching back to compilation:

11 ... [[s\" mystring\n"]] 2literal ... [[

Chapter 6: Forth Words 156

Definitions of 1] and friends in Standard Forth are provided in compat/macros.fs.

Immediate compiling words are similar to macros in other languages (in particular, Lisp).
The important differences to macros in, e.g., C are:

e You use the same language for defining and processing macros, not a separate prepro-
cessing language and processor.

e Consequently, the full power of Forth is available in macro definitions. E.g., you can
perform arbitrarily complex computations, or generate different code conditionally or
in a loop (e.g., see (undefined) [Advanced macros Tutorial], page (undefined)). This
power is very useful when writing a parser generators or other code-generating software.

e Macros defined using postpone etc. deal with the language at a higher level than
strings; name binding happens at macro definition time, so you can avoid the pitfalls
of name collisions that can happen in C macros. Of course, Forth is a liberal language
and also allows to shoot yourself in the foot with text-interpreted macros like

[compile-+] s" +" evaluate ; immediate
Apart from binding the name at macro use time, using evaluate also makes your
definition state-smart (see (undefined) [state-smartness|, page (undefined)).

You may want the macro to compile a number into a word. The word to do it is literal,
but you have to postpone it, so its compilation semantics take effect when the macro is
executed, not when it is compiled:

[compile-5] (--) \ compiled code: (-— n)
5 POSTPONE literal ; immediate

: foo [compile-5] ;
foo .

You may want to pass parameters to a macro, that the macro should compile into the
current definition. If the parameter is a number, then you can use postpone literal
(similar for other values).

If you want to pass a word that is to be compiled, the usual way is to pass an execution
token and compile, it:

: twicel (xt --) \ compiled code: ... -= ...
dup compile, compile, ;

: 24 (nl -- n2)
[' 1+ twicel] ;

compile, (xt —) core-ext “compile-comma’

Append the semantics represented by zt to the current definition. When the resulting
code fragment is run, it behaves the same as if zt is executed.

2compile, (xtl xt2 —) gforth-experimental “two-compile-comma”
equivalent to xt1 compile, xt2 compile,, but also applies peephole optimization.

An alternative available in Gforth, that allows you to pass the compilation semantics as
parameters is to use the compilation token (see (undefined) [Compilation token|, page (un-
defined)). The same example in this technique:

: twice (... ct == ...) \ compiled code: ... —— ...

Chapter 6: Forth Words 157

2dup 2>r execute 2r> execute ;

: 2+ (nl -- n2)
[comp' 1+ twice] ;
In the example above 2>r and 2r> ensure that twice works even if the executed compi-
lation semantics has an effect on the data stack.
You can also define complete definitions with these words; this provides an alternative
to using does> (see (undefined) [User-defined Defining Words], page (undefined)). E.g.,
instead of

: curry+ (nl "name" --)
CREATE ,
DOES> (n2 -- nl+n2)
Q + ;
you could define
: curry+ (nl "name" --)
\ name execution: (n2 -- nl+n2)

>r : r> POSTPONE literal POSTPONE + POSTPONE ; ;

-3 curry+ 3-
see 3-

The sequence >r : r> is necessary, because : puts a colon-sys on the data stack that
makes everything below it unaccessible.

This way of writing defining words is sometimes more, sometimes less convenient than
using does> (see (undefined) [Advanced does> usage example], page (undefined)). One
advantage of this method is that it can be optimized better, because the compiler knows
that the value compiled with literal is fixed, whereas the data associated with a created
word can be changed.

[compile] (compilation "name" — ; run-time ? — ?) core-ext “bracket-compile”

Legacy word. Use postpone instead. Works like postpone if name has non-default
compilation semantics. If name has default compilation semantics (i.e., is a normal word),
compiling [compile] name is equivalent to compiling name (i.e. [compile] is redundant
in this case.

in-colon-def? (— flag) gforth-experimental “in-colon-def-question”

allows to check if there currently is an active colon definition where you can append code
to.

6.17 The Text Interpreter

The text interpreter'® is an endless loop that processes input from the current input device.
It is also called the outer interpreter, in contrast to the inner interpreter (see (undefined)
[Engine|, page (undefined)) which executes the compiled Forth code on interpretive imple-
mentations.

18 This is an expanded version of the material in (undefined) [Introducing the Text Interpreter], page (un-
defined).

Chapter 6: Forth Words 158

The text interpreter operates in one of two states: interpret state and compile state.
The current state is defined by the aptly-named variable state.

This section starts by describing how the text interpreter behaves when it is in interpret
state, processing input from the user input device — the keyboard. This is the mode that a
Forth system is in after it starts up.

The text interpreter works from an area of memory called the input buffer'®, which
stores your keyboard input when you press the RET key. Starting at the beginning of the
input buffer, it skips leading spaces (called delimiters) then parses a string (a sequence
of non-space characters) until it reaches either a space character or the end of the buffer.
Having parsed a string, it makes two attempts to process it:

e It looks for the string in a dictionary of definitions. If the string is found, the string
names a definition (also known as a word) and the dictionary search returns information
that allows the text interpreter to perform the word’s interpretation semantics. In most
cases, this simply means that the word will be executed.

e If the string is not found in the dictionary, the text interpreter attempts to treat it
as a number, using the rules described in (undefined) [Number Conversion], page (un-
defined). If the string represents a legal number in the current radix, the number is
pushed onto a parameter stack (the data stack for integers, the floating-point stack for
floating-point numbers).

If both attempts fail, the text interpreter discards the remainder of the input buffer,
issues an error message and waits for more input. If one of the attempts succeeds, the
text interpreter repeats the parsing process until the whole of the input buffer has been
processed, at which point it prints the status message “ ok” and waits for more input.

The text interpreter keeps track of its position in the input buffer by updating a variable
called >IN (pronounced “to-in”). The value of >IN starts out as 0, indicating an offset of
0 from the start of the input buffer. The region from offset >IN @ to the end of the input
buffer is called the parse area®. This example shows how >IN changes as the text interpreter
parses the input buffer:

: remaining source >in @ /string
cr ." =>" type ." <-" ; immediate

1 2 3 remaining + remaining .

: foo 1 2 3 remaining swap remaining ;
The result is:

->+ remaining .<-
->.<-56 ok

->SWAP remaining ;-<
->;<- ok

19 When the text interpreter is processing input from the keyboard, this area of memory is called the
terminal input buffer (TIB) and is addressed by the (obsolescent) words TIB and #TIB.

20 Tn other words, the text interpreter processes the contents of the input buffer by parsing strings from
the parse area until the parse area is empty.

Chapter 6: Forth Words 159

The value of >IN can also be modified by a word in the input buffer that is executed by
the text interpreter. This means that a word can “trick” the text interpreter into either
skipping a section of the input buffer?! or into parsing a section twice. For example:

: lat ." <<foo>>" ;

: flat ." <<bar>>" >IN DUP @ 3 - SWAP ! ;
When flat is executed, this output is produced??:

<<bar>><<foo>>

This technique can be used to work around some of the interoperability problems of
parsing words. Of course, it’s better to avoid parsing words where possible.

Two important notes about the behaviour of the text interpreter:
e [t processes each input string to completion before parsing additional characters from
the input buffer.

e It treats the input buffer as a read-only region (and so must your code).

When the text interpreter is in compile state, its behaviour changes in these ways:

e If a parsed string is found in the dictionary, the text interpreter will perform the word’s
compilation semantics. In most cases, this simply means that the execution semantics
of the word will be appended to the current definition.

e When a number is encountered, it is compiled into the current definition (as a literal)
rather than being pushed onto a parameter stack.

e If an error occurs, state is modified to put the text interpreter back into interpret
state.

¢

e FEach time a line is entered from the keyboard, Gforth prints
[ok?? X

‘ compiled” rather than

When the text interpreter is using an input device other than the keyboard, its behaviour
changes in these ways:

e When the parse area is empty, the text interpreter attempts to refill the input buffer
from the input source. When the input source is exhausted, the input source is set
back to the previous input source.

e It doesn’t print out “ ok” or “ compiled” messages each time the parse area is emptied.

e If an error occurs, the input source is set back to the user input device.

You can read about this in more detail in (undefined) [Input Sources], page (undefined).
>in (- addr) core “to-in”

uvar variable — a-addr is the address of a cell containing the char offset from the start
of the input buffer to the start of the parse area.

source (— addr u) core “source”
Return address addr and length u of the current input buffer
tib (— addr) core-ext-obsolescent “t-i-b”

#tib (— addr) core-ext-obsolescent “number-t-i-b”

2L This is how parsing words work.
22 Exercise for the reader: what would happen if the 3 were replaced with 47

Chapter 6: Forth Words 160

uvar variable — a-addr is the address of a cell containing the number of characters in
the terminal input buffer. OBSOLESCENT: source superceeds the function of this word.

interpret (... — ...) gforth-0.2
state (— a-addr) core,tools-ext

Don’t use state! See State-smartness—Why it is evil and how to exorcise it. For an
alternative to state-smart words, see (undefined) [How to define combined words], page (un-
defined).

A-addr is the address of a cell containing the compilation state flag. 0 => interpreting, -1
=> compiling. A standard program must not store into state, but instead use [and].

6.17.1 Input Sources

By default, the text interpreter processes input from the user input device (the keyboard)
when Forth starts up. The text interpreter can process input from any of these sources:

e The user input device — the keyboard.
e A file, using the words described in (undefined) [Forth source files], page (undefined).
e A block, using the words described in (undefined) [Blocks], page (undefined).

e A text string, using evaluate.

A program can identify the current input device from the values of source-id and blk.
source-id (— 0 | -1 | fileid) core-ext,file “source-i-d”

Return 0 (the input source is the user input device), -1 (the input source is a string
being processed by evaluate) or a fileid (the input source is the file specified by fileid).

blk (— addr) block “b-1-k”

uvar variable — This cell contains the current block number (or 0 if the current input
source is not a block).
save-input (— zI .. zn n) core-ext

The n entries zn - x1 describe the current state of the input source specification, in some
platform-dependent way that can be used by restore-input.

restore-input (zI .. zn n — flag) core-ext

Attempt to restore the input source specification to the state described by the n entries
xzn - xl. flag is true if the restore fails. In Gforth with the new input code, it fails only
with a flag that can be used to throw again; it is also possible to save and restore between
different active input streams. Note that closing the input streams must happen in the
reverse order as they have been opened, but in between everything is allowed.

evaluate (... addr u — ...) core,block

Save the current input source specification. Store -1 in source-id and O in blk. Set
>IN to 0 and make the string c-addr v the input source and input buffer. Interpret. When
the parse area is empty, restore the input source specification.

query (—) core-ext-obsolescent

Make the user input device the input source. Receive input into the Terminal Input
Buffer. Set >IN to zero. OBSOLESCENT: superceeded by accept.

Chapter 6: Forth Words 161

6.17.2 Number Conversion

You get an overview of how the text interpreter converts its numeric input in (undefined)
[Literals in source code|, page (undefined). This section describes some related words.

By default, the number base used for integer number conversion is given by the contents
of the variable base. Note that a lot of confusion can result from unexpected values of base.
If you change base anywhere, make sure to save the old value and restore it afterwards;
better yet, use base-execute, which does this for you. In general I recommend keeping
base decimal, and using the prefixes described in (undefined) [Literals in source code],
page (undefined), for the popular non-decimal bases.

base-execute (i*r at u — j*r) gforth-0.7
execute zt with the content of BASE being u, and restoring the original BASE afterwards.
base (— a-addr) core

User variable — a-addr is the address of a cell that stores the number base used by default
for number conversion during input and output. Don’t store to base, use base-execute
instead.

hex (—) core-ext

Set base to $10 (hexadecimal). In many cases base-execute is a better alternative.
decimal (—) core

Set base to #10 (decimal). In many cases base-execute is a better alternative.
dpl (- a-addr) gforth-0.2 “Decimal-PLace”

User variable — a-addr is the address of a cell that stores the position of the decimal
point in the most recent numeric conversion. Initialised to -1. After the conversion of a
number containing no decimal point, dpl is -1. After the conversion of 2. it holds 0. After
the conversion of 234123.9 it contains 1, and so forth.

Number conversion has a number of traps for the unwary:

e You cannot determine the current number base using the code sequence base @ . — the
number base is always 10 in the current number base. Instead, use something like base
@ dec.

e There is a word bin but it does not set the number base! (see (undefined) [General
files], page (undefined)).
e Standard Forth requires the . of a double-precision number to be the final character

in the string. Gforth allows the . to be anywhere.

e The number conversion process does not check for overflow.

You can read numbers into your programs with the words described in (undefined) [Line
input and conversion], page (undefined).

6.17.3 Interpret/Compile states

A standard program is not permitted to change state explicitly. However, it can change
state implicitly, using the words [and 1. When [is executed it switches state to interpret
state, and therefore the text interpreter starts interpreting. When 1] is executed it switches
state to compile state and therefore the text interpreter starts compiling. The most com-
mon usage for these words is for switching into interpret state and back from within a colon

Chapter 6: Forth Words 162

definition; this technique can be used to compile a literal (for an example, see (undefined)
[Literals|, page (undefined)) or for conditional compilation (for an example, see (undefined)
[Interpreter Directives], page (undefined)).

6.17.4 Interpreter Directives

These words are usually used in interpret state; typically to control which parts of a source
file are processed by the text interpreter. There are only a few Standard Forth Standard
words, but Gforth supplements these with a rich set of immediate control structure words
to compensate for the fact that the non-immediate versions can only be used in compile
state (see (undefined) [Control Structures|, page (undefined)). Typical usage:

[undefined] \G [if]
: \G ... ; immediate
[endif]
So if the system does not define \G, compile some replacement code (with possibly
reduced functionality).
[IF] (flag —) tools-ext “bracket-if”

If flag is TRUE do nothing (and therefore execute subsequent words as normal). If flag is
FALSE, parse and discard words from the parse area (refilling it if necessary using REFILL)
including nested instances of [IF].. [ELSE].. [THEN] and [IF].. [THEN] until the balancing
[ELSE] or [THEN] has been parsed and discarded. Immediate word.

[ELSE] (—) tools-ext “bracket-else”

Parse and discard words from the parse area (refilling it if necessary using REFILL)
including nested instances of [IF].. [ELSE].. [THEN] and [IF].. [THEN] until the balancing
[THEN] has been parsed and discarded. [ELSE] only gets executed if the balancing [IF]
was TRUE; if it was FALSE, [IF] would have parsed and discarded the [ELSE], leaving the
subsequent words to be executed as normal. Immediate word.

[THEN] (—) tools-ext “bracket-then”

Do nothing; used as a marker for other words to parse and discard up to. Immediate
word.

[ENDIF] (-) gforth-0.2 “bracket-end-if”
Do nothing; synonym for [THEN]

[defined] ("<spaces>name" — flag) tools-ext “bracket-defined”
returns true if name is found in current search order

[undefined] ("<spaces>name" — flag) tools-ext “bracket-undefined”
returns false if name is found in current search order

[IFDEF] ("<spaces>name" —) gforth-0.2 “bracket-if-def”

If name is found in the current search-order, behave like [IF] with a TRUE flag, otherwise
behave like [IF] with a FALSE flag. Immediate word.

[IFUNDEF] ("<spaces>name" —) gforth-0.2 “bracket-if-un-def”

If name is not found in the current search-order, behave like [IF] with a TRUE flag,
otherwise behave like [IF] with a FALSE flag. Immediate word.

[?D0] (n-limit n-index —) gforth-0.2 “bracket-question-do”

Chapter 6: Forth Words 163

[DO] (n-limit n-index —) gforth-0.2 “bracket-do”
[LooP] (—) gforth-0.2 “bracket-loop”

[+LOOP] (n —) gforth-0.2 “bracket-question-plus-loop”
[FOR] (n —) gforth-0.2 “bracket-for”

[NEXT] (n —) gforth-0.2 “bracket-next”

[I] (run-time — n) gforth-0.2 “bracket-i”

At run-time, [I] pushes the loop index of the text-interpretation-time [do] iteration.
If you want to process the index at interpretation time, interpret [I] interpretevely, or use
INT-[I].

INT-[I] (— n) gforth-1.0 “int-bracket-i”
Push the loop index of the [do] iteration at text interpretation time.
[BEGIN] (-) gforth-0.2 “bracket-begin”
[UNTIL] (flag —) gforth-0.2 “bracket-until”
[AGAIN] (-) gforth-0.2 “bracket-again”
[(WHILE] (flag —) gforth-0.2 “bracket-while”
[REPEAT] (—) gforth-0.2 “bracket-repeat”

You can use #line to change Gforth’s idea about the current source line number and
source file. This is useful in cases where the Forth file is generated from some other source
code file, and you want to get, e.g. error messages etc. that refer to the original source
code; then the Forth-code generator needs to insert #line lines in the Forth code wherever
appropriate.

#line ("u" "["file"]" -) gforth-1.0 “number-line”

Set the line number to u and (if present) the file name to file. Consumes the rest of the
line.

6.17.5 Recognizers

When the text interpreter processes source code, it divides the code into blank-delimited
strings, and then calls recognizers to identify them as words, numbers, etc., until one rec-
ognizer identifies (recognizes) the string; if the string is not recognized, the text interpreter
reports an error (undefined word).

The usual way to deal with recognizers is to just write code that one of them identifies
(see (undefined) [Default Recognizers|, page (undefined)); however, you can also manipulate
them (see (undefined) [Dealing with existing Recognizers|, page (undefined)) or even define
new ones (see (undefined) [Defining Recognizers], page (undefined)).

6.17.5.1 Default Recognizers

The Standard Forth text interpreter recognizes words in the search order (rec-nt), inte-
ger numbers (rec-num), and floating point numbers (rec-float). By default Gforth also
recognizes syntaxes for

e strings, e.g., "mystring", with rec-string
e complex numbers, e.g., Oe+lei, with rec-complex

e storing a value or changing a defered word, e.g., ->myvalue, with rec-to

Chapter 6: Forth Words 164

e the xt representing the interpretation semantics of a word, e.g., ~dup, with rec-tick
e the nt of a word, e.g., ~ “mysynonym, with rec-dtick
e an address in the body of a word, e.g., <myarray+8>, with rec-body

e an access to an environment variable of the operating system, e.g., ${HOME}, with
rec-env

e a word in a vocabulary, e.g., myvocl:myvoc2:myword, with rec-scope

e using a specific recognizer to recognize something, e.g., float?1., , with rec-meta

You can use locate (see (undefined) [Locating source code definitions|, page (undefined))
to determine which recognizer recognizes a piece of source code. E.g.:

defer mydefer
locate —->mydefer

will show that rec-to recognizes ->mydefer. However, if the recognizer recognizes a
dictionary word (e.g., the scope recognizer), locate will show that word.

You can see which recognizers are used and the order of recognizers with
.recognizers (—) gforth-experimental “dot-recognizers”

Print the current recognizer order, with the first-searched recognizer leftmost (unlike
.order). The inverted ~ is displayed instead of rec-, which is the common prefix of all
recognizers.

Recognizers are typically designed to avoid matching the same strings as other recogniz-
ers. E.g., rec—env (the environment variable recognizer) requires braces to avoid a conflict
with the number recognizer for input strings like $ADD. There are a few exceptions to this
policy, however:

e Word names can be anything, so they can conflict with any other recognizer (and the
search order is searched before other recognizers).

However, they tend not to start with 0 (and if they do, they contain special characters),
so if your base is hex, it is a good practice to let your numbers start with 0.

In the code bases we have looked at, starting words with ' (quote aka tick) is much
more common than starting them with ~ (backquote aka backtick), so the recognizers
for the xt and the nt use ~ to reduce the number of conflicts.

e Both the integer recognizer rec-num and the floating-point recognizer rec-float rec-
ognize, e.g., 1.. Because rec-num is (by default) first, 1. is recognized as a double-cell
integer. If you change the recognizer order to use rec-float first, 1. is recognized as
a floating-point number, but loading code written in Standard Forth may behave in a
non-standard way.

In any case, it’s a good practice to avoid that conflict in your own code as follows:
Always write double-cell integers with a number prefix, e.g., #1.; and always write
floating-point numbers with an e, e.g., le.

e We have seen a few word names that start with ->. You can avoid a conflict by using
to myvalue or to?->myvalue (the latter works with postpone).

Chapter 6: Forth Words 165

6.17.5.2 Dealing with existing Recognizers

A recognizer is a word to which you pass a string. If the recognizer recognizes the string, it
typically returns some data and the xt of a word for processing the data; this word is called
the translator. If the recognizer does not recognize the string, it returns 0.

All recognizers have the stack effect (c-addr u —i*x xt | 0).

Recognizers take a string and on success return some data and a translator for inter-
preting that data. Gforth implements that translator as xt (executing it will perform the
appropriate action to handle the token in the current state), but other Forth systems may
implement it as actual table, with three xts inside. The first xt is the interpretation/run-
time xt, it performs the interpretation semantics on the data (usually, this means it just
leaves the data on the stack). The second xt performs the compilation semantics, it gets
the data and the run-time semantics xt. The third xt perfoms the postpone semantics, it
also gets the data and the run-time semantics xt. You can use postponing to postpone the
run-time xt.

Recognizers are organized as stack, so you can arrange the sequence of recognizers in the
same way as the vocabulary stack. Recognizer stacks are themselves recognizers, i.e. they
are executable, take a string and return a translator.

rec-nt (addr u — nt translate-nt | 0) gforth-experimental
recognize a name token

rec-num (addr u — n/d table | 0) gforth-experimental
converts a number to a single/double integer

rec-float (addr u — r translate-float | 0) gforth-experimental
recognize floating point numbers

rec-complex (addr u — z translate-complex | 0) gforth-1.0

Complex numbers are always in the format a+bi, where a and b are floating point numbers
including their signs
rec-string (addr u — addr u’ scan-translate-string | 0) gforth-experimental

Convert strings enclosed in double quotes into string literals, escapes are treated as in
S\".
rec-to (addr u — zt n translate-to | 0) gforth-experimental

words prefixed with -> are treated as if preceeded by TO, with +> as +T0, with '> as
ADDR, with @> as ACTION-OF, and with => as IS.

rec-tick (addr u — zt translate-num | 0) gforth-experimental
words prefixed with ~ return their xt. Example: ~dup gives the xt of dup
rec-dtick (addr u — nt translate-num | 0) gforth-experimental
words prefixed with ~~ return their nt. Example: ~~S" gives the nt of 8"
rec-body (addr u — zt translate-num | 0) gforth-experimental
words bracketed with '<' '>' return their body. Example: <dup> gives the body of dup
rec-env (addr u — addr u translate-env | 0) gforth-1.0

words enclosed by ${ and } are passed to getenv to get the OS-environment variable as
string. Example: ${HOME} gives the home directory.

rec-scope (addr u — nt rectype-nt | 0) gforth-experimental

Chapter 6: Forth Words 166

Recognizes strings of the form (simplified) wordlist:word, where wordlist is found in the
search order. The result is the same as for rec-nt for word (the ordinary word recognizer)
if the search order consists only of wordlist. The general form can have several wordlists
preceding word, separated by :; the first (leftmost) wordlist is found in the search order,
the second in the first, etc. word is the looked up in the last (rightmost) wordlist.

rec-meta (addr u — xt translate-to | 0) gforth-1.0

words prefixed with recognizer? are processed by rec-recognizer to disambiguate
recognizers. Example: hex num?cafe num?add will be parsed as number only Example:
float?123. will be parsed as float

get-recognizers (— at! .. ztn n) gforth-obsolete
push the content on the recognizer stack
set-recognizers (zt! .. ztn n —) gforth-obsolete
set the recognizer stack from content on the stack
recognize (addr u rec-addr — ... rectype) gforth-experimental
apply a recognizer stack to a string, delivering a token

recognizer-sequence: (zt! .. ztn n "name" —) gforth-experimental “recognizer-sequence-
colon”

concatenate a stack of recognizers to one recognizer with the name "name". xtn is tried
first, zt1 last, just like on the recognizer stack

forth-recognize (c-addr u — ... translate-xt) recognizer
The system recognizer
forth-recognizer (— zt) gforth-obsolete

backward compatible to Matthias Trute recognizer API. This construct turns a deferred
word into a value-like word.

set-forth-recognize (zt —) gforth-obsolete
Change the system recognizer
?found (token| 0 — token|never) gforth-experimental “question-found”
performs an undefined word throw if the token is 0.
translate: (int-xt comp-zt post-at "name" —) gforth-experimental “translate-colon”

create a new recognizer table. Items are in order of STATE value, which are 0 or
negative. Up to 7 slots are available for extensions.

translate-nt (i*z nt — j*z) gforth-experimental
translate a name token

translate-num (z — | =) gforth-experimental
translate a number

translate-dnum (dz — | dz) gforth-experimental
translate a double number

translate-float (r — | r) gforth-experimental
A translator for a float number.

try-recognize (addr u xt — results | false) gforth-experimental

Chapter 6: Forth Words 167

For nested recognizers: try to recognize addr u, and execute xt to check if the result
is desired. If xt returns false, clean up all side effects of the recognizer, and return false.
Otherwise return the results of the call to xt, of which the topmost is non-zero.

interpreting (translator —) gforth-experimental
perform interpreter action of translator
compiling (translator —) gforth-experimental
perform compile action of translator
postponing (translator —) gforth-experimental
perform postpone action of translator
translate-method: ("name" —) gforth-experimental “translate-method-colon”

create a new translate method, extending the translator table. You can assign an xt to
an existing rectype by using xt rectype to translator.

set-state (zt —) gforth-experimental

change the current state of the system so that executing a translator matches the
translate-method passed as xt

get-state (— 2t) gforth-experimental

return the currently used translate-method xt
6.17.5.3 Defining Recognizers

6.17.6 Text Interpreter Hooks
before-line (—) gforth-1.0

Deferred word called before the text interpreter parses the next line
before-word (—) gforth-0.7

Deferred word called before the text interpreter parses the next word
line-end-hook (—) gforth-0.7

called at every end-of-line when text-interpreting from a file

6.18 The Input Stream

The text interpreter reads from the input stream, which can come from several sources (see
(undefined) [Input Sources], page (undefined)). Some words, in particular defining words,
but also words like ', read parameters from the input stream instead of from the stack.

Such words are called parsing words, because they parse the input stream. Parsing
words are hard to use in other words, because it is hard to pass program-generated pa-
rameters through the input stream. They also usually have an unintuitive combination of
interpretation and compilation semantics when implemented naively, leading to various ap-
proaches that try to produce a more intuitive behaviour (see (undefined) [Combined words],
page (undefined)).

It should be obvious by now that parsing words are a bad idea. If you want to implement
a parsing word for convenience, also provide a factor of the word that does not parse, but

Chapter 6: Forth Words 168

takes the parameters on the stack. To implement the parsing word on top if it, you can use
the following words:

parse (zchar "ccc<zchar>" — c-addr u) core-ext,xchar-ext

Parse ccc, delimited by zchar, in the parse area. c-addr u specifies the parsed string
within the parse area. If the parse area was empty, v is 0.

string-parse (c-addrl ul "cce<string>" — c-addr2 u2) gforth-1.0

Parse cce, delimited by the string c-addr! w1, in the parse area. c-addr2 u2 specifies the
parsed string within the parse area. If the parse area was empty, u2 is 0.

parse-name ("name" — c-addr u) core-ext
Get the next word from the input buffer
parse-word (— c-addr u) gforth-obsolete
old name for parse-name; this word has a conflicting behaviour in some other systems.
name (— c-addr u) gforth-obsolete
old name for parse-name
word (char "<chars>cce<char>— c-addr) core

We recommend to use parse-name instead of word. Skip leading delimiters. Parse ccc,
delimited by char, in the parse area. c-addr is the address of a transient region containing
the parsed string in counted-string format. If the parse area was empty or contained no
characters other than delimiters, the resulting string has zero length. A program may
replace characters within the counted string. OBSOLESCENT: the counted string has a
trailing space that is not included in its length.

refill (— flag) core-ext,block-ext,file-ext

Attempt to fill the input buffer from the input source. When the input source is the
user input device, attempt to receive input into the terminal input device. If successful,
make the result the input buffer, set >IN to 0 and return true; otherwise return false. When
the input source is a block, add 1 to the value of BLK to make the next block the input
source and current input buffer, and set >IN to 0; return true if the new value of BLK is a
valid block number, false otherwise. When the input source is a text file, attempt to read
the next line from the file. If successful, make the result the current input buffer, set >IN
to 0 and return true; otherwise, return false. A successful result includes receipt of a line
containing 0 characters.

If you have to deal with a parsing word that does not have a non-parsing factor, you can
use execute-parsing to pass a string to it:

execute-parsing (... addr v ot — ...) gforth-0.6

Make addr u the current input source, execute zt (... == ...), then restore the pre-
vious input source.

Example:

5 s" foo" ' constant execute-parsing
\ equivalent to
5 constant foo

A definition of this word in Standard Forth is provided in compat/execute-parsing.fs.

Chapter 6: Forth Words 169

If you want to run a parsing word on a file, the following word should help:
execute-parsing-file (¢*z fileid at — j*x) gforth-0.6

Make fileid the current input source, execute at (i*x —-- j*x), then restore the previous
input source.

6.19 Word Lists

A wordlist is a list of named words; you can add new words and look up words by name
(and you can remove words in a restricted way with markers). Every named (and revealed)
word is in one wordlist.

The text interpreter searches the wordlists present in the search order (a stack of
wordlists), from the top to the bottom. Within each wordlist, the search starts concep-
tually at the newest word; i.e., if two words in a wordlist have the same name, the newer
word is found.

New words are added to the compilation wordlist (aka current wordlist).

A word list is identified by a cell-sized word list identifier (wid) in much the same way
as a file is identified by a file handle. The numerical value of the wid has no (portable)
meaning, and might change from session to session.

The Standard Forth “Search order” word set is intended to provide a set of low-level tools
that allow various different schemes to be implemented. Gforth also provides vocabulary,
a traditional Forth word. compat/vocabulary.fs provides an implementation in Standard
Forth.

forth-wordlist (— wid) search

Constant — wid identifies the word list that includes all of the standard words provided
by Gforth. When Gforth is invoked, this word list is the compilation word list and is at the
top of the search order.

definitions (—) search

Set the compilation word list to be the same as the word list that is currently at the top
of the search order.

get-current (— wid) search

wid is the identifier of the current compilation word list.
set-current (wid —) search

Set the compilation word list to the word list identified by wid.

in-wordlist (wordlist "defining-word" —) gforth-experimental

execute defining-word with wordlist as one-shot current directory. Example: gui-
wordlist in-wordlist : init-gl ... ; will define init-gl in the gui-wordlist wordlist.
in ("woc" "defining-word" —) gforth-experimental

execute defining-word with voc as one-shot current directory. Example: in gui : init-
gl ... ; will define init-gl in the gui vocabulary.

get-order (— widn .. widl n) search

Copy the search order to the data stack. The current search order has n entries, of which
widl represents the wordlist that is searched first (the word list at the top of the search
order) and widn represents the wordlist that is searched last.

set-order (widn .. widl n —) search

Chapter 6: Forth Words 170

If n=0, empty the search order. If n=-1, set the search order to the implementation-
defined minimum search order (for Gforth, this is the word list Root). Otherwise, replace
the existing search order with the n wid entries such that widl represents the word list that
will be searched first and widn represents the word list that will be searched last.

wordlist (— wid) search

Create a new, empty word list represented by wid.
table (— wid) gforth-0.2

Create a lookup table (case-sensitive, no warnings).
cs-wordlist (— wid) gforth-1.0

Create a case-sensitive wordlist.
cs-vocabulary ("name" -) gforth-1.0

Create a case-sensitive vocabulary
>order (wid —) gforth-0.5 “to-order”

Push wid on the search order.
previous (—) search-ext

Drop the wordlist at the top of the search order.
also (—) search-ext

Like DUP for the search order. Usually used before a vocabulary (e.g., also Forth); the
combined effect is to push the wordlist represented by the vocabulary on the search order.

Forth (—) search-ext

Replace the wid at the top of the search order with the wid associated with the word
list forth-wordlist.

Only (—) search-ext

Set the search order to the implementation-defined minimum search order (for Gforth,
this is the word list Root).

order (—) search-ext

Print the search order and the compilation word list. The word lists are printed in the
order in which they are searched (which is reversed with respect to the conventional way of
displaying stacks). The compilation word list is displayed last.

.voc ((wid -) gforth-0.2 “dot-voc”

print the name of the wordlist represented by wid. Can only print names defined with
vocabulary or wordlist constant, otherwise prints ‘address’.

find (c-addr — at +-1 | c-addr 0) core,search

We recommend to use find-name instead of find. Search all word lists in the current
search order for the definition named by the counted string at c-addr. If the definition is
not found, return 0. If the definition is found return 1 (if the definition has non-default
compilation semantics) or -1 (if the definition has default compilation semantics). The
rt returned in interpret state represents the interpretation semantics. The zt returned
in compile state represented either the compilation semantics (for non-default compilation
semantics) or the run-time semantics that the compilation semantics would compile, (for
default compilation semantics). The Forth-2012 standard does not specify clearly what the

Chapter 6: Forth Words 171

returned xt represents (and also talks about immediacy instead of non-default compilation
semantics), so this word is questionable in portable programs. If non-portability is ok,
find-name and friends are better (see (undefined) [Name token], page (undefined)).

search-wordlist (c-addr count wid — 0 | xt +-1) search

Search the word list identified by wid for the definition named by the string at c-addr
count. If the definition is not found, return 0. If the definition is found return 1 (if the
definition is immediate) or -1 (if the definition is not immediate) together with the zt. In
Gforth, the xt returned represents the interpretation semantics. Forth-2012 does not specify
clearly what xt represents.

words (—) tools
Display a list of all of the definitions in the word list at the top of the search order.
vlist (-) gforth-0.2
Old (pre-Forth-83) name for WORDS.
wordlist-words (wid -) gforth-0.6
Display the contents of the wordlist wid.
mwords (["pattern"] —) gforth-1.0

list all words matching the optional parameter pattern; if none, all words match. Words
are listed old to new. Pattern match like search (default), you can switch to globbing with
' mword-filename-match is mword-match.

Root (—) gforth-0.2

Add the root wordlist to the search order stack. This vocabulary makes up the minimum
search order and contains only a search-order words.

Vocabulary ("name" -) gforth-0.2

Create a definition "name" and associate a new word list with it. The run-time effect
of "name" is to replace the wid at the top of the search order with the wid associated with
the new word list.

seal (—) gforth-0.2

Remove all word lists from the search order stack other than the word list that is currently
on the top of the search order stack.

vocs (—) gforth-0.2
List vocabularies and wordlists defined in the system.
current (— addr) gforth-0.2
Variable — holds the wid of the compilation word list.
context (— addr) gforth-0.2
context @ is the wid of the word list at the top of the search order.
map-vocs (... zt — ...) gforth-1.0

Perform xt (... wid — ...) for all wordlists (including tables and cs-wordlists) in the
system.

Chapter 6: Forth Words 172

6.19.1 Vocabularies
Here is an example of creating and using a new wordlist using Standard Forth words:

wordlist constant my-new-words-wordlist
: my-new-words get-order nip my-new-words-wordlist swap set-order ;

\ add it to the search order
also my-new-words

\ alternatively, add it to the search order and make it
\ the compilation word list

also my-new-words definitions

\ type "order" to see the problem

The problem with this example is that order has no way to associate the name my-new-
words with the wid of the word list (in Gforth, order and vocs will display 7?7 for a wid
that has no associated name). There is no Standard way of associating a name with a wid.

In Gforth, this example can be re-coded using vocabulary, which associates a name
with a wid:

vocabulary my-new-words

\ add it to the search order
also my-new-words

\ alternatively, add it to the search order and make it
\ the compilation word list

my-new-words definitions

\ type "order" to see that the problem is solved

6.19.2 Why use word lists?
Here are some reasons why people use wordlists:

e To prevent a set of words from being used outside the context in which they are valid.
Two classic examples of this are an integrated editor (all of the edit commands are
defined in a separate word list; the search order is set to the editor word list when the
editor is invoked; the old search order is restored when the editor is terminated) and
an integrated assembler (the op-codes for the machine are defined in a separate word
list which is used when a CODE word is defined).

e To organize the words of an application or library into a user-visible set (in forth-
wordlist or some other common wordlist) and a set of helper words used just for
the implementation (hidden in a separate wordlist). This keeps words’ output smaller,
separates implementation and interface, and reduces the chance of name conflicts within
the common wordlist.

e To prevent a name-space clash between multiple definitions with the same name. For
example, when building a cross-compiler you might have a word IF that generates
conditional code for your target system. By placing this definition in a different word
list you can control whether the host system’s IF or the target system’s IF get used

Chapter 6: Forth Words 173

in any particular context by controlling the order of the word lists on the search order
stack.

The downsides of using wordlists are:
e Debugging becomes more cumbersome.

e Name conflicts worked around with wordlists are still there, and you have to arrange the
search order carefully to get the desired results; if you forget to do that, you get hard-
to-find errors (as in any case where you read the code differently from the compiler;
see can help seeing which of several possible words the name resolves to in such cases).
See displays just the name of the words, not what wordlist they belong to, so it might
be misleading. Using unique names is a better approach to avoid name conflicts.

e You have to explicitly undo any changes to the search order. In many cases it would
be more convenient if this happened implicitly. Gforth currently does not provide such
a feature, but it may do so in the future.

6.19.3 Word list example

The following example is from the garbage collector (https://www.complang.tuwien.ac.
at/forth/garbage-collection.zip) and uses wordlists to separate public words from
helper words:

get-current (wid)

vocabulary garbage-collector also garbage-collector definitions

. \ define helper words
(wid) set-current \ restore original (i.e., public) compilation wordlistl]]
... \ define the public (i.e., API) words
\ they can refer to the helper words
previous \ restore original search order (helper words become invisible)

6.20 Environmental Queries

Forth-94 introduced the idea of “environmental queries” as a way for a program running
on a system to determine certain characteristics of the system. The Standard specifies a
number of strings that might be recognised by a system, and a way of querying them:

environment? (c-addr u — false / ... true) core “environment-query”

c-addr, u specify a counted string. If the string is not recognised, return a false flag.
Otherwise return a true flag and some (string-specific) information about the queried string.

Note that, whilst the documentation for (e.g.) ADDRESS-UNIT-BITS shows it returning
one cell on the stack, querying it using environment? will return an additional item; the
true flag that shows that the string was recognised; so for querying ADDRESS-UNIT-BITS
the stack effect of environment? is (c-addr u -- n true).

Several environmental queries deal with the system’s limits:
ADDRESS-UNIT-BITS (— n) environment

Size of one address unit, in bits.
MAX-CHAR (— u) environment

Maximum value of any character in the character set
/COUNTED-STRING (— n) environment “slash-counted-string”

https://www.complang.tuwien.ac.at/forth/garbage-collection.zip
https://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 6: Forth Words 174

Maximum size of a counted string, in characters.
/HOLD (— n) environment “slash-hold”
Size of the pictured numeric string output buffer, in characters.
/PAD (- n) environment “slash-pad”
Size of the scratch area pointed to by PAD, in characters.
CORE (— f) environment
True if the complete core word set is present. Always true for Gforth.
CORE-EXT (— f) environment
True if the complete core extension word set is present. Always true for Gforth.
FLOORED (- f) environment
True if / etc. perform floored division
MAX-N (— n) environment
Largest usable signed integer.
MAX-U (— u) environment
Largest usable unsigned integer.
MAX-D (— d) environment
Largest usable signed double.
MAX-UD (- ud) environment
Largest usable unsigned double.
return-stack-cells (— n) environment
Maximum size of the return stack, in cells.
stack-cells (— n) environment
Maximum size of the data stack, in cells.
floating-stack (— n) environment
n is non-zero, showing that Gforth maintains a separate floating-point stack of depth n.
#locals (— n) environment “number-locals”
The maximum number of locals in a definition
wordlists (— n) environment
the maximum number of wordlists usable in the search order
max-float (— r) environment

The largest usable floating-point number (implemented as largest finite number in
Gforth)

XCHAR-ENCODING (— addr u) environment

Returns a printable ASCII string that reperesents the encoding, and use the preferred
MIME name (if any) or the name in http://www.iana.org/assignments/character-sets
like “ISO-LATIN-1” or “UTF-8”, with the exception of “ASCII”, where we prefer the alias
“ASCIT”.

MAX-XCHAR (- zchar) environment

http://www.iana.org/assignments/character-sets

Chapter 6: Forth Words 175

Maximal value for xchar. This depends on the encoding.
XCHAR-MAXMEM (— u) environment
Maximal memory consumed by an xchar in address units

Several environemtal queries are there for determining the presence of the Forth-94
version of a wordset; they all have the stack effect (== £) if the string is present (so the
environment? stack effect for these queries is (c-addr u -- false / f true).

block block-ext double double-ext exception exception-ext facility
facility-ext file file-ext floating floating-ext locals locals—ext memory-
alloc memory-alloc-ext tools tools—-ext search-order search-order-ext string
string-ext

These wordset queries were rarely used and implemented, so Forth-2012 did not introduce
a way to query for the Forth-2012 variants of the wordsets. Instead, the idea is that you
use [defined] (see (undefined) [Interpreter Directives], page (undefined)) instead.

Forth-200x (a group that works on the next standard; the documents that they produce
are also called Forth-200x) defines extension queries for the extension proposals once they
finish changing (CfV stage), so programs using these proposals can check whether a system
has them, and maybe load the reference implementation (if one exists). If environment?
finds such a query, then the corresponding proposal on www.forth200x.org is implemented
on the system (but the absence tells you nothing, as usual with environment?). These
queries have the stack effect (==), which means that for them environment? has the
stack effect (c-addr u -- false / true), which is more convenient than that of word-
set queries. A number of these proposals have been incorporated into Forth-2012. The
extension queries are also not particularly popular among Forth system implementors, so
going for [defined] may be the better approach. Anyway, Gforth implements the following
extension queries:

X:2value X:buffer X:deferred X:defined X:ekeys X:escaped-strings
X:extension-query X:fp-stack X:ftrunc X:fvalue X:locals X:n-to-r X:number-
prefixes X:parse-name X:required X:s-escape—quote X:s-to-f X:structures
X:synonym X:text-substitution X:throw-iors X:traverse-wordlist X:xchar

In addition, Gforth implements the following Gforth-specific queries:
gforth (- c-addr u) gforth-environment

Counted string representing a version string for this version of Gforth (for versions>0.3.0).
The version strings of the various versions are guaranteed to be ordered lexicographically.

os-class (— c-addr u) gforth-environment

Counted string representing a description of the host operating system.
os-type (— c-addr u) gforth-environment

Counted string equal to "$host_os"

The Standard requires that the header space used for environmental queries be distinct
from the header space used for definitions.

Typically, a Forth system supports environmental queries by creating a set of definitions
in a wordlist that is only used for environmental queries; that is what Gforth does. There
is no Standard way of adding definitions to the set of recognised environmental queries, but

www.forth200x.org

Chapter 6: Forth Words 176

in Gforth and other systems that use the wordlist mechanism, the wordlist used to honour
environmental queries can be manipulated just like any other word list.

environment-wordlist (— wid) gforth-0.2

wid identifies the word list that is searched by environmental queries (present in Swift-
Forth and VFX).

environment (-) gforth-0.6
A vocabulary for environment-wordlist (present in Win32Forth and VFX).
Here are some examples of using environmental queries:

s" address-unit-bits" environment? 0=

[IF]

cr .(environmental attribute address-units-bits unknown...) cr
[ELSE]

drop \ ensure balanced stack effect
[THEN]

\ this might occur in the prelude of a standard program that uses THROW
s" exception" environment? [IF]

0= [IF]
: throw abort" exception thrown" ;
[THEN]

[ELSE] \ we don't know, so make sure
: throw abort" exception thrown" ;
[THEN]

s" gforth" environment? [IF] .(Gforth version) TYPE
[ELSE] .(Not Gforth..) [THEN]

\ a program using vx*
s" gforth" environment? [IF]
s" 0.5.0" compare 0< [IF] \ v* is a primitive since 0.5.0
: v* (f_addrl nstridel f_addr2 nstride2 ucount -- r)
>r swap 2swap swap Oe r> 0 7DO
dup f@ over + 2swap dup f@ f*x f+ over + 2swap
LOoopP
2drop 2drop ;
[THEN]
[ELSE] \
: v¥ (f_addrl nstridel f_addr2 nstride2 ucount -- r)

[THEN]
Here is an example of adding a definition to the environment word list:

get-current environment-wordlist set-current
true constant block

true constant block-ext

set-current

Chapter 6: Forth Words 177

You can see what definitions are in the environment word list like this:

environment-wordlist wordlist-words

6.21 Files

Gforth provides facilities for accessing files that are stored in the host operating system’s
file-system. Files that are processed by Gforth can be divided into two categories:

e Files that are processed by the Text Interpreter (Forth source files).

e Files that are processed by some other program (general files).

6.21.1 Forth source files

The simplest way to interpret the contents of a file is to use one of these two formats:

include mysource.fs
s" mysource.fs" included
You usually want to include a file only if it is not included already (by, say, another
source file). In that case, you can use one of these three formats:

require mysource.fs
needs mysource.fs
s" mysource.fs" required

It is good practice to write your source files such that interpreting them does not change
the stack. Source files designed in this way can be used with required and friends without
complications. For example:

1024 require foo.fs drop

Here you want to pass the argument 1024 (e.g., a buffer size) to foo.fs. Interpreting
foo.fs has the stack effect (n — n), which allows its use with require. Of course with
such parameters to required files, you have to ensure that the first require fits for all uses
(i.e., require it early in the master load file).

include-file (i*z wfileid — j*z) file

Interpret (process using the text interpreter) the contents of the file wfileid.
included (i*z c-addr u — j*z) file

include-file the file whose name is given by the string c-addr u.
included? (c-addr u — f) gforth-0.2 “included-question”

True only if the file c-addr u is in the list of earlier included files. If the file has been
loaded, it may have been specified as, say, foo.fs and found somewhere on the Forth search
path. To return true from included?, you must specify the exact path to the file, even if
that is ./foo.fs

include (... "file" — ...) file-ext
include-file the file file.
required (i*z addr u — i*z) file-ext
include-file the file with the name given by addr u, if it is not included (or required)

already. Currently this works by comparing the name of the file (with path) against the
names of earlier included files.

require (... "file" — ...) file-ext

Chapter 6: Forth Words 178

include-file file only if it is not included already.
needs (... "name" — ...) gforth-0.2

An alias for require; exists on other systems (e.g., Win32Forth).
\\\ (-) gforth-1.0 “backslash-backslash-backslash”

skip remaining source file
.included (-) gforth-0.5 “dot-included”

List the names of the files that have been included.
sourcefilename (— c-addr u) gforth-0.2

The name of the source file which is currently the input source. The result is valid only
while the file is being loaded. If the current input source is no (stream) file, the result is
undefined. In Gforth, the result is valid during the whole session (but not across savesystem
etc.).

sourceline# (— u) gforth-0.2 “sourceline-number”

The line number of the line that is currently being interpreted from a (stream) file. The
first line has the number 1. If the current input source is not a (stream) file, the result is
undefined.

A definition in Standard Forth for required is provided in compat/required.fs.

6.21.2 General files
Files are opened/created by name and type. The following file access methods (FAMs) are
recognised:
r/o (— fam) file “r-0”
r/w (- fam) file “r-w”
w/o (— fam) file “w-0”
bin (faml - fam?2) file
+fmode (fam! rwrrwzrwxr — fam?2) gforth-1.0 “plus-f-mode”
add file access mode to fam - for create-file only

When a file is opened/created, it returns a file identifier, wfileid that is used for all other
file commands. All file commands also return a status value, wior, that is 0 for a successful
operation and an implementation-defined non-zero value in the case of an error.

open-file (c-addr u wfam — wfileid wior) file “open-file”

create-file (c-addr u wfam — wfileid wior) file “create-file”

close-file (wfileid — wior) file “close-file”

delete-file (c-addr u — wior) file “delete-file”

rename-file (c-addrl ul c-addr2 u2 — wior) file-ext “rename-file”
Rename file c_addr! ul to new name c_addr2 u2

read-file (c-addr ul wfileid — u2 wior) file “read-file”

Read u! characters from file wfileid into the buffer at c_addr. A non-zero wior indicates
an error. U2 indicates the length of the read data. End-of-file is not an error and is
indicated by u2$<$ul and wior=0.

read-line (c_addr ul wfileid — u2 flag wior) file

Chapter 6: Forth Words 179

Reads a line from wfileid into the buffer at c_addr u1. Gforth supports all three common
line terminators: LF, CR and CRLF. A non-zero wior indicates an error. A false flag
indicates that read-line has been invoked at the end of the file. u2 indicates the line
length (without terminator): w2$<$ul indicates that the line is w2 chars long; u2=ul
indicates that the line is at least ul chars long, the ul chars of the buffer have been filled
with chars from the line, and the next slice of the line with be read with the next read-
line. If the line is u! chars long, the first read-1line returns u2=u! and the next read-line
returns u2=0.

key-file (fd — key) gforth-0.4

Read one character n from wfileid. This word disables buffering for wfileid. If you
want to read characters from a terminal in non-canonical (raw) mode, you have to put the
terminal in non-canonical mode yourself (using the C interface); the exception is stdin:
Gforth automatically puts it into non-canonical mode.

key?-file (wfileid — f) gforth-0.4 “key-q-file”

f is true if at least one character can be read from wfileid without blocking. If you also
want to use read-file or read-line on the file, you have to call key?-file or key-file
first (these two words disable buffering).

file-eof? (wfileid — flag) gforth-0.6 “file-eof-query”

Flag is true if the end-of-file indicator for wfileid is set.
write-file (c-addr ul wfileid — wior) file “write-file”
write-line (c-addr u wfileid — ior) file
emit-file (c wfileid — wior) gforth-0.2 “emit-file”
flush-file (wfileid — wior) file-ext “flush-file”
file-status (c-addr u — wfam wior) file-ext “file-status”
file-position (wfileid — ud wior) file “file-position”
reposition-file (ud wfileid — wior) file “reposition-file”
file-size (wfileid — ud wior) file “file-size”
resize-file (ud wfileid — wior) file “resize-file”
slurp-file (c-addrl ul — c-addr2 u2) gforth-0.6

c-addrl ul is the filename, c-addr2 u2 is the file’s contents
slurp-fid (fid — addr u) gforth-0.6

addr u is the content of the file fid
stdin (— wfileid) gforth-0.4 “stdin”

The standard input file of the Gforth process.
stdout (— wfileid) gforth-0.2 “stdout”

The standard output file of the Gforth process.
stderr (— wfileid) gforth-0.2 “stderr”

The standard error output file of the Gforth process.

Chapter 6: Forth Words 180

6.21.3 Redirection

You can redirect the output of type and emit and all the words that use them (all output
words that don’t have an explicit target file) to an arbitrary file with the outfile-execute,
used like this:

: some-warning (n --)
cr ." warning# " . ;
: print-some-warning (n --)

['] some-warning stderr outfile-execute ;

After some-warning is executed, the original output direction is restored; this construct
is safe against exceptions. Similarly, there is infile-execute for redirecting the input of
key and its users (any input word that does not take a file explicitly).

outfile-execute (... zt file-id — ...) gforth-0.7
execute zt with the output of type etc. redirected to file-id.
outfile-id (— file-id) gforth-0.2
File-id is used by emit, type, and any output word that does not take a file-id as

input. By default outfile-id produces the process’s stdout, unless changed with outfile-
execute.

infile-execute (... zt file-id — ...) gforth-0.7

execute zt with the input of key etc. redirected to file-id.
infile-id (- file-id) gforth-0.4

File-id is used by key, 7key, and anything that refers to the "user input device". By
default infile-id produces the process’s stdin, unless changed with infile-execute.

If you do not want to redirect the input or output to a file, you can also make use of
the fact that key, emit and type are deferred words (see (undefined) [Deferred Words],
page (undefined)). However, in that case you have to worry about the restoration and the
protection against exceptions yourself; also, note that for redirecting the output in this way,
you have to redirect both emit and type.

6.21.4 Directories
You can split a file name into a directory and base component:
basename (c-addr! ul — c-addr2 u2) gforth-0.7

Given a file name c-addr!l ul, c-addr2 u2 is the part of it with any leading directory
components removed.

dirname (c-addrl ul — c-addrl u2) gforth-0.7

C-addr! u2 is the directory name of the file name c-addr! w1, including the final /. If
caddrl w1 does not contain a /, u2=0.

You can open and read directories similar to files. Reading gives you one directory entry
at a time; you can match that to a filename (with wildcards).

open-dir (c-addr u — wdirid wior) gforth-0.5 “open-dir”
Open the directory specified by c-addr, v and return dir-id for futher access to it.
read-dir (c-addr ul wdirid — u2 flag wior) gforth-0.5 “read-dir”

Chapter 6: Forth Words 181

Attempt to read the next entry from the directory specified by dir-id to the buffer of
length ul at address c-addr. If the attempt fails because there is no more entries, i0r=0,
flag=0, u2=0, and the buffer is unmodified. If the attempt to read the next entry fails
because of any other reason, return s0r<>0. If the attempt succeeds, store file name to the
buffer at c-addr and return ior=0, flag=true and u2 equal to the size of the file name. If
the length of the file name is greater than w1, store first w1 characters from file name into
the buffer and indicate "name too long" with ior, flag=true, and u2=ul.

close-dir (wdirid — wior) gforth-0.5 “close-dir”
Close the directory specified by dir-id.
filename-match (c-addr! ul c-addr2 u2 — flag) gforth-0.5 “match-file”

match the file name c_addrl ul with the pattern c_addr2 u2. Patterns match char by
char except for the special characters *" and ’?’, which are wildcards for several (**’) or
one ('7%) character.

get-dir (c-addrl ul — c-addr2 u2) gforth-0.7 “get-dir”

Store the current directory in the buffer specified by c-addri, ul. If the buffer size is not
sufficient, return 0 0
set-dir (c-addr v — wior) gforth-0.7 “set-dir”

Change the current directory to c-addr, u. Return an error if this is not possible
=mkdir (c-addr u wmode — wior) gforth-0.7 “equals-mkdir”

Create directory c-addr u with mode wmode.
mkdir-parents (c-addr u mode — ior) gforth-0.7

create the directory c-addr u and all its parents with mode mode (modified by umask)

6.21.5 Search Paths

If you specify an absolute filename (i.e., a filename starting with / or ~, or with : in the
second position (as in ‘C:...’")) for included and friends, that file is included just as you
would expect.

If the filename starts with ./, this refers to the directory that the present file was
included from. This allows files to include other files relative to their own position (irre-
spective of the current working directory or the absolute position). This feature is essential
for libraries consisting of several files, where a file may include other files from the library.
It corresponds to #include "..." in C. If the current input source is not a file, . refers to
the directory of the innermost file being included, or, if there is no file being included, to
the current working directory.

For relative filenames (not starting with . /), Gforth uses a search path similar to Forth’s
search order (see (undefined) [Word Lists|, page (undefined)). It tries to find the given
filename in the directories present in the path, and includes the first one it finds. There are
separate search paths for Forth source files and general files. If the search path contains
the directory ., this refers to the directory of the current file, or the working directory, as

if the file had been specified with . /.

Use ~+ to refer to the current working directory (as in the bash).

absolute-file? (addr u — flag) gforth-1.0 “absolute-file-question”

Chapter 6: Forth Words 182

A filename is absolute if it starts with a / or a ~ (~ expansion), or if it is in the form ./*,
extended regexp: ~[/~]l./, or if it has a colon as second character ("C:..."). Paths simply
containing a / are not absolute!

6.21.5.1 Source Search Paths

The search path is initialized when you start Gforth (see (undefined) [Invoking Gforth],
page (undefined)). You can display it and change it using fpath in combination with the
general path handling words.

fpath (- path-addr) gforth-0.4
.fpath (-) gforth-0.4 “dot-fpath”
Display the contents of the Forth search path.
file>fpath (addrl ul — addr2 u2) gforth-1.0 “file-to-fpath”

Searches for a file with the name c-addr! vl in the fpath. If successful, c-addr u2 is
the absolute file name or the file name relative to the current working directory. Throws
an exception if the file cannot be opened.

Here is an example of using fpath and require:

fpath path= /usr/lib/forth/|./
require timer.fs

6.21.5.2 General Search Paths

Your application may need to search files in several directories, like included does. To
facilitate this, Gforth allows you to define and use your own search paths, by providing
generic equivalents of the Forth search path words:

open-path-file (addrl ul path-addr — wfileid addr2 u2 0 | ior) gforth-0.2

Look in path path-addr for the file specified by addrl ul. If found, the resulting path
and an (read-only) open file descriptor are returned. If the file is not found, ior is what
came back from the last attempt at opening the file (in the current implementation).

file>path (c-addrl ul path-addr — c-addr2 u2) gforth-1.0 “file-to-path”

Searches for a file with the name c-addr! w1 in path stored in path-addr. If successful,
c-addr u2 is the absolute file name or the file name relative to the current working directory.
Throws an exception if the file cannot be opened.

clear-path (path-addr —) gforth-0.5
Set the path path-addr to empty.
also-path (c-addr len path-addr —) gforth-0.4
add the directory c-addr len to path-addr.
.path (path-addr —) gforth-0.4 “dot-path”
Display the contents of the search path path-addr.
path+ (path-addr "dir* —) gforth-0.4 “path-plus”
Add the directory dir to the search path path-addr.
path= (path-addr "“dirl| dir2| dir3" —) gforth-0.4 “path-equals”

Make a complete new search path; the path separator is |.

Chapter 6: Forth Words 183

Here’s an example of creating a custom search path:

variable mypath \ no special allocation required, just a variable
mypath path= /1lib|/usr/lib \ assign initial directories

mypath path+ /usr/local/lib \ append directory

mypath .path \ output:"/lib /usr/1lib /usr/local/lib"

Search file and show resulting path:
s" libm.so" mypath open-path-file throw type close-file \ output:"/1lib/libm.so"|]

6.22 Blocks

When you run Gforth on a modern desk-top computer, it runs under the control of an
operating system which provides certain services. Omne of these services is file services,
which allows Forth source code and data to be stored in files and read into Gforth (see
(undefined) [Files], page (undefined)).

Traditionally, Forth has been an important programming language on systems where it
has interfaced directly to the underlying hardware with no intervening operating system.
Forth provides a mechanism, called blocks, for accessing mass storage on such systems.

A block is a 1024-byte data area, which can be used to hold data or Forth source code.
No structure is imposed on the contents of the block. A block is identified by its number;
blocks are numbered contiguously from 1 to an implementation-defined maximum.

A typical system that used blocks but no operating system might use a single floppy-disk
drive for mass storage, with the disks formatted to provide 256-byte sectors. Blocks would
be implemented by assigning the first four sectors of the disk to block 1, the second four
sectors to block 2 and so on, up to the limit of the capacity of the disk. The disk would not
contain any file system information, just the set of blocks.

On systems that do provide file services, blocks are typically implemented by storing a
sequence of blocks within a single blocks file. The size of the blocks file will be an exact
multiple of 1024 bytes, corresponding to the number of blocks it contains. This is the
mechanism that Gforth uses.

Only one blocks file can be open at a time. If you use block words without having
specified a blocks file, Gforth defaults to the blocks file blocks.fb. Gforth uses the Forth
search path when attempting to locate a blocks file (see (undefined) [Source Search Paths],
page (undefined)).

When you read and write blocks under program control, Gforth uses a number of block
buffers as intermediate storage. These buffers are not used when you use load to interpret
the contents of a block.

The behaviour of the block buffers is analagous to that of a cache. Each block buffer
has three states:

e Unassigned
e Assigned-clean
e Assigned-dirty

Initially, all block buffers are unassigned. In order to access a block, the block (specified
by its block number) must be assigned to a block buffer.

Chapter 6: Forth Words 184

The assignment of a block to a block buffer is performed by block or buffer. Use block
when you wish to modify the existing contents of a block. Use buffer when you don’t care
about the existing contents of the block??.

Once a block has been assigned to a block buffer using block or buffer, that block
buffer becomes the current block buffer. Data may only be manipulated (read or written)
within the current block buffer.

When the contents of the current block buffer has been modified it is necessary, before
calling block or buffer again, to either abandon the changes (by doing nothing) or mark
the block as changed (assigned-dirty), using update. Using update does not change the
blocks file; it simply changes a block buffer’s state to assigned-dirty. The block will be
written implicitly when it’s buffer is needed for another block, or explicitly by flush or
save-buffers.

Flush writes all assigned-dirty blocks back to the blocks file on disk. Leaving Gforth
with bye also performs a flush.

In Gforth, block and buffer use a direct-mapped algorithm to assign a block buffer
to a block. That means that any particular block can only be assigned to one specific
block buffer, called (for the particular operation) the victim buffer. If the victim buffer is
unassigned or assigned-clean it is allocated to the new block immediately. If it is assigned-
dirty its current contents are written back to the blocks file on disk before it is allocated to
the new block.

Although no structure is imposed on the contents of a block, it is traditional to display
the contents as 16 lines each of 64 characters. A block provides a single, continuous stream of
input (for example, it acts as a single parse area) — there are no end-of-line characters within
a block, and no end-of-file character at the end of a block. There are two consequences of
this:

e The last character of one line wraps straight into the first character of the following
line

e The word \ — comment to end of line — requires special treatment; in the context of
a block it causes all characters until the end of the current 64-character “line” to be
ignored.

In Gforth, when you use block with a non-existent block number, the current blocks file
will be extended to the appropriate size and the block buffer will be initialised with spaces.
Gforth includes a simple block editor (type use blocked.fb 0 list for details) but
doesn’t encourage the use of blocks; the mechanism is only provided for backward compat-
ibility.
Common techniques that are used when working with blocks include:
e A screen editor that allows you to edit blocks without leaving the Forth environment.
e Shadow screens; where every code block has an associated block containing comments
(for example: code in odd block numbers, comments in even block numbers). Typi-
cally, the block editor provides a convenient mechanism to toggle between code and
comments.

23 The Standard Forth definition of buffer is intended not to cause disk I1/O; if the data associated with
the particular block is already stored in a block buffer due to an earlier block command, buffer will
return that block buffer and the existing contents of the block will be available. Otherwise, buffer will
simply assign a new, empty block buffer for the block.

Chapter 6: Forth Words 185

e Load blocks; a single block (typically block 1) contains a number of thru commands
which load the whole of the application.

See Frank Sergeant’s Pygmy Forth to see just how well blocks can be integrated into a
Forth programming environment.
open-blocks (c-addr u —) gforth-0.2
Use the file, whose name is given by c-addr u, as the blocks file.
use ("file" -) gforth-0.2
Use file as the blocks file.
block-offset (— addr) gforth-0.5

User variable containing the number of the first block (default since 0.5.0: 0). Block files
created with Gforth versions before 0.5.0 have the offset 1. If you use these files you can: 1
offset !; or add 1 to every block number used; or prepend 1024 characters to the file.

get-block-fid (— wfileid) gforth-0.2

Return the file-id of the current blocks file. If no blocks file has been opened, use
blocks.fb as the default blocks file.

block-position (u —) block
Position the block file to the start of block w.
list (w —) block-ext

Display block uw. In Gforth, the block is displayed as 16 numbered lines, each of 64
characters.

scr (— a-addr) block-ext “s-c-r”
User variable containing the block number of the block most recently processed by list.
block (u — a-addr) block

If a block buffer is assigned for block u, return its start address, a-addr. Otherwise,
assign a block buffer for block u (if the assigned block buffer has been updated, transfer the
contents to mass storage), read the block into the block buffer and return its start address,
a-addr.

buffer (u — a-addr) block

If a block buffer is assigned for block u, return its start address, a-addr. Otherwise,
assign a block buffer for block u (if the assigned block buffer has been updated, transfer
the contents to mass storage) and return its start address, a-addr. The subtle difference
between buffer and block mean that you should only use buffer if you don’t care about
the previous contents of block u. In Gforth, this simply calls block.

empty-buffers (—) block-ext

Mark all block buffers as unassigned; if any had been marked as assigned-dirty (by
update), the changes to those blocks will be lost.

empty-buffer (buffer —) gforth-0.2
update (—) block

Mark the state of the current block buffer as assigned-dirty.
updated? (n - f) gforth-0.2 “updated-question”

Chapter 6: Forth Words 186

Return true if updated has been used to mark block n as assigned-dirty.
save-buffers (—) block

Transfer the contents of each updated block buffer to mass storage, then mark all block
buffers as assigned-clean.

save-buffer (buffer —) gforth-0.2
flush (—) block
Perform the functions of save-buffers then empty-buffers.
load (i*r u — j*r) block
Text-interpret block u. Block 0 cannot be loaded.
thru (i*z nl n2 - j*z) block-ext
load the blocks ni through n2 in sequence.
+load (i*zx n — j*x) gforth-0.2 “plus-load”
Used within a block to load the block specified as the current block + n.
+thru (%z n1 n2 - j*z) gforth-0.2 “plus-thru”

Used within a block to load the range of blocks specified as the current block + nf thru
the current block + n2.

-=> (-) gforth-0.2 “chain”

If this symbol is encountered whilst loading block 7, discard the remainder of the block
and load block n+1. Used for chaining multiple blocks together as a single loadable unit.
Not recommended, because it destroys the independence of loading. Use thru (which is
standard) or +thru instead.

block-included (a-addr u —) gforth-0.2

Use within a block that is to be processed by load. Save the current blocks file specifica-
tion, open the blocks file specified by a-addr v and load block 1 from that file (which may
in turn chain or load other blocks). Finally, close the blocks file and restore the original
blocks file.

6.23 Other I/0

6.23.1 Simple numeric output

The simplest output functions are those that display numbers from the data stack. Numbers
are displayed in the base (aka radix) stored in base (see (undefined) [Number Conversion],
page (undefined)).

. (n—) core “dot”
Display (the signed single number) n in free-format, followed by a space.
dec. (n —) gforth-0.2 “dec-dot”
Display n as a signed decimal number, followed by a space.
h. (u -) gforth-1.0 “h-dot”
Display u as an unsigned hex number, prefixed with a "$" and followed by a space.
hex. (u —) gforth-0.2 “hex-dot”

Chapter 6: Forth Words 187

Display v as an unsigned hex number, prefixed with a $ and followed by a space. Another
name for this word is h., which is present in several other systems, but not in Gforth before
1.0.

u. (u—) core “u-dot”

Display (the unsigned single number) u in free-format, followed by a space.
.r (nl n2 -) core-ext “dot-r”

Display nl right-aligned in a field n2 characters wide. If more than n2 characters are
needed to display the number, all digits are displayed. If appropriate, n2 must include a
character for a leading “-”.

u.r (un -) core-ext “u-dot-r”

Display u right-aligned in a field n characters wide. If more than n characters are needed
to display the number, all digits are displayed.
dec.r (un -) gforth-0.5 “dec-dot-r”

Display u as a unsigned decimal number in a field n characters wide.

d. (d -) double “d-dot”

Display (the signed double number) d in free-format. followed by a space.
ud. (ud -) gforth-0.2 “u-d-dot”

Display (the signed double number) ud in free-format, followed by a space.

d.r (dn -) double “d-dot-r”

Display d right-aligned in a field n characters wide. If more than n characters are needed
to display the number, all digits are displayed. If appropriate, n must include a character
for a leading “-”.
ud.r (ud n —) gforth-0.2 “u-d-dot-r”

Display ud right-aligned in a field n characters wide. If more than n characters are
needed to display the number, all digits are displayed.

6.23.2 Formatted numeric output

Forth traditionally uses a technique called pictured numeric output for formatted printing of
integers. In this technique, digits are extracted from the number (using the current output
radix defined by base, see (undefined) [Number Conversion|, page (undefined)), converted
to ASCII codes and prepended to a string that is built in a scratch-pad area of memory (see
(undefined) [Implementation-defined options|, page (undefined)). Arbitrary characters can
be prepended to the string during the extraction process. The completed string is specified
by an address and length and can be manipulated (TYPEed, copied, modified) under program
control.

All of the integer output words described in the previous section (see (undefined) [Sim-
ple numeric output], page (undefined)) are implemented in Gforth using pictured numeric
output.

Three important things to remember about pictured numeric output:

e It always operates on double-precision numbers; to display a single-precision number,
convert it first (for ways of doing this see (undefined) [Double precision], page (unde-
fined)).

Chapter 6: Forth Words 188

e [t always treats the double-precision number as though it were unsigned. The examples
below show ways of printing signed numbers.

e The string is built up from right to left; least significant digit first.
Standard Forth supports a single output buffer (aka hold area) that you empty and
initialize with <# and for which you get the result string with #>.

Gforth additionally supports nested usage of this buffer, allowing, e.g., to nest output
from the debugging tracer ~~ inside code dealing with the hold area: <<# starts a new nest,
#> produces the result string, and #>> unnests: the hold area for the nest is reclaimed, and
#> now produces the string for the next-outer nest. All of Gforth’s higher-level numeric
output words use <<# ... #> ... #>> and can be nested inside other users of the hold area.

<# (—) core “less-number-sign”
Initialise/clear the pictured numeric output string.
<<# (-) gforth-0.5 “less-less-number-sign”

Start a hold area that ends with #>>. Can be nested in each other and in <#. Note: if
you do not match up the <<#s with #>>s, you will eventually run out of hold area; you can
reset the hold area to empty with <#.

(udl — ud2) core “number-sign”

Used between <<# and #>. Prepend the least-significant digit (according to base) of udl
to the pictured numeric output string. ud2 is udl/base, i.e., the number representing the
remaining digits.

#s (ud - 0 0) core “number-sign-s”

Used between <<# and #>. Prepend all digits of ud to the pictured numeric output
string. #s will convert at least one digit. Therefore, if ud is 0, #s will prepend a “0” to the
pictured numeric output string.

hold (char —) core

Used between <<# and #>. Prepend the character char to the pictured numeric output
string.
holds (addr v —) core-ext

Used between <<# and #>. Prepend the string addr u to the pictured numeric output
string.
sign (n —) core

Used between <<# and #>. If n (a single number) is negative, prepend “~” to the pictured
numeric output string.
#> (zd — addr u) core “number-sign-greater”

Complete the pictured numeric output string by discarding xd and returning addr u; the
address and length of the formatted string. A Standard program may modify characters
within the string. Does not release the hold area; use #>> to release a hold area started
with <<#, or <# to release all hold areas.

#>> (-) gforth-0.5 “number-sign-greater-greater”
Release the hold area started with <<#.
Here are some examples of using pictured numeric output:

:my-u. (u--)

Chapter 6: Forth Words 189

\ Simplest use of pns.. behaves like Standard u.

0 \ convert to unsigned double
<<# \ start conversion
#s \ convert all digits
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> \ release hold area
cents-only (u --)
0 \ convert to unsigned double
<<# \ start conversion
\ convert two least-significant digits
#> \ complete conversion, discard other digits
TYPE SPACE \ display, with trailing space
#>> \ release hold area
: dollars-and-cents (u --)
0 \ convert to unsigned double
<< \ start conversion
\ convert two least-significant digits
'.' hold \ insert decimal point
#s \ convert remaining digits
'$' hold \ append currency symbol
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> \ release hold area

:my-. (n--)
\ handling negatives.. behaves like Standard .
s>d \ convert to signed double
swap over dabs \ leave sign byte followed by unsigned double

<< \ start conversion
#s \ convert all digits
rot sign \ get at sign byte, append "-" if needed
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area
: account. (n --)

\ accountants don't like minus signs, they use parentheses
\ for negative numbers

s>d \ convert to signed double

swap over dabs \ leave sign byte followed by unsigned double
<<# \ start conversion

2 pick \ get copy of sign byte

0< IF ')' hold THEN \ right-most character of output
#s \ convert all digits

Chapter 6: Forth Words 190

rot \ get at sign byte

0< IF '(' hold THEN

#> \ complete conversion

TYPE SPACE \ display, with trailing space
#>> \ release hold area

Here are some examples of using these words:

1 my-u. 1

hex -1 my-u. decimal FFFFFFFF
1 cents-only 01

1234 cents-only 34

2 dollars-and-cents $0.02
1234 dollars-and-cents $12.34
123 my-. 123

-123 my. -123

123 account. 123

-456 account. (456)

6.23.3 Floating-point output
Floating-point output is always displayed using base 10.
f. (r -) floating-ext “f-dot”
Display (the floating-point number) r without exponent, followed by a space.
fe. (r —) floating-ext “f-e-dot”
Display r using engineering notation (with exponent dividable by 3), followed by a space.
fs. (r —) floating-ext “f-s-dot”
Display r using scientific notation (with exponent), followed by a space.
fp. (r —) floating-ext “f-p-dot”
Display 7 using SI prefix notation (with exponent dividable by 3, converted into SI
prefixes if available), followed by a space.

Examples of printing the number 1234.5678E23 in the different floating-point output
formats are shown below.

f. 123456780000000000000000000.
fe. 123.456780000000E24

fs. 1.23456780000000E26

fp. 123.456780000000Y

The length of the output is influenced by:
precision (— u) floating-ext
u is the number of significant digits currently used by F. FE. and FS.
set-precision (u —) floating-ext
Set the number of significant digits currently used by F. FE. and FS. to w.
You can control the output in more detail with:
f.rdp (rf +nr +nd +np —) gforth-0.6 “f-dot-rdp”

Chapter 6: Forth Words 191

Print float rf formatted. The total width of the output is nr. For fixed-point notation,
the number of digits after the decimal point is +nd and the minimum number of significant
digits is mp. Set-precision has no effect on f.rdp. Fixed-point notation is used if the
number of siginicant digits would be at least np and if the number of digits before the
decimal point would fit. If fixed-point notation is not used, exponential notation is used,
and if that does not fit, asterisks are printed. We recommend using nr>=7 to avoid the risk
of numbers not fitting at all. We recommend nr>=np+5 to avoid cases where f . rdp switches
to exponential notation because fixed-point notation would have too few significant digits,
yet exponential notation offers fewer significant digits. We recommend nr>=nd+2, if you
want to have fixed-point notation for some numbers; the smaller the value of np, the more
cases are shown in fixed-point notation (cases where few or no significant digits remain in
fixed-point notation). We recommend np>nr, if you want to have exponential notation for
all numbers.

To give you a better intuition of how they influence the output, here are some examples
of parameter combinations; in each line the same number is printed, in each column the
same parameter combination is used for printing:

12 13 0 734 730 731 751 771 702 421
-1.234568E-6	-1.2E-6	-0.000	-1.2E-6	-1.2E-6	-1.2E-6	-1.2E-6	***x
-1.234568E-5	-1.2E-5	-0.000	-1.2E-5	-.00001	-1.2E-5	-1.2E-5]	***x
-1.234568E-4	-1.2E-4	-0.000	-1.2E-4	-.00012	-1.2E-4	-1.2E-4	***x
-1.234568E-3	-1.2E-3	-0.001	-0.001	-.00123	-1.2E-3	-1.2E-3]**x*x	
-1.234568E-2	-1.2E-2	-0.012	-0.012	-.01235	-1.2E-2	-1.2E-2	-.01]
-1.234568E-1	-1.2E-1	-0.123	-0.123	-.12346	-1.2E-1	-1.2E-1	-.12]
-1.2345679E0	-1.235	-1.235	-1.235	-1.23E0	-1.23E0	-1.23E0	-1E0]
-1.2345679E1	-12.346	-12.346	-12.346	-1.23E1	-1.23E1	-12.	-1E1]
-1.2345679E2	-1.23E2	-1.23E2	-1.23E2	-1.23E2	-1.23E2	-123.	-1E2]
-1.2345679E3	-1.23E3	-1.23E3	-1.23E3	-1.23E3	-1.23E3	-1235.	-1E3]
-1.2345679E4	-1.23E4	-1.23E4	-1.23E4	-1.23E4	-1.23E4	-12346.	-1E4
-1.2345679E5	-1.23E5	-1.23E5	-1.23E5	-1.23E5	-1.23E5	-1.23E5	-1E5]

You can generate a string instead of displaying the number with:
f>str-rdp (rf +nr +nd +np — c-addr nr) gforth-0.6 “f-to-str-rdp”

Convert 7f into a string at c-addr nr. The conversion rules and the meanings of nr +nd
np are the same as for £.rdp. The result in in the pictured numeric output buffer and will
be destroyed by anything destroying that buffer.

f>buf-rdp (rf c-addr +nr +nd +np —) gforth-0.6 “f-to-buf-rdp”

Convert rf into a string at c-addr nr. The conversion rules and the meanings of nr nd
np are the same as for f.rdp.

There is also a primitive used for implementing higher-level FP-to-string words:
represent (r c-addr u — n f1 f2) floating “represent”

Convert the decimal significand (aka mantissa) of r into a string in buffer c-addr u; n
is the exponent, fI is true if r is negative, and f2 is true if r is valid (a finite number in
Gforth).

6.23.4 Miscellaneous output

cr (-) core “c-1”

Chapter 6: Forth Words 192

Output a newline (of the favourite kind of the host OS). Note that due to the way the
Forth command line interpreter inserts newlines, the preferred way to use cr is at the start
of a piece of text; e.g., cr ." hello, world".
space (—) core

Display one space.
spaces (u —) core

Display u spaces.
out (— addr) gforth-1.0

Addr contains a number that tries to give the position of the cursor within the current
line on the user output device: It resets to 0 on cr, increases by the number of characters by
type and emit, and decreases on backspaces. Unfortunately, it does not take into account
tabs, multi-byte characters, or the existence of Unicode characters with width 0 and 2, so
it only works for simple cases.

A" (compilation ‘cec"’ — ; run-time —) gforth-0.6 “dot-backslash-quote”
Like .", but translates C-like \-escape-sequences (see S\").
" (compilation ‘cec"’ — ; run-time —) core “dot-quote”

Compilation: Parse a string ccc delimited by a " (double quote). At run-time, display
the string. Interpretation semantics for this word are undefined in standard Forth. Gforth’s
interpretation semantics are to display the string.

. C (compilationéinterpretation ’ccc<close-paren>’ —) core-ext “dot-paren”

Compilation and interpretation semantics: Parse a string ccc delimited by a) (right
parenthesis). Display the string. This is often used to display progress information during
compilation; see examples below.

If you don’t want to worry about wether to use . (hello) or ." hello", you can write
"hello" type, which gives you what you usually want (but is less portable to other Forth
systems).

As an example, consider the following text, stored in a file test.fs:
. (text-1)
: my-word
"otext-2" cr
. (text-3)
"text-4" type

" text-5"
"text-6" type

When you load this code into Gforth, the following output is generated:
include test.fs RET text-ltext-3text-5text-6 ok

o Messages text-1 and text-3 are displayed because . (is an immediate word; it behaves
in the same way whether it is used inside or outside a colon definition.

e Message text-5 is displayed because of Gforth’s added interpretation semantics for .".

e Message text-6 is displayed because "text-6" type is interpreted.

Chapter 6: Forth Words 193

e Message text-2 is not displayed, because the text interpreter performs the compilation
semantics for ." within the definition of my-word.

e Message text-4 is not displayed, because "text-4" type is compiled into my-word.

6.23.5 Displaying characters and strings
type (c-addr u —) core

If u>0, display u characters from a string starting with the character stored at c-addr.
xemit (zc —) xchar “x-emit”

Prints an xchar on the terminal.
emit (¢ —) core

Send the byte ¢ to the current output; for ASCII characters, emit is equivalent to xemit.
typewhite (addr n —) gforth-0.2

Like type, but white space is printed instead of the characters.

6.23.6 Terminal output

If you are outputting to a terminal, you may want to control the positioning of the cursor:
at-xy (zy —) facility “at-x-y”

Put the curser at position z y. The top left-hand corner of the display is at 0 0.
at-deltaxy (dr dy —) gforth-0.7

With the current position at z y, put the cursor at z+dx y+dy.

In order to know where to position the cursor, it is often helpful to know the size of the
screen:

form (— nlines ncols) gforth-0.2
And sometimes you want to use:
page (—) facility
Clear the screen

Note that on non-terminals you should use 12 emit, not page, to get a form feed.

6.23.6.1 Color output

The following words are used to create (semantic) colorful output; further output is pro-
duced in the color and style given by the word; the actual color and style depends on the
theme (see below).

default-color (—) gforth-1.0
use system-default color
error-color (-) gforth-1.0
error color: red
error-hl-inv (—) gforth-1.0
color mod for error highlight inverse
error-hl-ul (-) gforth-1.0
color mod for error highlight underline

warning-color (-) gforth-1.0

Chapter 6: Forth Words 194

color for warnings: blue/yellow on black terminals
info-color (—) gforth-1.0

color for info: green/cyan on black terminals
success-color (—) gforth-1.0

color for success: green
input-color (—) gforth-1.0

color for user-input: black/white (both bold)
status-color (—) gforth-1.0

color mod for status bar
compile-color (—) gforth-1.0

color mod for status bar in compile mode

6.23.6.2 Color themes

Depending on wether you prefer bright or dark background the foreground colors-theme
can be changed by:

light-mode (—) gforth-1.0

color theme for white background
dark-mode (—) gforth-1.0

color theme for black background
uncolored-mode (—) gforth-1.0

This mode does not set colors, but uses the default ones.
magenta-input (-) gforth-1.0

make input color easily recognizable (useful in presentations)
default-input (—) gforth-1.0

make input color easily recognizable (useful in presentations)

Gforth tries to select the best mode automatically. You can set the environment variable
GFORTH_INIT to light, dark, uncolored, or auto (same effect if not setting it at all), to
tell Gforth your preference, as well as magenta or default for the input color preference.
Concatenate options with space as separator.

6.23.7 Single-key input
If you want to get a single printable character, you can use key; to check whether a character
is available for key, you can use key?.
key (— char) core
Receive (but do not display) one character, char.
key-ior (— charlior) gforth-1.0

Receive (but do not display) one character, char, in case of an error or interrupt, return
the negative ior instead.

key? (— flag) facility “key-question”

Chapter 6: Forth Words 195

Determine whether a character is available. If a character is available, flag is true; the
next call to key will yield the character. Once key? returns true, subsequent calls to key?
before calling key or ekey will also return true.

xkey? (— flag) xchar “x-key-query”
If you want to process a mix of printable and non-printable characters, you can do that

with ekey and friends. Ekey produces a keyboard event that you have to convert into a
character with ekey>char or into a key identifier with ekey>fkey.

Typical code for using EKEY looks like this:
ekey ekey>xchar if (xc)

. \ do something with the character
else ekey>fkey if (key-id)

case
k-up of ... endof
k-f1 of ... endof
k-left k-shift-mask or k-ctrl-mask or of ... endof
endcase

else (keyboard-event)
drop \ just ignore an unknown keyboard event type
then then

ekey (—u) facility-ext “e-key”
Receive a keyboard event u (encoding implementation-defined).
ekey>xchar (u — u false | zc true) xchar-ext “e-key-to-x-char”
Convert keyboard event u into xchar xc if possible.
ekey>char (u — u false | ¢ true) facility-ext “e-key-to-char”

Convert keyboard event u into character c if possible. Note that non-ASCII char-
acters produce false from both ekey>char and ekey>fkey. Instead of ekey>char, use
ekey>xchar if available.

ekey>fkey ((ul —u2 f) facility-ext “e-key-to-f-key”
If ul is a keyboard event in the special key set, convert keyboard event ul into key id
u2 and return true; otherwise return ul and false.
ekey? (— flag) facility-ext “e-key-question”
True if a keyboard event is available.
The key identifiers for cursor keys are:
k-left (— u) facility-ext
k-right (— u) facility-ext
k-up (— u) facility-ext
k-down (— u) facility-ext
k-home (— u) facility-ext
aka Posl
k-end (— u) facility-ext
k-prior (— u) facility-ext

Chapter 6: Forth Words 196

aka PgUp
k-next (— u) facility-ext
aka PgDn
k-insert (— u) facility-ext
k-delete (— u) facility-ext
the DEL key on my xterm, not backspace
The key identifiers for function keys (aka keypad keys) are:
k-f1 (— u) facility-ext “k-f-1”

k-f2 (- u) facility-ext “k-f-2”
k-£3 (— u) facility-ext “k-f-3”
k-f4 (— u) facility-ext “k-f-4”
k-f5 (— u) facility-ext “k-f-5”
k-f6 (— u) facility-ext “k-f-6”
k-£f7 (— u) facility-ext “k-f-7”
k-£f8 (— u) facility-ext “k-f-8”
k-f9 (— u) facility-ext “k-f-9”

k-£10 (— u) facility-ext “k-f-10”
k-f11 (— u) facility-ext “k-f-11”
k-f12 (— u) facility-ext “k-f-12”
Note that k-f11 and k-£12 are not as widely available.
You can combine these key identifiers with masks for various shift keys:
k-shift-mask (— u) facility-ext
k-ctrl-mask (— u) facility-ext
k-alt-mask (— u) facility-ext
There are a number of keys that have ASCII values, and therefore are unlikely to be

reported as special keys, but the combination of these keys with shift keys may be reported
as a special key:

k-enter (— u) gforth-1.0
k-backspace (— u) gforth-1.0
k-tab (— u) gforth-1.0
Moreover, there the following key codes for keys and other events:
k-winch (— u) gforth-1.0
A key code that may be generated when the user changes the window size.
k-pause (— u) gforth-1.0
k-mute (- u) gforth-1.0
k-volup (— u) gforth-1.0
k-voldown (— u) gforth-1.0
k-sel (— u) gforth-1.0
k-eof (—u) gforth-1.0

Chapter 6: Forth Words 197

Note that, even if a Forth system has ekey>fkey and the key identifier words, the keys
are not necessarily available or it may not necessarily be able to report all the keys and all
the possible combinations with shift masks. Therefore, write your programs in such a way
that they are still useful even if the keys and key combinations cannot be pressed or are not
recognized.

Examples: Older keyboards often do not have an F11 and F12 key. If you run Gforth in
an xterm, the xterm catches a number of combinations (e.g., Shift-Up), and never passes
it to Gforth. Finally, Gforth currently does not recognize and report combinations with
multiple shift keys (so the shift-ctrl-left case in the example above would never be
entered).

Gforth recognizes various keys available on ANSI terminals (in MS-DOS you need the
ANSI.SYS driver to get that behaviour); it works by recognizing the escape sequences that
ANSI terminals send when such a key is pressed. If you have a terminal that sends other
escape sequences, you will not get useful results on Gforth. Other Forth systems may work
in a different way.

Gforth also provides a few words for outputting names of function keys:
fkey. (u —) gforth-1.0 “fkey-dot”

Print a string representation for the function key u. U must be a function key (possibly
with modifier masks), otherwise there may be an exception.
simple-fkey-string (ul — c-addr u) gforth-1.0

c-addr u is the string name of the function key wl. Only works for simple function
keys without modifier masks. Any ul that does not correspond to a simple function key
currently produces an exception.

6.23.8 Line input and conversion
For ways of storing character strings in memory see (undefined) [String representations],
page (undefined).
Words for inputting one line from the keyboard:
accept (c-addr +nl — +n2) core

Get a string of up to nl characters from the user input device and store it at c-addr.
n2 is the length of the received string. The user indicates the end by pressing RET. Gforth
supports all the editing functions available on the Forth command line (including history
and word completion) in accept.

edit-line (c-addr n1 n2 — n3) gforth-0.6
edit the string with length n2 in the buffer c-addr nl, like accept.
Conversion words:

s>number? (addr u — d f) gforth-0.5 “s-to-number-question”
converts string addr u into d, flag indicates success

s>unumber? (c-addr u — ud flag) gforth-0.5 “s-to-unumber-question”
converts string c-addr u into ud, flag indicates success

>number (ud! c-addrl ul — ud2 c-addr2 u2) core “to-number”

Attempt to convert the character string c-addrl ul to an unsigned number in the cur-
rent number base. The double udl accumulates the result of the conversion to form ud2.

Chapter 6: Forth Words 198

Conversion continues, left-to-right, until the whole string is converted or a character that
is not convertable in the current number base is encountered (including + or -). For each
convertable character, udl is first multiplied by the value in BASE and then incremented
by the value represented by the character. c-addr2 is the location of the first unconverted
character (past the end of the string if the whole string was converted). u2 is the number
of unconverted characters in the string. Overflow is not detected.

>float (c-addr u — f... flag) floating “to-float”

Actual stack effect: (c_addru—rt | f). Attempt to convert the character string c-addr
u to internal floating-point representation. If the string represents a valid floating-point
number, r is placed on the floating-point stack and flag is true. Otherwise, flag is false. A
string of blanks is a special case and represents the floating-point number 0.
>floatl (c-addr u ¢ — f:... flag) gforth-1.0 “to-float1”

Actual stack effect: (c.addruc -1t | f). Attempt to convert the character string
c-addr u to internal floating-point representation, with ¢ being the decimal separator. If
the string represents a valid floating-point number, r is placed on the floating-point stack
and flag is true. Otherwise, flag is false. A string of blanks is a special case and represents
the floating-point number 0.

Obsolescent input and conversion words:
convert (udl c-addrl — ud2 c-addr2) core-ext-obsolescent

Obsolescent: superseded by >number.
expect (c-addr +n —) core-ext-obsolescent

Receive a string of at most +n characters, and store it in memory starting at c-addr.
The string is displayed. Input terminates when the <return> key is pressed or +n characters
have been received. The normal Gforth line editing capabilites are available. The length of
the string is stored in span; it does not include the <return> character. OBSOLESCENT:
superceeded by accept.
span (— c-addr) core-ext-obsolescent

Variable — c-addr is the address of a cell that stores the length of the last string received
by expect. OBSOLESCENT.

6.23.9 Pipes

In addition to using Gforth in pipes created by other processes (see (undefined) [Gforth in
pipes], page (undefined)), you can create your own pipe with open-pipe, and read from or
write to it.

open-pipe (c-addr u wfam — wfileid wior) gforth-0.2 “open-pipe”

close-pipe (wfileid — wretval wior) gforth-0.2 “close-pipe”

If you write to a pipe, Gforth can throw a broken-pipe-error; if you don’t catch this
exception, Gforth will catch it and exit, usually silently (see (undefined) [Gforth in pipes],
page (undefined)). Since you probably do not want this, you should wrap a catch or try
block around the code from open-pipe to close-pipe, so you can deal with the problem
yourself, and then return to regular processing.
broken-pipe-error (— n) gforth-0.6

the error number for a broken pipe

Chapter 6: Forth Words 199

6.23.10 Xchars and Unicode

ASCII is only appropriate for the English language. Most western languages however fit
somewhat into the Forth frame, since a byte is sufficient to encode the few special characters
in each (though not always the same encoding can be used; latin-1 is most widely used,
though). For other languages, different char-sets have to be used, several of them variable-
width. To deal with this problem, characters are often represented as Unicode codepoints on
the stack, and as UTF-8 byte strings in memory. An Unicode codepoint often represents one
application-level character, but Unicode also supports decomposed characters that consist
of several code points, e.g., a base letter and a combining diacritical mark.

An Unicode codepoint can consume more than one byte in memory, so we adjust our
terminology: A char is a raw byte in memory or a value in the range 0-255 on the stack. An
xchar (for extended char) stands for one codepoint; it is represented by one or more bytes in
memory and may have larger values on the stack. ASCII characters are the same as chars
and as xchars: values in the range 0-127, and a single byte with that value in memory.

When using UTF-8 encoding, all other codepoints take more than one byte/char. In
most cases, you can just treat such characters as strings in memory and don’t need to use
the following words, but if you want to deal with individual codepoints, the following words
are useful. We currently have no words for dealing with decomposed characters.

The xchar words add a few data types:

e xc is an extended char (xchar) on the stack. It occupies one cell, and is a subset
of unsigned cell. On 16 bit systems, only the BMP subset of the Unicode character
set (i.e., codepoints <65536) can be represented on the stack. If you represent your
application characters as strings at all times, you can avoid this limitation.

e xc-addr is the address of an xchar in memory. Alignment requirements are the same as
c-addr. The memory representation of an xchar differs from the stack representation,
and depends on the encoding used. An xchar may use a variable number of chars in
memory.

e xc-addr u is a buffer of xchars in memory, starting at xc-addr, u chars (i.e., bytes, not
xchars) long.

xc-size (@c — u) xchar “x-c-size”
Computes the memory size of the xchar xc in chars.
x-size (zc-addr ul — u2) xchar
Computes the memory size of the first xchar stored at xc-addr in chars.
xc@ (zc-addr — zc) xchar-ext “xc-fetch”
Fetchs the xchar xc at xc-addrl.
xc@+ (zc-addrl — xzc-addr2 zc) xchar “x-c-fetch-plus”
Fetchs the xchar xc at xc-addrl. xc-addr2 points to the first memory location after xc.
xc@+? (xzc-addrl ul — zc-addr? u2 zc) gforth-experimental “x-c-fetch-plus-query”

Fetchs the first xchar xc of the string xc-addrl ul. xc-addr2 u2 is the remaining string
after xc.

xc!+7? (zc zc-addrl ul — zc-addr2 u2 f) xchar “x-c-store-plus-query”

Stores the xchar xc into the buffer starting at address xc-addrl, ul chars large. xc-
addr2 points to the first memory location after xc, u2 is the remaining size of the buffer.

Chapter 6: Forth Words 200

If the xchar xc did fit into the buffer, f is true, otherwise f is false, and xc-addr2 u2 equal
xc-addrl ul. XC!+7 is safe for buffer overflows, and therefore preferred over XCl+.

xc!'+ (zc xzc-addrl — xc-addr?2) xchar “x-c-store”

Stores the xchar xc at xc-addrl. xc-addr2 is the next unused address in the buffer. Note
that this writes up to 4 bytes, so you need at least 3 bytes of padding after the end of the
buffer to avoid overwriting useful data if you only check the address against the end of the
buffer.

xchar+ (zc-addrl — zc-addr2) xchar “x-char-plus”
Adds the size of the xchar stored at xc-addrl to this address, giving xc-addr2.
xchar- (zc-addrl — zc-addr2) xchar-ext “x-char-minus”

Goes backward from xc_addrl until it finds an xchar so that the size of this xchar added
to xc_addr2 gives xc_addrl.

+x/string (zc-addrl ul — zc-addr? u2) xchar-ext “plus-x-slash-string”

Step forward by one xchar in the buffer defined by address xc-addrl, size ul chars. xc-
addr2 is the address and u2 the size in chars of the remaining buffer after stepping over the
first xchar in the buffer.

x\string- (zc-addr ul — xc-addr u2) xchar-ext “x-backslash-string-minus”

Step backward by one xchar in the buffer defined by address xc-addr and size ul in
chars, starting at the end of the buffer. xc-addr is the address and u2 the size in chars of
the remaining buffer after stepping backward over the last xchar in the buffer.

-trailing-garbage (zc-addr ul — zc-addr u2) xchar-ext “minus-trailing-garbage”

Examine the last XCHAR in the buffer xc-addr ul—if the encoding is correct and it
repesents a full char, u2 equals ul, otherwise, u2 represents the string without the last
(garbled) xchar.

x-width (zc-addr u — n) xchar-ext

n is the number of monospace ASCII chars that take the same space to display as the
the xchar string starting at xc-addr, using u chars; assuming a monospaced display font,
i.e. char width is always an integer multiple of the width of an ASCII char.

xkey (— zc¢) xchar “x-key”

Reads an xchar from the terminal. This will discard all input events up to the completion
of the xchar.

xc-width (zc — n) xchar-ext “x-c-width”
xc has a width of n times the width of a normal fixed-width glyph.
xhold (zc —) xchar-ext “x-hold”

Used between <<# and #>. Prepend xc to the pictured numeric output string. Alterna-
tively, use holds.

xc, ((zchar —) xchar “x-c-comma”

Chapter 6: Forth Words 201

6.23.11 Internationalization and Localization

Programs for end users require to address those in their native language. There is a decades
old proposal for such a facility that has been split from other proposals for international
character sets like Xchars (see (undefined) [Xchars and Unicode], page (undefined)) and
Substitute (see (undefined) [Substitute|, page (undefined)). Messages displayed on the
screen need to be translated from the native language of the developers to the local languages
of the user.

Strings subject to translation are declared with L" string". This returns a locale string
identifier (LSID). LSIDs are opaque types, taking a cell on the stack. LSIDs can be trans-
lated into a locale; locales are languages and country-specific variants of that language.

L" ("lsid<">" — lsid) gforth-experimental “l-quote”

Parse a string and define a new lsid, if the string is uniquely new. Identical strings result
in identical lsids, which allows to refer to the same Isid from multiple locations using the
same string.

LU" ("lsid<">" — lsid) gforth-experimental “l-unique-quote”

Parse a string and always define a new lsid, even if the string is not unique.
native@ (lsid — addr u) gforth-experimental “native-fetch”

fetch native string from an Isid
locale@ (Isid — addr u) gforth-experimental “locale-fetch”

fetch the localized string in the current language and country
locale! (addr u lsid —) gforth-experimental “locale-store”

Store localized string addr u for the current locale and country in Isid.
Language ("name" —) gforth-experimental

define a locale. Executing that locale makes it the current locale.
Country (<lang> "name" —) gforth-experimental

define a variant (typical: country) for the current locale. Executing that locale makes it
the current locale. You can create variants of variants (a country may have variants within,
e.g. think of how many words for rolls/buns there are in many languages).

locale-file (fid —) gforth-experimental “locale-file”
read lines from fid into the current locale.
included-locale (addr u —) gforth-experimental “included-locale”
read lines from the file addr u into the current locale.
include-locale ("name" —) gforth-experimental “include-locale”
read lines from the file "name" into the current locale.
locale-csv ("name" —) gforth-experimental “locale-csv”

import comma-separated value table into locales. first line contains locale names, “pro-
gram” and “default” are special entries; generic languages must preceed translations for
specific countries. Entries under “program” (must be leftmost) are used to search for the
Isid; if empty, the line number-1 is the Isid index.

.locale-csv (—) gforth-experimental “dot-locale-csv”

Chapter 6: Forth Words 202

write the locale database in CSV format to the terminal output.
locale-csv-out ("name" —) gforth-experimental “locale-csv-out”

Create file "name" and write the locale database out to the file "name" in CSV format.

6.23.12 Substitute

This is a simple text macro replacement facility. Texts in the form "text Ymacro¥ text"
are processed, and the macro variables enclosed in '%' are replaced with their associated
strings. Two consecutive % are replaced by one %. Macros are defined in a specific wordlist,
and return a string upon execution; the standard defines only one way to declare macros,
replaces, which creates a macro that just returns a string.

macros-wordlist (— wid) gforth-experimental
wordlist for string replacement macros
replaces (addrl lenl addr2 len2 -) string-ext

create a macro with name addr2 len2 and content addrl lenl. If the macro already
exists, just change the content.

replacer: ("name" —) gforth-experimental “replacer-colon”

Start a colon definition name in macros-wordlist, i.e. this colon definition is a macro.
It must have the stack effect (— addr u).

.substitute (addrl lenl — n /ior) gforth-experimental “dot-substitute”

substitute all macros in text addrl lenl and print the result. n is the number of substi-
tutions or, if negative, a throwable ior.

$substitute (addr! lenl — addr2 len2 n/ior) gforth-experimental “string-substitute”

substitute all macros in text addrl lenl. n is the number of substitutions, if negative,
it’s a throwable ior, addr2 len2 the result.

substitute (addrl lenl addr2 len2 — addr2 len8 n/ior) string-ext

substitute all macros in text addrl lenl, and copy the result to addr2 len2. n is the
number of substitutions or, if negative, a throwable ior, addr2 len3 the result.

unescape (addrl ul dest — dest u2) string-ext

double all delimiters in addrl ul, so that substitute will result in the original text. Note
that the buffer dest does not have a size, as in worst case, it will need just twice as many
characters as ul. dest u2 is the resulting string.

$unescape (addr! ul — addr2 u2) gforth-experimental “string-unescape”

same as unescape, but creates a temporary destination string with $tmp.

6.23.13 CSV Reader

Comma-separated values (CSV) are a popular text format to interchange data. Gforth
provides words for reading CSV files (with all features, including newlines in quoted strings).
read-csv (addr u zt —) gforth-experimental

Read CVS file addr u and execute xt for every field found. Xt has the stack effect (
addr u field line --), i.e. the field string (in de-quoted form), the current field number
(starting with 0), and the current line (starting with 1).

csv-separator (— ¢) gforth-experimental

Chapter 6: Forth Words 203

CSV field separator (default is ‘,’, hence the name "comma-separated"); this is a value
and can be changed with to csv-separator.

csv-quote (— ¢) gforth-experimental

CSV quote character (default is *"’); this is a value and can be changed with to csv-
quote.

.quoted-csv (c-addr u —) gforth-experimental “dot-quoted-csv”

print a field in CSV format, i.e., with enough quotes that read-csv will produce c-addr
u when encountering the output of .quoted-csv.

6.24 OS command line arguments
The usual way to pass arguments to Gforth programs on the command line is via the -e
option, e.g.

gforth -e "123 456" foo.fs -e bye

However, you may want to interpret the command-line arguments directly. In that case,
you can access the (image-specific) command-line arguments through next-arg:

next-arg (— addr u) gforth-0.7

get the next argument from the OS command line, consuming it; if there is no argument
left, return 0 0.

Here’s an example program echo.fs for next-arg:

: echo (—-)
begin
next-arg 2dup 0 O d<> while
type space
repeat
2drop ;

echo cr bye
This can be invoked with
gforth echo.fs hello world
and it will print
hello world
The next lower level of dealing with the OS command line are the following words:
arg (u — addr count) gforth-0.2

Return the string for the uth command-line argument; returns 0 0 if the access is beyond
the last argument. 0 arg is the program name with which you started Gforth. The next
unprocessed argument is always 1 arg, the one after that is 2 arg etc. All arguments already
processed by the system are deleted. After you have processed an argument, you can delete
it with shift-args.
shift-args (—) gforth-0.7

1 arg is deleted, shifting all following OS command line parameters to the left by 1, and
reducing argc @. This word can change argv @.

Chapter 6: Forth Words 204

Finally, at the lowest level Gforth provides the following words:
argc (— addr) gforth-0.2

Variable — the number of command-line arguments (including the command name).
Changed by next-arg and shift-args.

argv (— addr) gforth-0.2

Variable — a pointer to a vector of pointers to the command-line arguments (including
the command-name). Each argument is represented as a C-style zero-terminated string.
Changed by next-arg and shift-args.

6.25 Locals

Local variables can make Forth programming more enjoyable and Forth programs easier to
read.

Gforth implements an extended version of the standard Forth locals.

6.25.1 Gforth locals

Locals can be defined with

{: locall local2 ... —-- comment :}
or
{: locall local2 ... :}
or
{: locall local2 ... | ulocalO ulocall -- comment :}
E.g.,
: max {: nl n2 -- n3 :}
nl n2 > if
nl
else
n2
endif ;

The similarity of locals definitions with stack comments is intended. A locals definition
often replaces the stack comment of a word. The order of the locals corresponds to the
order in a stack comment and everything after the —- is really a comment.

The name of the local may be preceded by a type specifier, e.g., F: for a floating point
value:
: CXx {: F: Ar F: Ai F: Br F: Bi -- Cr Ci :}
\ complex multiplication
Ar Br f*x Ai Bi fx f-
Ar Bi f*x Ai Br fx f+ ;
Gforth currently supports cells (W:, W™), doubles (D:, D), floats (F:, F~), characters (C:,
C~), and xts (xt:) in several flavours:

value-flavoured
(see (undefined) [Values|, page (undefined)) A value-flavoured local (defined
with W:, D: etc.) produces its value and can be changed with TO and +T0. Also,

Chapter 6: Forth Words 205

if you put addressable: in front of the locals definition, you can get its address
with ADDR (see (undefined) [How long do locals live?], page (undefined)).

variable-flavoured
(see (undefined) [Variables|, page (undefined)) A variable-flavoured local (de-
fined with W~ etc.) produces its address (see (undefined) [How long do locals
live?], page (undefined)). E.g., the standard word emit can be defined in terms
of type like this:
: emit {: C~ charx -- :}
charx 1 type ;

defer-flavoured

(see (undefined) [Deferred Words|, page (undefined)) A defer-flavoured local
(defined with XT:) executes the xt; you can use action-of (see (undefined)
[Deferred Words], page (undefined)) to get the xt out of a defer-flavoured lo-
cal. If the local is defined with addressable: xt:, you can use addr to get
the address where the xt is stored (see (undefined) [How long do locals live?],
page (undefined)). E.g., the standard word execute can be defined with a
defer-flavoured local like this:

: execute {: xt: x —— :}
X 3

A local without type specifier is a W: local. You can also leave away the w: if you use
addressable:.

All flavours of locals are initialized with values from the data or (for FP locals) FP stack,
with the exception being locals defined behind |: Gforth initializes them to 0; some Forth
systems leave them uninitialized.

Gforth supports the square bracket notation for local buffers and data structures. These
locals are similar to variable-flavored locals, the size is specified as a constant expression. A
declaration looks name[size]. The Forth expression size is evaluated during declaration,
it must have the stack effect (-- +n), giving the size in bytes. The square bracket [is
part of the defined name.

Local data structures are initialized by copying size bytes from an address passed on the

stack; uninitialized local data structures (after | in the declaration) are not erased, they
just contain whatever data there was on the locals stack before.

Example:

begin-structure test-struct
field: al
field: a2

end-structure

: test-local {: foo[test-struct] :}
foo[a1 ! fool a2 !
foo[test-struct dump ;
Gforth allows defining locals everywhere in a colon definition. This poses the following
questions:

Chapter 6: Forth Words 206

6.25.1.1 Locals definitions words

This section documents the words used for defining locals. Note that the run-times for the
words (like W:) that define a local are performed from the rightmost defined local to the
leftmost defined local, such that the rightmost local gets the top of stack.

{: (— hmaddr v wid 0) local-ext “open-brace-colon”
Start locals definitions.
-= (hmaddr v wid 0 ... —) local-ext “dash-dash”

During a locals definitions with {: everything from -- to :} is ignored. This is typi-
cally used when you want to make a locals definition serve double duty as a stack effect
description.

| (=) local-ext “bar”

Locals defined behind | are not initialized from the stack; so the run-time stack effect
of the locals definitions after | is (==).

:} (hmaddr u wid 0 xt1 ... xtn —) gforth-1.0 “colon-close-brace”
Ends locals definitions.

{ (= hmaddr v wid 0) gforth-0.2 “open-brace”
Start locals definitions. The Forth-2012 standard name for this word is {:.

Y (hmaddr v wid 0 xt1 ... ztn —) gforth-0.2 “close-brace”
Ends locals definitions. The Forth-2012 standard name for this word is :}.

W: (compilation "name" - a-addr zt; run-time —) gforth-0.2 “w-colon”
Define value-flavoured cell local name (—— x1)

W™ (compilation "name" — a-addr zt; run-time —) gforth-0.2 “w-caret”
Define variable-flavoured cell local name (-- a-addr)

D: (compilation "name" — a-addr zt; run-time z1 z2 —) gforth-0.2 “d-colon”
Define value-flavoured double local name (—- x3 x4)

D~ (compilation "name" — a-addr xt; run-time x1 z2 —) gforth-0.2 “d-caret”
Define variable-flavoured double local name (-- a-addr)

C: (compilation "name" — a-addr zt; run-time ¢ —) gforth-0.2 “c-colon”
Define value-flavoured char local name (== c1)

C~ (compilation "name" — a-addr zt; run-time ¢ —) gforth-0.2 “c-caret”
Define variable-flavoured char local name (-- c-addr)

F: (compilation "name" — a-addr zt; run-time r —) gforth-0.2 “f-colon”
Define value-flavoured float local name (== r1)

F~ (compilation "name" — a-addr zt; run-time r —) gforth-0.2 “f-caret”
Define variable-flavoured float local name (-- f-addr)

z: (compilation "name" — a-addr zt; run-time z —) gforth-1.0 “z-colon”
Define value-flavoured complex local name (== z1)

XT: (compilation "name" — a-addr xt; run-time xtl —) gforth-1.0 “x-t-colon”

Define defer-flavoured cell local name ¢ ... —— ...)

Chapter 6: Forth Words 207

Note that |, —— and :} are not normally in the search order (they are in the vocabulary
locals-types), and on some Forth systems they may not even be words (and the standard
documents them under {:, not as separate word). } is also in locals-types.

6.25.1.2 Where are locals visible by name?

Basically, the answer is that locals are visible where you would expect it in block-structured
languages, and sometimes a little longer. If you want to restrict the scope of a local, enclose
its definition in SCOPE...ENDSCOPE.

scope (compilation — scope ; run-time —) gforth-0.2
endscope (compilation scope — ; run-time —) gforth-0.2

These words behave like control structure words, so you can use them with CS-PICK and
CS-ROLL to restrict the scope in arbitrary ways.

If you want a more exact answer to the visibility question, here’s the basic principle: A
local is visible in all places that can only be reached through the definition of the local®*.
In other words, it is not visible in places that can be reached without going through the
definition of the local. E.g., locals defined in IF...THEN are visible until the THEN, locals
defined in BEGIN...UNTIL are visible after the UNTIL (until, e.g., a subsequent ENDSCOPE).

The reasoning behind this solution is: We want to have the locals visible as long as it is
meaningful. The user can always make the visibility shorter by using explicit scoping. In
a place that can only be reached through the definition of a local, the meaning of a local
name is clear. In other places it is not: How is the local initialized at the control flow path
that does not contain the definition? Which local is meant, if the same name is defined
twice in two independent control flow paths?

This should be enough detail for nearly all users, so you can skip the rest of this section.
If you really must know all the gory details and options, read on.

In order to implement this rule, the compiler has to know which places are unreachable.
It knows this automatically after AHEAD, AGAIN, EXIT and LEAVE; in other cases (e.g., after
most THROWs), you can use the word UNREACHABLE to tell the compiler that the control flow
never reaches that place. If UNREACHABLE is not used where it could, the only consequence
is that the visibility of some locals is more limited than the rule above says. If UNREACHABLE
is used where it should not (i.e., if you lie to the compiler), you can produce code whose
behaviour is best determined by looking at the implementation (which may change).

UNREACHABLE (—) gforth-0.2

Another problem with this rule is that at BEGIN, the compiler does not know which locals
will be visible on the incoming back-edge. All problems discussed in the following are due
to this ignorance of the compiler (we discuss the problems using BEGIN loops as examples;
the discussion also applies to ?D0 and other loops). Perhaps the most insidious example is:

AHEAD

BEGIN
X

[1 CS-ROLL] THEN
{: x :}

24 Tn compiler construction terminology, all places dominated by the definition of the local.

Chapter 6: Forth Words 208

UNTIL

This should be legal according to the visibility rule. The use of x can only be reached
through the definition; but that appears textually below the use.

From this example it is clear that the visibility rules cannot be fully implemented without
major headaches. Our implementation treats common cases as advertised and the excep-
tions are treated in a safe way: The compiler makes a reasonable guess about the locals
visible after a BEGIN; if it is too pessimistic, the user will get a spurious error about the
local not being defined; if the compiler is too optimistic, it will notice this later and issue a
warning. In the case above the compiler would complain about x being undefined at its use.
You can see from the obscure examples in this section that it takes quite unusual control
structures to get the compiler into trouble, and even then it will often do fine.

If the BEGIN is reachable from above, the most optimistic guess is that all locals visible
before the BEGIN will also be visible after the BEGIN. This guess is valid for all loops that
are entered only through the BEGIN, in particular, for normal BEGIN...WHILE...REPEAT and
BEGIN...UNTIL loops and it is implemented in our compiler. When the branch to the BEGIN
is finally generated by AGAIN or UNTIL, the compiler checks the guess and warns the user if
it was too optimistic:

IF
{: x :}
BEGIN
\ x 7
[1 cs-roll] THEN
UNTIL
Here, x lives only until the BEGIN, but the compiler optimistically assumes that it lives
until the THEN. It notices this difference when it compiles the UNTIL and issues a warning.
The user can avoid the warning, and make sure that x is not used in the wrong area by
using explicit scoping:
IF
SCOPE
{: x :}
ENDSCOPE

BEGIN
[1 cs-roll] THEN

UNTIL
Since the guess is optimistic, there will be no spurious error messages about undefined
locals.
If the BEGIN is not reachable from above (e.g., after AHEAD or EXIT), the compiler cannot
even make an optimistic guess, as the locals visible after the BEGIN may be defined later.

It pessimistically assumes that all locals are visible that were visible at the latest place
outside any control structure (i.e., where nothing is on the control-flow stack). This means
that in:

: foo
IF {: z :} THEN

Chapter 6: Forth Words 209

{: x :}
AHEAD
BEGIN
¢ x)
[1 CS-ROLL] THEN
{:y %

UNTIL ;
At the place marked with (*), x is visible, but y is not (although, according to the
reachability rule it should); z is not and should not be visible there.

However, you can use ASSUME-LIVE to make the compiler assume that the same locals
are visible at the BEGIN as at the point where the top control-flow stack item was created.

ASSUME-LIVE (orig — orig) gforth-0.2
E.g.,

IF
{: x :}
AHEAD
ASSUME-LIVE
BEGIN
X
[1 CS-ROLL] THEN

UNTIL
THEN
Here x would not be visible at the use of x, because its definition is inside a control

structure, but by using ASSUME-LIVE the programmer tells the compiler that the locals
visible at the AHEAD should be visible at the BEGIN.

Other cases where the locals are defined before the BEGIN can be handled by insert-
ing an appropriate CS-ROLL before the ASSUME-LIVE (and changing the control-flow stack
manipulation behind the ASSUME-LIVE).

Cases where locals are defined in a BEGIN loop and should be visible in that loop before
the definition can only be handled by rearranging the loop. E.g., the “most insidious”
example above can be arranged into:

BEGIN
{: x :}
... 0=

WHILE
X

REPEAT

The ideas in this section have also been published in M. Anton Ertl, Automatic Scop-
ing of Local Variables (https://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz),
EuroForth '94.

https://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz
https://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz

Chapter 6: Forth Words 210

6.25.1.3 How long do locals live?

The right answer for the lifetime question would be: A local lives at least as long as it
can be accessed. For a regular value-flavoured local this means: until the end of its visibil-
ity. However, an addressable value-flavoured or variable-flavoured local could be accessed
through its address far beyond its visibility scope. Ultimately, this would mean that such
locals would have to be garbage collected. Since this entails un-Forth-like implementation
complexities, we adopted the same cowardly solution as some other languages (e.g., C): The
local lives only as long as it is visible; afterwards its address is invalid (and programs that
access it afterwards are erroneous).

6.25.1.4 Locals programming style

The freedom to define locals anywhere has the potential to change programming styles dra-
matically. In particular, the need to use the return stack for intermediate storage vanishes.
Moreover, all stack manipulations (except PICKs and ROLLs with run-time determined ar-
guments) can be eliminated: If the stack items are in the wrong order, just write a locals
definition for all of them; then write the items in the order you want.

This seems a little far-fetched and eliminating stack manipulations is unlikely to become
a conscious programming objective. Still, the number of stack manipulations will be reduced
dramatically if local variables are used liberally (e.g., compare max (see (undefined) [Gforth
locals], page (undefined)) with a traditional implementation of max).

This shows one potential benefit of locals: making Forth programs more readable. Of
course, this benefit will only be realized if the programmers continue to honour the principle
of factoring instead of using the added latitude to make the words longer.

Using TO can and should be avoided. Without TO, every value-flavoured local has only
a single assignment and many advantages of functional languages apply to Forth. Le.,
programs are easier to analyse, to optimize and to read: It is clear from the definition what
the local stands for, it does not turn into something different later.

E.g., a definition using TO might look like this:

: strecmp {: addrl ul addr2 u2 -- n :}
ul u2 min O
?7do
addrl c@ addr2 c@ -
?dup-if
unloop exit
then
addrl char+ TO addri
addr2 char+ TO addr2
loop
ul u2 - ;

Here, TO is used to update addrl and addr2 at every loop iteration. strcmp is a typical
example of the readability problems of using T0. When you start reading strcmp, you think
that addr1 refers to the start of the string. Only near the end of the loop you realize that
it is something else.

This can be avoided by defining two locals at the start of the loop that are initialized
with the right value for the current iteration.

Chapter 6: Forth Words 211

: strcmp {: addrl ul addr2 u2 -- n :}
addrl addr2

ul u2 min O

?do {: sl s2 :}

sl c@ s2 c@ -
?dup-if
unloop exit
then
sl char+ s2 char+
loop
2drop
ul u2 - ;

Here it is clear from the start that s1 has a different value in every loop iteration.

6.25.1.5 Locals implementation

Gforth uses an extra locals stack. The most compelling reason for this is that the return
stack is not float-aligned; using an extra stack also eliminates the problems and restrictions
of using the return stack as locals stack. Like the other stacks, the locals stack grows
toward lower addresses. A few primitives allow an efficient implementation; you should not
use them directly, but they appear in the output of see, so they are documented here:

@localn (noffset — w) gforth-internal “fetch-local-n”
f@localn (noffset — r) gforth-1.0 “f-fetch-local-n”
localn (w noffset —) gforth-internal “store-local-n”
1p+n (noffset — c-addr) gforth-internal “lp-plus-n”
1p+! (noffset —) gforth-1.0 “Ip-plus-store”
When used with negative noffset allocates memory on the local stack; when used with
a positive noffset drops memory from the local stack
>1 (w) gforth-0.2 “to-1”
£>1 (r —) gforth-0.2 “f-to-1”
See also 1p@, 1p! (see (undefined) [Stack pointer manipulation], page (undefined)).

In addition to these primitives, some specializations of these primitives for commonly
occurring inline arguments are provided for efficiency reasons, e.g., @ocalO as specialization
of 0 @localn.

Combinations of conditional branches and 1p+!# like ?branch-1p+!# (the locals pointer
is only changed if the branch is taken) are provided for efficiency and correctness in loops.

A special area in the dictionary space is reserved for keeping the local variable names.
{: switches the dictionary pointer to this area and :} switches it back and generates the
locals initializing code. W: etc. are normal defining words. This special area is cleared at
the start of every colon definition.

A special feature of Gforth’s dictionary is used to implement the definition of locals
without type specifiers: every word list (aka vocabulary) has its own methods for searching
etc. (see (undefined) [Word Lists], page (undefined)). For the present purpose we defined a
word list with a special search method: When it is searched for a word, it actually creates
that word using W:. {: changes the search order to first search the word list containing : }, W:

Chapter 6: Forth Words 212

etc., and then the word list for defining locals without type specifiers. This implementation
was designed before Gforth acquired recognizers; for a reimplementation we would use
recognizers.

The lifetime rules support a stack discipline within a colon definition: The lifetime of a
local is either nested with other locals lifetimes or it does not overlap them.

At BEGIN, IF, and AHEAD no code for locals stack pointer manipulation is generated.
Between control structure words locals definitions can push locals onto the locals stack.
AGAIN is the simplest of the other three control flow words. It has to restore the locals stack
depth of the corresponding BEGIN before branching. The code looks like this:

current-locals-size dest-locals-size - 1p+!
branch <begin>

UNTIL is a little more complicated: If it branches back, it must adjust the stack just like
AGAIN. But if it falls through, the locals stack must not be changed. The compiler generates
the following code:

7branch-1p+!# <begin> current-locals-size — dest-locals-size
The locals stack pointer is only adjusted if the branch is taken.
THEN can produce somewhat inefficient code:

current-locals-size dest-locals-size - 1p+!
<orig target>:
orig-locals-size new-locals-size - 1p+!

The second 1p+!# adjusts the locals stack pointer from the level at the orig point to the
level after the THEN. The first 1p+!# adjusts the locals stack pointer from the current level
to the level at the orig point, so the complete effect is an adjustment from the current level
to the right level after the THEN. This effect happens e.g., if there is an ELSE and the code
before the ELSE defines locals, and they have a different size than those after the ELSE. In
general we recommend not to work around this shortcoming (except in performance-critical
code). We intend to eliminate this shortcoming at some point.

In a conventional Forth implementation a dest control-flow stack entry is just the target
address and an orig entry is just the address to be patched. Our locals implementation adds
a word list to every orig or dest item. It is the list of locals visible (or assumed visible) at
the point described by the entry. Our implementation also adds a tag to identify the kind
of entry, in particular to differentiate between live and dead (reachable and unreachable)
orig entries.

A few unusual operations have to be performed on locals word lists:
common-list (list! list2 — list3) gforth-internal
sub-1list? (list! list2 — f) gforth-internal “sub-list-question”
list-size (list — u) gforth-internal

Several features of our locals word list implementation make these operations easy to
implement: The locals word lists are organised as linked lists; the tails of these lists are
shared, if the lists contain some of the same locals; and the address of a name is greater
than the address of the names behind it in the list.

Another important implementation detail is the variable dead-code. It is used by BEGIN
and THEN to determine if they can be reached directly or only through the branch that they

Chapter 6: Forth Words 213

resolve. dead-code is set by UNREACHABLE, AHEAD, EXIT etc., and cleared at the start of a
colon definition, by BEGIN and usually by THEN.

Counted loops are similar to other loops in most respects, but LEAVE requires special
attention: It performs basically the same service as AHEAD, but it does not create a control-
flow stack entry. Therefore the information has to be stored elsewhere; traditionally, the
information was stored in the target fields of the branches created by the LEAVESs, by orga-
nizing these fields into a linked list. Unfortunately, this clever trick does not provide enough
space for storing our extended control flow information. Therefore, we introduce another
stack, the leave stack. It contains the control-flow stack entries for all unresolved LEAVEs.

Local names are kept until the end of the colon definition, even if they are no longer
visible in any control-flow path. In a few cases this may lead to increased space needs for
the locals name area, but usually less than reclaiming this space would cost in code size.

6.25.2 Standard Forth locals

The Forth-2012 standard defines a syntax for locals is restricted version of Gforth’s locals:
e Locals can only be cell-sized values (no type specifiers are allowed).
e Locals can be defined only outside control structures.
e Only one locals definition is allowed per colon definition.

e Locals can interfere with explicit usage of the return stack. For the exact (and long)
rules, see the standard. If you don’t use return stack accessing words in a definition
using locals, you will be all right. The purpose of this rule is to make locals implemen-
tation on the return stack easier.

e The whole locals definition must be in one line.

The Standard Forth locals wordset itself consists of two words: {: and:
(local) (addr u —) local “paren-local-paren”

The Forth-2012 locals extension wordset also defines a syntax using locals|, but it is so
awful that we strongly recommend not to use it and another, better syntax (the one using
{: was standardized). We have implemented this syntax to make porting to Gforth easy,
but do not document it here. The problem with this syntax is that the locals are defined in
an order reversed with respect to the standard stack comment notation, making programs
harder to read, and easier to misread and miswrite.

6.26 Object-oriented Forth

Gforth comes with three packages for object-oriented programming: objects.fs, oof.fs,
and mini-oof.fs; none of them is preloaded, so you have to include them before use.
The most important differences between these packages (and others) are discussed in (un-
defined) [Comparison with other object models|, page (undefined). All packages are written
in Standard Forth and can be used with any other Standard Forth.

6.26.1 Why object-oriented programming?

Often we have to deal with several data structures (objects), that have to be treated similarly
in some respects, but differently in others. Graphical objects are the textbook example:
circles, triangles, dinosaurs, icons, and others, and we may want to add more during program

Chapter 6: Forth Words 214

development. We want to apply some operations to any graphical object, e.g., draw for
displaying it on the screen. However, draw has to do something different for every kind of
object.

We could implement draw as a big CASE control structure that executes the appropriate
code depending on the kind of object to be drawn. This would be not be very elegant, and,
moreover, we would have to change draw every time we add a new kind of graphical object
(say, a spaceship).

What we would rather do is: When defining spaceships, we would tell the system: “Here’s
how you draw a spaceship; you figure out the rest”.

This is the problem that all systems solve that (rightfully) call themselves object-
oriented; the object-oriented packages presented here solve this problem (and not much
else).

6.26.2 Object-Oriented Terminology

This section is mainly for reference, so you don’t have to understand all of it right away.
The terminology is mainly Smalltalk-inspired. In short:

class a data structure definition with some extras.
object an instance of the data structure described by the class definition.

stance variables
fields of the data structure.

selector (or method selector) a word (e.g., draw) that performs an operation on a variety
of data structures (classes). A selector describes what operation to perform. In
C++ terminology: a (pure) virtual function.

method the concrete definition that performs the operation described by the selector
for a specific class. A method specifies how the operation is performed for a
specific class.

selector invocation
a call of a selector. One argument of the call (the TOS (top-of-stack)) is used
for determining which method is used. In Smalltalk terminology: a message
(consisting of the selector and the other arguments) is sent to the object.

receiving object
the object used for determining the method executed by a selector invocation.
In the objects.fs model, it is the object that is on the TOS when the selector
is invoked. (Receiving comes from the Smalltalk message terminology.)

child class a class that has (inherits) all properties (instance variables, selectors, methods)
from a parent class. In Smalltalk terminology: The subclass inherits from the
superclass. In C++ terminology: The derived class inherits from the base class.

6.26.3 The objects.fs model

This section describes the objects.fs package. This material also has
been published in M. Anton Ertl, Yet Another Forth Objects Package
(https://www.complang.tuwien.ac.at/forth/objects/objects.html), Forth

Dimensions 19(2), pages 37-43.

https://www.complang.tuwien.ac.at/forth/objects/objects.html
https://www.complang.tuwien.ac.at/forth/objects/objects.html

Chapter 6: Forth Words 215

This section assumes that you have read (undefined) [Structures], page (undefined).

The techniques on which this model is based have been used to implement the parser
generator, Gray, and have also been used in Gforth for implementing the various flavours
of word lists (hashed or not, case-sensitive or not, special-purpose word lists for locals etc.).

Marcel Hendrix provided helpful comments on this section.

6.26.3.1 Properties of the objects.fs model

e It is straightforward to pass objects on the stack. Passing selectors on the stack is a
little less convenient, but possible.

e Objects are just data structures in memory, and are referenced by their address. You
can create words for objects with normal defining words like constant. Likewise, there
is no difference between instance variables that contain objects and those that contain
other data.

e Late binding is efficient and easy to use.

e [t avoids parsing, and thus avoids problems with state-smartness and reduced exten-
sibility; for convenience there are a few parsing words, but they have non-parsing
counterparts. There are also a few defining words that parse. This is hard to avoid,
because all standard defining words parse (except :noname); however, such words are
not as bad as many other parsing words, because they are not state-smart.

e It does not try to incorporate everything. It does a few things and does them well
(IMO). In particular, this model was not designed to support information hiding (al-
though it has features that may help); you can use a separate package for achieving
this.

e It is layered; you don’t have to learn and use all features to use this model. Only a
few features are necessary (see (undefined) [Basic Objects Usage], page (undefined),
see (undefined) [The Objects base class], page (undefined), see (undefined) [Creating
objects|, page (undefined).), the others are optional and independent of each other.

¢ An implementation in Standard Forth is available.

6.26.3.2 Basic objects.fs Usage

You can define a class for graphical objects like this:

object class \ "object" is the parent class
selector draw (x y graphical --)
end-class graphical

This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

100 100 t-rex draw
where t-rex is a word (say, a constant) that produces a graphical object.

How do we create a graphical object? With the present definitions, we cannot create a
useful graphical object. The class graphical describes graphical objects in general, but not
any concrete graphical object type (C++ users would call it an abstract class); e.g., there is
no method for the selector draw in the class graphical.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class \ "graphical" is the parent class

Chapter 6: Forth Words 216

celly, field circle-radius

:noname (x y circle --)
circle-radius @ draw-circle ;
overrides draw

:noname (n-radius circle --)
circle-radius ! ;
overrides construct

end-class circle

Here we define a class circle as a child of graphical, with field circle-radius (which
behaves just like a field (see (undefined) [Structures|, page (undefined)); it defines (using
overrides) new methods for the selectors draw and construct (construct is defined in
object, the parent class of graphical).

Now we can create a circle on the heap (i.e., allocated memory) with:
50 circle heap-new constant my-circle

heap-new invokes construct, thus initializing the field circle-radius with 50. We can
draw this new circle at (100,100) with:

100 100 my-circle draw

Note: You can only invoke a selector if the object on the TOS (the receiving object)
belongs to the class where the selector was defined or one of its descendents; e.g., you
can invoke draw only for objects belonging to graphical or its descendents (e.g., circle).
Immediately before end-class, the search order has to be the same as immediately after
class.

6.26.3.3 The object.fs base class

When you define a class, you have to specify a parent class. So how do you start defining
classes? There is one class available from the start: object. It is ancestor for all classes
and so is the only class that has no parent. It has two selectors: construct and print.

6.26.3.4 Creating objects

You can create and initialize an object of a class on the heap with heap-new (... class —
object) and in the dictionary (allocation with allot) with dict-new (... class — object).
Both words invoke construct, which consumes the stack items indicated by "..." above.

If you want to allocate memory for an object yourself, you can get its alignment and size
with class-inst-size 2@ (class — align size). Once you have memory for an object, you
can initialize it with init-object (... class object —); construct does only a part of the
necessary work.

6.26.3.5 Object-Oriented Programming Style

This section is not exhaustive.

In general, it is a good idea to ensure that all methods for the same selector have the
same stack effect: when you invoke a selector, you often have no idea which method will

Chapter 6: Forth Words 217

be invoked, so, unless all methods have the same stack effect, you will not know the stack
effect of the selector invocation.

One exception to this rule is methods for the selector construct. We know which
method is invoked, because we specify the class to be constructed at the same place. Ac-
tually, I defined construct as a selector only to give the users a convenient way to specify
initialization. The way it is used, a mechanism different from selector invocation would be
more natural (but probably would take more code and more space to explain).

6.26.3.6 Class Binding

Normal selector invocations determine the method at run-time depending on the class of
the receiving object. This run-time selection is called late binding.

Sometimes it’s preferable to invoke a different method. For example, you might want
to use the simple method for printing objects instead of the possibly long-winded print
method of the receiver class. You can achieve this by replacing the invocation of print
with:

[bind] object print
in compiled code or:
bind object print

in interpreted code. Alternatively, you can define the method with a name (e.g., print-
object), and then invoke it through the name. Class binding is just a (often more con-
venient) way to achieve the same effect; it avoids name clutter and allows you to invoke
methods directly without naming them first.

A frequent use of class binding is this: When we define a method for a selector, we often
want the method to do what the selector does in the parent class, and a little more. There
is a special word for this purpose: [parent]; [parent] selector is equivalent to [bind]
parent selector, where parent is the parent class of the current class. E.g., a method
definition might look like:

:noname
dup [parent] foo \ do parent's foo on the receiving object
... \ do some more

; overrides foo

In Object-oriented programming in ANS Forth (Forth Dimensions, March 1997), Andrew
McKewan presents class binding as an optimization technique. I recommend not using it
for this purpose unless you are in an emergency. Late binding is pretty fast with this model
anyway, so the benefit of using class binding is small; the cost of using class binding where
it is not appropriate is reduced maintainability.

While we are at programming style questions: You should bind selectors only to ancestor
classes of the receiving object. E.g., say, you know that the receiving object is of class foo
or its descendents; then you should bind only to foo and its ancestors.

6.26.3.7 Method conveniences

In a method you usually access the receiving object pretty often. If you define the method as
a plain colon definition (e.g., with :noname), you may have to do a lot of stack gymnastics.

Chapter 6: Forth Words 218

To avoid this, you can define the method withm: ... ;m. E.g., you could define the method
for drawing a circle with

m: (x y circle --)
(x y) this circle-radius @ draw-circle ;m

When this method is executed, the receiver object is removed from the stack; you can
access it with this (admittedly, in this example the use of m: ... ;m offers no advantage).
Note that I specify the stack effect for the whole method (i.e. including the receiver object),
not just for the code between m: and ;m. You cannot use exit in m:...;m; instead, use
exitm.?

You will frequently use sequences of the form this field (in the example above: this
circle-radius). If you use the field only in this way, you can define it with inst-var and
eliminate the this before the field name. E.g., the circle class above could also be defined
with:

graphical class
cell’, inst-var radius

m: (x y circle —--)
radius @ draw-circle ;m
overrides draw

m: (n-radius circle --)
radius ! ;m
overrides construct

end-class circle

radius can only be used in circle and its descendent classes and inside m: ... ;m.

You can also define fields with inst-value, which is to inst-var what value is to
variable. You can change the value of such a field with [to-inst]. E.g., we could also
define the class circle like this:

graphical class
inst-value radius

m: (x y circle --)
radius draw-circle ;m
overrides draw

m: (n-radius circle --)
[to-inst] radius ;m

overrides construct

end-class circle

25 Moreover, for any word that calls catch and was defined before loading objects.fs, you have to redefine
it like I redefined catch: : catch this >r catch r> to-this ;

Chapter 6: Forth Words 219

6.26.3.8 Classes and Scoping

Inheritance is frequent, unlike structure extension. This exacerbates the problem with
the field name convention (see (undefined) [Standard Structures|, page (undefined)): One
always has to remember in which class the field was originally defined; changing a part of
the class structure would require changes for renaming in otherwise unaffected code.

To solve this problem, I added a scoping mechanism (which was not in my original
charter): A field defined with inst-var (or inst-value) is visible only in the class where
it is defined and in the descendent classes of this class. Using such fields only makes sense
in m:-defined methods in these classes anyway.

This scoping mechanism allows us to use the unadorned field name, because name clashes
with unrelated words become much less likely.

Once we have this mechanism, we can also use it for controlling the visibility of other
words: All words defined after protected are visible only in the current class and its
descendents. public restores the compilation (i.e. current) word list that was in effect
before. If you have several protecteds without an intervening public or set-current,
public will restore the compilation word list in effect before the first of these protecteds.

6.26.3.9 Dividing classes

You may want to do the definition of methods separate from the definition of the class, its
selectors, fields, and instance variables, i.e., separate the implementation from the definition.
You can do this in the following way:

graphical class
inst-value radius
end-class circle

... \ do some other stuff
circle methods \ now we are ready

m: (x y circle --)
radius draw-circle ;m
overrides draw

m: (n-radius circle —-)
[to-inst] radius ;m
overrides construct

end-methods

You can use several methods...end-methods sections. The only things you can do to the
class in these sections are: defining methods, and overriding the class’s selectors. You must
not define new selectors or fields.

Note that you often have to override a selector before using it. In particular, you usually
have to override construct with a new method before you can invoke heap-new and friends.
E.g., you must not create a circle before the overrides construct sequence in the example
above.

Chapter 6: Forth Words 220

6.26.3.10 Object Interfaces

In this model you can only call selectors defined in the class of the receiving objects or in
one of its ancestors. If you call a selector with a receiving object that is not in one of these
classes, the result is undefined; if you are lucky, the program crashes immediately.

Now consider the case when you want to have a selector (or several) available in two
classes: You would have to add the selector to a common ancestor class, in the worst case
to object. You may not want to do this, e.g., because someone else is responsible for this
ancestor class.

The solution for this problem is interfaces. An interface is a collection of selectors. If a
class implements an interface, the selectors become available to the class and its descendents.
A class can implement an unlimited number of interfaces. For the problem discussed above,
we would define an interface for the selector(s), and both classes would implement the
interface.

As an example, consider an interface storage for writing objects to disk and getting
them back, and a class foo that implements it. The code would look like this:

interface
selector write (file object --)
selector readl (file object --)
end-interface storage

bar class
storage implementation

. overrides write
. overrides readl

end-class foo
(I would add a word read (file — object) that uses readl internally, but that’s beyond the
point illustrated here.)

Note that you cannot use protected in an interface; and of course you cannot define
fields.

In the Neon model, all selectors are available for all classes; therefore it does not need
interfaces. The price you pay in this model is slower late binding, and therefore, added
complexity to avoid late binding.

6.26.3.11 objects.fs Implementation
An object is a piece of memory, like one of the data structures described with struct. . .end-
struct. It has a field object-map that points to the method map for the object’s class.

The method map®® is an array that contains the execution tokens (zts) of the methods
for the object’s class. Each selector contains an offset into a method map.

selector is a defining word that uses CREATE and DOES>. The body of the selector
contains the offset; the DOES> action for a class selector is, basically:

(object addr) @ over object-map @ + @ execute

26 This is Self terminology; in C++ terminology: virtual function table.

Chapter 6: Forth Words 221

Since object-map is the first field of the object, it does not generate any code. As you
can see, calling a selector has a small, constant cost.

A class is basically a struct combined with a method map. During the class definition
the alignment and size of the class are passed on the stack, just as with structs, so field
can also be used for defining class fields. However, passing more items on the stack would
be inconvenient, so class builds a data structure in memory, which is accessed through the
variable current-interface. After its definition is complete, the class is represented on
the stack by a pointer (e.g., as parameter for a child class definition).

A new class starts off with the alignment and size of its parent, and a copy of the parent’s
method map. Defining new fields extends the size and alignment; likewise, defining new
selectors extends the method map. overrides just stores a new zt in the method map at
the offset given by the selector.

Class binding just gets the zt at the offset given by the selector from the class’s method
map and compile,s (in the case of [bind]) it.

I implemented this as a value. At the start of an m:...;m method the old this is
stored to the return stack and restored at the end; and the object on the TOS is stored TO
this. This technique has one disadvantage: If the user does not leave the method via ;m,
but via throw or exit, this is not restored (and exit may crash). To deal with the throw
problem, I have redefined catch to save and restore this; the same should be done with
any word that can catch an exception. As for exit, I simply forbid it (as a replacement,
there is exitm).

inst-var is just the same as field, with a different DOES> action:
@ this +
Similar for inst-value.

Each class also has a word list that contains the words defined with inst-var and inst-
value, and its protected words. It also has a pointer to its parent. class pushes the word
lists of the class and all its ancestors onto the search order stack, and end-class drops
them.

An interface is like a class without fields, parent and protected words; i.e., it just has
a method map. If a class implements an interface, its method map contains a pointer to
the method map of the interface. The positive offsets in the map are reserved for class
methods, therefore interface map pointers have negative offsets. Interfaces have offsets that
are unique throughout the system, unlike class selectors, whose offsets are only unique for
the classes where the selector is available (invokable).

This structure means that interface selectors have to perform one indirection more than
class selectors to find their method. Their body contains the interface map pointer offset
in the class method map, and the method offset in the interface method map. The does>
action for an interface selector is, basically:

(object selector-body)

2dup selector-interface @ (object selector-body object interface-offset)Jj
swap object-map @ + @ (object selector-body map)

swap selector-offset @ + @ execute

where object-map and selector-offset are first fields and generate no code.

Chapter 6: Forth Words 222

As a concrete example, consider the following code:

interface
selector iflsell
selector iflsel2
end-interface if1l

object class
ifl implementation
selector clilsell
cell’, inst-var cllivil

' ml overrides construct
' m2 overrides iflsell

' m3 overrides iflsel2

' m4 overrides cllsel2
end-class cli

create objl object dict-new drop
create obj2 cli dict-new drop

The data structure created by this code (including the data structure for object) is
shown in the figure (objects-implementation.eps), assuming a cell size of 4.

6.26.3.12 objects.fs Glossary

bind (... "class" "selector" — ...) objects
Execute the method for selector in class.

<bind> (class selector-at — xt) objects “less-bind-to”
xt is the method for the selector selector-xt in class.

bind' ("class" "selector" — xt) objects “bind-tick”
xt is the method for selector in class.

[bind] (compile-time: "class" "selector" — ; run-time: ... object — ...) objects “left-
bracket-bind-right-bracket”

Compile the method for selector in class.
class (parent-class — align offset) objects

Start a new class definition as a child of parent-class. align offset are for use by field etc.
class->map (class — map) objects “class—to-map”

map is the pointer to class’s method map; it points to the place in the map to which
the selector offsets refer (i.e., where object-maps point to).

class-inst-size (class — addr) objects

Give the size specification for an instance (i.e. an object) of class; used as class-inst-
size 2 (class -- align size).

class-override! (zt sel-zt class-map —) objects “class-override-store”
xt is the new method for the selector sel-xt in class-map.

class-previous (class —) objects

objects-implementation.eps

Chapter 6: Forth Words 223

Drop class’s wordlists from the search order. No checking is made whether class’s
wordlists are actually on the search order.

class>order (class —) objects “class-to-order”
Add class’s wordlists to the head of the search-order.
construct (... object —) objects

Initialize the data fields of object. The method for the class object just does nothing: (
object --).

current' ("selector" — xt) objects “current-tick”
xt is the method for selector in the current class.

[current] (compile-time: "selector" — ; run-time: ... object — ...) objects “left-bracket-
current-right-bracket”

Compile the method for selector in the current class.
current-interface (— addr) objects

Variable: contains the class or interface currently being defined.
dict-new (... class — object) objects

allot and initialize an object of class class in the dictionary.
end-class (align offset "name" —) objects

name execution: —- class
End a class definition. The resulting class is class.

end-class-noname (align offset — class) objects
End a class definition. The resulting class is class.
end-interface ("name" —) objects

name execution: -- interface
End an interface definition. The resulting interface is interface.

end-interface-noname (— interface) objects
End an interface definition. The resulting interface is interface.
end-methods (—) objects

Switch back from defining methods of a class to normal mode (currently this just restores
the old search order).

exitm (—) objects

exit from a method; restore old this.
heap-new (... class — object) objects

allocate and initialize an object of class class.
implementation (interface —) objects

The current class implements interface. l.e., you can use all selectors of the interface in
the current class and its descendents.

init-object (... class object —) objects
Initialize a chunk of memory (object) to an object of class class; then performs
construct.

inst-value (alignl offsetl "name" — align?2 offset2) objects

Chapter 6: Forth Words 224

name execution: —— w
w is the value of the field name in this object.

inst-var (alignl offset! align size "name" — align2 offset2) objects

name execution: -- addr
addr is the address of the field name in this object.

interface (—) objects
Start an interface definition.
m: (— at colon-sys; run-time: object —) objects “m-colon”
Start a method definition; object becomes new this.
:m ("name" — xt; run-time: object —) objects “colon-m”
Start a named method definition; object becomes new this. Has to be ended with ;m.
;m (colon-sys —; run-time: —) objects “semicolon-m”
End a method definition; restore old this.
method (zt "name" —) objects

name execution: ... object —— ...
Create selector name and makes xt its method in the current class.

methods (class —) objects

Makes class the current class. This is intended to be used for defining methods to
override selectors; you cannot define new fields or selectors.

object (— class) objects
the ancestor of all classes.
overrides (at "selector" —) objects

replace default method for selector in the current class with xt. overrides must not be
used during an interface definition.

[parent] (compile-time: "selector" — ; run-time: ... object — ...) objects “left-bracket-
parent-right-bracket”

Compile the method for selector in the parent of the current class.
print (object —) objects

Print the object. The method for the class object prints the address of the object and
the address of its class.
protected (—) objects

Set the compilation wordlist to the current class’s wordlist
public (—) objects

Restore the compilation wordlist that was in effect before the last protected that actu-
ally changed the compilation wordlist.
selector ("name" —) objects

name execution: ... object —— ...
Create selector name for the current class and its descendents; you can set a method for
the selector in the current class with overrides.

this (— object) objects

Chapter 6: Forth Words 225

the receiving object of the current method (aka active object).
<to-inst> ((w xt —) objects “less-to-inst-to”
store w into the field xt in this object.
[to-inst] (compile-time: "name" — ; run-time: w —) objects “left-bracket-to-inst-right-
bracket”
store w into field name in this object.
to-this (object —) objects
Set this (used internally, but useful when debugging).
xt-new (... class zt — object) objects
Make a new object, using xt (align size -- addr) to get memory.

6.26.4 The oof.fs model

This section describes the oof.fs package.

The package described in this section has been used in bigFORTH since 1991, and used
for two large applications: a chromatographic system used to create new medicaments, and
a graphic user interface library (MINOS).

You can find a description (in German) of oof.fs in Object oriented bigFORTH by
Bernd Paysan, published in Vierte Dimension 10(2), 1994.

6.26.4.1 Properties of the oof.fs model

e This model combines object oriented programming with information hiding. It helps
you writing large application, where scoping is necessary, because it provides class-
oriented scoping.

e Named objects, object pointers, and object arrays can be created, selector invocation
uses the “object selector” syntax. Selector invocation to objects and/or selectors on
the stack is a bit less convenient, but possible.

e Selector invocation and instance variable usage of the active object is straightforward,
since both make use of the active object.

e Late binding is efficient and easy to use.

e State-smart objects parse selectors. However, extensibility is provided using a (parsing)
selector postpone and a selector '.

e An implementation in Standard Forth is available.

6.26.4.2 Basic oof.fs Usage
This section uses the same example as for objects (see (undefined) [Basic Objects Usage],
page (undefined)).

You can define a class for graphical objects like this:

object class graphical \ "object" is the parent class
method draw (x y --)
class;
This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

100 100 t-rex draw

Chapter 6: Forth Words 226

where t-rex is an object or object pointer, created with e.g. graphical : t-rex.

How do we create a graphical object? With the present definitions, we cannot create a
useful graphical object. The class graphical describes graphical objects in general, but not
any concrete graphical object type (C++ users would call it an abstract class); e.g., there is
no method for the selector draw in the class graphical.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class circle \ "graphical" is the parent class
cell var circle-radius

how:
s drav (xy --)
circle-radius @ draw-circle ;
init (n-radius --)
circle-radius ! ;
class;

Here we define a class circle as a child of graphical, with a field circle-radius; it
defines new methods for the selectors draw and init (init is defined in object, the parent
class of graphical).

Now we can create a circle in the dictionary with:

50 circle : my-circle
: invokes init, thus initializing the field circle-radius with 50. We can draw this new
circle at (100,100) with:

100 100 my-circle draw

Note: You can only invoke a selector if the receiving object belongs to the class where
the selector was defined or one of its descendents; e.g., you can invoke draw only for objects
belonging to graphical or its descendents (e.g., circle). The scoping mechanism will
check if you try to invoke a selector that is not defined in this class hierarchy, so you’ll get
an error at compilation time.

6.26.4.3 The oof.fs base class

When you define a class, you have to specify a parent class. So how do you start defining
classes? There is one class available from the start: object. You have to use it as ancestor
for all classes. It is the only class that has no parent. Classes are also objects, except
that they don’t have instance variables; class manipulation such as inheritance or changing
definitions of a class is handled through selectors of the class object.
object provides a number of selectors:
e class for subclassing, definitions to add definitions later on, and class? to get type
informations (is the class a subclass of the class passed on the stack?).
object-class ("name" —) oof
object-definitions (—) oof
object-class? (o — flag) oof “class-query”
e init and dispose as constructor and destructor of the object. init is invocated after
the object’s memory is allocated, while dispose also handles deallocation. Thus if you
redefine dispose, you have to call the parent’s dispose with super dispose, too.

Chapter 6: Forth Words 227

object-init (... —) oof
object-dispose (—) oof

e new, new[], :, ptr, asptr, and [] to create named and unnamed objects and object
arrays or object pointers.
object-new (— o) oof
object-new[] (n — o) oof “new-array”
object-: ("name" —) oof “define”
object-ptr ("name" —) oof
object-asptr (o "name" -) oof
object-[1 (n "name" -) oof “array”

e :: and super for explicit scoping. You should use explicit scoping only for super classes
or classes with the same set of instance variables. Explicitly-scoped selectors use early
binding.
object-:: ("name" —) oof “scope”
object-super ("name" —) oof

e self to get the address of the object
object-self (— o) oof

e bind, bound, 1ink, and is to assign object pointers and instance defers.
object-bind (0 "name" —) oof
object-bound (class addr "name" —) oof
object-link ("name" — class addr) oof
object-is (at "name" —) oof

e ' to obtain selector tokens, send to invocate selectors form the stack, and postpone to
generate selector invocation code.
object-' ("name" — zt) oof “tick”
object-postpone ("name" —) oof

e with and endwith to select the active object from the stack, and enable its scope. Using
with and endwith also allows you to create code using selector postpone without being
trapped by the state-smart objects.

object-with (0 —) oof
object-endwith (—) oof

6.26.4.4 Class Declaration

e Instance variables
var (size —) oof
Create an instance variable
e Object pointers
ptr (—) oof
Create an instance pointer
asptr (class —) oof
Create an alias to an instance pointer, cast to another class.

Chapter 6: Forth Words 228

e Instance defers
defer (—) oof
Create an instance defer
e Method selectors
early (—) oof
Create a method selector for early binding.
method (—) oof
Create a method selector.
e (lass-wide variables
static (—) oof
Create a class-wide cell-sized variable.
e End declaration
how: (—) oof “how-to”
End declaration, start implementation
class; (—) oof “end-class”

End class declaration or implementation

6.26.5 The mini-oof.fs model

Gforth’s third object oriented Forth package is a 12-liner. It uses a mixture of the
objects.fs and the oof.fs syntax, and reduces to the bare minimum of features. This is
based on a posting of Bernd Paysan in comp.lang.forth.

6.26.5.1 Basic mini-oof.fs Usage

There is a base class (class, which allocates one cell for the object pointer) plus seven
other words: to define a method, a variable, a class; to end a class, to resolve binding, to
allocate an object and to compile a class method.

object (— a-addr) mini-oof

object is the base class of all objects.
method (m v "name" — m’ v) mini-oof2

Define a selector name; increments the number of selectors m (in bytes).
var (m v size "name" —m v’) mini-oof2

define an instance variable with size bytes by the name name, and increments the amount
of storage per instance m by size.

class (class — class methods vars) mini-oof2

start a class definition with superclass class, putting the size of the methods table and
instance variable space on the stack.

end-class (class methods vars "name" —) mini-oof2

finishs a class definition and assigns a name name to the newly created class. Inherited
methods are copied from the superclass.

defines (xt class "name" —) mini-oof

Chapter 6: Forth Words 229

Bind xt to the selector name in class class.
new (class — o) mini-oof

Create a new incarnation of the class class.
:: (class "name" —) mini-oof “colon-colon”

Compile the method for the selector name of the class class (not immediate!).

6.26.5.2 Mini-OOF Example

A short example shows how to use this package. This example, in slightly extended form,
is supplied as moof-exm.fs
object class
method init
method draw
end-class graphical
This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

100 100 t-rex draw

where t-rex is an object or object pointer, created with e.g. graphical new Constant
t-rex.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class
cell var circle-radius
end-class circle \ "graphical" is the parent class

:noname (x y ——)

circle-radius @ draw-circle ; circle defines draw
:noname (r --)

circle-radius ! ; circle defines init

There is no implicit init method, so we have to define one. The creation code of the
object now has to call init explicitely.
circle new Constant my-circle
50 my-circle init
It is also possible to add a function to create named objects with automatic call of init,
given that all objects have init on the same place:

: new: (.. o "name" --)
new dup Constant init ;
80 circle new: large-circle

We can draw this new circle at (100,100) with:
100 100 my-circle draw

6.26.5.3 mini-oof.fs Implementation

Object-oriented systems with late binding typically use a “vtable”-approach: the first vari-
able in each object is a pointer to a table, which contains the methods as function pointers.
The vtable may also contain other information.

Chapter 6: Forth Words 230

So first, let’s declare selectors:

: method (m v "name" -- m' v) Create over , swap cell+ swap
DOES> (... o -— ...) @ over @ + Q@ execute ;

During selector declaration, the number of selectors and instance variables is on the
stack (in address units). method creates one selector and increments the selector number.
To execute a selector, it takes the object, fetches the vtable pointer, adds the offset, and
executes the method xt stored there. Each selector takes the object it is invoked with as
top of stack parameter; it passes the parameters (including the object) unchanged to the
appropriate method which should consume that object.

Now, we also have to declare instance variables

: var (m v size "name" -- m v') Create over , +
DOES> (o —- addr) @ + ;

As before, a word is created with the current offset. Instance variables can have different
sizes (cells, floats, doubles, chars), so all we do is take the size and add it to the offset. If
your machine has alignment restrictions, put the proper aligned or faligned before the
variable, to adjust the variable offset. That’s why it is on the top of stack.

We need a starting point (the base object) and some syntactic sugar:
Create object 1 cells , 2 cells ,
: class (class -- class selectors vars) dup 20 ;

For inheritance, the vtable of the parent object has to be copied when a new, derived
class is declared. This gives all the methods of the parent class, which can be overridden,
though.

: end-class (class selectors vars "name" --)
Create here >r , dup , 2 cells 7?DO ['] noop , 1 cells +L0OOP
cell+ dup cell+ r> rot @ 2 cells /string move ;
The first line creates the vtable, initialized with noops. The second line is the inheritance
mechanism, it copies the xts from the parent vtable.

We still have no way to define new methods, let’s do that now:
: defines (xt class "name" --) ' >body @ + ! ;
To allocate a new object, we need a word, too:
: new (class -- o) here over @ allot swap over ! ;

Sometimes derived classes want to access the method of the parent object. There are
two ways to achieve this with Mini-OOF: first, you could use named words, and second,
you could look up the vtable of the parent object.

(class "name" --) ' >body @ + @ compile, ;

Nothing can be more confusing than a good example, so here is one. First let’s declare
a text object (called button), that stores text and position:

object class
cell var text
cell var len
cell var x
cell var y
method init

Chapter 6: Forth Words 231

method draw
end-class button

Now, implement the two methods, draw and init:

:noname (o --)

>r 1@ x @ r@ y @ at-xy 1r@ text @ r> len Q@ type ;
button defines draw

:noname (addr u o --)

>r 0r@x ! 0r@y ! r@ len ! r> text ! ;

button defines init

To demonstrate inheritance, we define a class bold-button, with no new data and no new
selectors:

button class
end-class bold-button

: bold 27 emit ." [1m" ;
: normal 27 emit ." [Om" ;

The class bold-button has a different draw method to button, but the new method is
defined in terms of the draw method for button:

:noname bold [button :: draw] normal ; bold-button defines draw
Finally, create two objects and apply selectors:

button new Constant foo

s" thin foo" foo init

page

foo draw

bold-button new Constant bar
s" fat bar" bar init

1 bar y !

bar draw

6.26.6 Mini-OOF2

Mini-OOF?2 is very similar to Mini-OOF in many respects, but differs significantly in a few
aspects. In particular, Mini-OOF2 has a current object variable, and uses the primitives
>0 and o> to manipulate that object stack. All method invocations and instance variable
accesses refer to the current object.

>o (c-addr — r:c-old) new “to-0”

Set the current object to c_addr, the previous current object is pushed to the return
stack

o> (r:c-addr —) new “o-restore”
Restore the previous current object from the return stack

To ease passing an object pointer to method invocation or instance variable accesses,
the additional recognizer rec-moof2 is activated.

rec-moof2 (addr u — xt translate-moof2 | 0) mini-oof2 “rec-moof-two”

Very simplistic dot-parser, transforms . selector/ivar to >o selector/ivar o>.

Chapter 6: Forth Words 232

To assign methods to selectors, use xt class is selector, so no defines necessary. For
early binding of methods, [class] defers selector is used, no need for : :. Instead of writing
:noname code ; class is selector, you can also use the syntactic sugar class :method selector
code ;.

:method (class "name" —) gforth-experimental “colon-method”

define a noname that is assigned to the deffered word name in class at ;.

6.26.7 Comparison with other object models

Many object-oriented Forth extensions have been proposed (A survey of object-oriented
Forths (SIGPLAN Notices, April 1996) by Bradford J. Rodriguez and W. F. S. Poehlman
lists 17). This section discusses the relation of the object models described here to two
well-known and two closely-related (by the use of method maps) models. Andras Zsoter
helped us with this section.

The most popular model currently seems to be the Neon model (see Object-oriented
programming in ANS Forth (Forth Dimensions, March 1997) by Andrew McKewan) but
this model has a number of limitations®’:

e It uses a selector object syntax, which makes it unnatural to pass objects on the
stack.

e It requires that the selector parses the input stream (at compile time); this leads to
reduced extensibility and to bugs that are hard to find.

e It allows using every selector on every object; this eliminates the need for interfaces,
but makes it harder to create efficient implementations.

Another well-known publication is Object-Oriented Forth (Academic Press, London,
1987) by Dick Pountain. However, it is not really about object-oriented programming,
because it hardly deals with late binding. Instead, it focuses on features like information
hiding and overloading that are characteristic of modular languages like Ada (83).

In Does late binding have to be slow? (http://www.forth.org/oopf.html) (Forth Di-
mensions 18(1) 1996, pages 31-35) Andras Zsoter describes a model that makes heavy use of
an active object (like this in objects.fs): The active object is not only used for accessing
all fields, but also specifies the receiving object of every selector invocation; you have to
change the active object explicitly with { ... }, whereas in objects.fs it changes more
or less implicitly at m: ... ;m. Such a change at the method entry point is unnecessary
with Zsoter’s model, because the receiving object is the active object already. On the other
hand, the explicit change is absolutely necessary in that model, because otherwise no one
could ever change the active object. An Standard Forth implementation of this model is
available through http://www.forth.org/oopf.html.

The oof . fs model combines information hiding and overloading resolution (by keeping
names in various word lists) with object-oriented programming. It sets the active ob-
ject implicitly on method entry, but also allows explicit changing (with >o...0> or with
with...endwith). It uses parsing and state-smart objects and classes for resolving over-
loading and for early binding: the object or class parses the selector and determines the
method from this. If the selector is not parsed by an object or class, it performs a call

2T A longer version of this critique can be found in On Standardizing Object-Oriented Forth Extensions
(Forth Dimensions, May 1997) by Anton Ertl.

http://www.forth.org/oopf.html
http://www.forth.org/oopf.html

Chapter 6: Forth Words 233

to the selector for the active object (late binding), like Zsoter’s model. Fields are always
accessed through the active object. The big disadvantage of this model is the parsing and
the state-smartness, which reduces extensibility and increases the opportunities for subtle
bugs; essentially, you are only safe if you never tick or postpone an object or class (Bernd
disagrees, but I (Anton) am not convinced).

The mini-oof.fs model is quite similar to a very stripped-down version of the
objects.fs model, but syntactically it is a mixture of the objects.fs and oof.fs
models.

6.27 Closures

Gforth provides flat closures (called closures in the following). Closures are similar to
quotations (see (undefined) [Quotations|, page (undefined)), but the execution token (xt)
that represents a closure does not just refer to code, but also to data. Running the code
of a closure definition creates a closure data structure (also referred to as “closure”), that
is represented by an execution token. The closure data structure needs to be allocated
somewhere, and in Gforth this memory is managed explicitly.

As an example, consider a word that sums up the results of a function (n -- r) across
a range of input values:

: sum {: limit start xt -—— r :}
Oe limit start ?do
i xt execute f+
loop ;

You can add up the values of the functon 1/n for n=1..10 with:
11 1 [: s>f -1e f**x ;] sum f.

Yes, you can do it shorter and more efficiently with 1/f, but bear with me. If you want
to add up 1/n"2, you can write

11 1 [: s>f -2e f** ;] sum f.

Now if you want to deal with additional exponents and these exponents are known at
compile time, you can create a new quotation for every exponent. But you may prefer to
provide an exponent and produce an xt without having to write down a quotation every
time. If the value of the exponent is only known at run-time, producing such an xt is
possible in Forth, but even more involved, and consumes dictionary memory (with limited
deallocation options). Closures come to the rescue:

1/n"r (r -- xt; xt execution: n -- rl)
fnegate [f:h (n -r) s>f fswap f*x ;] ;

11 1 3e 1/n"°r dup >r sum f. r> free-closure
11 1 0.5e 1/n"r dup >r sum f. r> free-closure

When 1/n°r runs, it creates a closure that incorporates a floating-point number (in-
dicated by the £ in [f:h), in particular the value -r. It also references the code between
[f:h and ;]. The memory for the closure comes from the heap, i.e. allocated memory
(indicated by the h in [f:h). 1/n"r produces an xt representing this closure. This xt is
then passed to sum and executed there.

Chapter 6: Forth Words 234

When the closure is executed (in sum), -r is pushed (in addition to the n that has already
been pushed before the execute) and the code of the closure is run.

The code above shows a pure-stack closure (no locals involved). Pure-stack closures start
with a word with the naming scheme [T: 4 where the type T can be n (cell), d (double-cell),
or £ (FP). The allocator A can be 1 (local), d (dictionary), h (heap), or hil: Allocate
the closure on the heap and free it after the first execution; this is used for passing data
to another task with send-event (see (undefined) [Message queues], page (undefined)). A
pure-stack closure consumes one T from a stack at closure creation time (when the code
containing the closure definition is run), and pushes an xt. After creating the closure,
execution continues behind the ;].

When the xt is executed (directly with execute or indirectly through, e.g., compile,
or a deferred word), it pushes the stack item that was consumed at closure creation time
and then runs the code inside the closure definition (up to the ;1). You can deallocate
heap-allocated closures with

free-closure (zt —) gforth-1.0
Free the heap-allocated closure zt.
Like a quotation, a (flat) closure cannot access locals of the enclosing definition(s).
The words for starting pure-stack closure definitions are:
[n:1 (compilation — colon-sys; run-time: n — xt ; at execution: — n) gforth-1.0 “open-
bracket-n-colon-1”
[d:1 (compilation — colon-sys; run-time: d — xt ; xt execution: — d) gforth-1.0 “open-
bracket-d-colon-1”
[£f:1 (compilation — colon-sys; run-time: r — xt ; xt execution: — r) gforth-1.0 “open-
bracket-r-colon-1"
[n:d (compilation — colon-sys; run-time: n — xt ; at execution: — n) gforth-1.0 “open-
bracket-n-colon-d”
[d:d (compilation — colon-sys; run-time: d — xt ; xt execution: — d) gforth-1.0 “open-
bracket-d-colon-d”
[f:d (compilation — colon-sys; run-time: r — xt ; at execution: — r) gforth-1.0 “open-
bracket-r-colon-d”
[n:h (compilation — colon-sys; run-time: n — xt ; at execution: — n) gforth-1.0 “open-
bracket-n-colon-h”
[d:h (compilation — colon-sys; run-time: d — xt ; xt execution: — d) gforth-1.0 “open-
bracket-d-colon-h”
[f:h (compilation — colon-sys; run-time: r — xt ; xt execution: — r) gforth-1.0 “open-
bracket-r-colon-h”
[n:h1 (compilation — colon-sys; run-time: n — xt ; xt execution: — n) gforth-1.0 “open-
bracket-n-colon-h1”
[d:h1 (compilation — colon-sys; run-time: d — xt ; at execution: — d) gforth-1.0 “open-
bracket-d-colon-h1”
[£f:h1 (compilation — colon-sys; run-time: r — xt ; xt execution: — r) gforth-1.0 “open-
bracket-r-colon-h1”

Chapter 6: Forth Words 235

If you want to pass more than one stack item from closure creation to execution time,
defining more such words becomes unwieldy, and the code inside the closure definition
might have to juggle many stack items, so Gforth does not provide such additional words.
Instead, Gforth offers flat closures that define locals. Here’s the example above, but using
locals-defining closures:

1/n°r (r —— xt; xt execution: n -- rl1)
fnegate [{: f: -r :}h s>f -r fx*x ;] ;

The number, types, and order of the locals are used for specifying how many and which
stack items are consumed at closure creation time. At closure execution time these values
become the values of the locals. The locals definition ends with a word with a naming
scheme :}A, where A specifies where the closure is allocated: 1 (local), d (dictionary), h
(heap), or h1 (heap, free on first execution).

Note that the locals are still strictly local to one execution of the xt, and any changes
to the locals (e.g., with to) do not change the values stored in the closure; i.e., in the next
execution of the closure the locals will be initialized with the values that closure creation
consumed.

[{: (compilation — hmaddr u latest wid 0 ; instantiation ... — xt) gforth-1.0 “start-closure”

Starts a closure. Closures started with [{: define locals for use inside the closure. The
locals-definition part ends with :}1, :}h, :}h1, :}d or :}xt. The rest of the closure defi-
nition is Forth code. The closure ends with ;]. When the closure definition is encountered
during execution (closure creation time), the values going into the locals are consumed,
and an execution token (xt) is pushed on the stack; when that execution token is executed
(with execute, through compile, or a deferred word), the code in the closure is executed
(closure execution time). If the xt of a closure is executed multiple times, the values of the
locals at the start of code execution are those from closure-creation time, unaffected by any
locals-changes in earlier executions of the closure.

:}1 (hmaddr u latest latestnt wid 0 a-addrl ul ... —) gforth-1.0 “close-brace-locals”
Ends a closure’s locals definition. The closure will be allocated on the locals stack.

:}d (hmaddr u latest latestnt wid 0 a-addrl ul ... —) gforth-1.0 “colon-close-brace-d”
Ends a closure’s locals definition. The closure will be allocated in the dictionary.

:Yh (hmaddr u latest latestnt wid 0 a-addrl ul ... —) gforth-1.0 “colon-close-brace-h”

Ends a closure’s locals definition. At the run-time of the surrounding definition this
allocates the closure on the heap; you are then responsible for deallocating it with free-
closure.

:Yh1 (hmaddr u latest latestnt wid 0 a-addrl ul ... —) gforth-1.0 “colon-close-brace-h-one”

Ends a closure’s locals definition. The closure is deallocated after the first execution, so
this is a one-shot closure, particularly useful in combination with send-event (see (unde-
fined) [Message queues], page (undefined)).

:Yxt (hmaddr u latest latestnt wid 0 a-addrl ul ... —) gforth-1.0 “colon-close-brace-x-t”

Ends a closure’s locals definition. The closure will be allocated by the xt on the stack,
so the closure’s run-time stack effect is (... xt-alloc -- xt-closure).

>addr (... #t — addr) gforth-internal “to-addr”

Chapter 6: Forth Words 236

Obtain the address addr of the addressable: value-flavoured word xt. For some value-
flavoured words, additional inputs may be consumed.

If you look at closures in other languages (e.g., Scheme), they are quite different: data is
passed by accessing and possibly changing locals of enclosing definitions (lexical scoping).
Gforth’s closures are based on the flat closures used in the implementation of Scheme, so by
writing the code appropriately (see the following subsections) you can do the same things
with Gforth’s closures as with lexical-scoping closures.

In our programming we have not missed lexical scoping, except when trying to convert
code (usually textbook examples) coming from another language. I.e., in our experience
flat closures are as useful and similarly convenient as lexical scoping. For comparison, if
Gforth supported lexical scoping instead of flat closures, the definition of 1/n"r might look
as follows:

\ this does not work in Gforth:
1/n°r (r —- xt; xt execution: n -- rl1)
fnegate {: -r :} [:h s>f -r f*x ;] ;

But if you want to know how to convert lexical scoping to Gforth’s flat closures, the
following subsections explain it.

6.27.1 How do I read outer locals?

As long as you only read the value of locals, you can duplicate them as needed, so a way
to convert an access to an outer local for flat closures is to just pass the values on the
stack to the closures and define them again as locals there. Here’s an example: Consider
the following code for a hypothetical Gforth with a quotation-like syntax for lexical-scoping
closures:

\ does not work; [:d would dictionary-allocate the closure

. {:ab :} ...
[:d ...
. cd i} ...
[t:d ... abcd ... ;]

;1

you can convert it to flat closures as follows:

... {:ab:} ...
ab [{: ab:} ...
. {:cd i} oL
abcdI[{: abcd:}
.abcd ... ;]

;]

Only those locals that are read in the closure need to be passed in.

Chapter 6: Forth Words 237

This process is called closure conversion in the programming language implementation
literature.

6.27.2 How do I write outer locals?

A local instance that is written and read must exist at only one location, its home location.
The address of this home location is only read and can be duplicated and passed around.
A textbook example might look like this in a hypothetical Gforth with lexical-scoping and
explicit dictionary allocation:

\ does not work
: counter (-- xt-inc xt-val)
0 {: n :}
[:dn 1+ ton ;]
[:d n ;]
\ for usage example see below
Instead, you allocate the home location, and pass its address around:

: counter (-- xt-inc xt-val)
align here {: np :} 0 , \ home location
np [{: np :}d 1 np +! ;]
np [{: np :}d np @ ;]
\ usage example
counter \ first instance
dup execute . \ prints O
over execute
over execute
dup execute . \ prints 2
counter \ second instance
over execute
dup execute . \ prints 1
2swap \ work on first instance again
dup execute . \ prints 2

This introduction of a home location is called assignment conversion in the programming
language implementation literature.

You can also use pure-stack closures in this case:

: counter (-- xt-inc xt-val)
align here {: np :} 0 , \ home location
np [n:d 1 swap +! ;]
np [n:d @ ;]
\ same usage
Instead of dictionary allocation you can also allocate on the heap. For local alloca-
tion of the home location you can use variable-flavoured locals (see (undefined) [Gforth
locals], page (undefined)), but of course then the closures must not be used after leaving
the definition in which the home location is defined. E.g.

Chapter 6: Forth Words 238

counter-example (--)
0 {: w“ np :} \ home location
np [n:d 1 swap +! ;]
np [n:d @ ;]
dup execute cr .
over execute
over execute
dup execute cr .
2drop
counter-example \ prints O and 2
There is actually rarely a reason to use home locations at all, because what the textbook
examples do with closures and writable locals can be done in Gforth more directly with
structs (see (undefined) [Structures], page (undefined)) or objects (see (undefined) [Object-
oriented Forth], page (undefined)), or in the counter example, simply with create:

counter ("name" --)
create 0 , ;
counter-inc (addr --)
1 swap +! ;

: counter-val (addr --)
Q ;

\ usage example

counter a

a counter-val . \ prints O
a counter-inc

a counter-inc

a counter-val . \ prints 2
counter b

b counter-inc

b counter-val . \ prints 1
a counter-val . \ prints 2

Still, for dictionary and heap allocation Gforth has a home-location definition syntax
based on the locals-definition syntax. Here’s a heap-allocation version of counter using
closures and the locals-like home-location syntax:

: counter (-- handle xt-inc xt-val)
0 <{: w> np :}h
np [n:h 1 swap +! ;]
np [n:h @ ;]
;> —rot ;
\ usage example
counter \ first instance
dup execute . \ prints O
over execute
over execute
dup execute . \ prints 2
counter \ second instance

Chapter 6: Forth Words 239

over execute

dup execute . \ prints 1

free-closure free-closure free throw \ back to first instance
dup execute . \ prints 2

free-closure free-clouse free throw

Here <{: starts a locals scope (similar to a closure itself), then you define (variable-
flavoured) locals. :}h (or :}d) finishes the locals definition. Now (and up to ;>) you can
use the names of the defined locals. Finally, ;> ends the scope and pushes the start address
of the allocated home-location block (also when using :}d for dictionary allocation), for
freeing the home-location block later.

We have produced no uses of <{: and ;> in the first 6 years that they were present in
(development) Gforth. We think that the reason is that one prefers structs or objects for
modifiable data. Therefore, we intend to remove these words in the future. If you want to
see them preserved, contact us and make a case for them.

<{: (compilation — colon-sys ; run-time —) gforth-obsolete “start-homelocation”
Starts defining a home location block.
;> (compilation colon-sys — ; run-time — addr) gforth-obsolete “end-homelocation”

Ends defining a home location; addr is the start address of the home-location block (used
for deallocation).

6.28 Regular Expressions

Regular expressions are pattern matching algorithms for strings found in many contem-
porary languages. You can add regular expression functionality to Gforth with require
regexp.fs.

The classical implementation for this pattern matching is a backtracking algorithm,
which is also necessary if you want to have features like backreferencing. Gforth implements
regular expressions by providing a language to define backtracking programs for pattern
matching. Basic element is the control structure FORK ... JOIN, which is a forward call
within a word, and therefore allows to code a lightweight try and fail control structure.

FORK (compilation — orig ; run-time f —) gforth-0.7
AHEAD-like control structure: calls the code after JOIN.
JOIN (orig —) gforth-0.7
THEN:-like control structure for FORK

You can program any sort of arbitrary checks yourself by computing a flag and ?LEAVE
when the check fails. Your regular expression code is enclosed in ((and)).

(C (addr u —) regexp-pattern “paren-paren”
start regexp block

)) (— flag) regexp-pattern “close-paren-close-paren”
end regexp block

Pattern matching in regular expressions have character sets as elements, so a number of
functions allow you to create and modify character sets (called charclass). All characters
here are bytes, so this doesn’t extend to unicode characters.

charclass (—) regexp-cg

Chapter 6: Forth Words 240

Create a charclass
+char (char —) regexp-cg “plus-char”

add a char to the current charclass
-char (char —) regexp-cg

remove a char from the current charclass
..char (start end —) regexp-cg “dot-dot-char”

add a range of chars to the current charclass
+chars (addr u —) regexp-cg “plus-chars”

add a string of chars to the current charclass
+class (class —) regexp-cg “plus-class”

union of charclass class and the current charclass
-class (class —) regexp-cg

subtract the charclass class from the current charclass

There are predefined charclasses and tests for them, and generic checks. If a check fails,
the next possible alternative of the regular expression is tried, or a loop is terminated.

c? (addr class —) regexp-pattern “c-question”
check addr for membership in charclass class

“-c-question”

-c? (addr class —) regexp-pattern
check addr for not membership in charclass class

\d (addr — addr’) regexp-pattern “backslash-d”
check for digit

\s (addr — addr’) regexp-pattern “backslash-s”
check for blanks

.7 (addr — addr’) regexp-pattern “dot-question”
check for any single charachter

-\d (addr - addr’) regexp-pattern “-backslash-d”
check for not digit

-\s (addr — addr’) regexp-pattern “-~backslash-s”
check for not blank

* ("char" -) regexp-pattern “backtick”
check for particular char

*? ("char" -) regexp-pattern “backtick-question”

-~ ("char" -) regexp-pattern “~backtick”
check for particular char

You can certainly also check for start and end of the string, and for whole string con-
stants.

\" (addr — addr) regexp-pattern “backslash-caret”
check for string start
\$ (addr — addr) regexp-pattern “backslash-dollar”

Chapter 6: Forth Words 241

check for string end
str=7 (addrl addr v — addr2) regexp-pattern “str-equals-question”
check for a computed string on the stack (possibly a backreference)
=" (<string>" —) regexp-pattern “equals-quote”
check for string
Loops that check for repeated character sets can be greedy or non-greedy.
{** (addr — addr addr) regexp-pattern “begin-greedy-star”
greedy zero-or-more pattern
*x} (sys —) regexp-pattern “end-greedy-star”
end of greedy zero-or-more pattern
{++ (addr — addr addr) regexp-pattern “begin-greedy-plus”
greedy one-or-more pattern
++} (sys —) regexp-pattern “end-greedy-plus”
end of greedy one-or-more pattern
{* (addr — addr addr) regexp-pattern “begin-non-greedy-star”
non-greedy zero-or-more pattern
*} (addr addr’ — addr’) regexp-pattern “end-non-greedy-star”
end of non-greedy zero-or-more pattern
{+ (addr — addr addr) regexp-pattern “begin-non-greedy-plus”
non-greedy one-or-more pattern
+} (addr addr’ — addr’) regexp-pattern “end-non-greedy-plus”
end of non-greedy one-or-more pattern
Example: Searching for a substring really is a non-greedy match of anything in front of
it.
// (-) regexp-pattern “slash-slash”
search for string
Alternatives are written with
{{ (addr — addr addr) regexp-pattern “begin-alternatives”
Start of alternatives
Il (addr addr — addr addr) regexp-pattern “next-alternative”
separator between alternatives
}} (addr addr — addr) regexp-pattern “end-alternatives”
end of alternatives
You can use up to 9 variables named \1 to \9 to refer to matched substrings
\((addr — addr) regexp-pattern “backslash-paren”
start of matching variable; variables are referred as \\1-9
\) (addr — addr) regexp-pattern “backslash-close-paren”
end of matching variable

\O (— addr u) regexp-pattern “backslash-zero”

Chapter 6: Forth Words 242

the whole string

Certainly, you can also write code to replace patterns you found.
s>> (addr — addr) regexp-replace “s-to-to”

Start replace pattern region
>> (addr — addr) regexp-replace “to-to”

Start arbitrary replacement code, the code shall compute a string on the stack and pass
it to <<

<< (run-addr addr v — run-addr) regexp-replace “less-less”
Replace string from start of replace pattern region with addr u
<<" ("string<">" —) regexp-replace “less-less-quote”
Replace string from start of replace pattern region with string
s// (addr u — ptr) regexp-replace “s-slash-slash”
start search/replace loop
//s (ptr —) regexp-replace “slash-slash-s”
search end
//o (ptr addr u — addr’ u’) regexp-replace “slash-slash-0”
end search/replace single loop
//g (ptr addr u — addr’ v’) regexp-replace “slash-slash-g”
end search /replace all loop

Examples can be found in test/regexp-test.fs.

6.29 Programming Tools

6.29.1 Locating source code definitions

Many programming systems are organized as an integrated development environment (IDE)
where the editor is the hub of the system, and allows building and running programs. If
you want that, Gforth has it, too (see (undefined) [Emacs and Gforth], page (undefined)).

However, several Forth systems have a different kind of IDE: The Forth command line
is the hub of the environment; you can view the source from there in various ways, and call
an editor if needed.

Gforth also implements such an IDE. It mostly follows the conventions of SwiftForth
where they exist, but implements features beyond them.

An advantage of this approach is that it allows you to use your favourite editor: set
the environment variable EDITOR to your favourite editor, and the editing commands will
call that editor; Gforth invokes some GUI editors in the background (so you do not need
to finish editing to continue with your Forth session), terminal editors in the foreground
(default for editors not known to Gforth is foreground). If you have not set EDITOR, the
default editor is vi.

locate ("name" -) gforth-1.0
Show the source code of the word name and set the current location there.
xt-locate (nt/zt —) gforth-1.0

Chapter 6: Forth Words 243

Show the source code of the word zt and set the current location there.

The current location is set by a number of other words in addition to locate. Also,
when an error happens while loading a file, the location of the error becomes the current
location.

A number of words work with the current location:
1 (-) gforth-1.0

Display source code lines at the current location.
n (-) gforth-1.0

Display lines behind the current location, or behind the last n or b output (whichever
was later).

b (-) gforth-1.0

Display lines before the current location, or before the last n or b output (whichever was
later).

g (-) gforth-0.7

Enter the editor at the current location, or at the start of the last n or b output (whichever
was later).

You can control how many lines 1, n and b show by changing the values:
before-locate (— u) gforth-1.0

number of lines shown before current location (default 3).
after-locate (— u) gforth-1.0

number of lines shown after current location (default 12).

Finally, you can directly go to the source code of a word in the editor with
edit ("name" -) gforth-1.0

Enter the editor at the location of "name"

You can see the definitions of similarly-named words with
browse ("subname" —) gforth-1.0

Show all places where a word with a name that contains subname is defined (mwords-
like, see (undefined) [Word Lists|, page (undefined)). You can then use ww, nw or bw (see
(undefined) [Locating uses of a word], page (undefined)) to inspect specific occurences more
closely.

6.29.2 Locating uses of a word
where ("name" —) gforth-1.0

Show all places where name is used (text-interpreted). You can then use ww, nw or bw
to inspect specific occurences more closely. Gforth’s where does not show the definition of
name; use locate for that.

ww (u —) gforth-1.0
The next 1 or g shows the where result with index u
nw (—) gforth-1.0

Chapter 6: Forth Words 244

The next 1 or g shows the next where result; if the current one is the last one, after nw
there is no current one. If there is no current one, after nw the first one is the current one.

bw (-) gforth-1.0

The next 1 or g shows the previous where result; if the current one is the first one, after
bw there is no current one. If there is no current one, after bw the last one is the current
one.

gg (—) gforth-1.0

The next ww, nw, bw, bb, nb, 1b (but not locate, edit, 1 or g) puts it result in the editor
(like g). Use gg gg to make this permanent rather than one-shot.

11 (-) gforth-1.0

The next ww, nw, bw, bb, nb, 1b (but not locate, edit, 1 or g) displays in the Forth
system (like 1). Use 11 11 to make this permanent rather than one-shot.

whereg ("name" —) gforth-1.0

Like where, but puts the output in the editor. In Emacs, you can then use the
compilation-mode commands (see Section “Compilation Mode” in GNU Emacs Manual)
to inspect specific occurences more closely.

short-where (—) gforth-1.0

Set up where to use a short file format (default).
expand-where (—) gforth-1.0

Set up where to use a fully expanded file format (to pass to e.g. editors).
prepend-where (—) gforth-1.0

Set up where to show the file on a separate line, followed by where lines without file
names (like SwiftForth).

The data we have on word usage also allows us to show which words have no uses:
unused-words (—) gforth-1.0

list all words without usage

6.29.3 Locating exception source
tt (u -) gforth-1.0

nt (-) gforth-1.0

bt (-) gforth-1.0

6.29.4 Examining compiled code

And finally, see and friends show compiled code. Some of the things in the source code
are not present in the compiled code (e.g., formatting and comments), but this is useful to
see what threaded code or native code is produced by macros and Gforth’s optimization
features.

see ("<spaces>name" —) tools

Locate name using the current search order. Display the definition of name. Since this
is achieved by decompiling the definition, the formatting is mechanised and some source
information (comments, interpreted sequences within definitions etc.) is lost.

xt-see (zt —) gforth-0.2

Chapter 6: Forth Words 245

Decompile the definition represented by xt.
simple-see ("name" —) gforth-0.6

Decompile the colon definition name, showing a line for each cell, and try to guess a
meaning for the cell, and show that.

xt-simple-see (zt —) gforth-1.0
Decompile the colon definition xt like simple-see
simple-see-range (addrl addr?2 —) gforth-0.6
Decompile code in [addrl,addr2) like simple-see
see-code ("name" -) gforth-0.7

Like simple-see, but also shows the dynamic native code for the inlined primitives. For
static superinstructions, it shows the primitive sequence instead of the first primitive (the
other primitives of the superinstruction are shown, too). For primitives for which native
code is generated, it shows the number of stack items in registers at the beginning and at
the end (e.g., 1->1 means 1 stack item is in a register at the start and at the end). For
each primitive or superinstruction with native code, the inline arguments and component
primitives are shown first, then the native code.

xt-see-code (zt —) gforth-1.0
Decompile the colon definition zt like see-code.
see-code-range (addrl addr? —) gforth-0.7
Decompile code in [addrl,addr?2) like see-code.
As an example, consider:
: foo x £@ fsin drop over ;

This is not particularly useful, but it demonstrates the various code generation differ-
ences. Compiling this on gforth-fast on AMD64 and then using see-code foo outputs:

$7FDOCEE8C510 1it f@ 1->1
$7FDOCEE8SC518 x

$7FDOCEE8C520 f@

7FDOCEB51697: movsd [r12] ,xmm15

7FDOCEB5169D: mov rax,$00[r13]
7FDOCEB516A1 : sub ri12,$08
TFDOCEB516A5: add r13,$18
7TFDOCEB516A9: movsd xmmil5, [rax]
7FDOCEB516AE: mov rcx,-$08[r13]
TFDOCEB516B2: jmp ecx

$7FDOCEE8C528 fsin
$7FDOCEESC530 drop 1->0

7FDOCEB516B4: add r13,$08
$7FDOCEE8C538 over 0->1
7FDOCEB516B8: mov r8,$10[r15]
7FDOCEB516BC: add r13,$08
$7FDOCEESC540 ;s 1->1
7FDOCEB516C0: mov r10, [rbx]

TFDOCEB516C3: add rbx, $08

Chapter 6: Forth Words 246

TFDOCEB516C7: lea r13,$08[r10]
TFDOCEB516CB: mov rcx,-$08[r13]
TFDOCEB516CF : jmp ecx

First, you see a threaded-code cell for a static superinstruction with the components 1it
and f@, starting and ending with one data stack item in a register (1->1); this is followed by
the cell for the argument x of 1it, and the cell for the £@ component of the superinstruction;
the latter cell is not used, but is there for Gforth-internal reasons.

Next, the dynamically generated native code for the superinstruction 1it £@ is shown;
note that this native code is not mixed with the threaded code in memory, as you can see
by comparing the addresses.

If you want to understand the native code shown here: the threaded-code instruction
pointer is in r13, the data stack pointer in r15; the first data stack register is r8 (i.e., the
top of stack resides there if there is one data stack item in a register); the return stack
pointer is in rbx, the FP stack pointer in r12, and the top of the floating-pont stack in
xmm15. Note that the register assignments vary between engines, so you may see a different
register assignment for this code.

The dynamic native code for 1it £@ ends with a dispatch jump (aka NEXT), because
the code for the next word fsin in the definition is not dynamically generated.

Next, you see the threaded-code cell for fsin. There is no dynamically-generated native
code for this word, and see-code does not show the static native code for it (you can look
at it with see fsin). Like all words with static native code in gforth-fast, the effect on
the data stack representation is 1->1 (for gforth, 0->0), but this is not shown.

Next, you see the threaded-code cell for drop; the native-code variant used here starts
with one data stack item in registers, and ends with zero data stack items in registers (1-
>0). This is followed by the native code for this variant of drop. There is no NEXT here,
because the native code falls through to the code for the next word.

Next, you see the threaded-code cell for over followed by the dynamically-generated
native code in the 0->1 variant.

Finally, you see the threaded and native code for ;s (the primitive compiled for ; in
foo). ;s performs control flow (it returns), so it has to end with a NEXT.

6.29.5 Examining data

The following words inspect the stack non-destructively:
. (xl..2n -2l .. zn) gforth-1.0 “dot-dot-dot”
smart version of .s

.s (—) tools “dot-s”

Display the number of items on the data stack, followed by a list of the items (but not
more than specified by maxdepth-.s; TOS is the right-most item.

f.s (-) gforth-0.2 “f-dot-s”

Display the number of items on the floating-point stack, followed by a list of the items
(but not more than specified by maxdepth-.s; TOS is the right-most item.

f.s-precision (— u) gforth-1.0 “f-dot-s-precision”

Chapter 6: Forth Words 247

A value. U is the field width for f.s output. Other precision details are derived from
that value.

maxdepth-.s (— addr) gforth-0.2 “maxdepth-dot-s”
A variable containing 9 by default. .s and f.s display at most that many stack items.

There is a word .r but it does not display the return stack! It is used for formatted
numeric output (see (undefined) [Simple numeric output], page (undefined)).

The following words work on the stack as a whole, either by determining the depth or
by clearing them:

depth (—+n) core “depth”
+n is the number of values that were on the data stack before +n itself was placed on
the stack.
fdepth (— +n) floating “f-depth”
+n is the current number of (floating-point) values on the floating-point stack.
clearstack (... —) gforth-0.2 “clear-stack”
remove and discard all/any items from the data stack.
fclearstack (r0 .. rn —) gforth-1.0 “f-clearstack”
clear the floating point stack
clearstacks (... —) gforth-0.7 “clear-stacks”
empty data and FP stack
The following words inspect memory.
? (a-addr —) tools “question”
Display the contents of address a-addr in the current number base.
dump (addr u —) tools “dump”

Display u lines of memory starting at address addr. Each line displays the contents of
16 bytes. When Gforth is running under an operating system you may get Invalid memory
address errors if you attempt to access arbitrary locations.

6.29.6 Forgetting words

Forth allows you to forget words (and everything that was alloted in the dictonary after
them) in a LIFO manner.

marker ("<spaces> name" —) core-ext

Create a definition, name (called a mark) whose execution semantics are to remove itself
and everything defined after it.

The most common use of this feature is during progam development: when you change a
source file, forget all the words it defined and load it again (since you also forget everything
defined after the source file was loaded, you have to reload that, too). Note that effects
like storing to variables and destroyed system words are not undone when you forget words.
With a system like Gforth, that is fast enough at starting up and compiling, I find it more
convenient to exit and restart Gforth, as this gives me a clean slate.

Here’s an example of using marker at the start of a source file that you are debugging;
it ensures that you only ever have one copy of the file’s definitions compiled at any time:

[IFDEF] my-code

Chapter 6: Forth Words 248

my-code
[THEN]

marker my-code
init-included-files

\ .. definitions start here
\ .

\ .

\ end

6.29.7 Debugging

Languages with a slow edit/compile/link/test development loop tend to require sophisti-
cated tracing/stepping debuggers to facilate debugging.

A much better (faster) way in fast-compiling languages is to add printing code at well-
selected places, let the program run, look at the output, see where things went wrong, add
more printing code, etc., until the bug is found.

The simple debugging aids provided in debugs.fs are meant to support this style of
debugging.

The word ~~ prints debugging information (by default the source location and the stack
contents). It is easy to insert. If you use Emacs it is also easy to remove (C-x ~ in the Emacs
Forth mode to query-replace them with nothing). The deferred words printdebugdata and
.debugline control the output of ~~. The default source location output format works well
with Emacs’ compilation mode, so you can step through the program at the source level
using C-x ~ (the advantage over a stepping debugger is that you can step in any direction
and you know where the crash has happened or where the strange data has occurred).

~~ (-) gforth-0.2 “tilde-tilde”

Prints the source code location of the ~

and the stack contents with .debugline.
printdebugdata (—) gforth-0.2 “print-debug-data”
.debugline (nfile nline —) gforth-0.6 “print-debug-line”

Print the source code location indicated by nfile nline, and additional debugging infor-
mation; the default .debugline prints the additional information with printdebugdata.
debug-fid (— file-id) gforth-1.0 “File-id”

debugging words for output. By default it is the process’s stderr.

(and assertions) will usually print the wrong file name if a marker is executed in the
same file after their occurance. They will print ‘*somewhere*’ as file name if a marker is
executed in the same file before their occurance.

once (—) gforth-1.0

do the following up to THEN only once
bt (—) gforth-1.0 “tilde-tilde-bt”

print stackdump and backtrace
“~1bt (-) gforth-1.0 “tilde-tilde-one-bt”

Chapter 6: Forth Words 249

print stackdump and backtrace once
7?77 (—) gforth-0.2 “question-question-question”
Open a debuging shell
WTF?7? (-) gforth-1.0 “WTF-question-question”
Open a debugging shell with backtrace and stack dump
IIFIXME!! (-) gforth-1.0 “store-store-FIXME-store-store”
word that should never be reached
replace-word (zt! xt2 —) gforth-1.0
make xt2 do xt1, both need to be colon definitions
““Variable ("name" -) gforth-1.0 “tilde-tilde-Variable”
Variable that will be watched on every access
~~Value (n "name" -) gforth-1.0 “tilde-tilde-Value”
Value that will be watched on every access
+1trace (—) gforth-1.0 “plus-ltrace”
turn on line tracing
-ltrace (—) gforth-1.0
turn off line tracing
#loc (nline nchar "file" —) gforth-1.0 “number-loc”

set next word’s location to nline nchar in "file"

6.29.8 Assertions

It is a good idea to make your programs self-checking, especially if you make an assumption
that may become invalid during maintenance (for example, that a certain field of a data
structure is never zero). Gforth supports assertions for this purpose. They are used like
this:
assert(flag)
The code between assert (and) should compute a flag, that should be true if everything

is alright and false otherwise. It should not change anything else on the stack. The overall
stack effect of the assertion is (--). E.g.

assert(1 1 + 2 =) \ what we learn in school
assert(dup 0<>) \ assert that the top of stack is not zero
assert(false) \ this code should not be reached

The need for assertions is different at different times. During debugging, we want more
checking, in production we sometimes care more for speed. Therefore, assertions can be
turned off, i.e., the assertion becomes a comment. Depending on the importance of an
assertion and the time it takes to check it, you may want to turn off some assertions and
keep others turned on. Gforth provides several levels of assertions for this purpose:

assert0((—) gforth-0.2 “assert-zero”
Important assertions that should always be turned on.

assertl((—) gforth-0.2 “assert-one”

Chapter 6: Forth Words 250

Normal assertions; turned on by default.
assert2((—) gforth-0.2 “assert-two”
Debugging assertions.
assert3((—) gforth-0.2 “assert-three”
Slow assertions that you may not want to turn on in normal debugging; you would turn
them on mainly for thorough checking.
assert((—) gforth-0.2 “assert-paren”
Equivalent to asserti1(
) (-) gforth-0.2 “close-paren”
End an assertion. Generic end, can be used for other similar purposes
The variable assert-level specifies the highest assertions that are turned on. l.e., at

the default assert-level of one, assertO(and assertl1(assertions perform checking,
while assert2(and assert3(assertions are treated as comments.

The value of assert-1level is evaluated at compile-time, not at run-time. Therefore you
cannot turn assertions on or off at run-time; you have to set the assert-1level appropriately
before compiling a piece of code. You can compile different pieces of code at different
assert-levels (e.g., a trusted library at level 1 and newly-written code at level 3).

assert-level (— a-addr) gforth-0.2

All assertions above this level are turned off.

If an assertion fails, a message compatible with Emacs’ compilation mode is produced
and the execution is aborted (currently with ABORT". If there is interest, we will introduce a

special throw code. But if you intend to catch a specific condition, using throw is probably
more appropriate than an assertion).

Assertions (and ~~) will usually print the wrong file name if a marker is executed in the
same file after their occurance. They will print ‘*somewhere*’ as file name if a marker is
executed in the same file before their occurance.

Definitions in Standard Forth for these assertion words are provided in
compat/assert.fs.

6.29.9 Singlestep Debugger
The singlestep debugger works only with the engine gforth-itc.

When you create a new word there’s often the need to check whether it behaves correctly
or not. You can do this by typing dbg badword. A debug session might look like this:

: badword O DO i . LOOP ; ok
2 dbg badword

: badword

Scanning code...

Nesting debugger ready!
400D4738 8049BC4 0 -> [2] 00002 00000

400D4740 8049F68 DO > [0]
400D4744 804A0C8 i -> [11 00000

Chapter 6: Forth Words 251

400D4748 400C5E60 . > 0[0]
400D474C 8049D0OC LOOP > [0]
400D4744 804A0C8 i -> [1 1 00001
400D4748 400C5E60 . ->1[0]
400D474C 8049D0OC LOOP > [0]
400D4758 804B384 ; -> ok

Each line displayed is one step. You always have to hit return to execute the next word
that is displayed. If you don’t want to execute the next word in a whole, you have to type
n for nest. Here is an overview what keys are available:

RET Next; Execute the next word.

n Nest; Single step through next word.

U Unnest; Stop debugging and execute rest of word. If we got to this word with
nest, continue debugging with the calling word.

d Done; Stop debugging and execute rest.

S Stop; Abort immediately.

Debugging large application with this mechanism is very difficult, because you have to
nest very deeply into the program before the interesting part begins. This takes a lot of
time.

To do it more directly put a BREAK: command into your source code. When program
execution reaches BREAK: the single step debugger is invoked and you have all the features
described above.

If you have more than one part to debug it is useful to know where the program has
stopped at the moment. You can do this by the BREAK" string" command. This behaves
like BREAK: except that string is typed out when the “breakpoint” is reached.

dbg ("name" -) gforth-0.2
break: (-) gforth-0.4 “break-colon”
break" (’ccc"’ -) gforth-0.4 “break-quote”

6.29.10 Code Coverage and Execution Frequency

If you run extensive tests on your code, you often want to figure out if the tests exercise all
parts of the code. This is called (test) coverage. The file coverage.fs contains tools for
measuring the coverage as well as execution frequency.

Code coverage inserts counting code in every basic block (straight-line code sequence)
loaded after coverage.fs. Each time that code is run, it increments the counter for that
basic block. Later you can show the source file with the counts inserted in these basic
blocks.

nocov[(-) gforth-1.0 “nocov-bracket”
(Immediate) Turn coverage off temporarily.
Inocov (—) gforth-1.0 “bracket-nocov”
(Immediate) End of temporary turned off coverage.

coverage? (— f) gforth-internal “coverage-question”

Chapter 6: Forth Words 252

Value: Coverage check on/off
cov+ (—) gforth-experimental “cov-plus”
(Immediate) Place a coverage counter here.
7cov+ (flag — flag) gforth-experimental “question-cov-plus”

(Immediate) A coverage counter for a flag; in the coverage output you see three numbers
behind ?cov: The first is the number of executions where the top-of-stack was non-zero;
the second is the number of executions where it was zero; the third is the total number of
executions.

.coverage (—) gforth-experimental “dot-coverage”
Show code with execution frequencies.
annotate-cov (—) gforth-experimental

For every file with coverage information, produce a .cov file that has the execution
frequencies inserted. We recommend to use bw-cover first (with the default color-cover
you get escape sequences in the files).

covl, (—) gforth-experimental “cov-percent”

Print the percentage of basic blocks loaded after coverage.fs that are executed at least
once.

.cover-raw (—) gforth-experimental “dot-cover-raw”
Print raw execution counts.

By default, the counts are shown in colour (using ANSI escape sequences), but you can
use bw-cover to show them in parenthesized form without escape sequences.

bw-cover (—) gforth-1.0

Print execution counts in parentheses (source-code compatible).
color-cover (—) gforth-1.0

Print execution counts in colours (default).

You can save and reload the coverage counters in binary format, to aggregate coverage
counters across several test runs of the same program.

save-cov (—) gforth-experimental
Save coverage counters.
load-cov (—) gforth-experimental
Load coverage counters.
cover-filename (— c-addr u) gforth-experimental

C-addr u is the file name of the file that is used by save-cov and load-cov. The file
name depends on the code compiled since coverage.fs was loaded.

6.30 Multitasker

Gforth offers two multitaskers: a traditional, cooperative round-robin multitasker, and a
pthread-based multitasker which allows to run several threads concurrently on multi-core
machines. The pthread-based is now marked as experimental feature, as standardization of
Forth multitaskers will likely change the names of words without changing their semantics.

Chapter 6: Forth Words 253

6.30.1 Pthreads

Posix threads can run in parallel on several cores, or with pre-emptive multitasking on
onecore. However, many of the following words are the same as in the traditional cooperative
multi-tasker.

In addition, there are words that allow you to make sure that only one task at a time
changes something, and for communicating between tasks. These words are necessary for
pre-emptive and multi-core multi-tasking, because the cooperative-multitasking way of per-
forming transactions between calls to pause does not work in this environment.

6.30.1.1 Basic multi-tasking

Tasks can be created with newtask or newtask4 with a given amount of stack space (either
all the same or each stack’s size specified).

newtask (stacksize — task) gforth-experimental
creates task; each stack (data, return, FP, locals) has size stacksize.
task (ustacksize "name" —) gforth-experimental

creates a task name; each stack (data, return, FP, locals) has size ustacksize.
name execution: (— task)

newtask4 (u-data u-return u-fp u-locals — task) gforth-experimental “newtask-four”

creates task with data stack size u-data, return stack size u-return, FP stack size u-fp
and locals stack size u-locals.

If you don’t know which stack sizes to use for the task, you can use the size(s) of the
main task:

stacksize (— u) gforth-experimental
u is the data stack size of the main task.

stacksize4 (— u-data u-return u-fp u-locals) gforth-experimental “stacksize-four”
Pushes the data, return, FP, and locals stack sizes of the main task.

A task is created in an inactive state. To let it run, you have to activate it with one of
the following words:

initiate (zt task —) gforth-experimental

Let task execute zt. Upon return from the zt, the task terminates itself (VFX compati-
ble). Use one-time executable closures to pass arbitrary paramenters to a task.

The following legacy words provide the same functionality as initiate, but with a
different interface: Like does>, they split their containing colon definition in two parts:
The part before activate/pass runs in the activating task, and returns to its caller after
activating the task. The part behind activate/pass is executed in the activated target
task.

activate (run-time nest-sysl task —) gforth-experimental

Let task perform the code behind activate, and return to the caller of the word con-
taining activate. When the task returns from the code behind activate, it terminates
itself.

pass (zl .. zn n task —) gforth-experimental

Chapter 6: Forth Words 254

Pull 21 .. zn n from the current task’s data stack and push z1 .. zn on task’s data stack.
Let task perform the code behind pass, and return to the caller of the word containing pass.
When the task returns from the code behind pass, it terminates itself.

You can also do creation and activation in one step:
execute-task (ot — task) gforth-experimental

Create a new task task with the same stack sizes as the main task. Let task execute zt.
Upon return from the zt, the task terminates itself.

Apart from terminating by running to the end, a task can terminate itself with kill-
task. Other tasks can terminate it with kill.

kill-task (—) gforth-experimental

Terminate the current task.
kill (task —) gforth-experimental

Terminate task.

Tasks can also temporarily stop themselves or be stopped:
halt (task —) gforth-experimental

Stop task (no difference from sleep)
sleep (task —) gforth-experimental

Stop task (no difference from halt)
stop (—) gforth-experimental

stops the current task, and waits for events (which may restart it)
stop-ns (timeout —) gforth-experimental

Stop with timeout (in nanoseconds), better replacement for ms
stop-dns (dtimeout —) gforth-experimental

Stop with timeout (in nanoseconds), better replacement for ms Stop with dtimeout (in
nanoseconds), better replacement for ms

thread-deadline (d —) gforth-experimental

stop until absolute time d in nanoseconds, base is 1970-1-1 0:00 UTC, but you usually
will want to base your deadlines on a time you get with ntime.

Using stop-duns is easier to code, but if you want your task to wake up at regular
intervals rather than some time after it finished its last piece of work, the way to go is to
work with deadlines.

A task restarts when the timeout is over or when another task wakes it with:
wake (task —) gforth-experimental

Wake task
restart (task —) gforth-experimental

Wake task (no difference from wake)

There is also:
pause (—) gforth-experimental

voluntarily switch to the next waiting task (pause is the traditional cooperative task
switcher; in the pthread multitasker, you don’t need pause for cooperation, but you still
can use it e.g. when you have to resort to polling for some reason). This also checks for
events in the queue.

Chapter 6: Forth Words 255

6.30.1.2 Task-local data

In Forth every task has essentially the same task-local data, called “user” area (early Forth
systems were multi-user systems and there often was one user per task). The task result
of, e.g. newtask is the start address of its user area. Each task gets the user data defined
by the system (e.g., base). You can define additional user data with:

User ("name" —) gforth-0.2

Name is a user variable (1 cell).
Name execution: (— addr)
Addr is the address of the user variable in the current task.

AUser ("name" —) gforth-0.2

Name is a user variable containing an address (this only makes a difference in the cross-
compiler).
uallot (nI — n2) gforth-0.3

Reserve n1 bytes of user data. n2 is the offset of the start of the reserved area within
the user area.

UValue ("name" -) gforth-1.0

Name is a user value.
Name execution: (-z)

UDefer ("name" —) gforth-1.0

Name is a task-local deferred word.
Name execution: (... —...)

There are also the following words for dealing with user data.
up@ (— a-addr) new “up-fetch”

Addr is the start of the user area of the current task (addr also serves as the task identifier
of the current task).

user' ("name" — u) gforth-experimental “user-tick”
U is the offset of the user variable name in the user area of each task.
's (addrl task — addr2) gforth-experimental “tick-s”

With addri being an address in the user data of the current task, addr2 is the corre-
sponding address in task’s user data.

The pictured numeric output buffer is also task-local, but other areas like dictionary or
PAD are shared.

6.30.1.3 Semaphores

A cooperative multitasker can ensure that there is no other task interacting between two
invocations of pause. Pthreads however are really concurrent tasks (at least on a multi-
core CPU), and therefore, several techniques to avoid conflicts when accessing the same
resources.

Semaphores can only be aquired by one thread, all other threads have to wait until the
semapohre is released.

semaphore ("name" -) gforth-experimental

Chapter 6: Forth Words 256

create a named semaphore name
name execution: (— semaphore)

lock (semaphore —) gforth-experimental
lock the semaphore

unlock (semaphore —) gforth-experimental
unlock the semaphore

The other approach to prevent concurrent access is the critical section. Here, we imple-
ment a critical section with a semaphore, so you have to specify the semaphore which is
used for the critical section. Only those critical sections which use the same semaphore are
mutually exclusive.

critical-section (at semaphore —) gforth-experimental

Execute xt while locking semaphore. After leaving xzt, semaphore is unlocked even if an
exception is thrown.

6.30.1.4 Hardware operations for multi-tasking

Atomic hardware operations perform the whole operation, without any other task seeing an
intermediate state. These operations can be used to synchronize tasks without using slow
OS primitives, but compared to the non-atomic sequences of operations they tend to be
slow. Atomic operations only work correctly on aligned addresses, even on hardware that
otherwise does not require alignment.

atomic!@ (wl a-addr — w2) gforth-experimental “atomic-store-fetch”
Fetch w2 from a_addr, then store wl there, combined into an atomic operation.
atomic+!@ (ul a-addr — u2) gforth-experimental “atomic-plus-store-fetch”

Fetch w2 from a_addr, then increment this location by ul. This atomic operation is
commonly known as fetch-and-add.

atomic?!@ (unew wold a-addr — uprev) gforth-experimental “atomic-question-store-fetch”

Fetch uprev from a_addr, compare it to uold, and if equal, store unew there. This atomic
operation is commonly known as compare-and-swap.

There are also the non-atomic '@ and +!@ (otherwise the same behaviour, see (undefined)
[Memory Access|, page (undefined)).

Another hardware operation is the memory barrier. Unfortunately modern hardware
often can reorder memory operations relative to other memory operations (as seen by a
different core), and the memory barrier suppresses this reordering for one point in the
execution of the task.

barrier (—) gforth-experimental “barrier”

All memory operations before the barrier are performed before any memory operation
after the barrier.

6.30.1.5 Message queues

Gforth’s message queues are a variant of the actor model.

The sending task tells the receiving task to execute an xt with the stack effect (—-)
(an event in the name of the words below; the actor model would call these xts messages),

Chapter 6: Forth Words 257

and when the receiving task is ready, it will execute the xt, possibly after other xts from its
message queue.

The execution order between xts from different tasks is arbitrary, the order between xts
from the same task is the sending order.

In many cases you do not just want to pass the xts of existing words, but also parameters.
You can construct execute-once closures (defined using :}hi1, see (undefined) [Closures],
page (undefined)) to achieve that, e.g., with

.-in-task (n task --)
>r [{: n :}hl1 n . ;] r> send-event ;

5 my-task .-in-task \ my-task prints 5
send-event (zt task —) gforth-experimental
Inter-task communication: send xt (==) to task. task executes the xt at some later
point in time. To pass parameters, construct a one-shot closure that contains the parameters
(see (undefined) [Closures], page (undefined)) and pass the xt of that closure.
In order to execute xts received from other tasks, perform one of the following words in
the receiving task:

7events (—) gforth-experimental “question-events”

Execute all event xts in the current task’s message queue, one xt at a time.
event-loop (—) gforth-experimental

Wait for event xts and execute these xts when they arrive, one at a time. Return to
waiting if no event xts are in the queue. This word never returns.

Alternatively, when a task is stopped, it is also ready for receiving xts, and receiving an
xt will not just execute the xt, but also continue execution after the stop.

6.30.2 Cilk

Gforth’s Cilk is a framework for dividing work between multiple tasks running on several
cores, inspired by the programming language of the same name. Use require cilk.fs if
you want to use Cilk.

The idea is that you identify subproblems that can be solved in parallel, and the frame-
work assigns worker tasks to these subproblems. In particular, you use one of the spawn
words for each subtask. Eventually you need to wait with cilk-sync for the subproblems
to be solved.

Currently all the spawning has to happen from one task, and cilk-sync waits for all
subproblems to complete, so using the current Gforth Cilk for recursive algorithms is not
straightforward.

Do not divide the subproblems too finely, in order to avoid overhead; how fine is too
fine depends on how uniform the run-time for the subproblems is, but for problems with
substantial run-time, having 5*cores subproblems is probably a good starting point.
cores (—u) cilk

A value containing the number of worker tasks to use. By default this is the number of
hardware threads (with SMT/HT), if we can determine that, otherwise 1. If you want to
use a different number, change cores before calling cilk-init.

cilk-init (-) cilk

Chapter 6: Forth Words 258

Start the worker tasks if not already done.
spawn (2t -) cilk

Execute zt (-) in a worker task. Use one-time executable closures to pass heap-allocated
closures, allowing to pass arbitrary data from the spawner to the code running in the worker.
E.g: (nr) [{: nf: r :}hl code ;] spawn

spawnl (z zt —) cilk “spawn-one”
Execute zt (x —) in a worker task.
spawn2 (xl z2 zt —) cilk “spawn-two”
Execute zt (x1 x2 —) in a worker task.
cilk-sync (—) cilk
Wait for all subproblems to complete.
cilk-bye (-) cilk

Terminate all workers.

6.31 C Interface

Gforth’s C interface works by compiling a wrapper library that contains C functions which
take parameters from the Forth stacks and calls the C functions. This wrapper library is
compiled by the C compiler. Compilation results are cached, so that Gforth only needs
to rerun the C compilation if the wrapper library has to change. This build process is
automatic, and done at the end of a interface declaration. Gforth uses libtool and GCC for
that process.

The C interface is now mostly complete, callbacks have been added, but for structs, we
use Forth2012 structs, which don’t have independent scopes. The offsets of those structs
are extracted from header files with a SWIG plugin.

6.31.1 Calling C functions

Once a C function is declared (see see (undefined) [Declaring C Functions|, page (unde-
fined)), you can call it as follows: You push the arguments on the stack(s), and then call
the word for the C function. The arguments have to be pushed in the same order as
the arguments appear in the C documentation (i.e., the first argument is deepest on the
stack). Integer and pointer arguments have to be pushed on the data stack, floating-point
arguments on the FP stack; these arguments are consumed by the called C function.

On returning from the C function, the return value, if any, resides on the appropriate
stack: an integer return value is pushed on the data stack, an FP return value on the FP
stack, and a void return value results in not pushing anything. Note that most C functions
have a return value, even if that is often not used in C; in Forth, you have to drop this
return value explicitly if you do not use it.

The C interface automatically converts between the C type and the Forth type as nec-
essary, on a best-effort basis (in some cases, there may be some loss).

As an example, consider the POSIX function 1seek():
off_t lseek(int fd, off_t offset, int whence);

Chapter 6: Forth Words 259

This function takes three integer arguments, and returns an integer argument, so a Forth
call for setting the current file offset to the start of the file could look like this:
fd @ O SEEK_SET 1lseek -1 = if
... \ error handling
then

You might be worried that an off_t does not fit into a cell, so you could not pass
larger offsets to Iseek, and might get only a part of the return values. In that case, in your
declaration of the function (see (undefined) [Declaring C Functions|, page (undefined)) you
should declare it to use double-cells for the off_t argument and return value, and maybe
give the resulting Forth word a different name, like d1seek; the result could be called like
this:

fd @ 0. SEEK_SET dlseek -1. d= if
. \ error handling
then

Passing and returning structs or unions is currently not supported by our interface®®.

Calling functions with a variable number of arguments (variadic functions, e.g.,
printf()) is only supported by having you declare one function-calling word for each
argument pattern, and calling the appropriate word for the desired pattern.

6.31.2 Declaring C Functions

Before you can call 1seek or dlseek, you have to declare it. The declaration consists of
two parts:

The C part
is the C declaration of the function, or more typically and portably, a C-style
#include of a file that contains the declaration of the C function.

The Forth part
declares the Forth types of the parameters and the Forth word name corre-
sponding to the C function.

For the words 1seek and dlseek mentioned earlier, the declarations are:

\c #define _FILE_OFFSET_BITS 64

\c #include <sys/types.h>

\c #include <unistd.h>

c-function lseek lseek n nn -- n
c—function dlseek lseek n d n -- d

The C part of the declarations is prefixed by \c, and the rest of the line is ordinary C
code. You can use as many lines of C declarations as you like, and they are visible for all
further function declarations.

The Forth part declares each interface word with c-function, followed by the Forth
name of the word, the C name of the called function, and the stack effect of the word. The
stack effect contains an arbitrary number of types of parameters, then --, and then exactly
one type for the return value. The possible types are:

n single-cell integer

28 1f you know the calling convention of your C compiler, you usually can call such functions in some way,
but that way is usually not portable between platforms, and sometimes not even between C compilers.

Chapter 6: Forth Words 260

a address (single-cell)

d double-cell integer

r floating-point value

func C function pointer

void no value (used as return type for void functions)

To deal with variadic C functions, you can declare one Forth word for every pattern you
want to use, e.g.:
\c¢ #include <stdio.h>
c-function printf-nr printf anr -- n
c-function printf-rn printf a rn -- n
Note that with C functions declared as variadic (or if you don’t provide a prototype), the
C interface has no C type to convert to, so no automatic conversion happens, which may
lead to portability problems in some cases. You can add the C type cast in curly braces
after the Forth type. This also allows to pass e.g. structs to C functions, which in Forth
cannot live on the stack.
c-function printfll printf a n{(long long)} -- n
c-function pass-struct pass_struct a{*(struct foo *)} -- n

This typecasting is not available to return values, as C does not allow typecasts for
lvalues.

\c ("rest-of-line" —) gforth-0.7 “backslash-c”
One line of C declarations for the C interface
c-function ("forth-name" "c-name" "{type}" "—" "type" —) gforth-0.7

Define a Forth word forth-name. Forth-name has the specified stack effect and calls the
C function c-name.

c-value ("forth-name" "c-name" "—" "type" —) gforth-1.0

Define a Forth word forth-name. Forth-name has the specified stack effect and gives the
C value of c-name.

c-variable ("forth-name" "c-name" —) gforth-1.0
Define a Forth word forth-name. Forth-name returns the address of c-name.

In order to work, this C interface invokes GCC at run-time and uses dynamic linking.
If these features are not available, there are other, less convenient and less portable C
interfaces in 1ib.fs and oldlib.fs. These interfaces are mostly undocumented and mostly
incompatible with each other and with the documented C interface; you can find some
examples for the 1ib.fs interface in 1ib.fs.

6.31.3 Calling C function pointers from Forth

If you come across a C function pointer (e.g., in some C-constructed structure) and want to
call it from your Forth program, you could use the structures as described above by defining
a macro. Or you use c-funptr.

c-funptr ("forth-name" <{>"c-typecast"<}> "{type}" "—" "type" —) gforth-1.0

Chapter 6: Forth Words 261

Define a Forth word forth-name. Forth-name has the specified stack effect plus the called
pointer on top of stack, i.e. ({type} ptr —- type) and calls the C function pointer ptr
using the typecast or struct access c-typecast.

Let us assume that there is a C function pointer type funci defined in some header
file func1.h, and you know that these functions take one integer argument and return an
integer result; and you want to call functions through such pointers. Just define

\c #include <funcl.h>
c—funptr call-funcl {((funcl)ptr)} n -- n

and then you can call a function pointed to by, say funcila as follows:
-5 funcla call-funcl .

The Forth word call-funcl is similar to execute, except that it takes a C func1 pointer
instead of a Forth execution token, and it is specific to funcl pointers. For each type of
function pointer you want to call from Forth, you have to define a separate calling word.

6.31.4 Defining library interfaces
You can give a name to a bunch of C function declarations (a library interface), as follows:

c-library lseek-1lib
\c #define _FILE_OFFSET_BITS 64

end-c-library

The effect of giving such a name to the interface is that the names of the generated files
will contain that name, and when you use the interface a second time, it will use the existing
files instead of generating and compiling them again, saving you time. The generated file
contains a 128 bit hash (not cryptographically safe, but good enough for that purpose)
of the source code, so changing the declarations will cause a new compilation. Normally
these files are cached in $HOME/.gforth/architecture/libcc-named, so if you experience
problems or have other reasons to force a recompilation, you can delete the files there.

Note that you should use c-library before everything else having anything to do with
that library, as it resets some setup stuff. The idea is that the typical use is to put each
c-library...end-c-library unit in its own file, and to be able to include these files in any
order. All other words dealing with the C interface are hidden in the vocabulary c-1ib,
which is put on top o the search stack by c-1library and removed by end-c-library.

Note that the library name is not allocated in the dictionary and therefore does not
shadow dictionary names. It is used in the file system, so you have to use naming conventions
appropriate for file systems. The name is also used as part of the C symbols, but characters
outside the legal C symbol names are replaced with underscores. Also, you shall not call a
function you declare after c-library before you perform end-c-library.

A major benefit of these named library interfaces is that, once they are generated, the
tools used to generated them (in particular, the C compiler and libtool) are no longer
needed, so the interface can be used even on machines that do not have the tools installed.
The build system of Gforth can even cross-compile these libraries, so that the libraries are
available for plattforms on which build tools aren’t installed.

c-library-name (c-addr v —) gforth-0.7

Chapter 6: Forth Words 262

Start a C library interface with name c-addr wu.
c++-library-name (c-addr u —) gforth-1.0 “c-plus-plus-library-name”
Start a C++ library interface with name c-addr u.
c-library ("name" —) gforth-0.7
Parsing version of c-1ibrary-name
c++-library ("name" -) gforth-1.0 “c-plus-plus-library”
Parsing version of c++-library-name
end-c-library (—) gforth-0.7
Finish and (if necessary) build the latest C library interface.

6.31.5 Declaring OS-level libraries

For calling some C functions, you need to link with a specific OS-level library that contains
that function. E.g., the sin function requires linking a special library by using the command
line switch -1m. In our C iterface you do the equivalent thing by calling add-1ib as follows:

clear-libs

s" m" add-1lib

\c¢ #include <math.h>

c—function sin sin r -- r

First, you clear any libraries that may have been declared earlier (you don’t need them for
sin); then you add the m library (actually libm.so or somesuch) to the currently declared
libraries; you can add as many as you need. Finally you declare the function as shown above.
Typically you will use the same set of library declarations for many function declarations;
you need to write only one set for that, right at the beginning.

Note that you must not call clear-1ibs inside c-library. ..end-c-1library; however,
c-library performs the function of clear-1libs, so clear-1ibs is not necessary, and you
usually want to put add-1ib calls inside c-library. ..end-c-library.

clear-libs (—) gforth-0.7

Clear the list of libs
add-1ib (c-addr u —) gforth-0.7

Add library libstring to the list of libraries, where string is represented by c-addr u.
add-libpath (c-addr v —) gforth-0.7

Add path string to the list of library search pathes, where string is represented by c-addr
U.

add-framework (c-addr u —) gforth-1.0

Add framework libstring to the list of frameworks, where string is represented by c-addr
u.

add-incdir (c-addr u —) gforth-1.0

Add path c-addr u to the list of include search pathes
add-cflags (c-addr u —) gforth-1.0

add any kind of cflags to compilation
add-1dflags (c-addr u —) gforth-1.0

add flag to linker

Chapter 6: Forth Words 263

6.31.6 Callbacks

In some cases you have to pass a function pointer to a C function, i.e., the library wants to
call back to your application (and the pointed-to function is called a callback function). You
can pass the address of an existing C function (that you get with 1ib-sym, see (undefined)
[Low-Level C Interface Words|, page (undefined)), but if there is no appropriate C function,
you probably want to define the function as a Forth word. Then you need to generate a
callback as described below:

You can generate C callbacks from Forth code with c-callback.
c-callback ("forth-name" "{type}" "—" "type" —) gforth-1.0

Define a callback instantiator with the given signature. The callback instantiator forth-
name (xt -- addr) takes an xt, and returns the address of the C function handling that
callback.

c-callback-thread ("forth-name" "{type}" "—" "type" —) gforth-1.0

Define a callback instantiator with the given signature. The callback instantiator forth-
name (xt —— addr) takes an xt, and returns the address of the C function handling that
callback. This callback is safe when called from another thread

This precompiles a number of callback functions (up to the value callback#). The
prototype of the C function is deduced from its Forth signature. If this is not sufficient, you
can add types in curly braces after the Forth type.

c-callback vector4double: f £ f f —— void
c-callback vector4single: f{float} f{float} f{float} f{float} -- void

6.31.7 How the C interface works

The documented C interface works by generating a C code out of the declarations.

In particular, for every Forth word declared with c-function, it generates a wrapper
function in C that takes the Forth data from the Forth stacks, and calls the target C function
with these data as arguments. The C compiler then performs an implicit conversion between
the Forth type from the stack, and the C type for the parameter, which is given by the
C function prototype. After the C function returns, the return value is likewise implicitly
converted to a Forth type and written back on the stack.

The \c lines are literally included in the C code (but without the \c), and provide the
necessary declarations so that the C compiler knows the C types and has enough information
to perform the conversion.

These wrapper functions are eventually compiled and dynamically linked into Gforth,
and then they can be called.

The libraries added with add-1ib are used in the compile command line to specify
dependent libraries with -111ib, causing these libraries to be dynamically linked when the
wrapper function is linked.

6.31.8 Low-Level C Interface Words
open-1ib (c-addrl ul — u2) gforth-0.4 “open-lib”
lib-sym (c-addrl ul u2 — u8) gforth-0.4 “lib-sym”
lib-error (- c-addr u) gforth-0.7 “lib-error”

Chapter 6: Forth Words 264

Error message for last failed open-1ib or lib-sym.
call-c (... w — ...) gforth-0.2 “call-¢”

Call the C function pointed to by w. The C function has to access the stack itself. The
stack pointers are exported into a ptrpair structure passed to the C function, and returned
in that form.

6.31.9 Automated interface generation using SWIG

SWIG, the Simple Wrapper Interface Generator, is used to create C interfaces for a lot of
programming languages. The SWIG version extended with a Forth module can be found
on github (https://github.com/GeraldWodni/swig).

6.31.9.1 Basic operation

C-headers are parsed and converted to Forth-Sourcecode which uses the previously describe
C interface functions.

6.31.9.2 Detailed operation:

1. Select a target, in this example we are using example.h

2. Create an interface file for the header. This can be used to pass options, switches and
define variables. In the simplest case it just instructs to translate all of example.h:

%module example
%insert ("include")
{
#include "example.h"

}

Jinclude "example.h"

3. Use SWIG to create a .fsi-c file.
swig —-forth -stackcomments -use-structs —enumcomments -o example-fsi.c
example.i.
FSI stands “Forth Source Independent” meaning it can be transferred to any host
having a C-compiler. SWIG is not required past this point.

4. On the target machine compile the .fsi-c file to a .fsx (x stands for executable)
gcc -o example.fsx example-fsi.c
The compilation will resolve all constants to the values on the target.

5. The last step is to run the executable and capture its output to a .fs “Forth Source”
file.
./example.fsx —-gforth > example.fs
This code can now be used on the target platform.

6.31.9.3 Examples

You can find some examples in SWIG’s Forth Example section (https://github.com/
GeraldWodni/swig/tree/master/Examples/forth).

A lot of interface files can be found in Forth Posix C-Interface (https://github.
com/GeraldWodni/posix) and Forth C-Interface Modules (https://github.com/
GeraldWodni/forth-c-interfaces).

https://github.com/GeraldWodni/swig
https://github.com/GeraldWodni/swig/tree/master/Examples/forth
https://github.com/GeraldWodni/swig/tree/master/Examples/forth
https://github.com/GeraldWodni/posix
https://github.com/GeraldWodni/posix
https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces

Chapter 6: Forth Words 265

Contribution to the Forth C-Interface Module repository (https://github.com/
GeraldWodni/forth-c-interfaces) is always welcome.

6.31.10 Migrating from Gforth 0.7

In this version, you can use \c, c-function and add-1ib only inside c-library...end-c-
library. add-1lib now always starts from a clean slate inside a c-library, so you don’t
need to use clear-1ibs in most cases.

If you have a program that uses these words outside c-library...end-c-library, just
wrap them in c-library...end-c-library. You may have to add some instances of add-
1lib, however.

6.32 Assembler and Code Words

6.32.1 Definitions in assembly language

Gforth provides ways to implement words in assembly language (using abi-code...end-
code), and also ways to define defining words with arbitrary run-time behaviour (like
does>), where (unlike does>) the behaviour is not defined in Forth, but in assembly lan-
guage (with ;code).

However, the machine-independent nature of Gforth poses a few problems: First of all,
Gforth runs on several architectures, so it can provide no standard assembler. It does
provide assemblers for several of the architectures it runs on, though. Moreover, you can
use a system-independent assembler in Gforth, or compile machine code directly with , and
c,.

Another problem is that the virtual machine registers of Gforth (the stack pointers and
the virtual machine instruction pointer) depend on the installation and engine. Also, which
registers are free to use also depend on the installation and engine. So any code written
to run in the context of the Gforth virtual machine is essentially limited to the installation
and engine it was developed for (it may run elsewhere, but you cannot rely on that).

Fortunately, you can define abi-code words in Gforth that are portable to any Gforth
running on a platform with the same calling convention (ABI); typically this means porta-
bility to the same architecture/OS combination, sometimes crossing OS boundaries).

assembler (—) tools-ext

A vocubulary: Replaces the wordlist at the top of the search order with the assembler
wordlist.

init-asm (-) gforth-0.2

Pushes the assembler wordlist on the search order.
abi-code ("name" — colon-sys) gforth-1.0 “abi-code”

Start a native code definition that is called using the platform’s ABI conventions corre-
sponding to the C-prototype:

Cell *function(Cell *sp, Float **fpp);

The FP stack pointer is passed in by providing a reference to a memory location con-
taining the FP stack pointer and is passed out by storing the changed FP stack pointer
there (if necessary).

;abi-code (—) gforth-1.0 “semicolon-abi-code”

https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces

Chapter 6: Forth Words 266

Ends the colon definition, but at run-time also changes the last defined word X (which
must be a created word) to call the following native code using the platform’s ABI con-
vention corresponding to the C prototype:

Cell *function(Cell *sp, Float **fpp, Address body);

The FP stack pointer is passed in by providing a reference to a memory location con-
taining the FP stack pointer and is passed out by storing the changed FP stack pointer
there (if necessary). The parameter body is the body of X.

end-code (colon-sys —) gforth-0.2 “end-code”

End a code definition. Note that you have to assemble the return from the ABI call (for
abi-code) or the dispatch to the next VM instruction (for code and ;code) yourself.

code ("name" — colon-sys) tools-ext

Start a native code definition that runs in the context of the Gforth virtual machine
(engine). Such a definition is not portable between Gforth installations, so we recommend
using abi-code instead of code. You have to end a code definition with a dispatch to the
next virtual machine instruction.

;code (compilation. colon-sysl — colon-sys2) tools-ext “semicolon-code”

The code after ;code becomes the behaviour of the last defined word (which must be a
created word). The same caveats apply as for code, so we recommend using ;abi-code
instead.

flush-icache (c-addr u —) gforth-0.2 “flush-icache”

Make sure that the instruction cache of the processor (if there is one) does not contain
stale data at c-addr and u bytes afterwards. END-CODE performs a flush-icache automat-
ically. Caveat: flush-icache might not work on your installation; this is usually the case
if direct threading is not supported on your machine (take a look at your machine.h) and
your machine has a separate instruction cache. In such cases, flush-icache does nothing
instead of flushing the instruction cache.

If flush-icache does not work correctly, abi-code words etc. will not work (reliably),
either.

The typical usage of these words can be shown most easily by analogy to the equivalent
high-level defining words:

: foo abi-code foo
<high-level Forth words> <assembler>
; end-code
: bar : bar
<high-level Forth words> <high-level Forth words>
CREATE CREATE
<high-level Forth words> <high-level Forth words>
DOES> ;code
<high-level Forth words> <assembler>
; end-code

For using abi-code, take a look at the ABI documentation of your platform to see how
the parameters are passed (so you know where you get the stack pointers) and how the
return value is passed (so you know where the data stack pointer is returned). The ABI

Chapter 6: Forth Words 267

documentation also tells you which registers are saved by the caller (caller-saved), so you
are free to destroy them in your code, and which registers have to be preserved by the
called word (callee-saved), so you have to save them before using them, and restore them
afterwards. For some architectures and OSs we give short summaries of the parts of the
calling convention in the appropriate sections. More reverse-engineering oriented people can
also find out about the passing and returning of the stack pointers through see abi-call.

Most ABIs pass the parameters through registers, but some (in particular the most
common 386 (aka IA-32) calling conventions) pass them on the architectural stack. The
common ABIs all pass the return value in a register.

Other things you need to know for using abi-code is that both the data and the FP
stack grow downwards (towards lower addresses) in Gforth, with 1 cells size per cell, and
1 floats size per FP value.

Here’s an example of using abi-code on the 386 architecture:

abi-code my+ (nl n2 -- n)

4 sp d) ax mov \ sp into return reg
ax) cx mov \ tos

4 4 ax add \ update sp (pop)

cx ax) add \ sec = sec+ttos

ret \ return from my+
end-code

An AMDG64 variant of this example can be found in (undefined) [AMD64 Assembler],
page (undefined).

Here’s a 386 example that deals with FP values:

abi-code my-f+ (r1 r2 -- r)

8 sp d) cx mov \ load address of fp
cx) dx mov \ load fp

.f1 dx) fld \ r2

8 # dx add \ update fp

.f1 dx) fadd \ ri+r2
.f1 dx) fstp \ store r

dx cx) mov \ store new fp

4 sp d) ax mov \ sp into return reg
ret \ return from my-f+
end-code

6.32.2 Common Assembler

The assemblers in Gforth generally use a postfix syntax, i.e., the instruction name follows
the operands.

The operands are passed in the usual order (the same that is used in the manual of the
architecture). Since they all are Forth words, they have to be separated by spaces; you can
also use Forth words to compute the operands.

The instruction names usually end with a ,. This makes it easier to visually separate
instructions if you put several of them on one line; it also avoids shadowing other Forth
words (e.g., and).

Chapter 6: Forth Words 268

Registers are usually specified by number; e.g., (decimal) 11 specifies registers R11 and
F11 on the Alpha architecture (which one, depends on the instruction). The usual names
are also available, e.g., s2 for R11 on Alpha.

Control flow is specified similar to normal Forth code (see (undefined) [Arbitrary control
structures], page (undefined)), with if,, ahead,, then,, begin,, until,, again,, cs-roll,
cs-pick, else,, while,, and repeat,. The conditions are specified in a way specific to
each assembler.

The rest of this section is of interest mainly for those who want to define code words
(instead of the more portable abi-code words).

Note that the register assignments of the Gforth engine can change between Gforth
versions, or even between different compilations of the same Gforth version (e.g., if you use
a different GCC version). If you are using CODE instead of ABI-CODE, and you want to refer
to Gforth’s registers (e.g., the stack pointer or TOS), I recommend defining your own words
for refering to these registers, and using them later on; then you can adapt to a changed
register assignment.

The most common use of these registers is to end a code definition with a dispatch to
the next word (the next routine). A portable way to do this is to jump to ' noop >code-
address (of course, this is less efficient than integrating the next code and scheduling it
well). When using ABI-CODE, you can just assemble a normal subroutine return (but make
sure you return the data stack pointer).

Another difference between Gforth versions is that the top of stack is kept in memory in
gforth and, on most platforms, in a register in gforth-fast. For ABI-CODE definitions, any
stack caching registers are guaranteed to be flushed to the stack, allowing you to reliably
access the top of stack in memory.

6.32.3 Common Disassembler
You can disassemble a code word with see (see (undefined) [Debugging], page (undefined)).
You can disassemble a section of memory with
discode (addr u —) gforth-0.2

hook for the disassembler: disassemble u bytes of code at addr

There are two kinds of disassembler for Gforth: The Forth disassembler (available on
some CPUs) and the gdb disassembler (available on platforms with gdb and mktemp). If both
are available, the Forth disassembler is used by default. If you prefer the gdb disassembler,
say

' disasm-gdb is discode
If neither is available, discode performs dump.
The Forth disassembler generally produces output that can be fed into the assembler

(i.e., same syntax, etc.). It also includes additional information in comments. In particular,
the address of the instruction is given in a comment before the instruction.
The gdb disassembler produces output in the same format as the gdb disassemble

command (see Section “Source and machine code” in Debugging with GDB), in the default
flavour (AT&T syntax for the 386 and AMDG64 architectures).

See may display more or less than the actual code of the word, because the recognition
of the end of the code is unreliable. You can use discode if it did not display enough. It

Chapter 6: Forth Words 269

may display more, if the code word is not immediately followed by a named word. If you
have something else there, you can follow the word with align latest , to ensure that the
end is recognized.

6.32.4 386 Assembler

The 386 assembler included in Gforth was written by Bernd Paysan, it’s available under
GPL, and originally part of bigFORTH.

The 386 disassembler included in Gforth was written by Andrew McKewan and is in the
public domain.

The disassembler displays code in an Intel-like prefix syntax.

The assembler uses a postfix syntax with AT&T-style parameter order (i.e., destination
last).

The assembler includes all instruction of the Athlon, i.e. 486 core instructions, Pentium
and PPro extensions, floating point, MMX, 3Dnow!, but not ISSE. It’s an integrated 16-
and 32-bit assembler. Default is 32 bit, you can switch to 16 bit with .86 and back to 32
bit with .386.

There are several prefixes to switch between different operation sizes, .b for byte accesses,
.w for word accesses, .d for double-word accesses. Addressing modes can be switched with
.wa for 16 bit addresses, and .da for 32 bit addresses. You don’t need a prefix for byte
register names (AL et al).

For floating point operations, the prefixes are .fs (IEEE single), .f1 (IEEE double),
.fx (extended), .fw (word), .fd (double-word), and .fq (quad-word). The default is . fx,
so you need to specify .£f1 explicitly when dealing with Gforth FP values.

The MMX opcodes don’t have size prefixes, they are spelled out like in the Intel assem-
bler. Instead of move from and to memory, there are PLDQ/PLDD and PSTQ/PSTD.

The registers lack the ’e’ prefix; even in 32 bit mode, eax is called ax. Immediate values
are indicated by postfixing them with #, e.g., 3 #. Here are some examples of addressing
modes in various syntaxes:

Gforth Intel (NASM) AT&T (gas) Name

.Woax ax hax register (16 bit)

ax eax heax register (32 bit)

3 # offset 3 $3 immediate

1000 #) byte ptr 1000 1000 displacement

bx) [ebx] (%hebx) base

100 di d) 100 [edi] 100(%edi) base+displacement

20 ax *4 i#) 20 [eax*4] 20(,%eax,4) (index*scale)+displacement]]
di ax *4 i) [edi] [eax*4] (%edi,%eax,4) base+(index*scale)

4 bx cx di) 4 [ebx] [ecx] 4 (%ebx, hecx) base+index+displacement

12 sp ax *2 di) 12[esp] [eax*2] 12(%esp,%eax,2) base+(index*scale)+displacement]]

You can use L) and LI) instead of D) and DI) to enforce 32-bit displacement fields
(useful for later patching).

Some example of instructions are:

ax bx mov \ move ebx,eax
3 # ax mov \ mov eax,3

Chapter 6: Forth Words 270

100 di d) ax mov \ mov eax,100[edi]
4 bx cx di) ax mov \ mov eax,4[ebx] [ecx]
.W ax bx mov \ mov bx,ax

The following forms are supported for binary instructions:

<reg> <reg> <inst>
<n> # <reg> <inst>
<mem> <reg> <inst>
<reg> <mem> <inst>
<n> # <mem> <inst>

The shift /rotate syntax is:

<reg/mem> 1 # shl \ shortens to shift without immediate
<reg/mem> 4 # shl
<reg/mem> cl shl

Precede string instructions (movs etc.) with .b to get the byte version.

The control structure words IF UNTIL etc. must be preceded by one of these condi-
tions: vs vc u< u>= 0= 0<> u<= u> 0< 0>= ps pc < >= <= >. (Note that most of these words
shadow some Forth words when assembler is in front of forth in the search path, e.g., in
code words). Currently the control structure words use one stack item, so you have to use
roll instead of cs-roll to shuffle them (you can also use swap etc.).

Based on the Intel ABI (used in Linux), abi-code words can find the data stack pointer
at 4 sp d), and the address of the FP stack pointer at 8 sp d); the data stack pointer is
returned in ax; Ax, cx, and dx are caller-saved, so you do not need to preserve their values
inside the word. You can return from the word with ret, the parameters are cleaned up by
the caller.

For examples of 386 abi-code words, see (undefined) [Assembler Definitions], page (un-
defined).

6.32.5 AMDG64 (x86_64) Assembler

The AMDG64 assembler is a slightly modified version of the 386 assembler, and as such shares
most of the syntax. Two new prefixes, .q and .qa, are provided to select 64-bit operand
and address sizes respectively. 64-bit sizes are the default, so normally you only have to use
the other prefixes. Also there are additional register operands R8-R15.

The registers lack the ’e’ or v’ prefix; even in 64 bit mode, rax is called ax. Additional
register operands are available to refer to the lowest-significant byte of all registers: R8L-
R15L, SPL, BPL, SIL, DIL.

The Linux-AMD64 calling convention is to pass the first 6 integer parameters in rdi, rsi,
rdx, rex, r8 and r9 and to return the result in rax and rdx; to pass the first 8 FP parameters
in xmmO0-—xmm?7 and to return FP results in xmm0O-—xmm1l. So abi-code words get the data
stack pointer in di and the address of the FP stack pointer in si, and return the data stack
pointer in ax. The other caller-saved registers are: r10, r1l, xmm8-xmm15. This calling
convention reportedly is also used in other non-Microsoft OSs.

Windows x64 passes the first four integer parameters in rcx, rdx, r8 and r9 and return
the integer result in rax. The other caller-saved registers are r10 and r11.

Chapter 6: Forth Words 271

On the Linux platform, according to https://uclibc.org/docs/psABI-x86_64.pdf
page 21 the registers AX CX DX SI DI R8 R9 R10 R11 are available for scratch.

The addressing modes for the AMD64 are:

\ running word A produces a memory error as the registers are not initialised ;-)J}
ABI-CODE A (--)

500 # AX MOV \ immediate
DX AX MOV \ register
200 AX MOV \ direct addressing
DX) AX MOV \ indirect addressing

40 DX D) AX MOV \ base with displacement
DX CX I) AX MOV \ scaled index
DX CX =*4 1I) AX MOV \ scaled index

40 DX CX =4 DI) AX MOV \ scaled index with displacement
DI AX MOV \ SP Qut := SP in

RET
END-CODE

Here are a few examples of an AMD64 abi-code words:

abi-code my+ (nl n2 -- n3)
\ SP passed in di, returned in ax, address of FP passed in si

8 di d) ax lea \ compute new sp in result reg
di) dx mov \ get old tos

dx ax) add \ add to new tos

ret

end-code

\ Do nothing
ABI-CODE aNOP (--)

DI) AX LEA \ SP out := SP in

RET

END-CODE

\ Drop TOS

ABI-CODE aDROP (n --)

8 DI D) AX LEA \ SPout := SPin - 1

RET

END-CODE

\ Push 5 on the data stack
ABI-CODE aFIVE (-- 5)

-8 DI D) AX LEA \ SPout := SPin + 1
5 # AX) MOV \ TOS := 5
RET
END-CODE
\ Push 10 and 20 into data stack
ABI-CODE aT0S2 (-- n n)
-16 DI D) AX LEA SPout := SPin + 2

= -

10 # 8 AX D) Mov TOS - 1 := 10

https://uclibc.org/docs/psABI-x86_64.pdf

Chapter 6: Forth Words 272

20 # AX) MOV \ TOS := 20
RET
END-CODE

\ Get Time Stamp Counter as two 32 bit integers
\ The TSC is incremented every CPU clock pulse
ABI-CODE aRDTSC (-- TSC1l TSCh)

RDTSC \ DX:AX := TSC
$FFFFFFFF # AX AND \ Clear upper 32 bit AX
OxXFFFFFFFF # DX AND \ Clear upper 32 bit DX
AX R8 MOV \ Tempory save AX
-16 DI D) AX LEA \ SPout := SPin + 2
R8 8 AX D) MoV \ TOS-1 := saved AX = TSC low
DX AX) MOV \ TOS := Dx = TSC high
RET

END-CODE

\ Get Time Stamp Counter as 64 bit integer
ABI-CODE RDTSC (-- TSC)

RDTSC \ DX:AX := TSC
$FFFFFFFF # AX AND \ Clear upper 32 bit AX
32 # DX SHL \ Move lower 32 bit DX to upper 32 bit]]
AX DX OR \ Combine AX wit DX in DX
-8 DI D) AX LEA \ SPout := SPin + 1
DX AX) MOV \ TOS := DX
RET
END-CODE
VARIABLE V
\ Assign 4 to variable V
ABI-CODE V=4 (--)
BX PUSH \ Save BX, used by gforth
v o # BX MOV \ BX := address of V
4 # BX) MOV \ Write 4 to V
BX POP \ Restore BX
DI) AX LEA \ SPout := SPin
RET
END-CODE
VARIABLE V
\ Assign 5 to variable V
ABI-CODE V=5 (--)
v o # CX MOV \ CX := address of V
5 # CX) MOV \ Write 5 to V
DI) AX LEA \ SPout := SPin
RET

END-CODE
ABI-CODE TEST2 (-- nn)

Chapter 6: Forth Words 273

-16 DI D) AX LEA \ SPout := SPin + 2
5 # CX MOV \ CX :=5
5 # CcX CMP
0= IF
1 # 8 AX D) MOV \ If CX =5 then TOS - 1 :=1 <--1
ELSE
2 # 8 AX D) MOV \ else TOS - 1 := 2
THEN
6 # CcX CMP
0= IF
3 # AX) MOV \ If CX = 6 then TOS := 3
ELSE
4 # AX) MOV \ else TOS := 4 <--
THEN
RET
END-CODE

\ Do four loops. Expect : (4321 --)
ABI-CODE LOOP4 (--nnnmn)

DI AX MOV \ SPout := SPin
4 # DX MOV \ DX := 4 1loop counter
BEGIN

8 # AX SUB \ SP := SP + 1

DX AX) MOV \ TOS := DX

1 # DX SUB \ DX :=DX -1

0= UNTIL
RET
END-CODE

Here’s a AMD64 example that deals with FP values:

abi-code my-f+ (rl r2 -- r)
\ SP passed in di, returned in ax, address of FP passed in si

si) dx mov \ load fp

8 dx d) xmmO movsd \ r2

dx) xmmO addsd \ ri+r2

xmm0 8 dx d) movsd \ store r

8 # si) add \ update fp

di ax mov \ sp into return reg
ret

end-code

6.32.6 Alpha Assembler

The Alpha assembler and disassembler were originally written by Bernd Thallner.
The register names a0—-ab are not available to avoid shadowing hex numbers.

Immediate forms of arithmetic instructions are distinguished by a # just before the ,,
e.g., and#, (note: 1da, does not count as arithmetic instruction).

Chapter 6: Forth Words 274

You have to specify all operands to an instruction, even those that other assemblers
consider optional, e.g., the destination register for br,, or the destination register and hint
for jmp,.

You can specify conditions for if, by removing the first b and the trailing , from a
branch with a corresponding name; e.g.,

11 fgt if, \ if F11>0e
endif,
fbgt, gives fgt.

6.32.7 MIPS assembler
The MIPS assembler was originally written by Christian Pirker.

Currently the assembler and disassembler covers most of the MIPS32 architecture and
doesn’t support FP instructions.

The register names $a0—$a3 are not available to avoid shadowing hex numbers. Use
register numbers $4-$7 instead.

Nothing distinguishes registers from immediate values. Use explicit opcode names with
the i suffix for instructions with immediate argument. E.g. addiu, in place of addu,.

Where the architecture manual specifies several formats for the instruction (e.g., for
jalr,),use the one with more arguments (i.e. two for jalr,). When in doubt, see
arch/mips/testasm.fs for an example of correct use.

Branches and jumps in the MIPS architecture have a delay slot. You have to fill it
manually (the simplest way is to use nop,), the assembler does not do it for you (unlike
as). Even if,, ahead,, until,, again,, while,, else, and repeat, need a delay slot.
Since begin, and then, just specify branch targets, they are not affected. For branches
the argument specifying the target is a relative address. Add the address of the delay slot
to get the absolute address.

Note that you must not put branches nor jumps (nor control-flow instructions) into the
delay slot. Also it is a bad idea to put pseudo-ops such as 1i, into a delay slot, as these
may expand to several instructions. The MIPS I architecture also had load delay slots, and
newer MIPSes still have restrictions on using mfhi, and mflo,. Be careful to satisfy these
restrictions, the assembler does not do it for you.

Some example of instructions are:

$ra 12 $sp sw, \ sw ra,12(sp)
$4 8 $s0 1w, \ 1w a0,8(s0)
$v0 $0 1ui, \ lui v0,0x0

$s0 $s4 $12 addiu, \ addiu s0,s4,0x12
$s0 $s4 $4 addu, \ addu s0,s4,%$a0
$ra $t9 jalr, \ jalr t9

You can specify the conditions for if, etc. by taking a conditional branch and leaving
away the b at the start and the , at the end. E.g.,
4 5 eq if,
. \ do something if $4 equals $5
then,

Chapter 6: Forth Words 275

The calling conventions for 32-bit MIPS machines is to pass the first 4 arguments in
registers $4..$7, and to use $v0-$v1 for return values. In addition to these registers, it is
ok to clobber registers $t0-$t8 without saving and restoring them.

If you use jalr, to call into dynamic library routines, you must first load the called
function’s address into $t9, which is used by position-indirect code to do relative memory
accesses.

Here is an example of a MIPS32 abi-code word:

abi-code my+ (nl n2 -- n3)

\ SP passed in $4, returned in $vO

$t0 4 $4 1w, \ load nl, n2 from stack

$t1 0 $4 1w,

$t0 $t0 $t1 addu, \ add ni1+n2, result in $t0O

$t0 4 $4 sw, \ store result (overwriting nl)

$ra jr, \ return to caller
$v0 $4 4 addiu, \ (delay slot) return uptated SP in $vO
end-code

6.32.8 PowerPC assembler

The PowerPC assembler and disassembler were contributed by Michal Revucky.

This assembler does not follow the convention of ending mnemonic names with a “”,

so some mnemonic names shadow regular Forth words (in particular: and or xor fabs); so
if you want to use the Forth words, you have to make them visible first, e.g., with also
forth.

Registers are referred to by their number, e.g., 9 means the integer register 9 or the FP
register 9 (depending on the instruction).

Because there is no way to distinguish registers from immediate values, you have to
explicitly use the immediate forms of instructions, i.e., addi,, not just add,.

The assembler and disassembler usually support the most general form of an instruction,
but usually not the shorter forms (especially for branches).

6.32.9 ARM Assembler

The ARM assembler includes all instruction of ARM architecture version 4, and the BLX
instruction from architecture 5. It does not (yet) have support for Thumb instructions. It
also lacks support for any co-processors.

The assembler uses a postfix syntax with the same operand order as used in the ARM
Architecture Reference Manual. Mnemonics are suffixed by a comma.

Registers are specified by their names rO through r15, with the aliases pc, 1r, sp, ip
and fp provided for convenience. Note that ip refers to the“intra procedure call scratch
register” (r12) and does not refer to an instruction pointer. sp refers to the ARM ABI
stack pointer (r13) and not the Forth stack pointer.

Condition codes can be specified anywhere in the instruction, but will be most readable
if specified just in front of the mnemonic. The ’S’ flag is not a separate word, but encoded
into instruction mnemonics, ie. just use adds, instead of add, if you want the status register
to be updated.

Chapter 6: Forth Words

276

The following table lists the syntax of operands for general instructions:

Gfo
123
rl2
ri2
ri2
ri2
ri2
ri2
ri2
ri2
ri2
ri2

Memory operand syntax is listed in this table:

Gfo
rd
r4d
r4d
rd
r4d
r4d
r4d
rd
rd
r4d
r4d
r4d
rd
rd
''x

rth
#

4 #LSL
rl LSL
4 #LSR
rl LSR
4 #ASR
rl ASR
4 #ROR
r1l ROR
RRX

rth

]

4 #]

-4 #]

rl +]

rl -]

rl 2 #LSL -]
4 #]!

rl +]!

ri -]!

rl 2 #LSL +]!
-4 1#

ri]+

rl]-

rl 2 #LSL]-
yz >body [#]

normal assembler

#123

rl2

ri12, LSL #4
ri2, LSL ri1
r12, LSR #4
r12, LSR ri
r12, ASR #4
rl12, ASR ri
rl12, ROR #4
r12, ROR ri
r12, RRX

normal assembler
[r4]

[rd, #+4]

[rd, #-4]

[rd, +ri1]

[r4, -ri]

[r4, -r1, LSL #2]
[rd, #+4]!

[rd, +ri]!

[rd, +r1]!

[r4, +r1, LSL #2]!
[rd], #-4

[r4], r1

[r4], -r1

[r4], -r1, LSL #2
Xyz

description

immediate

register

shift left by immediate
shift left by register
shift right by immediate
shift right by register
arithmetic shift right
... by register

rotate right by immediate
... by register

rotate right with extend by 1

description

register

register with immediate offset
with negative offset

register with register offset
with negated register offset
with negated and shifted offset
immediate preincrement
register preincrement

register predecrement

shifted preincrement

immediate postdecrement
register postincrement
register postdecrement

shifted postdecrement
PC-relative addressing

Register lists for load/store multiple instructions are started and terminated by using
the words { and } respectively. Between braces, register names can be listed one by one or
register ranges can be formed by using the postfix operator r-r. The ~ flag is not encoded
in the register list operand, but instead directly encoded into the instruction mnemonic, ie.

use ~1dm,

and “stm,.

Addressing modes for load/store multiple are not encoded as instruction suffixes, but
instead specified like an addressing mode, Use one of DA, IA, DB, IB, DA!, IA!, DB! or IB!

The following table gives some examples:

Gforth

rd ia { r0O r7 r8 } stm, stmia
r4d db! { r0 r7 r8 } 1ldm, 1dmdb
sp ia! { r0 r15 r-r } ~1ldm, ldmfd

normal assembler

r4, {r0,r7,r8}
r4!, {r0,r7,r8}
sp!, {r0-ri15}~

Control structure words typical for Forth assemblers are available: if, ahead, then,
else, begin, until, again, while, repeat, repeat-until,. Conditions are specified
in front of these words:

Chapter 6: Forth Words 277

rl r2 cmp, \ compare rl and r2
eq if, \ equal?

. \ code executed if rl1 == r2
then,

Example of a definition using the ARM assembler:

abi-code my+ (nl n2 -- n3)

\ arm abi: r0=SP, r1=&FP, r2,r3,r12 saved by caller

r0 IA' { r2 r3 } 1dm, \ pop r2 = n2, r3 = nl

r3 r2 r3 add, \ r3 = ni+ni

r3 10 -4 #]! str, \ push r3

pc 1r mov, \ return to caller, new SP in r0
end-code

6.32.10 Other assemblers

If you want to contribute another assembler/disassembler, please contact us
(anton@mips.complang.tuwien.ac.at) to check if we have such an assembler already. If
you are writing them from scratch, please use a similar syntax style as the one we use (i.e.,
postfix, commas at the end of the instruction names, see (undefined) [Common Assembler],
page (undefined)); make the output of the disassembler be valid input for the assembler,
and keep the style similar to the style we used.

Hints on implementation: The most important part is to have a good test suite that
contains all instructions. Once you have that, the rest is easy. For actual coding you can
take a look at arch/mips/disasm.fs to get some ideas on how to use data for both the
assembler and disassembler, avoiding redundancy and some potential bugs. You can also
look at that file (and see (undefined) [Advanced does> usage example|, page (undefined))
to get ideas how to factor a disassembler.

Start with the disassembler, because it’s easier to reuse data from the disassembler for
the assembler than the other way round.

For the assembler, take a look at arch/alpha/asm.fs, which shows how simple it can
be.

6.33 Carnal words

These words deal with the mechanics of Gforth (in Forth circles called “carnal knowledge”
of a Forth system), but we consider them stable enough to document them.

6.33.1 Header fields

In Gforth 1.0 we switched to a new word header layout. For a detailed de-
scription, read: Bernd Paysan and M. Anton Ertl The new Gforth header
(http://www.euroforth.org/ef19/papers/paysan.pdf). In 35th EuroForth Conference,
pages 5-20, 2019. Since this paper was published, xt and nt have been changed to point to
the parameter field, like the body, but otherwise it is still up-to-date.

This section explains just the data structure and the words used to access it. A header
has the following fields:

name

mailto:anton@mips.complang.tuwien.ac.at
http://www.euroforth.org/ef19/papers/paysan.pdf
http://www.euroforth.org/ef19/papers/paysan.pdf

Chapter 6: Forth Words 278

>f+c
>1link
>cfa
>namehm
>body

Currently Gforth has the names shown above for getting from the xt/nt/body to the field,
but apart from the standard >body they are not stable Gforth words. Instead, we provide
access words. Note that the documented access words have survived the reorganization of
the header layout.

Some of the words expect an nt, some expect an xt. Given that both nt and xt point
to the body of a word, what is the difference? For most words, the xt and nt use the
same header, and with nt=xt, they point to the same place. However, for a synonym (see
(undefined) [Synonyms|, page (undefined)) there is a difference; consider the example

Create x
synonym y X
synonym z y
In this case the nt of z points to the body of z, while the xt of z points to the body of
x. Words defined with alias or forward (see (undefined) [Calls and returns|, page (unde-
fined)) also have different nts and xts.

The name field is variable-length and is accessed with name>string (see (undefined)
[Name token|, page (undefined)).

The >f+c field contains flags and the name length (count). You read the count with
name>string, and the flags with compile-only? and obsolete? (see (undefined) [Name
token], page (undefined)).

The >1ink field contains a link to the previous word in the same word list. You can read
it with name>link (see (undefined) [Name token|, page (undefined)).

The name, >f+c and >link fields are not present for noname words, but name>string
and name>1link work nevertheless, producing 0 0 and 0, respectively.

The >cfa field (aka code field) contains the code address used for executeing the word;
you can read it with >code-address and write it with code-address! (see (undefined)
[Threading Words], page (undefined)).

The >namehm field contains the address of the header methods table, described below.
You access it by performing or accessing header methods (see (undefined) [Header methods],
page (undefined)).

The >body (aka parameter) field contains data or threaded code specific to the word
type; its length depends on the word type. E.g., for a constant it contains a cell with the
value of the constant. You can access it through >body (see (undefined) [CREATE..DOES>
details], page (undefined)), but this is only standard for words you defined with create.

6.33.2 Header methods

The new Gforth word header is object-oriented and supports the following methods (method
selectors):

.hm label method overrider field
execute set-execute >cfa

Chapter 6: Forth Words 279

opt: opt-compile, set-optimizer >hmcompile,
to: (to) set-to >hmto
extra: >hmextra
>int: name>interpret set->int >hm>int
>comp: name>compile set->comp >hm>comp
>string: name>string set-name>string >hm>string
>link: name>link set-name>link >hm>1ink

Many of these words are not stable Gforth words, but Gforth has stable higher-level
words that we mention below.

You can look at the header methods of a word with
.hm (nt -) gforth-1.0 “dot-h-m”
print the header methods of nt

Overrider (setter) words change the method implementation for the most recent defi-
nition. Quotations or closures restore the previous most recent definition when they are
completed, so they are not considered most recent, and you can do things like:

: my2dup over over ;
[: drop 1] over over [[;] set-optimizer

The execute method is actually stored in the >cfa field in the header rather than in the
header-methods table for performance reasons; also it is implemented through a native-code
address, while the other methods are implemented by calling an xt. The high-level way to
set this method is

set-execute (ca —) gforth-1.0

Changes the current word such that it jumps to the native code at ca. Also changes
the compile, implementation to the most general (and slowest) one. Call set-optimizer
afterwards if you want a more efficient compile, implementation.

To get a code address for use with set-execute, you can use words like docol: or
>code-address, See (undefined) [Threading Words], page (undefined).

As an alternative to set-execute, there is also set-does> (see (undefined) [User-defined
Defining Words|, page (undefined)), which takes an xt.

Moreover, there are the low-level code-address! and definer! (see (undefined)
[Threading Words], page (undefined)).

The opt-compile, method is what compile, does on most Gforth engines (gforth-itc
uses , instead). You can define a more efficient implementation of compile, for the cur-
rent word with set-optimizer (see (undefined) [User-defined compile-commal, page (un-
defined)). Note that the end result must be equivalent to postpone literal postpone
execute.

As an example of the use of set-optimizer, consider the following definition of
constant:

: constant (n "name" -- ; name: -—- n)
create ,
['] @ set—does>

Chapter 6: Forth Words 280

5 constant five
: foo five ; see foo

The Forth system does not know that the value of a constant must not be changed, and
just sees a created word (which can be changed with >body), and foo first pushes the
body address of five and then fetches from there. With set-optimizer the definition of
constant can be optimized as follows:

: constant (n "name" -- ; name: —— n)
create ,
['] @ set-does>
[: >body @ postpone literal ;] set-optimizer
Now foo contains the literal 5 rather than a call to five.
Note that set-execute and set-does> perform set-optimizer themselves in order to

ensure that execute and compile, agree, so if you want to add your own optimizer, you
should add it afterwards.

The (to) method and set-to are used for implementing to name semantics etc. (see
(undefined) [Words with user-defined TO etc.], page (undefined)).

The >hmextra field is used for cases where additional data needs to be stored in the
header methods table. In particular, it stores the xt passed to set-does> (and does> calls
set-does>) and the code address behind ;abi-code.

The methods above all consume an xt, not an nt, but the override words work on the
most recent definition. This means that if you use, e.g., set-optimizer on a synonym, the
effect will probably not be what you intended: When compile,ing the xt of the word, the
opt-compile, implementation of the original word will be used, not the freshly-set one of
the synonym.

The following methods consume an nt.

The name>interpret method is implemented as noop for most words, except synonyms
and similar words.

set->int (xt —) gforth-1.0 “set-to-int”
Sets the implementation of the name>interpret (nt -- xt2) method of the current
word to zt.

The name>compile method produces the compilation semantics of the nt. By changing
it with set->comp, you can change the compilation semantics, but it’s not as simple as
just pushing the xt of the desired compilation semantics, because of the stack effect of
name>compile. Generally you should avoid changing the compilation semantics, and if
you do, use a higher-level word like immediate or interpret/compile:, See (undefined)
[Combined words], page (undefined).

set->comp (at —) gforth-1.0 “set-to-comp”

Sets the implementation of the name>compile (nt -- w xt2) method of the current
word to zt.
immediate? (nt — flag) gforth-1.0 “immediate-question”

true if the word nt has non-default compilation semantics (that’s not quite according to
the definition of immediacy, but many people mean that when they call a word “immedi-
ate”).

Chapter 6: Forth Words 281

Name>string and Name>link are methods in order to make it possible to eliminate the
name, >f+c and link fields from noname headers, but still produce meaningful results when
using these words. You will typically not change the implementations of these methods
except with noname, but we still have
set-name>string (2t —) gforth-1.0 “set-name-to-string”

Sets the implementation of the name>string (nt -- addr u) method of the current
word to xt.
set-name>link (2t —) gforth-1.0 “set-name-to-link”

Sets the implementation of the name>link (nt1 -- nt2|0) method of the current word
to xt.

6.33.3 Threading Words

The terminology used here stems from indirect threaded Forth systems; in such a system,
the XT of a word is represented by the CFA (code field address) of a word; the CFA points to
a cell that contains the code address. The code address is the address of some machine code
that performs the run-time action of invoking the word (e.g., the dovar: routine pushes the
address of the body of the word (a variable) on the stack).

These words provide access to code fields, code addresses and other threading stuff in
Gforth. It more or less abstracts away the differences between direct and indirect threading.

Up to and including Gforth 0.7, the code address (plus, for does>-defined words, the
address returned by >does-code) was sufficient to know the type of the word. How-
ever, since Gforth-1.0 the behaviour or at least implementation of words like compile,
and name>compile can be determined independently as described in (undefined) [Header
methods], page (undefined).

To create a code field and at the same time initialize the header methods use create-
from (see (undefined) [Creating from a prototype], page (undefined)).

The following words were designed before the introduction of header methods, and are
therefore not the best (and recommended) way to deal with different word types in Gforth.

In an indirect threaded Forth, you can get the code address of name with ' name @; in
Gforth you can get it with ' name >code-address, independent of the threading method.

threading-method (— n) gforth-0.2 “threading-method”

0 if the engine is direct threaded. Note that this may change during the lifetime of an
image.

>code-address (zt — c_addr) gforth-0.2 “to-code-address”
c-addr is the code address of the word zt.

code-address! (c_addr at —) gforth-obsolete “code-address-store”
Change a code field with code address c-addr at xt.

The code addresses produced by various defining words are produced by the following
words:

docol: (— addr) gforth-0.2 “docol-colon”
The code address of a colon definition.

docon: (— addr) gforth-0.2 “docon-colon”

Chapter 6: Forth Words 282

The code address of a CONSTANT.

dovar: (— addr) gforth-0.2 “dovar-colon”
The code address of a CREATEd word.

douser: (— addr) gforth-0.2 “douser-colon”
The code address of a USER variable.

dodefer: (— addr) gforth-0.2 “dodefer-colon”
The code address of a defered word.

dofield: (— addr) gforth-0.2 “dofield-colon”
The code address of a field.

dovalue: (— addr) gforth-0.7 “dovalue-colon’
The code address of a CONSTANT.

dodoes: (— addr) gforth-0.6 “dodoes-colon”
The code address of a DOES>-defined word.

doabicode: (— addr) gforth-1.0 “doabicode-colon”
The code address of a ABI-CODE definition.

For a word X defined with set-does>, the code address points to dodoes:, and the
>hmextra field of the header methods contains the xt of the word that is called after pushing
the body addres of X.

If you want to know whether a word is a DOES>-defined word, and what Forth code it
executes, >does-code tells you that:

>does-code (zt! — xt2) gforth-0.2 “to-does-code”

If zt1 is the execution token of a child of a set-does>-defined word, zt2 is the xt passed
to set-does>, i.e, the xt of the word that is executed when executing zt! (but first the
body address of xt! is pushed). If t! does not belong to a set-does>-defined word, zt2 is
0.

You can use the resulting zt2 with set-does> (preferred) to change the latest word or
with
does-code! (zt2 zt! —) gforth-0.2 “does-code-store”

Change zt! to be a xt2 set-does>-defined word.

)

to change an arbitrary word.

The following two words generalize >code-address, >does-code, code-address!, and
does-code!:
>definer (zt — definer) gforth-0.2 “to-definer”

Definer is a unique identifier for the way the xt was defined. Words defined with dif-
ferent does>-codes have different definers. The definer can be used for comparison and in
definer!.
definer! (definer xt —) gforth-obsolete “definer-store”

The word represented by xt changes its behaviour to the behaviour associated with
definer.

Code-address!, does-code!, and definer! update the opt-compile, method to
a somewhat generic compiler for that word type (in particular, primitives get the slow
general-compile, method rather than the primitive-specific peephole-compile,).

Chapter 6: Forth Words 283

6.34 Passing Commands to the Operating System

Gforth allows you to pass an arbitrary string to the host operating system shell (if such a
thing exists) for execution.

sh ("..." —) gforth-0.2

Execute the rest of the command line as shell command(s). Afterwards, $? produces the
exit status of the command.

system (c-addr u —) gforth-0.2

Pass the string specified by c-addr u to the host operating system for execution in a
sub-shell. Afterwards, $? produces the exit status of the command. The value of the
environment variable GFORTHSYSTEMPREFIX (or its default value) is prepended to the string
(mainly to support using command . com as shell in Windows instead of whatever shell Cygwin
uses by default; see (undefined) [Environment variables|, page (undefined)).

sh-get (c-addr u — c-addr2 u2) gforth-1.0

Run the shell command addr u; c-addr2 u2 is the output of the command. The exit
code is in $7, the output also in sh$ 2@.

$? (— n) gforth-0.2 “dollar-question”
Value — the exit status returned by the most recently executed system command.
getenv (c-addr!l ul — c-addr2 u2) gforth-0.2 “getenv”

The string c-addrl ul specifies an environment variable. The string c-addr2 u2 is the
host operating system’s expansion of that environment variable. If the environment variable
does not exist, c-addr?2 u2 specifies a string 0 characters in length.

6.35 Keeping track of Time

ms (n —) facility-ext

ns (d -) gforth-1.0

time&date (— nsec nmin nhour nday nmonth nyear) facility-ext “time-and-date”

Report the current time of day. Seconds, minutes and hours are numbered from O.
Months are numbered from 1.

>time&date&tz (udtime — nsec nmin nhour nday nmonth nyear fdst ndstoff c-addrtz utz) gforth-|}
1.0 “to-time-and-date”

Convert time in seconds since 1.1.1970 0:00Z to the current time of day. Seconds, minutes
and hours are numbered from 0. Months are numbered from 1.

utime (— dtime) gforth-0.5 “utime”

Report the current time in microseconds since some epoch. Use #1000000 um/mod nip
to convert to seconds

ntime (— dtime) gforth-1.0 “ntime”
Report the current time in nanoseconds since some epoch.
cputime (— duser dsystem) gforth-0.5 “cputime”

duser and dsystem are the respective user- and system-level CPU times used since the
start of the Forth system (excluding child processes), in microseconds (the granularity may
be much larger, however). On platforms without the getrusage call, it reports elapsed time
(since some epoch) for duser and 0 for dsystem.

Chapter 6: Forth Words 284

6.36 Miscellaneous Words

This section lists the Standard Forth words that are not documented elsewhere in this
manual. Ultimately, they all need proper homes.

quit (#7 — 92) core
Empty the return stack, make the user input device the input source, enter interpret
state and start the text interpreter.

The following Standard Forth words are not currently supported by Gforth (see (unde-
fined) [Standard conformance], page (undefined)):

EDITOR EMIT? FORGET

285

7 Error messages

A typical Gforth error message looks like this:

in file included from \evaluated string/:-1
in file included from ./yyy.fs:1
./xxx.fs:4: Invalid memory address
>>>bar<<<

Backtrace:

$400E664C @

$400E6664 foo

The message identifying the error is Invalid memory address. The error happened
when text-interpreting line 4 of the file ./xxx.fs. This line is given (it contains bar), and
the word on the line where the error happened, is pointed out (with >>> and <<<).

The file containing the error was included in line 1 of . /yyy.fs, and yyy.£fs was included
from a non-file (in this case, by giving yyy.fs as command-line parameter to Gforth).

At the end of the error message you find a return stack dump that can be interpreted as
a backtrace (possibly empty). On top you find the top of the return stack when the throw
happened, and at the bottom you find the return stack entry just above the return stack of
the topmost text interpreter.

To the right of most return stack entries you see a guess for the word that pushed that
return stack entry as its return address. This gives a backtrace. In our case we see that
bar called foo, and foo called @ (and @ had an Invalid memory address exception).

Note that the backtrace is not perfect: We don’t know which return stack entries are
return addresses (so we may get false positives); and in some cases (e.g., for abort") we
cannot determine from the return address the word that pushed the return address, so for
some return addresses you see no names in the return stack dump.

The return stack dump represents the return stack at the time when a specific throw
was executed. In programs that make use of catch, it is not necessarily clear which throw
should be used for the return stack dump (e.g., consider one throw that indicates an error,
which is caught, and during recovery another error happens; which throw should be used
for the stack dump?). Gforth presents the return stack dump for the first throw after the
last executed (not returned-to) catch or nothrow; this works well in the usual case. To get
the right backtrace, you usually want to insert nothrow or ['] false catch 2drop after a
catch if the error is not rethrown.

Gforth is able to do a return stack dump for throws generated from primitives (e.g.,
invalid memory address, stack empty etc.); gforth-fast is only able to do a return stack
dump from a directly called throw (including abort etc.). Given an exception caused by
a primitive in gforth-fast, you will typically see no return stack dump at all; however, if
the exception is caught by catch (e.g., for restoring some state), and then thrown again,
the return stack dump will be for the first such throw.

gforth-fast also does not attempt to differentiate between division by zero and division
overflow, because that costs time in every division.

286

8 Tools

See also (undefined) [Emacs and Gforth], page (undefined).

8.1 ans-report.fs: Report the words used, sorted by
wordset

If you want to label a Forth program as Standard Program, you must document which
wordsets the program uses.

The ans-report.fs tool makes it easy for you to determine which words from which
wordset and which non-standard words your application uses. You simply have to include
ans-report.fs before loading the program you want to check. After loading your program,
you can get the report with print-ans-report. A typical use is to run this as batch job
like this:

gforth ans-report.fs myprog.fs -e "print-ans-report bye"
The output looks like this (for compat/control.fs):

The program uses the following words
from CORE :

: POSTPONE THEN ; immediate ?dup IF O=
from BLOCK-EXT :

\

from FILE :

(

ans-report.fs reports both Forth-94 and Forth-2012 wordsets. For words that are in
both standards, it reports the wordset without suffix (e.g., CORE-EXT). For Forth-2012-only
words, it reports the wordset with a -2012 suffix (e.g., CORE-EXT-2012); and likewise for
the words that are Forth-94-only (i.e., that have been removed in Forth-2012).

8.1.1 Caveats

Note that ans-report.fs just checks which words are used, not whether they are used in
a standard-conforming way!

Some words are defined in several wordsets in the standard. ans-report.fs reports
them for only one of the wordsets, and not necessarily the one you expect. It depends
on usage which wordset is the right one to specify. E.g., if you only use the compilation
semantics of 8", it is a Core word; if you also use its interpretation semantics, it is a File
word.

8.2 Stack depth changes during interpretation

Sometimes you notice that, after loading a file, there are items left on the stack. The tool
depth-changes. fs helps you find out quickly where in the file these stack items are coming
from.

The simplest way of using depth-changes.fs is to include it before the file(s) you want
to check, e.g.:

gforth depth-changes.fs my-file.fs

Chapter 8: Tools 287

This will compare the stack depths of the data and FP stack at every empty line (in
interpretation state) against these depths at the last empty line (in interpretation state). If
the depths are not equal, the position in the file and the stack contents are printed with ~~
(see (undefined) [Debugging], page (undefined)). This indicates that a stack depth change
has occured in the paragraph of non-empty lines before the indicated line. It is a good idea
to leave an empty line at the end of the file, so the last paragraph is checked, too.

Checking only at empty lines usually works well, but sometimes you have big blocks of
non-empty lines (e.g., when building a big table), and you want to know where in this block
the stack depth changed. You can check all interpreted lines with

gforth depth-changes.fs -e "' all-lines is depth-changes-filter" my-file.fs]]

This checks the stack depth at every end-of-line. So the depth change occured in the
line reported by the ~~ (not in the line before).

Note that, while this offers better accuracy in indicating where the stack depth changes,
it will often report many intentional stack depth changes (e.g., when an interpreted com-
putation stretches across several lines). You can suppress the checking of some lines by
putting backslashes at the end of these lines (not followed by white space), and using

gforth depth-changes.fs -e "' most-lines is depth-changes-filter" my-file.fs|]

288

9 Standard conformance

To the best of our knowledge, Gforth is a
ANS Forth System and a Forth-2012 System
e providing the Core Extensions word set
e providing the Block word set
e providing the Block Extensions word set
e providing the Double-Number word set
e providing the Double-Number Extensions word set
e providing the Exception word set
e providing the Exception Extensions word set
e providing the Facility word set
e providing the Facility Extensions word set, except EMIT?
e providing the File Access word set
e providing the File Access Extensions word set
e providing the Floating-Point word set
e providing the Floating-Point Extensions word set
e providing the Locals word set
e providing the Locals Extensions word set
e providing the Memory-Allocation word set
e providing the Memory-Allocation Extensions word set
e providing the Programming-Tools word set
e providing the Programming-Tools Extensions word set, except EDITOR and FORGET
e providing the Search-Order word set
e providing the Search-Order Extensions word set
e providing the String word set
e providing the String Extensions word set

e providing the Extended-Character wordset

Gforth has the following environmental restrictions:

e While processing the OS command line, if an exception is not caught, Gforth exits with
a non-zero exit code instead of performing QUIT.

e When an throw is performed after a query, Gforth does not always restore the input
source specification in effect at the corresponding catch.

In addition, Standard Forth systems are required to document certain implementation
choices. This chapter tries to meet these requirements for the Forth-94 standard. For the
Forth-2012 standard, we decided to produce the additional documentation only if there is
demand. So if you are really missing this documentation, please let us know.

In many cases, the following documentation gives a way to ask the system for the in-
formation instead of providing the information directly, in particular, if the information
depends on the processor, the operating system or the installation options chosen, or if
they are likely to change during the maintenance of Gforth.

Chapter 9: Standard conformance 289

9.1 The Core Words

9.1.1 Implementation Defined Options

(Cell) aligned addresses:
processor-dependent. Gforth’s alignment words perform natural alignment
(e.g., an address aligned for a datum of size 8 is divisible by 8). Unaligned
accesses usually result in a -23 THROW.

EMIT and non-graphic characters:
The character is output using the C library function (actually, macro) putc.

character editing of ACCEPT and EXPECT:
This is modeled on the GNU readline library (see Section “Command Line
Editing” in The GNU Readline Library) with Emacs-like key bindings. Tab
deviates a little by producing a full word completion every time you type it
(instead of producing the common prefix of all completions). See (undefined)
[Command-line editing], page (undefined).

character set:
The character set of your computer and display device. Gforth is 8-bit-clean
(but some other component in your system may make trouble).

Character-aligned address requirements:
installation-dependent. Currently a character is represented by a C unsigned
char; in the future we might switch to wchar_t (Comments on that requested).

character-set extensions and matching of names:

Any character except the ASCII NUL character can be used in a name. Match-
ing is case-insensitive (except in TABLEs). The matching is performed using the
C library function strncasecmp, whose function is probably influenced by the
locale. E.g., the C locale does not know about accents and umlauts, so they
are matched case-sensitively in that locale. For portability reasons it is best to
write programs such that they work in the C locale. Then one can use libraries
written by a Polish programmer (who might use words containing ISO Latin-2
encoded characters) and by a French programmer (ISO Latin-1) in the same
program (of course, WORDS will produce funny results for some of the words
(which ones, depends on the font you are using)). Also, the locale you prefer
may not be available in other operating systems. Hopefully, Unicode will solve
these problems one day.

conditions under which control characters match a space delimiter:
If word is called with the space character as a delimiter, all white-space char-
acters (as identified by the C macro isspace()) are delimiters. Parse, on the
other hand, treats space like other delimiters. Parse-name, which is used by
the outer interpreter (aka text interpreter) by default, treats all white-space
characters as delimiters.

format of the control-flow stack:
The data stack is used as control-flow stack. The size of a control-flow stack
item in cells is given by the constant cs-item-size. At the time of this writing,

Chapter 9: Standard conformance 290

an item consists of a (pointer to a) locals list (third), an address in the code
(second), and a tag for identifying the item (TOS). The following tags are used:
defstart, live-orig, dead-orig, dest, do-dest, scopestart.

conversion of digits > 35
The characters [\]1"_"' are the digits with the decimal value 36—41. There is
no way to input many of the larger digits.

display after input terminates in ACCEPT and EXPECT:
The cursor is moved to the end of the entered string. If the input is terminated
using the Return key, a space is typed.

exception abort sequence of ABORT":
The error string is stored into the variable abort-string and a -2 throw is
performed.

put line terminator:
For interactive input, C-m (CR) and C-j (LF) terminate lines. One of these
characters is typically produced when you type the Enter or Return key.

mazimum size of a counted string:

s" /counted-string" environment? drop .. Currently 255 characters on all
platforms, but this may change.

mazimum size of a parsed string:
Given by the constant /line. Currently 255 characters.

mazximum size of a definition name, in characters:

MAXU/S8

mazimum string length for ENVIRONMENT?, in characters:
MAXU/8

method of selecting the user input device:
The user input device is the standard input. There is currently no way to
change it from within Gforth. However, the input can typically be redirected
in the command line that starts Gforth.

method of selecting the user output device:
EMIT and TYPE output to the file-id stored in the value outfile-id (stdout
by default). Gforth uses unbuffered output when the user output device is a
terminal, otherwise the output is buffered.

methods of dictionary compilation:
What are we expected to document here?

number of bits in one address unit:
s" address-units-bits" environment? drop .. 8 in all current platforms.

number representation and arithmetic:
Processor-dependent. Binary two’s complement on all current platforms.

ranges for integer types:
Installation-dependent. Make environmental queries for MAX-N, MAX-U, MAX-D
and MAX-UD. The lower bounds for unsigned (and positive) types is 0. The lower

Chapter 9: Standard conformance 291

bound for signed types on two’s complement and one’s complement machines
machines can be computed by adding 1 to the upper bound.

read-only data space regions:
The whole Forth data space is writable.

size of buffer at WORD:
PAD HERE - .. 104 characters on 32-bit machines. The buffer is shared with the
pictured numeric output string. If overwriting PAD is acceptable, it is as large
as the remaining dictionary space, although only as much can be sensibly used
as fits in a counted string.

size of one cell in address units:
1 cells ..

size of one character in address umnits:
1 chars .. 1 on all current platforms.

size of the keyboard terminal buffer:
Varies. You can determine the size at a specific time using 1p@ tib - .. It is
shared with the locals stack and TIBs of files that include the current file. You
can change the amount of space for TIBs and locals stack at Gforth startup
with the command line option -1.

size of the pictured numeric output buffer:
PAD HERE - .. 104 characters on 32-bit machines. The buffer is shared with
WORD.

size of the scratch area returned by PAD:
The remainder of dictionary space. unused pad here - - ..

system case-sensitivity characteristics:
Dictionary searches are case-insensitive (except in TABLEs). However, as ex-
plained above under character-set extensions, the matching for non-ASCII char-
acters is determined by the locale you are using. In the default C locale all
non-ASCII characters are matched case-sensitively.

system prompt:
ok in interpret state, compiled in compile state.

division rounding:
The ordinary division words / mod /mod */ */mod perform floored division
(with the default installation of Gforth). You can check this with s" floored"
environment? drop .. If you write programs that need a specific division
rounding, best use fm/mod or sm/rem for portability.

values of STATE when true:
-1.

values returned after arithmetic overflow:
On two’s complement machines, arithmetic is performed modulo 2**bits-per-
cell for single arithmetic and 4**bits-per-cell for double arithmetic (with ap-
propriate mapping for signed types). Division by zero typically results in a -55
throw (Floating-point unidentified fault) or -10 throw (divide by zero). Integer

Chapter 9: Standard conformance 292

division overflow can result in these throws, or in -11 throw; in gforth-fast
division overflow and divide by zero may also result in returning bogus results
without producing an exception.

whether the current definition can be found after DOES>:
No.

9.1.2 Ambiguous conditions

a name 1s neither a word nor a number:
-13 throw (Undefined word).

a definition name exceeds the maximum length allowed:
-19 throw (Word name too long)

addressing a region not inside the various data spaces of the forth system:
The stacks, code space and header space are accessible. Machine code space
is typically readable. Accessing other addresses gives results dependent on the
operating system. On decent systems: -9 throw (Invalid memory address).

argument type incompatible with parameter:
This is usually not caught. Some words perform checks, e.g., the control flow
words, and issue a ABORT" or -12 THROW (Argument type mismatch).

attempting to obtain the execution token of a word with undefined execution semantics:

The execution token represents the interpretation semantics of the word. Gforth
defines interpretation semantics for all words; for words where the standard does
not define interpretation semantics, but defines the execution semantics (except
LEAVE), the interpretation semantics are to perform the execution semantics.
For words where the standard defines no interprtation semantics, but defined
compilation semantics (plus LEAVE), the interpretation semantics are to perform
the compilation semantics. Some words are marked as compile-only, and ' gives
a warning for these words.

dividing by zero:
On some platforms, this produces a -10 throw (Division by zero); on other
systems, this typically results in a =55 throw (Floating-point unidentified fault).

wsufficient data stack or return stack space:

Depending on the operating system, the installation, and the invocation of
Gforth, this is either checked by the memory management hardware, or it is
not checked. If it is checked, you typically get a -3 throw (Stack overflow),
-5 throw (Return stack overflow), or -9 throw (Invalid memory address) (de-
pending on the platform and how you achieved the overflow) as soon as the
overflow happens. If it is not checked, overflows typically result in mysterious
illegal memory accesses, producing -9 throw (Invalid memory address) or -23
throw (Address alignment exception); they might also destroy the internal data
structure of ALLOCATE and friends, resulting in various errors in these words.

insufficient space for loop control parameters:
Like other return stack overflows.

Chapter 9: Standard conformance 293

insufficient space in the dictionary:
If you try to allot (either directly with allot, or indirectly with ,, create etc.)
more memory than available in the dictionary, you get a -8 throw (Dictionary
overflow). If you try to access memory beyond the end of the dictionary, the
results are similar to stack overflows.

interpreting a word with undefined interpretation semantics:
Gforth defines interpretation semantics for all words; for words where the stan-
dard defines execution semantics (except LEAVE), the interpretation semantics
are to perform the execution semantics. For words where the standard defines
no interprtation semantics, but defined compilation semantics (plus LEAVE), the
interpretation semantics are to perform the compilation semantics. Some words
are marked as compile-only, and text-interpreting them gives a warning.

modifying the contents of the input buffer or a string literal:
These are located in writable memory and can be modified.

overflow of the pictured numeric output string:
-17 throw (Pictured numeric ouput string overflow).

parsed string overflow:
PARSE cannot overflow. WORD does not check for overflow.

producing a result out of range:

On two’s complement machines, arithmetic is performed modulo 2**bits-per-
cell for single arithmetic and 4**bits-per-cell for double arithmetic (with ap-
propriate mapping for signed types). Division by zero typically results in a =10
throw (divide by zero) or -55 throw (floating point unidentified fault). Over-
flow on division may result in these errors or in =11 throw (result out of range).
Gforth-fast may silently produce bogus results on division overflow or division
by zero. Convert and >number currently overflow silently.

reading from an empty data or return stack:

The data stack is checked by the outer (aka text) interpreter after every word
executed. If it has underflowed, a -4 throw (Stack underflow) is performed.
Apart from that, stacks may be checked or not, depending on operating system,
installation, and invocation. If they are caught by a check, they typically result
in -4 throw (Stack underflow), -6 throw (Return stack underflow) or -9 throw
(Invalid memory address), depending on the platform and which stack under-
flows and by how much. Note that even if the system uses checking (through the
MMU), your program may have to underflow by a significant number of stack
items to trigger the reaction (the reason for this is that the MMU, and therefore
the checking, works with a page-size granularity). If there is no checking, the
symptoms resulting from an underflow are similar to those from an overflow.
Unbalanced return stack errors can result in a variety of symptoms, includ-
ing -9 throw (Invalid memory address) and Illegal Instruction (typically =260
throw).

Chapter 9: Standard conformance 294

unexpected end of the input buffer, resulting in an attempt to use a zero-length string as a
name:
Create and its descendants perform a -16 throw (Attempt to use zero-length
string as a name). Words like ' probably will not find what they search. Note
that it is possible to create zero-length names with nextname (should it not?).

>IN greater than input buffer:
The next invocation of a parsing word returns a string with length 0.

RECURSE appears after DOES>:
Compiles a recursive call to the code after DOES>.

argument input source different than current input source for RESTORE-INPUT:
-12 THROW. Note that, once an input file is closed (e.g., because the end of the
file was reached), its source-id may be reused. Therefore, restoring an input
source specification referencing a closed file may lead to unpredictable results
instead of a —12 THROW.

In the future, Gforth may be able to restore input source specifications from
other than the current input source.

data space containing definitions gets de-allocated:
Deallocation with allot is not checked. This typically results in memory access
faults or execution of illegal instructions.

data space read/write with incorrect alignment:
Processor-dependent. Typically results in a =23 throw (Address alignment ex-
ception). Under Linux-Intel on a 486 or later processor with alignment turned
on, incorrect alignment results in a -9 throw (Invalid memory address). There
are reportedly some processors with alignment restrictions that do not report
violations.

data space pointer not properly aligned, ,, C,:
Like other alignment errors.

less than u+2 stack items (PICK and ROLL):
Like other stack underflows.

loop control parameters not available:
Not checked. The counted loop words simply assume that the top of return
stack items are loop control parameters and behave accordingly.

most recent definition does not have a name (IMMEDIATE):
abort" last word was headerless".

name not defined by VALUE used by TO:
-32 throw (Invalid name argument) (unless name is a local or was defined by
CONSTANT; in the latter case it just changes the constant).

name not found (', POSTPONE, ['], [COMPILE]):
-13 throw (Undefined word)

parameters are not of the same type (DO, 7DO, WITHIN):
Gforth behaves as if they were of the same type. l.e., you can predict the
behaviour by interpreting all parameters as, e.g., signed.

Chapter 9: Standard conformance 295

POSTPONE or [COMPILE] applied to TO:
Assume : X POSTPONE TO ; IMMEDIATE. X performs the compilation semantics
of TO.

String longer than a counted string returned by WORD:
Not checked. The string will be ok, but the count will, of course, contain only
the least significant bits of the length.

u greater than or equal to the number of bits in a cell (LSHIFT, RSHIFT):
Processor-dependent. Typical behaviours are returning 0 and using only the
low bits of the shift count.

word not defined via CREATE:
>BODY produces the PFA of the word no matter how it was defined.

DOES> changes the execution semantics of the last defined word no matter how
it was defined. E.g., CONSTANT DOES> is equivalent to CREATE , DOES>.

words improperly used outside <# and #>:
Not checked. As usual, you can expect memory faults.

9.1.3 Other system documentation

nonstandard words using PAD:
None.

operator’s terminal facilities available:
After processing the OS’s command line, Gforth goes into interactive mode, and
you can give commands to Gforth interactively. The actual facilities available
depend on how you invoke Gforth.

program data space available:
UNUSED . gives the remaining dictionary space. The total dictionary space can
be specified with the -m switch (see (undefined) [Invoking Gforth], page (unde-
fined)) when Gforth starts up.

return stack space available:
You can compute the total return stack space in cells with s" RETURN-STACK-
CELLS" environment? drop .. You can specify it at startup time with the -r
switch (see (undefined) [Invoking Gforth], page (undefined)).

stack space available:
You can compute the total data stack space in cells with s" STACK-CELLS"
environment? drop .. You can specify it at startup time with the -d switch
(see (undefined) [Invoking Gforth], page (undefined)).

system dictionary space required, in address units:
Type here forthstart - . after startup. At the time of this writing, this gives
80080 (bytes) on a 32-bit system.

9.2 The optional Block word set

Chapter 9: Standard conformance 296

9.2.1 Implementation Defined Options

the format for display by LIST:
First the screen number is displayed, then 16 lines of 64 characters, each line
preceded by the line number.

the length of a line affected by \:

64 characters.

9.2.2 Ambiguous conditions

correct block read was not possible:
Typically results in a throw of some OS-derived value (between -512 and -2048).
If the blocks file was just not long enough, blanks are supplied for the missing
portion.

I/0 exception in block transfer:
Typically results in a throw of some OS-derived value (between -512 and -2048).

mwvalid block number:
-35 throw (Invalid block number)

a program directly alters the contents of BLK:
The input stream is switched to that other block, at the same position. If the
storing to BLK happens when interpreting non-block input, the system will get
quite confused when the block ends.

no current block buffer for UPDATE:
UPDATE has no effect.

9.2.3 Other system documentation

any restrictions a multiprogramming system places on the use of buffer addresses:
No restrictions (yet).

the number of blocks available for source and data:
depends on your disk space.

9.3 The optional Double Number word set

9.3.1 Ambiguous conditions
d outside of range of n in D>S:

The least significant cell of d is produced.

9.4 The optional Exception word set

9.4.1 Implementation Defined Options

THROW-codes used in the system:
The codes -256—-511 are used for reporting signals. The mapping from OS
signal numbers to throw codes is -256—signal. The codes -512—-2047 are used

Chapter 9: Standard conformance 297

for OS errors (for file and memory allocation operations). The mapping from OS
error numbers to throw codes is -512—errno. One side effect of this mapping is
that undefined OS errors produce a message with a strange number; e.g., 1000
THROW results in Unknown error 488 on my system.

9.5 The optional Facility word set

9.5.1 Implementation Defined Options

encoding of keyboard events (EKEY):
Keys corresponding to ASCII characters are encoded as ASCII characters.
Other keys are encoded with the constants k-left, k-right, k—up, k-down,
k-home, k-end, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k-winch,
k-eof.

duration of a system clock tick:
System dependent. With respect to MS, the time is specified in microseconds.
How well the OS and the hardware implement this, is another question.

repeatability to be expected from the execution of MS:
System dependent. On Unix, a lot depends on load. If the system is lightly
loaded, and the delay is short enough that Gforth does not get swapped out,
the performance should be acceptable. Under MS-DOS and other single-tasking
systems, it should be good.

9.5.2 Ambiguous conditions

AT-XY can’t be performed on user output device:
Largely terminal dependent. No range checks are done on the arguments. No
errors are reported. You may see some garbage appearing, you may see simply
nothing happen.

9.6 The optional File-Access word set

9.6.1 Implementation Defined Options

file access methods used:
R/0, R/W and BIN work as you would expect. W/0 translates into the C file
opening mode w (or wb): The file is cleared, if it exists, and created, if it
does not (with both open-file and create-file). Under Unix create-file
creates a file with 666 permissions modified by your umask.

file exceptions:
The file words do not raise exceptions (except, perhaps, memory access faults
when you pass illegal addresses or file-ids).

file line terminator:
System-dependent. Gforth uses C’s newline character as line terminator. What
the actual character code(s) of this are is system-dependent.

file name format:
System dependent. Gforth just uses the file name format of your OS.

Chapter 9: Standard conformance 298

information returned by FILE-STATUS:
FILE-STATUS returns the most powerful file access mode allowed for the file:
Either R/0, W/0 or R/W. If the file cannot be accessed, R/0 BIN is returned. BIN
is applicable along with the returned mode.

input file state after an exception when including source:
All files that are left via the exception are closed.

tor values and meaning:
The dors returned by the file and memory allocation words are intended as
throw codes. They typically are in the range -512—-2047 of OS errors. The
mapping from OS error numbers to iors is -512—errno.

mazimum depth of file input nesting:
limited by the amount of return stack, locals/TIB stack, and the number of
open files available. This should not give you troubles.

mazximum size of input line:
/line. Currently 255.

methods of mapping block ranges to files:
By default, blocks are accessed in the file blocks.fb in the current working
directory. The file can be switched with USE.

number of string buffers provided by S":
As many as memory available; the strings are stored in memory blocks allocated
with ALLOCATE indefinitely.

size of string buffer used by S":
/line. currently 255.

9.6.2 Ambiguous conditions

attempting to position a file outside its boundaries:
REPOSITION-FILE is performed as usual: Afterwards, FILE-POSITION returns
the value given to REPOSITION-FILE.

attempting to read from file positions not yet written:
End-of-file, i.e., zero characters are read and no error is reported.

file-id is invalid (INCLUDE-FILE):
An appropriate exception may be thrown, but a memory fault or other problem
is more probable.

I/O exception reading or closing file-id (INCLUDE-FILE, INCLUDED):
The ior produced by the operation, that discovered the problem, is thrown.

named file cannot be opened (INCLUDED):
The ior produced by open-file is thrown.

requesting an unmapped block number:
There are no unmapped legal block numbers. On some operating systems,
writing a block with a large number may overflow the file system and have an
error message as consequence.

Chapter 9: Standard conformance 299

using source-id when blk is non-zero:
source-id performs its function. Typically it will give the id of the source
which loaded the block. (Better ideas?)

9.7 The optional Floating-Point word set

9.7.1 Implementation Defined Options

format and range of floating point numbers:
System-dependent; the double type of C.

results of REPRESENT when float is out of range:
System dependent; REPRESENT is implemented using the C library function
ecvt () and inherits its behaviour in this respect.

rounding or truncation of floating-point numbers:
System dependent; the rounding behaviour is inherited from the hosting C
compiler. IEEE-FP-based (i.e., most) systems by default round to nearest, and
break ties by rounding to even (i.e., such that the last bit of the mantissa is 0).

size of floating-point stack:
s" FLOATING-STACK" environment? drop . gives the total size of the floating-
point stack (in floats). You can specify this on startup with the command-line
option -f (see (undefined) [Invoking Gforth|, page (undefined)).

width of floating-point stack:
1 floats.

9.7.2 Ambiguous conditions

df@ or df! used with an address that is not double-float aligned:
System-dependent. Typically results in a -23 THROW like other alignment vio-
lations.

£@ or £! used with an address that is not float aligned:
System-dependent. Typically results in a -23 THROW like other alignment vio-
lations.

floating-point result out of range:
System-dependent. Can result in a -43 throw (floating point overflow), -54
throw (floating point underflow), -41 throw (floating point inexact result), -55
THROW (Floating-point unidentified fault), or can produce a special value repre-
senting, e.g., Infinity.

sf@ or sf! used with an address that is not single-float aligned:

System-dependent. Typically results in an alignment fault like other alignment
violations.

base is not decimal (REPRESENT, F., FE., FS.):
The floating-point number is converted into decimal nonetheless.

Both arguments are equal to zero (FATAN2):
System-dependent. FATAN2 is implemented using the C library function
atan2().

Chapter 9: Standard conformance 300

Using FTAN on an argument r1 where cos(rl) is zero:
System-dependent. Anyway, typically the cos of r1 will not be zero because of
small errors and the tan will be a very large (or very small) but finite number.

d cannot be presented precisely as a float in D>F:
The result is rounded to the nearest float.

dividing by zero:
Platform-dependent; can produce an Infinity, NaN, -42 throw (floating point
divide by zero) or -55 throw (Floating-point unidentified fault).

exponent too big for conversion (DF!, DF@, SF!, SF@):
System dependent. On IEEE-FP based systems the number is converted into
an infinity.

float<1 (FACOSH):
Platform-dependent; on IEEE-FP systems typically produces a NaN.

float<=-1 (FLNP1):
Platform-dependent; on IEEE-FP systems typically produces a NaN (or a neg-
ative infinity for float=-1).

float<=0 (FLN, FLOG):
Platform-dependent; on IEEE-FP systems typically produces a NaN (or a neg-
ative infinity for float=0).

float<0 (FASINH, FSQRT):
Platform-dependent; for fsqrt this typically gives a NaN, for fasinh some
platforms produce a NaN, others a number (bug in the C library?).

| float | >1 (FACOS, FASIN, FATANH):
Platform-dependent; IEEE-FP systems typically produce a NaN.

integer part of float cannot be represented by d in F>D:
Platform-dependent; typically, some double number is produced and no error
is reported.

string larger than pictured numeric output area (f., fe., fs.):
Precision characters of the numeric output area are used. If precision is too
high, these words will smash the data or code close to here.

9.8 The optional Locals word set

9.8.1 Implementation Defined Options

mazimum number of locals in a definition:
s" #locals" environment? drop .. Currently 15. This is a lower bound, e.g.,
on a 32-bit machine there can be 41 locals of up to 8 characters. The number
of locals in a definition is bounded by the size of locals-buffer, which contains
the names of the locals.

Chapter 9: Standard conformance 301

9.8.2 Ambiguous conditions

executing a named local in interpretation state:
Compiles the local into the current definition (just as in compile state); in
addition text-interpreting a local in interpretation state gives an “is compile-
only” warning.

name not defined by VALUE or (LOCAL) (TO):
-32 throw (Invalid name argument)

9.9 The optional Memory-Allocation word set

9.9.1 Implementation Defined Options

values and meaning of ior:
The idors returned by the file and memory allocation words are intended as
throw codes. They typically are in the range -512—-2047 of OS errors. The
mapping from OS error numbers to iors is -512—errno.

9.10 The optional Programming-Tools word set

9.10.1 Implementation Defined Options

ending sequence for input following ; CODE and CODE:
END-CODE

manner of processing input following ; CODE and CODE:
The ASSEMBLER vocabulary is pushed on the search order stack, and the input
is processed by the text interpreter, (starting) in interpret state.

search order capability for EDITOR and ASSEMBLER:
The Search-Order word set.

source and format of display by SEE:
The source for see is the executable code used by the inner interpreter. The
current see tries to output Forth source code (and on some platforms, assembly
code for primitives) as well as possible.

9.10.2 Ambiguous conditions

deleting the compilation word list (FORGET):
Not implemented (yet).

fewer than u+1 items on the control-flow stack (CS-PICK, CS-ROLL):
This typically results in an abort" with a descriptive error message (may change
into a -22 throw (Control structure mismatch) in the future). You may also
get a memory access error. If you are unlucky, this ambiguous condition is not
caught.

name can’t be found (FORGET):
Not implemented (yet).

Chapter 9: Standard conformance 302

name not defined via CREATE:
; CODE behaves like DOES> in this respect, i.e., it changes the execution semantics
of the last defined word no matter how it was defined.

POSTPONE applied to [IF]:
After defining : X POSTPONE [IF] ; IMMEDIATE. X is equivalent to [IF].

reaching the end of the input source before matching [ELSE] or [THEN]:
Continue in the same state of conditional compilation in the next outer input
source. Currently there is no warning to the user about this.

removing a needed definition (FORGET):
Not implemented (yet).

9.11 The optional Search-Order word set

9.11.1 Implementation Defined Options

mazimum number of word lists in search order:
s" wordlists" environment? drop .. Currently 16.

minimum search order:
root root.

9.11.2 Ambiguous conditions

changing the compilation word list (during compilation):
The word is entered into the word list that was the compilation word list at the
start of the definition. Any changes to the name field (e.g., immediate) or the
code field (e.g., when executing DOES>) are applied to the latest defined word
(as reported by latest or latestxt), if possible, irrespective of the compilation
word list.

search order empty (previous):
abort" Vocstack empty".

too many word lists in search order (also):
abort" Vocstack full".

303

10 Should I use Gforth extensions?

As you read through the rest of this manual, you will see documentation for Standard
words, and documentation for some appealing Gforth extensions. You might ask yourself
the question: “Should I restrict myself to the standard, or should I use the extensions?”

The answer depends on the goals you have for the program you are working on:

Is it just for yourself or do you want to share it with others?
If you want to share it, do the others all use Gforth?

If it is just for yourself, do you want to restrict yourself to Gforth?

If restricting the program to Gforth is ok, then there is no reason not to use extensions.

It is still a good idea to keep to the standard where it is easy, in case you want to reuse
these parts in another program that you want to be portable.

If you want to be able to port the program to other Forth systems, there are the following

points to consider:

Most Forth systems that are being maintained support Standard Forth. So if your
program complies with the standard, it will be portable among many systems.

A number of the Gforth extensions can be implemented in Standard Forth using public-
domain files provided in the compat/ directory. These are mentioned in the text in
passing. There is no reason not to use these extensions, your program will still be
Standard Forth compliant; just include the appropriate compat files with your program.

The tool ans-report.fs (see (undefined) [Standard Report], page (undefined)) makes
it easy to analyse your program and determine what non-Standard words it relies upon.
However, it does not check whether you use standard words in a non-standard way.

Some techniques are not standardized by Standard Forth, and are hard or impossible
to implement in a standard way, but can be implemented in most Forth systems easily,
and usually in similar ways (e.g., accessing word headers). Forth has a rich historical
precedent for programmers taking advantage of implementation-dependent features of
their tools (for example, relying on a knowledge of the dictionary structure). Some-
times these techniques are necessary to extract every last bit of performance from the
hardware, sometimes they are just a programming shorthand.

Does using a Gforth extension save more work than the porting this part to other Forth
systems (if any) will cost?

Is the additional functionality worth the reduction in portability and the additional
porting problems?

In order to perform these considerations, you need to know what’s standard and what’s

not. This manual generally states if something is non-standard, but the authoritative source
is the standard document (https://forth-standard.org/standard/words). Appendix A
of the Standard (Rationale) provides a valuable insight into the thought processes of the
technical committee.

Note also that portability between Forth systems is not the only portability issue; there

is also the issue of portability between different platforms (processor/OS combinations).

https://forth-standard.org/standard/words

304

11 Model

This chapter has yet to be written. It will contain information, on which internal structures
you can rely.

305

12 Integrating Gforth into C programs

Several people like to use Forth as scripting language for applications that are otherwise
written in C, C++, or some other language.

The Forth system ATLAST provides facilities for embedding it into applications; unfor-
tunately it has several disadvantages: most importantly, it is not based on Standard Forth,
and it is apparently dead (i.e., not developed further and not supported). The facilities
provided by Gforth in this area are inspired by ATLAST’s facilities, so making the switch
should not be hard.

We also tried to design the interface such that it can easily be implemented by other
Forth systems, so that we may one day arrive at a standardized interface. Such a standard
interface would allow you to replace the Forth system without having to rewrite C code.

You embed the Gforth interpreter by linking with the library libgforth.a or
libgforth.so (give the compiler the option -lgforth, or for one of the other engines
-lgforth-fast, -lgforth-itc, or -lgforth-ditc). All global symbols in this library
that belong to the interface, have the prefix gforth_; if a common interface emerges, the
functions may also be available through #defines with the prefix forth_.

You can include the declarations of Forth types, the functions and variables of the
interface with #include <gforth.h>.

You can now run a Gforth session by either calling gforth_main or using the components:

Cell gforth_main(int argc, char **argv, char **env)

{
Cell retvalue=gforth_start(argc, argv);
if (retvalue == -56) { /* throw-code for quit */
retvalue = gforth_bootmessage(); // show boot message
if (retvalue == -56)
retvalue = gforth_quit(); // run quit loop
}
gforth_cleanupQ);
gforth_printmetrics();
// gforth_free_dict(); // if you want to restart, do this
return retvalue;
}

To interact with the Forth interpreter, there’s Xt gforth_find(Char * name) and Cell
gforth_execute (Xt xt).

More documentation needs to be put here.

12.1 Types
Cell, UCell: data stack elements.

Float: float stack element.

Address, Xt, Label: pointer typies to memory, Forth words, and Forth instructions
inside the VM.

Chapter 12: Integrating Gforth into C programs 306

12.2 Variables

Data and FP Stack pointer. Area sizes. Accessing the Stacks
gforth_SP, gforth_FP.

12.3 Functions

void
Cell

xgforth_engine (Xt *, stackpointers *);
gforth_main(int argc, char **argv, char **env);

int gforth_args(int argc, char **argv, char **path, char *ximagename);
ImageHeader* gforth_loader(char* imagename, char* path);

user_

void
void
void
Cell
Cell
void
Cell
Cell

areax gforth_stacks(Cell dsize, Cell rsize, Cell fsize, Cell lsize);|}
gforth_free_stacks(user_area* t);

gforth_setstacks(user_area * t);

gforth_free_dict();

gforth_go(Xt* ip0);

gforth_boot(int argc, char** argv, char* path);

gforth_bootmessage() ;

gforth_start(int argc, char *x argv);

gforth_quit();

Xt gforth_find(Char * name) ;

Cell
void
void
void

gforth_execute (Xt xt);
gforth_cleanup();
gforth_printmetrics();
gforth_setwinch();

12.4 Signals

Gforth sets up signal handlers to catch exceptions and window size changes. This may
interfere with your C program.

307

13 Emacs and Gforth

Gforth comes with gforth.el, an improved version of forth.el by Goran Rydqvist (in-
cluded in the TILE package). The improvements are:

e A better handling of indentation.

e A custom hilighting engine for Forth-code.

e Comment paragraph filling (M-q)

e Commenting (C-x \) and uncommenting (C-u C-x \) of regions

e Removal of debugging tracers (C-x ~, see (undefined) [Debugging], page (undefined)).
e Support of the info-lookup feature for looking up the documentation of a word.

e Support for reading and writing blocks files.

To get a basic description of these features, enter Forth mode and type C-h m.

In addition, Gforth supports Emacs quite well: The source code locations given in error
messages, debugging output (from ~~) and failed assertion messages are in the right format
for Emacs’ compilation mode (see Section “Running Compilations under Emacs” in Emacs
Manual) so the source location corresponding to an error or other message is only a few
keystrokes away (C-x ~ for the next error, C-c C-c for the error under the cursor).

Moreover, for words documented in this manual, you can look up the glossary entry
quickly by using C-h TAB (info-lookup-symbol, see Section “Documentation Commands”
in Emacs Manual). This feature requires Emacs 20.3 or later and does not work for words
containing :.

13.1 Installing gforth.el

To make the features from gforth.el available in Emacs, add the following lines to your
.emacs file:

(autoload 'forth-mode "gforth.el")

(setq auto-mode-alist (cons '("\\.fs\\'" . forth-mode)
auto-mode-alist))

(autoload 'forth-block-mode "gforth.el")

(setq auto-mode-alist (cons '("\\.fb\\'" . forth-block-mode)
auto-mode-alist))

(add-hook 'forth-mode-hook (function (lambda ()
;; customize variables here:
(setq forth-indent-level 4)
(setq forth-minor-indent-level 2)
(setq forth-hilight-level 3)

L

)))

13.2 Emacs Tags

If you require etags.fs, a new TAGS file will be produced (see Section “Tags Tables”
in Emacs Manual) that contains the definitions of all words defined afterwards. You can
then find the source for a word using M-.. Note that Emacs can use several tags files

Chapter 13: Emacs and Gforth 308

at the same time (e.g., one for the Gforth sources and one for your program, see Sec-
tion “Selecting a Tags Table” in Emacs Manual). The TAGS file for the preloaded words
is $(datadir)/gforth/$ (VERSION) /TAGS (e.g., /usr/local/share/gforth/0.2.0/TAGS).
To get the best behaviour with etags.fs, you should avoid putting definitions both be-
fore and after require etc., otherwise you will see the same file visited several times by
commands like tags-search.

13.3 Hilighting

gforth.el comes with a custom source hilighting engine. When you open a file in forth-
mode, it will be completely parsed, assigning faces to keywords, comments, strings etc.
While you edit the file, modified regions get parsed and updated on-the-fly.

Use the variable ‘forth-hilight-level’ to change the level of decoration from 0 (no hilighting
at all) to 3 (the default). Even if you set the hilighting level to 0, the parser will still work
in the background, collecting information about whether regions of text are “compiled” or
“interpreted”. Those information are required for auto-indentation to work properly. Set
‘forth-disable-parser’ to non-nil if your computer is too slow to handle parsing. This will
have an impact on the smartness of the auto-indentation engine, though.

Sometimes Forth sources define new features that should be hilighted, new control struc-
tures, defining-words etc. You can use the variable ‘forth-custom-words’ to make forth-
mode hilight additional words and constructs. See the docstring of ‘forth-words’ for details
(in Emacs, type C-h v forth-words).

‘forth-custom-words’ is meant to be customized in your .emacs file. To customize hi-
lighing in a file-specific manner, set ‘forth-local-words’ in a local-variables section at the
end of your source file (see Section “Variables” in Emacs Manual).

Example:

0 [IF]
Local Variables:
forth-local-words:
((("t:") definition-starter (font-lock-keyword-face . 1)
"[\t\n]" t name (font-lock-function-name-face . 3))
((";t") definition-ender (font-lock-keyword-face . 1)))
End:
[THEN]

13.4 Auto-Indentation

forth-mode automatically tries to indent lines in a smart way, whenever you type TAB or
break a line with C-m.

Simple customization can be achieved by setting ‘forth-indent-level’ and ‘forth-minor-
indent-level’ in your .emacs file. For historical reasons gforth.el indents per default by
multiples of 4 columns. To use the more traditional 3-column indentation, add the following
lines to your .emacs:

(add-hook 'forth-mode-hook (function (lambda ()
;; customize variables here:
(setq forth-indent-level 3)

Chapter 13: Emacs and Gforth 309

(setq forth-minor-indent-level 1)
)))

If you want indentation to recognize non-default words, customize it by setting ‘forth-
custom-indent-words’ in your .emacs. See the docstring of ‘forth-indent-words’ for details
(in Emacs, type C-h v forth-indent-words).

To customize indentation in a file-specific manner, set ‘forth-local-indent-words’ in a
local-variables section at the end of your source file (see Section “Local Variables in Files”
in Emacs Manual).

Example:

0 [IF]
Local Variables:
forth-local-indent-words:
(C"e:") (0. 2) (0. 2))
((";e") (=2 ..0) (0. -2)))
End:
[THEN]

13.5 Blocks Files

forth-mode Autodetects blocks files by checking whether the length of the first line exceeds
1023 characters. It then tries to convert the file into normal text format. When you save
the file, it will be written to disk as normal stream-source file.

If you want to write blocks files, use forth-blocks-mode. It inherits all the features
from forth-mode, plus some additions:

e Files are written to disk in blocks file format.

e Screen numbers are displayed in the mode line (enumerated beginning with the value
of ‘forth-block-base’)

e Warnings are displayed when lines exceed 64 characters.

e The beginning of the currently edited block is marked with an overlay-arrow.

There are some restrictions you should be aware of. When you open a blocks file that
contains tabulator or newline characters, these characters will be translated into spaces
when the file is written back to disk. If tabs or newlines are encountered during blocks file
reading, an error is output to the echo area. So have a look at the ‘*Messages™ buffer,
when Emacs’ bell rings during reading.

Please consult the docstring of forth-blocks-mode for more information by typing C-h
v forth-blocks-mode).

310

14 Image Files

An image file is a file containing an image of the Forth dictionary, i.e., compiled Forth code
and data residing in the dictionary. By convention, we use the extension .fi for image files.

14.1 Image Licensing Issues

An image created with gforthmi (see (undefined) [gforthmi], page (undefined)) or
savesystem (see (undefined) [Non-Relocatable Image Files|, page (undefined)) includes the
original image; i.e., according to copyright law it is a derived work of the original image.

Since Gforth is distributed under the GNU GPL, the newly created image falls under
the GNU GPL, too. In particular, this means that if you distribute the image, you have to
make all of the sources for the image available, including those you wrote. For details see
(undefined) [GNU General Public License (Section 3)], page (undefined).

If you create an image with cross (see (undefined) [cross.fs|, page (undefined)), the
image contains only code compiled from the sources you gave it; if none of these sources
is under the GPL, the terms discussed above do not apply to the image. However, if your
image needs an engine (a gforth binary) that is under the GPL, you should make sure that
you distribute both in a way that is at most a mere aggregation, if you don’t want the terms
of the GPL to apply to the image.

14.2 Image File Background

Gforth consists not only of primitives (in the engine), but also of definitions written in
Forth. Since the Forth compiler itself belongs to those definitions, it is not possible to start
the system with the engine and the Forth source alone. Therefore we provide the Forth
code as an image file in nearly executable form. When Gforth starts up, a C routine loads
the image file into memory, optionally relocates the addresses, then sets up the memory
(stacks etc.) according to information in the image file, and (finally) starts executing Forth
code.

The default image file is gforth.fi (in the GFORTHPATH). You can use a different image
by using the -i, --image-file or -—appl-image options (see (undefined) [Invoking Gforth],
page (undefined)), e.g.:

gforth-fast -i myimage.fi

There are different variants of image files, and they represent different compromises
between the goals of making it easy to generate image files and making them portable.

Win32Forth 3.4 and Mitch Bradley’s cforth use relocation at run-time. This avoids
many of the complications discussed below (image files are data relocatable without further
ado), but costs performance (one addition per memory access) and makes it difficult to pass
addresses between Forth and library calls or other programs.

By contrast, the Gforth loader performs relocation at image load time. The loader also
has to replace tokens that represent primitive calls with the appropriate code-field addresses
(or code addresses in the case of direct threading).

There are three kinds of image files, with different degrees of relocatability:
non-relocatable, data-relocatable, and fully relocatable image files.

Chapter 14: Image Files 311

These image file variants have several restrictions in common; they are caused by the
design of the image file loader:

e There is only one segment; in particular, this means, that an image file cannot represent
ALLOCATEd memory chunks (and pointers to them). The contents of the stacks are not
represented, either.

e The only kinds of relocation supported are: adding the same offset to all cells that
represent data addresses; and replacing special tokens with code addresses or with
pieces of machine code.

If any complex computations involving addresses are performed, the results cannot be
represented in the image file. Several applications that use such computations come to
mind:

— Hashing addresses (or data structures which contain addresses) for table lookup. If
you use Gforth’s tables or wordlists for this purpose, you will have no problem,
because the hash tables are recomputed automatically when the system is started.
If you use your own hash tables, you will have to do something similar.

— There’s a cute implementation of doubly-linked lists that uses XORed addresses.
You could represent such lists as singly-linked in the image file, and restore the
doubly-linked representation on startup.!

— The code addresses of run-time routines like docol: cannot be represented in
the image file (because their tokens would be replaced by machine code in direct
threaded implementations). As a workaround, compute these addresses at run-
time with >code-address from the executions tokens of appropriate words (see
the definitions of docol: and friends in kernel/getdoers.fs).

— On many architectures addresses are represented in machine code in some shifted
or mangled form. You cannot put CODE words that contain absolute addresses in
this form in a relocatable image file. Workarounds are representing the address in
some relative form (e.g., relative to the CFA, which is present in some register),
or loading the address from a place where it is stored in a non-mangled form.

14.3 Non-Relocatable Image Files

These files are simple memory dumps of the dictionary. They are specific to the executable
(i.e., gforth file) they were created with. What’s worse, they are specific to the place
on which the dictionary resided when the image was created. Now, there is no guarantee
that the dictionary will reside at the same place the next time you start Gforth, so there’s
no guarantee that a non-relocatable image will work the next time (Gforth will complain
instead of crashing, though). Indeed, on OSs with (enabled) address-space randomization
non-relocatable images are unlikely to work.

You can create a non-relocatable image file with savesystem, e.g.:
gforth app.fs -e "savesystem app.fi bye"
savesystem ("image" —) gforth-0.2

!'In my opinion, though, you should think thrice before using a doubly-linked list (whatever
implementation).

Chapter 14: Image Files 312

14.4 Data-Relocatable Image Files

These files contain relocatable data addresses, but fixed code addresses (instead of tokens).
They are specific to the executable (i.e., gforth file) they were created with. Also, they
disable dynamic native code generation (typically a factor of 2 in speed). You get a data-
relocatable image, if you pass the engine you want to use through the GFORTHD environment
variable to gforthmi (see (undefined) [gforthmi], page (undefined)), e.g.

GFORTHD="/usr/bin/gforth-fast --no-dynamic" gforthmi myimage.fi source.fs|i

Note that the --no-dynamic is required here for the image to work (otherwise it will
contain references to dynamically generated code that is not saved in the image).

14.5 Fully Relocatable Image Files

These image files have relocatable data addresses, and tokens for code addresses. They can
be used with different binaries (e.g., with and without debugging) on the same machine,
and even across machines with the same data formats (byte order, cell size, floating point
format), and they work with dynamic native code generation. However, they are usually
specific to the version of Gforth they were created with. The files gforth.fi and kernl*.fi
are fully relocatable.

There are two ways to create a fully relocatable image file:

14.5.1 gforthmi

You will usually use gforthmi. If you want to create an image file that contains everything
you would load by invoking Gforth with gforth options, you simply say:

gforthmi file options

E.g., if you want to create an image asm.fi that has the file asm.fs loaded in addition
to the usual stuff, you could do it like this:

gforthmi asm.fi asm.fs

gforthmi is implemented as a sh script and works like this: It produces two non-
relocatable images for different addresses and then compares them. Its output reflects
this: first you see the output (if any) of the two Gforth invocations that produce the non-
relocatable image files, then you see the output of the comparing program: It displays the
offset used for data addresses and the offset used for code addresses; moreover, for each cell
that cannot be represented correctly in the image files, it displays a line like this:

78DC BFFFFAS50 BFFFFA40

This means that at offset $78dc from forthstart, one input image contains $bffffa50,
and the other contains $bffffa40. Since these cells cannot be represented correctly in the
output image, you should examine these places in the dictionary and verify that these cells
are dead (i.e., not read before they are written).

If you insert the option --application in front of the image file name, you will get an
image that uses the -—appl-image option instead of the --image-file option (see (unde-
fined) [Invoking Gforth], page (undefined)). When you execute such an image on Unix (by
typing the image name as command), the Gforth engine will pass all options to the image
instead of trying to interpret them as engine options.

If you type gforthmi with no arguments, it prints some usage instructions.

Chapter 14: Image Files 313

There are a few wrinkles: After processing the passed options, the words savesystem and
bye must be visible. A special doubly indirect threaded version of the gforth executable
is used for creating the non-relocatable images; you can pass the exact filename of this
executable through the environment variable GFORTHD (default: gforth-ditc); if you pass
a version that is not doubly indirect threaded, you will not get a fully relocatable image,
but a data-relocatable image (see (undefined) [Data-Relocatable Image Files], page (unde-
fined)), because there is no code address offset). The normal gforth executable is used for
creating the relocatable image; you can pass the exact filename of this executable through
the environment variable GFORTH.

14.5.2 cross.fs

You can also use cross, a batch compiler that accepts a Forth-like programming language
(see (undefined) [Cross Compiler], page (undefined)).

cross allows you to create image files for machines with different data sizes and data
formats than the one used for generating the image file. You can also use it to create
an application image that does not contain a Forth compiler. These features are bought
with restrictions and inconveniences in programming. E.g., addresses have to be stored in
memory with special words (A!, A,, etc.) in order to make the code relocatable.

14.6 Stack and Dictionary Sizes

If you invoke Gforth with a command line flag for the size (see (undefined) [Invoking Gforth],
page (undefined)), the size you specify is stored in the dictionary. If you save the dictionary
with savesystem or create an image with gforthmi, this size will become the default for the
resulting image file. E.g., the following will create a fully relocatable version of gforth.fi
with a 1MB dictionary:

gforthmi gforth.fi -m 1M

In other words, if you want to set the default size for the dictionary and the stacks of
an image, just invoke gforthmi with the appropriate options when creating the image.

Note: For cache-friendly behaviour (i.e., good performance), you should make the sizes
of the stacks modulo, say, 2K, somewhat different. E.g., the default stack sizes are: data:
16k (mod 2k=0); fp: 15.5k (mod 2k=1.5k); return: 15k(mod 2k=1k); locals: 14.5k (mod
2k=0.5k).

14.7 Running Image Files

You can invoke Gforth with an image file ¥mage instead of the default gforth.fi with the
-i flag (see (undefined) [Invoking Gforth], page (undefined)):

gforth -i image

If your operating system supports starting scripts with a line of the form #! ..., you
just have to type the image file name to start Gforth with this image file (note that the file
extension .fi is just a convention). I.e., to run Gforth with the image file image, you can
just type image instead of gforth -i image. This works because every .fi file starts with
a line of this format:

#! /usr/local/bin/gforth-0.4.0 -i

Chapter 14: Image Files 314

The file and pathname for the Gforth engine specified on this line is the specific Gforth
executable that it was built against; i.e. the value of the environment variable GFORTH at
the time that gforthmi was executed.

You can make use of the same shell capability to make a Forth source file into an
executable. For example, if you place this text in a file:

#! /usr/local/bin/gforth

." Hello, world" CR

bye
and then make the file executable (chmod +x in Unix), you can run it directly from the
command line. The sequence #! is used in two ways; firstly, it is recognised as a “magic
sequence” by the operating system? secondly it is treated as a comment character by Gforth.
Because of the second usage, a space is required between #! and the path to the executable
(moreover, some Unixes require the sequence #! /).

Most Unix systems (including Linux) support exactly one option after the binary name.
If that is not enough, you can use the following trick:

#! /bin/sh

c## o, 0 [if]

exec gforth -m 10M -d 1M $0 "$e@"

[then]

." Hello, world" cr

bye \ caution: this prevents (further) processing of "$@"

First this script is interpreted as shell script, which treats the first two lines as (mostly)
comments, then performs the third line, which invokes gforth with this script ($0) as param-
eter and its parameters as additional parameters ("$@"). Then this script is interpreted as
Forth script, which first defines a colon definition ##, then ignores everything up to [then]
and finally processes the following Forth code. You can also use

#0 [if]
in the second line, but this works only in Gforth-0.7.0 and later.

The gforthmi approach is the fastest one, the shell-based one is slowest (needs to start
an additional shell). An additional advantage of the shell approach is that it is unnecessary
to know where the Gforth binary resides, as long as it is in the $PATH.

#! (—) gforth-0.2 “hash-bang”

An alias for \

14.8 Modifying the Startup Sequence

You can add your own initialization to the startup sequence of an image through the deferred
word 'cold. 'cold is invoked just before the image-specific command line processing (i.e.,
loading files and evaluating (-e) strings) starts.

2 The Unix kernel actually recognises two types of files: executable files and files of data, where the data
is processed by an interpreter that is specified on the “interpreter line” — the first line of the file, starting
with the sequence #!. There may be a small limit (e.g., 32) on the number of characters that may be
specified on the interpreter line.

Chapter 14: Image Files 315

A sequence for adding your initialization usually looks like this:

:noname
Defers 'cold \ do other initialization stuff (e.g., rehashing wordlists)]]
. \ your stuff
; IS 'cold
After 'cold, Gforth processes the image options (see (undefined) [Invoking Gforth],
page (undefined)), and then it performs bootmessage, another deferred word. This normally
prints Gforth’s startup message and does nothing else.

So, if you want to make a turnkey image (i.e., an image for an application instead of an
extended Forth system), you can do this in several ways:

e If you want to do your interpretation of the OS command-line arguments, hook
into 'cold. In that case you probably also want to build the image with gforthmi
--application (see (undefined) [gforthmi], page (undefined)) to keep the engine
from processing OS command line options. You can then do your own command-line
processing with next-arg

e If you want to have the normal Gforth processing of OS command-line arguments, but
specify your own command-line options, hook into process-option.

e If you want to have more options in addition to the ones that come with Gforth, define
words into the options vocabulary.

e If you want to display your own boot message, hook into bootmessage.
In either case, you probably do not want the word that you execute in these hooks to

exit normally, but use bye or throw. Otherwise the Gforth startup process would continue
and eventually present the Forth command line to the user.

'cold (—) gforth-0.2 “tick-cold”

Hook (deferred word) for things to do right before interpreting the OS command-line
arguments. Normally does some initializations that you also want to perform.

bootmessage (—) gforth-0.4

Hook (deferred word) executed right after interpreting the OS command-line arguments.
Normally prints the Gforth startup message.

process-option (addr v — ... zt | 0) gforth-0.7

Recognizer that processes an option, returns an execute-only xt to process the option

316

15 Engine

Reading this chapter is not necessary for programming with Gforth. It may be helpful for
finding your way in the Gforth sources.

The ideas in this section have also been published in the following papers: Bernd
Paysan, ANS fig/GNU/??? Forth (in German), Forth-Tagung ’93; M. Anton Ertl, A
Portable Forth Engine (https://www.complang.tuwien.ac.at/papers/ertl193.ps.Z),
EuroForth ’93; M. Anton Ertl, Threaded code variations and optimizations (extended
version) (https://www.complang.tuwien.ac.at/papers/ertl02.ps.gz), Forth-Tagung
"02.

15.1 Portability

An important goal of the Gforth Project is availability across a wide range of personal
machines. fig-Forth, and, to a lesser extent, F83, achieved this goal by manually coding
the engine in assembly language for several then-popular processors. This approach is very
labor-intensive and the results are short-lived due to progress in computer architecture.

Others have avoided this problem by coding in C, e.g., Mitch Bradley (cforth), Mikael
Patel (TILE) and Dirk Zoller (pfe). This approach is particularly popular for UNIX-based
Forths due to the large variety of architectures of UNIX machines. Unfortunately an im-
plementation in C does not mix well with the goals of efficiency and with using traditional
techniques: Indirect or direct threading cannot be expressed in C, and switch threading,
the fastest technique available in C, is significantly slower. Another problem with C is that
it is very cumbersome to express double integer arithmetic.

Fortunately, there is a portable language that does not have these limitations: GNU
C, the version of C processed by the GNU C compiler (see Section “Extensions to the C
Language Family” in GNU C Manual). Its labels as values feature (see Section “Labels
as Values” in GNU C Manual) makes direct and indirect threading possible, its long long
type (see Section “Double-Word Integers” in GNU C Manual) corresponds to Forth’s dou-
ble numbers on many systems. GNU C is freely available on all important (and many
unimportant) UNIX machines, VMS, 80386s running MS-DOS, the Amiga, and the Atari
ST, so a Forth written in GNU C can run on all these machines.

Writing in a portable language has the reputation of producing code that is slower than
assembly. For our Forth engine we repeatedly looked at the code produced by the compiler
and eliminated most compiler-induced inefficiencies by appropriate changes in the source
code.

However, register allocation cannot be portably influenced by the programmer, leading
to some inefficiencies on register-starved machines. We use explicit register declarations (see
Section “Variables in Specified Registers” in GNU C Manual) to improve the speed on some
machines. They are turned on by using the configuration flag --enable-force-reg (gcc
switch -DFORCE_REG). Unfortunately, this feature not only depends on the machine, but
also on the compiler version: On some machines some compiler versions produce incorrect
code when certain explicit register declarations are used. So by default -DFORCE_REG is not
used.

https://www.complang.tuwien.ac.at/papers/ertl93.ps.Z
https://www.complang.tuwien.ac.at/papers/ertl93.ps.Z
https://www.complang.tuwien.ac.at/papers/ertl02.ps.gz
https://www.complang.tuwien.ac.at/papers/ertl02.ps.gz

Chapter 15: Engine 317

15.2 Threading

GNU C’s labels as values extension (available since gcc-2.0, see Section “Labels as Values”
in GNU C Manual) makes it possible to take the address of label by writing &&label. This
address can then be used in a statement like goto *address. l.e., goto *&&x is the same
as goto x.

With this feature an indirect threaded NEXT looks like:

cfa = *ip++;
ca = xcfa;
goto *ca;

For those unfamiliar with the names: ip is the Forth instruction pointer; the cfa (code-
field address) corresponds to Standard Forth’s execution token and points to the code field
of the next word to be executed; The ca (code address) fetched from there points to some
executable code, e.g., a primitive or the colon definition handler docol.

Direct threading is even simpler:

ca = *ip++;
goto *ca;

Of course we have packaged the whole thing neatly in macros called NEXT and NEXT1
(the part of NEXT after fetching the cfa).

15.2.1 Scheduling

There is a little complication: Pipelined and superscalar processors, i.e., RISC and some
modern CISC machines can process independent instructions while waiting for the results
of an instruction. The compiler usually reorders (schedules) the instructions in a way that
achieves good usage of these delay slots. However, on our first tries the compiler did not do
well on scheduling primitives. E.g., for + implemented as

n=sp[0]+sp[1];
spt+;

sp[0]=n;

NEXT;

the NEXT comes strictly after the other code, i.e., there is nearly no scheduling. After a
little thought the problem becomes clear: The compiler cannot know that sp and ip point
to different addresses (and the version of gcc we used would not know it even if it was
possible), so it could not move the load of the cfa above the store to the TOS. Indeed the
pointers could be the same, if code on or very near the top of stack were executed. In the
interest of speed we chose to forbid this probably unused “feature” and helped the compiler
in scheduling: NEXT is divided into several parts: NEXT_PO, NEXT_P1 and NEXT_P2). + now
looks like:

NEXT_PO;
n=sp[0]+sp[1];
spt+;

NEXT_P1;
spl[0]=n;
NEXT_P2;

Chapter 15: Engine 318

There are various schemes that distribute the different operations of NEXT between these
parts in several ways; in general, different schemes perform best on different processors.
We use a scheme for most architectures that performs well for most processors of this
architecture; in the future we may switch to benchmarking and chosing the scheme on
installation time.

15.2.2 Direct or Indirect Threaded?

Threaded forth code consists of references to primitives (simple machine code routines like
+) and to non-primitives (e.g., colon definitions, variables, constants); for a specific class
of non-primitives (e.g., variables) there is one code routine (e.g., dovar), but each variable
needs a separate reference to its data.

Traditionally Forth has been implemented as indirect threaded code, because this allows
to use only one cell to reference a non-primitive (basically you point to the data, and find
the code address there).

However, threaded code in Gforth (since 0.6.0) uses two cells for non-primitives, one for
the code address, and one for the data address; the data pointer is an immediate argument
for the virtual machine instruction represented by the code address. We call this primitive-
centric threaded code, because all code addresses point to simple primitives. E.g., for a
variable, the code address is for 1it (also used for integer literals like 99).

Primitive-centric threaded code allows us to use (faster) direct threading as dispatch
method, completely portably (direct threaded code in Gforth before 0.6.0 required
architecture-specific code). It also eliminates the performance problems related to
I-cache consistency that 386 implementations have with direct threaded code, and allows
additional optimizations.

There is a catch, however: the xt parameter of execute can occupy only one cell, so
how do we pass non-primitives with their code and data addresses to them? Our answer is
to use indirect threaded dispatch for execute and other words that use a single-cell xt. So,
normal threaded code in colon definitions uses direct threading, and execute and similar
words, which dispatch to xts on the data stack, use indirect threaded code. We call this
hybrid direct/indirect threaded code.

The engines gforth and gforth-fast use hybrid direct/indirect threaded code. This
means that with these engines you cannot use , to compile an xt. Instead, you have to use
compile,.

If you want to compile xts with ,, use gforth-itc. This engine uses plain old indirect
threaded code. It still compiles in a primitive-centric style, so you cannot use compile,
instead of , (e.g., for producing tables of xts with] wordl word2 ... [). If you want to do
that, you have to use gforth-itc and execute ' , is compile,. Your program can check if
it is running on a hybrid direct/indirect threaded engine or a pure indirect threaded engine
with threading-method (see (undefined) [Threading Words|, page (undefined)).

15.2.3 Dynamic Superinstructions

The engines gforth and gforth-fast use another optimization: Dynamic superinstructions
with replication. As an example, consider the following colon definition:
: squared (nl -- n2)
dup * ;

Chapter 15: Engine 319

Gforth compiles this into the threaded code sequence
dup
*
;s
Use simple-see (see (undefined) [Examining compiled code], page (undefined)) to see
the threaded code of a colon definition.

In normal direct threaded code there is a code address occupying one cell for each of
these primitives. Each code address points to a machine code routine, and the interpreter
jumps to this machine code in order to execute the primitive. The routines for these three
primitives are (in gforth-fast on the 386):

Code dup

($804B950) add esi , # -4 \ $83 $C6 $FC

($804B953) add ebx , # 4 \ $83 $C3 $4

($804B956) mov dword ptr 4 [esi] , ecx \ $89 $4E $4
($804B959) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code

Code *

($804ACC4) mov eax , dword ptr 4 [esi] \ $8B $46 $4
($804ACC7) add esi , # 4 \ $83 $C6 $4

($804ACCA) add ebx , # 4 \ $83 $C3 $4

($804ACCD) imul ecx , eax \ $F $AF $C8

($804ACDO) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code

Code ;s

($804A693) mov eax , dword ptr [edi] \ $8B $7

($804A695) add edi , #4 \ $83 $C7 $4

($804A698) 1lea ebx , dword ptr 4 [eax] \ $8D $58 $4
($804A69B) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code

With dynamic superinstructions and replication the compiler does not just lay down the
threaded code, but also copies the machine code fragments, usually without the jump at
the end.

($4057D27D) add esi , # -4 \ $83 $C6 $FC

($4057D280) add ebx , # 4 \ $83 $C3 $4

($4057D283) mov dword ptr 4 [esi] , ecx \ $89 $4E $4
($4057D286) mov eax , dword ptr 4 [esi] \ $8B $46 $4
($4057D289) add esi , #4 \ $83 $C6 $4

($4057D28C) add ebx , # 4 \ $83 $C3 $4

($4057D28F) imul ecx , eax \ $F $AF $C8

($4057D292) mov eax , dword ptr [edi] \ $8B $7

($4057D294) add edi , # 4 \ $83 $C7 $4

($4057D297) 1lea ebx , dword ptr 4 [eax] \ $8D $58 $4
($4057D29A) jmp dword ptr FC [ebx] \ $FF $63 $FC

Only when a threaded-code control-flow change happens (e.g., in ;s), the jump is ap-
pended. This optimization eliminates many of these jumps and makes the rest much more

Chapter 15: Engine 320

predictable. The speedup depends on the processor and the application; on the Athlon and
Pentium III this optimization typically produces a speedup by a factor of 2.

The code addresses in the direct-threaded code are set to point to the appropriate points
in the copied machine code, in this example like this:

primitive code address

dup $4057D27D
* $4057D286
s $4057D292

Thus there can be threaded-code jumps to any place in this piece of code. This also
simplifies decompilation quite a bit.

See-code (see (undefined) [Examining compiled code], page (undefined)) shows the
threaded code intermingled with the native code of dynamic superinstructions. These days
some additional optimizations are applied for the dynamically-generated native code, so the

output of see-code squared on gforth-fast on one particular AMDG64 installation looks
like this:

$7FB689C678C8 dup 1->2
TFB68990C1B2: mov r15,r8
$7FB689C678D0 * 2->1
TFB68990C1B5: imul r8,r1b
$7FB689C678D8 ;s 1->1

TFB68990C1B9: mov rbx, [r14]
TFB68990C1BC: add r14,$08
7FB68990C1CO: mov rax, [rbx]
TFB68990C1C3: jmp eax

You can disable this optimization with ——-no-dynamic. You can use the copying without
eliminating the jumps (i.e., dynamic replication, but without superinstructions) with --no-
super; this gives the branch prediction benefit alone; the effect on performance depends
on the CPU; on the Athlon and Pentium III the speedup is a little less than for dynamic
superinstructions with replication.

One use of these options is if you want to patch the threaded code. With superinstruc-
tions, many of the dispatch jumps are eliminated, so patching often has no effect. These
options preserve all the dispatch jumps.

On some machines dynamic superinstructions are disabled by default, because it is unsafe
on these machines. However, if you feel adventurous, you can enable it with —-dynamic.

15.2.4 DOES>

One of the most complex parts of a Forth engine is dodoes, i.e., the chunk of code executed
by every word defined by a CREATE...DOES> pair; actually with primitive-centric code, this
is only needed if the xt of the word is executed. The main problem here is: How to find
the Forth code to be executed, i.e. the code after the DOES> (the DOES>-code)? There are
two solutions:

In fig-Forth the code field points directly to the dodoes and the DOES>-code address is
stored in the cell after the code address (i.e. at CFA cell+). It may seem that this solution
is illegal in the Forth-79 and all later standards, because in fig-Forth this address lies in the
body (which is illegal in these standards). However, by making the code field larger for all

Chapter 15: Engine 321

words this solution becomes legal again. We use this approach. Leaving a cell unused in
most words is a bit wasteful, but on the machines we are targeting this is hardly a problem.

15.3 Primitives

15.3.1 Automatic Generation

Since the primitives are implemented in a portable language, there is no longer any need
to minimize the number of primitives. On the contrary, having many primitives has an
advantage: speed. In order to reduce the number of errors in primitives and to make
programming them easier, we provide a tool, the primitive generator (prims2x.fs aka
Vmgen, see Section “Introduction” in Vmgen), that automatically generates most (and
sometimes all) of the C code for a primitive from the stack effect notation. The source for
a primitive has the following form:

Forth-name (stack-effect) category [pronounc.]
[""glossary entry""]

C code

[:

Forth code)

The items in brackets are optional. The category and glossary fields are there for gener-
ating the documentation, the Forth code is there for manual implementations on machines
without GNU C. E.g., the source for the primitive + is:

+ (nl n2 --n) core plus
n = nl+n2;

This looks like a specification, but in fact n = n1+n2 is C code. Our primitive generation
tool extracts a lot of information from the stack effect notations': The number of items
popped from and pushed on the stack, their type, and by what name they are referred to in
the C code. It then generates a C code prelude and postlude for each primitive. The final
C code for + looks like this:

I_plus: /* + (nl n2 -- n) %/ /*x label, stack effect */

/*x x/ /* documentation */

NAME("+") /* debugging output (with -DDEBUG) */
{

DEF_CA /* definition of variable ca (indirect threading) */Jj
Cell nil; /* definitions of variables */

Cell n2;

Cell n;

NEXT_PO; /* NEXT part 0 */

nl = (Cell) spli]; /* input */

n2 = (Cell) TOS;

sp += 1; /* stack adjustment */

{

n = nl+n2; /* C code taken from the source */

}

1 We use a one-stack notation, even though we have separate data and floating-point stacks; The separate
notation can be generated easily from the unified notation.

Chapter 15: Engine 322

NEXT_P1; /% NEXT part 1 %/
TOS = (Cell)n; /* output */
NEXT_P2; /* NEXT part 2 */
}

This looks long and inefficient, but the GNU C compiler optimizes quite well and pro-
duces optimal code for + on, e.g., the R3000 and the HP RISC machines: Defining the ns
does not produce any code, and using them as intermediate storage also adds no cost.

There are also other optimizations that are not illustrated by this example: assignments
between simple variables are usually for free (copy propagation). If one of the stack items
is not used by the primitive (e.g. in drop), the compiler eliminates the load from the stack
(dead code elimination). On the other hand, there are some things that the compiler does
not do, therefore they are performed by prims2x.fs: The compiler does not optimize code
away that stores a stack item to the place where it just came from (e.g., over).

While programming a primitive is usually easy, there are a few cases where the pro-
grammer has to take the actions of the generator into account, most notably ?dup, but also
words that do not (always) fall through to NEXT.

For more information

15.3.2 TOS Optimization

An important optimization for stack machine emulators, e.g., Forth engines, is keeping one
or more of the top stack items in registers. If a word has the stack effect ini...inz --
outl...outy, keeping the top n items in registers

e is better than keeping n-1 items, if 2>=n and y>=n, due to fewer loads from and stores
to the stack.

e is slower than keeping n-1 items, if 2<>y and z<n and y<n, due to additional moves
between registers.

In particular, keeping one item in a register is never a disadvantage, if there are enough
registers. Keeping two items in registers is a disadvantage for frequent words like ?branch,
constants, variables, literals and i. Therefore our generator only produces code that keeps
zero or one items in registers. The generated C code covers both cases; the selection
between these alternatives is made at C-compile time using the switch -DUSE_T0S. TOS in
the C code for + is just a simple variable name in the one-item case, otherwise it is a macro
that expands into sp[0]. Note that the GNU C compiler tries to keep simple variables like
TOS in registers, and it usually succeeds, if there are enough registers.

The primitive generator performs the TOS optimization for the floating-point stack,
too (-DUSE_FTO0S). For floating-point operations the benefit of this optimization is even
larger: floating-point operations take quite long on most processors, but can be performed
in parallel with other operations as long as their results are not used. If the FP-TOS is kept
in a register, this works. If it is kept on the stack, i.e., in memory, the store into memory
has to wait for the result of the floating-point operation, lengthening the execution time of
the primitive considerably.

The TOS optimization makes the automatic generation of primitives a bit more com-
plicated. Just replacing all occurrences of sp[0] by TOS is not sufficient. There are some
special cases to consider:

Chapter 15: Engine 323

e Inthecase of dup (w —— w w) the generator must not eliminate the store to the original
location of the item on the stack, if the TOS optimization is turned on.

e Primitives with stack effects of the form -- out!...outy must store the TOS to the stack
at the start. Likewise, primitives with the stack effect in1...inx —— must load the TOS
from the stack at the end. But for the null stack effect —- no stores or loads should be
generated.

15.3.3 Produced code

To see what assembly code is produced for the primitives on your machine with your com-
piler and your flag settings, type make engine.s and look at the resulting file engine.s.
Alternatively, you can also disassemble the code of primitives with see on some architec-
tures.

15.4 Performance

On RISCs the Gforth engine is very close to optimal; i.e., it is usually impossible to write
a significantly faster threaded-code engine.

On register-starved machines like the 386 architecture processors improvements are pos-
sible, because gcc does not utilize the registers as well as a human, even with explicit register
declarations; e.g., Bernd Beuster wrote a Forth system fragment in assembly language and
hand-tuned it for the 486; this system is 1.19 times faster on the Sieve benchmark on a
486DX2/66 than Gforth compiled with gcc-2.6.3 with ~-DFORCE_REG. The situation has
improved with gce-2.95 and gforth-0.4.9; now the most important virtual machine registers
fit in real registers (and we can even afford to use the TOS optimization), resulting in a
speedup of 1.14 on the sieve over the earlier results. And dynamic superinstructions provide
another speedup (but only around a factor 1.2 on the 486).

The potential advantage of assembly language implementations is not necessarily real-
ized in complete Forth systems: We compared Gforth-0.5.9 (direct threaded, compiled with
gcc-2.95.1 and -DFORCE_REG) with Win32Forth 1.2093 (newer versions are reportedly
much faster), LMI’s NT Forth (Beta, May 1994) and Eforth (with and without peephole
(aka pinhole) optimization of the threaded code); all these systems were written in as-
sembly language. We also compared Gforth with three systems written in C: PFE-0.9.14
(compiled with gcc-2.6.3 with the default configuration for Linux: -02 -fomit-frame-
pointer -DUSE_REGS -DUNROLL_NEXT), ThisForth Beta (compiled with gcc-2.6.3 -03 -
fomit-frame-pointer; ThisForth employs peephole optimization of the threaded code) and
TILE (compiled with make opt). We benchmarked Gforth, PFE, ThisForth and TILE on
a 486DX2/66 under Linux. Kenneth O’Heskin kindly provided the results for Win32Forth
and NT Forth on a 486DX2/66 with similar memory performance under Windows NT.
Marcel Hendrix ported Eforth to Linux, then extended it to run the benchmarks, added
the peephole optimizer, ran the benchmarks and reported the results.

We used four small benchmarks: the ubiquitous Sieve; bubble-sorting and matrix multi-
plication come from the Stanford integer benchmarks and have been translated into Forth
by Martin Fraeman; we used the versions included in the TILE Forth package, but with
bigger data set sizes; and a recursive Fibonacci number computation for benchmarking call-
ing performance. The following table shows the time taken for the benchmarks scaled by

Chapter 15: Engine 324

the time taken by Gforth (in other words, it shows the speedup factor that Gforth achieved
over the other systems).

relative Win32- NT eforth This-

time Gforth Forth Forth eforth +opt PFE Forth TILE
sieve 1.00 2.16 1.78 2.16 1.32 2.46 4.96 13.37
bubble 1.00 1.93 2.07 2.18 1.29 2.21 5.70
matmul 1.00 1.92 1.76 1.90 0.96 2.06 5.32
fib 1.00 2.32 2.03 1.86 1.31 2.64 4.55 6.54

You may be quite surprised by the good performance of Gforth when compared with
systems written in assembly language. One important reason for the disappointing per-
formance of these other systems is probably that they are not written optimally for the
486 (e.g., they use the lods instruction). In addition, Win32Forth uses a comfortable, but
costly method for relocating the Forth image: like cforth, it computes the actual addresses
at run time, resulting in two address computations per NEXT (see (undefined) [Image File
Background], page (undefined)).

The speedup of Gforth over PFE, ThisForth and TILE can be easily explained with the
self-imposed restriction of the latter systems to standard C, which makes efficient threading
impossible (however, the measured implementation of PFE uses a GNU C extension: see
Section “Defining Global Register Variables” in GNU C Manual). Moreover, current C
compilers have a hard time optimizing other aspects of the ThisForth and the TILE source.

The performance of Gforth on 386 architecture processors varies widely with the version
of gcc used. E.g., gcc-2.5.8 failed to allocate any of the virtual machine registers into
real machine registers by itself and would not work correctly with explicit register declara-
tions, giving a significantly slower engine (on a 486DX2/66 running the Sieve) than the one
measured above.

Note that there have been several releases of Win32Forth since the release presented
here, so the results presented above may have little predictive value for the performance of
Win32Forth today (results for the current release on an i486DX2/66 are welcome).

In Translating Forth to Efficient C (https://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.y
by M. Anton Ertl and Martin Maierhofer (presented at EuroForth ’95), an indirect
threaded version of Gforth is compared with Win32Forth, NT Forth, PFE, ThisForth, and
several native code systems; that version of Gforth is slower on a 486 than the version used
here. You can find a newer version of these measurements at https://www.complang.
tuwien.ac.at/forth/performance.html. You can find numbers for Gforth on various
machines in Benchres.

https://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz
https://www.complang.tuwien.ac.at/forth/performance.html
https://www.complang.tuwien.ac.at/forth/performance.html

325

16 Cross Compiler

The cross compiler is used to bootstrap a Forth kernel. Since Gforth is mostly written in
Forth, including crucial parts like the outer interpreter and compiler, it needs compiled Forth
code to get started. The cross compiler allows to create new images for other architectures,
even running under another Forth system.

16.1 Using the Cross Compiler

The cross compiler uses a language that resembles Forth, but isn’t. The main difference is
that you can execute Forth code after definition, while you usually can’t execute the code
compiled by cross, because the code you are compiling is typically for a different computer
than the one you are compiling on.

The Makefile is already set up to allow you to create kernels for new architectures with
a simple make command. The generic kernels using the GCC compiled virtual machine are
created in the normal build process with make. To create a embedded Gforth executable
for e.g. the 8086 processor (running on a DOS machine), type
make kernl-8086.f1

This will use the machine description from the arch/8086 directory to create a new
kernel. A machine file may look like that:

\ Parameter for target systems 06oct92py
4 Constant cell \ cell size in bytes
2 Constant cell<< \ cell shift to bytes
5 Constant cell>bit \ cell shift to bits
8 Constant bits/char \ bits per character
8 Constant bits/byte \ bits per byte [default: 8]
8 Constant float \ bytes per float
8 Constant /maxalign \ maximum alignment in bytes

false Constant bigendian \ byte order
(true=big, false=little)

include machpc.fs \ feature list

This part is obligatory for the cross compiler itself, the feature list is used by the kernel to
conditionally compile some features in and out, depending on whether the target supports
these features.

There are some optional features, if you define your own primitives, have an assembler,

or need special, nonstandard preparation to make the boot process work. asm-include
includes an assembler, prims-include includes primitives, and >boot prepares for booting.

: asm-include ." Include assembler" cr
s" arch/8086/asm.fs" included ;

: prims-include ." Include primitives" cr
s" arch/8086/prim.fs" included ;

Chapter 16: Cross Compiler 326

: >boot ." Prepare booting" cr
s" ' boot >body into-forth 1+ !" evaluate ;

These words are used as sort of macro during the cross compilation in the file
kernel/main.fs. Instead of using these macros, it would be possible — but more
complicated — to write a new kernel project file, too.

kernel/main.fs expects the machine description file name on the stack; the cross com-
piler itself (cross.fs) assumes that either mach-file leaves a counted string on the stack,
or machine-file leaves an address, count pair of the filename on the stack.

The feature list is typically controlled using SetValue, generic files that are used by
several projects can use DefaultValue instead. Both functions work like Value, when the
value isn’t defined, but SetValue works like to if the value is defined, and DefaultValue
doesn’t set anything, if the value is defined.

\ generic mach file for pc gforth 03sep97jaw

true DefaultValue NIL \ relocating

>ENVIRON
true DefaultValue file \ controls the presence of the

\ file access wordset
true DefaultValue 0S \ flag to indicate a operating system
true DefaultValue prims \ true: primitives are c-code
true DefaultValue floating \ floating point wordset is present
true DefaultValue glocals \ gforth locals are present

\ will be loaded

true DefaultValue dcomps \ double number comparisons

true DefaultValue hash

~

hashing primitives are loaded/present

true DefaultValue xconds \ used together with glocals,
\ special conditionals supporting gforths'|]
\ local variables

true DefaultValue header \ save a header information

true DefaultValue backtrace \ enables backtrace code

false DefaultValue ec
false DefaultValue crlf

cell 2 = [IF] &32 [ELSE] &256 [THEN] KB DefaultValue kernel-size

&16 KB DefaultValue stack-size
&15 KB &512 + DefaultValue fstack-size

Chapter 16: Cross Compiler 327

&15 KB DefaultValue rstack-size
&14 KB &512 + DefaultValue lstack-size

16.2 How the Cross Compiler Works

328

17 MINOS2, a GUI library

17.1 MINOS2 object framework
MINOS2 is a GUI library, written in mini-oof2.fs’s object model. It has two main class
hierarchies:
actor (— class) minos2
class for the actions bound to a component.
widget (— class) minos2

class for visual components

17.1.1 actor methods:
caller-w (— optr) minos2
pointer back to the widget embedding the actor
active-w (— optr) minos2
pointer to the active subwidget embedding the actor
act-name$ (— addr v) minos2 “act-name-string”
Debugging aid: name of the actor
clicked (rz ry bmask n —) minos2
processed clicks
scrolled (awis dir —) minos2
process scrolling
touchdown ($rzy*n bmask —) minos2
raw click down
touchup ($rzy*n bmask —) minos2
raw click up
ukeyed (addr u —) minos2
key event, string of printable unicode characters
ekeyed (ekey —) minos2
key event, non-printable key
?inside (7z ry — act / 0) minos2 “query-inside”
check if coordinates are inside the widget
focus (—) minos2
put widget into focus
defocus (-) minos2
put widget out of focus
entered (-) minos2
react on cursor entering the widget area
left (—) minos2

Chapter 17: MINOS2, a GUI library

react on cursor leaving the widget area
show (—) minos2

widget is shown
hide (—) minos2

widget is hidden
get (— something) minos2

getter for the value behind the widget
set (something —) minos2

setter for the value behind the widget
show-you (-) minos2

make widget visible

17.1.2 widget methods:
parent-w (— optr) minos2
pointer to parent widget
act (— optr) minos2
pointer to actor
name$ (— addr v) minos2 “name-string”
Widget name for debugging and searching
x (—r) minos2
widget x coordinate
y (—r) minos2
widget y coordinate
w (—r) minos2
widget width
h (—r) minos2
widget height above baseline
d (- r) minos2
widget depth below baseline
gap (— 7) minos2
gap between lines
baseline (— r) minos2
minimun skip per line
kerning (— r) minos2
add kerning
raise (— r) minos2
raise/lower box

border (— r) minos2

329

Chapter 17: MINOS2, a GUI library

surrounding border, all directions
borderv (— r) minos2

vertical border offset
bordert (— r) minos2

top border offset
borderl (— r) minos2

left border offset
w-color (— 7) minos2

widget color index (into color map), if any
draw-init (—) minos2

init draw
draw (—) minos2

draw widget

split (firstflag rstartl rx — o rstart2) minos2

split a widget into parts for typesetting paragraphs

lastfit (-) minos2
fit last widget element in a box

hglue (— rtyp rsub radd) minos2
calculate horizontal glue

dglue (— rtyp rsub radd) minos2
calculate vertical glue below baseline

vglue (— rtyp rsub radd) minos2
calculate vertical glue above baseline

hglue@ (— rtyp rsub radd) minos2 “hglue-fetch”
cached variant of hglue

dglue@ (— rtyp rsub radd) minos2 “dglue-fetch”
cached variant of dglue

vglue® (— rtyp rsub radd) minos2 “vglue-fetch”
cached variant of vglue

xywh (— rz0 ry0 rw rh) minos2

widget bounding box, starting at the top left corner

xywhd (— rz ry rw rh rd) minos2

widget bounding box, starting at the left baseline point

'resize (rz ry rw rh rd —) minos2 “store-resize”
resize a widget

Isize (—) minos2 “store-size”
let the widget self-determine its size

dispose-widget (—) minos2

330

Chapter 17: MINOS2, a GUI library 331

get rid of a widget
.widget (—) minos2 “print-widget”

debugging: Print informations about the widget
par-split (rw —) minos2

split a paragraph by width rw
resized (—) minos2

widget is resized

Components are composed using a boxes&glue model similar to KX, including para-
graph breaking. For the sake of simplicity and portability, MINOS2 only supports a single
window, and uses OpenGL for rendering.

MINOS2 furthermore supports animations with the animation class. A color index
texture is used for different color schemes, and transition between neighboring schemes can
also be animated.

>animate (rdelta addr zt —) minos2 “to-animate”

create a new animation, calling xt with stack effect (addr r0..1 --) repeatedly, until
the rdelta timeout expired; last call is always with argument Ie for the time.

You can create named color indexes and assign them color values for the currently active
color scheme.

color: (rgba "name" —) minos2 “color-colon”
Create a (possibly shared) color index initialized with rgba
new-color: (rgha "name" —) minos2 “new-color-colon”
Create a unique color index initialized with rgba
text-color: (rgba "name" —) minos2 “text-color-colon”

Create a unique text color index initialized with rgba, the corresponding emoji color is
set to white.

text-emoji-color: (rgbatext rgbaemoji "name" —) minos2 “text-emoji-color-colon”

Create a unique text color index initialized with rgbatext, the corresponding emoji color
is set to rgbaemoji.

fade-color: (rgbal rgba2 "name" —) minos2 “fade-color-colon”

Create a unique pair of text color index initialized with rgbal and rgba2, the corre-
sponding emoji color is set to white. By slowly shifting the index from one to the next
index, the object will shift its color using a linear interpolation when redrawn.

text-emoji-fade-color: (rgbatext! ~2 rgbaemojil ~2 "name" —) minos2 “text-emoji-
fade-color-colon”

Create a unique pair of text color index initialized with rgbatextl and ~2, the corre-
sponding emoji color pair is set to rgbaemojil to ~2. By slowly shifting the index from one
to the next index, the object will shift its color using a linear interpolation when redrawn.

re-color (rgba "name" —) minos2
assign the named color index "name" in the current color scheme with the value rgba.

re-text-color (rgba "name" —) minos2

Chapter 17: MINOS2, a GUI library 332

assign the named text color index "name" in the current color scheme with the value
rgba.
re-emoji-color (rgbatext rgbaemoji "name" —) minos2

assign the named text and emoji color index "name" in the current color scheme with
the value rgbatext and rgbaemoji.

re-fade-color (rgbal rgba2 "name" —) minos2

assign the named color index pair "name" in the current color scheme with the value
rgbal and rgba2.

re-text-emoji-fade-color (rgbatext! ~2 rgbaemogil ~2 "name" —) minos2

assign the named color index pair "name" in the current color scheme with the value
rgbatextl and ~2 resp. rgbaemojil and ~2.

For a number of specific objects, there are early bound methods, that only work on these
objects

e Viewport
vp-top (0:up —) minos2
scroll viewport to top
vp-bottom (o:vp —) minos2
scroll viewport to bottom
vp-left (o:vp —) minos2
scroll viewport to left
vp-right (o:vp —) minos2
scroll viewport to right
vp-reslide (o:vp —) minos2
Adjust the sliders of a viewport after scrolling
vp-needed (2t —) minos2

collect needs in viewport’s vp-need

17.2 MINOS2 tutorial

Tutorials are small files, each showing a bit of MINOS2. For the common framework,
the file minos2/tutorial/tutorial.fs needs to be loaded first; all other tutorials in the
command line argument are included from within that file. Scroll wheel or previous/next
mouse buttons as well as clicking on the left or right edge of the window allow navigation
between the different tutorials loaded.

Le. to load the buttons tutorial, you start Gforth with
gforth minos2/tutorial/tutorial.fs buttons.fs
Available tutorials:
e buttons.fs: Clickable buttons
e plots.fs: Plot functions
e markdown.fs: Markdown document viewer

e screenshot.fs: Screenshot function

333

Appendix A Bugs

Known bugs are described in the file BUGS in the Gforth distribution.

If you find a bug, please submit a bug report through https://savannah.gnu.org/
bugs/?func=addbug&group=gforth.

e A program (or a sequence of keyboard commands) that reproduces the bug.
e A description of what you think constitutes the buggy behaviour.
e The Gforth version used (it is announced at the start of an interactive Gforth session).

e The machine and operating system (on Unix systems uname -a will report this infor-
mation).

e The installation options (you can find the configure options at the start of
config.status) and configuration (configure output or config.cache).

e A complete list of changes (if any) you (or your installer) have made to the Gforth
sources.

For a thorough guide on reporting bugs read Section “How to Report Bugs” in GNU C
Manual.

https://savannah.gnu.org/bugs/?func=addbug&group=gforth
https://savannah.gnu.org/bugs/?func=addbug&group=gforth

334

Appendix B Authors and Ancestors of Gforth

B.1 Authors and Contributors

The Gforth project was started in mid-1992 by Bernd Paysan and Anton Ertl. The third
major author was Jens Wilke. Neal Crook contributed a lot to the manual. Assemblers and
disassemblers were contributed by Andrew McKewan, Christian Pirker, Bernd Thallner, and
Michal Revucky. Lennart Benschop (who was one of Gforth’s first users, in mid-1993) and
Stuart Ramsden inspired us with their continuous feedback. Lennart Benshop contributed
glosgen.fs, while Stuart Ramsden has been working on automatic support for calling C
libraries. Helpful comments also came from Paul Kleinrubatscher, Christian Pirker, Dirk
Zoller, Marcel Hendrix, John Wavrik, Barrie Stott, Marc de Groot, Jorge Acerada, Bruce
Hoyt, Robert Epprecht, Dennis Ruffer and David N. Williams. Since the release of Gforth-
0.2.1 there were also helpful comments from many others; thank you all, sorry for not listing
you here (but digging through my mailbox to extract your names is on my to-do list).

Gforth also owes a lot to the authors of the tools we used (GCC, CVS, and autoconf,
among others), and to the creators of the Internet: Gforth was developed across the Internet,
and its authors did not meet physically for the first 4 years of development.

B.2 Pedigree

Gforth descends from bigFORTH (1993) and fig-Forth. Of course, a significant part of the
design of Gforth was prescribed by Standard Forth.

Bernd Paysan wrote bigFORTH, a descendent from TurboForth, an unreleased 32 bit
native code version of VolksForth for the Atari ST, written mostly by Dietrich Weineck.

VolksForth was written by Klaus Schleisiek, Bernd Pennemann, Georg Rehfeld and Di-
etrich Weineck for the C64 (called UltraForth there) in the mid-80s and ported to the Atari
ST in 1986. It descends from fig-Forth.

A team led by Bill Ragsdale implemented fig-Forth on many processors in 1979. Robert
Selzer and Bill Ragsdale developed the original implementation of fig-Forth for the 6502
based on microForth.

The principal architect of microForth was Dean Sanderson. microForth was FORTH,
Inc.’s first off-the-shelf product. It was developed in 1976 for the 1802, and subsequently
implemented on the 8080, the 6800 and the Z80.

All earlier Forth systems were custom-made, usually by Charles Moore, who discovered
(as he puts it) Forth during the late 60s. The first full Forth existed in 1971.

A part of the information in this section comes from The Evolution of Forth
(https://www.forth.com/resources/evolution/index.html) by Elizabeth D. Rather,
Donald R. Colburn and Charles H. Moore, presented at the HOPL-II conference and
preprinted in SIGPLAN Notices 28(3), 1993. You can find more historical and genealogical
information about Forth there. For a more general (and graphical) Forth family tree look
see https://www.complang.tuwien.ac.at/forth/family-tree/, Forth Family Tree and
Timeline.

https://www.forth.com/resources/evolution/index.html
https://www.forth.com/resources/evolution/index.html
https://www.complang.tuwien.ac.at/forth/family-tree/

335

Appendix C Other Forth-related information

There is an active news group (comp.lang.forth) discussing Forth (including Gforth) and
Forth-related issues. Its FAQs (https://www.complang.tuwien.ac.at/forth/faq/
fag-general-2.html) (frequently asked questions and their answers) contains a lot of in-
formation on Forth. You should read it before posting to comp.lang.forth.

The Forth standard is most usable in its HTML form (https://forth-standard.org/

).

https://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html
https://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html
https://forth-standard.org/
https://forth-standard.org/

336

Appendix D Licenses

D.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix D: Licenses 337

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix D: Licenses 338

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix D: Licenses 339

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix D: Licenses 340

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix D: Licenses 341

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix D: Licenses 342

D.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~“GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the

“with...Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

D.2 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright (© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

http://fsf.org/

Appendix D: Licenses 343

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes

Appendix D: Licenses 344

copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its

Appendix D: Licenses 345

content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.
b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any

Appendix D: Licenses 346

applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

Appendix D: Licenses 347

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-

Appendix D: Licenses 348

sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will

Appendix D: Licenses 349

10.

11.

automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

Appendix D: Licenses 350

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Appendix D: Licenses 351

12.

13.

14.

15.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-

Appendix D: Licenses 352

16.

17.

TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTTAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:

http://www.gnu.org/licenses/

Appendix D: Licenses 353

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

354

Word Index

This index is a list of Forth words that have “glossary” entries within this manual. Each
word is listed with its stack effect and wordset.

(Index is nonexistent)

Concept and Word Index

355

Not all entries listed in this index are present verbatim in the text. This index also dupli-
cates, in abbreviated form, all of the words listed in the Word Index (only the names are

listed for the words here).

#

##-prefix for decimal numbers 54

$

$-prefix for hexadecimal numbers............... 54

%

%-prefix for binary numbers.................... 54

&

&-prefix for decimal numbers................... 54
— tutorial....... 18
—appl-image, command-line option............... 4
—clear-dictionary, command-line option 6
—code-block-size, command-line option........... 7
—data-stack-size, command-line option........... 5
—debug, command-line option 5
—debug-mcheck, command-line option 5
—diag, command-line option 5
—dictionary-size, command-line option........... 4
—die-on-signal, command-line-option............. 6
—dynamic, command-line option................. 6
—fp-stack-size, command-line option 5
—help, command-line option 5
—ignore-async-signals, command-line-option...... 6
—image-file, command-line option................ 4
—locals-stack-size, command-line option.......... 5
—map_32bit, command-line option............... 5
—no-0Orc, command-line option 4
—no-dynamic, command-line option.............. 6
—no-dynamic-image, command-line option 6
—no-offset-im, command-line option.............. 6
—no-super, command-line option................. 6
—offset-image, command-line option.............. 5
—opt-ip-updates, command-line option........... 7
—path, command-line option..................... 4
—print-metrics, command-line option............. 7
—print-nonreloc, command-line option 8

—print-prims, command-line option 7

—print-sequences, command-line option 8
—return-stack-size, command-line option 5
—ss-greedy, command-line option 7
—ss-min-..., command-line options 6
—ss-number, command-line option 6
—tpa-noautomaton, command-line option 8
—tpa-noequiv, command-line option.............. 8
—tpa-trace, command-line option 8
—version, command-line option 5
—vm-commit, command-line option.............. 5
-d, command-line option 5
-D, command-line option........................ 5
-f, command-line option 5
-h, command-line option 5
-i, command-line option............... 4
-1, command-line option................... 5
-m, command-line option........................ 4
-p, command-line option 4
-r, command-line option.............. 5
-v, command-line option 5
-W, command-line option 9
-Wall, command-line option 9
-Werror, command-line option................... 9
-Won, command-line option 9
-Wpedantic, command-line option............... 9
Mhowit works ..o 51
.gforth-history............ 10

0

Ox-prefix for hexadecimal numbers 54

A

alignment tutorial.............. L 30
arithmetics tutorial 15
arrays tutorial oo 38
authors 10

B

batch processing with Gforth.................... 9
bye ... 9

Concept and Word Index

C

characters tutorial 29
colon definitions, tutorial....................... 18
command-line editing 10
command-line options................. 4
comments tutorialo oL 17
comparison tutorial, 23
compilation semantics.......................... 50
compilation semantics tutorial.................. 33
compilation tokens, tutorial 41
conditionals, tutorial 22
create...does> tutorial 37
CT, tutorial ... 41

D

decompilation tutorial.......................... 18
defining words tutorial 37
definition........... L 44
definitions, tutorial.............. 18
design of stack effects, tutorial 21
does> tutorial......... ... i 37

E

elements of a Forth system..................... 52
environment variables.......................... 11
exceptions tutorial 36
executing code on startup................ ... 9
execution token............. .., 44
execution tokens tutorial 35
EXOICISES + v ottt et ittt e e 53

F

factoring. 43
factoring tutorial....... oL 20
files containing Forth code, tutorial............. 17
files tutorial.......... .. o i 32
first definition........... o oL 48
flags on the command line....................... 4
flags tutorial i 23
floating point tutorial 31
Forth - an introduction 43
Forth Tutorial 14
FP tutorial 31
functions, tutorial............. 18

356
G
Gforth - leaving.......... L 9
Gforth environment 4
Gforth files ... i 11
Gforth stability 2
GFORTH — environment variable 11
GFORTHD — environment variable................ 11
GFORTHHIST — environment variable............. 11
GFORTHPATH — environment variable............. 11
GFORTHSYSTEMPREFIX — environment variable ... 11
goals of the Gforth project...................... 2
H
help ..o 9
history file............ i 10
I
if, tutorial ... 22
immediate words.......... ... o i 50
immediate, tutorial oL 33
input format for single-cell numbers............ 54
input from pipes........cooviiiiiiiiii 11
interpretation semantics............... 50
interpretation semantics tutorial 33
invoking Gforth.......... oL 4
L
LANG — environment variable.................... 11
LC_ALL — environment variable 11
LC_CTYPE — environment variable............... 11
leaving definitions, tutorial..................... 27
leaving Gforth oL 9
leaving loops, tutorial 27
license ...t e 10
literal tutorial............ oL 40
Literals (in source code)........................ 54
loading files at startup, 9
loading Forth code, tutorial 17
local variables, tutorial......................... 21
loops, counted, tutorial................ 25
loops, indefinite, tutorial 24
M
macros, advanced tutorial................... ... 40
memory access/allocation tutorial.............. 28
memory alignment tutorial..................... 30

memory overcommit for dictionary and stacks ... 5
modifying >IN 49

Concept and Word Index

N

name dictionary i 44

@)

options on the command line.................... 4
outer interpreterol 43, 45
output in pipes ... 12

overcommit memory for dictionary and stacks... 5

P

parsing words........... i 49
pipes, Gforth as part of 11
postpone tutorial il 39
Preface ... 1
procedures, tutorial 18

R

records tutorial o o il 38
recursion tutorial ool 26
return stack tutorialo o ool 27
run-time code generation, tutorial.............. 40
running Gforth...... oo 4

S

search order, tutorial........................... 41
see tutorial 18
semantics tutorial o oo 33
silent exiting from Gforth...................... 12
single-cell numbers, input format............... 54
size of the dictionary and the stacks............. 4
size parameters for command-line options 4
speed, startup ...l 12

stability of GEOTth. ...\ 'veeee e 2

357
Stack effect design, tutorial 21
stack manipulation tutorial..................... 16
stack tutorial i 15
stack-effect comments, tutorial 18
starting Gforth tutorial 14
Startup speed........ccoiiiiiiii i 12
state - effect on the text interpreter........... 49
stderr and pipeso.i il i 12
strings tutorial........... oL 29
structs tutorial.......... o il 38
structure of Forth programs.................... 51
syntax tutorial.......... ool 14
T
text interpreter............ ool 43, 45
text interpreter - effect of state................. 49
TMP, TEMP - environment variable............... 11
TOS definition........ ... 45
Tutorialo 14
types tutorial o 20
\Va
versions, invoking other versions of Gforth....... 9
%%
where to gonext......... oL 52
WOT .« ettt 44
wordlists tutorial................... 41
X
X 44
XT tutorialoouei 35

	Table of Contents

