Next: Mixed precision, Previous: Bitwise operations, Up: Arithmetic
Note that the words that compare for equality (= <> 0= 0<> d= d<>
d0= d0<>) work for for both signed and unsigned numbers.
< n1 n2 – f core “less-than”
<= n1 n2 – f gforth “less-or-equal”
<> n1 n2 – f core-ext “not-equals”
= n1 n2 – f core “equals”
> n1 n2 – f core “greater-than”
>= n1 n2 – f gforth “greater-or-equal”
0< n – f core “zero-less-than”
0<= n – f gforth “zero-less-or-equal”
0<> n – f core-ext “zero-not-equals”
0= n – f core “zero-equals”
0> n – f core-ext “zero-greater-than”
0>= n – f gforth “zero-greater-or-equal”
u< u1 u2 – f core “u-less-than”
u<= u1 u2 – f gforth “u-less-or-equal”
u> u1 u2 – f core-ext “u-greater-than”
u>= u1 u2 – f gforth “u-greater-or-equal”
within u1 u2 u3 – f core-ext “within”
u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2). This works for
unsigned and signed numbers (but not a mixture). Another way to think
about this word is to consider the numbers as a circle (wrapping
around from max-u to 0 for unsigned, and from max-n to
min-n for signed numbers); now consider the range from u2 towards
increasing numbers up to and excluding u3 (giving an empty range if
u2=u3); if u1 is in this range, within returns true.
d< d1 d2 – f double “d-less-than”
d<= d1 d2 – f gforth “d-less-or-equal”
d<> d1 d2 – f gforth “d-not-equals”
d= d1 d2 – f double “d-equals”
d> d1 d2 – f gforth “d-greater-than”
d>= d1 d2 – f gforth “d-greater-or-equal”
d0< d – f double “d-zero-less-than”
d0<= d – f gforth “d-zero-less-or-equal”
d0<> d – f gforth “d-zero-not-equals”
d0= d – f double “d-zero-equals”
d0> d – f gforth “d-zero-greater-than”
d0>= d – f gforth “d-zero-greater-or-equal”
du< ud1 ud2 – f double-ext “d-u-less-than”
du<= ud1 ud2 – f gforth “d-u-less-or-equal”
du> ud1 ud2 – f gforth “d-u-greater-than”
du>= ud1 ud2 – f gforth “d-u-greater-or-equal”