Node:Numeric comparison, Next:Mixed precision, Previous:Bitwise operations, Up:Arithmetic
Note that the words that compare for equality (= <> 0= 0<> d= d<>
d0= d0<>) work for for both signed and unsigned numbers.
< n1 n2 -- f core ``less-than''
<= n1 n2 -- f gforth ``less-or-equal''
<> n1 n2 -- f core-ext ``not-equals''
= n1 n2 -- f core ``equals''
> n1 n2 -- f core ``greater-than''
>= n1 n2 -- f gforth ``greater-or-equal''
0< n -- f core ``zero-less-than''
0<= n -- f gforth ``zero-less-or-equal''
0<> n -- f core-ext ``zero-not-equals''
0= n -- f core ``zero-equals''
0> n -- f core-ext ``zero-greater-than''
0>= n -- f gforth ``zero-greater-or-equal''
u< u1 u2 -- f core ``u-less-than''
u<= u1 u2 -- f gforth ``u-less-or-equal''
u> u1 u2 -- f core-ext ``u-greater-than''
u>= u1 u2 -- f gforth ``u-greater-or-equal''
within u1 u2 u3 -- f core-ext ``within''
u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2). This works for
unsigned and signed numbers (but not a mixture). Another way to think
about this word is to consider the numbers as a circle (wrapping
around from max-u to 0 for unsigned, and from max-n to
min-n for signed numbers); now consider the range from u2 towards
increasing numbers up to and excluding u3 (giving an empty range if
u2=u3); if u1 is in this range, within returns true.
d< d1 d2 -- f double ``d-less-than''
d<= d1 d2 -- f gforth ``d-less-or-equal''
d<> d1 d2 -- f gforth ``d-not-equals''
d= d1 d2 -- f double ``d-equals''
d> d1 d2 -- f gforth ``d-greater-than''
d>= d1 d2 -- f gforth ``d-greater-or-equal''
d0< d -- f double ``d-zero-less-than''
d0<= d -- f gforth ``d-zero-less-or-equal''
d0<> d -- f gforth ``d-zero-not-equals''
d0= d -- f double ``d-zero-equals''
d0> d -- f gforth ``d-zero-greater-than''
d0>= d -- f gforth ``d-zero-greater-or-equal''
du< ud1 ud2 -- f double-ext ``d-u-less-than''
du<= ud1 ud2 -- f gforth ``d-u-less-or-equal''
du> ud1 ud2 -- f gforth ``d-u-greater-than''
du>= ud1 ud2 -- f gforth ``d-u-greater-or-equal''