File:  [gforth] / gforth / prim
Revision 1.86: download - view: text, annotated - select for diffs
Mon Dec 24 20:39:29 2001 UTC (22 years, 2 months ago) by anton
Branches: MAIN
CVS tags: HEAD
added dynamic superinstructions (currently for direct threading on 386,
                                 without checking for other platforms)

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ f83name.*	F83Name *
   76: 
   77: \E stack data-stack   sp Cell
   78: \E stack fp-stack     fp Float
   79: \E stack return-stack rp Cell
   80: \E
   81: \E get-current prefixes set-current
   82: \E 
   83: \E s" Bool"		single data-stack type-prefix f
   84: \E s" Char"		single data-stack type-prefix c
   85: \E s" Cell"		single data-stack type-prefix n
   86: \E s" Cell"		single data-stack type-prefix w
   87: \E s" UCell"		single data-stack type-prefix u
   88: \E s" DCell"		double data-stack type-prefix d
   89: \E s" UDCell"		double data-stack type-prefix ud
   90: \E s" Float"		single fp-stack   type-prefix r
   91: \E s" Cell *"		single data-stack type-prefix a_
   92: \E s" Char *"		single data-stack type-prefix c_
   93: \E s" Float *"		single data-stack type-prefix f_
   94: \E s" DFloat *"		single data-stack type-prefix df_
   95: \E s" SFloat *"		single data-stack type-prefix sf_
   96: \E s" Xt"		single data-stack type-prefix xt
   97: \E s" struct F83Name *"	single data-stack type-prefix f83name
   98: \E s" struct Longname *" single data-stack type-prefix longname
   99: \E 
  100: \E return-stack stack-prefix R:
  101: \E inst-stream  stack-prefix #
  102: \E 
  103: \E set-current
  104: 
  105: \ 
  106: \ 
  107: \ 
  108: \ In addition the following names can be used:
  109: \ ip	the instruction pointer
  110: \ sp	the data stack pointer
  111: \ rp	the parameter stack pointer
  112: \ lp	the locals stack pointer
  113: \ NEXT	executes NEXT
  114: \ cfa	
  115: \ NEXT1	executes NEXT1
  116: \ FLAG(x)	makes a Forth flag from a C flag
  117: \ 
  118: \ 
  119: \ 
  120: \ Percentages in comments are from Koopmans book: average/maximum use
  121: \ (taken from four, not very representative benchmarks)
  122: \ 
  123: \ 
  124: \ 
  125: \ To do:
  126: \ 
  127: \ throw execute, cfa and NEXT1 out?
  128: \ macroize *ip, ip++, *ip++ (pipelining)?
  129: 
  130: \ these m4 macros would collide with identifiers
  131: undefine(`index')
  132: undefine(`shift')
  133: undefine(`symbols')
  134: 
  135: \g control
  136: 
  137: noop	( -- )		gforth
  138: :
  139:  ;
  140: 
  141: lit	( #w -- w )		gforth
  142: :
  143:  r> dup @ swap cell+ >r ;
  144: 
  145: execute	( xt -- )		core
  146: ""Perform the semantics represented by the execution token, @i{xt}.""
  147: ip=IP;
  148: IF_spTOS(spTOS = sp[0]);
  149: SUPER_END;
  150: EXEC(xt);
  151: 
  152: perform	( a_addr -- )	gforth
  153: ""@code{@@ execute}.""
  154: /* and pfe */
  155: ip=IP;
  156: IF_spTOS(spTOS = sp[0]);
  157: SUPER_END;
  158: EXEC(*(Xt *)a_addr);
  159: :
  160:  @ execute ;
  161: 
  162: \fhas? skipbranchprims 0= [IF]
  163: \+glocals
  164: 
  165: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  166: /* this will probably not be used */
  167: lp += nlocals;
  168: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  169: 
  170: \+
  171: 
  172: branch	( #ndisp -- )		gforth
  173: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  174: :
  175:  r> dup @ + >r ;
  176: 
  177: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  178: \ this is non-syntactical: code must open a brace that is closed by the macro
  179: define(condbranch,
  180: $1 ( `#'ndisp $2 ) $3
  181: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  182: TAIL;
  183: }
  184: $5
  185: 
  186: \+glocals
  187: 
  188: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  189: $4    lp += nlocals;
  190: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  191: TAIL;
  192: }
  193: 
  194: \+
  195: )
  196: 
  197: condbranch(?branch,f --,f83	question_branch,
  198: if (f==0) {
  199: ,:
  200:  0= dup     \ !f !f
  201:  r> dup @   \ !f !f IP branchoffset
  202:  rot and +  \ !f IP|IP+branchoffset
  203:  swap 0= cell and + \ IP''
  204:  >r ;)
  205: 
  206: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  207: \ is only used in if's (yet)
  208: 
  209: \+xconds
  210: 
  211: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  212: ""The run-time procedure compiled by @code{?DUP-IF}.""
  213: if (f==0) {
  214:   sp++;
  215:   IF_spTOS(spTOS = sp[0]);
  216:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  217:   TAIL;
  218: }
  219: 
  220: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  221: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  222: /* the approach taken here of declaring the word as having the stack
  223: effect ( f -- ) and correcting for it in the branch-taken case costs a
  224: few cycles in that case, but is easy to convert to a CONDBRANCH
  225: invocation */
  226: if (f!=0) {
  227:   sp--;
  228:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  229:   NEXT;
  230: }
  231: 
  232: \+
  233: \f[THEN]
  234: \fhas? skiploopprims 0= [IF]
  235: 
  236: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  237: n2=n1-1;
  238: if (n1) {
  239: ,:
  240:  r> r> dup 1- >r
  241:  IF dup @ + >r ELSE cell+ >r THEN ;)
  242: 
  243: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  244: n2=n1+1;
  245: if (n2 != nlimit) {
  246: ,:
  247:  r> r> 1+ r> 2dup =
  248:  IF >r 1- >r cell+ >r
  249:  ELSE >r >r dup @ + >r THEN ;)
  250: 
  251: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  252: /* !! check this thoroughly */
  253: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  254: /* dependent upon two's complement arithmetic */
  255: Cell olddiff = n1-nlimit;
  256: n2=n1+n;	
  257: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  258:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  259: ,:
  260:  r> swap
  261:  r> r> 2dup - >r
  262:  2 pick r@ + r@ xor 0< 0=
  263:  3 pick r> xor 0< 0= or
  264:  IF    >r + >r dup @ + >r
  265:  ELSE  >r >r drop cell+ >r THEN ;)
  266: 
  267: \+xconds
  268: 
  269: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  270: UCell olddiff = n1-nlimit;
  271: n2=n1-u;
  272: if (olddiff>u) {
  273: ,)
  274: 
  275: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  276: ""The run-time procedure compiled by S+LOOP. It loops until the index
  277: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  278: version of (+LOOP).""
  279: /* !! check this thoroughly */
  280: Cell diff = n1-nlimit;
  281: Cell newdiff = diff+n;
  282: if (n<0) {
  283:     diff = -diff;
  284:     newdiff = -newdiff;
  285: }
  286: n2=n1+n;
  287: if (diff>=0 || newdiff<0) {
  288: ,)
  289: 
  290: \+
  291: 
  292: unloop	( R:w1 R:w2 -- )	core
  293: /* !! alias for 2rdrop */
  294: :
  295:  r> rdrop rdrop >r ;
  296: 
  297: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  298: /* or (for) = >r -- collides with unloop! */
  299: nlimit=0;
  300: :
  301:  r> swap 0 >r >r >r ;
  302: 
  303: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  304: :
  305:  r> swap rot >r >r >r ;
  306: 
  307: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  308: if (nstart == nlimit) {
  309:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  310:     TAIL;
  311: }
  312: :
  313:   2dup =
  314:   IF   r> swap rot >r >r
  315:        dup @ + >r
  316:   ELSE r> swap rot >r >r
  317:        cell+ >r
  318:   THEN ;				\ --> CORE-EXT
  319: 
  320: \+xconds
  321: 
  322: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  323: if (nstart >= nlimit) {
  324:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  325:     TAIL;
  326: }
  327: :
  328:  swap 2dup
  329:  r> swap >r swap >r
  330:  >=
  331:  IF
  332:      dup @ +
  333:  ELSE
  334:      cell+
  335:  THEN  >r ;
  336: 
  337: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  338: if (ustart >= ulimit) {
  339:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  340:     TAIL;
  341: }
  342: :
  343:  swap 2dup
  344:  r> swap >r swap >r
  345:  u>=
  346:  IF
  347:      dup @ +
  348:  ELSE
  349:      cell+
  350:  THEN  >r ;
  351: 
  352: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  353: if (nstart <= nlimit) {
  354:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  355:     TAIL;
  356: }
  357: :
  358:  swap 2dup
  359:  r> swap >r swap >r
  360:  <=
  361:  IF
  362:      dup @ +
  363:  ELSE
  364:      cell+
  365:  THEN  >r ;
  366: 
  367: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  368: if (ustart <= ulimit) {
  369:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  370:     TAIL;
  371: }
  372: :
  373:  swap 2dup
  374:  r> swap >r swap >r
  375:  u<=
  376:  IF
  377:      dup @ +
  378:  ELSE
  379:      cell+
  380:  THEN  >r ;
  381: 
  382: \+
  383: 
  384: \ don't make any assumptions where the return stack is!!
  385: \ implement this in machine code if it should run quickly!
  386: 
  387: i	( R:n -- R:n n )		core
  388: :
  389: \ rp@ cell+ @ ;
  390:   r> r> tuck >r >r ;
  391: 
  392: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  393: :
  394: \ rp@ cell+ cell+ @ ;
  395:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  396: variable itmp
  397: 
  398: j	( R:n R:d1 -- n R:n R:d1 )		core
  399: :
  400: \ rp@ cell+ cell+ cell+ @ ;
  401:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  402: [IFUNDEF] itmp variable itmp [THEN]
  403: 
  404: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  405: :
  406: \ rp@ [ 5 cells ] Literal + @ ;
  407:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  408: [IFUNDEF] itmp variable itmp [THEN]
  409: 
  410: \f[THEN]
  411: 
  412: \ digit is high-level: 0/0%
  413: 
  414: \g strings
  415: 
  416: move	( c_from c_to ucount -- )		core
  417: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  418: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  419: /* !! note that the standard specifies addr, not c-addr */
  420: memmove(c_to,c_from,ucount);
  421: /* make an Ifdef for bsd and others? */
  422: :
  423:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  424: 
  425: cmove	( c_from c_to u -- )	string	c_move
  426: ""Copy the contents of @i{ucount} characters from data space at
  427: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  428: from low address to high address; i.e., for overlapping areas it is
  429: safe if @i{c-to}=<@i{c-from}.""
  430: while (u-- > 0)
  431:   *c_to++ = *c_from++;
  432: :
  433:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  434: 
  435: cmove>	( c_from c_to u -- )	string	c_move_up
  436: ""Copy the contents of @i{ucount} characters from data space at
  437: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  438: from high address to low address; i.e., for overlapping areas it is
  439: safe if @i{c-to}>=@i{c-from}.""
  440: while (u-- > 0)
  441:   c_to[u] = c_from[u];
  442: :
  443:  dup 0= IF  drop 2drop exit  THEN
  444:  rot over + -rot bounds swap 1-
  445:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  446: 
  447: fill	( c_addr u c -- )	core
  448: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  449: memset(c_addr,c,u);
  450: :
  451:  -rot bounds
  452:  ?DO  dup I c!  LOOP  drop ;
  453: 
  454: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  455: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  456: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  457: is 1. Currently this is based on the machine's character
  458: comparison. In the future, this may change to consider the current
  459: locale and its collation order.""
  460: /* close ' to keep fontify happy */ 
  461: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  462: if (n==0)
  463:   n = u1-u2;
  464: if (n<0)
  465:   n = -1;
  466: else if (n>0)
  467:   n = 1;
  468: :
  469:  rot 2dup swap - >r min swap -text dup
  470:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  471: : sgn ( n -- -1/0/1 )
  472:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  473: 
  474: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  475: n = memcmp(c_addr1, c_addr2, u);
  476: if (n<0)
  477:   n = -1;
  478: else if (n>0)
  479:   n = 1;
  480: :
  481:  swap bounds
  482:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  483:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  484: : sgn ( n -- -1/0/1 )
  485:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  486: 
  487: toupper	( c1 -- c2 )	gforth
  488: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  489: is the equivalent upper-case character. All other characters are unchanged.""
  490: c2 = toupper(c1);
  491: :
  492:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  493: 
  494: capscomp	( c_addr1 u c_addr2 -- n )	new
  495: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  496: if (n<0)
  497:   n = -1;
  498: else if (n>0)
  499:   n = 1;
  500: :
  501:  swap bounds
  502:  ?DO  dup c@ I c@ <>
  503:      IF  dup c@ toupper I c@ toupper =
  504:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  505:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  506: 
  507: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  508: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  509: spaces. @i{u2} is the length of the modified string.""
  510: u2 = u1;
  511: while (u2>0 && c_addr[u2-1] == ' ')
  512:   u2--;
  513: :
  514:  BEGIN  1- 2dup + c@ bl =  WHILE
  515:         dup  0= UNTIL  ELSE  1+  THEN ;
  516: 
  517: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  518: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  519: characters from the start of the string.""
  520: c_addr2 = c_addr1+n;
  521: u2 = u1-n;
  522: :
  523:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  524: 
  525: \g arith
  526: 
  527: +	( n1 n2 -- n )		core	plus
  528: n = n1+n2;
  529: 
  530: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  531: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  532: ""add @i{n3} to @i{n1} (giving @i{n})""
  533: n = n1+n3;
  534: :
  535:  rot + swap ;
  536: 
  537: -	( n1 n2 -- n )		core	minus
  538: n = n1-n2;
  539: :
  540:  negate + ;
  541: 
  542: negate	( n1 -- n2 )		core
  543: /* use minus as alias */
  544: n2 = -n1;
  545: :
  546:  invert 1+ ;
  547: 
  548: 1+	( n1 -- n2 )		core		one_plus
  549: n2 = n1+1;
  550: :
  551:  1 + ;
  552: 
  553: 1-	( n1 -- n2 )		core		one_minus
  554: n2 = n1-1;
  555: :
  556:  1 - ;
  557: 
  558: max	( n1 n2 -- n )	core
  559: if (n1<n2)
  560:   n = n2;
  561: else
  562:   n = n1;
  563: :
  564:  2dup < IF swap THEN drop ;
  565: 
  566: min	( n1 n2 -- n )	core
  567: if (n1<n2)
  568:   n = n1;
  569: else
  570:   n = n2;
  571: :
  572:  2dup > IF swap THEN drop ;
  573: 
  574: abs	( n -- u )	core
  575: if (n<0)
  576:   u = -n;
  577: else
  578:   u = n;
  579: :
  580:  dup 0< IF negate THEN ;
  581: 
  582: *	( n1 n2 -- n )		core	star
  583: n = n1*n2;
  584: :
  585:  um* drop ;
  586: 
  587: /	( n1 n2 -- n )		core	slash
  588: n = n1/n2;
  589: :
  590:  /mod nip ;
  591: 
  592: mod	( n1 n2 -- n )		core
  593: n = n1%n2;
  594: :
  595:  /mod drop ;
  596: 
  597: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  598: n4 = n1/n2;
  599: n3 = n1%n2; /* !! is this correct? look into C standard! */
  600: :
  601:  >r s>d r> fm/mod ;
  602: 
  603: 2*	( n1 -- n2 )		core		two_star
  604: ""Shift left by 1; also works on unsigned numbers""
  605: n2 = 2*n1;
  606: :
  607:  dup + ;
  608: 
  609: 2/	( n1 -- n2 )		core		two_slash
  610: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  611: division by 2 (note that @code{/} not necessarily floors).""
  612: n2 = n1>>1;
  613: :
  614:  dup MINI and IF 1 ELSE 0 THEN
  615:  [ bits/byte cell * 1- ] literal 
  616:  0 DO 2* swap dup 2* >r MINI and 
  617:      IF 1 ELSE 0 THEN or r> swap
  618:  LOOP nip ;
  619: 
  620: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  621: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  622: #ifdef BUGGY_LONG_LONG
  623: DCell r = fmdiv(d1,n1);
  624: n2=r.hi;
  625: n3=r.lo;
  626: #else
  627: /* assumes that the processor uses either floored or symmetric division */
  628: n3 = d1/n1;
  629: n2 = d1%n1;
  630: /* note that this 1%-3>0 is optimized by the compiler */
  631: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  632:   n3--;
  633:   n2+=n1;
  634: }
  635: #endif
  636: :
  637:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  638:  over       0< IF  tuck + swap  THEN
  639:  um/mod
  640:  r> 0< IF  swap negate swap  THEN ;
  641: 
  642: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  643: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  644: #ifdef BUGGY_LONG_LONG
  645: DCell r = smdiv(d1,n1);
  646: n2=r.hi;
  647: n3=r.lo;
  648: #else
  649: /* assumes that the processor uses either floored or symmetric division */
  650: n3 = d1/n1;
  651: n2 = d1%n1;
  652: /* note that this 1%-3<0 is optimized by the compiler */
  653: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  654:   n3++;
  655:   n2-=n1;
  656: }
  657: #endif
  658: :
  659:  over >r dup >r abs -rot
  660:  dabs rot um/mod
  661:  r> r@ xor 0< IF       negate       THEN
  662:  r>        0< IF  swap negate swap  THEN ;
  663: 
  664: m*	( n1 n2 -- d )		core	m_star
  665: #ifdef BUGGY_LONG_LONG
  666: d = mmul(n1,n2);
  667: #else
  668: d = (DCell)n1 * (DCell)n2;
  669: #endif
  670: :
  671:  2dup      0< and >r
  672:  2dup swap 0< and >r
  673:  um* r> - r> - ;
  674: 
  675: um*	( u1 u2 -- ud )		core	u_m_star
  676: /* use u* as alias */
  677: #ifdef BUGGY_LONG_LONG
  678: ud = ummul(u1,u2);
  679: #else
  680: ud = (UDCell)u1 * (UDCell)u2;
  681: #endif
  682: :
  683:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  684:    DO
  685:        over >r dup >r 0< and d2*+ drop
  686:        r> 2* r> swap
  687:    LOOP 2drop ;
  688: : d2*+ ( ud n -- ud+n c )
  689:    over MINI
  690:    and >r >r 2dup d+ swap r> + swap r> ;
  691: 
  692: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  693: ""ud=u3*u1+u2, u1>u2>=0""
  694: #ifdef BUGGY_LONG_LONG
  695: UDCell r = umdiv(ud,u1);
  696: u2=r.hi;
  697: u3=r.lo;
  698: #else
  699: u3 = ud/u1;
  700: u2 = ud%u1;
  701: #endif
  702: :
  703:    0 swap [ 8 cells 1 + ] literal 0
  704:    ?DO /modstep
  705:    LOOP drop swap 1 rshift or swap ;
  706: : /modstep ( ud c R: u -- ud-?u c R: u )
  707:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  708: : d2*+ ( ud n -- ud+n c )
  709:    over MINI
  710:    and >r >r 2dup d+ swap r> + swap r> ;
  711: 
  712: m+	( d1 n -- d2 )		double		m_plus
  713: #ifdef BUGGY_LONG_LONG
  714: d2.lo = d1.lo+n;
  715: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  716: #else
  717: d2 = d1+n;
  718: #endif
  719: :
  720:  s>d d+ ;
  721: 
  722: d+	( d1 d2 -- d )		double	d_plus
  723: #ifdef BUGGY_LONG_LONG
  724: d.lo = d1.lo+d2.lo;
  725: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  726: #else
  727: d = d1+d2;
  728: #endif
  729: :
  730:  rot + >r tuck + swap over u> r> swap - ;
  731: 
  732: d-	( d1 d2 -- d )		double		d_minus
  733: #ifdef BUGGY_LONG_LONG
  734: d.lo = d1.lo - d2.lo;
  735: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  736: #else
  737: d = d1-d2;
  738: #endif
  739: :
  740:  dnegate d+ ;
  741: 
  742: dnegate	( d1 -- d2 )		double	d_negate
  743: /* use dminus as alias */
  744: #ifdef BUGGY_LONG_LONG
  745: d2 = dnegate(d1);
  746: #else
  747: d2 = -d1;
  748: #endif
  749: :
  750:  invert swap negate tuck 0= - ;
  751: 
  752: d2*	( d1 -- d2 )		double		d_two_star
  753: ""Shift left by 1; also works on unsigned numbers""
  754: #ifdef BUGGY_LONG_LONG
  755: d2.lo = d1.lo<<1;
  756: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  757: #else
  758: d2 = 2*d1;
  759: #endif
  760: :
  761:  2dup d+ ;
  762: 
  763: d2/	( d1 -- d2 )		double		d_two_slash
  764: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  765: division by 2.""
  766: #ifdef BUGGY_LONG_LONG
  767: d2.hi = d1.hi>>1;
  768: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  769: #else
  770: d2 = d1>>1;
  771: #endif
  772: :
  773:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  774:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  775: 
  776: and	( w1 w2 -- w )		core
  777: w = w1&w2;
  778: 
  779: or	( w1 w2 -- w )		core
  780: w = w1|w2;
  781: :
  782:  invert swap invert and invert ;
  783: 
  784: xor	( w1 w2 -- w )		core	x_or
  785: w = w1^w2;
  786: 
  787: invert	( w1 -- w2 )		core
  788: w2 = ~w1;
  789: :
  790:  MAXU xor ;
  791: 
  792: rshift	( u1 n -- u2 )		core	r_shift
  793: ""Logical shift right by @i{n} bits.""
  794:   u2 = u1>>n;
  795: :
  796:     0 ?DO 2/ MAXI and LOOP ;
  797: 
  798: lshift	( u1 n -- u2 )		core	l_shift
  799:   u2 = u1<<n;
  800: :
  801:     0 ?DO 2* LOOP ;
  802: 
  803: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  804: define(comparisons,
  805: $1=	( $2 -- f )		$6	$3equals
  806: f = FLAG($4==$5);
  807: :
  808:     [ char $1x char 0 = [IF]
  809: 	] IF false ELSE true THEN [
  810:     [ELSE]
  811: 	] xor 0= [
  812:     [THEN] ] ;
  813: 
  814: $1<>	( $2 -- f )		$7	$3not_equals
  815: f = FLAG($4!=$5);
  816: :
  817:     [ char $1x char 0 = [IF]
  818: 	] IF true ELSE false THEN [
  819:     [ELSE]
  820: 	] xor 0<> [
  821:     [THEN] ] ;
  822: 
  823: $1<	( $2 -- f )		$8	$3less_than
  824: f = FLAG($4<$5);
  825: :
  826:     [ char $1x char 0 = [IF]
  827: 	] MINI and 0<> [
  828:     [ELSE] char $1x char u = [IF]
  829: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  830: 	[ELSE]
  831: 	    ] MINI xor >r MINI xor r> u< [
  832: 	[THEN]
  833:     [THEN] ] ;
  834: 
  835: $1>	( $2 -- f )		$9	$3greater_than
  836: f = FLAG($4>$5);
  837: :
  838:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  839:     $1< ;
  840: 
  841: $1<=	( $2 -- f )		gforth	$3less_or_equal
  842: f = FLAG($4<=$5);
  843: :
  844:     $1> 0= ;
  845: 
  846: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  847: f = FLAG($4>=$5);
  848: :
  849:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  850:     $1<= ;
  851: 
  852: )
  853: 
  854: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  855: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  856: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  857: 
  858: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  859: define(dcomparisons,
  860: $1=	( $2 -- f )		$6	$3equals
  861: #ifdef BUGGY_LONG_LONG
  862: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  863: #else
  864: f = FLAG($4==$5);
  865: #endif
  866: 
  867: $1<>	( $2 -- f )		$7	$3not_equals
  868: #ifdef BUGGY_LONG_LONG
  869: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  870: #else
  871: f = FLAG($4!=$5);
  872: #endif
  873: 
  874: $1<	( $2 -- f )		$8	$3less_than
  875: #ifdef BUGGY_LONG_LONG
  876: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  877: #else
  878: f = FLAG($4<$5);
  879: #endif
  880: 
  881: $1>	( $2 -- f )		$9	$3greater_than
  882: #ifdef BUGGY_LONG_LONG
  883: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  884: #else
  885: f = FLAG($4>$5);
  886: #endif
  887: 
  888: $1<=	( $2 -- f )		gforth	$3less_or_equal
  889: #ifdef BUGGY_LONG_LONG
  890: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  891: #else
  892: f = FLAG($4<=$5);
  893: #endif
  894: 
  895: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  896: #ifdef BUGGY_LONG_LONG
  897: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  898: #else
  899: f = FLAG($4>=$5);
  900: #endif
  901: 
  902: )
  903: 
  904: \+dcomps
  905: 
  906: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  907: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  908: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  909: 
  910: \+
  911: 
  912: within	( u1 u2 u3 -- f )		core-ext
  913: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  914: unsigned and signed numbers (but not a mixture).  Another way to think
  915: about this word is to consider the numbers as a circle (wrapping
  916: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  917: min-n for signed numbers); now consider the range from u2 towards
  918: increasing numbers up to and excluding u3 (giving an empty range if
  919: u2=u3); if u1 is in this range, @code{within} returns true.""
  920: f = FLAG(u1-u2 < u3-u2);
  921: :
  922:  over - >r - r> u< ;
  923: 
  924: \g internal
  925: 
  926: sp@	( -- a_addr )		gforth		sp_fetch
  927: a_addr = sp+1;
  928: 
  929: sp!	( a_addr -- )		gforth		sp_store
  930: sp = a_addr;
  931: /* works with and without spTOS caching */
  932: 
  933: rp@	( -- a_addr )		gforth		rp_fetch
  934: a_addr = rp;
  935: 
  936: rp!	( a_addr -- )		gforth		rp_store
  937: rp = a_addr;
  938: 
  939: \+floating
  940: 
  941: fp@	( -- f_addr )	gforth	fp_fetch
  942: f_addr = fp;
  943: 
  944: fp!	( f_addr -- )	gforth	fp_store
  945: fp = f_addr;
  946: 
  947: \+
  948: 
  949: ;s	( R:w -- )		gforth	semis
  950: ""The primitive compiled by @code{EXIT}.""
  951: SET_IP((Xt *)w);
  952: 
  953: \g stack
  954: 
  955: >r	( w -- R:w )		core	to_r
  956: :
  957:  (>r) ;
  958: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  959: 
  960: r>	( R:w -- w )		core	r_from
  961: :
  962:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  963: Create (rdrop) ' ;s A,
  964: 
  965: rdrop	( R:w -- )		gforth
  966: :
  967:  r> r> drop >r ;
  968: 
  969: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  970: :
  971:  swap r> swap >r swap >r >r ;
  972: 
  973: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  974: :
  975:  r> r> swap r> swap >r swap ;
  976: 
  977: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  978: :
  979:  i' j ;
  980: 
  981: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  982: :
  983:  r> r> drop r> drop >r ;
  984: 
  985: over	( w1 w2 -- w1 w2 w1 )		core
  986: :
  987:  sp@ cell+ @ ;
  988: 
  989: drop	( w -- )		core
  990: :
  991:  IF THEN ;
  992: 
  993: swap	( w1 w2 -- w2 w1 )		core
  994: :
  995:  >r (swap) ! r> (swap) @ ;
  996: Variable (swap)
  997: 
  998: dup	( w -- w w )		core	dupe
  999: :
 1000:  sp@ @ ;
 1001: 
 1002: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1003: :
 1004: [ defined? (swap) [IF] ]
 1005:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1006: Variable (rot)
 1007: [ELSE] ]
 1008:     >r swap r> swap ;
 1009: [THEN]
 1010: 
 1011: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1012: :
 1013:  rot rot ;
 1014: 
 1015: nip	( w1 w2 -- w2 )		core-ext
 1016: :
 1017:  swap drop ;
 1018: 
 1019: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1020: :
 1021:  swap over ;
 1022: 
 1023: ?dup	( w -- w )			core	question_dupe
 1024: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1025: @code{dup} if w is nonzero.""
 1026: if (w!=0) {
 1027:   IF_spTOS(*sp-- = w;)
 1028: #ifndef USE_TOS
 1029:   *--sp = w;
 1030: #endif
 1031: }
 1032: :
 1033:  dup IF dup THEN ;
 1034: 
 1035: pick	( u -- w )			core-ext
 1036: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1037: w = sp[u+1];
 1038: :
 1039:  1+ cells sp@ + @ ;
 1040: 
 1041: 2drop	( w1 w2 -- )		core	two_drop
 1042: :
 1043:  drop drop ;
 1044: 
 1045: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1046: :
 1047:  over over ;
 1048: 
 1049: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1050: :
 1051:  3 pick 3 pick ;
 1052: 
 1053: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1054: :
 1055:  rot >r rot r> ;
 1056: 
 1057: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1058: :
 1059:  >r >r 2swap r> r> 2swap ;
 1060: 
 1061: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1062: :
 1063:  2swap 2drop ;
 1064: 
 1065: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1066: :
 1067:  2swap 2over ;
 1068: 
 1069: \ toggle is high-level: 0.11/0.42%
 1070: 
 1071: @	( a_addr -- w )		core	fetch
 1072: ""@i{w} is the cell stored at @i{a_addr}.""
 1073: w = *a_addr;
 1074: 
 1075: !	( w a_addr -- )		core	store
 1076: ""Store @i{w} into the cell at @i{a-addr}.""
 1077: *a_addr = w;
 1078: 
 1079: +!	( n a_addr -- )		core	plus_store
 1080: ""Add @i{n} to the cell at @i{a-addr}.""
 1081: *a_addr += n;
 1082: :
 1083:  tuck @ + swap ! ;
 1084: 
 1085: c@	( c_addr -- c )		core	c_fetch
 1086: ""@i{c} is the char stored at @i{c_addr}.""
 1087: c = *c_addr;
 1088: :
 1089: [ bigendian [IF] ]
 1090:     [ cell>bit 4 = [IF] ]
 1091: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1092: 	IF  $FF and  ELSE  8>>  THEN  ;
 1093:     [ [ELSE] ]
 1094: 	dup [ cell 1- ] literal and
 1095: 	tuck - @ swap [ cell 1- ] literal xor
 1096:  	0 ?DO 8>> LOOP $FF and
 1097:     [ [THEN] ]
 1098: [ [ELSE] ]
 1099:     [ cell>bit 4 = [IF] ]
 1100: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1101: 	IF  8>>  ELSE  $FF and  THEN
 1102:     [ [ELSE] ]
 1103: 	dup [ cell  1- ] literal and 
 1104: 	tuck - @ swap
 1105: 	0 ?DO 8>> LOOP 255 and
 1106:     [ [THEN] ]
 1107: [ [THEN] ]
 1108: ;
 1109: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1110: 
 1111: c!	( c c_addr -- )		core	c_store
 1112: ""Store @i{c} into the char at @i{c-addr}.""
 1113: *c_addr = c;
 1114: :
 1115: [ bigendian [IF] ]
 1116:     [ cell>bit 4 = [IF] ]
 1117: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1118: 	dup -2 and @ over 1 and cells masks + @ and
 1119: 	r> or swap -2 and ! ;
 1120: 	Create masks $00FF , $FF00 ,
 1121:     [ELSE] ]
 1122: 	dup [ cell 1- ] literal and dup 
 1123: 	[ cell 1- ] literal xor >r
 1124: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1125: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1126:     [THEN]
 1127: [ELSE] ]
 1128:     [ cell>bit 4 = [IF] ]
 1129: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1130: 	dup -2 and @ over 1 and cells masks + @ and
 1131: 	r> or swap -2 and ! ;
 1132: 	Create masks $FF00 , $00FF ,
 1133:     [ELSE] ]
 1134: 	dup [ cell 1- ] literal and dup >r
 1135: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1136: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1137:     [THEN]
 1138: [THEN]
 1139: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1140: 
 1141: 2!	( w1 w2 a_addr -- )		core	two_store
 1142: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1143: a_addr[0] = w2;
 1144: a_addr[1] = w1;
 1145: :
 1146:  tuck ! cell+ ! ;
 1147: 
 1148: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1149: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1150: the content of the next cell.""
 1151: w2 = a_addr[0];
 1152: w1 = a_addr[1];
 1153: :
 1154:  dup cell+ @ swap @ ;
 1155: 
 1156: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1157: ""@code{1 cells +}""
 1158: a_addr2 = a_addr1+1;
 1159: :
 1160:  cell + ;
 1161: 
 1162: cells	( n1 -- n2 )		core
 1163: "" @i{n2} is the number of address units of @i{n1} cells.""
 1164: n2 = n1 * sizeof(Cell);
 1165: :
 1166:  [ cell
 1167:  2/ dup [IF] ] 2* [ [THEN]
 1168:  2/ dup [IF] ] 2* [ [THEN]
 1169:  2/ dup [IF] ] 2* [ [THEN]
 1170:  2/ dup [IF] ] 2* [ [THEN]
 1171:  drop ] ;
 1172: 
 1173: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1174: ""@code{1 chars +}.""
 1175: c_addr2 = c_addr1 + 1;
 1176: :
 1177:  1+ ;
 1178: 
 1179: (chars)	( n1 -- n2 )	gforth	paren_chars
 1180: n2 = n1 * sizeof(Char);
 1181: :
 1182:  ;
 1183: 
 1184: count	( c_addr1 -- c_addr2 u )	core
 1185: ""@i{c-addr2} is the first character and @i{u} the length of the
 1186: counted string at @i{c-addr1}.""
 1187: u = *c_addr1;
 1188: c_addr2 = c_addr1+1;
 1189: :
 1190:  dup 1+ swap c@ ;
 1191: 
 1192: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1193: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1194:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1195:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1196:     break;
 1197: f83name2=f83name1;
 1198: :
 1199:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1200: 	>r 2dup r@ cell+ char+ capscomp  0=
 1201: 	IF  2drop r>  EXIT  THEN
 1202: 	r> @
 1203:     REPEAT  THEN  nip nip ;
 1204: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1205:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL THEN ;
 1206: 
 1207: \+hash
 1208: 
 1209: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1210: struct F83Name *f83name1;
 1211: f83name2=NULL;
 1212: while(a_addr != NULL)
 1213: {
 1214:    f83name1=(struct F83Name *)(a_addr[1]);
 1215:    a_addr=(Cell *)(a_addr[0]);
 1216:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1217:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1218:      {
 1219: 	f83name2=f83name1;
 1220: 	break;
 1221:      }
 1222: }
 1223: :
 1224:  BEGIN  dup  WHILE
 1225:         2@ >r >r dup r@ cell+ c@ $1F and =
 1226:         IF  2dup r@ cell+ char+ capscomp 0=
 1227: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1228: 	rdrop r>
 1229:  REPEAT nip nip ;
 1230: 
 1231: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1232: ""A case-sensitive variant of @code{(hashfind)}""
 1233: struct F83Name *f83name1;
 1234: f83name2=NULL;
 1235: while(a_addr != NULL)
 1236: {
 1237:    f83name1=(struct F83Name *)(a_addr[1]);
 1238:    a_addr=(Cell *)(a_addr[0]);
 1239:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1240:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1241:      {
 1242: 	f83name2=f83name1;
 1243: 	break;
 1244:      }
 1245: }
 1246: :
 1247:  BEGIN  dup  WHILE
 1248:         2@ >r >r dup r@ cell+ c@ $1F and =
 1249:         IF  2dup r@ cell+ char+ -text 0=
 1250: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1251: 	rdrop r>
 1252:  REPEAT nip nip ;
 1253: 
 1254: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1255: u2=0;
 1256: while(u1--)
 1257:    u2+=(Cell)toupper(*c_addr++);
 1258: :
 1259:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1260: 
 1261: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1262: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1263: /* this hash function rotates the key at every step by rot bits within
 1264:    ubits bits and xors it with the character. This function does ok in
 1265:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1266:    ASCII strings (larger if ubits is large), and should share no
 1267:    divisors with ubits.
 1268: */
 1269: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1270: Char *cp = c_addr;
 1271: for (ukey=0; cp<c_addr+u; cp++)
 1272:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1273: 	     ^ toupper(*cp))
 1274: 	    & ((1<<ubits)-1));
 1275: :
 1276:  dup rot-values + c@ over 1 swap lshift 1- >r
 1277:  tuck - 2swap r> 0 2swap bounds
 1278:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1279:       I c@ toupper xor
 1280:       over and  LOOP
 1281:  nip nip nip ;
 1282: Create rot-values
 1283:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1284:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1285:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1286:   7 c, 5 c, 5 c,
 1287: 
 1288: \+
 1289: 
 1290: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1291: /* use !isgraph instead of isspace? */
 1292: Char *endp = c_addr1+u1;
 1293: while (c_addr1<endp && isspace(*c_addr1))
 1294:   c_addr1++;
 1295: if (c_addr1<endp) {
 1296:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1297:     ;
 1298:   u2 = c_addr1-c_addr2;
 1299: }
 1300: else {
 1301:   c_addr2 = c_addr1;
 1302:   u2 = 0;
 1303: }
 1304: :
 1305:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1306:  REPEAT  THEN  2dup
 1307:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1308:  REPEAT  THEN  nip - ;
 1309: 
 1310: aligned	( c_addr -- a_addr )	core
 1311: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1312: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1313: :
 1314:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1315: 
 1316: faligned	( c_addr -- f_addr )	float	f_aligned
 1317: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1318: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1319: :
 1320:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1321: 
 1322: >body	( xt -- a_addr )	core	to_body
 1323: "" Get the address of the body of the word represented by @i{xt} (the address
 1324: of the word's data field).""
 1325: a_addr = PFA(xt);
 1326: :
 1327:     2 cells + ;
 1328: 
 1329: \ threading stuff is currently only interesting if we have a compiler
 1330: \fhas? standardthreading has? compiler and [IF]
 1331: 
 1332: >code-address	( xt -- c_addr )		gforth	to_code_address
 1333: ""@i{c-addr} is the code address of the word @i{xt}.""
 1334: /* !! This behaves installation-dependently for DOES-words */
 1335: c_addr = (Address)CODE_ADDRESS(xt);
 1336: :
 1337:     @ ;
 1338: 
 1339: >does-code	( xt -- a_addr )		gforth	to_does_code
 1340: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1341: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1342: Otherwise @i{a-addr} is 0.""
 1343: a_addr = (Cell *)DOES_CODE(xt);
 1344: :
 1345:     cell+ @ ;
 1346: 
 1347: code-address!	( c_addr xt -- )		gforth	code_address_store
 1348: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1349: MAKE_CF(xt, c_addr);
 1350: CACHE_FLUSH(xt,(size_t)PFA(0));
 1351: :
 1352:     ! ;
 1353: 
 1354: does-code!	( a_addr xt -- )		gforth	does_code_store
 1355: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1356: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1357: MAKE_DOES_CF(xt, a_addr);
 1358: CACHE_FLUSH(xt,(size_t)PFA(0));
 1359: :
 1360:     dodoes: over ! cell+ ! ;
 1361: 
 1362: does-handler!	( a_addr -- )	gforth	does_handler_store
 1363: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1364: @i{a-addr} points just behind a @code{DOES>}.""
 1365: MAKE_DOES_HANDLER(a_addr);
 1366: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1367: :
 1368:     drop ;
 1369: 
 1370: /does-handler	( -- n )	gforth	slash_does_handler
 1371: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1372: /* !! a constant or environmental query might be better */
 1373: n = DOES_HANDLER_SIZE;
 1374: :
 1375:     2 cells ;
 1376: 
 1377: threading-method	( -- n )	gforth	threading_method
 1378: ""0 if the engine is direct threaded. Note that this may change during
 1379: the lifetime of an image.""
 1380: #if defined(DOUBLY_INDIRECT)
 1381: n=2;
 1382: #else
 1383: # if defined(DIRECT_THREADED)
 1384: n=0;
 1385: # else
 1386: n=1;
 1387: # endif
 1388: #endif
 1389: :
 1390:  1 ;
 1391: 
 1392: \f[THEN]
 1393: 
 1394: \g hostos
 1395: 
 1396: key-file	( wfileid -- n )		gforth	paren_key_file
 1397: #ifdef HAS_FILE
 1398: fflush(stdout);
 1399: n = key((FILE*)wfileid);
 1400: #else
 1401: n = key(stdin);
 1402: #endif
 1403: 
 1404: key?-file	( wfileid -- n )		facility	key_q_file
 1405: #ifdef HAS_FILE
 1406: fflush(stdout);
 1407: n = key_query((FILE*)wfileid);
 1408: #else
 1409: n = key_query(stdin);
 1410: #endif
 1411: 
 1412: \+os
 1413: 
 1414: stdin	( -- wfileid )	gforth
 1415: wfileid = (Cell)stdin;
 1416: 
 1417: stdout	( -- wfileid )	gforth
 1418: wfileid = (Cell)stdout;
 1419: 
 1420: stderr	( -- wfileid )	gforth
 1421: wfileid = (Cell)stderr;
 1422: 
 1423: form	( -- urows ucols )	gforth
 1424: ""The number of lines and columns in the terminal. These numbers may change
 1425: with the window size.""
 1426: /* we could block SIGWINCH here to get a consistent size, but I don't
 1427:  think this is necessary or always beneficial */
 1428: urows=rows;
 1429: ucols=cols;
 1430: 
 1431: flush-icache	( c_addr u -- )	gforth	flush_icache
 1432: ""Make sure that the instruction cache of the processor (if there is
 1433: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1434: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1435: automatically. Caveat: @code{flush-icache} might not work on your
 1436: installation; this is usually the case if direct threading is not
 1437: supported on your machine (take a look at your @file{machine.h}) and
 1438: your machine has a separate instruction cache. In such cases,
 1439: @code{flush-icache} does nothing instead of flushing the instruction
 1440: cache.""
 1441: FLUSH_ICACHE(c_addr,u);
 1442: 
 1443: (bye)	( n -- )	gforth	paren_bye
 1444: SUPER_END;
 1445: return (Label *)n;
 1446: 
 1447: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1448: #ifndef MSDOS
 1449: int old_tp=terminal_prepped;
 1450: deprep_terminal();
 1451: #endif
 1452: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1453: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1454: #ifndef MSDOS
 1455: if (old_tp)
 1456:   prep_terminal();
 1457: #endif
 1458: 
 1459: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1460: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1461: is the host operating system's expansion of that environment variable. If the
 1462: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1463: in length.""
 1464: /* close ' to keep fontify happy */
 1465: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1466: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1467: 
 1468: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1469: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1470: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1471: 
 1472: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1473: wretval = pclose((FILE *)wfileid);
 1474: wior = IOR(wretval==-1);
 1475: 
 1476: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1477: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1478: Months are numbered from 1.""
 1479: struct timeval time1;
 1480: struct timezone zone1;
 1481: struct tm *ltime;
 1482: gettimeofday(&time1,&zone1);
 1483: /* !! Single Unix specification: 
 1484:    If tzp is not a null pointer, the behaviour is unspecified. */
 1485: ltime=localtime((time_t *)&time1.tv_sec);
 1486: nyear =ltime->tm_year+1900;
 1487: nmonth=ltime->tm_mon+1;
 1488: nday  =ltime->tm_mday;
 1489: nhour =ltime->tm_hour;
 1490: nmin  =ltime->tm_min;
 1491: nsec  =ltime->tm_sec;
 1492: 
 1493: ms	( n -- )	facility-ext
 1494: ""Wait at least @i{n} milli-second.""
 1495: struct timeval timeout;
 1496: timeout.tv_sec=n/1000;
 1497: timeout.tv_usec=1000*(n%1000);
 1498: (void)select(0,0,0,0,&timeout);
 1499: 
 1500: allocate	( u -- a_addr wior )	memory
 1501: ""Allocate @i{u} address units of contiguous data space. The initial
 1502: contents of the data space is undefined. If the allocation is successful,
 1503: @i{a-addr} is the start address of the allocated region and @i{wior}
 1504: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1505: is a non-zero I/O result code.""
 1506: a_addr = (Cell *)malloc(u?u:1);
 1507: wior = IOR(a_addr==NULL);
 1508: 
 1509: free	( a_addr -- wior )		memory
 1510: ""Return the region of data space starting at @i{a-addr} to the system.
 1511: The region must originally have been obtained using @code{allocate} or
 1512: @code{resize}. If the operational is successful, @i{wior} is 0.
 1513: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1514: free(a_addr);
 1515: wior = 0;
 1516: 
 1517: resize	( a_addr1 u -- a_addr2 wior )	memory
 1518: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1519: address units, possibly moving the contents to a different
 1520: area. @i{a-addr2} is the address of the resulting area.
 1521: If the operation is successful, @i{wior} is 0.
 1522: If the operation fails, @i{wior} is a non-zero
 1523: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1524: @code{resize} @code{allocate}s @i{u} address units.""
 1525: /* the following check is not necessary on most OSs, but it is needed
 1526:    on SunOS 4.1.2. */
 1527: /* close ' to keep fontify happy */
 1528: if (a_addr1==NULL)
 1529:   a_addr2 = (Cell *)malloc(u);
 1530: else
 1531:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1532: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1533: 
 1534: strerror	( n -- c_addr u )	gforth
 1535: c_addr = strerror(n);
 1536: u = strlen(c_addr);
 1537: 
 1538: strsignal	( n -- c_addr u )	gforth
 1539: c_addr = strsignal(n);
 1540: u = strlen(c_addr);
 1541: 
 1542: call-c	( w -- )	gforth	call_c
 1543: ""Call the C function pointed to by @i{w}. The C function has to
 1544: access the stack itself. The stack pointers are exported in the global
 1545: variables @code{SP} and @code{FP}.""
 1546: /* This is a first attempt at support for calls to C. This may change in
 1547:    the future */
 1548: IF_fpTOS(fp[0]=fpTOS);
 1549: FP=fp;
 1550: SP=sp;
 1551: ((void (*)())w)();
 1552: sp=SP;
 1553: fp=FP;
 1554: IF_spTOS(spTOS=sp[0]);
 1555: IF_fpTOS(fpTOS=fp[0]);
 1556: 
 1557: \+
 1558: \+file
 1559: 
 1560: close-file	( wfileid -- wior )		file	close_file
 1561: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1562: 
 1563: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1564: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1565: wior =  IOR(wfileid == 0);
 1566: 
 1567: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1568: Cell	fd;
 1569: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1570: if (fd != -1) {
 1571:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1572:   wior = IOR(wfileid == 0);
 1573: } else {
 1574:   wfileid = 0;
 1575:   wior = IOR(1);
 1576: }
 1577: 
 1578: delete-file	( c_addr u -- wior )		file	delete_file
 1579: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1580: 
 1581: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1582: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1583: char *s1=tilde_cstr(c_addr2, u2, 1);
 1584: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1585: 
 1586: file-position	( wfileid -- ud wior )	file	file_position
 1587: /* !! use tell and lseek? */
 1588: ud = LONG2UD(ftell((FILE *)wfileid));
 1589: wior = IOR(UD2LONG(ud)==-1);
 1590: 
 1591: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1592: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1593: 
 1594: file-size	( wfileid -- ud wior )	file	file_size
 1595: struct stat buf;
 1596: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1597: ud = LONG2UD(buf.st_size);
 1598: 
 1599: resize-file	( ud wfileid -- wior )	file	resize_file
 1600: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1601: 
 1602: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1603: /* !! fread does not guarantee enough */
 1604: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1605: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1606: /* !! is the value of ferror errno-compatible? */
 1607: if (wior)
 1608:   clearerr((FILE *)wfileid);
 1609: 
 1610: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1611: /* this may one day be replaced with : read-line (read-line) nip ; */
 1612: Cell c;
 1613: flag=-1;
 1614: for(u2=0; u2<u1; u2++)
 1615: {
 1616:    c = getc((FILE *)wfileid);
 1617:    if (c=='\n') break;
 1618:    if (c=='\r') {
 1619:      if ((c = getc((FILE *)wfileid))!='\n')
 1620:        ungetc(c,(FILE *)wfileid);
 1621:      break;
 1622:    }
 1623:    if (c==EOF) {
 1624: 	flag=FLAG(u2!=0);
 1625: 	break;
 1626:      }
 1627:    c_addr[u2] = (Char)c;
 1628: }
 1629: wior=FILEIO(ferror((FILE *)wfileid));
 1630: 
 1631: \+
 1632: 
 1633: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1634: /* !! fwrite does not guarantee enough */
 1635: #ifdef HAS_FILE
 1636: {
 1637:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1638:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1639:   if (wior)
 1640:     clearerr((FILE *)wfileid);
 1641: }
 1642: #else
 1643: TYPE(c_addr, u1);
 1644: #endif
 1645: 
 1646: emit-file	( c wfileid -- wior )	gforth	emit_file
 1647: #ifdef HAS_FILE
 1648: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1649: if (wior)
 1650:   clearerr((FILE *)wfileid);
 1651: #else
 1652: PUTC(c);
 1653: #endif
 1654: 
 1655: \+file
 1656: 
 1657: flush-file	( wfileid -- wior )		file-ext	flush_file
 1658: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1659: 
 1660: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1661: char *filename=tilde_cstr(c_addr, u, 1);
 1662: if (access (filename, F_OK) != 0) {
 1663:   wfam=0;
 1664:   wior=IOR(1);
 1665: }
 1666: else if (access (filename, R_OK | W_OK) == 0) {
 1667:   wfam=2; /* r/w */
 1668:   wior=0;
 1669: }
 1670: else if (access (filename, R_OK) == 0) {
 1671:   wfam=0; /* r/o */
 1672:   wior=0;
 1673: }
 1674: else if (access (filename, W_OK) == 0) {
 1675:   wfam=4; /* w/o */
 1676:   wior=0;
 1677: }
 1678: else {
 1679:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1680: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1681:   wior=0;
 1682: }
 1683: 
 1684: \+
 1685: \+floating
 1686: 
 1687: \g floating
 1688: 
 1689: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1690: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1691: 
 1692: d>f	( d -- r )		float	d_to_f
 1693: #ifdef BUGGY_LONG_LONG
 1694: extern double ldexp(double x, int exp);
 1695: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1696: #else
 1697: r = d;
 1698: #endif
 1699: 
 1700: f>d	( r -- d )		float	f_to_d
 1701: #ifdef BUGGY_LONG_LONG
 1702: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1703: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1704: #else
 1705: d = r;
 1706: #endif
 1707: 
 1708: f!	( r f_addr -- )	float	f_store
 1709: ""Store @i{r} into the float at address @i{f-addr}.""
 1710: *f_addr = r;
 1711: 
 1712: f@	( f_addr -- r )	float	f_fetch
 1713: ""@i{r} is the float at address @i{f-addr}.""
 1714: r = *f_addr;
 1715: 
 1716: df@	( df_addr -- r )	float-ext	d_f_fetch
 1717: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1718: #ifdef IEEE_FP
 1719: r = *df_addr;
 1720: #else
 1721: !! df@
 1722: #endif
 1723: 
 1724: df!	( r df_addr -- )	float-ext	d_f_store
 1725: ""Store @i{r} as double-precision IEEE floating-point value to the
 1726: address @i{df-addr}.""
 1727: #ifdef IEEE_FP
 1728: *df_addr = r;
 1729: #else
 1730: !! df!
 1731: #endif
 1732: 
 1733: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1734: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1735: #ifdef IEEE_FP
 1736: r = *sf_addr;
 1737: #else
 1738: !! sf@
 1739: #endif
 1740: 
 1741: sf!	( r sf_addr -- )	float-ext	s_f_store
 1742: ""Store @i{r} as single-precision IEEE floating-point value to the
 1743: address @i{sf-addr}.""
 1744: #ifdef IEEE_FP
 1745: *sf_addr = r;
 1746: #else
 1747: !! sf!
 1748: #endif
 1749: 
 1750: f+	( r1 r2 -- r3 )	float	f_plus
 1751: r3 = r1+r2;
 1752: 
 1753: f-	( r1 r2 -- r3 )	float	f_minus
 1754: r3 = r1-r2;
 1755: 
 1756: f*	( r1 r2 -- r3 )	float	f_star
 1757: r3 = r1*r2;
 1758: 
 1759: f/	( r1 r2 -- r3 )	float	f_slash
 1760: r3 = r1/r2;
 1761: 
 1762: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1763: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1764: r3 = pow(r1,r2);
 1765: 
 1766: fnegate	( r1 -- r2 )	float	f_negate
 1767: r2 = - r1;
 1768: 
 1769: fdrop	( r -- )		float	f_drop
 1770: 
 1771: fdup	( r -- r r )	float	f_dupe
 1772: 
 1773: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1774: 
 1775: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1776: 
 1777: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1778: 
 1779: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1780: 
 1781: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1782: 
 1783: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1784: ""@code{1 floats +}.""
 1785: f_addr2 = f_addr1+1;
 1786: 
 1787: floats	( n1 -- n2 )	float
 1788: ""@i{n2} is the number of address units of @i{n1} floats.""
 1789: n2 = n1*sizeof(Float);
 1790: 
 1791: floor	( r1 -- r2 )	float
 1792: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1793: /* !! unclear wording */
 1794: r2 = floor(r1);
 1795: 
 1796: fround	( r1 -- r2 )	float	f_round
 1797: ""Round to the nearest integral value.""
 1798: /* !! unclear wording */
 1799: #ifdef HAVE_RINT
 1800: r2 = rint(r1);
 1801: #else
 1802: r2 = floor(r1+0.5);
 1803: /* !! This is not quite true to the rounding rules given in the standard */
 1804: #endif
 1805: 
 1806: fmax	( r1 r2 -- r3 )	float	f_max
 1807: if (r1<r2)
 1808:   r3 = r2;
 1809: else
 1810:   r3 = r1;
 1811: 
 1812: fmin	( r1 r2 -- r3 )	float	f_min
 1813: if (r1<r2)
 1814:   r3 = r1;
 1815: else
 1816:   r3 = r2;
 1817: 
 1818: represent	( r c_addr u -- n f1 f2 )	float
 1819: char *sig;
 1820: int flag;
 1821: int decpt;
 1822: sig=ecvt(r, u, &decpt, &flag);
 1823: n=(r==0 ? 1 : decpt);
 1824: f1=FLAG(flag!=0);
 1825: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1826: memmove(c_addr,sig,u);
 1827: 
 1828: >float	( c_addr u -- flag )	float	to_float
 1829: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1830: character string @i{c-addr u} to internal floating-point
 1831: representation. If the string represents a valid floating-point number
 1832: @i{r} is placed on the floating-point stack and @i{flag} is
 1833: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1834: case and represents the floating-point number 0.""
 1835: /* real signature: c_addr u -- r t / f */
 1836: Float r;
 1837: char *number=cstr(c_addr, u, 1);
 1838: char *endconv;
 1839: int sign = 0;
 1840: if(number[0]=='-') {
 1841:    sign = 1;
 1842:    number++;
 1843:    u--;
 1844: }
 1845: while(isspace((unsigned)(number[--u])) && u>0);
 1846: switch(number[u])
 1847: {
 1848:    case 'd':
 1849:    case 'D':
 1850:    case 'e':
 1851:    case 'E':  break;
 1852:    default :  u++; break;
 1853: }
 1854: number[u]='\0';
 1855: r=strtod(number,&endconv);
 1856: if((flag=FLAG(!(Cell)*endconv)))
 1857: {
 1858:    IF_fpTOS(fp[0] = fpTOS);
 1859:    fp += -1;
 1860:    fpTOS = sign ? -r : r;
 1861: }
 1862: else if(*endconv=='d' || *endconv=='D')
 1863: {
 1864:    *endconv='E';
 1865:    r=strtod(number,&endconv);
 1866:    if((flag=FLAG(!(Cell)*endconv)))
 1867:      {
 1868: 	IF_fpTOS(fp[0] = fpTOS);
 1869: 	fp += -1;
 1870: 	fpTOS = sign ? -r : r;
 1871:      }
 1872: }
 1873: 
 1874: fabs	( r1 -- r2 )	float-ext	f_abs
 1875: r2 = fabs(r1);
 1876: 
 1877: facos	( r1 -- r2 )	float-ext	f_a_cos
 1878: r2 = acos(r1);
 1879: 
 1880: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1881: r2 = asin(r1);
 1882: 
 1883: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1884: r2 = atan(r1);
 1885: 
 1886: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1887: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1888: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1889: r3 = atan2(r1,r2);
 1890: 
 1891: fcos	( r1 -- r2 )	float-ext	f_cos
 1892: r2 = cos(r1);
 1893: 
 1894: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1895: r2 = exp(r1);
 1896: 
 1897: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1898: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1899: #ifdef HAVE_EXPM1
 1900: extern double
 1901: #ifdef NeXT
 1902:               const
 1903: #endif
 1904:                     expm1(double);
 1905: r2 = expm1(r1);
 1906: #else
 1907: r2 = exp(r1)-1.;
 1908: #endif
 1909: 
 1910: fln	( r1 -- r2 )	float-ext	f_l_n
 1911: r2 = log(r1);
 1912: 
 1913: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1914: ""@i{r2}=ln(@i{r1}+1)""
 1915: #ifdef HAVE_LOG1P
 1916: extern double
 1917: #ifdef NeXT
 1918:               const
 1919: #endif
 1920:                     log1p(double);
 1921: r2 = log1p(r1);
 1922: #else
 1923: r2 = log(r1+1.);
 1924: #endif
 1925: 
 1926: flog	( r1 -- r2 )	float-ext	f_log
 1927: ""The decimal logarithm.""
 1928: r2 = log10(r1);
 1929: 
 1930: falog	( r1 -- r2 )	float-ext	f_a_log
 1931: ""@i{r2}=10**@i{r1}""
 1932: extern double pow10(double);
 1933: r2 = pow10(r1);
 1934: 
 1935: fsin	( r1 -- r2 )	float-ext	f_sine
 1936: r2 = sin(r1);
 1937: 
 1938: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1939: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1940: r2 = sin(r1);
 1941: r3 = cos(r1);
 1942: 
 1943: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1944: r2 = sqrt(r1);
 1945: 
 1946: ftan	( r1 -- r2 )	float-ext	f_tan
 1947: r2 = tan(r1);
 1948: :
 1949:  fsincos f/ ;
 1950: 
 1951: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1952: r2 = sinh(r1);
 1953: :
 1954:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1955: 
 1956: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1957: r2 = cosh(r1);
 1958: :
 1959:  fexp fdup 1/f f+ f2/ ;
 1960: 
 1961: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1962: r2 = tanh(r1);
 1963: :
 1964:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1965: 
 1966: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1967: r2 = asinh(r1);
 1968: :
 1969:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1970: 
 1971: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1972: r2 = acosh(r1);
 1973: :
 1974:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1975: 
 1976: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1977: r2 = atanh(r1);
 1978: :
 1979:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1980:  r> IF  fnegate  THEN ;
 1981: 
 1982: sfloats	( n1 -- n2 )	float-ext	s_floats
 1983: ""@i{n2} is the number of address units of @i{n1}
 1984: single-precision IEEE floating-point numbers.""
 1985: n2 = n1*sizeof(SFloat);
 1986: 
 1987: dfloats	( n1 -- n2 )	float-ext	d_floats
 1988: ""@i{n2} is the number of address units of @i{n1}
 1989: double-precision IEEE floating-point numbers.""
 1990: n2 = n1*sizeof(DFloat);
 1991: 
 1992: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1993: ""@i{sf-addr} is the first single-float-aligned address greater
 1994: than or equal to @i{c-addr}.""
 1995: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1996: :
 1997:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1998: 
 1999: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2000: ""@i{df-addr} is the first double-float-aligned address greater
 2001: than or equal to @i{c-addr}.""
 2002: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2003: :
 2004:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2005: 
 2006: \ The following words access machine/OS/installation-dependent
 2007: \   Gforth internals
 2008: \ !! how about environmental queries DIRECT-THREADED,
 2009: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2010: 
 2011: \ local variable implementation primitives
 2012: \+
 2013: \+glocals
 2014: 
 2015: @local#	( #noffset -- w )	gforth	fetch_local_number
 2016: w = *(Cell *)(lp+noffset);
 2017: 
 2018: @local0	( -- w )	new	fetch_local_zero
 2019: w = *(Cell *)(lp+0*sizeof(Cell));
 2020: 
 2021: @local1	( -- w )	new	fetch_local_four
 2022: w = *(Cell *)(lp+1*sizeof(Cell));
 2023: 
 2024: @local2	( -- w )	new	fetch_local_eight
 2025: w = *(Cell *)(lp+2*sizeof(Cell));
 2026: 
 2027: @local3	( -- w )	new	fetch_local_twelve
 2028: w = *(Cell *)(lp+3*sizeof(Cell));
 2029: 
 2030: \+floating
 2031: 
 2032: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2033: r = *(Float *)(lp+noffset);
 2034: 
 2035: f@local0	( -- r )	new	f_fetch_local_zero
 2036: r = *(Float *)(lp+0*sizeof(Float));
 2037: 
 2038: f@local1	( -- r )	new	f_fetch_local_eight
 2039: r = *(Float *)(lp+1*sizeof(Float));
 2040: 
 2041: \+
 2042: 
 2043: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2044: /* this can also be used to implement lp@ */
 2045: c_addr = (Char *)(lp+noffset);
 2046: 
 2047: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2048: ""used with negative immediate values it allocates memory on the
 2049: local stack, a positive immediate argument drops memory from the local
 2050: stack""
 2051: lp += noffset;
 2052: 
 2053: lp-	( -- )	new	minus_four_lp_plus_store
 2054: lp += -sizeof(Cell);
 2055: 
 2056: lp+	( -- )	new	eight_lp_plus_store
 2057: lp += sizeof(Float);
 2058: 
 2059: lp+2	( -- )	new	sixteen_lp_plus_store
 2060: lp += 2*sizeof(Float);
 2061: 
 2062: lp!	( c_addr -- )	gforth	lp_store
 2063: lp = (Address)c_addr;
 2064: 
 2065: >l	( w -- )	gforth	to_l
 2066: lp -= sizeof(Cell);
 2067: *(Cell *)lp = w;
 2068: 
 2069: \+floating
 2070: 
 2071: f>l	( r -- )	gforth	f_to_l
 2072: lp -= sizeof(Float);
 2073: *(Float *)lp = r;
 2074: 
 2075: fpick	( u -- r )		gforth
 2076: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2077: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2078: :
 2079:  floats fp@ + f@ ;
 2080: 
 2081: \+
 2082: \+
 2083: 
 2084: \+OS
 2085: 
 2086: define(`uploop',
 2087:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2088: define(`_uploop',
 2089:        `ifelse($1, `$3', `$5',
 2090: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2091: \ argflist(argnum): Forth argument list
 2092: define(argflist,
 2093:        `ifelse($1, 0, `',
 2094:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2095: \ argdlist(argnum): declare C's arguments
 2096: define(argdlist,
 2097:        `ifelse($1, 0, `',
 2098:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2099: \ argclist(argnum): pass C's arguments
 2100: define(argclist,
 2101:        `ifelse($1, 0, `',
 2102:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2103: \ icall(argnum)
 2104: define(icall,
 2105: `icall$1	( argflist($1)u -- uret )	gforth
 2106: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2107: 
 2108: ')
 2109: define(fcall,
 2110: `fcall$1	( argflist($1)u -- rret )	gforth
 2111: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2112: 
 2113: ')
 2114: 
 2115: \ close ' to keep fontify happy
 2116: 
 2117: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2118: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2119: #ifndef RTLD_GLOBAL
 2120: #define RTLD_GLOBAL 0
 2121: #endif
 2122: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2123: #else
 2124: #  ifdef _WIN32
 2125: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2126: #  else
 2127: #warning Define open-lib!
 2128: u2 = 0;
 2129: #  endif
 2130: #endif
 2131: 
 2132: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2133: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2134: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2135: #else
 2136: #  ifdef _WIN32
 2137: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2138: #  else
 2139: #warning Define lib-sym!
 2140: u3 = 0;
 2141: #  endif
 2142: #endif
 2143: 
 2144: uploop(i, 0, 7, `icall(i)')
 2145: icall(20)
 2146: uploop(i, 0, 7, `fcall(i)')
 2147: fcall(20)
 2148: 
 2149: \+
 2150: 
 2151: up!	( a_addr -- )	gforth	up_store
 2152: UP=up=(char *)a_addr;
 2153: :
 2154:  up ! ;
 2155: Variable UP
 2156: 
 2157: wcall	( u -- )	gforth
 2158: IF_fpTOS(fp[0]=fpTOS);
 2159: FP=fp;
 2160: sp=(Cell*)(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2161: fp=FP;
 2162: IF_spTOS(spTOS=sp[0];)
 2163: IF_fpTOS(fpTOS=fp[0]);
 2164: 
 2165: \+file
 2166: 
 2167: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2168: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2169: wior =  IOR(wdirid == 0);
 2170: 
 2171: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2172: struct dirent * dent;
 2173: dent = readdir((DIR *)wdirid);
 2174: wior = 0;
 2175: flag = -1;
 2176: if(dent == NULL) {
 2177:   u2 = 0;
 2178:   flag = 0;
 2179: } else {
 2180:   u2 = strlen(dent->d_name);
 2181:   if(u2 > u1) {
 2182:     u2 = u1;
 2183:     wior = -512-ENAMETOOLONG;
 2184:   }
 2185:   memmove(c_addr, dent->d_name, u2);
 2186: }
 2187: 
 2188: close-dir	( wdirid -- wior )	gforth	close_dir
 2189: wior = IOR(closedir((DIR *)wdirid));
 2190: 
 2191: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2192: char * string = cstr(c_addr1, u1, 1);
 2193: char * pattern = cstr(c_addr2, u2, 0);
 2194: flag = FLAG(!fnmatch(pattern, string, 0));
 2195: 
 2196: \+
 2197: 
 2198: newline	( -- c_addr u )	gforth
 2199: ""String containing the newline sequence of the host OS""
 2200: char newline[] = {
 2201: #if defined(unix) || defined(__MACH__)
 2202: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2203: '\n'
 2204: #else
 2205: '\r','\n'
 2206: #endif
 2207: };
 2208: c_addr=newline;
 2209: u=sizeof(newline);
 2210: :
 2211:  "newline count ;
 2212: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2213: 
 2214: \+os
 2215: 
 2216: utime	( -- dtime )	gforth
 2217: ""Report the current time in microseconds since some epoch.""
 2218: struct timeval time1;
 2219: gettimeofday(&time1,NULL);
 2220: dtime = timeval2us(&time1);
 2221: 
 2222: cputime ( -- duser dsystem ) gforth
 2223: ""duser and dsystem are the respective user- and system-level CPU
 2224: times used since the start of the Forth system (excluding child
 2225: processes), in microseconds (the granularity may be much larger,
 2226: however).  On platforms without the getrusage call, it reports elapsed
 2227: time (since some epoch) for duser and 0 for dsystem.""
 2228: #ifdef HAVE_GETRUSAGE
 2229: struct rusage usage;
 2230: getrusage(RUSAGE_SELF, &usage);
 2231: duser = timeval2us(&usage.ru_utime);
 2232: dsystem = timeval2us(&usage.ru_stime);
 2233: #else
 2234: struct timeval time1;
 2235: gettimeofday(&time1,NULL);
 2236: duser = timeval2us(&time1);
 2237: #ifndef BUGGY_LONG_LONG
 2238: dsystem = (DCell)0;
 2239: #else
 2240: dsystem=(DCell){0,0};
 2241: #endif
 2242: #endif
 2243: 
 2244: \+
 2245: 
 2246: \+floating
 2247: 
 2248: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2249: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2250: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2251: ucount elements.""
 2252: for (r=0.; ucount>0; ucount--) {
 2253:   r += *f_addr1 * *f_addr2;
 2254:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2255:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2256: }
 2257: :
 2258:  >r swap 2swap swap 0e r> 0 ?DO
 2259:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2260:  LOOP 2drop 2drop ; 
 2261: 
 2262: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2263: ""vy=ra*vx+vy""
 2264: for (; ucount>0; ucount--) {
 2265:   *f_y += ra * *f_x;
 2266:   f_x = (Float *)(((Address)f_x)+nstridex);
 2267:   f_y = (Float *)(((Address)f_y)+nstridey);
 2268: }
 2269: :
 2270:  >r swap 2swap swap r> 0 ?DO
 2271:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2272:  LOOP 2drop 2drop fdrop ;
 2273: 
 2274: \+
 2275: 
 2276: \+file
 2277: 
 2278: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2279: Cell c;
 2280: flag=-1;
 2281: u3=0;
 2282: for(u2=0; u2<u1; u2++)
 2283: {
 2284:    c = getc((FILE *)wfileid);
 2285:    u3++;
 2286:    if (c=='\n') break;
 2287:    if (c=='\r') {
 2288:      if ((c = getc((FILE *)wfileid))!='\n')
 2289:        ungetc(c,(FILE *)wfileid);
 2290:      else
 2291:        u3++;
 2292:      break;
 2293:    }
 2294:    if (c==EOF) {
 2295: 	flag=FLAG(u2!=0);
 2296: 	break;
 2297:      }
 2298:    c_addr[u2] = (Char)c;
 2299: }
 2300: wior=FILEIO(ferror((FILE *)wfileid));
 2301: 
 2302: \+
 2303: 
 2304: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 2305: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 2306:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2307:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2308:     break;
 2309: longname2=longname1;
 2310: :
 2311:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 2312: 	>r 2dup r@ cell+ cell+ capscomp  0=
 2313: 	IF  2drop r>  EXIT  THEN
 2314: 	r> @
 2315:     REPEAT  THEN  nip nip ;
 2316: : (findl-samelen) ( u longname1 -- u longname2/0 )
 2317:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 2318: 
 2319: \+hash
 2320: 
 2321: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 2322: struct Longname *longname1;
 2323: longname2=NULL;
 2324: while(a_addr != NULL)
 2325: {
 2326:    longname1=(struct Longname *)(a_addr[1]);
 2327:    a_addr=(Cell *)(a_addr[0]);
 2328:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2329:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2330:      {
 2331: 	longname2=longname1;
 2332: 	break;
 2333:      }
 2334: }
 2335: :
 2336:  BEGIN  dup  WHILE
 2337:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2338:         IF  2dup r@ cell+ cell+ capscomp 0=
 2339: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2340: 	rdrop r>
 2341:  REPEAT nip nip ;
 2342: 
 2343: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 2344: ""A case-sensitive variant of @code{(hashfind)}""
 2345: struct Longname *longname1;
 2346: longname2=NULL;
 2347: while(a_addr != NULL)
 2348: {
 2349:    longname1=(struct Longname *)(a_addr[1]);
 2350:    a_addr=(Cell *)(a_addr[0]);
 2351:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2352:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2353:      {
 2354: 	longname2=longname1;
 2355: 	break;
 2356:      }
 2357: }
 2358: :
 2359:  BEGIN  dup  WHILE
 2360:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2361:         IF  2dup r@ cell+ cell+ -text 0=
 2362: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2363: 	rdrop r>
 2364:  REPEAT nip nip ;
 2365: 
 2366: \+
 2367: 
 2368: \+peephole
 2369: 
 2370: \g peephole
 2371: 
 2372: primtable	( -- wprimtable )	new
 2373: ""wprimtable is a table containing the xts of the primitives indexed
 2374: by sequence-number in prim (for use in prepare-peephole-table).""
 2375: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2376: 
 2377: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2378: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2379: constructed by combining a primitives table with a simple peephole
 2380: optimization table.""
 2381: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2382: 
 2383: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2384: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2385: they cannot be combined, xt is 0.""
 2386: xt = peephole_opt(xt1, xt2, wpeeptable);
 2387: 
 2388: call	( #a_callee -- R:a_retaddr )	new
 2389: ""Call callee (a variant of docol with inline argument).""
 2390: a_retaddr = (Cell *)IP;
 2391: SET_IP((Xt *)a_callee);
 2392: 
 2393: useraddr	( #u -- a_addr )	new
 2394: a_addr = (Cell *)(up+u);
 2395: 
 2396: compile-prim ( xt1 -- xt2 )	new	compile_prim
 2397: xt2 = (Xt)compile_prim((Label)xt1);
 2398: 
 2399: include(peeprules.vmg)
 2400: 
 2401: \+

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>