File:  [gforth] / gforth / prim
Revision 1.79: download - view: text, annotated - select for diffs
Sun Mar 18 12:39:33 2001 UTC (18 years, 6 months ago) by anton
Branches: MAIN
CVS tags: HEAD
moved stack definitions from prims2x.fs to prim (and support for that)

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ f83name.*	F83Name *
   76: 
   77: \E stack data-stack   sp Cell
   78: \E stack fp-stack     fp Float
   79: \E stack return-stack rp Cell
   80: \E
   81: \E get-current prefixes set-current
   82: \E 
   83: \E s" Bool"		single data-stack type-prefix f
   84: \E s" Char"		single data-stack type-prefix c
   85: \E s" Cell"		single data-stack type-prefix n
   86: \E s" Cell"		single data-stack type-prefix w
   87: \E s" UCell"		single data-stack type-prefix u
   88: \E s" DCell"		double data-stack type-prefix d
   89: \E s" UDCell"		double data-stack type-prefix ud
   90: \E s" Float"		single fp-stack   type-prefix r
   91: \E s" Cell *"		single data-stack type-prefix a_
   92: \E s" Char *"		single data-stack type-prefix c_
   93: \E s" Float *"		single data-stack type-prefix f_
   94: \E s" DFloat *"		single data-stack type-prefix df_
   95: \E s" SFloat *"		single data-stack type-prefix sf_
   96: \E s" Xt"		single data-stack type-prefix xt
   97: \E s" struct F83Name *"	single data-stack type-prefix f83name
   98: \E s" struct Longname *" single data-stack type-prefix longname
   99: \E 
  100: \E return-stack stack-prefix R:
  101: \E inst-stream  stack-prefix #
  102: \E 
  103: \E set-current
  104: 
  105: \ 
  106: \ 
  107: \ 
  108: \ In addition the following names can be used:
  109: \ ip	the instruction pointer
  110: \ sp	the data stack pointer
  111: \ rp	the parameter stack pointer
  112: \ lp	the locals stack pointer
  113: \ NEXT	executes NEXT
  114: \ cfa	
  115: \ NEXT1	executes NEXT1
  116: \ FLAG(x)	makes a Forth flag from a C flag
  117: \ 
  118: \ 
  119: \ 
  120: \ Percentages in comments are from Koopmans book: average/maximum use
  121: \ (taken from four, not very representative benchmarks)
  122: \ 
  123: \ 
  124: \ 
  125: \ To do:
  126: \ 
  127: \ throw execute, cfa and NEXT1 out?
  128: \ macroize *ip, ip++, *ip++ (pipelining)?
  129: 
  130: \ these m4 macros would collide with identifiers
  131: undefine(`index')
  132: undefine(`shift')
  133: undefine(`symbols')
  134: 
  135: noop	( -- )		gforth
  136: :
  137:  ;
  138: 
  139: lit	( #w -- w )		gforth
  140: :
  141:  r> dup @ swap cell+ >r ;
  142: 
  143: execute	( xt -- )		core
  144: ""Perform the semantics represented by the execution token, @i{xt}.""
  145: ip=IP;
  146: IF_spTOS(spTOS = sp[0]);
  147: SUPER_END;
  148: EXEC(xt);
  149: 
  150: perform	( a_addr -- )	gforth
  151: ""@code{@@ execute}.""
  152: /* and pfe */
  153: ip=IP;
  154: IF_spTOS(spTOS = sp[0]);
  155: SUPER_END;
  156: EXEC(*(Xt *)a_addr);
  157: :
  158:  @ execute ;
  159: 
  160: \fhas? skipbranchprims 0= [IF]
  161: \+glocals
  162: 
  163: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  164: /* this will probably not be used */
  165: lp += nlocals;
  166: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  167: 
  168: \+
  169: 
  170: branch	( #ndisp -- )		gforth
  171: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  172: :
  173:  r> dup @ + >r ;
  174: 
  175: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  176: \ this is non-syntactical: code must open a brace that is closed by the macro
  177: define(condbranch,
  178: $1 ( `#'ndisp $2 ) $3
  179: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  180: TAIL;
  181: }
  182: $5
  183: 
  184: \+glocals
  185: 
  186: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  187: $4    lp += nlocals;
  188: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  189: TAIL;
  190: }
  191: 
  192: \+
  193: )
  194: 
  195: condbranch(?branch,f --,f83	question_branch,
  196: if (f==0) {
  197: ,:
  198:  0= dup     \ !f !f
  199:  r> dup @   \ !f !f IP branchoffset
  200:  rot and +  \ !f IP|IP+branchoffset
  201:  swap 0= cell and + \ IP''
  202:  >r ;)
  203: 
  204: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  205: \ is only used in if's (yet)
  206: 
  207: \+xconds
  208: 
  209: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  210: ""The run-time procedure compiled by @code{?DUP-IF}.""
  211: if (f==0) {
  212:   sp++;
  213:   IF_spTOS(spTOS = sp[0]);
  214:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  215:   TAIL;
  216: }
  217: 
  218: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  219: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  220: /* the approach taken here of declaring the word as having the stack
  221: effect ( f -- ) and correcting for it in the branch-taken case costs a
  222: few cycles in that case, but is easy to convert to a CONDBRANCH
  223: invocation */
  224: if (f!=0) {
  225:   sp--;
  226:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  227:   NEXT;
  228: }
  229: 
  230: \+
  231: \f[THEN]
  232: \fhas? skiploopprims 0= [IF]
  233: 
  234: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  235: n2=n1-1;
  236: if (n1) {
  237: ,:
  238:  r> r> dup 1- >r
  239:  IF dup @ + >r ELSE cell+ >r THEN ;)
  240: 
  241: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  242: n2=n1+1;
  243: if (n2 != nlimit) {
  244: ,:
  245:  r> r> 1+ r> 2dup =
  246:  IF >r 1- >r cell+ >r
  247:  ELSE >r >r dup @ + >r THEN ;)
  248: 
  249: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  250: /* !! check this thoroughly */
  251: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  252: /* dependent upon two's complement arithmetic */
  253: Cell olddiff = n1-nlimit;
  254: n2=n1+n;	
  255: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  256:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  257: ,:
  258:  r> swap
  259:  r> r> 2dup - >r
  260:  2 pick r@ + r@ xor 0< 0=
  261:  3 pick r> xor 0< 0= or
  262:  IF    >r + >r dup @ + >r
  263:  ELSE  >r >r drop cell+ >r THEN ;)
  264: 
  265: \+xconds
  266: 
  267: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  268: UCell olddiff = n1-nlimit;
  269: n2=n1-u;
  270: if (olddiff>u) {
  271: ,)
  272: 
  273: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  274: ""The run-time procedure compiled by S+LOOP. It loops until the index
  275: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  276: version of (+LOOP).""
  277: /* !! check this thoroughly */
  278: Cell diff = n1-nlimit;
  279: Cell newdiff = diff+n;
  280: if (n<0) {
  281:     diff = -diff;
  282:     newdiff = -newdiff;
  283: }
  284: n2=n1+n;
  285: if (diff>=0 || newdiff<0) {
  286: ,)
  287: 
  288: \+
  289: 
  290: unloop	( R:w1 R:w2 -- )	core
  291: /* !! alias for 2rdrop */
  292: :
  293:  r> rdrop rdrop >r ;
  294: 
  295: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  296: /* or (for) = >r -- collides with unloop! */
  297: nlimit=0;
  298: :
  299:  r> swap 0 >r >r >r ;
  300: 
  301: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  302: :
  303:  r> swap rot >r >r >r ;
  304: 
  305: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  306: if (nstart == nlimit) {
  307:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  308:     TAIL;
  309: }
  310: :
  311:   2dup =
  312:   IF   r> swap rot >r >r
  313:        dup @ + >r
  314:   ELSE r> swap rot >r >r
  315:        cell+ >r
  316:   THEN ;				\ --> CORE-EXT
  317: 
  318: \+xconds
  319: 
  320: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  321: if (nstart >= nlimit) {
  322:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  323:     TAIL;
  324: }
  325: :
  326:  swap 2dup
  327:  r> swap >r swap >r
  328:  >=
  329:  IF
  330:      dup @ +
  331:  ELSE
  332:      cell+
  333:  THEN  >r ;
  334: 
  335: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  336: if (ustart >= ulimit) {
  337:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  338:     TAIL;
  339: }
  340: :
  341:  swap 2dup
  342:  r> swap >r swap >r
  343:  u>=
  344:  IF
  345:      dup @ +
  346:  ELSE
  347:      cell+
  348:  THEN  >r ;
  349: 
  350: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  351: if (nstart <= nlimit) {
  352:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  353:     TAIL;
  354: }
  355: :
  356:  swap 2dup
  357:  r> swap >r swap >r
  358:  <=
  359:  IF
  360:      dup @ +
  361:  ELSE
  362:      cell+
  363:  THEN  >r ;
  364: 
  365: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  366: if (ustart <= ulimit) {
  367:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  368:     TAIL;
  369: }
  370: :
  371:  swap 2dup
  372:  r> swap >r swap >r
  373:  u<=
  374:  IF
  375:      dup @ +
  376:  ELSE
  377:      cell+
  378:  THEN  >r ;
  379: 
  380: \+
  381: 
  382: \ don't make any assumptions where the return stack is!!
  383: \ implement this in machine code if it should run quickly!
  384: 
  385: i	( R:n -- R:n n )		core
  386: :
  387: \ rp@ cell+ @ ;
  388:   r> r> tuck >r >r ;
  389: 
  390: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  391: :
  392: \ rp@ cell+ cell+ @ ;
  393:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  394: variable itmp
  395: 
  396: j	( R:n R:d1 -- n R:n R:d1 )		core
  397: :
  398: \ rp@ cell+ cell+ cell+ @ ;
  399:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  400: [IFUNDEF] itmp variable itmp [THEN]
  401: 
  402: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  403: :
  404: \ rp@ [ 5 cells ] Literal + @ ;
  405:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  406: [IFUNDEF] itmp variable itmp [THEN]
  407: 
  408: \f[THEN]
  409: 
  410: \ digit is high-level: 0/0%
  411: 
  412: move	( c_from c_to ucount -- )		core
  413: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  414: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  415: /* !! note that the standard specifies addr, not c-addr */
  416: memmove(c_to,c_from,ucount);
  417: /* make an Ifdef for bsd and others? */
  418: :
  419:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  420: 
  421: cmove	( c_from c_to u -- )	string	c_move
  422: ""Copy the contents of @i{ucount} characters from data space at
  423: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  424: from low address to high address; i.e., for overlapping areas it is
  425: safe if @i{c-to}=<@i{c-from}.""
  426: while (u-- > 0)
  427:   *c_to++ = *c_from++;
  428: :
  429:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  430: 
  431: cmove>	( c_from c_to u -- )	string	c_move_up
  432: ""Copy the contents of @i{ucount} characters from data space at
  433: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  434: from high address to low address; i.e., for overlapping areas it is
  435: safe if @i{c-to}>=@i{c-from}.""
  436: while (u-- > 0)
  437:   c_to[u] = c_from[u];
  438: :
  439:  dup 0= IF  drop 2drop exit  THEN
  440:  rot over + -rot bounds swap 1-
  441:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  442: 
  443: fill	( c_addr u c -- )	core
  444: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  445: memset(c_addr,c,u);
  446: :
  447:  -rot bounds
  448:  ?DO  dup I c!  LOOP  drop ;
  449: 
  450: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  451: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  452: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  453: is 1. Currently this is based on the machine's character
  454: comparison. In the future, this may change to consider the current
  455: locale and its collation order.""
  456: /* close ' to keep fontify happy */ 
  457: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  458: if (n==0)
  459:   n = u1-u2;
  460: if (n<0)
  461:   n = -1;
  462: else if (n>0)
  463:   n = 1;
  464: :
  465:  rot 2dup swap - >r min swap -text dup
  466:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  467: : sgn ( n -- -1/0/1 )
  468:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  469: 
  470: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  471: n = memcmp(c_addr1, c_addr2, u);
  472: if (n<0)
  473:   n = -1;
  474: else if (n>0)
  475:   n = 1;
  476: :
  477:  swap bounds
  478:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  479:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  480: : sgn ( n -- -1/0/1 )
  481:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  482: 
  483: toupper	( c1 -- c2 )	gforth
  484: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  485: is the equivalent upper-case character. All other characters are unchanged.""
  486: c2 = toupper(c1);
  487: :
  488:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  489: 
  490: capscomp	( c_addr1 u c_addr2 -- n )	new
  491: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  492: if (n<0)
  493:   n = -1;
  494: else if (n>0)
  495:   n = 1;
  496: :
  497:  swap bounds
  498:  ?DO  dup c@ I c@ <>
  499:      IF  dup c@ toupper I c@ toupper =
  500:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  501:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  502: 
  503: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  504: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  505: spaces. @i{u2} is the length of the modified string.""
  506: u2 = u1;
  507: while (u2>0 && c_addr[u2-1] == ' ')
  508:   u2--;
  509: :
  510:  BEGIN  1- 2dup + c@ bl =  WHILE
  511:         dup  0= UNTIL  ELSE  1+  THEN ;
  512: 
  513: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  514: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  515: characters from the start of the string.""
  516: c_addr2 = c_addr1+n;
  517: u2 = u1-n;
  518: :
  519:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  520: 
  521: +	( n1 n2 -- n )		core	plus
  522: n = n1+n2;
  523: 
  524: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  525: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  526: ""add @i{n3} to @i{n1} (giving @i{n})""
  527: n = n1+n3;
  528: :
  529:  rot + swap ;
  530: 
  531: -	( n1 n2 -- n )		core	minus
  532: n = n1-n2;
  533: :
  534:  negate + ;
  535: 
  536: negate	( n1 -- n2 )		core
  537: /* use minus as alias */
  538: n2 = -n1;
  539: :
  540:  invert 1+ ;
  541: 
  542: 1+	( n1 -- n2 )		core		one_plus
  543: n2 = n1+1;
  544: :
  545:  1 + ;
  546: 
  547: 1-	( n1 -- n2 )		core		one_minus
  548: n2 = n1-1;
  549: :
  550:  1 - ;
  551: 
  552: max	( n1 n2 -- n )	core
  553: if (n1<n2)
  554:   n = n2;
  555: else
  556:   n = n1;
  557: :
  558:  2dup < IF swap THEN drop ;
  559: 
  560: min	( n1 n2 -- n )	core
  561: if (n1<n2)
  562:   n = n1;
  563: else
  564:   n = n2;
  565: :
  566:  2dup > IF swap THEN drop ;
  567: 
  568: abs	( n -- u )	core
  569: if (n<0)
  570:   u = -n;
  571: else
  572:   u = n;
  573: :
  574:  dup 0< IF negate THEN ;
  575: 
  576: *	( n1 n2 -- n )		core	star
  577: n = n1*n2;
  578: :
  579:  um* drop ;
  580: 
  581: /	( n1 n2 -- n )		core	slash
  582: n = n1/n2;
  583: :
  584:  /mod nip ;
  585: 
  586: mod	( n1 n2 -- n )		core
  587: n = n1%n2;
  588: :
  589:  /mod drop ;
  590: 
  591: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  592: n4 = n1/n2;
  593: n3 = n1%n2; /* !! is this correct? look into C standard! */
  594: :
  595:  >r s>d r> fm/mod ;
  596: 
  597: 2*	( n1 -- n2 )		core		two_star
  598: ""Shift left by 1; also works on unsigned numbers""
  599: n2 = 2*n1;
  600: :
  601:  dup + ;
  602: 
  603: 2/	( n1 -- n2 )		core		two_slash
  604: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  605: division by 2 (note that @code{/} not necessarily floors).""
  606: n2 = n1>>1;
  607: :
  608:  dup MINI and IF 1 ELSE 0 THEN
  609:  [ bits/byte cell * 1- ] literal 
  610:  0 DO 2* swap dup 2* >r MINI and 
  611:      IF 1 ELSE 0 THEN or r> swap
  612:  LOOP nip ;
  613: 
  614: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  615: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  616: #ifdef BUGGY_LONG_LONG
  617: DCell r = fmdiv(d1,n1);
  618: n2=r.hi;
  619: n3=r.lo;
  620: #else
  621: /* assumes that the processor uses either floored or symmetric division */
  622: n3 = d1/n1;
  623: n2 = d1%n1;
  624: /* note that this 1%-3>0 is optimized by the compiler */
  625: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  626:   n3--;
  627:   n2+=n1;
  628: }
  629: #endif
  630: :
  631:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  632:  over       0< IF  tuck + swap  THEN
  633:  um/mod
  634:  r> 0< IF  swap negate swap  THEN ;
  635: 
  636: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  637: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  638: #ifdef BUGGY_LONG_LONG
  639: DCell r = smdiv(d1,n1);
  640: n2=r.hi;
  641: n3=r.lo;
  642: #else
  643: /* assumes that the processor uses either floored or symmetric division */
  644: n3 = d1/n1;
  645: n2 = d1%n1;
  646: /* note that this 1%-3<0 is optimized by the compiler */
  647: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  648:   n3++;
  649:   n2-=n1;
  650: }
  651: #endif
  652: :
  653:  over >r dup >r abs -rot
  654:  dabs rot um/mod
  655:  r> r@ xor 0< IF       negate       THEN
  656:  r>        0< IF  swap negate swap  THEN ;
  657: 
  658: m*	( n1 n2 -- d )		core	m_star
  659: #ifdef BUGGY_LONG_LONG
  660: d = mmul(n1,n2);
  661: #else
  662: d = (DCell)n1 * (DCell)n2;
  663: #endif
  664: :
  665:  2dup      0< and >r
  666:  2dup swap 0< and >r
  667:  um* r> - r> - ;
  668: 
  669: um*	( u1 u2 -- ud )		core	u_m_star
  670: /* use u* as alias */
  671: #ifdef BUGGY_LONG_LONG
  672: ud = ummul(u1,u2);
  673: #else
  674: ud = (UDCell)u1 * (UDCell)u2;
  675: #endif
  676: :
  677:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  678:    DO
  679:        over >r dup >r 0< and d2*+ drop
  680:        r> 2* r> swap
  681:    LOOP 2drop ;
  682: : d2*+ ( ud n -- ud+n c )
  683:    over MINI
  684:    and >r >r 2dup d+ swap r> + swap r> ;
  685: 
  686: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  687: ""ud=u3*u1+u2, u1>u2>=0""
  688: #ifdef BUGGY_LONG_LONG
  689: UDCell r = umdiv(ud,u1);
  690: u2=r.hi;
  691: u3=r.lo;
  692: #else
  693: u3 = ud/u1;
  694: u2 = ud%u1;
  695: #endif
  696: :
  697:    0 swap [ 8 cells 1 + ] literal 0
  698:    ?DO /modstep
  699:    LOOP drop swap 1 rshift or swap ;
  700: : /modstep ( ud c R: u -- ud-?u c R: u )
  701:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  702: : d2*+ ( ud n -- ud+n c )
  703:    over MINI
  704:    and >r >r 2dup d+ swap r> + swap r> ;
  705: 
  706: m+	( d1 n -- d2 )		double		m_plus
  707: #ifdef BUGGY_LONG_LONG
  708: d2.lo = d1.lo+n;
  709: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  710: #else
  711: d2 = d1+n;
  712: #endif
  713: :
  714:  s>d d+ ;
  715: 
  716: d+	( d1 d2 -- d )		double	d_plus
  717: #ifdef BUGGY_LONG_LONG
  718: d.lo = d1.lo+d2.lo;
  719: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  720: #else
  721: d = d1+d2;
  722: #endif
  723: :
  724:  rot + >r tuck + swap over u> r> swap - ;
  725: 
  726: d-	( d1 d2 -- d )		double		d_minus
  727: #ifdef BUGGY_LONG_LONG
  728: d.lo = d1.lo - d2.lo;
  729: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  730: #else
  731: d = d1-d2;
  732: #endif
  733: :
  734:  dnegate d+ ;
  735: 
  736: dnegate	( d1 -- d2 )		double	d_negate
  737: /* use dminus as alias */
  738: #ifdef BUGGY_LONG_LONG
  739: d2 = dnegate(d1);
  740: #else
  741: d2 = -d1;
  742: #endif
  743: :
  744:  invert swap negate tuck 0= - ;
  745: 
  746: d2*	( d1 -- d2 )		double		d_two_star
  747: ""Shift left by 1; also works on unsigned numbers""
  748: #ifdef BUGGY_LONG_LONG
  749: d2.lo = d1.lo<<1;
  750: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  751: #else
  752: d2 = 2*d1;
  753: #endif
  754: :
  755:  2dup d+ ;
  756: 
  757: d2/	( d1 -- d2 )		double		d_two_slash
  758: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  759: division by 2.""
  760: #ifdef BUGGY_LONG_LONG
  761: d2.hi = d1.hi>>1;
  762: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  763: #else
  764: d2 = d1>>1;
  765: #endif
  766: :
  767:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  768:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  769: 
  770: and	( w1 w2 -- w )		core
  771: w = w1&w2;
  772: 
  773: or	( w1 w2 -- w )		core
  774: w = w1|w2;
  775: :
  776:  invert swap invert and invert ;
  777: 
  778: xor	( w1 w2 -- w )		core	x_or
  779: w = w1^w2;
  780: 
  781: invert	( w1 -- w2 )		core
  782: w2 = ~w1;
  783: :
  784:  MAXU xor ;
  785: 
  786: rshift	( u1 n -- u2 )		core	r_shift
  787: ""Logical shift right by @i{n} bits.""
  788:   u2 = u1>>n;
  789: :
  790:     0 ?DO 2/ MAXI and LOOP ;
  791: 
  792: lshift	( u1 n -- u2 )		core	l_shift
  793:   u2 = u1<<n;
  794: :
  795:     0 ?DO 2* LOOP ;
  796: 
  797: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  798: define(comparisons,
  799: $1=	( $2 -- f )		$6	$3equals
  800: f = FLAG($4==$5);
  801: :
  802:     [ char $1x char 0 = [IF]
  803: 	] IF false ELSE true THEN [
  804:     [ELSE]
  805: 	] xor 0= [
  806:     [THEN] ] ;
  807: 
  808: $1<>	( $2 -- f )		$7	$3not_equals
  809: f = FLAG($4!=$5);
  810: :
  811:     [ char $1x char 0 = [IF]
  812: 	] IF true ELSE false THEN [
  813:     [ELSE]
  814: 	] xor 0<> [
  815:     [THEN] ] ;
  816: 
  817: $1<	( $2 -- f )		$8	$3less_than
  818: f = FLAG($4<$5);
  819: :
  820:     [ char $1x char 0 = [IF]
  821: 	] MINI and 0<> [
  822:     [ELSE] char $1x char u = [IF]
  823: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  824: 	[ELSE]
  825: 	    ] MINI xor >r MINI xor r> u< [
  826: 	[THEN]
  827:     [THEN] ] ;
  828: 
  829: $1>	( $2 -- f )		$9	$3greater_than
  830: f = FLAG($4>$5);
  831: :
  832:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  833:     $1< ;
  834: 
  835: $1<=	( $2 -- f )		gforth	$3less_or_equal
  836: f = FLAG($4<=$5);
  837: :
  838:     $1> 0= ;
  839: 
  840: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  841: f = FLAG($4>=$5);
  842: :
  843:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  844:     $1<= ;
  845: 
  846: )
  847: 
  848: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  849: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  850: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  851: 
  852: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  853: define(dcomparisons,
  854: $1=	( $2 -- f )		$6	$3equals
  855: #ifdef BUGGY_LONG_LONG
  856: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  857: #else
  858: f = FLAG($4==$5);
  859: #endif
  860: 
  861: $1<>	( $2 -- f )		$7	$3not_equals
  862: #ifdef BUGGY_LONG_LONG
  863: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  864: #else
  865: f = FLAG($4!=$5);
  866: #endif
  867: 
  868: $1<	( $2 -- f )		$8	$3less_than
  869: #ifdef BUGGY_LONG_LONG
  870: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  871: #else
  872: f = FLAG($4<$5);
  873: #endif
  874: 
  875: $1>	( $2 -- f )		$9	$3greater_than
  876: #ifdef BUGGY_LONG_LONG
  877: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  878: #else
  879: f = FLAG($4>$5);
  880: #endif
  881: 
  882: $1<=	( $2 -- f )		gforth	$3less_or_equal
  883: #ifdef BUGGY_LONG_LONG
  884: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  885: #else
  886: f = FLAG($4<=$5);
  887: #endif
  888: 
  889: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  890: #ifdef BUGGY_LONG_LONG
  891: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  892: #else
  893: f = FLAG($4>=$5);
  894: #endif
  895: 
  896: )
  897: 
  898: \+dcomps
  899: 
  900: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  901: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  902: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  903: 
  904: \+
  905: 
  906: within	( u1 u2 u3 -- f )		core-ext
  907: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  908: unsigned and signed numbers (but not a mixture).  Another way to think
  909: about this word is to consider the numbers as a circle (wrapping
  910: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  911: min-n for signed numbers); now consider the range from u2 towards
  912: increasing numbers up to and excluding u3 (giving an empty range if
  913: u2=u3); if u1 is in this range, @code{within} returns true.""
  914: f = FLAG(u1-u2 < u3-u2);
  915: :
  916:  over - >r - r> u< ;
  917: 
  918: sp@	( -- a_addr )		gforth		sp_fetch
  919: a_addr = sp+1;
  920: 
  921: sp!	( a_addr -- )		gforth		sp_store
  922: sp = a_addr;
  923: /* works with and without spTOS caching */
  924: 
  925: rp@	( -- a_addr )		gforth		rp_fetch
  926: a_addr = rp;
  927: 
  928: rp!	( a_addr -- )		gforth		rp_store
  929: rp = a_addr;
  930: 
  931: \+floating
  932: 
  933: fp@	( -- f_addr )	gforth	fp_fetch
  934: f_addr = fp;
  935: 
  936: fp!	( f_addr -- )	gforth	fp_store
  937: fp = f_addr;
  938: 
  939: \+
  940: 
  941: ;s	( R:w -- )		gforth	semis
  942: ""The primitive compiled by @code{EXIT}.""
  943: SET_IP((Xt *)w);
  944: 
  945: >r	( w -- R:w )		core	to_r
  946: :
  947:  (>r) ;
  948: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  949: 
  950: r>	( R:w -- w )		core	r_from
  951: :
  952:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  953: Create (rdrop) ' ;s A,
  954: 
  955: rdrop	( R:w -- )		gforth
  956: :
  957:  r> r> drop >r ;
  958: 
  959: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  960: :
  961:  swap r> swap >r swap >r >r ;
  962: 
  963: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  964: :
  965:  r> r> swap r> swap >r swap ;
  966: 
  967: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  968: :
  969:  i' j ;
  970: 
  971: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  972: :
  973:  r> r> drop r> drop >r ;
  974: 
  975: over	( w1 w2 -- w1 w2 w1 )		core
  976: :
  977:  sp@ cell+ @ ;
  978: 
  979: drop	( w -- )		core
  980: :
  981:  IF THEN ;
  982: 
  983: swap	( w1 w2 -- w2 w1 )		core
  984: :
  985:  >r (swap) ! r> (swap) @ ;
  986: Variable (swap)
  987: 
  988: dup	( w -- w w )		core	dupe
  989: :
  990:  sp@ @ ;
  991: 
  992: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
  993: :
  994: [ defined? (swap) [IF] ]
  995:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
  996: Variable (rot)
  997: [ELSE] ]
  998:     >r swap r> swap ;
  999: [THEN]
 1000: 
 1001: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1002: :
 1003:  rot rot ;
 1004: 
 1005: nip	( w1 w2 -- w2 )		core-ext
 1006: :
 1007:  swap drop ;
 1008: 
 1009: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1010: :
 1011:  swap over ;
 1012: 
 1013: ?dup	( w -- w )			core	question_dupe
 1014: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1015: @code{dup} if w is nonzero.""
 1016: if (w!=0) {
 1017:   IF_spTOS(*sp-- = w;)
 1018: #ifndef USE_TOS
 1019:   *--sp = w;
 1020: #endif
 1021: }
 1022: :
 1023:  dup IF dup THEN ;
 1024: 
 1025: pick	( u -- w )			core-ext
 1026: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1027: w = sp[u+1];
 1028: :
 1029:  1+ cells sp@ + @ ;
 1030: 
 1031: 2drop	( w1 w2 -- )		core	two_drop
 1032: :
 1033:  drop drop ;
 1034: 
 1035: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1036: :
 1037:  over over ;
 1038: 
 1039: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1040: :
 1041:  3 pick 3 pick ;
 1042: 
 1043: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1044: :
 1045:  rot >r rot r> ;
 1046: 
 1047: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1048: :
 1049:  >r >r 2swap r> r> 2swap ;
 1050: 
 1051: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1052: :
 1053:  2swap 2drop ;
 1054: 
 1055: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1056: :
 1057:  2swap 2over ;
 1058: 
 1059: \ toggle is high-level: 0.11/0.42%
 1060: 
 1061: @	( a_addr -- w )		core	fetch
 1062: ""@i{w} is the cell stored at @i{a_addr}.""
 1063: w = *a_addr;
 1064: 
 1065: !	( w a_addr -- )		core	store
 1066: ""Store @i{w} into the cell at @i{a-addr}.""
 1067: *a_addr = w;
 1068: 
 1069: +!	( n a_addr -- )		core	plus_store
 1070: ""Add @i{n} to the cell at @i{a-addr}.""
 1071: *a_addr += n;
 1072: :
 1073:  tuck @ + swap ! ;
 1074: 
 1075: c@	( c_addr -- c )		core	c_fetch
 1076: ""@i{c} is the char stored at @i{c_addr}.""
 1077: c = *c_addr;
 1078: :
 1079: [ bigendian [IF] ]
 1080:     [ cell>bit 4 = [IF] ]
 1081: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1082: 	IF  $FF and  ELSE  8>>  THEN  ;
 1083:     [ [ELSE] ]
 1084: 	dup [ cell 1- ] literal and
 1085: 	tuck - @ swap [ cell 1- ] literal xor
 1086:  	0 ?DO 8>> LOOP $FF and
 1087:     [ [THEN] ]
 1088: [ [ELSE] ]
 1089:     [ cell>bit 4 = [IF] ]
 1090: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1091: 	IF  8>>  ELSE  $FF and  THEN
 1092:     [ [ELSE] ]
 1093: 	dup [ cell  1- ] literal and 
 1094: 	tuck - @ swap
 1095: 	0 ?DO 8>> LOOP 255 and
 1096:     [ [THEN] ]
 1097: [ [THEN] ]
 1098: ;
 1099: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1100: 
 1101: c!	( c c_addr -- )		core	c_store
 1102: ""Store @i{c} into the char at @i{c-addr}.""
 1103: *c_addr = c;
 1104: :
 1105: [ bigendian [IF] ]
 1106:     [ cell>bit 4 = [IF] ]
 1107: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1108: 	dup -2 and @ over 1 and cells masks + @ and
 1109: 	r> or swap -2 and ! ;
 1110: 	Create masks $00FF , $FF00 ,
 1111:     [ELSE] ]
 1112: 	dup [ cell 1- ] literal and dup 
 1113: 	[ cell 1- ] literal xor >r
 1114: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1115: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1116:     [THEN]
 1117: [ELSE] ]
 1118:     [ cell>bit 4 = [IF] ]
 1119: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1120: 	dup -2 and @ over 1 and cells masks + @ and
 1121: 	r> or swap -2 and ! ;
 1122: 	Create masks $FF00 , $00FF ,
 1123:     [ELSE] ]
 1124: 	dup [ cell 1- ] literal and dup >r
 1125: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1126: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1127:     [THEN]
 1128: [THEN]
 1129: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1130: 
 1131: 2!	( w1 w2 a_addr -- )		core	two_store
 1132: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1133: a_addr[0] = w2;
 1134: a_addr[1] = w1;
 1135: :
 1136:  tuck ! cell+ ! ;
 1137: 
 1138: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1139: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1140: the content of the next cell.""
 1141: w2 = a_addr[0];
 1142: w1 = a_addr[1];
 1143: :
 1144:  dup cell+ @ swap @ ;
 1145: 
 1146: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1147: ""@code{1 cells +}""
 1148: a_addr2 = a_addr1+1;
 1149: :
 1150:  cell + ;
 1151: 
 1152: cells	( n1 -- n2 )		core
 1153: "" @i{n2} is the number of address units of @i{n1} cells.""
 1154: n2 = n1 * sizeof(Cell);
 1155: :
 1156:  [ cell
 1157:  2/ dup [IF] ] 2* [ [THEN]
 1158:  2/ dup [IF] ] 2* [ [THEN]
 1159:  2/ dup [IF] ] 2* [ [THEN]
 1160:  2/ dup [IF] ] 2* [ [THEN]
 1161:  drop ] ;
 1162: 
 1163: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1164: ""@code{1 chars +}.""
 1165: c_addr2 = c_addr1 + 1;
 1166: :
 1167:  1+ ;
 1168: 
 1169: (chars)	( n1 -- n2 )	gforth	paren_chars
 1170: n2 = n1 * sizeof(Char);
 1171: :
 1172:  ;
 1173: 
 1174: count	( c_addr1 -- c_addr2 u )	core
 1175: ""@i{c-addr2} is the first character and @i{u} the length of the
 1176: counted string at @i{c-addr1}.""
 1177: u = *c_addr1;
 1178: c_addr2 = c_addr1+1;
 1179: :
 1180:  dup 1+ swap c@ ;
 1181: 
 1182: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1183: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1184:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1185:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1186:     break;
 1187: f83name2=f83name1;
 1188: :
 1189:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1190: 	>r 2dup r@ cell+ char+ capscomp  0=
 1191: 	IF  2drop r>  EXIT  THEN
 1192: 	r> @
 1193:     REPEAT  THEN  nip nip ;
 1194: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1195:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL THEN ;
 1196: 
 1197: \+hash
 1198: 
 1199: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1200: struct F83Name *f83name1;
 1201: f83name2=NULL;
 1202: while(a_addr != NULL)
 1203: {
 1204:    f83name1=(struct F83Name *)(a_addr[1]);
 1205:    a_addr=(Cell *)(a_addr[0]);
 1206:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1207:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1208:      {
 1209: 	f83name2=f83name1;
 1210: 	break;
 1211:      }
 1212: }
 1213: :
 1214:  BEGIN  dup  WHILE
 1215:         2@ >r >r dup r@ cell+ c@ $1F and =
 1216:         IF  2dup r@ cell+ char+ capscomp 0=
 1217: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1218: 	rdrop r>
 1219:  REPEAT nip nip ;
 1220: 
 1221: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1222: ""A case-sensitive variant of @code{(hashfind)}""
 1223: struct F83Name *f83name1;
 1224: f83name2=NULL;
 1225: while(a_addr != NULL)
 1226: {
 1227:    f83name1=(struct F83Name *)(a_addr[1]);
 1228:    a_addr=(Cell *)(a_addr[0]);
 1229:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1230:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1231:      {
 1232: 	f83name2=f83name1;
 1233: 	break;
 1234:      }
 1235: }
 1236: :
 1237:  BEGIN  dup  WHILE
 1238:         2@ >r >r dup r@ cell+ c@ $1F and =
 1239:         IF  2dup r@ cell+ char+ -text 0=
 1240: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1241: 	rdrop r>
 1242:  REPEAT nip nip ;
 1243: 
 1244: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1245: u2=0;
 1246: while(u1--)
 1247:    u2+=(Cell)toupper(*c_addr++);
 1248: :
 1249:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1250: 
 1251: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1252: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1253: /* this hash function rotates the key at every step by rot bits within
 1254:    ubits bits and xors it with the character. This function does ok in
 1255:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1256:    ASCII strings (larger if ubits is large), and should share no
 1257:    divisors with ubits.
 1258: */
 1259: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1260: Char *cp = c_addr;
 1261: for (ukey=0; cp<c_addr+u; cp++)
 1262:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1263: 	     ^ toupper(*cp))
 1264: 	    & ((1<<ubits)-1));
 1265: :
 1266:  dup rot-values + c@ over 1 swap lshift 1- >r
 1267:  tuck - 2swap r> 0 2swap bounds
 1268:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1269:       I c@ toupper xor
 1270:       over and  LOOP
 1271:  nip nip nip ;
 1272: Create rot-values
 1273:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1274:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1275:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1276:   7 c, 5 c, 5 c,
 1277: 
 1278: \+
 1279: 
 1280: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1281: /* use !isgraph instead of isspace? */
 1282: Char *endp = c_addr1+u1;
 1283: while (c_addr1<endp && isspace(*c_addr1))
 1284:   c_addr1++;
 1285: if (c_addr1<endp) {
 1286:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1287:     ;
 1288:   u2 = c_addr1-c_addr2;
 1289: }
 1290: else {
 1291:   c_addr2 = c_addr1;
 1292:   u2 = 0;
 1293: }
 1294: :
 1295:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1296:  REPEAT  THEN  2dup
 1297:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1298:  REPEAT  THEN  nip - ;
 1299: 
 1300: aligned	( c_addr -- a_addr )	core
 1301: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1302: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1303: :
 1304:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1305: 
 1306: faligned	( c_addr -- f_addr )	float	f_aligned
 1307: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1308: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1309: :
 1310:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1311: 
 1312: >body	( xt -- a_addr )	core	to_body
 1313: "" Get the address of the body of the word represented by @i{xt} (the address
 1314: of the word's data field).""
 1315: a_addr = PFA(xt);
 1316: :
 1317:     2 cells + ;
 1318: 
 1319: \ threading stuff is currently only interesting if we have a compiler
 1320: \fhas? standardthreading has? compiler and [IF]
 1321: 
 1322: >code-address	( xt -- c_addr )		gforth	to_code_address
 1323: ""@i{c-addr} is the code address of the word @i{xt}.""
 1324: /* !! This behaves installation-dependently for DOES-words */
 1325: c_addr = (Address)CODE_ADDRESS(xt);
 1326: :
 1327:     @ ;
 1328: 
 1329: >does-code	( xt -- a_addr )		gforth	to_does_code
 1330: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1331: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1332: Otherwise @i{a-addr} is 0.""
 1333: a_addr = (Cell *)DOES_CODE(xt);
 1334: :
 1335:     cell+ @ ;
 1336: 
 1337: code-address!	( c_addr xt -- )		gforth	code_address_store
 1338: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1339: MAKE_CF(xt, c_addr);
 1340: CACHE_FLUSH(xt,(size_t)PFA(0));
 1341: :
 1342:     ! ;
 1343: 
 1344: does-code!	( a_addr xt -- )		gforth	does_code_store
 1345: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1346: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1347: MAKE_DOES_CF(xt, a_addr);
 1348: CACHE_FLUSH(xt,(size_t)PFA(0));
 1349: :
 1350:     dodoes: over ! cell+ ! ;
 1351: 
 1352: does-handler!	( a_addr -- )	gforth	does_handler_store
 1353: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1354: @i{a-addr} points just behind a @code{DOES>}.""
 1355: MAKE_DOES_HANDLER(a_addr);
 1356: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1357: :
 1358:     drop ;
 1359: 
 1360: /does-handler	( -- n )	gforth	slash_does_handler
 1361: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1362: /* !! a constant or environmental query might be better */
 1363: n = DOES_HANDLER_SIZE;
 1364: :
 1365:     2 cells ;
 1366: 
 1367: threading-method	( -- n )	gforth	threading_method
 1368: ""0 if the engine is direct threaded. Note that this may change during
 1369: the lifetime of an image.""
 1370: #if defined(DOUBLY_INDIRECT)
 1371: n=2;
 1372: #else
 1373: # if defined(DIRECT_THREADED)
 1374: n=0;
 1375: # else
 1376: n=1;
 1377: # endif
 1378: #endif
 1379: :
 1380:  1 ;
 1381: 
 1382: \f[THEN]
 1383: 
 1384: key-file	( wfileid -- n )		gforth	paren_key_file
 1385: #ifdef HAS_FILE
 1386: fflush(stdout);
 1387: n = key((FILE*)wfileid);
 1388: #else
 1389: n = key(stdin);
 1390: #endif
 1391: 
 1392: key?-file	( wfileid -- n )		facility	key_q_file
 1393: #ifdef HAS_FILE
 1394: fflush(stdout);
 1395: n = key_query((FILE*)wfileid);
 1396: #else
 1397: n = key_query(stdin);
 1398: #endif
 1399: 
 1400: \+os
 1401: 
 1402: stdin	( -- wfileid )	gforth
 1403: wfileid = (Cell)stdin;
 1404: 
 1405: stdout	( -- wfileid )	gforth
 1406: wfileid = (Cell)stdout;
 1407: 
 1408: stderr	( -- wfileid )	gforth
 1409: wfileid = (Cell)stderr;
 1410: 
 1411: form	( -- urows ucols )	gforth
 1412: ""The number of lines and columns in the terminal. These numbers may change
 1413: with the window size.""
 1414: /* we could block SIGWINCH here to get a consistent size, but I don't
 1415:  think this is necessary or always beneficial */
 1416: urows=rows;
 1417: ucols=cols;
 1418: 
 1419: flush-icache	( c_addr u -- )	gforth	flush_icache
 1420: ""Make sure that the instruction cache of the processor (if there is
 1421: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1422: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1423: automatically. Caveat: @code{flush-icache} might not work on your
 1424: installation; this is usually the case if direct threading is not
 1425: supported on your machine (take a look at your @file{machine.h}) and
 1426: your machine has a separate instruction cache. In such cases,
 1427: @code{flush-icache} does nothing instead of flushing the instruction
 1428: cache.""
 1429: FLUSH_ICACHE(c_addr,u);
 1430: 
 1431: (bye)	( n -- )	gforth	paren_bye
 1432: SUPER_END;
 1433: return (Label *)n;
 1434: 
 1435: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1436: #ifndef MSDOS
 1437: int old_tp=terminal_prepped;
 1438: deprep_terminal();
 1439: #endif
 1440: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1441: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1442: #ifndef MSDOS
 1443: if (old_tp)
 1444:   prep_terminal();
 1445: #endif
 1446: 
 1447: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1448: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1449: is the host operating system's expansion of that environment variable. If the
 1450: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1451: in length.""
 1452: /* close ' to keep fontify happy */
 1453: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1454: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1455: 
 1456: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1457: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 1458: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1459: 
 1460: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1461: wretval = pclose((FILE *)wfileid);
 1462: wior = IOR(wretval==-1);
 1463: 
 1464: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1465: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1466: Months are numbered from 1.""
 1467: struct timeval time1;
 1468: struct timezone zone1;
 1469: struct tm *ltime;
 1470: gettimeofday(&time1,&zone1);
 1471: /* !! Single Unix specification: 
 1472:    If tzp is not a null pointer, the behaviour is unspecified. */
 1473: ltime=localtime((time_t *)&time1.tv_sec);
 1474: nyear =ltime->tm_year+1900;
 1475: nmonth=ltime->tm_mon+1;
 1476: nday  =ltime->tm_mday;
 1477: nhour =ltime->tm_hour;
 1478: nmin  =ltime->tm_min;
 1479: nsec  =ltime->tm_sec;
 1480: 
 1481: ms	( n -- )	facility-ext
 1482: ""Wait at least @i{n} milli-second.""
 1483: struct timeval timeout;
 1484: timeout.tv_sec=n/1000;
 1485: timeout.tv_usec=1000*(n%1000);
 1486: (void)select(0,0,0,0,&timeout);
 1487: 
 1488: allocate	( u -- a_addr wior )	memory
 1489: ""Allocate @i{u} address units of contiguous data space. The initial
 1490: contents of the data space is undefined. If the allocation is successful,
 1491: @i{a-addr} is the start address of the allocated region and @i{wior}
 1492: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1493: is a non-zero I/O result code.""
 1494: a_addr = (Cell *)malloc(u?u:1);
 1495: wior = IOR(a_addr==NULL);
 1496: 
 1497: free	( a_addr -- wior )		memory
 1498: ""Return the region of data space starting at @i{a-addr} to the system.
 1499: The region must originally have been obtained using @code{allocate} or
 1500: @code{resize}. If the operational is successful, @i{wior} is 0.
 1501: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1502: free(a_addr);
 1503: wior = 0;
 1504: 
 1505: resize	( a_addr1 u -- a_addr2 wior )	memory
 1506: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1507: address units, possibly moving the contents to a different
 1508: area. @i{a-addr2} is the address of the resulting area.
 1509: If the operation is successful, @i{wior} is 0.
 1510: If the operation fails, @i{wior} is a non-zero
 1511: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1512: @code{resize} @code{allocate}s @i{u} address units.""
 1513: /* the following check is not necessary on most OSs, but it is needed
 1514:    on SunOS 4.1.2. */
 1515: /* close ' to keep fontify happy */
 1516: if (a_addr1==NULL)
 1517:   a_addr2 = (Cell *)malloc(u);
 1518: else
 1519:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1520: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1521: 
 1522: strerror	( n -- c_addr u )	gforth
 1523: c_addr = strerror(n);
 1524: u = strlen(c_addr);
 1525: 
 1526: strsignal	( n -- c_addr u )	gforth
 1527: c_addr = strsignal(n);
 1528: u = strlen(c_addr);
 1529: 
 1530: call-c	( w -- )	gforth	call_c
 1531: ""Call the C function pointed to by @i{w}. The C function has to
 1532: access the stack itself. The stack pointers are exported in the global
 1533: variables @code{SP} and @code{FP}.""
 1534: /* This is a first attempt at support for calls to C. This may change in
 1535:    the future */
 1536: IF_fpTOS(fp[0]=fpTOS);
 1537: FP=fp;
 1538: SP=sp;
 1539: ((void (*)())w)();
 1540: sp=SP;
 1541: fp=FP;
 1542: IF_spTOS(spTOS=sp[0]);
 1543: IF_fpTOS(fpTOS=fp[0]);
 1544: 
 1545: \+
 1546: \+file
 1547: 
 1548: close-file	( wfileid -- wior )		file	close_file
 1549: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1550: 
 1551: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1552: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1553: wior =  IOR(wfileid == 0);
 1554: 
 1555: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1556: Cell	fd;
 1557: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1558: if (fd != -1) {
 1559:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1560:   wior = IOR(wfileid == 0);
 1561: } else {
 1562:   wfileid = 0;
 1563:   wior = IOR(1);
 1564: }
 1565: 
 1566: delete-file	( c_addr u -- wior )		file	delete_file
 1567: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1568: 
 1569: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1570: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1571: char *s1=tilde_cstr(c_addr2, u2, 1);
 1572: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1573: 
 1574: file-position	( wfileid -- ud wior )	file	file_position
 1575: /* !! use tell and lseek? */
 1576: ud = LONG2UD(ftell((FILE *)wfileid));
 1577: wior = IOR(UD2LONG(ud)==-1);
 1578: 
 1579: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1580: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1581: 
 1582: file-size	( wfileid -- ud wior )	file	file_size
 1583: struct stat buf;
 1584: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1585: ud = LONG2UD(buf.st_size);
 1586: 
 1587: resize-file	( ud wfileid -- wior )	file	resize_file
 1588: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1589: 
 1590: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1591: /* !! fread does not guarantee enough */
 1592: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1593: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1594: /* !! is the value of ferror errno-compatible? */
 1595: if (wior)
 1596:   clearerr((FILE *)wfileid);
 1597: 
 1598: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1599: ""this is only for backward compatibility""
 1600: Cell c;
 1601: flag=-1;
 1602: for(u2=0; u2<u1; u2++)
 1603: {
 1604:    c = getc((FILE *)wfileid);
 1605:    if (c=='\n') break;
 1606:    if (c=='\r') {
 1607:      if ((c = getc((FILE *)wfileid))!='\n')
 1608:        ungetc(c,(FILE *)wfileid);
 1609:      break;
 1610:    }
 1611:    if (c==EOF) {
 1612: 	flag=FLAG(u2!=0);
 1613: 	break;
 1614:      }
 1615:    c_addr[u2] = (Char)c;
 1616: }
 1617: wior=FILEIO(ferror((FILE *)wfileid));
 1618: 
 1619: \+
 1620: 
 1621: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1622: /* !! fwrite does not guarantee enough */
 1623: #ifdef HAS_FILE
 1624: {
 1625:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1626:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1627:   if (wior)
 1628:     clearerr((FILE *)wfileid);
 1629: }
 1630: #else
 1631: TYPE(c_addr, u1);
 1632: #endif
 1633: 
 1634: emit-file	( c wfileid -- wior )	gforth	emit_file
 1635: #ifdef HAS_FILE
 1636: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1637: if (wior)
 1638:   clearerr((FILE *)wfileid);
 1639: #else
 1640: PUTC(c);
 1641: #endif
 1642: 
 1643: \+file
 1644: 
 1645: flush-file	( wfileid -- wior )		file-ext	flush_file
 1646: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1647: 
 1648: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1649: char *filename=tilde_cstr(c_addr, u, 1);
 1650: if (access (filename, F_OK) != 0) {
 1651:   wfam=0;
 1652:   wior=IOR(1);
 1653: }
 1654: else if (access (filename, R_OK | W_OK) == 0) {
 1655:   wfam=2; /* r/w */
 1656:   wior=0;
 1657: }
 1658: else if (access (filename, R_OK) == 0) {
 1659:   wfam=0; /* r/o */
 1660:   wior=0;
 1661: }
 1662: else if (access (filename, W_OK) == 0) {
 1663:   wfam=4; /* w/o */
 1664:   wior=0;
 1665: }
 1666: else {
 1667:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1668: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1669:   wior=0;
 1670: }
 1671: 
 1672: \+
 1673: \+floating
 1674: 
 1675: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1676: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1677: 
 1678: d>f	( d -- r )		float	d_to_f
 1679: #ifdef BUGGY_LONG_LONG
 1680: extern double ldexp(double x, int exp);
 1681: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1682: #else
 1683: r = d;
 1684: #endif
 1685: 
 1686: f>d	( r -- d )		float	f_to_d
 1687: #ifdef BUGGY_LONG_LONG
 1688: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1689: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1690: #else
 1691: d = r;
 1692: #endif
 1693: 
 1694: f!	( r f_addr -- )	float	f_store
 1695: ""Store @i{r} into the float at address @i{f-addr}.""
 1696: *f_addr = r;
 1697: 
 1698: f@	( f_addr -- r )	float	f_fetch
 1699: ""@i{r} is the float at address @i{f-addr}.""
 1700: r = *f_addr;
 1701: 
 1702: df@	( df_addr -- r )	float-ext	d_f_fetch
 1703: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1704: #ifdef IEEE_FP
 1705: r = *df_addr;
 1706: #else
 1707: !! df@
 1708: #endif
 1709: 
 1710: df!	( r df_addr -- )	float-ext	d_f_store
 1711: ""Store @i{r} as double-precision IEEE floating-point value to the
 1712: address @i{df-addr}.""
 1713: #ifdef IEEE_FP
 1714: *df_addr = r;
 1715: #else
 1716: !! df!
 1717: #endif
 1718: 
 1719: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1720: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1721: #ifdef IEEE_FP
 1722: r = *sf_addr;
 1723: #else
 1724: !! sf@
 1725: #endif
 1726: 
 1727: sf!	( r sf_addr -- )	float-ext	s_f_store
 1728: ""Store @i{r} as single-precision IEEE floating-point value to the
 1729: address @i{sf-addr}.""
 1730: #ifdef IEEE_FP
 1731: *sf_addr = r;
 1732: #else
 1733: !! sf!
 1734: #endif
 1735: 
 1736: f+	( r1 r2 -- r3 )	float	f_plus
 1737: r3 = r1+r2;
 1738: 
 1739: f-	( r1 r2 -- r3 )	float	f_minus
 1740: r3 = r1-r2;
 1741: 
 1742: f*	( r1 r2 -- r3 )	float	f_star
 1743: r3 = r1*r2;
 1744: 
 1745: f/	( r1 r2 -- r3 )	float	f_slash
 1746: r3 = r1/r2;
 1747: 
 1748: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1749: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1750: r3 = pow(r1,r2);
 1751: 
 1752: fnegate	( r1 -- r2 )	float	f_negate
 1753: r2 = - r1;
 1754: 
 1755: fdrop	( r -- )		float	f_drop
 1756: 
 1757: fdup	( r -- r r )	float	f_dupe
 1758: 
 1759: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1760: 
 1761: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1762: 
 1763: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1764: 
 1765: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1766: 
 1767: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1768: 
 1769: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1770: ""@code{1 floats +}.""
 1771: f_addr2 = f_addr1+1;
 1772: 
 1773: floats	( n1 -- n2 )	float
 1774: ""@i{n2} is the number of address units of @i{n1} floats.""
 1775: n2 = n1*sizeof(Float);
 1776: 
 1777: floor	( r1 -- r2 )	float
 1778: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1779: /* !! unclear wording */
 1780: r2 = floor(r1);
 1781: 
 1782: fround	( r1 -- r2 )	float	f_round
 1783: ""Round to the nearest integral value.""
 1784: /* !! unclear wording */
 1785: #ifdef HAVE_RINT
 1786: r2 = rint(r1);
 1787: #else
 1788: r2 = floor(r1+0.5);
 1789: /* !! This is not quite true to the rounding rules given in the standard */
 1790: #endif
 1791: 
 1792: fmax	( r1 r2 -- r3 )	float	f_max
 1793: if (r1<r2)
 1794:   r3 = r2;
 1795: else
 1796:   r3 = r1;
 1797: 
 1798: fmin	( r1 r2 -- r3 )	float	f_min
 1799: if (r1<r2)
 1800:   r3 = r1;
 1801: else
 1802:   r3 = r2;
 1803: 
 1804: represent	( r c_addr u -- n f1 f2 )	float
 1805: char *sig;
 1806: int flag;
 1807: int decpt;
 1808: sig=ecvt(r, u, &decpt, &flag);
 1809: n=(r==0 ? 1 : decpt);
 1810: f1=FLAG(flag!=0);
 1811: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1812: memmove(c_addr,sig,u);
 1813: 
 1814: >float	( c_addr u -- flag )	float	to_float
 1815: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1816: character string @i{c-addr u} to internal floating-point
 1817: representation. If the string represents a valid floating-point number
 1818: @i{r} is placed on the floating-point stack and @i{flag} is
 1819: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1820: case and represents the floating-point number 0.""
 1821: /* real signature: c_addr u -- r t / f */
 1822: Float r;
 1823: char *number=cstr(c_addr, u, 1);
 1824: char *endconv;
 1825: int sign = 0;
 1826: if(number[0]=='-') {
 1827:    sign = 1;
 1828:    number++;
 1829:    u--;
 1830: }
 1831: while(isspace((unsigned)(number[--u])) && u>0);
 1832: switch(number[u])
 1833: {
 1834:    case 'd':
 1835:    case 'D':
 1836:    case 'e':
 1837:    case 'E':  break;
 1838:    default :  u++; break;
 1839: }
 1840: number[u]='\0';
 1841: r=strtod(number,&endconv);
 1842: if((flag=FLAG(!(Cell)*endconv)))
 1843: {
 1844:    IF_fpTOS(fp[0] = fpTOS);
 1845:    fp += -1;
 1846:    fpTOS = sign ? -r : r;
 1847: }
 1848: else if(*endconv=='d' || *endconv=='D')
 1849: {
 1850:    *endconv='E';
 1851:    r=strtod(number,&endconv);
 1852:    if((flag=FLAG(!(Cell)*endconv)))
 1853:      {
 1854: 	IF_fpTOS(fp[0] = fpTOS);
 1855: 	fp += -1;
 1856: 	fpTOS = sign ? -r : r;
 1857:      }
 1858: }
 1859: 
 1860: fabs	( r1 -- r2 )	float-ext	f_abs
 1861: r2 = fabs(r1);
 1862: 
 1863: facos	( r1 -- r2 )	float-ext	f_a_cos
 1864: r2 = acos(r1);
 1865: 
 1866: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1867: r2 = asin(r1);
 1868: 
 1869: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1870: r2 = atan(r1);
 1871: 
 1872: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1873: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1874: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1875: r3 = atan2(r1,r2);
 1876: 
 1877: fcos	( r1 -- r2 )	float-ext	f_cos
 1878: r2 = cos(r1);
 1879: 
 1880: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1881: r2 = exp(r1);
 1882: 
 1883: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1884: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1885: #ifdef HAVE_EXPM1
 1886: extern double
 1887: #ifdef NeXT
 1888:               const
 1889: #endif
 1890:                     expm1(double);
 1891: r2 = expm1(r1);
 1892: #else
 1893: r2 = exp(r1)-1.;
 1894: #endif
 1895: 
 1896: fln	( r1 -- r2 )	float-ext	f_l_n
 1897: r2 = log(r1);
 1898: 
 1899: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1900: ""@i{r2}=ln(@i{r1}+1)""
 1901: #ifdef HAVE_LOG1P
 1902: extern double
 1903: #ifdef NeXT
 1904:               const
 1905: #endif
 1906:                     log1p(double);
 1907: r2 = log1p(r1);
 1908: #else
 1909: r2 = log(r1+1.);
 1910: #endif
 1911: 
 1912: flog	( r1 -- r2 )	float-ext	f_log
 1913: ""The decimal logarithm.""
 1914: r2 = log10(r1);
 1915: 
 1916: falog	( r1 -- r2 )	float-ext	f_a_log
 1917: ""@i{r2}=10**@i{r1}""
 1918: extern double pow10(double);
 1919: r2 = pow10(r1);
 1920: 
 1921: fsin	( r1 -- r2 )	float-ext	f_sine
 1922: r2 = sin(r1);
 1923: 
 1924: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1925: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1926: r2 = sin(r1);
 1927: r3 = cos(r1);
 1928: 
 1929: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1930: r2 = sqrt(r1);
 1931: 
 1932: ftan	( r1 -- r2 )	float-ext	f_tan
 1933: r2 = tan(r1);
 1934: :
 1935:  fsincos f/ ;
 1936: 
 1937: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1938: r2 = sinh(r1);
 1939: :
 1940:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1941: 
 1942: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1943: r2 = cosh(r1);
 1944: :
 1945:  fexp fdup 1/f f+ f2/ ;
 1946: 
 1947: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1948: r2 = tanh(r1);
 1949: :
 1950:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1951: 
 1952: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1953: r2 = asinh(r1);
 1954: :
 1955:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1956: 
 1957: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1958: r2 = acosh(r1);
 1959: :
 1960:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1961: 
 1962: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1963: r2 = atanh(r1);
 1964: :
 1965:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1966:  r> IF  fnegate  THEN ;
 1967: 
 1968: sfloats	( n1 -- n2 )	float-ext	s_floats
 1969: ""@i{n2} is the number of address units of @i{n1}
 1970: single-precision IEEE floating-point numbers.""
 1971: n2 = n1*sizeof(SFloat);
 1972: 
 1973: dfloats	( n1 -- n2 )	float-ext	d_floats
 1974: ""@i{n2} is the number of address units of @i{n1}
 1975: double-precision IEEE floating-point numbers.""
 1976: n2 = n1*sizeof(DFloat);
 1977: 
 1978: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1979: ""@i{sf-addr} is the first single-float-aligned address greater
 1980: than or equal to @i{c-addr}.""
 1981: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1982: :
 1983:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1984: 
 1985: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 1986: ""@i{df-addr} is the first double-float-aligned address greater
 1987: than or equal to @i{c-addr}.""
 1988: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 1989: :
 1990:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 1991: 
 1992: \ The following words access machine/OS/installation-dependent
 1993: \   Gforth internals
 1994: \ !! how about environmental queries DIRECT-THREADED,
 1995: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1996: 
 1997: \ local variable implementation primitives
 1998: \+
 1999: \+glocals
 2000: 
 2001: @local#	( #noffset -- w )	gforth	fetch_local_number
 2002: w = *(Cell *)(lp+noffset);
 2003: 
 2004: @local0	( -- w )	new	fetch_local_zero
 2005: w = *(Cell *)(lp+0*sizeof(Cell));
 2006: 
 2007: @local1	( -- w )	new	fetch_local_four
 2008: w = *(Cell *)(lp+1*sizeof(Cell));
 2009: 
 2010: @local2	( -- w )	new	fetch_local_eight
 2011: w = *(Cell *)(lp+2*sizeof(Cell));
 2012: 
 2013: @local3	( -- w )	new	fetch_local_twelve
 2014: w = *(Cell *)(lp+3*sizeof(Cell));
 2015: 
 2016: \+floating
 2017: 
 2018: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2019: r = *(Float *)(lp+noffset);
 2020: 
 2021: f@local0	( -- r )	new	f_fetch_local_zero
 2022: r = *(Float *)(lp+0*sizeof(Float));
 2023: 
 2024: f@local1	( -- r )	new	f_fetch_local_eight
 2025: r = *(Float *)(lp+1*sizeof(Float));
 2026: 
 2027: \+
 2028: 
 2029: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2030: /* this can also be used to implement lp@ */
 2031: c_addr = (Char *)(lp+noffset);
 2032: 
 2033: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2034: ""used with negative immediate values it allocates memory on the
 2035: local stack, a positive immediate argument drops memory from the local
 2036: stack""
 2037: lp += noffset;
 2038: 
 2039: lp-	( -- )	new	minus_four_lp_plus_store
 2040: lp += -sizeof(Cell);
 2041: 
 2042: lp+	( -- )	new	eight_lp_plus_store
 2043: lp += sizeof(Float);
 2044: 
 2045: lp+2	( -- )	new	sixteen_lp_plus_store
 2046: lp += 2*sizeof(Float);
 2047: 
 2048: lp!	( c_addr -- )	gforth	lp_store
 2049: lp = (Address)c_addr;
 2050: 
 2051: >l	( w -- )	gforth	to_l
 2052: lp -= sizeof(Cell);
 2053: *(Cell *)lp = w;
 2054: 
 2055: \+floating
 2056: 
 2057: f>l	( r -- )	gforth	f_to_l
 2058: lp -= sizeof(Float);
 2059: *(Float *)lp = r;
 2060: 
 2061: fpick	( u -- r )		gforth
 2062: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2063: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2064: :
 2065:  floats fp@ + f@ ;
 2066: 
 2067: \+
 2068: \+
 2069: 
 2070: \+OS
 2071: 
 2072: define(`uploop',
 2073:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2074: define(`_uploop',
 2075:        `ifelse($1, `$3', `$5',
 2076: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2077: \ argflist(argnum): Forth argument list
 2078: define(argflist,
 2079:        `ifelse($1, 0, `',
 2080:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2081: \ argdlist(argnum): declare C's arguments
 2082: define(argdlist,
 2083:        `ifelse($1, 0, `',
 2084:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2085: \ argclist(argnum): pass C's arguments
 2086: define(argclist,
 2087:        `ifelse($1, 0, `',
 2088:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2089: \ icall(argnum)
 2090: define(icall,
 2091: `icall$1	( argflist($1)u -- uret )	gforth
 2092: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2093: 
 2094: ')
 2095: define(fcall,
 2096: `fcall$1	( argflist($1)u -- rret )	gforth
 2097: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2098: 
 2099: ')
 2100: 
 2101: \ close ' to keep fontify happy
 2102: 
 2103: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2104: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2105: #ifndef RTLD_GLOBAL
 2106: #define RTLD_GLOBAL 0
 2107: #endif
 2108: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2109: #else
 2110: #  ifdef _WIN32
 2111: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2112: #  else
 2113: #warning Define open-lib!
 2114: u2 = 0;
 2115: #  endif
 2116: #endif
 2117: 
 2118: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2119: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2120: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2121: #else
 2122: #  ifdef _WIN32
 2123: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2124: #  else
 2125: #warning Define lib-sym!
 2126: u3 = 0;
 2127: #  endif
 2128: #endif
 2129: 
 2130: uploop(i, 0, 7, `icall(i)')
 2131: icall(20)
 2132: uploop(i, 0, 7, `fcall(i)')
 2133: fcall(20)
 2134: 
 2135: \+
 2136: 
 2137: up!	( a_addr -- )	gforth	up_store
 2138: UP=up=(char *)a_addr;
 2139: :
 2140:  up ! ;
 2141: Variable UP
 2142: 
 2143: wcall	( u -- )	gforth
 2144: IF_fpTOS(fp[0]=fpTOS);
 2145: FP=fp;
 2146: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2147: fp=FP;
 2148: IF_spTOS(spTOS=sp[0];)
 2149: IF_fpTOS(fpTOS=fp[0]);
 2150: 
 2151: \+file
 2152: 
 2153: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2154: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2155: wior =  IOR(wdirid == 0);
 2156: 
 2157: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2158: struct dirent * dent;
 2159: dent = readdir((DIR *)wdirid);
 2160: wior = 0;
 2161: flag = -1;
 2162: if(dent == NULL) {
 2163:   u2 = 0;
 2164:   flag = 0;
 2165: } else {
 2166:   u2 = strlen(dent->d_name);
 2167:   if(u2 > u1) {
 2168:     u2 = u1;
 2169:     wior = -512-ENAMETOOLONG;
 2170:   }
 2171:   memmove(c_addr, dent->d_name, u2);
 2172: }
 2173: 
 2174: close-dir	( wdirid -- wior )	gforth	close_dir
 2175: wior = IOR(closedir((DIR *)wdirid));
 2176: 
 2177: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2178: char * string = cstr(c_addr1, u1, 1);
 2179: char * pattern = cstr(c_addr2, u2, 0);
 2180: flag = FLAG(!fnmatch(pattern, string, 0));
 2181: 
 2182: \+
 2183: 
 2184: newline	( -- c_addr u )	gforth
 2185: ""String containing the newline sequence of the host OS""
 2186: char newline[] = {
 2187: #if defined(unix) || defined(__MACH__)
 2188: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2189: '\n'
 2190: #else
 2191: '\r','\n'
 2192: #endif
 2193: };
 2194: c_addr=newline;
 2195: u=sizeof(newline);
 2196: :
 2197:  "newline count ;
 2198: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2199: 
 2200: \+os
 2201: 
 2202: utime	( -- dtime )	gforth
 2203: ""Report the current time in microseconds since some epoch.""
 2204: struct timeval time1;
 2205: gettimeofday(&time1,NULL);
 2206: dtime = timeval2us(&time1);
 2207: 
 2208: cputime ( -- duser dsystem ) gforth
 2209: ""duser and dsystem are the respective user- and system-level CPU
 2210: times used since the start of the Forth system (excluding child
 2211: processes), in microseconds (the granularity may be much larger,
 2212: however).  On platforms without the getrusage call, it reports elapsed
 2213: time (since some epoch) for duser and 0 for dsystem.""
 2214: #ifdef HAVE_GETRUSAGE
 2215: struct rusage usage;
 2216: getrusage(RUSAGE_SELF, &usage);
 2217: duser = timeval2us(&usage.ru_utime);
 2218: dsystem = timeval2us(&usage.ru_stime);
 2219: #else
 2220: struct timeval time1;
 2221: gettimeofday(&time1,NULL);
 2222: duser = timeval2us(&time1);
 2223: #ifndef BUGGY_LONG_LONG
 2224: dsystem = (DCell)0;
 2225: #else
 2226: dsystem=(DCell){0,0};
 2227: #endif
 2228: #endif
 2229: 
 2230: \+
 2231: 
 2232: \+floating
 2233: 
 2234: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2235: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2236: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2237: ucount elements.""
 2238: for (r=0.; ucount>0; ucount--) {
 2239:   r += *f_addr1 * *f_addr2;
 2240:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2241:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2242: }
 2243: :
 2244:  >r swap 2swap swap 0e r> 0 ?DO
 2245:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2246:  LOOP 2drop 2drop ; 
 2247: 
 2248: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2249: ""vy=ra*vx+vy""
 2250: for (; ucount>0; ucount--) {
 2251:   *f_y += ra * *f_x;
 2252:   f_x = (Float *)(((Address)f_x)+nstridex);
 2253:   f_y = (Float *)(((Address)f_y)+nstridey);
 2254: }
 2255: :
 2256:  >r swap 2swap swap r> 0 ?DO
 2257:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2258:  LOOP 2drop 2drop fdrop ;
 2259: 
 2260: \+
 2261: 
 2262: \+file
 2263: 
 2264: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2265: Cell c;
 2266: flag=-1;
 2267: u3=0;
 2268: for(u2=0; u2<u1; u2++)
 2269: {
 2270:    c = getc((FILE *)wfileid);
 2271:    u3++;
 2272:    if (c=='\n') break;
 2273:    if (c=='\r') {
 2274:      if ((c = getc((FILE *)wfileid))!='\n')
 2275:        ungetc(c,(FILE *)wfileid);
 2276:      else
 2277:        u3++;
 2278:      break;
 2279:    }
 2280:    if (c==EOF) {
 2281: 	flag=FLAG(u2!=0);
 2282: 	break;
 2283:      }
 2284:    c_addr[u2] = (Char)c;
 2285: }
 2286: wior=FILEIO(ferror((FILE *)wfileid));
 2287: 
 2288: \+
 2289: 
 2290: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 2291: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 2292:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2293:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2294:     break;
 2295: longname2=longname1;
 2296: :
 2297:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 2298: 	>r 2dup r@ cell+ cell+ capscomp  0=
 2299: 	IF  2drop r>  EXIT  THEN
 2300: 	r> @
 2301:     REPEAT  THEN  nip nip ;
 2302: : (findl-samelen) ( u longname1 -- u longname2/0 )
 2303:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 2304: 
 2305: \+hash
 2306: 
 2307: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 2308: struct Longname *longname1;
 2309: longname2=NULL;
 2310: while(a_addr != NULL)
 2311: {
 2312:    longname1=(struct Longname *)(a_addr[1]);
 2313:    a_addr=(Cell *)(a_addr[0]);
 2314:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2315:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2316:      {
 2317: 	longname2=longname1;
 2318: 	break;
 2319:      }
 2320: }
 2321: :
 2322:  BEGIN  dup  WHILE
 2323:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2324:         IF  2dup r@ cell+ cell+ capscomp 0=
 2325: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2326: 	rdrop r>
 2327:  REPEAT nip nip ;
 2328: 
 2329: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 2330: ""A case-sensitive variant of @code{(hashfind)}""
 2331: struct Longname *longname1;
 2332: longname2=NULL;
 2333: while(a_addr != NULL)
 2334: {
 2335:    longname1=(struct Longname *)(a_addr[1]);
 2336:    a_addr=(Cell *)(a_addr[0]);
 2337:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2338:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2339:      {
 2340: 	longname2=longname1;
 2341: 	break;
 2342:      }
 2343: }
 2344: :
 2345:  BEGIN  dup  WHILE
 2346:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2347:         IF  2dup r@ cell+ cell+ -text 0=
 2348: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2349: 	rdrop r>
 2350:  REPEAT nip nip ;
 2351: 
 2352: \+
 2353: 
 2354: primtable	( -- wprimtable )	new
 2355: ""wprimtable is a table containing the xts of the primitives indexed
 2356: by sequence-number in prim (for use in prepare-peephole-table).""
 2357: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2358: 
 2359: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2360: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2361: constructed by combining a primitives table with a simple peephole
 2362: optimization table.""
 2363: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2364: 
 2365: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2366: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2367: they cannot be combined, xt is 0.""
 2368: xt = peephole_opt(xt1, xt2, wpeeptable);
 2369: 
 2370: lit_plus = lit +
 2371: 
 2372: call	( #a_callee -- R:a_retaddr )
 2373: ""Call callee (a variant of docol with inline argument).""
 2374: a_retaddr = (Cell *)IP;
 2375: SET_IP((Xt *)a_callee);
 2376: 
 2377: useraddr	( #u -- a_addr )
 2378: a_addr = (Cell *)(up+u);
 2379: 
 2380: 
 2381: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>