File:  [gforth] / gforth / prim
Revision 1.77: download - view: text, annotated - select for diffs
Wed Feb 28 22:31:43 2001 UTC (18 years, 7 months ago) by anton
Branches: MAIN
CVS tags: HEAD
continued block profiling

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ f83name.*	F83Name *
   76: 
   77: \E get-current prefixes set-current
   78: \E 
   79: \E s" Bool"		single data-stack type-prefix f
   80: \E s" Char"		single data-stack type-prefix c
   81: \E s" Cell"		single data-stack type-prefix n
   82: \E s" Cell"		single data-stack type-prefix w
   83: \E s" UCell"		single data-stack type-prefix u
   84: \E s" DCell"		double data-stack type-prefix d
   85: \E s" UDCell"		double data-stack type-prefix ud
   86: \E s" Float"		single fp-stack   type-prefix r
   87: \E s" Cell *"		single data-stack type-prefix a_
   88: \E s" Char *"		single data-stack type-prefix c_
   89: \E s" Float *"		single data-stack type-prefix f_
   90: \E s" DFloat *"		single data-stack type-prefix df_
   91: \E s" SFloat *"		single data-stack type-prefix sf_
   92: \E s" Xt"		single data-stack type-prefix xt
   93: \E s" struct F83Name *"	single data-stack type-prefix f83name
   94: \E s" struct Longname *" single data-stack type-prefix longname
   95: \E 
   96: \E return-stack stack-prefix R:
   97: \E inst-stream  stack-prefix #
   98: \E 
   99: \E set-current
  100: 
  101: \ 
  102: \ 
  103: \ 
  104: \ In addition the following names can be used:
  105: \ ip	the instruction pointer
  106: \ sp	the data stack pointer
  107: \ rp	the parameter stack pointer
  108: \ lp	the locals stack pointer
  109: \ NEXT	executes NEXT
  110: \ cfa	
  111: \ NEXT1	executes NEXT1
  112: \ FLAG(x)	makes a Forth flag from a C flag
  113: \ 
  114: \ 
  115: \ 
  116: \ Percentages in comments are from Koopmans book: average/maximum use
  117: \ (taken from four, not very representative benchmarks)
  118: \ 
  119: \ 
  120: \ 
  121: \ To do:
  122: \ 
  123: \ throw execute, cfa and NEXT1 out?
  124: \ macroize *ip, ip++, *ip++ (pipelining)?
  125: 
  126: \ these m4 macros would collide with identifiers
  127: undefine(`index')
  128: undefine(`shift')
  129: 
  130: noop	( -- )		gforth
  131: :
  132:  ;
  133: 
  134: lit	( #w -- w )		gforth
  135: :
  136:  r> dup @ swap cell+ >r ;
  137: 
  138: execute	( xt -- )		core
  139: ""Perform the semantics represented by the execution token, @i{xt}.""
  140: ip=IP;
  141: IF_spTOS(spTOS = sp[0]);
  142: SUPER_END;
  143: EXEC(xt);
  144: 
  145: perform	( a_addr -- )	gforth
  146: ""@code{@@ execute}.""
  147: /* and pfe */
  148: ip=IP;
  149: IF_spTOS(spTOS = sp[0]);
  150: SUPER_END;
  151: EXEC(*(Xt *)a_addr);
  152: :
  153:  @ execute ;
  154: 
  155: \fhas? skipbranchprims 0= [IF]
  156: \+glocals
  157: 
  158: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  159: /* this will probably not be used */
  160: lp += nlocals;
  161: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  162: 
  163: \+
  164: 
  165: branch	( #ndisp -- )		gforth
  166: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  167: :
  168:  r> dup @ + >r ;
  169: 
  170: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  171: \ this is non-syntactical: code must open a brace that is closed by the macro
  172: define(condbranch,
  173: $1 ( `#'ndisp $2 ) $3
  174: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  175: TAIL;
  176: }
  177: $5
  178: 
  179: \+glocals
  180: 
  181: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  182: $4    lp += nlocals;
  183: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  184: TAIL;
  185: }
  186: 
  187: \+
  188: )
  189: 
  190: condbranch(?branch,f --,f83	question_branch,
  191: if (f==0) {
  192: ,:
  193:  0= dup     \ !f !f
  194:  r> dup @   \ !f !f IP branchoffset
  195:  rot and +  \ !f IP|IP+branchoffset
  196:  swap 0= cell and + \ IP''
  197:  >r ;)
  198: 
  199: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  200: \ is only used in if's (yet)
  201: 
  202: \+xconds
  203: 
  204: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  205: ""The run-time procedure compiled by @code{?DUP-IF}.""
  206: if (f==0) {
  207:   sp++;
  208:   IF_spTOS(spTOS = sp[0]);
  209:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  210:   TAIL;
  211: }
  212: 
  213: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  214: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  215: /* the approach taken here of declaring the word as having the stack
  216: effect ( f -- ) and correcting for it in the branch-taken case costs a
  217: few cycles in that case, but is easy to convert to a CONDBRANCH
  218: invocation */
  219: if (f!=0) {
  220:   sp--;
  221:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  222:   NEXT;
  223: }
  224: 
  225: \+
  226: \f[THEN]
  227: \fhas? skiploopprims 0= [IF]
  228: 
  229: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  230: n2=n1-1;
  231: if (n1) {
  232: ,:
  233:  r> r> dup 1- >r
  234:  IF dup @ + >r ELSE cell+ >r THEN ;)
  235: 
  236: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  237: n2=n1+1;
  238: if (n2 != nlimit) {
  239: ,:
  240:  r> r> 1+ r> 2dup =
  241:  IF >r 1- >r cell+ >r
  242:  ELSE >r >r dup @ + >r THEN ;)
  243: 
  244: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  245: /* !! check this thoroughly */
  246: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  247: /* dependent upon two's complement arithmetic */
  248: Cell olddiff = n1-nlimit;
  249: n2=n1+n;	
  250: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  251:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  252: ,:
  253:  r> swap
  254:  r> r> 2dup - >r
  255:  2 pick r@ + r@ xor 0< 0=
  256:  3 pick r> xor 0< 0= or
  257:  IF    >r + >r dup @ + >r
  258:  ELSE  >r >r drop cell+ >r THEN ;)
  259: 
  260: \+xconds
  261: 
  262: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  263: UCell olddiff = n1-nlimit;
  264: n2=n1-u;
  265: if (olddiff>u) {
  266: ,)
  267: 
  268: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  269: ""The run-time procedure compiled by S+LOOP. It loops until the index
  270: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  271: version of (+LOOP).""
  272: /* !! check this thoroughly */
  273: Cell diff = n1-nlimit;
  274: Cell newdiff = diff+n;
  275: if (n<0) {
  276:     diff = -diff;
  277:     newdiff = -newdiff;
  278: }
  279: n2=n1+n;
  280: if (diff>=0 || newdiff<0) {
  281: ,)
  282: 
  283: \+
  284: 
  285: unloop	( R:w1 R:w2 -- )	core
  286: /* !! alias for 2rdrop */
  287: :
  288:  r> rdrop rdrop >r ;
  289: 
  290: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  291: /* or (for) = >r -- collides with unloop! */
  292: nlimit=0;
  293: :
  294:  r> swap 0 >r >r >r ;
  295: 
  296: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  297: :
  298:  r> swap rot >r >r >r ;
  299: 
  300: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  301: if (nstart == nlimit) {
  302:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  303:     TAIL;
  304: }
  305: :
  306:   2dup =
  307:   IF   r> swap rot >r >r
  308:        dup @ + >r
  309:   ELSE r> swap rot >r >r
  310:        cell+ >r
  311:   THEN ;				\ --> CORE-EXT
  312: 
  313: \+xconds
  314: 
  315: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  316: if (nstart >= nlimit) {
  317:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  318:     TAIL;
  319: }
  320: :
  321:  swap 2dup
  322:  r> swap >r swap >r
  323:  >=
  324:  IF
  325:      dup @ +
  326:  ELSE
  327:      cell+
  328:  THEN  >r ;
  329: 
  330: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  331: if (ustart >= ulimit) {
  332:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  333:     TAIL;
  334: }
  335: :
  336:  swap 2dup
  337:  r> swap >r swap >r
  338:  u>=
  339:  IF
  340:      dup @ +
  341:  ELSE
  342:      cell+
  343:  THEN  >r ;
  344: 
  345: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  346: if (nstart <= nlimit) {
  347:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  348:     TAIL;
  349: }
  350: :
  351:  swap 2dup
  352:  r> swap >r swap >r
  353:  <=
  354:  IF
  355:      dup @ +
  356:  ELSE
  357:      cell+
  358:  THEN  >r ;
  359: 
  360: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  361: if (ustart <= ulimit) {
  362:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  363:     TAIL;
  364: }
  365: :
  366:  swap 2dup
  367:  r> swap >r swap >r
  368:  u<=
  369:  IF
  370:      dup @ +
  371:  ELSE
  372:      cell+
  373:  THEN  >r ;
  374: 
  375: \+
  376: 
  377: \ don't make any assumptions where the return stack is!!
  378: \ implement this in machine code if it should run quickly!
  379: 
  380: i	( R:n -- R:n n )		core
  381: :
  382: \ rp@ cell+ @ ;
  383:   r> r> tuck >r >r ;
  384: 
  385: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  386: :
  387: \ rp@ cell+ cell+ @ ;
  388:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  389: variable itmp
  390: 
  391: j	( R:n R:d1 -- n R:n R:d1 )		core
  392: :
  393: \ rp@ cell+ cell+ cell+ @ ;
  394:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  395: [IFUNDEF] itmp variable itmp [THEN]
  396: 
  397: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  398: :
  399: \ rp@ [ 5 cells ] Literal + @ ;
  400:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  401: [IFUNDEF] itmp variable itmp [THEN]
  402: 
  403: \f[THEN]
  404: 
  405: \ digit is high-level: 0/0%
  406: 
  407: move	( c_from c_to ucount -- )		core
  408: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  409: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  410: /* !! note that the standard specifies addr, not c-addr */
  411: memmove(c_to,c_from,ucount);
  412: /* make an Ifdef for bsd and others? */
  413: :
  414:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  415: 
  416: cmove	( c_from c_to u -- )	string	c_move
  417: ""Copy the contents of @i{ucount} characters from data space at
  418: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  419: from low address to high address; i.e., for overlapping areas it is
  420: safe if @i{c-to}=<@i{c-from}.""
  421: while (u-- > 0)
  422:   *c_to++ = *c_from++;
  423: :
  424:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  425: 
  426: cmove>	( c_from c_to u -- )	string	c_move_up
  427: ""Copy the contents of @i{ucount} characters from data space at
  428: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  429: from high address to low address; i.e., for overlapping areas it is
  430: safe if @i{c-to}>=@i{c-from}.""
  431: while (u-- > 0)
  432:   c_to[u] = c_from[u];
  433: :
  434:  dup 0= IF  drop 2drop exit  THEN
  435:  rot over + -rot bounds swap 1-
  436:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  437: 
  438: fill	( c_addr u c -- )	core
  439: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  440: memset(c_addr,c,u);
  441: :
  442:  -rot bounds
  443:  ?DO  dup I c!  LOOP  drop ;
  444: 
  445: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  446: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  447: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  448: is 1. Currently this is based on the machine's character
  449: comparison. In the future, this may change to consider the current
  450: locale and its collation order.""
  451: /* close ' to keep fontify happy */ 
  452: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  453: if (n==0)
  454:   n = u1-u2;
  455: if (n<0)
  456:   n = -1;
  457: else if (n>0)
  458:   n = 1;
  459: :
  460:  rot 2dup swap - >r min swap -text dup
  461:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  462: : sgn ( n -- -1/0/1 )
  463:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  464: 
  465: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  466: n = memcmp(c_addr1, c_addr2, u);
  467: if (n<0)
  468:   n = -1;
  469: else if (n>0)
  470:   n = 1;
  471: :
  472:  swap bounds
  473:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  474:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  475: : sgn ( n -- -1/0/1 )
  476:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  477: 
  478: toupper	( c1 -- c2 )	gforth
  479: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  480: is the equivalent upper-case character. All other characters are unchanged.""
  481: c2 = toupper(c1);
  482: :
  483:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  484: 
  485: capscomp	( c_addr1 u c_addr2 -- n )	new
  486: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  487: if (n<0)
  488:   n = -1;
  489: else if (n>0)
  490:   n = 1;
  491: :
  492:  swap bounds
  493:  ?DO  dup c@ I c@ <>
  494:      IF  dup c@ toupper I c@ toupper =
  495:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  496:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  497: 
  498: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  499: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  500: spaces. @i{u2} is the length of the modified string.""
  501: u2 = u1;
  502: while (u2>0 && c_addr[u2-1] == ' ')
  503:   u2--;
  504: :
  505:  BEGIN  1- 2dup + c@ bl =  WHILE
  506:         dup  0= UNTIL  ELSE  1+  THEN ;
  507: 
  508: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  509: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  510: characters from the start of the string.""
  511: c_addr2 = c_addr1+n;
  512: u2 = u1-n;
  513: :
  514:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  515: 
  516: +	( n1 n2 -- n )		core	plus
  517: n = n1+n2;
  518: 
  519: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  520: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  521: ""add @i{n3} to @i{n1} (giving @i{n})""
  522: n = n1+n3;
  523: :
  524:  rot + swap ;
  525: 
  526: -	( n1 n2 -- n )		core	minus
  527: n = n1-n2;
  528: :
  529:  negate + ;
  530: 
  531: negate	( n1 -- n2 )		core
  532: /* use minus as alias */
  533: n2 = -n1;
  534: :
  535:  invert 1+ ;
  536: 
  537: 1+	( n1 -- n2 )		core		one_plus
  538: n2 = n1+1;
  539: :
  540:  1 + ;
  541: 
  542: 1-	( n1 -- n2 )		core		one_minus
  543: n2 = n1-1;
  544: :
  545:  1 - ;
  546: 
  547: max	( n1 n2 -- n )	core
  548: if (n1<n2)
  549:   n = n2;
  550: else
  551:   n = n1;
  552: :
  553:  2dup < IF swap THEN drop ;
  554: 
  555: min	( n1 n2 -- n )	core
  556: if (n1<n2)
  557:   n = n1;
  558: else
  559:   n = n2;
  560: :
  561:  2dup > IF swap THEN drop ;
  562: 
  563: abs	( n -- u )	core
  564: if (n<0)
  565:   u = -n;
  566: else
  567:   u = n;
  568: :
  569:  dup 0< IF negate THEN ;
  570: 
  571: *	( n1 n2 -- n )		core	star
  572: n = n1*n2;
  573: :
  574:  um* drop ;
  575: 
  576: /	( n1 n2 -- n )		core	slash
  577: n = n1/n2;
  578: :
  579:  /mod nip ;
  580: 
  581: mod	( n1 n2 -- n )		core
  582: n = n1%n2;
  583: :
  584:  /mod drop ;
  585: 
  586: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  587: n4 = n1/n2;
  588: n3 = n1%n2; /* !! is this correct? look into C standard! */
  589: :
  590:  >r s>d r> fm/mod ;
  591: 
  592: 2*	( n1 -- n2 )		core		two_star
  593: ""Shift left by 1; also works on unsigned numbers""
  594: n2 = 2*n1;
  595: :
  596:  dup + ;
  597: 
  598: 2/	( n1 -- n2 )		core		two_slash
  599: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  600: division by 2 (note that @code{/} not necessarily floors).""
  601: n2 = n1>>1;
  602: :
  603:  dup MINI and IF 1 ELSE 0 THEN
  604:  [ bits/byte cell * 1- ] literal 
  605:  0 DO 2* swap dup 2* >r MINI and 
  606:      IF 1 ELSE 0 THEN or r> swap
  607:  LOOP nip ;
  608: 
  609: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  610: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  611: #ifdef BUGGY_LONG_LONG
  612: DCell r = fmdiv(d1,n1);
  613: n2=r.hi;
  614: n3=r.lo;
  615: #else
  616: /* assumes that the processor uses either floored or symmetric division */
  617: n3 = d1/n1;
  618: n2 = d1%n1;
  619: /* note that this 1%-3>0 is optimized by the compiler */
  620: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  621:   n3--;
  622:   n2+=n1;
  623: }
  624: #endif
  625: :
  626:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  627:  over       0< IF  tuck + swap  THEN
  628:  um/mod
  629:  r> 0< IF  swap negate swap  THEN ;
  630: 
  631: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  632: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  633: #ifdef BUGGY_LONG_LONG
  634: DCell r = smdiv(d1,n1);
  635: n2=r.hi;
  636: n3=r.lo;
  637: #else
  638: /* assumes that the processor uses either floored or symmetric division */
  639: n3 = d1/n1;
  640: n2 = d1%n1;
  641: /* note that this 1%-3<0 is optimized by the compiler */
  642: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  643:   n3++;
  644:   n2-=n1;
  645: }
  646: #endif
  647: :
  648:  over >r dup >r abs -rot
  649:  dabs rot um/mod
  650:  r> r@ xor 0< IF       negate       THEN
  651:  r>        0< IF  swap negate swap  THEN ;
  652: 
  653: m*	( n1 n2 -- d )		core	m_star
  654: #ifdef BUGGY_LONG_LONG
  655: d = mmul(n1,n2);
  656: #else
  657: d = (DCell)n1 * (DCell)n2;
  658: #endif
  659: :
  660:  2dup      0< and >r
  661:  2dup swap 0< and >r
  662:  um* r> - r> - ;
  663: 
  664: um*	( u1 u2 -- ud )		core	u_m_star
  665: /* use u* as alias */
  666: #ifdef BUGGY_LONG_LONG
  667: ud = ummul(u1,u2);
  668: #else
  669: ud = (UDCell)u1 * (UDCell)u2;
  670: #endif
  671: :
  672:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  673:    DO
  674:        over >r dup >r 0< and d2*+ drop
  675:        r> 2* r> swap
  676:    LOOP 2drop ;
  677: : d2*+ ( ud n -- ud+n c )
  678:    over MINI
  679:    and >r >r 2dup d+ swap r> + swap r> ;
  680: 
  681: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  682: ""ud=u3*u1+u2, u1>u2>=0""
  683: #ifdef BUGGY_LONG_LONG
  684: UDCell r = umdiv(ud,u1);
  685: u2=r.hi;
  686: u3=r.lo;
  687: #else
  688: u3 = ud/u1;
  689: u2 = ud%u1;
  690: #endif
  691: :
  692:    0 swap [ 8 cells 1 + ] literal 0
  693:    ?DO /modstep
  694:    LOOP drop swap 1 rshift or swap ;
  695: : /modstep ( ud c R: u -- ud-?u c R: u )
  696:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  697: : d2*+ ( ud n -- ud+n c )
  698:    over MINI
  699:    and >r >r 2dup d+ swap r> + swap r> ;
  700: 
  701: m+	( d1 n -- d2 )		double		m_plus
  702: #ifdef BUGGY_LONG_LONG
  703: d2.lo = d1.lo+n;
  704: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  705: #else
  706: d2 = d1+n;
  707: #endif
  708: :
  709:  s>d d+ ;
  710: 
  711: d+	( d1 d2 -- d )		double	d_plus
  712: #ifdef BUGGY_LONG_LONG
  713: d.lo = d1.lo+d2.lo;
  714: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  715: #else
  716: d = d1+d2;
  717: #endif
  718: :
  719:  rot + >r tuck + swap over u> r> swap - ;
  720: 
  721: d-	( d1 d2 -- d )		double		d_minus
  722: #ifdef BUGGY_LONG_LONG
  723: d.lo = d1.lo - d2.lo;
  724: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  725: #else
  726: d = d1-d2;
  727: #endif
  728: :
  729:  dnegate d+ ;
  730: 
  731: dnegate	( d1 -- d2 )		double	d_negate
  732: /* use dminus as alias */
  733: #ifdef BUGGY_LONG_LONG
  734: d2 = dnegate(d1);
  735: #else
  736: d2 = -d1;
  737: #endif
  738: :
  739:  invert swap negate tuck 0= - ;
  740: 
  741: d2*	( d1 -- d2 )		double		d_two_star
  742: ""Shift left by 1; also works on unsigned numbers""
  743: #ifdef BUGGY_LONG_LONG
  744: d2.lo = d1.lo<<1;
  745: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  746: #else
  747: d2 = 2*d1;
  748: #endif
  749: :
  750:  2dup d+ ;
  751: 
  752: d2/	( d1 -- d2 )		double		d_two_slash
  753: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  754: division by 2.""
  755: #ifdef BUGGY_LONG_LONG
  756: d2.hi = d1.hi>>1;
  757: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  758: #else
  759: d2 = d1>>1;
  760: #endif
  761: :
  762:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  763:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  764: 
  765: and	( w1 w2 -- w )		core
  766: w = w1&w2;
  767: 
  768: or	( w1 w2 -- w )		core
  769: w = w1|w2;
  770: :
  771:  invert swap invert and invert ;
  772: 
  773: xor	( w1 w2 -- w )		core	x_or
  774: w = w1^w2;
  775: 
  776: invert	( w1 -- w2 )		core
  777: w2 = ~w1;
  778: :
  779:  MAXU xor ;
  780: 
  781: rshift	( u1 n -- u2 )		core	r_shift
  782: ""Logical shift right by @i{n} bits.""
  783:   u2 = u1>>n;
  784: :
  785:     0 ?DO 2/ MAXI and LOOP ;
  786: 
  787: lshift	( u1 n -- u2 )		core	l_shift
  788:   u2 = u1<<n;
  789: :
  790:     0 ?DO 2* LOOP ;
  791: 
  792: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  793: define(comparisons,
  794: $1=	( $2 -- f )		$6	$3equals
  795: f = FLAG($4==$5);
  796: :
  797:     [ char $1x char 0 = [IF]
  798: 	] IF false ELSE true THEN [
  799:     [ELSE]
  800: 	] xor 0= [
  801:     [THEN] ] ;
  802: 
  803: $1<>	( $2 -- f )		$7	$3not_equals
  804: f = FLAG($4!=$5);
  805: :
  806:     [ char $1x char 0 = [IF]
  807: 	] IF true ELSE false THEN [
  808:     [ELSE]
  809: 	] xor 0<> [
  810:     [THEN] ] ;
  811: 
  812: $1<	( $2 -- f )		$8	$3less_than
  813: f = FLAG($4<$5);
  814: :
  815:     [ char $1x char 0 = [IF]
  816: 	] MINI and 0<> [
  817:     [ELSE] char $1x char u = [IF]
  818: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  819: 	[ELSE]
  820: 	    ] MINI xor >r MINI xor r> u< [
  821: 	[THEN]
  822:     [THEN] ] ;
  823: 
  824: $1>	( $2 -- f )		$9	$3greater_than
  825: f = FLAG($4>$5);
  826: :
  827:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  828:     $1< ;
  829: 
  830: $1<=	( $2 -- f )		gforth	$3less_or_equal
  831: f = FLAG($4<=$5);
  832: :
  833:     $1> 0= ;
  834: 
  835: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  836: f = FLAG($4>=$5);
  837: :
  838:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  839:     $1<= ;
  840: 
  841: )
  842: 
  843: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  844: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  845: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  846: 
  847: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  848: define(dcomparisons,
  849: $1=	( $2 -- f )		$6	$3equals
  850: #ifdef BUGGY_LONG_LONG
  851: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  852: #else
  853: f = FLAG($4==$5);
  854: #endif
  855: 
  856: $1<>	( $2 -- f )		$7	$3not_equals
  857: #ifdef BUGGY_LONG_LONG
  858: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  859: #else
  860: f = FLAG($4!=$5);
  861: #endif
  862: 
  863: $1<	( $2 -- f )		$8	$3less_than
  864: #ifdef BUGGY_LONG_LONG
  865: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  866: #else
  867: f = FLAG($4<$5);
  868: #endif
  869: 
  870: $1>	( $2 -- f )		$9	$3greater_than
  871: #ifdef BUGGY_LONG_LONG
  872: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  873: #else
  874: f = FLAG($4>$5);
  875: #endif
  876: 
  877: $1<=	( $2 -- f )		gforth	$3less_or_equal
  878: #ifdef BUGGY_LONG_LONG
  879: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  880: #else
  881: f = FLAG($4<=$5);
  882: #endif
  883: 
  884: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  885: #ifdef BUGGY_LONG_LONG
  886: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  887: #else
  888: f = FLAG($4>=$5);
  889: #endif
  890: 
  891: )
  892: 
  893: \+dcomps
  894: 
  895: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  896: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  897: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  898: 
  899: \+
  900: 
  901: within	( u1 u2 u3 -- f )		core-ext
  902: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  903: unsigned and signed numbers (but not a mixture).  Another way to think
  904: about this word is to consider the numbers as a circle (wrapping
  905: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  906: min-n for signed numbers); now consider the range from u2 towards
  907: increasing numbers up to and excluding u3 (giving an empty range if
  908: u2=u3); if u1 is in this range, @code{within} returns true.""
  909: f = FLAG(u1-u2 < u3-u2);
  910: :
  911:  over - >r - r> u< ;
  912: 
  913: sp@	( -- a_addr )		gforth		sp_fetch
  914: a_addr = sp+1;
  915: 
  916: sp!	( a_addr -- )		gforth		sp_store
  917: sp = a_addr;
  918: /* works with and without spTOS caching */
  919: 
  920: rp@	( -- a_addr )		gforth		rp_fetch
  921: a_addr = rp;
  922: 
  923: rp!	( a_addr -- )		gforth		rp_store
  924: rp = a_addr;
  925: 
  926: \+floating
  927: 
  928: fp@	( -- f_addr )	gforth	fp_fetch
  929: f_addr = fp;
  930: 
  931: fp!	( f_addr -- )	gforth	fp_store
  932: fp = f_addr;
  933: 
  934: \+
  935: 
  936: ;s	( R:w -- )		gforth	semis
  937: ""The primitive compiled by @code{EXIT}.""
  938: SET_IP((Xt *)w);
  939: 
  940: >r	( w -- R:w )		core	to_r
  941: :
  942:  (>r) ;
  943: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  944: 
  945: r>	( R:w -- w )		core	r_from
  946: :
  947:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  948: Create (rdrop) ' ;s A,
  949: 
  950: rdrop	( R:w -- )		gforth
  951: :
  952:  r> r> drop >r ;
  953: 
  954: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  955: :
  956:  swap r> swap >r swap >r >r ;
  957: 
  958: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  959: :
  960:  r> r> swap r> swap >r swap ;
  961: 
  962: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  963: :
  964:  i' j ;
  965: 
  966: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  967: :
  968:  r> r> drop r> drop >r ;
  969: 
  970: over	( w1 w2 -- w1 w2 w1 )		core
  971: :
  972:  sp@ cell+ @ ;
  973: 
  974: drop	( w -- )		core
  975: :
  976:  IF THEN ;
  977: 
  978: swap	( w1 w2 -- w2 w1 )		core
  979: :
  980:  >r (swap) ! r> (swap) @ ;
  981: Variable (swap)
  982: 
  983: dup	( w -- w w )		core	dupe
  984: :
  985:  sp@ @ ;
  986: 
  987: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
  988: :
  989: [ defined? (swap) [IF] ]
  990:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
  991: Variable (rot)
  992: [ELSE] ]
  993:     >r swap r> swap ;
  994: [THEN]
  995: 
  996: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
  997: :
  998:  rot rot ;
  999: 
 1000: nip	( w1 w2 -- w2 )		core-ext
 1001: :
 1002:  swap drop ;
 1003: 
 1004: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1005: :
 1006:  swap over ;
 1007: 
 1008: ?dup	( w -- w )			core	question_dupe
 1009: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1010: @code{dup} if w is nonzero.""
 1011: if (w!=0) {
 1012:   IF_spTOS(*sp-- = w;)
 1013: #ifndef USE_TOS
 1014:   *--sp = w;
 1015: #endif
 1016: }
 1017: :
 1018:  dup IF dup THEN ;
 1019: 
 1020: pick	( u -- w )			core-ext
 1021: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1022: w = sp[u+1];
 1023: :
 1024:  1+ cells sp@ + @ ;
 1025: 
 1026: 2drop	( w1 w2 -- )		core	two_drop
 1027: :
 1028:  drop drop ;
 1029: 
 1030: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1031: :
 1032:  over over ;
 1033: 
 1034: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1035: :
 1036:  3 pick 3 pick ;
 1037: 
 1038: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1039: :
 1040:  rot >r rot r> ;
 1041: 
 1042: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1043: :
 1044:  >r >r 2swap r> r> 2swap ;
 1045: 
 1046: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1047: :
 1048:  2swap 2drop ;
 1049: 
 1050: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1051: :
 1052:  2swap 2over ;
 1053: 
 1054: \ toggle is high-level: 0.11/0.42%
 1055: 
 1056: @	( a_addr -- w )		core	fetch
 1057: ""@i{w} is the cell stored at @i{a_addr}.""
 1058: w = *a_addr;
 1059: 
 1060: !	( w a_addr -- )		core	store
 1061: ""Store @i{w} into the cell at @i{a-addr}.""
 1062: *a_addr = w;
 1063: 
 1064: +!	( n a_addr -- )		core	plus_store
 1065: ""Add @i{n} to the cell at @i{a-addr}.""
 1066: *a_addr += n;
 1067: :
 1068:  tuck @ + swap ! ;
 1069: 
 1070: c@	( c_addr -- c )		core	c_fetch
 1071: ""@i{c} is the char stored at @i{c_addr}.""
 1072: c = *c_addr;
 1073: :
 1074: [ bigendian [IF] ]
 1075:     [ cell>bit 4 = [IF] ]
 1076: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1077: 	IF  $FF and  ELSE  8>>  THEN  ;
 1078:     [ [ELSE] ]
 1079: 	dup [ cell 1- ] literal and
 1080: 	tuck - @ swap [ cell 1- ] literal xor
 1081:  	0 ?DO 8>> LOOP $FF and
 1082:     [ [THEN] ]
 1083: [ [ELSE] ]
 1084:     [ cell>bit 4 = [IF] ]
 1085: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1086: 	IF  8>>  ELSE  $FF and  THEN
 1087:     [ [ELSE] ]
 1088: 	dup [ cell  1- ] literal and 
 1089: 	tuck - @ swap
 1090: 	0 ?DO 8>> LOOP 255 and
 1091:     [ [THEN] ]
 1092: [ [THEN] ]
 1093: ;
 1094: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1095: 
 1096: c!	( c c_addr -- )		core	c_store
 1097: ""Store @i{c} into the char at @i{c-addr}.""
 1098: *c_addr = c;
 1099: :
 1100: [ bigendian [IF] ]
 1101:     [ cell>bit 4 = [IF] ]
 1102: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1103: 	dup -2 and @ over 1 and cells masks + @ and
 1104: 	r> or swap -2 and ! ;
 1105: 	Create masks $00FF , $FF00 ,
 1106:     [ELSE] ]
 1107: 	dup [ cell 1- ] literal and dup 
 1108: 	[ cell 1- ] literal xor >r
 1109: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1110: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1111:     [THEN]
 1112: [ELSE] ]
 1113:     [ cell>bit 4 = [IF] ]
 1114: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1115: 	dup -2 and @ over 1 and cells masks + @ and
 1116: 	r> or swap -2 and ! ;
 1117: 	Create masks $FF00 , $00FF ,
 1118:     [ELSE] ]
 1119: 	dup [ cell 1- ] literal and dup >r
 1120: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1121: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1122:     [THEN]
 1123: [THEN]
 1124: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1125: 
 1126: 2!	( w1 w2 a_addr -- )		core	two_store
 1127: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1128: a_addr[0] = w2;
 1129: a_addr[1] = w1;
 1130: :
 1131:  tuck ! cell+ ! ;
 1132: 
 1133: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1134: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1135: the content of the next cell.""
 1136: w2 = a_addr[0];
 1137: w1 = a_addr[1];
 1138: :
 1139:  dup cell+ @ swap @ ;
 1140: 
 1141: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1142: ""@code{1 cells +}""
 1143: a_addr2 = a_addr1+1;
 1144: :
 1145:  cell + ;
 1146: 
 1147: cells	( n1 -- n2 )		core
 1148: "" @i{n2} is the number of address units of @i{n1} cells.""
 1149: n2 = n1 * sizeof(Cell);
 1150: :
 1151:  [ cell
 1152:  2/ dup [IF] ] 2* [ [THEN]
 1153:  2/ dup [IF] ] 2* [ [THEN]
 1154:  2/ dup [IF] ] 2* [ [THEN]
 1155:  2/ dup [IF] ] 2* [ [THEN]
 1156:  drop ] ;
 1157: 
 1158: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1159: ""@code{1 chars +}.""
 1160: c_addr2 = c_addr1 + 1;
 1161: :
 1162:  1+ ;
 1163: 
 1164: (chars)	( n1 -- n2 )	gforth	paren_chars
 1165: n2 = n1 * sizeof(Char);
 1166: :
 1167:  ;
 1168: 
 1169: count	( c_addr1 -- c_addr2 u )	core
 1170: ""@i{c-addr2} is the first character and @i{u} the length of the
 1171: counted string at @i{c-addr1}.""
 1172: u = *c_addr1;
 1173: c_addr2 = c_addr1+1;
 1174: :
 1175:  dup 1+ swap c@ ;
 1176: 
 1177: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1178: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1179:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1180:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1181:     break;
 1182: f83name2=f83name1;
 1183: :
 1184:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1185: 	>r 2dup r@ cell+ char+ capscomp  0=
 1186: 	IF  2drop r>  EXIT  THEN
 1187: 	r> @
 1188:     REPEAT  THEN  nip nip ;
 1189: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1190:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL THEN ;
 1191: 
 1192: \+hash
 1193: 
 1194: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1195: struct F83Name *f83name1;
 1196: f83name2=NULL;
 1197: while(a_addr != NULL)
 1198: {
 1199:    f83name1=(struct F83Name *)(a_addr[1]);
 1200:    a_addr=(Cell *)(a_addr[0]);
 1201:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1202:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1203:      {
 1204: 	f83name2=f83name1;
 1205: 	break;
 1206:      }
 1207: }
 1208: :
 1209:  BEGIN  dup  WHILE
 1210:         2@ >r >r dup r@ cell+ c@ $1F and =
 1211:         IF  2dup r@ cell+ char+ capscomp 0=
 1212: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1213: 	rdrop r>
 1214:  REPEAT nip nip ;
 1215: 
 1216: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1217: ""A case-sensitive variant of @code{(hashfind)}""
 1218: struct F83Name *f83name1;
 1219: f83name2=NULL;
 1220: while(a_addr != NULL)
 1221: {
 1222:    f83name1=(struct F83Name *)(a_addr[1]);
 1223:    a_addr=(Cell *)(a_addr[0]);
 1224:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1225:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1226:      {
 1227: 	f83name2=f83name1;
 1228: 	break;
 1229:      }
 1230: }
 1231: :
 1232:  BEGIN  dup  WHILE
 1233:         2@ >r >r dup r@ cell+ c@ $1F and =
 1234:         IF  2dup r@ cell+ char+ -text 0=
 1235: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1236: 	rdrop r>
 1237:  REPEAT nip nip ;
 1238: 
 1239: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1240: u2=0;
 1241: while(u1--)
 1242:    u2+=(Cell)toupper(*c_addr++);
 1243: :
 1244:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1245: 
 1246: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1247: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1248: /* this hash function rotates the key at every step by rot bits within
 1249:    ubits bits and xors it with the character. This function does ok in
 1250:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1251:    ASCII strings (larger if ubits is large), and should share no
 1252:    divisors with ubits.
 1253: */
 1254: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1255: Char *cp = c_addr;
 1256: for (ukey=0; cp<c_addr+u; cp++)
 1257:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1258: 	     ^ toupper(*cp))
 1259: 	    & ((1<<ubits)-1));
 1260: :
 1261:  dup rot-values + c@ over 1 swap lshift 1- >r
 1262:  tuck - 2swap r> 0 2swap bounds
 1263:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1264:       I c@ toupper xor
 1265:       over and  LOOP
 1266:  nip nip nip ;
 1267: Create rot-values
 1268:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1269:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1270:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1271:   7 c, 5 c, 5 c,
 1272: 
 1273: \+
 1274: 
 1275: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1276: /* use !isgraph instead of isspace? */
 1277: Char *endp = c_addr1+u1;
 1278: while (c_addr1<endp && isspace(*c_addr1))
 1279:   c_addr1++;
 1280: if (c_addr1<endp) {
 1281:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1282:     ;
 1283:   u2 = c_addr1-c_addr2;
 1284: }
 1285: else {
 1286:   c_addr2 = c_addr1;
 1287:   u2 = 0;
 1288: }
 1289: :
 1290:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1291:  REPEAT  THEN  2dup
 1292:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1293:  REPEAT  THEN  nip - ;
 1294: 
 1295: aligned	( c_addr -- a_addr )	core
 1296: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1297: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1298: :
 1299:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1300: 
 1301: faligned	( c_addr -- f_addr )	float	f_aligned
 1302: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1303: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1304: :
 1305:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1306: 
 1307: >body	( xt -- a_addr )	core	to_body
 1308: "" Get the address of the body of the word represented by @i{xt} (the address
 1309: of the word's data field).""
 1310: a_addr = PFA(xt);
 1311: :
 1312:     2 cells + ;
 1313: 
 1314: \ threading stuff is currently only interesting if we have a compiler
 1315: \fhas? standardthreading has? compiler and [IF]
 1316: 
 1317: >code-address	( xt -- c_addr )		gforth	to_code_address
 1318: ""@i{c-addr} is the code address of the word @i{xt}.""
 1319: /* !! This behaves installation-dependently for DOES-words */
 1320: c_addr = (Address)CODE_ADDRESS(xt);
 1321: :
 1322:     @ ;
 1323: 
 1324: >does-code	( xt -- a_addr )		gforth	to_does_code
 1325: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1326: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1327: Otherwise @i{a-addr} is 0.""
 1328: a_addr = (Cell *)DOES_CODE(xt);
 1329: :
 1330:     cell+ @ ;
 1331: 
 1332: code-address!	( c_addr xt -- )		gforth	code_address_store
 1333: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1334: MAKE_CF(xt, c_addr);
 1335: CACHE_FLUSH(xt,(size_t)PFA(0));
 1336: :
 1337:     ! ;
 1338: 
 1339: does-code!	( a_addr xt -- )		gforth	does_code_store
 1340: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1341: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1342: MAKE_DOES_CF(xt, a_addr);
 1343: CACHE_FLUSH(xt,(size_t)PFA(0));
 1344: :
 1345:     dodoes: over ! cell+ ! ;
 1346: 
 1347: does-handler!	( a_addr -- )	gforth	does_handler_store
 1348: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1349: @i{a-addr} points just behind a @code{DOES>}.""
 1350: MAKE_DOES_HANDLER(a_addr);
 1351: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1352: :
 1353:     drop ;
 1354: 
 1355: /does-handler	( -- n )	gforth	slash_does_handler
 1356: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1357: /* !! a constant or environmental query might be better */
 1358: n = DOES_HANDLER_SIZE;
 1359: :
 1360:     2 cells ;
 1361: 
 1362: threading-method	( -- n )	gforth	threading_method
 1363: ""0 if the engine is direct threaded. Note that this may change during
 1364: the lifetime of an image.""
 1365: #if defined(DOUBLY_INDIRECT)
 1366: n=2;
 1367: #else
 1368: # if defined(DIRECT_THREADED)
 1369: n=0;
 1370: # else
 1371: n=1;
 1372: # endif
 1373: #endif
 1374: :
 1375:  1 ;
 1376: 
 1377: \f[THEN]
 1378: 
 1379: key-file	( wfileid -- n )		gforth	paren_key_file
 1380: #ifdef HAS_FILE
 1381: fflush(stdout);
 1382: n = key((FILE*)wfileid);
 1383: #else
 1384: n = key(stdin);
 1385: #endif
 1386: 
 1387: key?-file	( wfileid -- n )		facility	key_q_file
 1388: #ifdef HAS_FILE
 1389: fflush(stdout);
 1390: n = key_query((FILE*)wfileid);
 1391: #else
 1392: n = key_query(stdin);
 1393: #endif
 1394: 
 1395: \+os
 1396: 
 1397: stdin	( -- wfileid )	gforth
 1398: wfileid = (Cell)stdin;
 1399: 
 1400: stdout	( -- wfileid )	gforth
 1401: wfileid = (Cell)stdout;
 1402: 
 1403: stderr	( -- wfileid )	gforth
 1404: wfileid = (Cell)stderr;
 1405: 
 1406: form	( -- urows ucols )	gforth
 1407: ""The number of lines and columns in the terminal. These numbers may change
 1408: with the window size.""
 1409: /* we could block SIGWINCH here to get a consistent size, but I don't
 1410:  think this is necessary or always beneficial */
 1411: urows=rows;
 1412: ucols=cols;
 1413: 
 1414: flush-icache	( c_addr u -- )	gforth	flush_icache
 1415: ""Make sure that the instruction cache of the processor (if there is
 1416: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1417: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1418: automatically. Caveat: @code{flush-icache} might not work on your
 1419: installation; this is usually the case if direct threading is not
 1420: supported on your machine (take a look at your @file{machine.h}) and
 1421: your machine has a separate instruction cache. In such cases,
 1422: @code{flush-icache} does nothing instead of flushing the instruction
 1423: cache.""
 1424: FLUSH_ICACHE(c_addr,u);
 1425: 
 1426: (bye)	( n -- )	gforth	paren_bye
 1427: SUPER_END;
 1428: return (Label *)n;
 1429: 
 1430: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1431: #ifndef MSDOS
 1432: int old_tp=terminal_prepped;
 1433: deprep_terminal();
 1434: #endif
 1435: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1436: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1437: #ifndef MSDOS
 1438: if (old_tp)
 1439:   prep_terminal();
 1440: #endif
 1441: 
 1442: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1443: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1444: is the host operating system's expansion of that environment variable. If the
 1445: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1446: in length.""
 1447: /* close ' to keep fontify happy */
 1448: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1449: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1450: 
 1451: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1452: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 1453: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1454: 
 1455: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1456: wretval = pclose((FILE *)wfileid);
 1457: wior = IOR(wretval==-1);
 1458: 
 1459: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1460: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1461: Months are numbered from 1.""
 1462: struct timeval time1;
 1463: struct timezone zone1;
 1464: struct tm *ltime;
 1465: gettimeofday(&time1,&zone1);
 1466: /* !! Single Unix specification: 
 1467:    If tzp is not a null pointer, the behaviour is unspecified. */
 1468: ltime=localtime((time_t *)&time1.tv_sec);
 1469: nyear =ltime->tm_year+1900;
 1470: nmonth=ltime->tm_mon+1;
 1471: nday  =ltime->tm_mday;
 1472: nhour =ltime->tm_hour;
 1473: nmin  =ltime->tm_min;
 1474: nsec  =ltime->tm_sec;
 1475: 
 1476: ms	( n -- )	facility-ext
 1477: ""Wait at least @i{n} milli-second.""
 1478: struct timeval timeout;
 1479: timeout.tv_sec=n/1000;
 1480: timeout.tv_usec=1000*(n%1000);
 1481: (void)select(0,0,0,0,&timeout);
 1482: 
 1483: allocate	( u -- a_addr wior )	memory
 1484: ""Allocate @i{u} address units of contiguous data space. The initial
 1485: contents of the data space is undefined. If the allocation is successful,
 1486: @i{a-addr} is the start address of the allocated region and @i{wior}
 1487: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1488: is a non-zero I/O result code.""
 1489: a_addr = (Cell *)malloc(u?u:1);
 1490: wior = IOR(a_addr==NULL);
 1491: 
 1492: free	( a_addr -- wior )		memory
 1493: ""Return the region of data space starting at @i{a-addr} to the system.
 1494: The region must originally have been obtained using @code{allocate} or
 1495: @code{resize}. If the operational is successful, @i{wior} is 0.
 1496: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1497: free(a_addr);
 1498: wior = 0;
 1499: 
 1500: resize	( a_addr1 u -- a_addr2 wior )	memory
 1501: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1502: address units, possibly moving the contents to a different
 1503: area. @i{a-addr2} is the address of the resulting area.
 1504: If the operation is successful, @i{wior} is 0.
 1505: If the operation fails, @i{wior} is a non-zero
 1506: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1507: @code{resize} @code{allocate}s @i{u} address units.""
 1508: /* the following check is not necessary on most OSs, but it is needed
 1509:    on SunOS 4.1.2. */
 1510: /* close ' to keep fontify happy */
 1511: if (a_addr1==NULL)
 1512:   a_addr2 = (Cell *)malloc(u);
 1513: else
 1514:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1515: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1516: 
 1517: strerror	( n -- c_addr u )	gforth
 1518: c_addr = strerror(n);
 1519: u = strlen(c_addr);
 1520: 
 1521: strsignal	( n -- c_addr u )	gforth
 1522: c_addr = strsignal(n);
 1523: u = strlen(c_addr);
 1524: 
 1525: call-c	( w -- )	gforth	call_c
 1526: ""Call the C function pointed to by @i{w}. The C function has to
 1527: access the stack itself. The stack pointers are exported in the global
 1528: variables @code{SP} and @code{FP}.""
 1529: /* This is a first attempt at support for calls to C. This may change in
 1530:    the future */
 1531: IF_fpTOS(fp[0]=fpTOS);
 1532: FP=fp;
 1533: SP=sp;
 1534: ((void (*)())w)();
 1535: sp=SP;
 1536: fp=FP;
 1537: IF_spTOS(spTOS=sp[0]);
 1538: IF_fpTOS(fpTOS=fp[0]);
 1539: 
 1540: \+
 1541: \+file
 1542: 
 1543: close-file	( wfileid -- wior )		file	close_file
 1544: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1545: 
 1546: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1547: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1548: wior =  IOR(wfileid == 0);
 1549: 
 1550: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1551: Cell	fd;
 1552: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1553: if (fd != -1) {
 1554:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1555:   wior = IOR(wfileid == 0);
 1556: } else {
 1557:   wfileid = 0;
 1558:   wior = IOR(1);
 1559: }
 1560: 
 1561: delete-file	( c_addr u -- wior )		file	delete_file
 1562: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1563: 
 1564: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1565: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1566: char *s1=tilde_cstr(c_addr2, u2, 1);
 1567: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1568: 
 1569: file-position	( wfileid -- ud wior )	file	file_position
 1570: /* !! use tell and lseek? */
 1571: ud = LONG2UD(ftell((FILE *)wfileid));
 1572: wior = IOR(UD2LONG(ud)==-1);
 1573: 
 1574: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1575: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1576: 
 1577: file-size	( wfileid -- ud wior )	file	file_size
 1578: struct stat buf;
 1579: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1580: ud = LONG2UD(buf.st_size);
 1581: 
 1582: resize-file	( ud wfileid -- wior )	file	resize_file
 1583: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1584: 
 1585: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1586: /* !! fread does not guarantee enough */
 1587: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1588: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1589: /* !! is the value of ferror errno-compatible? */
 1590: if (wior)
 1591:   clearerr((FILE *)wfileid);
 1592: 
 1593: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1594: ""this is only for backward compatibility""
 1595: Cell c;
 1596: flag=-1;
 1597: for(u2=0; u2<u1; u2++)
 1598: {
 1599:    c = getc((FILE *)wfileid);
 1600:    if (c=='\n') break;
 1601:    if (c=='\r') {
 1602:      if ((c = getc((FILE *)wfileid))!='\n')
 1603:        ungetc(c,(FILE *)wfileid);
 1604:      break;
 1605:    }
 1606:    if (c==EOF) {
 1607: 	flag=FLAG(u2!=0);
 1608: 	break;
 1609:      }
 1610:    c_addr[u2] = (Char)c;
 1611: }
 1612: wior=FILEIO(ferror((FILE *)wfileid));
 1613: 
 1614: \+
 1615: 
 1616: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1617: /* !! fwrite does not guarantee enough */
 1618: #ifdef HAS_FILE
 1619: {
 1620:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1621:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1622:   if (wior)
 1623:     clearerr((FILE *)wfileid);
 1624: }
 1625: #else
 1626: TYPE(c_addr, u1);
 1627: #endif
 1628: 
 1629: emit-file	( c wfileid -- wior )	gforth	emit_file
 1630: #ifdef HAS_FILE
 1631: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1632: if (wior)
 1633:   clearerr((FILE *)wfileid);
 1634: #else
 1635: PUTC(c);
 1636: #endif
 1637: 
 1638: \+file
 1639: 
 1640: flush-file	( wfileid -- wior )		file-ext	flush_file
 1641: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1642: 
 1643: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1644: char *filename=tilde_cstr(c_addr, u, 1);
 1645: if (access (filename, F_OK) != 0) {
 1646:   wfam=0;
 1647:   wior=IOR(1);
 1648: }
 1649: else if (access (filename, R_OK | W_OK) == 0) {
 1650:   wfam=2; /* r/w */
 1651:   wior=0;
 1652: }
 1653: else if (access (filename, R_OK) == 0) {
 1654:   wfam=0; /* r/o */
 1655:   wior=0;
 1656: }
 1657: else if (access (filename, W_OK) == 0) {
 1658:   wfam=4; /* w/o */
 1659:   wior=0;
 1660: }
 1661: else {
 1662:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1663: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1664:   wior=0;
 1665: }
 1666: 
 1667: \+
 1668: \+floating
 1669: 
 1670: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1671: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1672: 
 1673: d>f	( d -- r )		float	d_to_f
 1674: #ifdef BUGGY_LONG_LONG
 1675: extern double ldexp(double x, int exp);
 1676: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1677: #else
 1678: r = d;
 1679: #endif
 1680: 
 1681: f>d	( r -- d )		float	f_to_d
 1682: #ifdef BUGGY_LONG_LONG
 1683: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1684: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1685: #else
 1686: d = r;
 1687: #endif
 1688: 
 1689: f!	( r f_addr -- )	float	f_store
 1690: ""Store @i{r} into the float at address @i{f-addr}.""
 1691: *f_addr = r;
 1692: 
 1693: f@	( f_addr -- r )	float	f_fetch
 1694: ""@i{r} is the float at address @i{f-addr}.""
 1695: r = *f_addr;
 1696: 
 1697: df@	( df_addr -- r )	float-ext	d_f_fetch
 1698: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1699: #ifdef IEEE_FP
 1700: r = *df_addr;
 1701: #else
 1702: !! df@
 1703: #endif
 1704: 
 1705: df!	( r df_addr -- )	float-ext	d_f_store
 1706: ""Store @i{r} as double-precision IEEE floating-point value to the
 1707: address @i{df-addr}.""
 1708: #ifdef IEEE_FP
 1709: *df_addr = r;
 1710: #else
 1711: !! df!
 1712: #endif
 1713: 
 1714: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1715: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1716: #ifdef IEEE_FP
 1717: r = *sf_addr;
 1718: #else
 1719: !! sf@
 1720: #endif
 1721: 
 1722: sf!	( r sf_addr -- )	float-ext	s_f_store
 1723: ""Store @i{r} as single-precision IEEE floating-point value to the
 1724: address @i{sf-addr}.""
 1725: #ifdef IEEE_FP
 1726: *sf_addr = r;
 1727: #else
 1728: !! sf!
 1729: #endif
 1730: 
 1731: f+	( r1 r2 -- r3 )	float	f_plus
 1732: r3 = r1+r2;
 1733: 
 1734: f-	( r1 r2 -- r3 )	float	f_minus
 1735: r3 = r1-r2;
 1736: 
 1737: f*	( r1 r2 -- r3 )	float	f_star
 1738: r3 = r1*r2;
 1739: 
 1740: f/	( r1 r2 -- r3 )	float	f_slash
 1741: r3 = r1/r2;
 1742: 
 1743: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1744: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1745: r3 = pow(r1,r2);
 1746: 
 1747: fnegate	( r1 -- r2 )	float	f_negate
 1748: r2 = - r1;
 1749: 
 1750: fdrop	( r -- )		float	f_drop
 1751: 
 1752: fdup	( r -- r r )	float	f_dupe
 1753: 
 1754: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1755: 
 1756: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1757: 
 1758: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1759: 
 1760: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1761: 
 1762: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1763: 
 1764: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1765: ""@code{1 floats +}.""
 1766: f_addr2 = f_addr1+1;
 1767: 
 1768: floats	( n1 -- n2 )	float
 1769: ""@i{n2} is the number of address units of @i{n1} floats.""
 1770: n2 = n1*sizeof(Float);
 1771: 
 1772: floor	( r1 -- r2 )	float
 1773: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1774: /* !! unclear wording */
 1775: r2 = floor(r1);
 1776: 
 1777: fround	( r1 -- r2 )	float	f_round
 1778: ""Round to the nearest integral value.""
 1779: /* !! unclear wording */
 1780: #ifdef HAVE_RINT
 1781: r2 = rint(r1);
 1782: #else
 1783: r2 = floor(r1+0.5);
 1784: /* !! This is not quite true to the rounding rules given in the standard */
 1785: #endif
 1786: 
 1787: fmax	( r1 r2 -- r3 )	float	f_max
 1788: if (r1<r2)
 1789:   r3 = r2;
 1790: else
 1791:   r3 = r1;
 1792: 
 1793: fmin	( r1 r2 -- r3 )	float	f_min
 1794: if (r1<r2)
 1795:   r3 = r1;
 1796: else
 1797:   r3 = r2;
 1798: 
 1799: represent	( r c_addr u -- n f1 f2 )	float
 1800: char *sig;
 1801: int flag;
 1802: int decpt;
 1803: sig=ecvt(r, u, &decpt, &flag);
 1804: n=(r==0 ? 1 : decpt);
 1805: f1=FLAG(flag!=0);
 1806: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1807: memmove(c_addr,sig,u);
 1808: 
 1809: >float	( c_addr u -- flag )	float	to_float
 1810: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1811: character string @i{c-addr u} to internal floating-point
 1812: representation. If the string represents a valid floating-point number
 1813: @i{r} is placed on the floating-point stack and @i{flag} is
 1814: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1815: case and represents the floating-point number 0.""
 1816: /* real signature: c_addr u -- r t / f */
 1817: Float r;
 1818: char *number=cstr(c_addr, u, 1);
 1819: char *endconv;
 1820: int sign = 0;
 1821: if(number[0]=='-') {
 1822:    sign = 1;
 1823:    number++;
 1824:    u--;
 1825: }
 1826: while(isspace((unsigned)(number[--u])) && u>0);
 1827: switch(number[u])
 1828: {
 1829:    case 'd':
 1830:    case 'D':
 1831:    case 'e':
 1832:    case 'E':  break;
 1833:    default :  u++; break;
 1834: }
 1835: number[u]='\0';
 1836: r=strtod(number,&endconv);
 1837: if((flag=FLAG(!(Cell)*endconv)))
 1838: {
 1839:    IF_fpTOS(fp[0] = fpTOS);
 1840:    fp += -1;
 1841:    fpTOS = sign ? -r : r;
 1842: }
 1843: else if(*endconv=='d' || *endconv=='D')
 1844: {
 1845:    *endconv='E';
 1846:    r=strtod(number,&endconv);
 1847:    if((flag=FLAG(!(Cell)*endconv)))
 1848:      {
 1849: 	IF_fpTOS(fp[0] = fpTOS);
 1850: 	fp += -1;
 1851: 	fpTOS = sign ? -r : r;
 1852:      }
 1853: }
 1854: 
 1855: fabs	( r1 -- r2 )	float-ext	f_abs
 1856: r2 = fabs(r1);
 1857: 
 1858: facos	( r1 -- r2 )	float-ext	f_a_cos
 1859: r2 = acos(r1);
 1860: 
 1861: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1862: r2 = asin(r1);
 1863: 
 1864: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1865: r2 = atan(r1);
 1866: 
 1867: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1868: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1869: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1870: r3 = atan2(r1,r2);
 1871: 
 1872: fcos	( r1 -- r2 )	float-ext	f_cos
 1873: r2 = cos(r1);
 1874: 
 1875: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1876: r2 = exp(r1);
 1877: 
 1878: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1879: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1880: #ifdef HAVE_EXPM1
 1881: extern double
 1882: #ifdef NeXT
 1883:               const
 1884: #endif
 1885:                     expm1(double);
 1886: r2 = expm1(r1);
 1887: #else
 1888: r2 = exp(r1)-1.;
 1889: #endif
 1890: 
 1891: fln	( r1 -- r2 )	float-ext	f_l_n
 1892: r2 = log(r1);
 1893: 
 1894: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1895: ""@i{r2}=ln(@i{r1}+1)""
 1896: #ifdef HAVE_LOG1P
 1897: extern double
 1898: #ifdef NeXT
 1899:               const
 1900: #endif
 1901:                     log1p(double);
 1902: r2 = log1p(r1);
 1903: #else
 1904: r2 = log(r1+1.);
 1905: #endif
 1906: 
 1907: flog	( r1 -- r2 )	float-ext	f_log
 1908: ""The decimal logarithm.""
 1909: r2 = log10(r1);
 1910: 
 1911: falog	( r1 -- r2 )	float-ext	f_a_log
 1912: ""@i{r2}=10**@i{r1}""
 1913: extern double pow10(double);
 1914: r2 = pow10(r1);
 1915: 
 1916: fsin	( r1 -- r2 )	float-ext	f_sine
 1917: r2 = sin(r1);
 1918: 
 1919: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1920: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1921: r2 = sin(r1);
 1922: r3 = cos(r1);
 1923: 
 1924: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1925: r2 = sqrt(r1);
 1926: 
 1927: ftan	( r1 -- r2 )	float-ext	f_tan
 1928: r2 = tan(r1);
 1929: :
 1930:  fsincos f/ ;
 1931: 
 1932: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1933: r2 = sinh(r1);
 1934: :
 1935:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1936: 
 1937: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1938: r2 = cosh(r1);
 1939: :
 1940:  fexp fdup 1/f f+ f2/ ;
 1941: 
 1942: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1943: r2 = tanh(r1);
 1944: :
 1945:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1946: 
 1947: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1948: r2 = asinh(r1);
 1949: :
 1950:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1951: 
 1952: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1953: r2 = acosh(r1);
 1954: :
 1955:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1956: 
 1957: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1958: r2 = atanh(r1);
 1959: :
 1960:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1961:  r> IF  fnegate  THEN ;
 1962: 
 1963: sfloats	( n1 -- n2 )	float-ext	s_floats
 1964: ""@i{n2} is the number of address units of @i{n1}
 1965: single-precision IEEE floating-point numbers.""
 1966: n2 = n1*sizeof(SFloat);
 1967: 
 1968: dfloats	( n1 -- n2 )	float-ext	d_floats
 1969: ""@i{n2} is the number of address units of @i{n1}
 1970: double-precision IEEE floating-point numbers.""
 1971: n2 = n1*sizeof(DFloat);
 1972: 
 1973: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1974: ""@i{sf-addr} is the first single-float-aligned address greater
 1975: than or equal to @i{c-addr}.""
 1976: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1977: :
 1978:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1979: 
 1980: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 1981: ""@i{df-addr} is the first double-float-aligned address greater
 1982: than or equal to @i{c-addr}.""
 1983: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 1984: :
 1985:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 1986: 
 1987: \ The following words access machine/OS/installation-dependent
 1988: \   Gforth internals
 1989: \ !! how about environmental queries DIRECT-THREADED,
 1990: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1991: 
 1992: \ local variable implementation primitives
 1993: \+
 1994: \+glocals
 1995: 
 1996: @local#	( #noffset -- w )	gforth	fetch_local_number
 1997: w = *(Cell *)(lp+noffset);
 1998: 
 1999: @local0	( -- w )	new	fetch_local_zero
 2000: w = *(Cell *)(lp+0*sizeof(Cell));
 2001: 
 2002: @local1	( -- w )	new	fetch_local_four
 2003: w = *(Cell *)(lp+1*sizeof(Cell));
 2004: 
 2005: @local2	( -- w )	new	fetch_local_eight
 2006: w = *(Cell *)(lp+2*sizeof(Cell));
 2007: 
 2008: @local3	( -- w )	new	fetch_local_twelve
 2009: w = *(Cell *)(lp+3*sizeof(Cell));
 2010: 
 2011: \+floating
 2012: 
 2013: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2014: r = *(Float *)(lp+noffset);
 2015: 
 2016: f@local0	( -- r )	new	f_fetch_local_zero
 2017: r = *(Float *)(lp+0*sizeof(Float));
 2018: 
 2019: f@local1	( -- r )	new	f_fetch_local_eight
 2020: r = *(Float *)(lp+1*sizeof(Float));
 2021: 
 2022: \+
 2023: 
 2024: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2025: /* this can also be used to implement lp@ */
 2026: c_addr = (Char *)(lp+noffset);
 2027: 
 2028: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2029: ""used with negative immediate values it allocates memory on the
 2030: local stack, a positive immediate argument drops memory from the local
 2031: stack""
 2032: lp += noffset;
 2033: 
 2034: lp-	( -- )	new	minus_four_lp_plus_store
 2035: lp += -sizeof(Cell);
 2036: 
 2037: lp+	( -- )	new	eight_lp_plus_store
 2038: lp += sizeof(Float);
 2039: 
 2040: lp+2	( -- )	new	sixteen_lp_plus_store
 2041: lp += 2*sizeof(Float);
 2042: 
 2043: lp!	( c_addr -- )	gforth	lp_store
 2044: lp = (Address)c_addr;
 2045: 
 2046: >l	( w -- )	gforth	to_l
 2047: lp -= sizeof(Cell);
 2048: *(Cell *)lp = w;
 2049: 
 2050: \+floating
 2051: 
 2052: f>l	( r -- )	gforth	f_to_l
 2053: lp -= sizeof(Float);
 2054: *(Float *)lp = r;
 2055: 
 2056: fpick	( u -- r )		gforth
 2057: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2058: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2059: :
 2060:  floats fp@ + f@ ;
 2061: 
 2062: \+
 2063: \+
 2064: 
 2065: \+OS
 2066: 
 2067: define(`uploop',
 2068:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2069: define(`_uploop',
 2070:        `ifelse($1, `$3', `$5',
 2071: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2072: \ argflist(argnum): Forth argument list
 2073: define(argflist,
 2074:        `ifelse($1, 0, `',
 2075:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2076: \ argdlist(argnum): declare C's arguments
 2077: define(argdlist,
 2078:        `ifelse($1, 0, `',
 2079:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2080: \ argclist(argnum): pass C's arguments
 2081: define(argclist,
 2082:        `ifelse($1, 0, `',
 2083:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2084: \ icall(argnum)
 2085: define(icall,
 2086: `icall$1	( argflist($1)u -- uret )	gforth
 2087: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2088: 
 2089: ')
 2090: define(fcall,
 2091: `fcall$1	( argflist($1)u -- rret )	gforth
 2092: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2093: 
 2094: ')
 2095: 
 2096: \ close ' to keep fontify happy
 2097: 
 2098: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2099: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2100: #ifndef RTLD_GLOBAL
 2101: #define RTLD_GLOBAL 0
 2102: #endif
 2103: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2104: #else
 2105: #  ifdef _WIN32
 2106: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2107: #  else
 2108: #warning Define open-lib!
 2109: u2 = 0;
 2110: #  endif
 2111: #endif
 2112: 
 2113: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2114: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2115: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2116: #else
 2117: #  ifdef _WIN32
 2118: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2119: #  else
 2120: #warning Define lib-sym!
 2121: u3 = 0;
 2122: #  endif
 2123: #endif
 2124: 
 2125: uploop(i, 0, 7, `icall(i)')
 2126: icall(20)
 2127: uploop(i, 0, 7, `fcall(i)')
 2128: fcall(20)
 2129: 
 2130: \+
 2131: 
 2132: up!	( a_addr -- )	gforth	up_store
 2133: UP=up=(char *)a_addr;
 2134: :
 2135:  up ! ;
 2136: Variable UP
 2137: 
 2138: wcall	( u -- )	gforth
 2139: IF_fpTOS(fp[0]=fpTOS);
 2140: FP=fp;
 2141: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2142: fp=FP;
 2143: IF_spTOS(spTOS=sp[0];)
 2144: IF_fpTOS(fpTOS=fp[0]);
 2145: 
 2146: \+file
 2147: 
 2148: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2149: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2150: wior =  IOR(wdirid == 0);
 2151: 
 2152: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2153: struct dirent * dent;
 2154: dent = readdir((DIR *)wdirid);
 2155: wior = 0;
 2156: flag = -1;
 2157: if(dent == NULL) {
 2158:   u2 = 0;
 2159:   flag = 0;
 2160: } else {
 2161:   u2 = strlen(dent->d_name);
 2162:   if(u2 > u1) {
 2163:     u2 = u1;
 2164:     wior = -512-ENAMETOOLONG;
 2165:   }
 2166:   memmove(c_addr, dent->d_name, u2);
 2167: }
 2168: 
 2169: close-dir	( wdirid -- wior )	gforth	close_dir
 2170: wior = IOR(closedir((DIR *)wdirid));
 2171: 
 2172: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2173: char * string = cstr(c_addr1, u1, 1);
 2174: char * pattern = cstr(c_addr2, u2, 0);
 2175: flag = FLAG(!fnmatch(pattern, string, 0));
 2176: 
 2177: \+
 2178: 
 2179: newline	( -- c_addr u )	gforth
 2180: ""String containing the newline sequence of the host OS""
 2181: char newline[] = {
 2182: #if defined(unix) || defined(__MACH__)
 2183: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2184: '\n'
 2185: #else
 2186: '\r','\n'
 2187: #endif
 2188: };
 2189: c_addr=newline;
 2190: u=sizeof(newline);
 2191: :
 2192:  "newline count ;
 2193: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2194: 
 2195: \+os
 2196: 
 2197: utime	( -- dtime )	gforth
 2198: ""Report the current time in microseconds since some epoch.""
 2199: struct timeval time1;
 2200: gettimeofday(&time1,NULL);
 2201: dtime = timeval2us(&time1);
 2202: 
 2203: cputime ( -- duser dsystem ) gforth
 2204: ""duser and dsystem are the respective user- and system-level CPU
 2205: times used since the start of the Forth system (excluding child
 2206: processes), in microseconds (the granularity may be much larger,
 2207: however).  On platforms without the getrusage call, it reports elapsed
 2208: time (since some epoch) for duser and 0 for dsystem.""
 2209: #ifdef HAVE_GETRUSAGE
 2210: struct rusage usage;
 2211: getrusage(RUSAGE_SELF, &usage);
 2212: duser = timeval2us(&usage.ru_utime);
 2213: dsystem = timeval2us(&usage.ru_stime);
 2214: #else
 2215: struct timeval time1;
 2216: gettimeofday(&time1,NULL);
 2217: duser = timeval2us(&time1);
 2218: #ifndef BUGGY_LONG_LONG
 2219: dsystem = (DCell)0;
 2220: #else
 2221: dsystem=(DCell){0,0};
 2222: #endif
 2223: #endif
 2224: 
 2225: \+
 2226: 
 2227: \+floating
 2228: 
 2229: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2230: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2231: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2232: ucount elements.""
 2233: for (r=0.; ucount>0; ucount--) {
 2234:   r += *f_addr1 * *f_addr2;
 2235:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2236:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2237: }
 2238: :
 2239:  >r swap 2swap swap 0e r> 0 ?DO
 2240:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2241:  LOOP 2drop 2drop ; 
 2242: 
 2243: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2244: ""vy=ra*vx+vy""
 2245: for (; ucount>0; ucount--) {
 2246:   *f_y += ra * *f_x;
 2247:   f_x = (Float *)(((Address)f_x)+nstridex);
 2248:   f_y = (Float *)(((Address)f_y)+nstridey);
 2249: }
 2250: :
 2251:  >r swap 2swap swap r> 0 ?DO
 2252:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2253:  LOOP 2drop 2drop fdrop ;
 2254: 
 2255: \+
 2256: 
 2257: \+file
 2258: 
 2259: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2260: Cell c;
 2261: flag=-1;
 2262: u3=0;
 2263: for(u2=0; u2<u1; u2++)
 2264: {
 2265:    c = getc((FILE *)wfileid);
 2266:    u3++;
 2267:    if (c=='\n') break;
 2268:    if (c=='\r') {
 2269:      if ((c = getc((FILE *)wfileid))!='\n')
 2270:        ungetc(c,(FILE *)wfileid);
 2271:      else
 2272:        u3++;
 2273:      break;
 2274:    }
 2275:    if (c==EOF) {
 2276: 	flag=FLAG(u2!=0);
 2277: 	break;
 2278:      }
 2279:    c_addr[u2] = (Char)c;
 2280: }
 2281: wior=FILEIO(ferror((FILE *)wfileid));
 2282: 
 2283: \+
 2284: 
 2285: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 2286: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 2287:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2288:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2289:     break;
 2290: longname2=longname1;
 2291: :
 2292:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 2293: 	>r 2dup r@ cell+ cell+ capscomp  0=
 2294: 	IF  2drop r>  EXIT  THEN
 2295: 	r> @
 2296:     REPEAT  THEN  nip nip ;
 2297: : (findl-samelen) ( u longname1 -- u longname2/0 )
 2298:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 2299: 
 2300: \+hash
 2301: 
 2302: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 2303: struct Longname *longname1;
 2304: longname2=NULL;
 2305: while(a_addr != NULL)
 2306: {
 2307:    longname1=(struct Longname *)(a_addr[1]);
 2308:    a_addr=(Cell *)(a_addr[0]);
 2309:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2310:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2311:      {
 2312: 	longname2=longname1;
 2313: 	break;
 2314:      }
 2315: }
 2316: :
 2317:  BEGIN  dup  WHILE
 2318:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2319:         IF  2dup r@ cell+ cell+ capscomp 0=
 2320: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2321: 	rdrop r>
 2322:  REPEAT nip nip ;
 2323: 
 2324: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 2325: ""A case-sensitive variant of @code{(hashfind)}""
 2326: struct Longname *longname1;
 2327: longname2=NULL;
 2328: while(a_addr != NULL)
 2329: {
 2330:    longname1=(struct Longname *)(a_addr[1]);
 2331:    a_addr=(Cell *)(a_addr[0]);
 2332:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2333:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2334:      {
 2335: 	longname2=longname1;
 2336: 	break;
 2337:      }
 2338: }
 2339: :
 2340:  BEGIN  dup  WHILE
 2341:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2342:         IF  2dup r@ cell+ cell+ -text 0=
 2343: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2344: 	rdrop r>
 2345:  REPEAT nip nip ;
 2346: 
 2347: \+
 2348: 
 2349: primtable	( -- wprimtable )	new
 2350: ""wprimtable is a table containing the xts of the primitives indexed
 2351: by sequence-number in prim (for use in prepare-peephole-table).""
 2352: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2353: 
 2354: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2355: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2356: constructed by combining a primitives table with a simple peephole
 2357: optimization table.""
 2358: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2359: 
 2360: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2361: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2362: they cannot be combined, xt is 0.""
 2363: xt = peephole_opt(xt1, xt2, wpeeptable);
 2364: 
 2365: lit_plus = lit +
 2366: 
 2367: call	( #a_callee -- R:a_retaddr )
 2368: ""Call callee (a variant of docol with inline argument).""
 2369: a_retaddr = (Cell *)IP;
 2370: SET_IP((Xt *)a_callee);
 2371: 
 2372: useraddr	( #u -- a_addr )
 2373: a_addr = (Cell *)(up+u);
 2374: 
 2375: 
 2376: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>