File:  [gforth] / gforth / prim
Revision 1.60: download - view: text, annotated - select for diffs
Sun Sep 10 19:50:33 2000 UTC (18 years, 10 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
Changed (read-line) again

\ Gforth primitives

\ Copyright (C) 1995,1996,1997,1998 Free Software Foundation, Inc.

\ This file is part of Gforth.

\ Gforth is free software; you can redistribute it and/or
\ modify it under the terms of the GNU General Public License
\ as published by the Free Software Foundation; either version 2
\ of the License, or (at your option) any later version.

\ This program is distributed in the hope that it will be useful,
\ but WITHOUT ANY WARRANTY; without even the implied warranty of
\ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
\ GNU General Public License for more details.

\ You should have received a copy of the GNU General Public License
\ along with this program; if not, write to the Free Software
\ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


\ WARNING: This file is processed by m4. Make sure your identifiers
\ don't collide with m4's (e.g. by undefining them).
\ 
\ 
\ 
\ This file contains primitive specifications in the following format:
\ 
\ forth name	( stack effect )	category	[pronunciation]
\ [""glossary entry""]
\ C code
\ [:
\ Forth code]
\ 
\ Note: Fields in brackets are optional.  Word specifications have to
\ be separated by at least one empty line
\
\ Both pronounciation and stack items (in the stack effect) must
\ conform to the C identifier syntax or the C compiler will complain.
\ If you don't have a pronounciation field, the Forth name is used,
\ and has to conform to the C identifier syntax.
\ 
\ These specifications are automatically translated into C-code for the
\ interpreter and into some other files. I hope that your C compiler has
\ decent optimization, otherwise the automatically generated code will
\ be somewhat slow. The Forth version of the code is included for manual
\ compilers, so they will need to compile only the important words.
\ 
\ Note that stack pointer adjustment is performed according to stack
\ effect by automatically generated code and NEXT is automatically
\ appended to the C code. Also, you can use the names in the stack
\ effect in the C code. Stack access is automatic. One exception: if
\ your code does not fall through, the results are not stored into the
\ stack. Use different names on both sides of the '--', if you change a
\ value (some stores to the stack are optimized away).
\ 
\ 
\ 
\ The stack variables have the following types:
\ 
\ name matches	type
\ f.*		Bool
\ c.*		Char
\ [nw].*		Cell
\ u.*		UCell
\ d.*		DCell
\ ud.*		UDCell
\ r.*		Float
\ a_.*		Cell *
\ c_.*		Char *
\ f_.*		Float *
\ df_.*		DFloat *
\ sf_.*		SFloat *
\ xt.*		XT
\ wid.*		WID
\ f83name.*	F83Name *
\ 
\ 
\ 
\ In addition the following names can be used:
\ ip	the instruction pointer
\ sp	the data stack pointer
\ rp	the parameter stack pointer
\ lp	the locals stack pointer
\ NEXT	executes NEXT
\ cfa	
\ NEXT1	executes NEXT1
\ FLAG(x)	makes a Forth flag from a C flag
\ 
\ 
\ 
\ Percentages in comments are from Koopmans book: average/maximum use
\ (taken from four, not very representative benchmarks)
\ 
\ 
\ 
\ To do:
\ 
\ throw execute, cfa and NEXT1 out?
\ macroize *ip, ip++, *ip++ (pipelining)?

\ these m4 macros would collide with identifiers
undefine(`index')
undefine(`shift')

noop	( -- )		gforth
;
:
 ;

lit	( -- w )		gforth
w = (Cell)NEXT_INST;
INC_IP(1);
:
 r> dup @ swap cell+ >r ;

execute	( xt -- )		core
""Perform the semantics represented by the execution token, @i{xt}.""
ip=IP;
IF_TOS(TOS = sp[0]);
EXEC(xt);

perform	( a_addr -- )	gforth
""@code{@@ execute}.""
/* and pfe */
ip=IP;
IF_TOS(TOS = sp[0]);
EXEC(*(Xt *)a_addr);
:
 @ execute ;

\fhas? skipbranchprims 0= [IF]
\+glocals

branch-lp+!#	( -- )	gforth	branch_lp_plus_store_number
/* this will probably not be used */
branch_adjust_lp:
lp += (Cell)(IP[1]);
goto branch;

\+

branch	( -- )		gforth
branch:
SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
:
 r> dup @ + >r ;

\ condbranch(forthname,restline,code,forthcode)
\ this is non-syntactical: code must open a brace that is closed by the macro
define(condbranch,
$1	$2
$3	SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
	NEXT;
}
else
    INC_IP(1);
$4

\+glocals

$1-lp+!#	$2_lp_plus_store_number
$3    goto branch_adjust_lp;
}
else
    INC_IP(2);

\+
)

condbranch(?branch,( f -- )		f83	question_branch,
if (f==0) {
    IF_TOS(TOS = sp[0]);
,:
 0= dup     \ !f !f
 r> dup @   \ !f !f IP branchoffset
 rot and +  \ !f IP|IP+branchoffset
 swap 0= cell and + \ IP''
 >r ;)

\ we don't need an lp_plus_store version of the ?dup-stuff, because it
\ is only used in if's (yet)

\+xconds

?dup-?branch	( f -- f )	new	question_dupe_question_branch
""The run-time procedure compiled by @code{?DUP-IF}.""
if (f==0) {
  sp++;
  IF_TOS(TOS = sp[0]);
  SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  NEXT;
}
else
  INC_IP(1);

?dup-0=-?branch	( f -- )	new	question_dupe_zero_equals_question_branch
""The run-time procedure compiled by @code{?DUP-0=-IF}.""
/* the approach taken here of declaring the word as having the stack
effect ( f -- ) and correcting for it in the branch-taken case costs a
few cycles in that case, but is easy to convert to a CONDBRANCH
invocation */
if (f!=0) {
  sp--;
  SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  NEXT;
}
else
  INC_IP(1);

\+
\f[THEN]
\fhas? skiploopprims 0= [IF]

condbranch((next),( -- )		cmFORTH	paren_next,
if ((*rp)--) {
,:
 r> r> dup 1- >r
 IF dup @ + >r ELSE cell+ >r THEN ;)

condbranch((loop),( -- )		gforth	paren_loop,
Cell index = *rp+1;
Cell limit = rp[1];
if (index != limit) {
    *rp = index;
,:
 r> r> 1+ r> 2dup =
 IF >r 1- >r cell+ >r
 ELSE >r >r dup @ + >r THEN ;)

condbranch((+loop),( n -- )		gforth	paren_plus_loop,
/* !! check this thoroughly */
Cell index = *rp;
/* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
/* dependent upon two's complement arithmetic */
Cell olddiff = index-rp[1];
if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
    || (olddiff^n)>=0          /* it is a wrap-around effect */) {
#ifdef i386
    *rp += n;
#else
    *rp = index + n;
#endif
    IF_TOS(TOS = sp[0]);
,:
 r> swap
 r> r> 2dup - >r
 2 pick r@ + r@ xor 0< 0=
 3 pick r> xor 0< 0= or
 IF    >r + >r dup @ + >r
 ELSE  >r >r drop cell+ >r THEN ;)

\+xconds

condbranch((-loop),( u -- )		gforth	paren_minus_loop,
/* !! check this thoroughly */
Cell index = *rp;
UCell olddiff = index-rp[1];
if (olddiff>u) {
#ifdef i386
    *rp -= u;
#else
    *rp = index - u;
#endif
    IF_TOS(TOS = sp[0]);
,)

condbranch((s+loop),( n -- )		gforth	paren_symmetric_plus_loop,
""The run-time procedure compiled by S+LOOP. It loops until the index
crosses the boundary between limit and limit-sign(n). I.e. a symmetric
version of (+LOOP).""
/* !! check this thoroughly */
Cell index = *rp;
Cell diff = index-rp[1];
Cell newdiff = diff+n;
if (n<0) {
    diff = -diff;
    newdiff = -newdiff;
}
if (diff>=0 || newdiff<0) {
#ifdef i386
    *rp += n;
#else
    *rp = index + n;
#endif
    IF_TOS(TOS = sp[0]);
,)

\+

unloop	( -- )	core
rp += 2;
:
 r> rdrop rdrop >r ;

(for)	( ncount -- )		cmFORTH		paren_for
/* or (for) = >r -- collides with unloop! */
*--rp = 0;
*--rp = ncount;
:
 r> swap 0 >r >r >r ;

(do)	( nlimit nstart -- )		gforth		paren_do
/* or do it in high-level? 0.09/0.23% */
*--rp = nlimit;
*--rp = nstart;
:
 r> swap rot >r >r >r ;

(?do)	( nlimit nstart -- )	gforth	paren_question_do
*--rp = nlimit;
*--rp = nstart;
if (nstart == nlimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    INC_IP(1);
}
:
  2dup =
  IF   r> swap rot >r >r
       dup @ + >r
  ELSE r> swap rot >r >r
       cell+ >r
  THEN ;				\ --> CORE-EXT

\+xconds

(+do)	( nlimit nstart -- )	gforth	paren_plus_do
*--rp = nlimit;
*--rp = nstart;
if (nstart >= nlimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    INC_IP(1);
}
:
 swap 2dup
 r> swap >r swap >r
 >=
 IF
     dup @ +
 ELSE
     cell+
 THEN  >r ;

(u+do)	( ulimit ustart -- )	gforth	paren_u_plus_do
*--rp = ulimit;
*--rp = ustart;
if (ustart >= ulimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    INC_IP(1);
}
:
 swap 2dup
 r> swap >r swap >r
 u>=
 IF
     dup @ +
 ELSE
     cell+
 THEN  >r ;

(-do)	( nlimit nstart -- )	gforth	paren_minus_do
*--rp = nlimit;
*--rp = nstart;
if (nstart <= nlimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    INC_IP(1);
}
:
 swap 2dup
 r> swap >r swap >r
 <=
 IF
     dup @ +
 ELSE
     cell+
 THEN  >r ;

(u-do)	( ulimit ustart -- )	gforth	paren_u_minus_do
*--rp = ulimit;
*--rp = ustart;
if (ustart <= ulimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    INC_IP(1);
}
:
 swap 2dup
 r> swap >r swap >r
 u<=
 IF
     dup @ +
 ELSE
     cell+
 THEN  >r ;

\+

\ don't make any assumptions where the return stack is!!
\ implement this in machine code if it should run quickly!

i	( -- n )		core
n = *rp;
:
\ rp@ cell+ @ ;
  r> r> tuck >r >r ;

i'	( -- w )		gforth		i_tick
""loop end value""
w = rp[1];
:
\ rp@ cell+ cell+ @ ;
  r> r> r> dup itmp ! >r >r >r itmp @ ;
variable itmp

j	( -- n )		core
n = rp[2];
:
\ rp@ cell+ cell+ cell+ @ ;
  r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
[IFUNDEF] itmp variable itmp [THEN]

k	( -- n )		gforth
n = rp[4];
:
\ rp@ [ 5 cells ] Literal + @ ;
  r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
[IFUNDEF] itmp variable itmp [THEN]

\f[THEN]

\ digit is high-level: 0/0%

move	( c_from c_to ucount -- )		core
""Copy the contents of @i{ucount} aus at @i{c-from} to
@i{c-to}. @code{move} works correctly even if the two areas overlap.""
/* !! note that the standard specifies addr, not c-addr */
memmove(c_to,c_from,ucount);
/* make an Ifdef for bsd and others? */
:
 >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;

cmove	( c_from c_to u -- )	string	c_move
""Copy the contents of @i{ucount} characters from data space at
@i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
from low address to high address; i.e., for overlapping areas it is
safe if @i{c-to}=<@i{c-from}.""
while (u-- > 0)
  *c_to++ = *c_from++;
:
 bounds ?DO  dup c@ I c! 1+  LOOP  drop ;

cmove>	( c_from c_to u -- )	string	c_move_up
""Copy the contents of @i{ucount} characters from data space at
@i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
from high address to low address; i.e., for overlapping areas it is
safe if @i{c-to}>=@i{c-from}.""
while (u-- > 0)
  c_to[u] = c_from[u];
:
 dup 0= IF  drop 2drop exit  THEN
 rot over + -rot bounds swap 1-
 DO  1- dup c@ I c!  -1 +LOOP  drop ;

fill	( c_addr u c -- )	core
""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
memset(c_addr,c,u);
:
 -rot bounds
 ?DO  dup I c!  LOOP  drop ;

compare	( c_addr1 u1 c_addr2 u2 -- n )	string
""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
is 1. Currently this is based on the machine's character
comparison. In the future, this may change to consider the current
locale and its collation order.""
/* close ' to keep fontify happy */ 
n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
if (n==0)
  n = u1-u2;
if (n<0)
  n = -1;
else if (n>0)
  n = 1;
:
 rot 2dup swap - >r min swap -text dup
 IF  rdrop  ELSE  drop r> sgn  THEN ;
: sgn ( n -- -1/0/1 )
 dup 0= IF EXIT THEN  0< 2* 1+ ;

-text	( c_addr1 u c_addr2 -- n )	new	dash_text
n = memcmp(c_addr1, c_addr2, u);
if (n<0)
  n = -1;
else if (n>0)
  n = 1;
:
 swap bounds
 ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 ELSE  c@ I c@ - unloop  THEN  sgn ;
: sgn ( n -- -1/0/1 )
 dup 0= IF EXIT THEN  0< 2* 1+ ;

toupper	( c1 -- c2 )	gforth
""If @i{c1} is a lower-case character (in the current locale), @i{c2}
is the equivalent upper-case character. All other characters are unchanged.""
c2 = toupper(c1);
:
 dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;

capscomp	( c_addr1 u c_addr2 -- n )	new
n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
if (n<0)
  n = -1;
else if (n>0)
  n = 1;
:
 swap bounds
 ?DO  dup c@ I c@ <>
     IF  dup c@ toupper I c@ toupper =
     ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;

-trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
""Adjust the string specified by @i{c-addr, u1} to remove all trailing
spaces. @i{u2} is the length of the modified string.""
u2 = u1;
while (u2>0 && c_addr[u2-1] == ' ')
  u2--;
:
 BEGIN  1- 2dup + c@ bl =  WHILE
        dup  0= UNTIL  ELSE  1+  THEN ;

/string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
characters from the start of the string.""
c_addr2 = c_addr1+n;
u2 = u1-n;
:
 tuck - >r + r> dup 0< IF  - 0  THEN ;

+	( n1 n2 -- n )		core	plus
n = n1+n2;

\ PFE-0.9.14 has it differently, but the next release will have it as follows
under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
""add @i{n3} to @i{n1} (giving @i{n})""
n = n1+n3;
:
 rot + swap ;

-	( n1 n2 -- n )		core	minus
n = n1-n2;
:
 negate + ;

negate	( n1 -- n2 )		core
/* use minus as alias */
n2 = -n1;
:
 invert 1+ ;

1+	( n1 -- n2 )		core		one_plus
n2 = n1+1;
:
 1 + ;

1-	( n1 -- n2 )		core		one_minus
n2 = n1-1;
:
 1 - ;

max	( n1 n2 -- n )	core
if (n1<n2)
  n = n2;
else
  n = n1;
:
 2dup < IF swap THEN drop ;

min	( n1 n2 -- n )	core
if (n1<n2)
  n = n1;
else
  n = n2;
:
 2dup > IF swap THEN drop ;

abs	( n -- u )	core
if (n<0)
  u = -n;
else
  u = n;
:
 dup 0< IF negate THEN ;

*	( n1 n2 -- n )		core	star
n = n1*n2;
:
 um* drop ;

/	( n1 n2 -- n )		core	slash
n = n1/n2;
:
 /mod nip ;

mod	( n1 n2 -- n )		core
n = n1%n2;
:
 /mod drop ;

/mod	( n1 n2 -- n3 n4 )		core		slash_mod
n4 = n1/n2;
n3 = n1%n2; /* !! is this correct? look into C standard! */
:
 >r s>d r> fm/mod ;

2*	( n1 -- n2 )		core		two_star
""Shift left by 1; also works on unsigned numbers""
n2 = 2*n1;
:
 dup + ;

2/	( n1 -- n2 )		core		two_slash
""Arithmetic shift right by 1.  For signed numbers this is a floored
division by 2 (note that @code{/} not necessarily floors).""
n2 = n1>>1;
:
 dup MINI and IF 1 ELSE 0 THEN
 [ bits/byte cell * 1- ] literal 
 0 DO 2* swap dup 2* >r MINI and 
     IF 1 ELSE 0 THEN or r> swap
 LOOP nip ;

fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
#ifdef BUGGY_LONG_LONG
DCell r = fmdiv(d1,n1);
n2=r.hi;
n3=r.lo;
#else
/* assumes that the processor uses either floored or symmetric division */
n3 = d1/n1;
n2 = d1%n1;
/* note that this 1%-3>0 is optimized by the compiler */
if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  n3--;
  n2+=n1;
}
#endif
:
 dup >r dup 0< IF  negate >r dnegate r>  THEN
 over       0< IF  tuck + swap  THEN
 um/mod
 r> 0< IF  swap negate swap  THEN ;

sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
#ifdef BUGGY_LONG_LONG
DCell r = smdiv(d1,n1);
n2=r.hi;
n3=r.lo;
#else
/* assumes that the processor uses either floored or symmetric division */
n3 = d1/n1;
n2 = d1%n1;
/* note that this 1%-3<0 is optimized by the compiler */
if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  n3++;
  n2-=n1;
}
#endif
:
 over >r dup >r abs -rot
 dabs rot um/mod
 r> r@ xor 0< IF       negate       THEN
 r>        0< IF  swap negate swap  THEN ;

m*	( n1 n2 -- d )		core	m_star
#ifdef BUGGY_LONG_LONG
d = mmul(n1,n2);
#else
d = (DCell)n1 * (DCell)n2;
#endif
:
 2dup      0< and >r
 2dup swap 0< and >r
 um* r> - r> - ;

um*	( u1 u2 -- ud )		core	u_m_star
/* use u* as alias */
#ifdef BUGGY_LONG_LONG
ud = ummul(u1,u2);
#else
ud = (UDCell)u1 * (UDCell)u2;
#endif
:
   >r >r 0 0 r> r> [ 8 cells ] literal 0
   DO
       over >r dup >r 0< and d2*+ drop
       r> 2* r> swap
   LOOP 2drop ;
: d2*+ ( ud n -- ud+n c )
   over MINI
   and >r >r 2dup d+ swap r> + swap r> ;

um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
""ud=u3*u1+u2, u1>u2>=0""
#ifdef BUGGY_LONG_LONG
UDCell r = umdiv(ud,u1);
u2=r.hi;
u3=r.lo;
#else
u3 = ud/u1;
u2 = ud%u1;
#endif
:
   0 swap [ 8 cells 1 + ] literal 0
   ?DO /modstep
   LOOP drop swap 1 rshift or swap ;
: /modstep ( ud c R: u -- ud-?u c R: u )
   >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
: d2*+ ( ud n -- ud+n c )
   over MINI
   and >r >r 2dup d+ swap r> + swap r> ;

m+	( d1 n -- d2 )		double		m_plus
#ifdef BUGGY_LONG_LONG
d2.lo = d1.lo+n;
d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
#else
d2 = d1+n;
#endif
:
 s>d d+ ;

d+	( d1 d2 -- d )		double	d_plus
#ifdef BUGGY_LONG_LONG
d.lo = d1.lo+d2.lo;
d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
#else
d = d1+d2;
#endif
:
 rot + >r tuck + swap over u> r> swap - ;

d-	( d1 d2 -- d )		double		d_minus
#ifdef BUGGY_LONG_LONG
d.lo = d1.lo - d2.lo;
d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
#else
d = d1-d2;
#endif
:
 dnegate d+ ;

dnegate	( d1 -- d2 )		double	d_negate
/* use dminus as alias */
#ifdef BUGGY_LONG_LONG
d2 = dnegate(d1);
#else
d2 = -d1;
#endif
:
 invert swap negate tuck 0= - ;

d2*	( d1 -- d2 )		double		d_two_star
""Shift left by 1; also works on unsigned numbers""
#ifdef BUGGY_LONG_LONG
d2.lo = d1.lo<<1;
d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
#else
d2 = 2*d1;
#endif
:
 2dup d+ ;

d2/	( d1 -- d2 )		double		d_two_slash
""Arithmetic shift right by 1.  For signed numbers this is a floored
division by 2.""
#ifdef BUGGY_LONG_LONG
d2.hi = d1.hi>>1;
d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
#else
d2 = d1>>1;
#endif
:
 dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;

and	( w1 w2 -- w )		core
w = w1&w2;

or	( w1 w2 -- w )		core
w = w1|w2;
:
 invert swap invert and invert ;

xor	( w1 w2 -- w )		core	x_or
w = w1^w2;

invert	( w1 -- w2 )		core
w2 = ~w1;
:
 MAXU xor ;

rshift	( u1 n -- u2 )		core	r_shift
""Logical shift right by @i{n} bits.""
  u2 = u1>>n;
:
    0 ?DO 2/ MAXI and LOOP ;

lshift	( u1 n -- u2 )		core	l_shift
  u2 = u1<<n;
:
    0 ?DO 2* LOOP ;

\ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
define(comparisons,
$1=	( $2 -- f )		$6	$3equals
f = FLAG($4==$5);
:
    [ char $1x char 0 = [IF]
	] IF false ELSE true THEN [
    [ELSE]
	] xor 0= [
    [THEN] ] ;

$1<>	( $2 -- f )		$7	$3not_equals
f = FLAG($4!=$5);
:
    [ char $1x char 0 = [IF]
	] IF true ELSE false THEN [
    [ELSE]
	] xor 0<> [
    [THEN] ] ;

$1<	( $2 -- f )		$8	$3less_than
f = FLAG($4<$5);
:
    [ char $1x char 0 = [IF]
	] MINI and 0<> [
    [ELSE] char $1x char u = [IF]
	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
	[ELSE]
	    ] MINI xor >r MINI xor r> u< [
	[THEN]
    [THEN] ] ;

$1>	( $2 -- f )		$9	$3greater_than
f = FLAG($4>$5);
:
    [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
    $1< ;

$1<=	( $2 -- f )		gforth	$3less_or_equal
f = FLAG($4<=$5);
:
    $1> 0= ;

$1>=	( $2 -- f )		gforth	$3greater_or_equal
f = FLAG($4>=$5);
:
    [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
    $1<= ;

)

comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)

\ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
define(dcomparisons,
$1=	( $2 -- f )		$6	$3equals
#ifdef BUGGY_LONG_LONG
f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
#else
f = FLAG($4==$5);
#endif

$1<>	( $2 -- f )		$7	$3not_equals
#ifdef BUGGY_LONG_LONG
f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
#else
f = FLAG($4!=$5);
#endif

$1<	( $2 -- f )		$8	$3less_than
#ifdef BUGGY_LONG_LONG
f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
#else
f = FLAG($4<$5);
#endif

$1>	( $2 -- f )		$9	$3greater_than
#ifdef BUGGY_LONG_LONG
f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
#else
f = FLAG($4>$5);
#endif

$1<=	( $2 -- f )		gforth	$3less_or_equal
#ifdef BUGGY_LONG_LONG
f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
#else
f = FLAG($4<=$5);
#endif

$1>=	( $2 -- f )		gforth	$3greater_or_equal
#ifdef BUGGY_LONG_LONG
f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
#else
f = FLAG($4>=$5);
#endif

)

\+dcomps

dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)

\+

within	( u1 u2 u3 -- f )		core-ext
""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
unsigned and signed numbers (but not a mixture).  Another way to think
about this word is to consider the numbers as a circle (wrapping
around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
min-n for signed numbers); now consider the range from u2 towards
increasing numbers up to and excluding u3 (giving an empty range if
u2=u3); if u1 is in this range, @code{within} returns true.""
f = FLAG(u1-u2 < u3-u2);
:
 over - >r - r> u< ;

sp@	( -- a_addr )		gforth		sp_fetch
a_addr = sp+1;

sp!	( a_addr -- )		gforth		sp_store
sp = a_addr;
/* works with and without TOS caching */

rp@	( -- a_addr )		gforth		rp_fetch
a_addr = rp;

rp!	( a_addr -- )		gforth		rp_store
rp = a_addr;

\+floating

fp@	( -- f_addr )	gforth	fp_fetch
f_addr = fp;

fp!	( f_addr -- )	gforth	fp_store
fp = f_addr;

\+

;s	( -- )		gforth	semis
""The primitive compiled by @code{EXIT}.""
SET_IP((Xt *)(*rp++));

>r	( w -- )		core	to_r
""@code{( R: -- w )}""
*--rp = w;
:
 (>r) ;
: (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;

r>	( -- w )		core	r_from
""@code{( R: w -- )}""
w = *rp++;
:
 rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
Create (rdrop) ' ;s A,

rdrop	( -- )		gforth
""@code{( R: w -- )}""
rp++;
:
 r> r> drop >r ;

2>r	( w1 w2 -- )	core-ext	two_to_r
""@code{( R: -- w1 w2 )}""
*--rp = w1;
*--rp = w2;
:
 swap r> swap >r swap >r >r ;

2r>	( -- w1 w2 )	core-ext	two_r_from
""@code{( R: w1 w2 -- )}""
w2 = *rp++;
w1 = *rp++;
:
 r> r> swap r> swap >r swap ;

2r@	( -- w1 w2 )	core-ext	two_r_fetch
""@code{( R: w1 w2 -- w1 w2 )}""
w2 = rp[0];
w1 = rp[1];
:
 i' j ;

2rdrop	( -- )		gforth	two_r_drop
""@code{( R: w1 w2 -- )}""
rp+=2;
:
 r> r> drop r> drop >r ;

over	( w1 w2 -- w1 w2 w1 )		core
:
 sp@ cell+ @ ;

drop	( w -- )		core
:
 IF THEN ;

swap	( w1 w2 -- w2 w1 )		core
:
 >r (swap) ! r> (swap) @ ;
Variable (swap)

dup	( w -- w w )		core	dupe
:
 sp@ @ ;

rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
:
[ defined? (swap) [IF] ]
    (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
Variable (rot)
[ELSE] ]
    >r swap r> swap ;
[THEN]

-rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
:
 rot rot ;

nip	( w1 w2 -- w2 )		core-ext
:
 swap drop ;

tuck	( w1 w2 -- w2 w1 w2 )	core-ext
:
 swap over ;

?dup	( w -- w )			core	question_dupe
""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
@code{dup} if w is nonzero.""
if (w!=0) {
  IF_TOS(*sp-- = w;)
#ifndef USE_TOS
  *--sp = w;
#endif
}
:
 dup IF dup THEN ;

pick	( u -- w )			core-ext
""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
w = sp[u+1];
:
 1+ cells sp@ + @ ;

2drop	( w1 w2 -- )		core	two_drop
:
 drop drop ;

2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
:
 over over ;

2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
:
 3 pick 3 pick ;

2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
:
 rot >r rot r> ;

2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
:
 >r >r 2swap r> r> 2swap ;

2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
:
 2swap 2drop ;

2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
:
 2swap 2over ;

\ toggle is high-level: 0.11/0.42%

@	( a_addr -- w )		core	fetch
""@i{w} is the cell stored at @i{a_addr}.""
w = *a_addr;

!	( w a_addr -- )		core	store
""Store @i{w} into the cell at @i{a-addr}.""
*a_addr = w;

+!	( n a_addr -- )		core	plus_store
""Add @i{n} to the cell at @i{a-addr}.""
*a_addr += n;
:
 tuck @ + swap ! ;

c@	( c_addr -- c )		core	c_fetch
""@i{c} is the char stored at @i{c_addr}.""
c = *c_addr;
:
[ bigendian [IF] ]
    [ cell>bit 4 = [IF] ]
	dup [ 0 cell - ] Literal and @ swap 1 and
	IF  $FF and  ELSE  8>>  THEN  ;
    [ [ELSE] ]
	dup [ cell 1- ] literal and
	tuck - @ swap [ cell 1- ] literal xor
 	0 ?DO 8>> LOOP $FF and
    [ [THEN] ]
[ [ELSE] ]
    [ cell>bit 4 = [IF] ]
	dup [ 0 cell - ] Literal and @ swap 1 and
	IF  8>>  ELSE  $FF and  THEN
    [ [ELSE] ]
	dup [ cell  1- ] literal and 
	tuck - @ swap
	0 ?DO 8>> LOOP 255 and
    [ [THEN] ]
[ [THEN] ]
;
: 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;

c!	( c c_addr -- )		core	c_store
""Store @i{c} into the char at @i{c-addr}.""
*c_addr = c;
:
[ bigendian [IF] ]
    [ cell>bit 4 = [IF] ]
	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
	dup -2 and @ over 1 and cells masks + @ and
	r> or swap -2 and ! ;
	Create masks $00FF , $FF00 ,
    [ELSE] ]
	dup [ cell 1- ] literal and dup 
	[ cell 1- ] literal xor >r
	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
    [THEN]
[ELSE] ]
    [ cell>bit 4 = [IF] ]
	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
	dup -2 and @ over 1 and cells masks + @ and
	r> or swap -2 and ! ;
	Create masks $FF00 , $00FF ,
    [ELSE] ]
	dup [ cell 1- ] literal and dup >r
	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
    [THEN]
[THEN]
: 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;

2!	( w1 w2 a_addr -- )		core	two_store
""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
a_addr[0] = w2;
a_addr[1] = w1;
:
 tuck ! cell+ ! ;

2@	( a_addr -- w1 w2 )		core	two_fetch
""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
the content of the next cell.""
w2 = a_addr[0];
w1 = a_addr[1];
:
 dup cell+ @ swap @ ;

cell+	( a_addr1 -- a_addr2 )	core	cell_plus
""@code{1 cells +}""
a_addr2 = a_addr1+1;
:
 cell + ;

cells	( n1 -- n2 )		core
"" @i{n2} is the number of address units of @i{n1} cells.""
n2 = n1 * sizeof(Cell);
:
 [ cell
 2/ dup [IF] ] 2* [ [THEN]
 2/ dup [IF] ] 2* [ [THEN]
 2/ dup [IF] ] 2* [ [THEN]
 2/ dup [IF] ] 2* [ [THEN]
 drop ] ;

char+	( c_addr1 -- c_addr2 )	core	char_plus
""@code{1 chars +}.""
c_addr2 = c_addr1 + 1;
:
 1+ ;

(chars)	( n1 -- n2 )	gforth	paren_chars
n2 = n1 * sizeof(Char);
:
 ;

count	( c_addr1 -- c_addr2 u )	core
""@i{c-addr2} is the first character and @i{u} the length of the
counted string at @i{c-addr1}.""
u = *c_addr1;
c_addr2 = c_addr1+1;
:
 dup 1+ swap c@ ;

(f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
  if ((UCell)F83NAME_COUNT(f83name1)==u &&
      memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
    break;
f83name2=f83name1;
:
    BEGIN  dup WHILE  (find-samelen)  dup  WHILE
	>r 2dup r@ cell+ char+ capscomp  0=
	IF  2drop r>  EXIT  THEN
	r> @
    REPEAT  THEN  nip nip ;
: (find-samelen) ( u f83name1 -- u f83name2/0 )
    BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;

\+hash

(hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
struct F83Name *f83name1;
f83name2=NULL;
while(a_addr != NULL)
{
   f83name1=(struct F83Name *)(a_addr[1]);
   a_addr=(Cell *)(a_addr[0]);
   if ((UCell)F83NAME_COUNT(f83name1)==u &&
       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
     {
	f83name2=f83name1;
	break;
     }
}
:
 BEGIN  dup  WHILE
        2@ >r >r dup r@ cell+ c@ $1F and =
        IF  2dup r@ cell+ char+ capscomp 0=
	    IF  2drop r> rdrop  EXIT  THEN  THEN
	rdrop r>
 REPEAT nip nip ;

(tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
""A case-sensitive variant of @code{(hashfind)}""
struct F83Name *f83name1;
f83name2=NULL;
while(a_addr != NULL)
{
   f83name1=(struct F83Name *)(a_addr[1]);
   a_addr=(Cell *)(a_addr[0]);
   if ((UCell)F83NAME_COUNT(f83name1)==u &&
       memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
     {
	f83name2=f83name1;
	break;
     }
}
:
 BEGIN  dup  WHILE
        2@ >r >r dup r@ cell+ c@ $1F and =
        IF  2dup r@ cell+ char+ -text 0=
	    IF  2drop r> rdrop  EXIT  THEN  THEN
	rdrop r>
 REPEAT nip nip ;

(hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
u2=0;
while(u1--)
   u2+=(Cell)toupper(*c_addr++);
:
 0 -rot bounds ?DO  I c@ toupper +  LOOP ;

(hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
""ukey is the hash key for the string c_addr u fitting in ubits bits""
/* this hash function rotates the key at every step by rot bits within
   ubits bits and xors it with the character. This function does ok in
   the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
   ASCII strings (larger if ubits is large), and should share no
   divisors with ubits.
*/
unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
Char *cp = c_addr;
for (ukey=0; cp<c_addr+u; cp++)
    ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
	     ^ toupper(*cp))
	    & ((1<<ubits)-1));
:
 dup rot-values + c@ over 1 swap lshift 1- >r
 tuck - 2swap r> 0 2swap bounds
 ?DO  dup 4 pick lshift swap 3 pick rshift or
      I c@ toupper xor
      over and  LOOP
 nip nip nip ;
Create rot-values
  5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
  3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
  7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
  7 c, 5 c, 5 c,

\+

(parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
/* use !isgraph instead of isspace? */
Char *endp = c_addr1+u1;
while (c_addr1<endp && isspace(*c_addr1))
  c_addr1++;
if (c_addr1<endp) {
  for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
    ;
  u2 = c_addr1-c_addr2;
}
else {
  c_addr2 = c_addr1;
  u2 = 0;
}
:
 BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 REPEAT  THEN  2dup
 BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 REPEAT  THEN  nip - ;

aligned	( c_addr -- a_addr )	core
"" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
:
 [ cell 1- ] Literal + [ -1 cells ] Literal and ;

faligned	( c_addr -- f_addr )	float	f_aligned
"" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
:
 [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;

>body	( xt -- a_addr )	core	to_body
"" Get the address of the body of the word represented by @i{xt} (the address
of the word's data field).""
a_addr = PFA(xt);
:
    2 cells + ;

\ threading stuff is currently only interesting if we have a compiler
\fhas? standardthreading has? compiler and [IF]

>code-address	( xt -- c_addr )		gforth	to_code_address
""@i{c-addr} is the code address of the word @i{xt}.""
/* !! This behaves installation-dependently for DOES-words */
c_addr = (Address)CODE_ADDRESS(xt);
:
    @ ;

>does-code	( xt -- a_addr )		gforth	to_does_code
""If @i{xt} is the execution token of a child of a @code{DOES>} word,
@i{a-addr} is the start of the Forth code after the @code{DOES>};
Otherwise @i{a-addr} is 0.""
a_addr = (Cell *)DOES_CODE(xt);
:
    cell+ @ ;

code-address!	( c_addr xt -- )		gforth	code_address_store
""Create a code field with code address @i{c-addr} at @i{xt}.""
MAKE_CF(xt, c_addr);
CACHE_FLUSH(xt,(size_t)PFA(0));
:
    ! ;

does-code!	( a_addr xt -- )		gforth	does_code_store
""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
@i{a-addr} is the start of the Forth code after @code{DOES>}.""
MAKE_DOES_CF(xt, a_addr);
CACHE_FLUSH(xt,(size_t)PFA(0));
:
    dodoes: over ! cell+ ! ;

does-handler!	( a_addr -- )	gforth	does_handler_store
""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
@i{a-addr} points just behind a @code{DOES>}.""
MAKE_DOES_HANDLER(a_addr);
CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
:
    drop ;

/does-handler	( -- n )	gforth	slash_does_handler
""The size of a @code{DOES>}-handler (includes possible padding).""
/* !! a constant or environmental query might be better */
n = DOES_HANDLER_SIZE;
:
    2 cells ;

threading-method	( -- n )	gforth	threading_method
""0 if the engine is direct threaded. Note that this may change during
the lifetime of an image.""
#if defined(DOUBLY_INDIRECT)
n=2;
#else
# if defined(DIRECT_THREADED)
n=0;
# else
n=1;
# endif
#endif
:
 1 ;

\f[THEN]

key-file	( wfileid -- n )		gforth	paren_key_file
#ifdef HAS_FILE
fflush(stdout);
n = key((FILE*)wfileid);
#else
n = key(stdin);
#endif

key?-file	( wfileid -- n )		facility	key_q_file
#ifdef HAS_FILE
fflush(stdout);
n = key_query((FILE*)wfileid);
#else
n = key_query(stdin);
#endif

\+os

stdin	( -- wfileid )	gforth
wfileid = (Cell)stdin;

stdout	( -- wfileid )	gforth
wfileid = (Cell)stdout;

stderr	( -- wfileid )	gforth
wfileid = (Cell)stderr;

form	( -- urows ucols )	gforth
""The number of lines and columns in the terminal. These numbers may change
with the window size.""
/* we could block SIGWINCH here to get a consistent size, but I don't
 think this is necessary or always beneficial */
urows=rows;
ucols=cols;

flush-icache	( c_addr u -- )	gforth	flush_icache
""Make sure that the instruction cache of the processor (if there is
one) does not contain stale data at @i{c-addr} and @i{u} bytes
afterwards. @code{END-CODE} performs a @code{flush-icache}
automatically. Caveat: @code{flush-icache} might not work on your
installation; this is usually the case if direct threading is not
supported on your machine (take a look at your @file{machine.h}) and
your machine has a separate instruction cache. In such cases,
@code{flush-icache} does nothing instead of flushing the instruction
cache.""
FLUSH_ICACHE(c_addr,u);

(bye)	( n -- )	gforth	paren_bye
return (Label *)n;

(system)	( c_addr u -- wretval wior )	gforth	peren_system
#ifndef MSDOS
int old_tp=terminal_prepped;
deprep_terminal();
#endif
wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
#ifndef MSDOS
if (old_tp)
  prep_terminal();
#endif

getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
is the host operating system's expansion of that environment variable. If the
environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
in length.""
/* close ' to keep fontify happy */
c_addr2 = getenv(cstr(c_addr1,u1,1));
u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));

open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */

close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
wretval = pclose((FILE *)wfileid);
wior = IOR(wretval==-1);

time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
""Report the current time of day. Seconds, minutes and hours are numbered from 0.
Months are numbered from 1.""
struct timeval time1;
struct timezone zone1;
struct tm *ltime;
gettimeofday(&time1,&zone1);
/* !! Single Unix specification: 
   If tzp is not a null pointer, the behaviour is unspecified. */
ltime=localtime((time_t *)&time1.tv_sec);
nyear =ltime->tm_year+1900;
nmonth=ltime->tm_mon+1;
nday  =ltime->tm_mday;
nhour =ltime->tm_hour;
nmin  =ltime->tm_min;
nsec  =ltime->tm_sec;

ms	( n -- )	facility-ext
""Wait at least @i{n} milli-second.""
struct timeval timeout;
timeout.tv_sec=n/1000;
timeout.tv_usec=1000*(n%1000);
(void)select(0,0,0,0,&timeout);

allocate	( u -- a_addr wior )	memory
""Allocate @i{u} address units of contiguous data space. The initial
contents of the data space is undefined. If the allocation is successful,
@i{a-addr} is the start address of the allocated region and @i{wior}
is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
is a non-zero I/O result code.""
a_addr = (Cell *)malloc(u?u:1);
wior = IOR(a_addr==NULL);

free	( a_addr -- wior )		memory
""Return the region of data space starting at @i{a-addr} to the system.
The region must originally have been obtained using @code{allocate} or
@code{resize}. If the operational is successful, @i{wior} is 0.
If the operation fails, @i{wior} is a non-zero I/O result code.""
free(a_addr);
wior = 0;

resize	( a_addr1 u -- a_addr2 wior )	memory
""Change the size of the allocated area at @i{a-addr1} to @i{u}
address units, possibly moving the contents to a different
area. @i{a-addr2} is the address of the resulting area.
If the operation is successful, @i{wior} is 0.
If the operation fails, @i{wior} is a non-zero
I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
@code{resize} @code{allocate}s @i{u} address units.""
/* the following check is not necessary on most OSs, but it is needed
   on SunOS 4.1.2. */
/* close ' to keep fontify happy */
if (a_addr1==NULL)
  a_addr2 = (Cell *)malloc(u);
else
  a_addr2 = (Cell *)realloc(a_addr1, u);
wior = IOR(a_addr2==NULL);	/* !! Define a return code */

strerror	( n -- c_addr u )	gforth
c_addr = strerror(n);
u = strlen(c_addr);

strsignal	( n -- c_addr u )	gforth
c_addr = strsignal(n);
u = strlen(c_addr);

call-c	( w -- )	gforth	call_c
""Call the C function pointed to by @i{w}. The C function has to
access the stack itself. The stack pointers are exported in the global
variables @code{SP} and @code{FP}.""
/* This is a first attempt at support for calls to C. This may change in
   the future */
IF_FTOS(fp[0]=FTOS);
FP=fp;
SP=sp;
((void (*)())w)();
sp=SP;
fp=FP;
IF_TOS(TOS=sp[0]);
IF_FTOS(FTOS=fp[0]);

\+
\+file

close-file	( wfileid -- wior )		file	close_file
wior = IOR(fclose((FILE *)wfileid)==EOF);

open-file	( c_addr u wfam -- wfileid wior )	file	open_file
wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
wior =  IOR(wfileid == 0);

create-file	( c_addr u wfam -- wfileid wior )	file	create_file
Cell	fd;
fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
if (fd != -1) {
  wfileid = (Cell)fdopen(fd, fileattr[wfam]);
  wior = IOR(wfileid == 0);
} else {
  wfileid = 0;
  wior = IOR(1);
}

delete-file	( c_addr u -- wior )		file	delete_file
wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);

rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
char *s1=tilde_cstr(c_addr2, u2, 1);
wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);

file-position	( wfileid -- ud wior )	file	file_position
/* !! use tell and lseek? */
ud = LONG2UD(ftell((FILE *)wfileid));
wior = IOR(UD2LONG(ud)==-1);

reposition-file	( ud wfileid -- wior )	file	reposition_file
wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);

file-size	( wfileid -- ud wior )	file	file_size
struct stat buf;
wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
ud = LONG2UD(buf.st_size);

resize-file	( ud wfileid -- wior )	file	resize_file
wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);

read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
/* !! fread does not guarantee enough */
u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
/* !! is the value of ferror errno-compatible? */
if (wior)
  clearerr((FILE *)wfileid);

read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
""this is only for backward compatibility""
#if 1
Cell c;
flag=-1;
for(u2=0; u2<u1; u2++)
{
   c = getc((FILE *)wfileid);
   if (c=='\n') break;
   if (c=='\r') {
     if ((c = getc((FILE *)wfileid))!='\n')
       ungetc(c,(FILE *)wfileid);
     break;
   }
   if (c==EOF) {
	flag=FLAG(u2!=0);
	break;
     }
   c_addr[u2] = (Char)c;
}
wior=FILEIO(ferror((FILE *)wfileid));
#else
if ((flag=FLAG(!feof((FILE *)wfileid) &&
	       fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {
  wior=FILEIO(ferror((FILE *)wfileid)!=0); /* !! ior? */
  if (wior)
    clearerr((FILE *)wfileid);
  u2 = strlen(c_addr);
  u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));
}
else {
  wior=0;
  u2=0;
}
#endif

\+

write-file	( c_addr u1 wfileid -- wior )	file	write_file
/* !! fwrite does not guarantee enough */
#ifdef HAS_FILE
{
  UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
  wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
  if (wior)
    clearerr((FILE *)wfileid);
}
#else
TYPE(c_addr, u1);
#endif

emit-file	( c wfileid -- wior )	gforth	emit_file
#ifdef HAS_FILE
wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
if (wior)
  clearerr((FILE *)wfileid);
#else
PUTC(c);
#endif

\+file

flush-file	( wfileid -- wior )		file-ext	flush_file
wior = IOR(fflush((FILE *) wfileid)==EOF);

file-status	( c_addr u -- wfam wior )	file-ext	file_status
char *filename=tilde_cstr(c_addr, u, 1);
if (access (filename, F_OK) != 0) {
  wfam=0;
  wior=IOR(1);
}
else if (access (filename, R_OK | W_OK) == 0) {
  wfam=2; /* r/w */
  wior=0;
}
else if (access (filename, R_OK) == 0) {
  wfam=0; /* r/o */
  wior=0;
}
else if (access (filename, W_OK) == 0) {
  wfam=4; /* w/o */
  wior=0;
}
else {
  wfam=1; /* well, we cannot access the file, but better deliver a legal
	    access mode (r/o bin), so we get a decent error later upon open. */
  wior=0;
}

\+
\+floating

comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)

d>f	( d -- r )		float	d_to_f
#ifdef BUGGY_LONG_LONG
extern double ldexp(double x, int exp);
r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
#else
r = d;
#endif

f>d	( r -- d )		float	f_to_d
#ifdef BUGGY_LONG_LONG
d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
d.lo = r-ldexp((Float)d.hi,CELL_BITS);
#else
d = r;
#endif

f!	( r f_addr -- )	float	f_store
""Store @i{r} into the float at address @i{f-addr}.""
*f_addr = r;

f@	( f_addr -- r )	float	f_fetch
""@i{r} is the float at address @i{f-addr}.""
r = *f_addr;

df@	( df_addr -- r )	float-ext	d_f_fetch
""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
#ifdef IEEE_FP
r = *df_addr;
#else
!! df@
#endif

df!	( r df_addr -- )	float-ext	d_f_store
""Store @i{r} as double-precision IEEE floating-point value to the
address @i{df-addr}.""
#ifdef IEEE_FP
*df_addr = r;
#else
!! df!
#endif

sf@	( sf_addr -- r )	float-ext	s_f_fetch
""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
#ifdef IEEE_FP
r = *sf_addr;
#else
!! sf@
#endif

sf!	( r sf_addr -- )	float-ext	s_f_store
""Store @i{r} as single-precision IEEE floating-point value to the
address @i{sf-addr}.""
#ifdef IEEE_FP
*sf_addr = r;
#else
!! sf!
#endif

f+	( r1 r2 -- r3 )	float	f_plus
r3 = r1+r2;

f-	( r1 r2 -- r3 )	float	f_minus
r3 = r1-r2;

f*	( r1 r2 -- r3 )	float	f_star
r3 = r1*r2;

f/	( r1 r2 -- r3 )	float	f_slash
r3 = r1/r2;

f**	( r1 r2 -- r3 )	float-ext	f_star_star
""@i{r3} is @i{r1} raised to the @i{r2}th power.""
r3 = pow(r1,r2);

fnegate	( r1 -- r2 )	float	f_negate
r2 = - r1;

fdrop	( r -- )		float	f_drop

fdup	( r -- r r )	float	f_dupe

fswap	( r1 r2 -- r2 r1 )	float	f_swap

fover	( r1 r2 -- r1 r2 r1 )	float	f_over

frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote

fnip	( r1 r2 -- r2 )	gforth	f_nip

ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck

float+	( f_addr1 -- f_addr2 )	float	float_plus
""@code{1 floats +}.""
f_addr2 = f_addr1+1;

floats	( n1 -- n2 )	float
""@i{n2} is the number of address units of @i{n1} floats.""
n2 = n1*sizeof(Float);

floor	( r1 -- r2 )	float
""Round towards the next smaller integral value, i.e., round toward negative infinity.""
/* !! unclear wording */
r2 = floor(r1);

fround	( r1 -- r2 )	float	f_round
""Round to the nearest integral value.""
/* !! unclear wording */
#ifdef HAVE_RINT
r2 = rint(r1);
#else
r2 = floor(r1+0.5);
/* !! This is not quite true to the rounding rules given in the standard */
#endif

fmax	( r1 r2 -- r3 )	float	f_max
if (r1<r2)
  r3 = r2;
else
  r3 = r1;

fmin	( r1 r2 -- r3 )	float	f_min
if (r1<r2)
  r3 = r1;
else
  r3 = r2;

represent	( r c_addr u -- n f1 f2 )	float
char *sig;
int flag;
int decpt;
sig=ecvt(r, u, &decpt, &flag);
n=(r==0 ? 1 : decpt);
f1=FLAG(flag!=0);
f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
memmove(c_addr,sig,u);

>float	( c_addr u -- flag )	float	to_float
""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
character string @i{c-addr u} to internal floating-point
representation. If the string represents a valid floating-point number
@i{r} is placed on the floating-point stack and @i{flag} is
true. Otherwise, @i{flag} is false. A string of blanks is a special
case and represents the floating-point number 0.""
/* real signature: c_addr u -- r t / f */
Float r;
char *number=cstr(c_addr, u, 1);
char *endconv;
int sign = 0;
if(number[0]=='-') {
   sign = 1;
   number++;
   u--;
}
while(isspace((unsigned)(number[--u])) && u>0);
switch(number[u])
{
   case 'd':
   case 'D':
   case 'e':
   case 'E':  break;
   default :  u++; break;
}
number[u]='\0';
r=strtod(number,&endconv);
if((flag=FLAG(!(Cell)*endconv)))
{
   IF_FTOS(fp[0] = FTOS);
   fp += -1;
   FTOS = sign ? -r : r;
}
else if(*endconv=='d' || *endconv=='D')
{
   *endconv='E';
   r=strtod(number,&endconv);
   if((flag=FLAG(!(Cell)*endconv)))
     {
	IF_FTOS(fp[0] = FTOS);
	fp += -1;
	FTOS = sign ? -r : r;
     }
}

fabs	( r1 -- r2 )	float-ext	f_abs
r2 = fabs(r1);

facos	( r1 -- r2 )	float-ext	f_a_cos
r2 = acos(r1);

fasin	( r1 -- r2 )	float-ext	f_a_sine
r2 = asin(r1);

fatan	( r1 -- r2 )	float-ext	f_a_tan
r2 = atan(r1);

fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
intends this to be the inverse of @code{fsincos}. In gforth it is.""
r3 = atan2(r1,r2);

fcos	( r1 -- r2 )	float-ext	f_cos
r2 = cos(r1);

fexp	( r1 -- r2 )	float-ext	f_e_x_p
r2 = exp(r1);

fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
""@i{r2}=@i{e}**@i{r1}@minus{}1""
#ifdef HAVE_EXPM1
extern double
#ifdef NeXT
              const
#endif
                    expm1(double);
r2 = expm1(r1);
#else
r2 = exp(r1)-1.;
#endif

fln	( r1 -- r2 )	float-ext	f_l_n
r2 = log(r1);

flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
""@i{r2}=ln(@i{r1}+1)""
#ifdef HAVE_LOG1P
extern double
#ifdef NeXT
              const
#endif
                    log1p(double);
r2 = log1p(r1);
#else
r2 = log(r1+1.);
#endif

flog	( r1 -- r2 )	float-ext	f_log
""The decimal logarithm.""
r2 = log10(r1);

falog	( r1 -- r2 )	float-ext	f_a_log
""@i{r2}=10**@i{r1}""
extern double pow10(double);
r2 = pow10(r1);

fsin	( r1 -- r2 )	float-ext	f_sine
r2 = sin(r1);

fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
r2 = sin(r1);
r3 = cos(r1);

fsqrt	( r1 -- r2 )	float-ext	f_square_root
r2 = sqrt(r1);

ftan	( r1 -- r2 )	float-ext	f_tan
r2 = tan(r1);
:
 fsincos f/ ;

fsinh	( r1 -- r2 )	float-ext	f_cinch
r2 = sinh(r1);
:
 fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;

fcosh	( r1 -- r2 )	float-ext	f_cosh
r2 = cosh(r1);
:
 fexp fdup 1/f f+ f2/ ;

ftanh	( r1 -- r2 )	float-ext	f_tan_h
r2 = tanh(r1);
:
 f2* fexpm1 fdup 2. d>f f+ f/ ;

fasinh	( r1 -- r2 )	float-ext	f_a_cinch
r2 = asinh(r1);
:
 fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;

facosh	( r1 -- r2 )	float-ext	f_a_cosh
r2 = acosh(r1);
:
 fdup fdup f* 1. d>f f- fsqrt f+ fln ;

fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
r2 = atanh(r1);
:
 fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 r> IF  fnegate  THEN ;

sfloats	( n1 -- n2 )	float-ext	s_floats
""@i{n2} is the number of address units of @i{n1}
single-precision IEEE floating-point numbers.""
n2 = n1*sizeof(SFloat);

dfloats	( n1 -- n2 )	float-ext	d_floats
""@i{n2} is the number of address units of @i{n1}
double-precision IEEE floating-point numbers.""
n2 = n1*sizeof(DFloat);

sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
""@i{sf-addr} is the first single-float-aligned address greater
than or equal to @i{c-addr}.""
sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
:
 [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;

dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
""@i{df-addr} is the first double-float-aligned address greater
than or equal to @i{c-addr}.""
df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
:
 [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;

\ The following words access machine/OS/installation-dependent
\   Gforth internals
\ !! how about environmental queries DIRECT-THREADED,
\   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */

\ local variable implementation primitives
\+
\+glocals

@local#	( -- w )	gforth	fetch_local_number
w = *(Cell *)(lp+(Cell)NEXT_INST);
INC_IP(1);

@local0	( -- w )	new	fetch_local_zero
w = *(Cell *)(lp+0*sizeof(Cell));

@local1	( -- w )	new	fetch_local_four
w = *(Cell *)(lp+1*sizeof(Cell));

@local2	( -- w )	new	fetch_local_eight
w = *(Cell *)(lp+2*sizeof(Cell));

@local3	( -- w )	new	fetch_local_twelve
w = *(Cell *)(lp+3*sizeof(Cell));

\+floating

f@local#	( -- r )	gforth	f_fetch_local_number
r = *(Float *)(lp+(Cell)NEXT_INST);
INC_IP(1);

f@local0	( -- r )	new	f_fetch_local_zero
r = *(Float *)(lp+0*sizeof(Float));

f@local1	( -- r )	new	f_fetch_local_eight
r = *(Float *)(lp+1*sizeof(Float));

\+

laddr#	( -- c_addr )	gforth	laddr_number
/* this can also be used to implement lp@ */
c_addr = (Char *)(lp+(Cell)NEXT_INST);
INC_IP(1);

lp+!#	( -- )	gforth	lp_plus_store_number
""used with negative immediate values it allocates memory on the
local stack, a positive immediate argument drops memory from the local
stack""
lp += (Cell)NEXT_INST;
INC_IP(1);

lp-	( -- )	new	minus_four_lp_plus_store
lp += -sizeof(Cell);

lp+	( -- )	new	eight_lp_plus_store
lp += sizeof(Float);

lp+2	( -- )	new	sixteen_lp_plus_store
lp += 2*sizeof(Float);

lp!	( c_addr -- )	gforth	lp_store
lp = (Address)c_addr;

>l	( w -- )	gforth	to_l
lp -= sizeof(Cell);
*(Cell *)lp = w;

\+floating

f>l	( r -- )	gforth	f_to_l
lp -= sizeof(Float);
*(Float *)lp = r;

fpick	( u -- r )		gforth
""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
r = fp[u+1]; /* +1, because update of fp happens before this fragment */
:
 floats fp@ + f@ ;

\+
\+

\+OS

define(`uploop',
       `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
define(`_uploop',
       `ifelse($1, `$3', `$5',
	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
\ argflist(argnum): Forth argument list
define(argflist,
       `ifelse($1, 0, `',
               `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
\ argdlist(argnum): declare C's arguments
define(argdlist,
       `ifelse($1, 0, `',
               `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
\ argclist(argnum): pass C's arguments
define(argclist,
       `ifelse($1, 0, `',
               `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
\ icall(argnum)
define(icall,
`icall$1	( argflist($1)u -- uret )	gforth
uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));

')
define(fcall,
`fcall$1	( argflist($1)u -- rret )	gforth
rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));

')

\ close ' to keep fontify happy

open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
#if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
#ifndef RTLD_GLOBAL
#define RTLD_GLOBAL 0
#endif
u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
#else
#  ifdef _WIN32
u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
#  else
#warning Define open-lib!
u2 = 0;
#  endif
#endif

lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
#if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
#else
#  ifdef _WIN32
u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
#  else
#warning Define lib-sym!
u3 = 0;
#  endif
#endif

uploop(i, 0, 7, `icall(i)')
icall(20)
uploop(i, 0, 7, `fcall(i)')
fcall(20)

\+

up!	( a_addr -- )	gforth	up_store
UP=up=(char *)a_addr;
:
 up ! ;
Variable UP

wcall	( u -- )	gforth
IF_FTOS(fp[0]=FTOS);
FP=fp;
sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
fp=FP;
IF_TOS(TOS=sp[0];)
IF_FTOS(FTOS=fp[0]);

\+file

open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
wior =  IOR(wdirid == 0);

read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
struct dirent * dent;
dent = readdir((DIR *)wdirid);
wior = 0;
flag = -1;
if(dent == NULL) {
  u2 = 0;
  flag = 0;
} else {
  u2 = strlen(dent->d_name);
  if(u2 > u1)
    u2 = u1;
  memmove(c_addr, dent->d_name, u2);
}

close-dir	( wdirid -- wior )	gforth	close_dir
wior = IOR(closedir((DIR *)wdirid));

filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
char * string = cstr(c_addr1, u1, 1);
char * pattern = cstr(c_addr2, u2, 0);
flag = FLAG(!fnmatch(pattern, string, 0));

\+

newline	( -- c_addr u )	gforth
""String containing the newline sequence of the host OS""
char newline[] = {
#ifdef unix
'\n'
#else
'\r','\n'
#endif
};
c_addr=newline;
u=sizeof(newline);
:
 "newline count ;
Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,

\+os

utime	( -- dtime )	gforth
""Report the current time in microseconds since some epoch.""
struct timeval time1;
gettimeofday(&time1,NULL);
dtime = timeval2us(&time1);

cputime ( -- duser dsystem ) gforth
""duser and dsystem are the respective user- and system-level CPU
times used since the start of the Forth system (excluding child
processes), in microseconds (the granularity may be much larger,
however).  On platforms without the getrusage call, it reports elapsed
time (since some epoch) for duser and 0 for dsystem.""
#ifdef HAVE_GETRUSAGE
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
duser = timeval2us(&usage.ru_utime);
dsystem = timeval2us(&usage.ru_stime);
#else
struct timeval time1;
gettimeofday(&time1,NULL);
duser = timeval2us(&time1);
#ifndef BUGGY_LONG_LONG
dsystem = (DCell)0;
#else
dsystem=(DCell){0,0};
#endif
#endif

\+

\+floating

v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
ucount elements.""
for (r=0.; ucount>0; ucount--) {
  r += *f_addr1 * *f_addr2;
  f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
  f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
}
:
 >r swap 2swap swap 0e r> 0 ?DO
     dup f@ over + 2swap dup f@ f* f+ over + 2swap
 LOOP 2drop 2drop ; 

faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
""vy=ra*vx+vy""
for (; ucount>0; ucount--) {
  *f_y += ra * *f_x;
  f_x = (Float *)(((Address)f_x)+nstridex);
  f_y = (Float *)(((Address)f_y)+nstridey);
}
:
 >r swap 2swap swap r> 0 ?DO
     fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 LOOP 2drop 2drop fdrop ;

\+

\+file

(read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
Cell c;
flag=-1;
u3=0;
for(u2=0; u2<u1; u2++)
{
   c = getc((FILE *)wfileid);
   u3++;
   if (c=='\n') break;
   if (c=='\r') {
     if ((c = getc((FILE *)wfileid))!='\n')
       ungetc(c,(FILE *)wfileid);
     else
       u3++;
     break;
   }
   if (c==EOF) {
	flag=FLAG(u2!=0);
	break;
     }
   c_addr[u2] = (Char)c;
}
wior=FILEIO(ferror((FILE *)wfileid));

\+

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>