File:  [gforth] / gforth / prim
Revision 1.53: download - view: text, annotated - select for diffs
Fri Aug 11 19:49:39 2000 UTC (23 years, 7 months ago) by anton
Branches: MAIN
CVS tags: HEAD
documentation changes

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ wid.*		WID
   76: \ f83name.*	F83Name *
   77: \ 
   78: \ 
   79: \ 
   80: \ In addition the following names can be used:
   81: \ ip	the instruction pointer
   82: \ sp	the data stack pointer
   83: \ rp	the parameter stack pointer
   84: \ lp	the locals stack pointer
   85: \ NEXT	executes NEXT
   86: \ cfa	
   87: \ NEXT1	executes NEXT1
   88: \ FLAG(x)	makes a Forth flag from a C flag
   89: \ 
   90: \ 
   91: \ 
   92: \ Percentages in comments are from Koopmans book: average/maximum use
   93: \ (taken from four, not very representative benchmarks)
   94: \ 
   95: \ 
   96: \ 
   97: \ To do:
   98: \ 
   99: \ throw execute, cfa and NEXT1 out?
  100: \ macroize *ip, ip++, *ip++ (pipelining)?
  101: 
  102: \ these m4 macros would collide with identifiers
  103: undefine(`index')
  104: undefine(`shift')
  105: 
  106: noop	( -- )		gforth
  107: ;
  108: :
  109:  ;
  110: 
  111: lit	( -- w )		gforth
  112: w = (Cell)NEXT_INST;
  113: INC_IP(1);
  114: :
  115:  r> dup @ swap cell+ >r ;
  116: 
  117: execute	( xt -- )		core
  118: ""Perform the semantics represented by the execution token, @i{xt}.""
  119: ip=IP;
  120: IF_TOS(TOS = sp[0]);
  121: EXEC(xt);
  122: 
  123: perform	( a_addr -- )	gforth
  124: ""Equivalent to @code{@ execute}.""
  125: /* and pfe */
  126: ip=IP;
  127: IF_TOS(TOS = sp[0]);
  128: EXEC(*(Xt *)a_addr);
  129: :
  130:  @ execute ;
  131: 
  132: \fhas? skipbranchprims 0= [IF]
  133: \+glocals
  134: 
  135: branch-lp+!#	( -- )	gforth	branch_lp_plus_store_number
  136: /* this will probably not be used */
  137: branch_adjust_lp:
  138: lp += (Cell)(IP[1]);
  139: goto branch;
  140: 
  141: \+
  142: 
  143: branch	( -- )		gforth
  144: branch:
  145: SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  146: :
  147:  r> dup @ + >r ;
  148: 
  149: \ condbranch(forthname,restline,code,forthcode)
  150: \ this is non-syntactical: code must open a brace that is closed by the macro
  151: define(condbranch,
  152: $1	$2
  153: $3	SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  154: 	NEXT;
  155: }
  156: else
  157:     INC_IP(1);
  158: $4
  159: 
  160: \+glocals
  161: 
  162: $1-lp+!#	$2_lp_plus_store_number
  163: $3    goto branch_adjust_lp;
  164: }
  165: else
  166:     INC_IP(2);
  167: 
  168: \+
  169: )
  170: 
  171: condbranch(?branch,( f -- )		f83	question_branch,
  172: if (f==0) {
  173:     IF_TOS(TOS = sp[0]);
  174: ,:
  175:  0= dup     \ !f !f
  176:  r> dup @   \ !f !f IP branchoffset
  177:  rot and +  \ !f IP|IP+branchoffset
  178:  swap 0= cell and + \ IP''
  179:  >r ;)
  180: 
  181: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  182: \ is only used in if's (yet)
  183: 
  184: \+xconds
  185: 
  186: ?dup-?branch	( f -- f )	new	question_dupe_question_branch
  187: ""The run-time procedure compiled by @code{?DUP-IF}.""
  188: if (f==0) {
  189:   sp++;
  190:   IF_TOS(TOS = sp[0]);
  191:   SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  192:   NEXT;
  193: }
  194: else
  195:   INC_IP(1);
  196: 
  197: ?dup-0=-?branch	( f -- )	new	question_dupe_zero_equals_question_branch
  198: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  199: /* the approach taken here of declaring the word as having the stack
  200: effect ( f -- ) and correcting for it in the branch-taken case costs a
  201: few cycles in that case, but is easy to convert to a CONDBRANCH
  202: invocation */
  203: if (f!=0) {
  204:   sp--;
  205:   SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  206:   NEXT;
  207: }
  208: else
  209:   INC_IP(1);
  210: 
  211: \+
  212: \f[THEN]
  213: \fhas? skiploopprims 0= [IF]
  214: 
  215: condbranch((next),( -- )		cmFORTH	paren_next,
  216: if ((*rp)--) {
  217: ,:
  218:  r> r> dup 1- >r
  219:  IF dup @ + >r ELSE cell+ >r THEN ;)
  220: 
  221: condbranch((loop),( -- )		gforth	paren_loop,
  222: Cell index = *rp+1;
  223: Cell limit = rp[1];
  224: if (index != limit) {
  225:     *rp = index;
  226: ,:
  227:  r> r> 1+ r> 2dup =
  228:  IF >r 1- >r cell+ >r
  229:  ELSE >r >r dup @ + >r THEN ;)
  230: 
  231: condbranch((+loop),( n -- )		gforth	paren_plus_loop,
  232: /* !! check this thoroughly */
  233: Cell index = *rp;
  234: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  235: /* dependent upon two's complement arithmetic */
  236: Cell olddiff = index-rp[1];
  237: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  238:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  239: #ifdef i386
  240:     *rp += n;
  241: #else
  242:     *rp = index + n;
  243: #endif
  244:     IF_TOS(TOS = sp[0]);
  245: ,:
  246:  r> swap
  247:  r> r> 2dup - >r
  248:  2 pick r@ + r@ xor 0< 0=
  249:  3 pick r> xor 0< 0= or
  250:  IF    >r + >r dup @ + >r
  251:  ELSE  >r >r drop cell+ >r THEN ;)
  252: 
  253: \+xconds
  254: 
  255: condbranch((-loop),( u -- )		gforth	paren_minus_loop,
  256: /* !! check this thoroughly */
  257: Cell index = *rp;
  258: UCell olddiff = index-rp[1];
  259: if (olddiff>u) {
  260: #ifdef i386
  261:     *rp -= u;
  262: #else
  263:     *rp = index - u;
  264: #endif
  265:     IF_TOS(TOS = sp[0]);
  266: ,)
  267: 
  268: condbranch((s+loop),( n -- )		gforth	paren_symmetric_plus_loop,
  269: ""The run-time procedure compiled by S+LOOP. It loops until the index
  270: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  271: version of (+LOOP).""
  272: /* !! check this thoroughly */
  273: Cell index = *rp;
  274: Cell diff = index-rp[1];
  275: Cell newdiff = diff+n;
  276: if (n<0) {
  277:     diff = -diff;
  278:     newdiff = -newdiff;
  279: }
  280: if (diff>=0 || newdiff<0) {
  281: #ifdef i386
  282:     *rp += n;
  283: #else
  284:     *rp = index + n;
  285: #endif
  286:     IF_TOS(TOS = sp[0]);
  287: ,)
  288: 
  289: \+
  290: 
  291: unloop	( -- )	core
  292: rp += 2;
  293: :
  294:  r> rdrop rdrop >r ;
  295: 
  296: (for)	( ncount -- )		cmFORTH		paren_for
  297: /* or (for) = >r -- collides with unloop! */
  298: *--rp = 0;
  299: *--rp = ncount;
  300: :
  301:  r> swap 0 >r >r >r ;
  302: 
  303: (do)	( nlimit nstart -- )		gforth		paren_do
  304: /* or do it in high-level? 0.09/0.23% */
  305: *--rp = nlimit;
  306: *--rp = nstart;
  307: :
  308:  r> swap rot >r >r >r ;
  309: 
  310: (?do)	( nlimit nstart -- )	gforth	paren_question_do
  311: *--rp = nlimit;
  312: *--rp = nstart;
  313: if (nstart == nlimit) {
  314:     IF_TOS(TOS = sp[0]);
  315:     goto branch;
  316:     }
  317: else {
  318:     INC_IP(1);
  319: }
  320: :
  321:   2dup =
  322:   IF   r> swap rot >r >r
  323:        dup @ + >r
  324:   ELSE r> swap rot >r >r
  325:        cell+ >r
  326:   THEN ;				\ --> CORE-EXT
  327: 
  328: \+xconds
  329: 
  330: (+do)	( nlimit nstart -- )	gforth	paren_plus_do
  331: *--rp = nlimit;
  332: *--rp = nstart;
  333: if (nstart >= nlimit) {
  334:     IF_TOS(TOS = sp[0]);
  335:     goto branch;
  336:     }
  337: else {
  338:     INC_IP(1);
  339: }
  340: :
  341:  swap 2dup
  342:  r> swap >r swap >r
  343:  >=
  344:  IF
  345:      dup @ +
  346:  ELSE
  347:      cell+
  348:  THEN  >r ;
  349: 
  350: (u+do)	( ulimit ustart -- )	gforth	paren_u_plus_do
  351: *--rp = ulimit;
  352: *--rp = ustart;
  353: if (ustart >= ulimit) {
  354:     IF_TOS(TOS = sp[0]);
  355:     goto branch;
  356:     }
  357: else {
  358:     INC_IP(1);
  359: }
  360: :
  361:  swap 2dup
  362:  r> swap >r swap >r
  363:  u>=
  364:  IF
  365:      dup @ +
  366:  ELSE
  367:      cell+
  368:  THEN  >r ;
  369: 
  370: (-do)	( nlimit nstart -- )	gforth	paren_minus_do
  371: *--rp = nlimit;
  372: *--rp = nstart;
  373: if (nstart <= nlimit) {
  374:     IF_TOS(TOS = sp[0]);
  375:     goto branch;
  376:     }
  377: else {
  378:     INC_IP(1);
  379: }
  380: :
  381:  swap 2dup
  382:  r> swap >r swap >r
  383:  <=
  384:  IF
  385:      dup @ +
  386:  ELSE
  387:      cell+
  388:  THEN  >r ;
  389: 
  390: (u-do)	( ulimit ustart -- )	gforth	paren_u_minus_do
  391: *--rp = ulimit;
  392: *--rp = ustart;
  393: if (ustart <= ulimit) {
  394:     IF_TOS(TOS = sp[0]);
  395:     goto branch;
  396:     }
  397: else {
  398:     INC_IP(1);
  399: }
  400: :
  401:  swap 2dup
  402:  r> swap >r swap >r
  403:  u<=
  404:  IF
  405:      dup @ +
  406:  ELSE
  407:      cell+
  408:  THEN  >r ;
  409: 
  410: \+
  411: 
  412: \ don't make any assumptions where the return stack is!!
  413: \ implement this in machine code if it should run quickly!
  414: 
  415: i	( -- n )		core
  416: n = *rp;
  417: :
  418: \ rp@ cell+ @ ;
  419:   r> r> tuck >r >r ;
  420: 
  421: i'	( -- w )		gforth		i_tick
  422: ""loop end value""
  423: w = rp[1];
  424: :
  425: \ rp@ cell+ cell+ @ ;
  426:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  427: variable itmp
  428: 
  429: j	( -- n )		core
  430: n = rp[2];
  431: :
  432: \ rp@ cell+ cell+ cell+ @ ;
  433:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  434: [IFUNDEF] itmp variable itmp [THEN]
  435: 
  436: k	( -- n )		gforth
  437: n = rp[4];
  438: :
  439: \ rp@ [ 5 cells ] Literal + @ ;
  440:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  441: [IFUNDEF] itmp variable itmp [THEN]
  442: 
  443: \f[THEN]
  444: 
  445: \ digit is high-level: 0/0%
  446: 
  447: move	( c_from c_to ucount -- )		core
  448: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  449: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  450: /* !! note that the standard specifies addr, not c-addr */
  451: memmove(c_to,c_from,ucount);
  452: /* make an Ifdef for bsd and others? */
  453: :
  454:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  455: 
  456: cmove	( c_from c_to u -- )	string	c_move
  457: ""Copy the contents of @i{ucount} characters from data space at
  458: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  459: from low address to high address; i.e., for overlapping areas it is
  460: safe if @i{c-to}=<@i{c-from}.""
  461: while (u-- > 0)
  462:   *c_to++ = *c_from++;
  463: :
  464:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  465: 
  466: cmove>	( c_from c_to u -- )	string	c_move_up
  467: ""Copy the contents of @i{ucount} characters from data space at
  468: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  469: from high address to low address; i.e., for overlapping areas it is
  470: safe if @i{c-to}>=@i{c-from}.""
  471: while (u-- > 0)
  472:   c_to[u] = c_from[u];
  473: :
  474:  dup 0= IF  drop 2drop exit  THEN
  475:  rot over + -rot bounds swap 1-
  476:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  477: 
  478: fill	( c_addr u c -- )	core
  479: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  480: memset(c_addr,c,u);
  481: :
  482:  -rot bounds
  483:  ?DO  dup I c!  LOOP  drop ;
  484: 
  485: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  486: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  487: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  488: is 1. Currently this is based on the machine's character
  489: comparison. In the future, this may change to consider the current
  490: locale and its collation order.""
  491: /* close ' to keep fontify happy */ 
  492: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  493: if (n==0)
  494:   n = u1-u2;
  495: if (n<0)
  496:   n = -1;
  497: else if (n>0)
  498:   n = 1;
  499: :
  500:  rot 2dup swap - >r min swap -text dup
  501:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  502: : sgn ( n -- -1/0/1 )
  503:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  504: 
  505: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  506: n = memcmp(c_addr1, c_addr2, u);
  507: if (n<0)
  508:   n = -1;
  509: else if (n>0)
  510:   n = 1;
  511: :
  512:  swap bounds
  513:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  514:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  515: : sgn ( n -- -1/0/1 )
  516:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  517: 
  518: toupper	( c1 -- c2 )	gforth
  519: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  520: is the equivalent upper-case character. All other characters are unchanged.""
  521: c2 = toupper(c1);
  522: :
  523:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  524: 
  525: capscomp	( c_addr1 u c_addr2 -- n )	new
  526: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  527: if (n<0)
  528:   n = -1;
  529: else if (n>0)
  530:   n = 1;
  531: :
  532:  swap bounds
  533:  ?DO  dup c@ I c@ <>
  534:      IF  dup c@ toupper I c@ toupper =
  535:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  536:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  537: 
  538: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  539: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  540: spaces. @i{u2} is the length of the modified string.""
  541: u2 = u1;
  542: while (u2>0 && c_addr[u2-1] == ' ')
  543:   u2--;
  544: :
  545:  BEGIN  1- 2dup + c@ bl =  WHILE
  546:         dup  0= UNTIL  ELSE  1+  THEN ;
  547: 
  548: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  549: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  550: characters from the start of the string.""
  551: c_addr2 = c_addr1+n;
  552: u2 = u1-n;
  553: :
  554:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  555: 
  556: +	( n1 n2 -- n )		core	plus
  557: n = n1+n2;
  558: 
  559: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  560: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  561: ""add @i{n3} to @i{n1} (giving @i{n})""
  562: n = n1+n3;
  563: :
  564:  rot + swap ;
  565: 
  566: -	( n1 n2 -- n )		core	minus
  567: n = n1-n2;
  568: :
  569:  negate + ;
  570: 
  571: negate	( n1 -- n2 )		core
  572: /* use minus as alias */
  573: n2 = -n1;
  574: :
  575:  invert 1+ ;
  576: 
  577: 1+	( n1 -- n2 )		core		one_plus
  578: n2 = n1+1;
  579: :
  580:  1 + ;
  581: 
  582: 1-	( n1 -- n2 )		core		one_minus
  583: n2 = n1-1;
  584: :
  585:  1 - ;
  586: 
  587: max	( n1 n2 -- n )	core
  588: if (n1<n2)
  589:   n = n2;
  590: else
  591:   n = n1;
  592: :
  593:  2dup < IF swap THEN drop ;
  594: 
  595: min	( n1 n2 -- n )	core
  596: if (n1<n2)
  597:   n = n1;
  598: else
  599:   n = n2;
  600: :
  601:  2dup > IF swap THEN drop ;
  602: 
  603: abs	( n -- u )	core
  604: if (n<0)
  605:   u = -n;
  606: else
  607:   u = n;
  608: :
  609:  dup 0< IF negate THEN ;
  610: 
  611: *	( n1 n2 -- n )		core	star
  612: n = n1*n2;
  613: :
  614:  um* drop ;
  615: 
  616: /	( n1 n2 -- n )		core	slash
  617: n = n1/n2;
  618: :
  619:  /mod nip ;
  620: 
  621: mod	( n1 n2 -- n )		core
  622: n = n1%n2;
  623: :
  624:  /mod drop ;
  625: 
  626: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  627: n4 = n1/n2;
  628: n3 = n1%n2; /* !! is this correct? look into C standard! */
  629: :
  630:  >r s>d r> fm/mod ;
  631: 
  632: 2*	( n1 -- n2 )		core		two_star
  633: ""Shift left by 1; also works on unsigned numbers""
  634: n2 = 2*n1;
  635: :
  636:  dup + ;
  637: 
  638: 2/	( n1 -- n2 )		core		two_slash
  639: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  640: division by 2 (note that @code{/} not necessarily floors).""
  641: n2 = n1>>1;
  642: :
  643:  dup MINI and IF 1 ELSE 0 THEN
  644:  [ bits/byte cell * 1- ] literal 
  645:  0 DO 2* swap dup 2* >r MINI and 
  646:      IF 1 ELSE 0 THEN or r> swap
  647:  LOOP nip ;
  648: 
  649: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  650: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  651: #ifdef BUGGY_LONG_LONG
  652: DCell r = fmdiv(d1,n1);
  653: n2=r.hi;
  654: n3=r.lo;
  655: #else
  656: /* assumes that the processor uses either floored or symmetric division */
  657: n3 = d1/n1;
  658: n2 = d1%n1;
  659: /* note that this 1%-3>0 is optimized by the compiler */
  660: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  661:   n3--;
  662:   n2+=n1;
  663: }
  664: #endif
  665: :
  666:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  667:  over       0< IF  tuck + swap  THEN
  668:  um/mod
  669:  r> 0< IF  swap negate swap  THEN ;
  670: 
  671: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  672: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  673: #ifdef BUGGY_LONG_LONG
  674: DCell r = smdiv(d1,n1);
  675: n2=r.hi;
  676: n3=r.lo;
  677: #else
  678: /* assumes that the processor uses either floored or symmetric division */
  679: n3 = d1/n1;
  680: n2 = d1%n1;
  681: /* note that this 1%-3<0 is optimized by the compiler */
  682: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  683:   n3++;
  684:   n2-=n1;
  685: }
  686: #endif
  687: :
  688:  over >r dup >r abs -rot
  689:  dabs rot um/mod
  690:  r> r@ xor 0< IF       negate       THEN
  691:  r>        0< IF  swap negate swap  THEN ;
  692: 
  693: m*	( n1 n2 -- d )		core	m_star
  694: #ifdef BUGGY_LONG_LONG
  695: d = mmul(n1,n2);
  696: #else
  697: d = (DCell)n1 * (DCell)n2;
  698: #endif
  699: :
  700:  2dup      0< and >r
  701:  2dup swap 0< and >r
  702:  um* r> - r> - ;
  703: 
  704: um*	( u1 u2 -- ud )		core	u_m_star
  705: /* use u* as alias */
  706: #ifdef BUGGY_LONG_LONG
  707: ud = ummul(u1,u2);
  708: #else
  709: ud = (UDCell)u1 * (UDCell)u2;
  710: #endif
  711: :
  712:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  713:    DO
  714:        over >r dup >r 0< and d2*+ drop
  715:        r> 2* r> swap
  716:    LOOP 2drop ;
  717: : d2*+ ( ud n -- ud+n c )
  718:    over MINI
  719:    and >r >r 2dup d+ swap r> + swap r> ;
  720: 
  721: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  722: ""ud=u3*u1+u2, u1>u2>=0""
  723: #ifdef BUGGY_LONG_LONG
  724: UDCell r = umdiv(ud,u1);
  725: u2=r.hi;
  726: u3=r.lo;
  727: #else
  728: u3 = ud/u1;
  729: u2 = ud%u1;
  730: #endif
  731: :
  732:    0 swap [ 8 cells 1 + ] literal 0
  733:    ?DO /modstep
  734:    LOOP drop swap 1 rshift or swap ;
  735: : /modstep ( ud c R: u -- ud-?u c R: u )
  736:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  737: : d2*+ ( ud n -- ud+n c )
  738:    over MINI
  739:    and >r >r 2dup d+ swap r> + swap r> ;
  740: 
  741: m+	( d1 n -- d2 )		double		m_plus
  742: #ifdef BUGGY_LONG_LONG
  743: d2.lo = d1.lo+n;
  744: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  745: #else
  746: d2 = d1+n;
  747: #endif
  748: :
  749:  s>d d+ ;
  750: 
  751: d+	( d1 d2 -- d )		double	d_plus
  752: #ifdef BUGGY_LONG_LONG
  753: d.lo = d1.lo+d2.lo;
  754: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  755: #else
  756: d = d1+d2;
  757: #endif
  758: :
  759:  rot + >r tuck + swap over u> r> swap - ;
  760: 
  761: d-	( d1 d2 -- d )		double		d_minus
  762: #ifdef BUGGY_LONG_LONG
  763: d.lo = d1.lo - d2.lo;
  764: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  765: #else
  766: d = d1-d2;
  767: #endif
  768: :
  769:  dnegate d+ ;
  770: 
  771: dnegate	( d1 -- d2 )		double	d_negate
  772: /* use dminus as alias */
  773: #ifdef BUGGY_LONG_LONG
  774: d2 = dnegate(d1);
  775: #else
  776: d2 = -d1;
  777: #endif
  778: :
  779:  invert swap negate tuck 0= - ;
  780: 
  781: d2*	( d1 -- d2 )		double		d_two_star
  782: ""Shift left by 1; also works on unsigned numbers""
  783: #ifdef BUGGY_LONG_LONG
  784: d2.lo = d1.lo<<1;
  785: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  786: #else
  787: d2 = 2*d1;
  788: #endif
  789: :
  790:  2dup d+ ;
  791: 
  792: d2/	( d1 -- d2 )		double		d_two_slash
  793: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  794: division by 2.""
  795: #ifdef BUGGY_LONG_LONG
  796: d2.hi = d1.hi>>1;
  797: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  798: #else
  799: d2 = d1>>1;
  800: #endif
  801: :
  802:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  803:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  804: 
  805: and	( w1 w2 -- w )		core
  806: w = w1&w2;
  807: 
  808: or	( w1 w2 -- w )		core
  809: w = w1|w2;
  810: :
  811:  invert swap invert and invert ;
  812: 
  813: xor	( w1 w2 -- w )		core	x_or
  814: w = w1^w2;
  815: 
  816: invert	( w1 -- w2 )		core
  817: w2 = ~w1;
  818: :
  819:  MAXU xor ;
  820: 
  821: rshift	( u1 n -- u2 )		core	r_shift
  822: ""Logical shift right by @i{n} bits.""
  823:   u2 = u1>>n;
  824: :
  825:     0 ?DO 2/ MAXI and LOOP ;
  826: 
  827: lshift	( u1 n -- u2 )		core	l_shift
  828:   u2 = u1<<n;
  829: :
  830:     0 ?DO 2* LOOP ;
  831: 
  832: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  833: define(comparisons,
  834: $1=	( $2 -- f )		$6	$3equals
  835: f = FLAG($4==$5);
  836: :
  837:     [ char $1x char 0 = [IF]
  838: 	] IF false ELSE true THEN [
  839:     [ELSE]
  840: 	] xor 0= [
  841:     [THEN] ] ;
  842: 
  843: $1<>	( $2 -- f )		$7	$3not_equals
  844: f = FLAG($4!=$5);
  845: :
  846:     [ char $1x char 0 = [IF]
  847: 	] IF true ELSE false THEN [
  848:     [ELSE]
  849: 	] xor 0<> [
  850:     [THEN] ] ;
  851: 
  852: $1<	( $2 -- f )		$8	$3less_than
  853: f = FLAG($4<$5);
  854: :
  855:     [ char $1x char 0 = [IF]
  856: 	] MINI and 0<> [
  857:     [ELSE] char $1x char u = [IF]
  858: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  859: 	[ELSE]
  860: 	    ] MINI xor >r MINI xor r> u< [
  861: 	[THEN]
  862:     [THEN] ] ;
  863: 
  864: $1>	( $2 -- f )		$9	$3greater_than
  865: f = FLAG($4>$5);
  866: :
  867:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  868:     $1< ;
  869: 
  870: $1<=	( $2 -- f )		gforth	$3less_or_equal
  871: f = FLAG($4<=$5);
  872: :
  873:     $1> 0= ;
  874: 
  875: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  876: f = FLAG($4>=$5);
  877: :
  878:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  879:     $1<= ;
  880: 
  881: )
  882: 
  883: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  884: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  885: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  886: 
  887: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  888: define(dcomparisons,
  889: $1=	( $2 -- f )		$6	$3equals
  890: #ifdef BUGGY_LONG_LONG
  891: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  892: #else
  893: f = FLAG($4==$5);
  894: #endif
  895: 
  896: $1<>	( $2 -- f )		$7	$3not_equals
  897: #ifdef BUGGY_LONG_LONG
  898: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  899: #else
  900: f = FLAG($4!=$5);
  901: #endif
  902: 
  903: $1<	( $2 -- f )		$8	$3less_than
  904: #ifdef BUGGY_LONG_LONG
  905: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  906: #else
  907: f = FLAG($4<$5);
  908: #endif
  909: 
  910: $1>	( $2 -- f )		$9	$3greater_than
  911: #ifdef BUGGY_LONG_LONG
  912: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  913: #else
  914: f = FLAG($4>$5);
  915: #endif
  916: 
  917: $1<=	( $2 -- f )		gforth	$3less_or_equal
  918: #ifdef BUGGY_LONG_LONG
  919: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  920: #else
  921: f = FLAG($4<=$5);
  922: #endif
  923: 
  924: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  925: #ifdef BUGGY_LONG_LONG
  926: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  927: #else
  928: f = FLAG($4>=$5);
  929: #endif
  930: 
  931: )
  932: 
  933: \+dcomps
  934: 
  935: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  936: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  937: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  938: 
  939: \+
  940: 
  941: within	( u1 u2 u3 -- f )		core-ext
  942: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  943: unsigned and signed numbers (but not a mixture).  Another way to think
  944: about this word is to consider the numbers as a circle (wrapping
  945: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  946: min-n for signed numbers); now consider the range from u2 towards
  947: increasing numbers up to and excluding u3 (giving an empty range if
  948: u2=u3); if u1 is in this range, @code{within} returns true.""
  949: f = FLAG(u1-u2 < u3-u2);
  950: :
  951:  over - >r - r> u< ;
  952: 
  953: sp@	( -- a_addr )		gforth		sp_fetch
  954: a_addr = sp+1;
  955: 
  956: sp!	( a_addr -- )		gforth		sp_store
  957: sp = a_addr;
  958: /* works with and without TOS caching */
  959: 
  960: rp@	( -- a_addr )		gforth		rp_fetch
  961: a_addr = rp;
  962: 
  963: rp!	( a_addr -- )		gforth		rp_store
  964: rp = a_addr;
  965: 
  966: \+floating
  967: 
  968: fp@	( -- f_addr )	gforth	fp_fetch
  969: f_addr = fp;
  970: 
  971: fp!	( f_addr -- )	gforth	fp_store
  972: fp = f_addr;
  973: 
  974: \+
  975: 
  976: ;s	( -- )		gforth	semis
  977: ""The primitive compiled by @code{EXIT}.""
  978: SET_IP((Xt *)(*rp++));
  979: 
  980: >r	( w -- )		core	to_r
  981: ""@code{( R: -- w )}""
  982: *--rp = w;
  983: :
  984:  (>r) ;
  985: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  986: 
  987: r>	( -- w )		core	r_from
  988: ""@code{( R: w -- )}""
  989: w = *rp++;
  990: :
  991:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  992: Create (rdrop) ' ;s A,
  993: 
  994: rdrop	( -- )		gforth
  995: ""@code{( R: w -- )}""
  996: rp++;
  997: :
  998:  r> r> drop >r ;
  999: 
 1000: 2>r	( w1 w2 -- )	core-ext	two_to_r
 1001: ""@code{( R: -- w1 w2 )}""
 1002: *--rp = w1;
 1003: *--rp = w2;
 1004: :
 1005:  swap r> swap >r swap >r >r ;
 1006: 
 1007: 2r>	( -- w1 w2 )	core-ext	two_r_from
 1008: ""@code{( R: w1 w2 -- )}""
 1009: w2 = *rp++;
 1010: w1 = *rp++;
 1011: :
 1012:  r> r> swap r> swap >r swap ;
 1013: 
 1014: 2r@	( -- w1 w2 )	core-ext	two_r_fetch
 1015: ""@code{( R: w1 w2 -- w1 w2 )}""
 1016: w2 = rp[0];
 1017: w1 = rp[1];
 1018: :
 1019:  i' j ;
 1020: 
 1021: 2rdrop	( -- )		gforth	two_r_drop
 1022: ""@code{( R: w1 w2 -- )}""
 1023: rp+=2;
 1024: :
 1025:  r> r> drop r> drop >r ;
 1026: 
 1027: over	( w1 w2 -- w1 w2 w1 )		core
 1028: :
 1029:  sp@ cell+ @ ;
 1030: 
 1031: drop	( w -- )		core
 1032: :
 1033:  IF THEN ;
 1034: 
 1035: swap	( w1 w2 -- w2 w1 )		core
 1036: :
 1037:  >r (swap) ! r> (swap) @ ;
 1038: Variable (swap)
 1039: 
 1040: dup	( w -- w w )		core	dupe
 1041: :
 1042:  sp@ @ ;
 1043: 
 1044: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1045: :
 1046: [ defined? (swap) [IF] ]
 1047:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1048: Variable (rot)
 1049: [ELSE] ]
 1050:     >r swap r> swap ;
 1051: [THEN]
 1052: 
 1053: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1054: :
 1055:  rot rot ;
 1056: 
 1057: nip	( w1 w2 -- w2 )		core-ext
 1058: :
 1059:  swap drop ;
 1060: 
 1061: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1062: :
 1063:  swap over ;
 1064: 
 1065: ?dup	( w -- w )			core	question_dupe
 1066: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1067: @code{dup} if w is nonzero.""
 1068: if (w!=0) {
 1069:   IF_TOS(*sp-- = w;)
 1070: #ifndef USE_TOS
 1071:   *--sp = w;
 1072: #endif
 1073: }
 1074: :
 1075:  dup IF dup THEN ;
 1076: 
 1077: pick	( u -- w )			core-ext
 1078: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1079: w = sp[u+1];
 1080: :
 1081:  1+ cells sp@ + @ ;
 1082: 
 1083: 2drop	( w1 w2 -- )		core	two_drop
 1084: :
 1085:  drop drop ;
 1086: 
 1087: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1088: :
 1089:  over over ;
 1090: 
 1091: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1092: :
 1093:  3 pick 3 pick ;
 1094: 
 1095: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1096: :
 1097:  rot >r rot r> ;
 1098: 
 1099: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1100: :
 1101:  >r >r 2swap r> r> 2swap ;
 1102: 
 1103: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1104: :
 1105:  2swap 2drop ;
 1106: 
 1107: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1108: :
 1109:  2swap 2over ;
 1110: 
 1111: \ toggle is high-level: 0.11/0.42%
 1112: 
 1113: @	( a_addr -- w )		core	fetch
 1114: ""@i{w} is the cell stored at @i{a_addr}.""
 1115: w = *a_addr;
 1116: 
 1117: !	( w a_addr -- )		core	store
 1118: ""Store @i{w} into the cell at @i{a-addr}.""
 1119: *a_addr = w;
 1120: 
 1121: +!	( n a_addr -- )		core	plus_store
 1122: ""Add @i{n} to the cell at @i{a-addr}.""
 1123: *a_addr += n;
 1124: :
 1125:  tuck @ + swap ! ;
 1126: 
 1127: c@	( c_addr -- c )		core	c_fetch
 1128: ""@i{c} is the char stored at @i{c_addr}.""
 1129: c = *c_addr;
 1130: :
 1131: [ bigendian [IF] ]
 1132:     [ cell>bit 4 = [IF] ]
 1133: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1134: 	IF  $FF and  ELSE  8>>  THEN  ;
 1135:     [ [ELSE] ]
 1136: 	dup [ cell 1- ] literal and
 1137: 	tuck - @ swap [ cell 1- ] literal xor
 1138:  	0 ?DO 8>> LOOP $FF and
 1139:     [ [THEN] ]
 1140: [ [ELSE] ]
 1141:     [ cell>bit 4 = [IF] ]
 1142: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1143: 	IF  8>>  ELSE  $FF and  THEN
 1144:     [ [ELSE] ]
 1145: 	dup [ cell  1- ] literal and 
 1146: 	tuck - @ swap
 1147: 	0 ?DO 8>> LOOP 255 and
 1148:     [ [THEN] ]
 1149: [ [THEN] ]
 1150: ;
 1151: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1152: 
 1153: c!	( c c_addr -- )		core	c_store
 1154: ""Store @i{c} into the char at @i{c-addr}.""
 1155: *c_addr = c;
 1156: :
 1157: [ bigendian [IF] ]
 1158:     [ cell>bit 4 = [IF] ]
 1159: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1160: 	dup -2 and @ over 1 and cells masks + @ and
 1161: 	r> or swap -2 and ! ;
 1162: 	Create masks $00FF , $FF00 ,
 1163:     [ELSE] ]
 1164: 	dup [ cell 1- ] literal and dup 
 1165: 	[ cell 1- ] literal xor >r
 1166: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1167: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1168:     [THEN]
 1169: [ELSE] ]
 1170:     [ cell>bit 4 = [IF] ]
 1171: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1172: 	dup -2 and @ over 1 and cells masks + @ and
 1173: 	r> or swap -2 and ! ;
 1174: 	Create masks $FF00 , $00FF ,
 1175:     [ELSE] ]
 1176: 	dup [ cell 1- ] literal and dup >r
 1177: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1178: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1179:     [THEN]
 1180: [THEN]
 1181: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1182: 
 1183: 2!	( w1 w2 a_addr -- )		core	two_store
 1184: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1185: a_addr[0] = w2;
 1186: a_addr[1] = w1;
 1187: :
 1188:  tuck ! cell+ ! ;
 1189: 
 1190: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1191: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1192: the content of the next cell.""
 1193: w2 = a_addr[0];
 1194: w1 = a_addr[1];
 1195: :
 1196:  dup cell+ @ swap @ ;
 1197: 
 1198: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1199: ""@code{1 cells +}""
 1200: a_addr2 = a_addr1+1;
 1201: :
 1202:  cell + ;
 1203: 
 1204: cells	( n1 -- n2 )		core
 1205: "" @i{n2} is the number of address units of @i{n1} cells.""
 1206: n2 = n1 * sizeof(Cell);
 1207: :
 1208:  [ cell
 1209:  2/ dup [IF] ] 2* [ [THEN]
 1210:  2/ dup [IF] ] 2* [ [THEN]
 1211:  2/ dup [IF] ] 2* [ [THEN]
 1212:  2/ dup [IF] ] 2* [ [THEN]
 1213:  drop ] ;
 1214: 
 1215: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1216: ""@code{1 chars +}.""
 1217: c_addr2 = c_addr1 + 1;
 1218: :
 1219:  1+ ;
 1220: 
 1221: (chars)	( n1 -- n2 )	gforth	paren_chars
 1222: n2 = n1 * sizeof(Char);
 1223: :
 1224:  ;
 1225: 
 1226: count	( c_addr1 -- c_addr2 u )	core
 1227: "" If @i{c-add1} is the address of a counted string return the length of
 1228: the string, @i{u}, and the address of its first character, @i{c-addr2}.""
 1229: u = *c_addr1;
 1230: c_addr2 = c_addr1+1;
 1231: :
 1232:  dup 1+ swap c@ ;
 1233: 
 1234: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1235: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1236:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1237:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1238:     break;
 1239: f83name2=f83name1;
 1240: :
 1241:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1242: 	>r 2dup r@ cell+ char+ capscomp  0=
 1243: 	IF  2drop r>  EXIT  THEN
 1244: 	r> @
 1245:     REPEAT  THEN  nip nip ;
 1246: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1247:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1248: 
 1249: \+hash
 1250: 
 1251: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1252: struct F83Name *f83name1;
 1253: f83name2=NULL;
 1254: while(a_addr != NULL)
 1255: {
 1256:    f83name1=(struct F83Name *)(a_addr[1]);
 1257:    a_addr=(Cell *)(a_addr[0]);
 1258:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1259:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1260:      {
 1261: 	f83name2=f83name1;
 1262: 	break;
 1263:      }
 1264: }
 1265: :
 1266:  BEGIN  dup  WHILE
 1267:         2@ >r >r dup r@ cell+ c@ $1F and =
 1268:         IF  2dup r@ cell+ char+ capscomp 0=
 1269: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1270: 	rdrop r>
 1271:  REPEAT nip nip ;
 1272: 
 1273: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1274: ""A case-sensitive variant of @code{(hashfind)}""
 1275: struct F83Name *f83name1;
 1276: f83name2=NULL;
 1277: while(a_addr != NULL)
 1278: {
 1279:    f83name1=(struct F83Name *)(a_addr[1]);
 1280:    a_addr=(Cell *)(a_addr[0]);
 1281:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1282:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1283:      {
 1284: 	f83name2=f83name1;
 1285: 	break;
 1286:      }
 1287: }
 1288: :
 1289:  BEGIN  dup  WHILE
 1290:         2@ >r >r dup r@ cell+ c@ $1F and =
 1291:         IF  2dup r@ cell+ char+ -text 0=
 1292: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1293: 	rdrop r>
 1294:  REPEAT nip nip ;
 1295: 
 1296: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1297: u2=0;
 1298: while(u1--)
 1299:    u2+=(Cell)toupper(*c_addr++);
 1300: :
 1301:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1302: 
 1303: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1304: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1305: /* this hash function rotates the key at every step by rot bits within
 1306:    ubits bits and xors it with the character. This function does ok in
 1307:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1308:    ASCII strings (larger if ubits is large), and should share no
 1309:    divisors with ubits.
 1310: */
 1311: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1312: Char *cp = c_addr;
 1313: for (ukey=0; cp<c_addr+u; cp++)
 1314:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1315: 	     ^ toupper(*cp))
 1316: 	    & ((1<<ubits)-1));
 1317: :
 1318:  dup rot-values + c@ over 1 swap lshift 1- >r
 1319:  tuck - 2swap r> 0 2swap bounds
 1320:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1321:       I c@ toupper xor
 1322:       over and  LOOP
 1323:  nip nip nip ;
 1324: Create rot-values
 1325:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1326:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1327:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1328:   7 c, 5 c, 5 c,
 1329: 
 1330: \+
 1331: 
 1332: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1333: /* use !isgraph instead of isspace? */
 1334: Char *endp = c_addr1+u1;
 1335: while (c_addr1<endp && isspace(*c_addr1))
 1336:   c_addr1++;
 1337: if (c_addr1<endp) {
 1338:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1339:     ;
 1340:   u2 = c_addr1-c_addr2;
 1341: }
 1342: else {
 1343:   c_addr2 = c_addr1;
 1344:   u2 = 0;
 1345: }
 1346: :
 1347:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1348:  REPEAT  THEN  2dup
 1349:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1350:  REPEAT  THEN  nip - ;
 1351: 
 1352: aligned	( c_addr -- a_addr )	core
 1353: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1354: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1355: :
 1356:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1357: 
 1358: faligned	( c_addr -- f_addr )	float	f_aligned
 1359: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1360: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1361: :
 1362:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1363: 
 1364: >body	( xt -- a_addr )	core	to_body
 1365: "" Get the address of the body of the word represented by @i{xt} (the address
 1366: of the word's data field).""
 1367: a_addr = PFA(xt);
 1368: :
 1369:     2 cells + ;
 1370: 
 1371: \ threading stuff is currently only interesting if we have a compiler
 1372: \fhas? standardthreading has? compiler and [IF]
 1373: 
 1374: >code-address	( xt -- c_addr )		gforth	to_code_address
 1375: ""@i{c-addr} is the code address of the word @i{xt}.""
 1376: /* !! This behaves installation-dependently for DOES-words */
 1377: c_addr = (Address)CODE_ADDRESS(xt);
 1378: :
 1379:     @ ;
 1380: 
 1381: >does-code	( xt -- a_addr )		gforth	to_does_code
 1382: ""If @i{xt} is the execution token of a defining-word-defined word,
 1383: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1384: Otherwise @i{a-addr} is 0.""
 1385: a_addr = (Cell *)DOES_CODE(xt);
 1386: :
 1387:     cell+ @ ;
 1388: 
 1389: code-address!	( c_addr xt -- )		gforth	code_address_store
 1390: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1391: MAKE_CF(xt, c_addr);
 1392: CACHE_FLUSH(xt,(size_t)PFA(0));
 1393: :
 1394:     ! ;
 1395: 
 1396: does-code!	( a_addr xt -- )		gforth	does_code_store
 1397: ""Create a code field at @i{xt} for a defining-word-defined word; @i{a-addr}
 1398: is the start of the Forth code after @code{DOES>}.""
 1399: MAKE_DOES_CF(xt, a_addr);
 1400: CACHE_FLUSH(xt,(size_t)PFA(0));
 1401: :
 1402:     dodoes: over ! cell+ ! ;
 1403: 
 1404: does-handler!	( a_addr -- )	gforth	does_handler_store
 1405: ""Create a @code{DOES>}-handler at address @i{a-addr}. Usually, @i{a-addr} points
 1406: just behind a @code{DOES>}.""
 1407: MAKE_DOES_HANDLER(a_addr);
 1408: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1409: :
 1410:     drop ;
 1411: 
 1412: /does-handler	( -- n )	gforth	slash_does_handler
 1413: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1414: /* !! a constant or environmental query might be better */
 1415: n = DOES_HANDLER_SIZE;
 1416: :
 1417:     2 cells ;
 1418: 
 1419: threading-method	( -- n )	gforth	threading_method
 1420: ""0 if the engine is direct threaded. Note that this may change during
 1421: the lifetime of an image.""
 1422: #if defined(DOUBLY_INDIRECT)
 1423: n=2;
 1424: #else
 1425: # if defined(DIRECT_THREADED)
 1426: n=0;
 1427: # else
 1428: n=1;
 1429: # endif
 1430: #endif
 1431: :
 1432:  1 ;
 1433: 
 1434: \f[THEN]
 1435: 
 1436: key-file	( wfileid -- n )		gforth	paren_key_file
 1437: #ifdef HAS_FILE
 1438: fflush(stdout);
 1439: n = key((FILE*)wfileid);
 1440: #else
 1441: n = key(stdin);
 1442: #endif
 1443: 
 1444: key?-file	( wfileid -- n )		facility	key_q_file
 1445: #ifdef HAS_FILE
 1446: fflush(stdout);
 1447: n = key_query((FILE*)wfileid);
 1448: #else
 1449: n = key_query(stdin);
 1450: #endif
 1451: 
 1452: \+os
 1453: 
 1454: stdin	( -- wfileid )	gforth
 1455: wfileid = (Cell)stdin;
 1456: 
 1457: stdout	( -- wfileid )	gforth
 1458: wfileid = (Cell)stdout;
 1459: 
 1460: stderr	( -- wfileid )	gforth
 1461: wfileid = (Cell)stderr;
 1462: 
 1463: form	( -- urows ucols )	gforth
 1464: ""The number of lines and columns in the terminal. These numbers may change
 1465: with the window size.""
 1466: /* we could block SIGWINCH here to get a consistent size, but I don't
 1467:  think this is necessary or always beneficial */
 1468: urows=rows;
 1469: ucols=cols;
 1470: 
 1471: flush-icache	( c_addr u -- )	gforth	flush_icache
 1472: ""Make sure that the instruction cache of the processor (if there is
 1473: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1474: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1475: automatically. Caveat: @code{flush-icache} might not work on your
 1476: installation; this is usually the case if direct threading is not
 1477: supported on your machine (take a look at your @file{machine.h}) and
 1478: your machine has a separate instruction cache. In such cases,
 1479: @code{flush-icache} does nothing instead of flushing the instruction
 1480: cache.""
 1481: FLUSH_ICACHE(c_addr,u);
 1482: 
 1483: (bye)	( n -- )	gforth	paren_bye
 1484: return (Label *)n;
 1485: 
 1486: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1487: #ifndef MSDOS
 1488: int old_tp=terminal_prepped;
 1489: deprep_terminal();
 1490: #endif
 1491: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1492: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1493: #ifndef MSDOS
 1494: if (old_tp)
 1495:   prep_terminal();
 1496: #endif
 1497: 
 1498: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1499: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1500: is the host operating system's expansion of that environment variable. If the
 1501: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1502: in length.""
 1503: /* close ' to keep fontify happy */
 1504: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1505: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1506: 
 1507: open-pipe	( c_addr u ntype -- wfileid wior )	gforth	open_pipe
 1508: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[ntype]); /* ~ expansion of 1st arg? */
 1509: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1510: 
 1511: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1512: wretval = pclose((FILE *)wfileid);
 1513: wior = IOR(wretval==-1);
 1514: 
 1515: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1516: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1517: Months are numbered from 1.""
 1518: struct timeval time1;
 1519: struct timezone zone1;
 1520: struct tm *ltime;
 1521: gettimeofday(&time1,&zone1);
 1522: /* !! Single Unix specification: 
 1523:    If tzp is not a null pointer, the behaviour is unspecified. */
 1524: ltime=localtime((time_t *)&time1.tv_sec);
 1525: nyear =ltime->tm_year+1900;
 1526: nmonth=ltime->tm_mon+1;
 1527: nday  =ltime->tm_mday;
 1528: nhour =ltime->tm_hour;
 1529: nmin  =ltime->tm_min;
 1530: nsec  =ltime->tm_sec;
 1531: 
 1532: ms	( n -- )	facility-ext
 1533: ""Wait at least @i{n} milli-second.""
 1534: struct timeval timeout;
 1535: timeout.tv_sec=n/1000;
 1536: timeout.tv_usec=1000*(n%1000);
 1537: (void)select(0,0,0,0,&timeout);
 1538: 
 1539: allocate	( u -- a_addr wior )	memory
 1540: ""Allocate @i{u} address units of contiguous data space. The initial
 1541: contents of the data space is undefined. If the allocation is successful,
 1542: @i{a-addr} is the start address of the allocated region and @i{wior}
 1543: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1544: is a non-zero I/O result code.""
 1545: a_addr = (Cell *)malloc(u?u:1);
 1546: wior = IOR(a_addr==NULL);
 1547: 
 1548: free	( a_addr -- wior )		memory
 1549: ""Return the region of data space starting at @i{a-addr} to the system.
 1550: The region must originally have been obtained using @code{allocate} or
 1551: @code{resize}. If the operational is successful, @i{wior} is 0.
 1552: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1553: free(a_addr);
 1554: wior = 0;
 1555: 
 1556: resize	( a_addr1 u -- a_addr2 wior )	memory
 1557: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1558: address units, possibly moving the contents to a different
 1559: area. @i{a-addr2} is the address of the resulting area.
 1560: If the operation is successful, @i{wior} is 0.
 1561: If the operation fails, @i{wior} is a non-zero
 1562: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1563: @code{resize} @code{allocate}s @i{u} address units.""
 1564: /* the following check is not necessary on most OSs, but it is needed
 1565:    on SunOS 4.1.2. */
 1566: /* close ' to keep fontify happy */
 1567: if (a_addr1==NULL)
 1568:   a_addr2 = (Cell *)malloc(u);
 1569: else
 1570:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1571: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1572: 
 1573: strerror	( n -- c_addr u )	gforth
 1574: c_addr = strerror(n);
 1575: u = strlen(c_addr);
 1576: 
 1577: strsignal	( n -- c_addr u )	gforth
 1578: c_addr = strsignal(n);
 1579: u = strlen(c_addr);
 1580: 
 1581: call-c	( w -- )	gforth	call_c
 1582: ""Call the C function pointed to by @i{w}. The C function has to
 1583: access the stack itself. The stack pointers are exported in the global
 1584: variables @code{SP} and @code{FP}.""
 1585: /* This is a first attempt at support for calls to C. This may change in
 1586:    the future */
 1587: IF_FTOS(fp[0]=FTOS);
 1588: FP=fp;
 1589: SP=sp;
 1590: ((void (*)())w)();
 1591: sp=SP;
 1592: fp=FP;
 1593: IF_TOS(TOS=sp[0]);
 1594: IF_FTOS(FTOS=fp[0]);
 1595: 
 1596: \+
 1597: \+file
 1598: 
 1599: close-file	( wfileid -- wior )		file	close_file
 1600: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1601: 
 1602: open-file	( c_addr u ntype -- wfileid wior )	file	open_file
 1603: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[ntype]);
 1604: wior =  IOR(wfileid == 0);
 1605: 
 1606: create-file	( c_addr u ntype -- wfileid wior )	file	create_file
 1607: Cell	fd;
 1608: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[ntype], 0666);
 1609: if (fd != -1) {
 1610:   wfileid = (Cell)fdopen(fd, fileattr[ntype]);
 1611:   wior = IOR(wfileid == 0);
 1612: } else {
 1613:   wfileid = 0;
 1614:   wior = IOR(1);
 1615: }
 1616: 
 1617: delete-file	( c_addr u -- wior )		file	delete_file
 1618: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1619: 
 1620: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1621: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1622: char *s1=tilde_cstr(c_addr2, u2, 1);
 1623: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1624: 
 1625: file-position	( wfileid -- ud wior )	file	file_position
 1626: /* !! use tell and lseek? */
 1627: ud = LONG2UD(ftell((FILE *)wfileid));
 1628: wior = IOR(UD2LONG(ud)==-1);
 1629: 
 1630: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1631: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1632: 
 1633: file-size	( wfileid -- ud wior )	file	file_size
 1634: struct stat buf;
 1635: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1636: ud = LONG2UD(buf.st_size);
 1637: 
 1638: resize-file	( ud wfileid -- wior )	file	resize_file
 1639: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1640: 
 1641: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1642: /* !! fread does not guarantee enough */
 1643: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1644: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1645: /* !! is the value of ferror errno-compatible? */
 1646: if (wior)
 1647:   clearerr((FILE *)wfileid);
 1648: 
 1649: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1650: #if 1
 1651: Cell c;
 1652: flag=-1;
 1653: for(u2=0; u2<u1; u2++)
 1654: {
 1655:    c = getc((FILE *)wfileid);
 1656:    if (c=='\n') break;
 1657:    if (c=='\r') {
 1658:      if ((c = getc((FILE *)wfileid))!='\n')
 1659:        ungetc(c,(FILE *)wfileid);
 1660:      break;
 1661:    }
 1662:    if (c==EOF) {
 1663: 	flag=FLAG(u2!=0);
 1664: 	break;
 1665:      }
 1666:    c_addr[u2] = (Char)c;
 1667: }
 1668: wior=FILEIO(ferror((FILE *)wfileid));
 1669: #else
 1670: if ((flag=FLAG(!feof((FILE *)wfileid) &&
 1671: 	       fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {
 1672:   wior=FILEIO(ferror((FILE *)wfileid)!=0); /* !! ior? */
 1673:   if (wior)
 1674:     clearerr((FILE *)wfileid);
 1675:   u2 = strlen(c_addr);
 1676:   u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));
 1677: }
 1678: else {
 1679:   wior=0;
 1680:   u2=0;
 1681: }
 1682: #endif
 1683: 
 1684: \+
 1685: 
 1686: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1687: /* !! fwrite does not guarantee enough */
 1688: #ifdef HAS_FILE
 1689: {
 1690:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1691:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1692:   if (wior)
 1693:     clearerr((FILE *)wfileid);
 1694: }
 1695: #else
 1696: TYPE(c_addr, u1);
 1697: #endif
 1698: 
 1699: emit-file	( c wfileid -- wior )	gforth	emit_file
 1700: #ifdef HAS_FILE
 1701: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1702: if (wior)
 1703:   clearerr((FILE *)wfileid);
 1704: #else
 1705: PUTC(c);
 1706: #endif
 1707: 
 1708: \+file
 1709: 
 1710: flush-file	( wfileid -- wior )		file-ext	flush_file
 1711: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1712: 
 1713: file-status	( c_addr u -- ntype wior )	file-ext	file_status
 1714: char *filename=tilde_cstr(c_addr, u, 1);
 1715: if (access (filename, F_OK) != 0) {
 1716:   ntype=0;
 1717:   wior=IOR(1);
 1718: }
 1719: else if (access (filename, R_OK | W_OK) == 0) {
 1720:   ntype=2; /* r/w */
 1721:   wior=0;
 1722: }
 1723: else if (access (filename, R_OK) == 0) {
 1724:   ntype=0; /* r/o */
 1725:   wior=0;
 1726: }
 1727: else if (access (filename, W_OK) == 0) {
 1728:   ntype=4; /* w/o */
 1729:   wior=0;
 1730: }
 1731: else {
 1732:   ntype=1; /* well, we cannot access the file, but better deliver a legal
 1733: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1734:   wior=0;
 1735: }
 1736: 
 1737: \+
 1738: \+floating
 1739: 
 1740: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1741: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1742: 
 1743: d>f	( d -- r )		float	d_to_f
 1744: #ifdef BUGGY_LONG_LONG
 1745: extern double ldexp(double x, int exp);
 1746: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1747: #else
 1748: r = d;
 1749: #endif
 1750: 
 1751: f>d	( r -- d )		float	f_to_d
 1752: #ifdef BUGGY_LONG_LONG
 1753: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1754: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1755: #else
 1756: d = r;
 1757: #endif
 1758: 
 1759: f!	( r f_addr -- )	float	f_store
 1760: ""Store @i{r} into the float at address @i{f-addr}.""
 1761: *f_addr = r;
 1762: 
 1763: f@	( f_addr -- r )	float	f_fetch
 1764: ""@i{r} is the float at address @i{f-addr}.""
 1765: r = *f_addr;
 1766: 
 1767: df@	( df_addr -- r )	float-ext	d_f_fetch
 1768: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1769: #ifdef IEEE_FP
 1770: r = *df_addr;
 1771: #else
 1772: !! df@
 1773: #endif
 1774: 
 1775: df!	( r df_addr -- )	float-ext	d_f_store
 1776: ""Store @i{r} as double-precision IEEE floating-point value to the
 1777: address @i{df-addr}.""
 1778: #ifdef IEEE_FP
 1779: *df_addr = r;
 1780: #else
 1781: !! df!
 1782: #endif
 1783: 
 1784: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1785: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1786: #ifdef IEEE_FP
 1787: r = *sf_addr;
 1788: #else
 1789: !! sf@
 1790: #endif
 1791: 
 1792: sf!	( r sf_addr -- )	float-ext	s_f_store
 1793: ""Store @i{r} as single-precision IEEE floating-point value to the
 1794: address @i{sf-addr}.""
 1795: #ifdef IEEE_FP
 1796: *sf_addr = r;
 1797: #else
 1798: !! sf!
 1799: #endif
 1800: 
 1801: f+	( r1 r2 -- r3 )	float	f_plus
 1802: r3 = r1+r2;
 1803: 
 1804: f-	( r1 r2 -- r3 )	float	f_minus
 1805: r3 = r1-r2;
 1806: 
 1807: f*	( r1 r2 -- r3 )	float	f_star
 1808: r3 = r1*r2;
 1809: 
 1810: f/	( r1 r2 -- r3 )	float	f_slash
 1811: r3 = r1/r2;
 1812: 
 1813: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1814: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1815: r3 = pow(r1,r2);
 1816: 
 1817: fnegate	( r1 -- r2 )	float	f_negate
 1818: r2 = - r1;
 1819: 
 1820: fdrop	( r -- )		float	f_drop
 1821: 
 1822: fdup	( r -- r r )	float	f_dupe
 1823: 
 1824: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1825: 
 1826: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1827: 
 1828: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1829: 
 1830: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1831: 
 1832: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1833: 
 1834: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1835: ""@code{1 floats +}.""
 1836: f_addr2 = f_addr1+1;
 1837: 
 1838: floats	( n1 -- n2 )	float
 1839: ""@i{n2} is the number of address units of @i{n1} floats.""
 1840: n2 = n1*sizeof(Float);
 1841: 
 1842: floor	( r1 -- r2 )	float
 1843: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1844: /* !! unclear wording */
 1845: r2 = floor(r1);
 1846: 
 1847: fround	( r1 -- r2 )	float	f_round
 1848: ""Round to the nearest integral value.""
 1849: /* !! unclear wording */
 1850: #ifdef HAVE_RINT
 1851: r2 = rint(r1);
 1852: #else
 1853: r2 = floor(r1+0.5);
 1854: /* !! This is not quite true to the rounding rules given in the standard */
 1855: #endif
 1856: 
 1857: fmax	( r1 r2 -- r3 )	float	f_max
 1858: if (r1<r2)
 1859:   r3 = r2;
 1860: else
 1861:   r3 = r1;
 1862: 
 1863: fmin	( r1 r2 -- r3 )	float	f_min
 1864: if (r1<r2)
 1865:   r3 = r1;
 1866: else
 1867:   r3 = r2;
 1868: 
 1869: represent	( r c_addr u -- n f1 f2 )	float
 1870: char *sig;
 1871: int flag;
 1872: int decpt;
 1873: sig=ecvt(r, u, &decpt, &flag);
 1874: n=(r==0 ? 1 : decpt);
 1875: f1=FLAG(flag!=0);
 1876: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1877: memmove(c_addr,sig,u);
 1878: 
 1879: >float	( c_addr u -- flag )	float	to_float
 1880: ""Attempt to convert the character string @i{c-addr u} to
 1881: internal floating-point representation. If the string
 1882: represents a valid floating-point number @i{r} is placed
 1883: on the floating-point stack and @i{flag} is true. Otherwise,
 1884: @i{flag} is false. A string of blanks is a special case
 1885: and represents the floating-point number 0.""
 1886: /* real signature: c_addr u -- r t / f */
 1887: Float r;
 1888: char *number=cstr(c_addr, u, 1);
 1889: char *endconv;
 1890: int sign = 0;
 1891: if(number[0]=='-') {
 1892:    sign = 1;
 1893:    number++;
 1894:    u--;
 1895: }
 1896: while(isspace((unsigned)(number[--u])) && u>0);
 1897: switch(number[u])
 1898: {
 1899:    case 'd':
 1900:    case 'D':
 1901:    case 'e':
 1902:    case 'E':  break;
 1903:    default :  u++; break;
 1904: }
 1905: number[u]='\0';
 1906: r=strtod(number,&endconv);
 1907: if((flag=FLAG(!(Cell)*endconv)))
 1908: {
 1909:    IF_FTOS(fp[0] = FTOS);
 1910:    fp += -1;
 1911:    FTOS = sign ? -r : r;
 1912: }
 1913: else if(*endconv=='d' || *endconv=='D')
 1914: {
 1915:    *endconv='E';
 1916:    r=strtod(number,&endconv);
 1917:    if((flag=FLAG(!(Cell)*endconv)))
 1918:      {
 1919: 	IF_FTOS(fp[0] = FTOS);
 1920: 	fp += -1;
 1921: 	FTOS = sign ? -r : r;
 1922:      }
 1923: }
 1924: 
 1925: fabs	( r1 -- r2 )	float-ext	f_abs
 1926: r2 = fabs(r1);
 1927: 
 1928: facos	( r1 -- r2 )	float-ext	f_a_cos
 1929: r2 = acos(r1);
 1930: 
 1931: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1932: r2 = asin(r1);
 1933: 
 1934: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1935: r2 = atan(r1);
 1936: 
 1937: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1938: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1939: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1940: r3 = atan2(r1,r2);
 1941: 
 1942: fcos	( r1 -- r2 )	float-ext	f_cos
 1943: r2 = cos(r1);
 1944: 
 1945: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1946: r2 = exp(r1);
 1947: 
 1948: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1949: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1950: #ifdef HAVE_EXPM1
 1951: extern double
 1952: #ifdef NeXT
 1953:               const
 1954: #endif
 1955:                     expm1(double);
 1956: r2 = expm1(r1);
 1957: #else
 1958: r2 = exp(r1)-1.;
 1959: #endif
 1960: 
 1961: fln	( r1 -- r2 )	float-ext	f_l_n
 1962: r2 = log(r1);
 1963: 
 1964: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1965: ""@i{r2}=ln(@i{r1}+1)""
 1966: #ifdef HAVE_LOG1P
 1967: extern double
 1968: #ifdef NeXT
 1969:               const
 1970: #endif
 1971:                     log1p(double);
 1972: r2 = log1p(r1);
 1973: #else
 1974: r2 = log(r1+1.);
 1975: #endif
 1976: 
 1977: flog	( r1 -- r2 )	float-ext	f_log
 1978: ""The decimal logarithm.""
 1979: r2 = log10(r1);
 1980: 
 1981: falog	( r1 -- r2 )	float-ext	f_a_log
 1982: ""@i{r2}=10**@i{r1}""
 1983: extern double pow10(double);
 1984: r2 = pow10(r1);
 1985: 
 1986: fsin	( r1 -- r2 )	float-ext	f_sine
 1987: r2 = sin(r1);
 1988: 
 1989: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1990: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1991: r2 = sin(r1);
 1992: r3 = cos(r1);
 1993: 
 1994: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1995: r2 = sqrt(r1);
 1996: 
 1997: ftan	( r1 -- r2 )	float-ext	f_tan
 1998: r2 = tan(r1);
 1999: :
 2000:  fsincos f/ ;
 2001: 
 2002: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2003: r2 = sinh(r1);
 2004: :
 2005:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2006: 
 2007: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2008: r2 = cosh(r1);
 2009: :
 2010:  fexp fdup 1/f f+ f2/ ;
 2011: 
 2012: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2013: r2 = tanh(r1);
 2014: :
 2015:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2016: 
 2017: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2018: r2 = asinh(r1);
 2019: :
 2020:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2021: 
 2022: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2023: r2 = acosh(r1);
 2024: :
 2025:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2026: 
 2027: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2028: r2 = atanh(r1);
 2029: :
 2030:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2031:  r> IF  fnegate  THEN ;
 2032: 
 2033: sfloats	( n1 -- n2 )	float-ext	s_floats
 2034: ""@i{n2} is the number of address units of @i{n1}
 2035: single-precision IEEE floating-point numbers.""
 2036: n2 = n1*sizeof(SFloat);
 2037: 
 2038: dfloats	( n1 -- n2 )	float-ext	d_floats
 2039: ""@i{n2} is the number of address units of @i{n1}
 2040: double-precision IEEE floating-point numbers.""
 2041: n2 = n1*sizeof(DFloat);
 2042: 
 2043: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2044: ""@i{sf-addr} is the first single-float-aligned address greater
 2045: than or equal to @i{c-addr}.""
 2046: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2047: :
 2048:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2049: 
 2050: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2051: ""@i{df-addr} is the first double-float-aligned address greater
 2052: than or equal to @i{c-addr}.""
 2053: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2054: :
 2055:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2056: 
 2057: \ The following words access machine/OS/installation-dependent
 2058: \   Gforth internals
 2059: \ !! how about environmental queries DIRECT-THREADED,
 2060: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2061: 
 2062: \ local variable implementation primitives
 2063: \+
 2064: \+glocals
 2065: 
 2066: @local#	( -- w )	gforth	fetch_local_number
 2067: w = *(Cell *)(lp+(Cell)NEXT_INST);
 2068: INC_IP(1);
 2069: 
 2070: @local0	( -- w )	new	fetch_local_zero
 2071: w = *(Cell *)(lp+0*sizeof(Cell));
 2072: 
 2073: @local1	( -- w )	new	fetch_local_four
 2074: w = *(Cell *)(lp+1*sizeof(Cell));
 2075: 
 2076: @local2	( -- w )	new	fetch_local_eight
 2077: w = *(Cell *)(lp+2*sizeof(Cell));
 2078: 
 2079: @local3	( -- w )	new	fetch_local_twelve
 2080: w = *(Cell *)(lp+3*sizeof(Cell));
 2081: 
 2082: \+floating
 2083: 
 2084: f@local#	( -- r )	gforth	f_fetch_local_number
 2085: r = *(Float *)(lp+(Cell)NEXT_INST);
 2086: INC_IP(1);
 2087: 
 2088: f@local0	( -- r )	new	f_fetch_local_zero
 2089: r = *(Float *)(lp+0*sizeof(Float));
 2090: 
 2091: f@local1	( -- r )	new	f_fetch_local_eight
 2092: r = *(Float *)(lp+1*sizeof(Float));
 2093: 
 2094: \+
 2095: 
 2096: laddr#	( -- c_addr )	gforth	laddr_number
 2097: /* this can also be used to implement lp@ */
 2098: c_addr = (Char *)(lp+(Cell)NEXT_INST);
 2099: INC_IP(1);
 2100: 
 2101: lp+!#	( -- )	gforth	lp_plus_store_number
 2102: ""used with negative immediate values it allocates memory on the
 2103: local stack, a positive immediate argument drops memory from the local
 2104: stack""
 2105: lp += (Cell)NEXT_INST;
 2106: INC_IP(1);
 2107: 
 2108: lp-	( -- )	new	minus_four_lp_plus_store
 2109: lp += -sizeof(Cell);
 2110: 
 2111: lp+	( -- )	new	eight_lp_plus_store
 2112: lp += sizeof(Float);
 2113: 
 2114: lp+2	( -- )	new	sixteen_lp_plus_store
 2115: lp += 2*sizeof(Float);
 2116: 
 2117: lp!	( c_addr -- )	gforth	lp_store
 2118: lp = (Address)c_addr;
 2119: 
 2120: >l	( w -- )	gforth	to_l
 2121: lp -= sizeof(Cell);
 2122: *(Cell *)lp = w;
 2123: 
 2124: \+floating
 2125: 
 2126: f>l	( r -- )	gforth	f_to_l
 2127: lp -= sizeof(Float);
 2128: *(Float *)lp = r;
 2129: 
 2130: fpick	( u -- r )		gforth
 2131: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2132: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2133: :
 2134:  floats fp@ + f@ ;
 2135: 
 2136: \+
 2137: \+
 2138: 
 2139: \+OS
 2140: 
 2141: define(`uploop',
 2142:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2143: define(`_uploop',
 2144:        `ifelse($1, `$3', `$5',
 2145: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2146: \ argflist(argnum): Forth argument list
 2147: define(argflist,
 2148:        `ifelse($1, 0, `',
 2149:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2150: \ argdlist(argnum): declare C's arguments
 2151: define(argdlist,
 2152:        `ifelse($1, 0, `',
 2153:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2154: \ argclist(argnum): pass C's arguments
 2155: define(argclist,
 2156:        `ifelse($1, 0, `',
 2157:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2158: \ icall(argnum)
 2159: define(icall,
 2160: `icall$1	( argflist($1)u -- uret )	gforth
 2161: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2162: 
 2163: ')
 2164: define(fcall,
 2165: `fcall$1	( argflist($1)u -- rret )	gforth
 2166: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2167: 
 2168: ')
 2169: 
 2170: \ close ' to keep fontify happy
 2171: 
 2172: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2173: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2174: #ifndef RTLD_GLOBAL
 2175: #define RTLD_GLOBAL 0
 2176: #endif
 2177: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2178: #else
 2179: #  ifdef _WIN32
 2180: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2181: #  else
 2182: #warning Define open-lib!
 2183: u2 = 0;
 2184: #  endif
 2185: #endif
 2186: 
 2187: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2188: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2189: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2190: #else
 2191: #  ifdef _WIN32
 2192: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2193: #  else
 2194: #warning Define lib-sym!
 2195: u3 = 0;
 2196: #  endif
 2197: #endif
 2198: 
 2199: uploop(i, 0, 7, `icall(i)')
 2200: icall(20)
 2201: uploop(i, 0, 7, `fcall(i)')
 2202: fcall(20)
 2203: 
 2204: \+
 2205: 
 2206: up!	( a_addr -- )	gforth	up_store
 2207: UP=up=(char *)a_addr;
 2208: :
 2209:  up ! ;
 2210: Variable UP
 2211: 
 2212: wcall	( u -- )	gforth
 2213: IF_FTOS(fp[0]=FTOS);
 2214: FP=fp;
 2215: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2216: fp=FP;
 2217: IF_TOS(TOS=sp[0];)
 2218: IF_FTOS(FTOS=fp[0]);
 2219: 
 2220: \+file
 2221: 
 2222: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2223: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2224: wior =  IOR(wdirid == 0);
 2225: 
 2226: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2227: struct dirent * dent;
 2228: dent = readdir((DIR *)wdirid);
 2229: wior = 0;
 2230: flag = -1;
 2231: if(dent == NULL) {
 2232:   u2 = 0;
 2233:   flag = 0;
 2234: } else {
 2235:   u2 = strlen(dent->d_name);
 2236:   if(u2 > u1)
 2237:     u2 = u1;
 2238:   memmove(c_addr, dent->d_name, u2);
 2239: }
 2240: 
 2241: close-dir	( wdirid -- wior )	gforth	close_dir
 2242: wior = IOR(closedir((DIR *)wdirid));
 2243: 
 2244: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2245: char * string = cstr(c_addr1, u1, 1);
 2246: char * pattern = cstr(c_addr2, u2, 0);
 2247: flag = FLAG(!fnmatch(pattern, string, 0));
 2248: 
 2249: \+
 2250: 
 2251: newline	( -- c_addr u )	gforth
 2252: ""String containing the newline sequence of the host OS""
 2253: char newline[] = {
 2254: #ifdef unix
 2255: '\n'
 2256: #else
 2257: '\r','\n'
 2258: #endif
 2259: };
 2260: c_addr=newline;
 2261: u=sizeof(newline);
 2262: :
 2263:  "newline count ;
 2264: Create "newline 1 c, $0A c,
 2265: 
 2266: utime	( -- dtime )	gforth
 2267: ""Report the current time in microseconds since some epoch.""
 2268: struct timeval time1;
 2269: gettimeofday(&time1,NULL);
 2270: dtime = timeval2us(&time1);
 2271: 
 2272: cputime ( -- duser dsystem ) gforth
 2273: ""duser and dsystem are the respective user- and system-level CPU
 2274: times used since the start of the Forth system (excluding child
 2275: processes), in microseconds (the granularity may be much larger,
 2276: however).  On platforms without the getrusage call, it reports elapsed
 2277: time (since some epoch) for duser and 0 for dsystem.""
 2278: #ifdef HAVE_GETRUSAGE
 2279: struct rusage usage;
 2280: getrusage(RUSAGE_SELF, &usage);
 2281: duser = timeval2us(&usage.ru_utime);
 2282: dsystem = timeval2us(&usage.ru_stime);
 2283: #else
 2284: struct timeval time1;
 2285: gettimeofday(&time1,NULL);
 2286: duser = timeval2us(&time1);
 2287: dsystem = (DCell)0;
 2288: #endif
 2289: 
 2290: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2291: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2292: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2293: ucount elements.""
 2294: for (r=0.; ucount>0; ucount--) {
 2295:   r += *f_addr1 * *f_addr2;
 2296:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2297:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2298: }
 2299: 
 2300: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2301: ""vy=ra*vx+vy""
 2302: for (; ucount>0; ucount--) {
 2303:   *f_y += ra * *f_x;
 2304:   f_x = (Float *)(((Address)f_x)+nstridex);
 2305:   f_y = (Float *)(((Address)f_y)+nstridey);
 2306: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>