File:  [gforth] / gforth / prim
Revision 1.261: download - view: text, annotated - select for diffs
Fri Dec 2 21:59:09 2011 UTC (12 years, 3 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
clock_gettime fixed when not available

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006,2007,2008,2009,2010 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation, either version 3
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program. If not, see http://www.gnu.org/licenses/.
   19: 
   20: 
   21: \ WARNING: This file is processed by m4. Make sure your identifiers
   22: \ don't collide with m4's (e.g. by undefining them).
   23: \ 
   24: \ 
   25: \ 
   26: \ This file contains primitive specifications in the following format:
   27: \ 
   28: \ forth name	( stack effect )	category	[pronunciation]
   29: \ [""glossary entry""]
   30: \ C code
   31: \ [:
   32: \ Forth code]
   33: \ 
   34: \ Note: Fields in brackets are optional.  Word specifications have to
   35: \ be separated by at least one empty line
   36: \
   37: \ Both pronounciation and stack items (in the stack effect) must
   38: \ conform to the C identifier syntax or the C compiler will complain.
   39: \ If you don't have a pronounciation field, the Forth name is used,
   40: \ and has to conform to the C identifier syntax.
   41: \ 
   42: \ These specifications are automatically translated into C-code for the
   43: \ interpreter and into some other files. I hope that your C compiler has
   44: \ decent optimization, otherwise the automatically generated code will
   45: \ be somewhat slow. The Forth version of the code is included for manual
   46: \ compilers, so they will need to compile only the important words.
   47: \ 
   48: \ Note that stack pointer adjustment is performed according to stack
   49: \ effect by automatically generated code and NEXT is automatically
   50: \ appended to the C code. Also, you can use the names in the stack
   51: \ effect in the C code. Stack access is automatic. One exception: if
   52: \ your code does not fall through, the results are not stored into the
   53: \ stack. Use different names on both sides of the '--', if you change a
   54: \ value (some stores to the stack are optimized away).
   55: \
   56: \ For superinstructions the syntax is:
   57: \
   58: \ forth-name [/ c-name] = forth-name forth-name ...
   59: \
   60: \ 
   61: \ The stack variables have the following types:
   62: \ 
   63: \ name matches	type
   64: \ f.*		Bool
   65: \ c.*		Char
   66: \ [nw].*	Cell
   67: \ u.*		UCell
   68: \ d.*		DCell
   69: \ ud.*		UDCell
   70: \ r.*		Float
   71: \ a_.*		Cell *
   72: \ c_.*		Char *
   73: \ f_.*		Float *
   74: \ df_.*		DFloat *
   75: \ sf_.*		SFloat *
   76: \ xt.*		XT
   77: \ f83name.*	F83Name *
   78: 
   79: \E stack data-stack   sp Cell
   80: \E stack fp-stack     fp Float
   81: \E stack return-stack rp Cell
   82: \E
   83: \E get-current prefixes set-current
   84: \E 
   85: \E s" Bool"		single data-stack type-prefix f
   86: \E s" Char"		single data-stack type-prefix c
   87: \E s" Cell"		single data-stack type-prefix n
   88: \E s" Cell"		single data-stack type-prefix w
   89: \E s" UCell"		single data-stack type-prefix u
   90: \E s" DCell"		double data-stack type-prefix d
   91: \E s" UDCell"		double data-stack type-prefix ud
   92: \E s" Float"		single fp-stack   type-prefix r
   93: \E s" Cell *"		single data-stack type-prefix a_
   94: \E s" Char *"		single data-stack type-prefix c_
   95: \E s" Float *"		single data-stack type-prefix f_
   96: \E s" DFloat *"		single data-stack type-prefix df_
   97: \E s" SFloat *"		single data-stack type-prefix sf_
   98: \E s" Xt"		single data-stack type-prefix xt
   99: \E s" struct F83Name *"	single data-stack type-prefix f83name
  100: \E s" struct Longname *" single data-stack type-prefix longname
  101: \E 
  102: \E data-stack   stack-prefix S:
  103: \E fp-stack     stack-prefix F:
  104: \E return-stack stack-prefix R:
  105: \E inst-stream  stack-prefix #
  106: \E 
  107: \E set-current
  108: \E store-optimization on
  109: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  110: \E
  111: \E `include-skipped-insts' on \ static superinsts include cells for components
  112: \E                            \ useful for dynamic programming and
  113: \E                            \ superinsts across entry points
  114: 
  115: \ 
  116: \ 
  117: \ 
  118: \ In addition the following names can be used:
  119: \ ip	the instruction pointer
  120: \ sp	the data stack pointer
  121: \ rp	the parameter stack pointer
  122: \ lp	the locals stack pointer
  123: \ NEXT	executes NEXT
  124: \ cfa	
  125: \ NEXT1	executes NEXT1
  126: \ FLAG(x)	makes a Forth flag from a C flag
  127: \ 
  128: \ 
  129: \ 
  130: \ Percentages in comments are from Koopmans book: average/maximum use
  131: \ (taken from four, not very representative benchmarks)
  132: \ 
  133: \ 
  134: \ 
  135: \ To do:
  136: \ 
  137: \ throw execute, cfa and NEXT1 out?
  138: \ macroize *ip, ip++, *ip++ (pipelining)?
  139: 
  140: \ Stack caching setup
  141: 
  142: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  143: 
  144: \ these m4 macros would collide with identifiers
  145: undefine(`index')
  146: undefine(`shift')
  147: undefine(`symbols')
  148: 
  149: \F 0 [if]
  150: 
  151: \ run-time routines for non-primitives.  They are defined as
  152: \ primitives, because that simplifies things.
  153: 
  154: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  155: ""run-time routine for colon definitions""
  156: #ifdef NO_IP
  157: a_retaddr = next_code;
  158: INST_TAIL;
  159: goto **(Label *)PFA(CFA);
  160: #else /* !defined(NO_IP) */
  161: a_retaddr = (Cell *)IP;
  162: SET_IP((Xt *)PFA(CFA));
  163: #endif /* !defined(NO_IP) */
  164: 
  165: (docon) ( -- w )	gforth-internal	paren_docon
  166: ""run-time routine for constants""
  167: w = *(Cell *)PFA(CFA);
  168: #ifdef NO_IP
  169: INST_TAIL;
  170: goto *next_code;
  171: #endif /* defined(NO_IP) */
  172: 
  173: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  174: ""run-time routine for variables and CREATEd words""
  175: a_body = PFA(CFA);
  176: #ifdef NO_IP
  177: INST_TAIL;
  178: goto *next_code;
  179: #endif /* defined(NO_IP) */
  180: 
  181: (douser) ( -- a_user )	gforth-internal	paren_douser
  182: ""run-time routine for constants""
  183: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  184: #ifdef NO_IP
  185: INST_TAIL;
  186: goto *next_code;
  187: #endif /* defined(NO_IP) */
  188: 
  189: (dodefer) ( -- )	gforth-internal	paren_dodefer
  190: ""run-time routine for deferred words""
  191: #ifndef NO_IP
  192: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  193: #endif /* !defined(NO_IP) */
  194: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  195: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  196: 
  197: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  198: ""run-time routine for fields""
  199: n2 = n1 + *(Cell *)PFA(CFA);
  200: #ifdef NO_IP
  201: INST_TAIL;
  202: goto *next_code;
  203: #endif /* defined(NO_IP) */
  204: 
  205: (dovalue) ( -- w )	gforth-internal	paren_doval
  206: ""run-time routine for constants""
  207: w = *(Cell *)PFA(CFA);
  208: #ifdef NO_IP
  209: INST_TAIL;
  210: goto *next_code;
  211: #endif /* defined(NO_IP) */
  212: 
  213: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  214: ""run-time routine for @code{does>}-defined words""
  215: #ifdef NO_IP
  216: a_retaddr = next_code;
  217: a_body = PFA(CFA);
  218: INST_TAIL;
  219: #ifdef DEBUG
  220: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  221: #endif
  222: goto **(Label *)DOES_CODE1(CFA);
  223: #else /* !defined(NO_IP) */
  224: a_retaddr = (Cell *)IP;
  225: a_body = PFA(CFA);
  226: #ifdef DEBUG
  227: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  228: #endif
  229: SET_IP(DOES_CODE1(CFA));
  230: #endif /* !defined(NO_IP) */
  231: 
  232: (doabicode) ( ... -- ...)	gforth-internal	paren_doabicode
  233: ""run-time routine for @code{ABI-code} definitions""
  234: abifunc *f = (abifunc *)PFA(CFA);
  235: Float *fp_mem = fp;
  236: sp = (*f)(sp, &fp_mem);
  237: fp = fp_mem;
  238: #ifdef NO_IP
  239: INST_TAIL;
  240: goto *next_code;
  241: #endif /* defined(NO_IP) */
  242: 
  243: (do;abicode) ( ... -- ... ) gforth-internal paren_do_semicolon_abi_code
  244: ""run-time routine for @code{;abi-code}-defined words""
  245: Float *fp_mem = fp;
  246: Address body = (Address)PFA(CFA);
  247: semiabifunc *f = (semiabifunc *)DOES_CODE1(CFA);
  248: sp = (*f)(sp, &fp_mem, body);
  249: fp = fp_mem;
  250: #ifdef NO_IP
  251: INST_TAIL;
  252: goto *next_code;
  253: #endif /* defined(NO_IP) */
  254: 
  255: \F [endif]
  256: 
  257: \g control
  258: 
  259: noop	( -- )		gforth
  260: :
  261:  ;
  262: 
  263: call	( #a_callee -- R:a_retaddr )	new
  264: ""Call callee (a variant of docol with inline argument).""
  265: #ifdef NO_IP
  266: assert(0);
  267: INST_TAIL;
  268: JUMP(a_callee);
  269: #else
  270: #ifdef DEBUG
  271:     {
  272:       CFA_TO_NAME((((Cell *)a_callee)-2));
  273:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  274: 	      len,name);
  275:     }
  276: #endif
  277: a_retaddr = (Cell *)IP;
  278: SET_IP((Xt *)a_callee);
  279: #endif
  280: 
  281: execute	( xt -- )		core
  282: ""Perform the semantics represented by the execution token, @i{xt}.""
  283: #ifdef DEBUG
  284: fprintf(stderr, "execute %08x\n", xt);
  285: #endif
  286: #ifndef NO_IP
  287: ip=IP;
  288: #endif
  289: SUPER_END;
  290: VM_JUMP(EXEC1(xt));
  291: 
  292: perform	( a_addr -- )	gforth
  293: ""@code{@@ execute}.""
  294: /* and pfe */
  295: #ifndef NO_IP
  296: ip=IP;
  297: #endif
  298: SUPER_END;
  299: VM_JUMP(EXEC1(*(Xt *)a_addr));
  300: :
  301:  @ execute ;
  302: 
  303: ;s	( R:w -- )		gforth	semis
  304: ""The primitive compiled by @code{EXIT}.""
  305: #ifdef NO_IP
  306: INST_TAIL;
  307: goto *(void *)w;
  308: #else
  309: SET_IP((Xt *)w);
  310: #endif
  311: 
  312: unloop	( R:w1 R:w2 -- )	core
  313: /* !! alias for 2rdrop */
  314: :
  315:  r> rdrop rdrop >r ;
  316: 
  317: lit-perform	( #a_addr -- )	new	lit_perform
  318: #ifndef NO_IP
  319: ip=IP;
  320: #endif
  321: SUPER_END;
  322: VM_JUMP(EXEC1(*(Xt *)a_addr));
  323: 
  324: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  325: #ifdef NO_IP
  326: /* compiled to LIT CALL by compile_prim */
  327: assert(0);
  328: #else
  329: a_pfa = PFA(a_cfa);
  330: nest = (Cell)IP;
  331: #ifdef DEBUG
  332:     {
  333:       CFA_TO_NAME(a_cfa);
  334:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  335: 	      (Cell)ip,(Cell)a_cfa,len,name);
  336:     }
  337: #endif
  338: SET_IP(DOES_CODE1(a_cfa));
  339: #endif
  340: 
  341: \+glocals
  342: 
  343: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  344: /* this will probably not be used */
  345: lp += nlocals;
  346: #ifdef NO_IP
  347: INST_TAIL;
  348: JUMP(a_target);
  349: #else
  350: SET_IP((Xt *)a_target);
  351: #endif
  352: 
  353: \+
  354: 
  355: branch	( #a_target -- )	gforth
  356: #ifdef NO_IP
  357: INST_TAIL;
  358: JUMP(a_target);
  359: #else
  360: SET_IP((Xt *)a_target);
  361: #endif
  362: :
  363:  r> @ >r ;
  364: 
  365: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  366: \ this is non-syntactical: code must open a brace that is closed by the macro
  367: define(condbranch,
  368: $1 ( `#'a_target $2 ) $3
  369: $4	#ifdef NO_IP
  370: INST_TAIL;
  371: #endif
  372: $5	#ifdef NO_IP
  373: JUMP(a_target);
  374: #else
  375: SET_IP((Xt *)a_target);
  376: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  377: #endif
  378: }
  379: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  380: $6
  381: 
  382: \+glocals
  383: 
  384: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  385: $4	#ifdef NO_IP
  386: INST_TAIL;
  387: #endif
  388: $5	lp += nlocals;
  389: #ifdef NO_IP
  390: JUMP(a_target);
  391: #else
  392: SET_IP((Xt *)a_target);
  393: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  394: #endif
  395: }
  396: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  397: 
  398: \+
  399: )
  400: 
  401: condbranch(?branch,f --,f83	question_branch,
  402: ,if (f==0) {
  403: ,:
  404:  0= dup 0=          \ !f f
  405:  r> tuck cell+      \ !f branchoffset f IP+
  406:  and -rot @ and or  \ f&IP+|!f&branch
  407:  >r ;)
  408: 
  409: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  410: \ is only used in if's (yet)
  411: 
  412: \+xconds
  413: 
  414: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  415: ""The run-time procedure compiled by @code{?DUP-IF}.""
  416: if (f==0) {
  417: #ifdef NO_IP
  418: INST_TAIL;
  419: JUMP(a_target);
  420: #else
  421: SET_IP((Xt *)a_target);
  422: #endif
  423: } else {
  424: sp--;
  425: sp[0]=f;
  426: }
  427: 
  428: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  429: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  430: if (f!=0) {
  431:   sp--;
  432:   sp[0]=f;
  433: #ifdef NO_IP
  434:   JUMP(a_target);
  435: #else
  436:   SET_IP((Xt *)a_target);
  437: #endif
  438: }
  439: 
  440: \+
  441: \fhas? skiploopprims 0= [IF]
  442: 
  443: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  444: n2=n1-1;
  445: ,if (n1) {
  446: ,:
  447:  r> r> dup 1- >r
  448:  IF @ >r ELSE cell+ >r THEN ;)
  449: 
  450: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  451: n2=n1+1;
  452: ,if (n2 != nlimit) {
  453: ,:
  454:  r> r> 1+ r> 2dup =
  455:  IF >r 1- >r cell+ >r
  456:  ELSE >r >r @ >r THEN ;)
  457: 
  458: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  459: /* !! check this thoroughly */
  460: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  461: /* dependent upon two's complement arithmetic */
  462: Cell olddiff = n1-nlimit;
  463: n2=n1+n;	
  464: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  465:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  466:     >=0) { /* & is used to avoid having two branches for gforth-native */
  467: ,:
  468:  r> swap
  469:  r> r> 2dup - >r
  470:  2 pick r@ + r@ xor 0< 0=
  471:  3 pick r> xor 0< 0= or
  472:  IF    >r + >r @ >r
  473:  ELSE  >r >r drop cell+ >r THEN ;)
  474: 
  475: \+xconds
  476: 
  477: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  478: UCell olddiff = n1-nlimit;
  479: n2=n1-u;
  480: ,if (olddiff>u) {
  481: ,)
  482: 
  483: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  484: ""The run-time procedure compiled by S+LOOP. It loops until the index
  485: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  486: version of (+LOOP).""
  487: /* !! check this thoroughly */
  488: Cell diff = n1-nlimit;
  489: Cell newdiff = diff+n;
  490: if (n<0) {
  491:     diff = -diff;
  492:     newdiff = -newdiff;
  493: }
  494: n2=n1+n;
  495: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  496: ,)
  497: 
  498: \+
  499: 
  500: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  501: /* or (for) = >r -- collides with unloop! */
  502: nlimit=0;
  503: :
  504:  r> swap 0 >r >r >r ;
  505: 
  506: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  507: :
  508:  r> swap rot >r >r >r ;
  509: 
  510: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  511: #ifdef NO_IP
  512:     INST_TAIL;
  513: #endif
  514: if (nstart == nlimit) {
  515: #ifdef NO_IP
  516:     JUMP(a_target);
  517: #else
  518:     SET_IP((Xt *)a_target);
  519: #endif
  520: }
  521: :
  522:   2dup =
  523:   IF   r> swap rot >r >r
  524:        @ >r
  525:   ELSE r> swap rot >r >r
  526:        cell+ >r
  527:   THEN ;				\ --> CORE-EXT
  528: 
  529: \+xconds
  530: 
  531: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  532: #ifdef NO_IP
  533:     INST_TAIL;
  534: #endif
  535: if (nstart >= nlimit) {
  536: #ifdef NO_IP
  537:     JUMP(a_target);
  538: #else
  539:     SET_IP((Xt *)a_target);
  540: #endif
  541: }
  542: :
  543:  swap 2dup
  544:  r> swap >r swap >r
  545:  >=
  546:  IF
  547:      @
  548:  ELSE
  549:      cell+
  550:  THEN  >r ;
  551: 
  552: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  553: #ifdef NO_IP
  554:     INST_TAIL;
  555: #endif
  556: if (ustart >= ulimit) {
  557: #ifdef NO_IP
  558: JUMP(a_target);
  559: #else
  560: SET_IP((Xt *)a_target);
  561: #endif
  562: }
  563: :
  564:  swap 2dup
  565:  r> swap >r swap >r
  566:  u>=
  567:  IF
  568:      @
  569:  ELSE
  570:      cell+
  571:  THEN  >r ;
  572: 
  573: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  574: #ifdef NO_IP
  575:     INST_TAIL;
  576: #endif
  577: if (nstart <= nlimit) {
  578: #ifdef NO_IP
  579: JUMP(a_target);
  580: #else
  581: SET_IP((Xt *)a_target);
  582: #endif
  583: }
  584: :
  585:  swap 2dup
  586:  r> swap >r swap >r
  587:  <=
  588:  IF
  589:      @
  590:  ELSE
  591:      cell+
  592:  THEN  >r ;
  593: 
  594: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  595: #ifdef NO_IP
  596:     INST_TAIL;
  597: #endif
  598: if (ustart <= ulimit) {
  599: #ifdef NO_IP
  600: JUMP(a_target);
  601: #else
  602: SET_IP((Xt *)a_target);
  603: #endif
  604: }
  605: :
  606:  swap 2dup
  607:  r> swap >r swap >r
  608:  u<=
  609:  IF
  610:      @
  611:  ELSE
  612:      cell+
  613:  THEN  >r ;
  614: 
  615: (try1)	( ... a_oldhandler a_recovery -- R:a_recovery R:a_sp R:f_fp R:c_lp R:a_oldhandler a_newhandler ) gforth paren_try1
  616: a_sp = sp-1;
  617: f_fp = fp;
  618: c_lp = lp;
  619: a_newhandler = rp-5;
  620: 
  621: (throw1) ( ... wball a_handler -- ... wball ) gforth paren_throw1
  622: rp = a_handler;
  623: lp = (Address)rp[1];
  624: fp = (Float *)rp[2];
  625: sp = (Cell *)rp[3];
  626: #ifndef NO_IP
  627: ip=IP;
  628: #endif
  629: SUPER_END;
  630: VM_JUMP(EXEC1(*(Xt *)rp[4]));
  631:   
  632: 
  633: \+
  634: 
  635: \ don't make any assumptions where the return stack is!!
  636: \ implement this in machine code if it should run quickly!
  637: 
  638: i	( R:n -- R:n n )		core
  639: :
  640: \ rp@ cell+ @ ;
  641:   r> r> tuck >r >r ;
  642: 
  643: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  644: :
  645: \ rp@ cell+ cell+ @ ;
  646:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  647: variable itmp
  648: 
  649: j	( R:w R:w1 R:w2 -- w R:w R:w1 R:w2 )	core
  650: :
  651: \ rp@ cell+ cell+ cell+ @ ;
  652:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  653: [IFUNDEF] itmp variable itmp [THEN]
  654: 
  655: k	( R:w R:w1 R:w2 R:w3 R:w4 -- w R:w R:w1 R:w2 R:w3 R:w4 )	gforth
  656: :
  657: \ rp@ [ 5 cells ] Literal + @ ;
  658:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  659: [IFUNDEF] itmp variable itmp [THEN]
  660: 
  661: \f[THEN]
  662: 
  663: \ digit is high-level: 0/0%
  664: 
  665: \g strings
  666: 
  667: move	( c_from c_to ucount -- )		core
  668: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  669: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  670: /* !! note that the standard specifies addr, not c-addr */
  671: memmove(c_to,c_from,ucount);
  672: /* make an Ifdef for bsd and others? */
  673: :
  674:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  675: 
  676: cmove	( c_from c_to u -- )	string	c_move
  677: ""Copy the contents of @i{ucount} characters from data space at
  678: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  679: from low address to high address; i.e., for overlapping areas it is
  680: safe if @i{c-to}=<@i{c-from}.""
  681: cmove(c_from,c_to,u);
  682: :
  683:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  684: 
  685: cmove>	( c_from c_to u -- )	string	c_move_up
  686: ""Copy the contents of @i{ucount} characters from data space at
  687: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  688: from high address to low address; i.e., for overlapping areas it is
  689: safe if @i{c-to}>=@i{c-from}.""
  690: cmove_up(c_from,c_to,u);
  691: :
  692:  dup 0= IF  drop 2drop exit  THEN
  693:  rot over + -rot bounds swap 1-
  694:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  695: 
  696: fill	( c_addr u c -- )	core
  697: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  698: memset(c_addr,c,u);
  699: :
  700:  -rot bounds
  701:  ?DO  dup I c!  LOOP  drop ;
  702: 
  703: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  704: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  705: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  706: is 1. Currently this is based on the machine's character
  707: comparison. In the future, this may change to consider the current
  708: locale and its collation order.""
  709: /* close ' to keep fontify happy */ 
  710: n = compare(c_addr1, u1, c_addr2, u2);
  711: :
  712:  rot 2dup swap - >r min swap -text dup
  713:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  714: : -text ( c_addr1 u c_addr2 -- n )
  715:  swap bounds
  716:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  717:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  718: : sgn ( n -- -1/0/1 )
  719:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  720: 
  721: \ -text is only used by replaced primitives now; move it elsewhere
  722: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  723: \ n = memcmp(c_addr1, c_addr2, u);
  724: \ if (n<0)
  725: \   n = -1;
  726: \ else if (n>0)
  727: \   n = 1;
  728: \ :
  729: \  swap bounds
  730: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  731: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  732: \ : sgn ( n -- -1/0/1 )
  733: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  734: 
  735: toupper	( c1 -- c2 )	gforth
  736: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  737: is the equivalent upper-case character. All other characters are unchanged.""
  738: c2 = toupper(c1);
  739: :
  740:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  741: 
  742: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	gforth
  743: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  744: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  745: is 1. Currently this is based on the machine's character
  746: comparison. In the future, this may change to consider the current
  747: locale and its collation order.""
  748: /* close ' to keep fontify happy */ 
  749: n = capscompare(c_addr1, u1, c_addr2, u2);
  750: 
  751: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  752: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  753: characters from the start of the string.""
  754: c_addr2 = c_addr1+n;
  755: u2 = u1-n;
  756: :
  757:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  758: 
  759: \g arith
  760: 
  761: lit	( #w -- w )		gforth
  762: :
  763:  r> dup @ swap cell+ >r ;
  764: 
  765: +	( n1 n2 -- n )		core	plus
  766: n = n1+n2;
  767: 
  768: \ lit+ / lit_plus = lit +
  769: 
  770: lit+	( n1 #n2 -- n )		new	lit_plus
  771: #ifdef DEBUG
  772: fprintf(stderr, "lit+ %08x\n", n2);
  773: #endif
  774: n=n1+n2;
  775: 
  776: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  777: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  778: ""add @i{n3} to @i{n1} (giving @i{n})""
  779: n = n1+n3;
  780: :
  781:  rot + swap ;
  782: 
  783: -	( n1 n2 -- n )		core	minus
  784: n = n1-n2;
  785: :
  786:  negate + ;
  787: 
  788: negate	( n1 -- n2 )		core
  789: /* use minus as alias */
  790: n2 = -n1;
  791: :
  792:  invert 1+ ;
  793: 
  794: 1+	( n1 -- n2 )		core		one_plus
  795: n2 = n1+1;
  796: :
  797:  1 + ;
  798: 
  799: 1-	( n1 -- n2 )		core		one_minus
  800: n2 = n1-1;
  801: :
  802:  1 - ;
  803: 
  804: max	( n1 n2 -- n )	core
  805: if (n1<n2)
  806:   n = n2;
  807: else
  808:   n = n1;
  809: :
  810:  2dup < IF swap THEN drop ;
  811: 
  812: min	( n1 n2 -- n )	core
  813: if (n1<n2)
  814:   n = n1;
  815: else
  816:   n = n2;
  817: :
  818:  2dup > IF swap THEN drop ;
  819: 
  820: abs	( n -- u )	core
  821: if (n<0)
  822:   u = -n;
  823: else
  824:   u = n;
  825: :
  826:  dup 0< IF negate THEN ;
  827: 
  828: *	( n1 n2 -- n )		core	star
  829: n = n1*n2;
  830: :
  831:  um* drop ;
  832: 
  833: /	( n1 n2 -- n )		core	slash
  834: n = n1/n2;
  835: if (CHECK_DIVISION_SW && n2 == 0)
  836:   throw(BALL_DIVZERO);
  837: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  838:   throw(BALL_RESULTRANGE);
  839: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  840:   n--;
  841: :
  842:  /mod nip ;
  843: 
  844: mod	( n1 n2 -- n )		core
  845: n = n1%n2;
  846: if (CHECK_DIVISION_SW && n2 == 0)
  847:   throw(BALL_DIVZERO);
  848: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  849:   throw(BALL_RESULTRANGE);
  850: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  851: :
  852:  /mod drop ;
  853: 
  854: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  855: n4 = n1/n2;
  856: n3 = n1%n2; /* !! is this correct? look into C standard! */
  857: if (CHECK_DIVISION_SW && n2 == 0)
  858:   throw(BALL_DIVZERO);
  859: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  860:   throw(BALL_RESULTRANGE);
  861: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  862:   n4--;
  863:   n3+=n2;
  864: }
  865: :
  866:  >r s>d r> fm/mod ;
  867: 
  868: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  869: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  870: #ifdef BUGGY_LL_MUL
  871: DCell d = mmul(n1,n2);
  872: #else
  873: DCell d = (DCell)n1 * (DCell)n2;
  874: #endif
  875: #ifdef ASM_SM_SLASH_REM
  876: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  877: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  878:   if (CHECK_DIVISION && n5 == CELL_MIN)
  879:     throw(BALL_RESULTRANGE);
  880:   n5--;
  881:   n4+=n3;
  882: }
  883: #else
  884: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  885: n4=DHI(r);
  886: n5=DLO(r);
  887: #endif
  888: :
  889:  >r m* r> fm/mod ;
  890: 
  891: */	( n1 n2 n3 -- n4 )	core	star_slash
  892: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  893: #ifdef BUGGY_LL_MUL
  894: DCell d = mmul(n1,n2);
  895: #else
  896: DCell d = (DCell)n1 * (DCell)n2;
  897: #endif
  898: #ifdef ASM_SM_SLASH_REM
  899: Cell remainder;
  900: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  901: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  902:   if (CHECK_DIVISION && n4 == CELL_MIN)
  903:     throw(BALL_RESULTRANGE);
  904:   n4--;
  905: }
  906: #else
  907: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  908: n4=DLO(r);
  909: #endif
  910: :
  911:  */mod nip ;
  912: 
  913: 2*	( n1 -- n2 )		core		two_star
  914: ""Shift left by 1; also works on unsigned numbers""
  915: n2 = 2*n1;
  916: :
  917:  dup + ;
  918: 
  919: 2/	( n1 -- n2 )		core		two_slash
  920: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  921: division by 2 (note that @code{/} not necessarily floors).""
  922: n2 = n1>>1;
  923: :
  924:  dup MINI and IF 1 ELSE 0 THEN
  925:  [ bits/char cell * 1- ] literal 
  926:  0 DO 2* swap dup 2* >r MINI and 
  927:      IF 1 ELSE 0 THEN or r> swap
  928:  LOOP nip ;
  929: 
  930: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  931: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  932: #ifdef ASM_SM_SLASH_REM
  933: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  934: if (((DHI(d1)^n1)<0) && n2!=0) {
  935:   if (CHECK_DIVISION && n3 == CELL_MIN)
  936:     throw(BALL_RESULTRANGE);
  937:   n3--;
  938:   n2+=n1;
  939: }
  940: #else /* !defined(ASM_SM_SLASH_REM) */
  941: DCell r = fmdiv(d1,n1);
  942: n2=DHI(r);
  943: n3=DLO(r);
  944: #endif /* !defined(ASM_SM_SLASH_REM) */
  945: :
  946:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  947:  over       0< IF  tuck + swap  THEN
  948:  um/mod
  949:  r> 0< IF  swap negate swap  THEN ;
  950: 
  951: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  952: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  953: #ifdef ASM_SM_SLASH_REM
  954: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  955: #else /* !defined(ASM_SM_SLASH_REM) */
  956: DCell r = smdiv(d1,n1);
  957: n2=DHI(r);
  958: n3=DLO(r);
  959: #endif /* !defined(ASM_SM_SLASH_REM) */
  960: :
  961:  over >r dup >r abs -rot
  962:  dabs rot um/mod
  963:  r> r@ xor 0< IF       negate       THEN
  964:  r>        0< IF  swap negate swap  THEN ;
  965: 
  966: m*	( n1 n2 -- d )		core	m_star
  967: #ifdef BUGGY_LL_MUL
  968: d = mmul(n1,n2);
  969: #else
  970: d = (DCell)n1 * (DCell)n2;
  971: #endif
  972: :
  973:  2dup      0< and >r
  974:  2dup swap 0< and >r
  975:  um* r> - r> - ;
  976: 
  977: um*	( u1 u2 -- ud )		core	u_m_star
  978: /* use u* as alias */
  979: #ifdef BUGGY_LL_MUL
  980: ud = ummul(u1,u2);
  981: #else
  982: ud = (UDCell)u1 * (UDCell)u2;
  983: #endif
  984: :
  985:    0 -rot dup [ 8 cells ] literal -
  986:    DO
  987: 	dup 0< I' and d2*+ drop
  988:    LOOP ;
  989: : d2*+ ( ud n -- ud+n c )
  990:    over MINI
  991:    and >r >r 2dup d+ swap r> + swap r> ;
  992: 
  993: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  994: ""ud=u3*u1+u2, u1>u2>=0""
  995: #ifdef ASM_UM_SLASH_MOD
  996: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  997: #else /* !defined(ASM_UM_SLASH_MOD) */
  998: UDCell r = umdiv(ud,u1);
  999: u2=DHI(r);
 1000: u3=DLO(r);
 1001: #endif /* !defined(ASM_UM_SLASH_MOD) */
 1002: :
 1003:    0 swap [ 8 cells 1 + ] literal 0
 1004:    ?DO /modstep
 1005:    LOOP drop swap 1 rshift or swap ;
 1006: : /modstep ( ud c R: u -- ud-?u c R: u )
 1007:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
 1008: : d2*+ ( ud n -- ud+n c )
 1009:    over MINI
 1010:    and >r >r 2dup d+ swap r> + swap r> ;
 1011: 
 1012: m+	( d1 n -- d2 )		double		m_plus
 1013: #ifdef BUGGY_LL_ADD
 1014: DLO_IS(d2, DLO(d1)+n);
 1015: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1016: #else
 1017: d2 = d1+n;
 1018: #endif
 1019: :
 1020:  s>d d+ ;
 1021: 
 1022: d+	( d1 d2 -- d )		double	d_plus
 1023: #ifdef BUGGY_LL_ADD
 1024: DLO_IS(d, DLO(d1) + DLO(d2));
 1025: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1026: #else
 1027: d = d1+d2;
 1028: #endif
 1029: :
 1030:  rot + >r tuck + swap over u> r> swap - ;
 1031: 
 1032: d-	( d1 d2 -- d )		double		d_minus
 1033: #ifdef BUGGY_LL_ADD
 1034: DLO_IS(d, DLO(d1) - DLO(d2));
 1035: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1036: #else
 1037: d = d1-d2;
 1038: #endif
 1039: :
 1040:  dnegate d+ ;
 1041: 
 1042: dnegate	( d1 -- d2 )		double	d_negate
 1043: /* use dminus as alias */
 1044: #ifdef BUGGY_LL_ADD
 1045: d2 = dnegate(d1);
 1046: #else
 1047: d2 = -d1;
 1048: #endif
 1049: :
 1050:  invert swap negate tuck 0= - ;
 1051: 
 1052: d2*	( d1 -- d2 )		double		d_two_star
 1053: ""Shift left by 1; also works on unsigned numbers""
 1054: d2 = DLSHIFT(d1,1);
 1055: :
 1056:  2dup d+ ;
 1057: 
 1058: d2/	( d1 -- d2 )		double		d_two_slash
 1059: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1060: division by 2.""
 1061: #ifdef BUGGY_LL_SHIFT
 1062: DHI_IS(d2, DHI(d1)>>1);
 1063: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1064: #else
 1065: d2 = d1>>1;
 1066: #endif
 1067: :
 1068:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1069:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1070: 
 1071: and	( w1 w2 -- w )		core
 1072: w = w1&w2;
 1073: 
 1074: or	( w1 w2 -- w )		core
 1075: w = w1|w2;
 1076: :
 1077:  invert swap invert and invert ;
 1078: 
 1079: xor	( w1 w2 -- w )		core	x_or
 1080: w = w1^w2;
 1081: 
 1082: invert	( w1 -- w2 )		core
 1083: w2 = ~w1;
 1084: :
 1085:  MAXU xor ;
 1086: 
 1087: rshift	( u1 n -- u2 )		core	r_shift
 1088: ""Logical shift right by @i{n} bits.""
 1089: #ifdef BROKEN_SHIFT
 1090:   u2 = rshift(u1, n);
 1091: #else
 1092:   u2 = u1 >> n;
 1093: #endif
 1094: :
 1095:     0 ?DO 2/ MAXI and LOOP ;
 1096: 
 1097: lshift	( u1 n -- u2 )		core	l_shift
 1098: #ifdef BROKEN_SHIFT
 1099:   u2 = lshift(u1, n);
 1100: #else
 1101:   u2 = u1 << n;
 1102: #endif
 1103: :
 1104:     0 ?DO 2* LOOP ;
 1105: 
 1106: \g compare
 1107: 
 1108: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1109: define(comparisons,
 1110: $1=	( $2 -- f )		$6	$3equals
 1111: f = FLAG($4==$5);
 1112: :
 1113:     [ char $1x char 0 = [IF]
 1114: 	] IF false ELSE true THEN [
 1115:     [ELSE]
 1116: 	] xor 0= [
 1117:     [THEN] ] ;
 1118: 
 1119: $1<>	( $2 -- f )		$7	$3not_equals
 1120: f = FLAG($4!=$5);
 1121: :
 1122:     [ char $1x char 0 = [IF]
 1123: 	] IF true ELSE false THEN [
 1124:     [ELSE]
 1125: 	] xor 0<> [
 1126:     [THEN] ] ;
 1127: 
 1128: $1<	( $2 -- f )		$8	$3less_than
 1129: f = FLAG($4<$5);
 1130: :
 1131:     [ char $1x char 0 = [IF]
 1132: 	] MINI and 0<> [
 1133:     [ELSE] char $1x char u = [IF]
 1134: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1135: 	[ELSE]
 1136: 	    ] MINI xor >r MINI xor r> u< [
 1137: 	[THEN]
 1138:     [THEN] ] ;
 1139: 
 1140: $1>	( $2 -- f )		$9	$3greater_than
 1141: f = FLAG($4>$5);
 1142: :
 1143:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1144:     $1< ;
 1145: 
 1146: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1147: f = FLAG($4<=$5);
 1148: :
 1149:     $1> 0= ;
 1150: 
 1151: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1152: f = FLAG($4>=$5);
 1153: :
 1154:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1155:     $1<= ;
 1156: 
 1157: )
 1158: 
 1159: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1160: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1161: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1162: 
 1163: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1164: define(dcomparisons,
 1165: $1=	( $2 -- f )		$6	$3equals
 1166: #ifdef BUGGY_LL_CMP
 1167: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1168: #else
 1169: f = FLAG($4==$5);
 1170: #endif
 1171: 
 1172: $1<>	( $2 -- f )		$7	$3not_equals
 1173: #ifdef BUGGY_LL_CMP
 1174: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1175: #else
 1176: f = FLAG($4!=$5);
 1177: #endif
 1178: 
 1179: $1<	( $2 -- f )		$8	$3less_than
 1180: #ifdef BUGGY_LL_CMP
 1181: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1182: #else
 1183: f = FLAG($4<$5);
 1184: #endif
 1185: 
 1186: $1>	( $2 -- f )		$9	$3greater_than
 1187: #ifdef BUGGY_LL_CMP
 1188: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1189: #else
 1190: f = FLAG($4>$5);
 1191: #endif
 1192: 
 1193: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1194: #ifdef BUGGY_LL_CMP
 1195: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1196: #else
 1197: f = FLAG($4<=$5);
 1198: #endif
 1199: 
 1200: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1201: #ifdef BUGGY_LL_CMP
 1202: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1203: #else
 1204: f = FLAG($4>=$5);
 1205: #endif
 1206: 
 1207: )
 1208: 
 1209: \+dcomps
 1210: 
 1211: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1212: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1213: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1214: 
 1215: \+
 1216: 
 1217: within	( u1 u2 u3 -- f )		core-ext
 1218: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1219: unsigned and signed numbers (but not a mixture).  Another way to think
 1220: about this word is to consider the numbers as a circle (wrapping
 1221: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1222: min-n for signed numbers); now consider the range from u2 towards
 1223: increasing numbers up to and excluding u3 (giving an empty range if
 1224: u2=u3); if u1 is in this range, @code{within} returns true.""
 1225: f = FLAG(u1-u2 < u3-u2);
 1226: :
 1227:  over - >r - r> u< ;
 1228: 
 1229: \g stack
 1230: 
 1231: useraddr	( #u -- a_addr )	new
 1232: a_addr = (Cell *)(up+u);
 1233: 
 1234: up!	( a_addr -- )	gforth	up_store
 1235: gforth_UP=up=(Address)a_addr;
 1236: :
 1237:  up ! ;
 1238: Variable UP
 1239: 
 1240: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1241: a_addr = sp;
 1242: 
 1243: sp!	( a_addr -- S:... )		gforth		sp_store
 1244: sp = a_addr;
 1245: 
 1246: rp@	( -- a_addr )		gforth		rp_fetch
 1247: a_addr = rp;
 1248: 
 1249: rp!	( a_addr -- )		gforth		rp_store
 1250: rp = a_addr;
 1251: 
 1252: \+floating
 1253: 
 1254: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1255: f_addr = fp;
 1256: 
 1257: fp!	( f_addr -- f:... )	gforth	fp_store
 1258: fp = f_addr;
 1259: 
 1260: \+
 1261: 
 1262: >r	( w -- R:w )		core	to_r
 1263: :
 1264:  (>r) ;
 1265: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1266: 
 1267: r>	( R:w -- w )		core	r_from
 1268: :
 1269:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1270: Create (rdrop) ' ;s A,
 1271: 
 1272: rdrop	( R:w -- )		gforth
 1273: :
 1274:  r> r> drop >r ;
 1275: 
 1276: 2>r	( d -- R:d )	core-ext	two_to_r
 1277: :
 1278:  swap r> swap >r swap >r >r ;
 1279: 
 1280: 2r>	( R:d -- d )	core-ext	two_r_from
 1281: :
 1282:  r> r> swap r> swap >r swap ;
 1283: 
 1284: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1285: :
 1286:  i' j ;
 1287: 
 1288: 2rdrop	( R:d -- )		gforth	two_r_drop
 1289: :
 1290:  r> r> drop r> drop >r ;
 1291: 
 1292: over	( w1 w2 -- w1 w2 w1 )		core
 1293: :
 1294:  sp@ cell+ @ ;
 1295: 
 1296: drop	( w -- )		core
 1297: :
 1298:  IF THEN ;
 1299: 
 1300: swap	( w1 w2 -- w2 w1 )		core
 1301: :
 1302:  >r (swap) ! r> (swap) @ ;
 1303: Variable (swap)
 1304: 
 1305: dup	( w -- w w )		core	dupe
 1306: :
 1307:  sp@ @ ;
 1308: 
 1309: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1310: :
 1311: [ defined? (swap) [IF] ]
 1312:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1313: Variable (rot)
 1314: [ELSE] ]
 1315:     >r swap r> swap ;
 1316: [THEN]
 1317: 
 1318: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1319: :
 1320:  rot rot ;
 1321: 
 1322: nip	( w1 w2 -- w2 )		core-ext
 1323: :
 1324:  swap drop ;
 1325: 
 1326: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1327: :
 1328:  swap over ;
 1329: 
 1330: ?dup	( w -- S:... w )	core	question_dupe
 1331: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1332: @code{dup} if w is nonzero.""
 1333: if (w!=0) {
 1334:   *--sp = w;
 1335: }
 1336: :
 1337:  dup IF dup THEN ;
 1338: 
 1339: pick	( S:... u -- S:... w )		core-ext
 1340: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1341: w = sp[u];
 1342: :
 1343:  1+ cells sp@ + @ ;
 1344: 
 1345: 2drop	( w1 w2 -- )		core	two_drop
 1346: :
 1347:  drop drop ;
 1348: 
 1349: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1350: :
 1351:  over over ;
 1352: 
 1353: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1354: :
 1355:  3 pick 3 pick ;
 1356: 
 1357: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1358: :
 1359:  rot >r rot r> ;
 1360: 
 1361: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1362: :
 1363:  >r >r 2swap r> r> 2swap ;
 1364: 
 1365: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1366: :
 1367:  2swap 2drop ;
 1368: 
 1369: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1370: :
 1371:  2swap 2over ;
 1372: 
 1373: \ toggle is high-level: 0.11/0.42%
 1374: 
 1375: \g memory
 1376: 
 1377: @	( a_addr -- w )		core	fetch
 1378: ""@i{w} is the cell stored at @i{a_addr}.""
 1379: w = *a_addr;
 1380: 
 1381: \ lit@ / lit_fetch = lit @
 1382: 
 1383: lit@		( #a_addr -- w ) new	lit_fetch
 1384: w = *a_addr;
 1385: 
 1386: !	( w a_addr -- )		core	store
 1387: ""Store @i{w} into the cell at @i{a-addr}.""
 1388: *a_addr = w;
 1389: 
 1390: +!	( n a_addr -- )		core	plus_store
 1391: ""Add @i{n} to the cell at @i{a-addr}.""
 1392: *a_addr += n;
 1393: :
 1394:  tuck @ + swap ! ;
 1395: 
 1396: c@	( c_addr -- c )		core	c_fetch
 1397: ""@i{c} is the char stored at @i{c_addr}.""
 1398: c = *c_addr;
 1399: :
 1400: [ bigendian [IF] ]
 1401:     [ cell>bit 4 = [IF] ]
 1402: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1403: 	IF  $FF and  ELSE  8>>  THEN  ;
 1404:     [ [ELSE] ]
 1405: 	dup [ cell 1- ] literal and
 1406: 	tuck - @ swap [ cell 1- ] literal xor
 1407:  	0 ?DO 8>> LOOP $FF and
 1408:     [ [THEN] ]
 1409: [ [ELSE] ]
 1410:     [ cell>bit 4 = [IF] ]
 1411: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1412: 	IF  8>>  ELSE  $FF and  THEN
 1413:     [ [ELSE] ]
 1414: 	dup [ cell  1- ] literal and 
 1415: 	tuck - @ swap
 1416: 	0 ?DO 8>> LOOP 255 and
 1417:     [ [THEN] ]
 1418: [ [THEN] ]
 1419: ;
 1420: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1421: 
 1422: c!	( c c_addr -- )		core	c_store
 1423: ""Store @i{c} into the char at @i{c-addr}.""
 1424: *c_addr = c;
 1425: :
 1426: [ bigendian [IF] ]
 1427:     [ cell>bit 4 = [IF] ]
 1428: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1429: 	dup -2 and @ over 1 and cells masks + @ and
 1430: 	r> or swap -2 and ! ;
 1431: 	Create masks $00FF , $FF00 ,
 1432:     [ELSE] ]
 1433: 	dup [ cell 1- ] literal and dup 
 1434: 	[ cell 1- ] literal xor >r
 1435: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1436: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1437:     [THEN]
 1438: [ELSE] ]
 1439:     [ cell>bit 4 = [IF] ]
 1440: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1441: 	dup -2 and @ over 1 and cells masks + @ and
 1442: 	r> or swap -2 and ! ;
 1443: 	Create masks $FF00 , $00FF ,
 1444:     [ELSE] ]
 1445: 	dup [ cell 1- ] literal and dup >r
 1446: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1447: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1448:     [THEN]
 1449: [THEN]
 1450: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1451: 
 1452: 2!	( w1 w2 a_addr -- )		core	two_store
 1453: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1454: a_addr[0] = w2;
 1455: a_addr[1] = w1;
 1456: :
 1457:  tuck ! cell+ ! ;
 1458: 
 1459: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1460: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1461: the content of the next cell.""
 1462: w2 = a_addr[0];
 1463: w1 = a_addr[1];
 1464: :
 1465:  dup cell+ @ swap @ ;
 1466: 
 1467: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1468: ""@code{1 cells +}""
 1469: a_addr2 = a_addr1+1;
 1470: :
 1471:  cell + ;
 1472: 
 1473: cells	( n1 -- n2 )		core
 1474: "" @i{n2} is the number of address units of @i{n1} cells.""
 1475: n2 = n1 * sizeof(Cell);
 1476: :
 1477:  [ cell
 1478:  2/ dup [IF] ] 2* [ [THEN]
 1479:  2/ dup [IF] ] 2* [ [THEN]
 1480:  2/ dup [IF] ] 2* [ [THEN]
 1481:  2/ dup [IF] ] 2* [ [THEN]
 1482:  drop ] ;
 1483: 
 1484: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1485: ""@code{1 chars +}.""
 1486: c_addr2 = c_addr1 + 1;
 1487: :
 1488:  1+ ;
 1489: 
 1490: (chars)	( n1 -- n2 )	gforth	paren_chars
 1491: n2 = n1 * sizeof(Char);
 1492: :
 1493:  ;
 1494: 
 1495: count	( c_addr1 -- c_addr2 u )	core
 1496: ""@i{c-addr2} is the first character and @i{u} the length of the
 1497: counted string at @i{c-addr1}.""
 1498: u = *c_addr1;
 1499: c_addr2 = c_addr1+1;
 1500: :
 1501:  dup 1+ swap c@ ;
 1502: 
 1503: \g compiler
 1504: 
 1505: \+f83headerstring
 1506: 
 1507: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1508: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1509:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1510:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1511:     break;
 1512: f83name2=f83name1;
 1513: #ifdef DEBUG
 1514: fprintf(stderr, "F83find ");
 1515: fwrite(c_addr, u, 1, stderr);
 1516: fprintf(stderr, " found %08x\n", f83name2); 
 1517: #endif
 1518: :
 1519:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1520: 	>r 2dup r@ cell+ char+ capscomp  0=
 1521: 	IF  2drop r>  EXIT  THEN
 1522: 	r> @
 1523:     REPEAT  THEN  nip nip ;
 1524: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1525:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1526: : capscomp ( c_addr1 u c_addr2 -- n )
 1527:  swap bounds
 1528:  ?DO  dup c@ I c@ <>
 1529:      IF  dup c@ toupper I c@ toupper =
 1530:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1531:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1532: : sgn ( n -- -1/0/1 )
 1533:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1534: 
 1535: \-
 1536: 
 1537: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1538: longname2=listlfind(c_addr, u, longname1);
 1539: :
 1540:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1541: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1542: 	IF  2drop r>  EXIT  THEN
 1543: 	r> @
 1544:     REPEAT  THEN  nip nip ;
 1545: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1546:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1547: : capscomp ( c_addr1 u c_addr2 -- n )
 1548:  swap bounds
 1549:  ?DO  dup c@ I c@ <>
 1550:      IF  dup c@ toupper I c@ toupper =
 1551:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1552:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1553: : sgn ( n -- -1/0/1 )
 1554:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1555: 
 1556: \+hash
 1557: 
 1558: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1559: longname2 = hashlfind(c_addr, u, a_addr);
 1560: :
 1561:  BEGIN  dup  WHILE
 1562:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1563:         IF  2dup r@ cell+ cell+ capscomp 0=
 1564: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1565: 	rdrop r>
 1566:  REPEAT nip nip ;
 1567: 
 1568: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1569: ""A case-sensitive variant of @code{(hashfind)}""
 1570: longname2 = tablelfind(c_addr, u, a_addr);
 1571: :
 1572:  BEGIN  dup  WHILE
 1573:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1574:         IF  2dup r@ cell+ cell+ -text 0=
 1575: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1576: 	rdrop r>
 1577:  REPEAT nip nip ;
 1578: : -text ( c_addr1 u c_addr2 -- n )
 1579:  swap bounds
 1580:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1581:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1582: : sgn ( n -- -1/0/1 )
 1583:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1584: 
 1585: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1586: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1587: ukey = hashkey1(c_addr, u, ubits);
 1588: :
 1589:  dup rot-values + c@ over 1 swap lshift 1- >r
 1590:  tuck - 2swap r> 0 2swap bounds
 1591:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1592:       I c@ toupper xor
 1593:       over and  LOOP
 1594:  nip nip nip ;
 1595: Create rot-values
 1596:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1597:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1598:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1599:   7 c, 5 c, 5 c,
 1600: 
 1601: \+
 1602: 
 1603: \+
 1604: 
 1605: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1606: struct Cellpair r=parse_white(c_addr1, u1);
 1607: c_addr2 = (Char *)(r.n1);
 1608: u2 = r.n2;
 1609: :
 1610:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1611:  REPEAT  THEN  2dup
 1612:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1613:  REPEAT  THEN  nip - ;
 1614: 
 1615: aligned	( c_addr -- a_addr )	core
 1616: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1617: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1618: :
 1619:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1620: 
 1621: faligned	( c_addr -- f_addr )	float	f_aligned
 1622: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1623: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1624: :
 1625:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1626: 
 1627: \ threading stuff is currently only interesting if we have a compiler
 1628: \fhas? standardthreading has? compiler and [IF]
 1629: threading-method	( -- n )	gforth	threading_method
 1630: ""0 if the engine is direct threaded. Note that this may change during
 1631: the lifetime of an image.""
 1632: #if defined(DOUBLY_INDIRECT)
 1633: n=2;
 1634: #else
 1635: # if defined(DIRECT_THREADED)
 1636: n=0;
 1637: # else
 1638: n=1;
 1639: # endif
 1640: #endif
 1641: :
 1642:  1 ;
 1643: 
 1644: \f[THEN]
 1645: 
 1646: \g hostos
 1647: 
 1648: key-file	( wfileid -- c )		gforth	paren_key_file
 1649: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1650: buffering for @i{wfileid}.  If you want to read characters from a
 1651: terminal in non-canonical (raw) mode, you have to put the terminal in
 1652: non-canonical mode yourself (using the C interface); the exception is
 1653: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1654: #ifdef HAS_FILE
 1655: fflush(stdout);
 1656: c = key((FILE*)wfileid);
 1657: #else
 1658: c = key(stdin);
 1659: #endif
 1660: 
 1661: key?-file	( wfileid -- f )	        gforth	key_q_file
 1662: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1663: without blocking.  If you also want to use @code{read-file} or
 1664: @code{read-line} on the file, you have to call @code{key?-file} or
 1665: @code{key-file} first (these two words disable buffering).""
 1666: #ifdef HAS_FILE
 1667: fflush(stdout);
 1668: f = key_query((FILE*)wfileid);
 1669: #else
 1670: f = key_query(stdin);
 1671: #endif
 1672: 
 1673: stdin	( -- wfileid )	gforth
 1674: ""The standard input file of the Gforth process.""
 1675: wfileid = (Cell)stdin;
 1676: 
 1677: stdout	( -- wfileid )	gforth
 1678: ""The standard output file of the Gforth process.""
 1679: wfileid = (Cell)stdout;
 1680: 
 1681: stderr	( -- wfileid )	gforth
 1682: ""The standard error output file of the Gforth process.""
 1683: wfileid = (Cell)stderr;
 1684: 
 1685: \+os
 1686: 
 1687: form	( -- urows ucols )	gforth
 1688: ""The number of lines and columns in the terminal. These numbers may
 1689: change with the window size.  Note that it depends on the OS whether
 1690: this reflects the actual size and changes with the window size
 1691: (currently only on Unix-like OSs).  On other OSs you just get a
 1692: default, and can tell Gforth the terminal size by setting the
 1693: environment variables @code{COLUMNS} and @code{LINES} before starting
 1694: Gforth.""
 1695: /* we could block SIGWINCH here to get a consistent size, but I don't
 1696:  think this is necessary or always beneficial */
 1697: urows=rows;
 1698: ucols=cols;
 1699: 
 1700: wcwidth	( u -- n )	gforth
 1701: ""The number of fixed-width characters per unicode character u""
 1702: #ifdef HAVE_WCWIDTH
 1703: n = wcwidth(u);
 1704: #else
 1705: n = 1;
 1706: #endif
 1707: 
 1708: flush-icache	( c_addr u -- )	gforth	flush_icache
 1709: ""Make sure that the instruction cache of the processor (if there is
 1710: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1711: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1712: automatically. Caveat: @code{flush-icache} might not work on your
 1713: installation; this is usually the case if direct threading is not
 1714: supported on your machine (take a look at your @file{machine.h}) and
 1715: your machine has a separate instruction cache. In such cases,
 1716: @code{flush-icache} does nothing instead of flushing the instruction
 1717: cache.""
 1718: FLUSH_ICACHE((caddr_t)c_addr,u);
 1719: 
 1720: (bye)	( n -- )	gforth	paren_bye
 1721: SUPER_END;
 1722: return (Label *)n;
 1723: 
 1724: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1725: wretval = gforth_system(c_addr, u);  
 1726: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1727: 
 1728: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1729: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1730: is the host operating system's expansion of that environment variable. If the
 1731: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1732: in length.""
 1733: /* close ' to keep fontify happy */
 1734: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1735: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1736: 
 1737: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1738: fflush(stdout);
 1739: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1740: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1741: 
 1742: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1743: wretval = pclose((FILE *)wfileid);
 1744: wior = IOR(wretval==-1);
 1745: 
 1746: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1747: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1748: Months are numbered from 1.""
 1749: #if 1
 1750: time_t now;
 1751: struct tm *ltime;
 1752: time(&now);
 1753: ltime=localtime(&now);
 1754: #else
 1755: struct timeval time1;
 1756: struct timezone zone1;
 1757: struct tm *ltime;
 1758: gettimeofday(&time1,&zone1);
 1759: /* !! Single Unix specification: 
 1760:    If tzp is not a null pointer, the behaviour is unspecified. */
 1761: ltime=localtime((time_t *)&time1.tv_sec);
 1762: #endif
 1763: nyear =ltime->tm_year+1900;
 1764: nmonth=ltime->tm_mon+1;
 1765: nday  =ltime->tm_mday;
 1766: nhour =ltime->tm_hour;
 1767: nmin  =ltime->tm_min;
 1768: nsec  =ltime->tm_sec;
 1769: 
 1770: ms	( u -- )	facility-ext
 1771: ""Wait at least @i{n} milli-second.""
 1772: gforth_ms(u);
 1773: 
 1774: allocate	( u -- a_addr wior )	memory
 1775: ""Allocate @i{u} address units of contiguous data space. The initial
 1776: contents of the data space is undefined. If the allocation is successful,
 1777: @i{a-addr} is the start address of the allocated region and @i{wior}
 1778: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1779: is a non-zero I/O result code.""
 1780: a_addr = (Cell *)malloc(u?u:1);
 1781: wior = IOR(a_addr==NULL);
 1782: 
 1783: free	( a_addr -- wior )		memory
 1784: ""Return the region of data space starting at @i{a-addr} to the system.
 1785: The region must originally have been obtained using @code{allocate} or
 1786: @code{resize}. If the operational is successful, @i{wior} is 0.
 1787: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1788: free(a_addr);
 1789: wior = 0;
 1790: 
 1791: resize	( a_addr1 u -- a_addr2 wior )	memory
 1792: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1793: address units, possibly moving the contents to a different
 1794: area. @i{a-addr2} is the address of the resulting area.
 1795: If the operation is successful, @i{wior} is 0.
 1796: If the operation fails, @i{wior} is a non-zero
 1797: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1798: @code{resize} @code{allocate}s @i{u} address units.""
 1799: /* the following check is not necessary on most OSs, but it is needed
 1800:    on SunOS 4.1.2. */
 1801: /* close ' to keep fontify happy */
 1802: if (a_addr1==NULL)
 1803:   a_addr2 = (Cell *)malloc(u);
 1804: else
 1805:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1806: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1807: if (a_addr2==NULL)
 1808:   a_addr2 = a_addr1;
 1809: 
 1810: strerror	( n -- c_addr u )	gforth
 1811: c_addr = (Char *)strerror(n);
 1812: u = strlen((char *)c_addr);
 1813: 
 1814: strsignal	( n -- c_addr u )	gforth
 1815: c_addr = (Char *)strsignal(n);
 1816: u = strlen((char *)c_addr);
 1817: 
 1818: call-c	( ... w -- ... )	gforth	call_c
 1819: ""Call the C function pointed to by @i{w}. The C function has to
 1820: access the stack itself. The stack pointers are exported in the global
 1821: variables @code{gforth_SP} and @code{gforth_FP}.""
 1822: /* This is a first attempt at support for calls to C. This may change in
 1823:    the future */
 1824: IF_fpTOS(fp[0]=fpTOS);
 1825: gforth_FP=fp;
 1826: gforth_SP=sp;
 1827: gforth_RP=rp;
 1828: gforth_LP=lp;
 1829: #ifdef HAS_LINKBACK
 1830: ((void (*)())w)();
 1831: #else
 1832: ((void (*)(void *))w)(gforth_pointers);
 1833: #endif
 1834: sp=gforth_SP;
 1835: fp=gforth_FP;
 1836: rp=gforth_RP;
 1837: lp=gforth_LP;
 1838: IF_fpTOS(fpTOS=fp[0]);
 1839: 
 1840: \+
 1841: \+file
 1842: 
 1843: close-file	( wfileid -- wior )		file	close_file
 1844: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1845: 
 1846: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1847: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, 0, &wior);
 1848: 
 1849: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1850: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, O_CREAT|O_TRUNC, &wior);
 1851: 
 1852: delete-file	( c_addr u -- wior )		file	delete_file
 1853: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1854: 
 1855: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1856: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1857: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1858: 
 1859: file-position	( wfileid -- ud wior )	file	file_position
 1860: /* !! use tell and lseek? */
 1861: ud = OFF2UD(ftello((FILE *)wfileid));
 1862: wior = IOR(UD2OFF(ud)==-1);
 1863: 
 1864: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1865: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1866: 
 1867: file-size	( wfileid -- ud wior )	file	file_size
 1868: struct stat buf;
 1869: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1870: ud = OFF2UD(buf.st_size);
 1871: 
 1872: resize-file	( ud wfileid -- wior )	file	resize_file
 1873: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1874: 
 1875: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1876: /* !! fread does not guarantee enough */
 1877: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1878: if (u2>0)
 1879:    gf_regetc((FILE *)wfileid);
 1880: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1881: /* !! is the value of ferror errno-compatible? */
 1882: if (wior)
 1883:   clearerr((FILE *)wfileid);
 1884: 
 1885: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1886: struct Cellquad r = read_line(c_addr, u1, (FILE *)wfileid);
 1887: u2   = r.n1;
 1888: flag = r.n2;
 1889: u3   = r.n3;
 1890: wior = r.n4;
 1891: 
 1892: \+
 1893: 
 1894: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1895: /* !! fwrite does not guarantee enough */
 1896: #ifdef HAS_FILE
 1897: {
 1898:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1899:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1900:   if (wior)
 1901:     clearerr((FILE *)wfileid);
 1902: }
 1903: #else
 1904: TYPE(c_addr, u1);
 1905: #endif
 1906: 
 1907: emit-file	( c wfileid -- wior )	gforth	emit_file
 1908: #ifdef HAS_FILE
 1909: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1910: if (wior)
 1911:   clearerr((FILE *)wfileid);
 1912: #else
 1913: PUTC(c);
 1914: #endif
 1915: 
 1916: \+file
 1917: 
 1918: flush-file	( wfileid -- wior )		file-ext	flush_file
 1919: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1920: 
 1921: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1922: struct Cellpair r = file_status(c_addr, u);
 1923: wfam = r.n1;
 1924: wior = r.n2;
 1925: 
 1926: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1927: flag = FLAG(feof((FILE *) wfileid));
 1928: 
 1929: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1930: ""Open the directory specified by @i{c-addr, u}
 1931: and return @i{dir-id} for futher access to it.""
 1932: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1933: wior =  IOR(wdirid == 0);
 1934: 
 1935: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1936: ""Attempt to read the next entry from the directory specified
 1937: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1938: If the attempt fails because there is no more entries,
 1939: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1940: If the attempt to read the next entry fails because of any other reason, 
 1941: return @i{ior}<>0.
 1942: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1943: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1944: If the length of the file name is greater than @i{u1}, 
 1945: store first @i{u1} characters from file name into the buffer and
 1946: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1947: struct dirent * dent;
 1948: dent = readdir((DIR *)wdirid);
 1949: wior = 0;
 1950: flag = -1;
 1951: if(dent == NULL) {
 1952:   u2 = 0;
 1953:   flag = 0;
 1954: } else {
 1955:   u2 = strlen((char *)dent->d_name);
 1956:   if(u2 > u1) {
 1957:     u2 = u1;
 1958:     wior = -512-ENAMETOOLONG;
 1959:   }
 1960:   memmove(c_addr, dent->d_name, u2);
 1961: }
 1962: 
 1963: close-dir	( wdirid -- wior )	gforth	close_dir
 1964: ""Close the directory specified by @i{dir-id}.""
 1965: wior = IOR(closedir((DIR *)wdirid));
 1966: 
 1967: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1968: char * string = cstr(c_addr1, u1, 1);
 1969: char * pattern = cstr(c_addr2, u2, 0);
 1970: flag = FLAG(!fnmatch(pattern, string, 0));
 1971: 
 1972: set-dir	( c_addr u -- wior )	gforth set_dir
 1973: ""Change the current directory to @i{c-addr, u}.
 1974: Return an error if this is not possible""
 1975: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1976: 
 1977: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1978: ""Store the current directory in the buffer specified by @i{c-addr1, u1}.
 1979: If the buffer size is not sufficient, return 0 0""
 1980: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1981: if(c_addr2 != NULL) {
 1982:   u2 = strlen((char *)c_addr2);
 1983: } else {
 1984:   u2 = 0;
 1985: }
 1986: 
 1987: =mkdir ( c_addr u wmode -- wior )        gforth equals_mkdir
 1988: ""Create directory @i{c-addr u} with mode @i{wmode}.""
 1989: wior = IOR(mkdir(tilde_cstr(c_addr,u,1),wmode));
 1990: 
 1991: \+
 1992: 
 1993: newline	( -- c_addr u )	gforth
 1994: ""String containing the newline sequence of the host OS""
 1995: char newline[] = {
 1996: #if DIRSEP=='/'
 1997: /* Unix */
 1998: '\n'
 1999: #else
 2000: /* DOS, Win, OS/2 */
 2001: '\r','\n'
 2002: #endif
 2003: };
 2004: c_addr=(Char *)newline;
 2005: u=sizeof(newline);
 2006: :
 2007:  "newline count ;
 2008: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2009: 
 2010: \+os
 2011: 
 2012: utime	( -- dtime )	gforth
 2013: ""Report the current time in microseconds since some epoch.""
 2014: struct timeval time1;
 2015: gettimeofday(&time1,NULL);
 2016: dtime = timeval2us(&time1);
 2017: 
 2018: cputime ( -- duser dsystem ) gforth
 2019: ""duser and dsystem are the respective user- and system-level CPU
 2020: times used since the start of the Forth system (excluding child
 2021: processes), in microseconds (the granularity may be much larger,
 2022: however).  On platforms without the getrusage call, it reports elapsed
 2023: time (since some epoch) for duser and 0 for dsystem.""
 2024: #ifdef HAVE_GETRUSAGE
 2025: struct rusage usage;
 2026: getrusage(RUSAGE_SELF, &usage);
 2027: duser = timeval2us(&usage.ru_utime);
 2028: dsystem = timeval2us(&usage.ru_stime);
 2029: #else
 2030: struct timeval time1;
 2031: gettimeofday(&time1,NULL);
 2032: duser = timeval2us(&time1);
 2033: dsystem = DZERO;
 2034: #endif
 2035: 
 2036: ntime	( -- dtime )	gforth
 2037: ""Report the current time in nanoseconds since some epoch.""
 2038: #ifdef HAVE_CLOCK_GETTIME
 2039: struct timespec time1;
 2040: clock_gettime(CLOCK_REALTIME,&time1);
 2041: dtime = timespec2ns(&time1);
 2042: #else
 2043: struct timeval time1;
 2044: gettimeofday(&time1,NULL);
 2045: dtime = timeval2us(&time1) * 1000LL;
 2046: #endif
 2047: 
 2048: \+
 2049: 
 2050: \+floating
 2051: 
 2052: \g floating
 2053: 
 2054: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2055: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2056: 
 2057: s>f	( n -- r )		float	s_to_f
 2058: r = n;
 2059: 
 2060: d>f	( d -- r )		float	d_to_f
 2061: #ifdef BUGGY_LL_D2F
 2062: extern double ldexp(double x, int exp);
 2063: if (DHI(d)<0) {
 2064: #ifdef BUGGY_LL_ADD
 2065:   DCell d2=dnegate(d);
 2066: #else
 2067:   DCell d2=-d;
 2068: #endif
 2069:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2070: } else
 2071:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2072: #else
 2073: r = d;
 2074: #endif
 2075: 
 2076: f>d	( r -- d )		float	f_to_d
 2077: extern DCell double2ll(Float r);
 2078: d = double2ll(r);
 2079: 
 2080: f>s	( r -- n )		float	f_to_s
 2081: n = (Cell)r;
 2082: 
 2083: f!	( r f_addr -- )	float	f_store
 2084: ""Store @i{r} into the float at address @i{f-addr}.""
 2085: *f_addr = r;
 2086: 
 2087: f@	( f_addr -- r )	float	f_fetch
 2088: ""@i{r} is the float at address @i{f-addr}.""
 2089: r = *f_addr;
 2090: 
 2091: df@	( df_addr -- r )	float-ext	d_f_fetch
 2092: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2093: #ifdef IEEE_FP
 2094: r = *df_addr;
 2095: #else
 2096: !! df@
 2097: #endif
 2098: 
 2099: df!	( r df_addr -- )	float-ext	d_f_store
 2100: ""Store @i{r} as double-precision IEEE floating-point value to the
 2101: address @i{df-addr}.""
 2102: #ifdef IEEE_FP
 2103: *df_addr = r;
 2104: #else
 2105: !! df!
 2106: #endif
 2107: 
 2108: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2109: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2110: #ifdef IEEE_FP
 2111: r = *sf_addr;
 2112: #else
 2113: !! sf@
 2114: #endif
 2115: 
 2116: sf!	( r sf_addr -- )	float-ext	s_f_store
 2117: ""Store @i{r} as single-precision IEEE floating-point value to the
 2118: address @i{sf-addr}.""
 2119: #ifdef IEEE_FP
 2120: *sf_addr = r;
 2121: #else
 2122: !! sf!
 2123: #endif
 2124: 
 2125: f+	( r1 r2 -- r3 )	float	f_plus
 2126: r3 = r1+r2;
 2127: 
 2128: f-	( r1 r2 -- r3 )	float	f_minus
 2129: r3 = r1-r2;
 2130: 
 2131: f*	( r1 r2 -- r3 )	float	f_star
 2132: r3 = r1*r2;
 2133: 
 2134: f/	( r1 r2 -- r3 )	float	f_slash
 2135: r3 = r1/r2;
 2136: 
 2137: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2138: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2139: r3 = pow(r1,r2);
 2140: 
 2141: fm*	( r1 n -- r2 )	gforth	fm_star
 2142: r2 = r1*n;
 2143: 
 2144: fm/	( r1 n -- r2 )	gforth	fm_slash
 2145: r2 = r1/n;
 2146: 
 2147: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2148: r2 = (r1*n1)/n2;
 2149: 
 2150: f**2	( r1 -- r2 )	gforth	fm_square
 2151: r2 = r1*r1;
 2152: 
 2153: fnegate	( r1 -- r2 )	float	f_negate
 2154: r2 = - r1;
 2155: 
 2156: fdrop	( r -- )		float	f_drop
 2157: 
 2158: fdup	( r -- r r )	float	f_dupe
 2159: 
 2160: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2161: 
 2162: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2163: 
 2164: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2165: 
 2166: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2167: 
 2168: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2169: 
 2170: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2171: ""@code{1 floats +}.""
 2172: f_addr2 = f_addr1+1;
 2173: 
 2174: floats	( n1 -- n2 )	float
 2175: ""@i{n2} is the number of address units of @i{n1} floats.""
 2176: n2 = n1*sizeof(Float);
 2177: 
 2178: floor	( r1 -- r2 )	float
 2179: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2180: /* !! unclear wording */
 2181: r2 = floor(r1);
 2182: 
 2183: fround	( r1 -- r2 )	float	f_round
 2184: ""Round to the nearest integral value.""
 2185: r2 = rint(r1);
 2186: 
 2187: fmax	( r1 r2 -- r3 )	float	f_max
 2188: if (r1<r2)
 2189:   r3 = r2;
 2190: else
 2191:   r3 = r1;
 2192: 
 2193: fmin	( r1 r2 -- r3 )	float	f_min
 2194: if (r1<r2)
 2195:   r3 = r1;
 2196: else
 2197:   r3 = r2;
 2198: 
 2199: represent	( r c_addr u -- n f1 f2 )	float
 2200: char *sig;
 2201: size_t siglen;
 2202: int flag;
 2203: int decpt;
 2204: sig=ecvt(r, u, &decpt, &flag);
 2205: n=(r==0. ? 1 : decpt);
 2206: flag=signbit(r); /* not all ecvt()s do this as desired */
 2207: f1=FLAG(flag!=0);
 2208: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2209: siglen=strlen((char *)sig);
 2210: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2211:   siglen=u;
 2212: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2213:   for (; sig[siglen-1]=='0'; siglen--);
 2214:     ;
 2215: memcpy(c_addr,sig,siglen);
 2216: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2217: 
 2218: >float	( c_addr u -- f:... flag )	float	to_float
 2219: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2220: character string @i{c-addr u} to internal floating-point
 2221: representation. If the string represents a valid floating-point number
 2222: @i{r} is placed on the floating-point stack and @i{flag} is
 2223: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2224: case and represents the floating-point number 0.""
 2225: Float r;
 2226: flag = to_float(c_addr, u, &r);
 2227: if (flag) {
 2228:   fp--;
 2229:   fp[0]=r;
 2230: }
 2231: 
 2232: fabs	( r1 -- r2 )	float-ext	f_abs
 2233: r2 = fabs(r1);
 2234: 
 2235: facos	( r1 -- r2 )	float-ext	f_a_cos
 2236: r2 = acos(r1);
 2237: 
 2238: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2239: r2 = asin(r1);
 2240: 
 2241: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2242: r2 = atan(r1);
 2243: 
 2244: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2245: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2246: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2247: r3 = atan2(r1,r2);
 2248: 
 2249: fcos	( r1 -- r2 )	float-ext	f_cos
 2250: r2 = cos(r1);
 2251: 
 2252: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2253: r2 = exp(r1);
 2254: 
 2255: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2256: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2257: #ifdef HAVE_EXPM1
 2258: extern double
 2259: #ifdef NeXT
 2260:               const
 2261: #endif
 2262:                     expm1(double);
 2263: r2 = expm1(r1);
 2264: #else
 2265: r2 = exp(r1)-1.;
 2266: #endif
 2267: 
 2268: fln	( r1 -- r2 )	float-ext	f_l_n
 2269: r2 = log(r1);
 2270: 
 2271: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2272: ""@i{r2}=ln(@i{r1}+1)""
 2273: #ifdef HAVE_LOG1P
 2274: extern double
 2275: #ifdef NeXT
 2276:               const
 2277: #endif
 2278:                     log1p(double);
 2279: r2 = log1p(r1);
 2280: #else
 2281: r2 = log(r1+1.);
 2282: #endif
 2283: 
 2284: flog	( r1 -- r2 )	float-ext	f_log
 2285: ""The decimal logarithm.""
 2286: r2 = log10(r1);
 2287: 
 2288: falog	( r1 -- r2 )	float-ext	f_a_log
 2289: ""@i{r2}=10**@i{r1}""
 2290: extern double pow10(double);
 2291: r2 = pow10(r1);
 2292: 
 2293: fsin	( r1 -- r2 )	float-ext	f_sine
 2294: r2 = sin(r1);
 2295: 
 2296: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2297: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2298: r2 = sin(r1);
 2299: r3 = cos(r1);
 2300: 
 2301: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2302: r2 = sqrt(r1);
 2303: 
 2304: ftan	( r1 -- r2 )	float-ext	f_tan
 2305: r2 = tan(r1);
 2306: :
 2307:  fsincos f/ ;
 2308: 
 2309: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2310: r2 = sinh(r1);
 2311: :
 2312:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2313: 
 2314: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2315: r2 = cosh(r1);
 2316: :
 2317:  fexp fdup 1/f f+ f2/ ;
 2318: 
 2319: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2320: r2 = tanh(r1);
 2321: :
 2322:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2323: 
 2324: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2325: r2 = asinh(r1);
 2326: :
 2327:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2328: 
 2329: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2330: r2 = acosh(r1);
 2331: :
 2332:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2333: 
 2334: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2335: r2 = atanh(r1);
 2336: :
 2337:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2338:  r> IF  fnegate  THEN ;
 2339: 
 2340: sfloats	( n1 -- n2 )	float-ext	s_floats
 2341: ""@i{n2} is the number of address units of @i{n1}
 2342: single-precision IEEE floating-point numbers.""
 2343: n2 = n1*sizeof(SFloat);
 2344: 
 2345: dfloats	( n1 -- n2 )	float-ext	d_floats
 2346: ""@i{n2} is the number of address units of @i{n1}
 2347: double-precision IEEE floating-point numbers.""
 2348: n2 = n1*sizeof(DFloat);
 2349: 
 2350: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2351: ""@i{sf-addr} is the first single-float-aligned address greater
 2352: than or equal to @i{c-addr}.""
 2353: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2354: :
 2355:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2356: 
 2357: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2358: ""@i{df-addr} is the first double-float-aligned address greater
 2359: than or equal to @i{c-addr}.""
 2360: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2361: :
 2362:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2363: 
 2364: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2365: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2366: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2367: ucount elements.""
 2368: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2369: :
 2370:  >r swap 2swap swap 0e r> 0 ?DO
 2371:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2372:  LOOP 2drop 2drop ; 
 2373: 
 2374: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2375: ""vy=ra*vx+vy""
 2376: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2377: :
 2378:  >r swap 2swap swap r> 0 ?DO
 2379:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2380:  LOOP 2drop 2drop fdrop ;
 2381: 
 2382: \+
 2383: 
 2384: \ The following words access machine/OS/installation-dependent
 2385: \   Gforth internals
 2386: \ !! how about environmental queries DIRECT-THREADED,
 2387: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2388: 
 2389: \ local variable implementation primitives
 2390: 
 2391: \+glocals
 2392: 
 2393: \g locals
 2394: 
 2395: @local#	( #noffset -- w )	gforth	fetch_local_number
 2396: w = *(Cell *)(lp+noffset);
 2397: 
 2398: @local0	( -- w )	new	fetch_local_zero
 2399: w = ((Cell *)lp)[0];
 2400: 
 2401: @local1	( -- w )	new	fetch_local_four
 2402: w = ((Cell *)lp)[1];
 2403: 
 2404: @local2	( -- w )	new	fetch_local_eight
 2405: w = ((Cell *)lp)[2];
 2406: 
 2407: @local3	( -- w )	new	fetch_local_twelve
 2408: w = ((Cell *)lp)[3];
 2409: 
 2410: \+floating
 2411: 
 2412: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2413: r = *(Float *)(lp+noffset);
 2414: 
 2415: f@local0	( -- r )	new	f_fetch_local_zero
 2416: r = ((Float *)lp)[0];
 2417: 
 2418: f@local1	( -- r )	new	f_fetch_local_eight
 2419: r = ((Float *)lp)[1];
 2420: 
 2421: \+
 2422: 
 2423: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2424: /* this can also be used to implement lp@ */
 2425: c_addr = (Char *)(lp+noffset);
 2426: 
 2427: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2428: ""used with negative immediate values it allocates memory on the
 2429: local stack, a positive immediate argument drops memory from the local
 2430: stack""
 2431: lp += noffset;
 2432: 
 2433: lp-	( -- )	new	minus_four_lp_plus_store
 2434: lp += -sizeof(Cell);
 2435: 
 2436: lp+	( -- )	new	eight_lp_plus_store
 2437: lp += sizeof(Float);
 2438: 
 2439: lp+2	( -- )	new	sixteen_lp_plus_store
 2440: lp += 2*sizeof(Float);
 2441: 
 2442: lp!	( c_addr -- )	gforth	lp_store
 2443: lp = (Address)c_addr;
 2444: 
 2445: >l	( w -- )	gforth	to_l
 2446: lp -= sizeof(Cell);
 2447: *(Cell *)lp = w;
 2448: 
 2449: \+floating
 2450: 
 2451: f>l	( r -- )	gforth	f_to_l
 2452: lp -= sizeof(Float);
 2453: *(Float *)lp = r;
 2454: 
 2455: fpick	( f:... u -- f:... r )		gforth
 2456: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2457: r = fp[u];
 2458: :
 2459:  floats fp@ + f@ ;
 2460: 
 2461: \+
 2462: \+
 2463: 
 2464: \+OS
 2465: 
 2466: \g syslib
 2467: 
 2468: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2469: u2 = gforth_dlopen(c_addr1, u1);
 2470: 
 2471: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2472: #ifdef HAVE_LIBLTDL
 2473: u3 = (UCell) lt_dlsym((lt_dlhandle)u2, cstr(c_addr1, u1, 1));
 2474: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2475: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2476: #else
 2477: #  ifdef _WIN32
 2478: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2479: #  else
 2480: #warning Define lib-sym!
 2481: u3 = 0;
 2482: #  endif
 2483: #endif
 2484: 
 2485: wcall	( ... u -- ... )	gforth
 2486: gforth_FP=fp;
 2487: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2488: fp=gforth_FP;
 2489: 
 2490: uw@ ( c_addr -- u )	gforth u_w_fetch
 2491: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2492: u = *(UWyde*)(c_addr);
 2493: 
 2494: sw@ ( c_addr -- n )	gforth s_w_fetch
 2495: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2496: n = *(Wyde*)(c_addr);
 2497: 
 2498: w! ( w c_addr -- )	gforth w_store
 2499: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2500: *(Wyde*)(c_addr) = w;
 2501: 
 2502: ul@ ( c_addr -- u )	gforth u_l_fetch
 2503: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2504: u = *(UTetrabyte*)(c_addr);
 2505: 
 2506: sl@ ( c_addr -- n )	gforth s_l_fetch
 2507: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2508: n = *(Tetrabyte*)(c_addr);
 2509: 
 2510: l! ( w c_addr -- )	gforth l_store
 2511: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2512: *(Tetrabyte*)(c_addr) = w;
 2513: 
 2514: lib-error ( -- c_addr u )       gforth  lib_error
 2515: ""Error message for last failed @code{open-lib} or @code{lib-sym}.""
 2516: #ifdef HAVE_LIBLTDL
 2517: c_addr = (Char *)lt_dlerror();
 2518: u = (c_addr == NULL) ? 0 : strlen((char *)c_addr);
 2519: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2520: c_addr = dlerror();
 2521: u = strlen(c_addr);
 2522: #else
 2523: c_addr = "libltdl is not configured";
 2524: u = strlen(c_addr);
 2525: #endif
 2526: 
 2527: be-w! ( w c_addr -- )	gforth w_store_be
 2528: ""Store the bottom 16 bits of @i{w} at @i{c_addr} in big endian format.""
 2529: c_addr[0] = w >> 8;
 2530: c_addr[1] = w;
 2531: 
 2532: be-l! ( w c_addr -- )	gforth l_store_be
 2533: ""Store the bottom 32 bits of @i{w} at @i{c_addr} in big endian format.""
 2534: c_addr[0] = w >> 24;
 2535: c_addr[1] = w >> 16;
 2536: c_addr[2] = w >> 8;
 2537: c_addr[3] = w;
 2538: 
 2539: le-w! ( w c_addr -- )	gforth w_store_le
 2540: ""Store the bottom 16 bits of @i{w} at @i{c_addr} in big endian format.""
 2541: c_addr[1] = w >> 8;
 2542: c_addr[0] = w;
 2543: 
 2544: le-l! ( w c_addr -- )	gforth l_store_le
 2545: ""Store the bottom 32 bits of @i{w} at @i{c_addr} in big endian format.""
 2546: c_addr[3] = w >> 24;
 2547: c_addr[2] = w >> 16;
 2548: c_addr[1] = w >> 8;
 2549: c_addr[0] = w;
 2550: 
 2551: be-uw@ ( c_addr -- u )	gforth w_fetch_be
 2552: ""@i{u} is the zero-extended 16-bit big endian value stored at @i{c_addr}.""
 2553: u = (c_addr[0] << 8) | (c_addr[1]);
 2554: 
 2555: be-ul@ ( c_addr -- u )	gforth l_fetch_be
 2556: ""@i{u} is the zero-extended 32-bit big endian value stored at @i{c_addr}.""
 2557: u = (c_addr[0] << 24) | (c_addr[1] << 16) | (c_addr[2] << 8) | (c_addr[3]);
 2558: 
 2559: le-uw@ ( c_addr -- u )	gforth w_fetch_le
 2560: ""@i{u} is the zero-extended 16-bit little endian value stored at @i{c_addr}.""
 2561: u = (c_addr[1] << 8) | (c_addr[0]);
 2562: 
 2563: le-ul@ ( c_addr -- u )	gforth l_fetch_le
 2564: ""@i{u} is the zero-extended 32-bit little endian value stored at @i{c_addr}.""
 2565: u = (c_addr[3] << 24) | (c_addr[2] << 16) | (c_addr[1] << 8) | (c_addr[0]);
 2566: 
 2567: \+64bit
 2568: 
 2569: x! ( w c_addr -- )	gforth x_store
 2570: ""Store the bottom 64 bits of @i{w} at 64-bit-aligned @i{c_addr}.""
 2571: *(UOctabyte *)c_addr = w;
 2572: 
 2573: ux@ ( c_addr -- u )	gforth u_x_fetch
 2574: ""@i{u} is the zero-extended 64-bit value stored at 64-bit-aligned @i{c_addr}.""
 2575: u = *(UOctabyte *)c_addr;
 2576: 
 2577: sx@ ( c_addr -- n )	gforth s_x_fetch
 2578: ""@i{u} is the sign-extended 64-bit value stored at 64-bit-aligned @i{c_addr}.""
 2579: n = *(Octabyte *)c_addr;
 2580: 
 2581: be-x! ( w c_addr -- )	gforth b_e_x_store
 2582: ""Store the bottom 64 bits of @i{w} at @i{c_addr} in big endian format.""
 2583: c_addr[0] = w >> 56;
 2584: c_addr[1] = w >> 48;
 2585: c_addr[2] = w >> 40;
 2586: c_addr[3] = w >> 32;
 2587: c_addr[4] = w >> 24;
 2588: c_addr[5] = w >> 16;
 2589: c_addr[6] = w >> 8;
 2590: c_addr[7] = w;
 2591: 
 2592: le-x! ( w c_addr -- )	gforth l_e_x_store
 2593: ""Store the bottom 64 bits of @i{w} at @i{c_addr} in big endian format.""
 2594: c_addr[7] = w >> 56;
 2595: c_addr[6] = w >> 48;
 2596: c_addr[5] = w >> 40;
 2597: c_addr[4] = w >> 32;
 2598: c_addr[3] = w >> 24;
 2599: c_addr[2] = w >> 16;
 2600: c_addr[1] = w >> 8;
 2601: c_addr[0] = w;
 2602: 
 2603: be-ux@ ( c_addr -- u )	gforth b_e_u_x_fetch
 2604: ""@i{u} is the zero-extended 64-bit big endian value stored at @i{c_addr}.""
 2605: u = (((Cell)(c_addr[0]) << 56) |
 2606:      ((Cell)(c_addr[1]) << 48) |
 2607:      ((Cell)(c_addr[2]) << 40) |
 2608:      ((Cell)(c_addr[3]) << 32) |
 2609:      ((Cell)(c_addr[4]) << 24) |
 2610:      ((Cell)(c_addr[5]) << 16) |
 2611:      ((Cell)(c_addr[6]) << 8) |
 2612:      ((Cell)(c_addr[7])));
 2613: 
 2614: le-ux@ ( c_addr -- u )	gforth l_e_u_x_fetch
 2615: ""@i{u} is the zero-extended 64-bit little endian value stored at @i{c_addr}.""
 2616: u = (((Cell)(c_addr[7]) << 56) |
 2617:      ((Cell)(c_addr[6]) << 48) |
 2618:      ((Cell)(c_addr[5]) << 40) |
 2619:      ((Cell)(c_addr[4]) << 32) |
 2620:      ((Cell)(c_addr[3]) << 24) |
 2621:      ((Cell)(c_addr[2]) << 16) |
 2622:      ((Cell)(c_addr[1]) << 8) |
 2623:      ((Cell)(c_addr[0])));
 2624: 
 2625: \+
 2626: \+
 2627: \g peephole
 2628: 
 2629: \+peephole
 2630: 
 2631: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2632: ""compile prim (incl. immargs) at @var{a_prim}""
 2633: compile_prim1(a_prim);
 2634: 
 2635: finish-code ( ... -- ... ) gforth finish_code
 2636: ""Perform delayed steps in code generation (branch resolution, I-cache
 2637: flushing).""
 2638: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2639:    to save spTOS (gforth-fast --enable-force-reg) */
 2640: finish_code();
 2641: 
 2642: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2643: f = forget_dyncode(c_code);
 2644: 
 2645: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2646: ""a_prim is the code address of the primitive that has been
 2647: compile_prim1ed to a_code""
 2648: a_prim = (Cell *)decompile_code((Label)a_code);
 2649: 
 2650: \ set-next-code and call2 do not appear in images and can be
 2651: \ renumbered arbitrarily
 2652: 
 2653: set-next-code ( #w -- ) gforth set_next_code
 2654: #ifdef NO_IP
 2655: next_code = (Label)w;
 2656: #endif
 2657: 
 2658: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2659: /* call with explicit return address */
 2660: #ifdef NO_IP
 2661: INST_TAIL;
 2662: JUMP(a_callee);
 2663: #else
 2664: assert(0);
 2665: #endif
 2666: 
 2667: tag-offsets ( -- a_addr ) gforth tag_offsets
 2668: extern Cell groups[32];
 2669: a_addr = groups;
 2670: 
 2671: \+
 2672: 
 2673: \g primitive_centric
 2674: 
 2675: \ primitives for primitive-centric code
 2676: \ another one is does-exec
 2677: 
 2678: abi-call	( #a_callee ... -- ... ) gforth-internal abi_call
 2679: /* primitive for compiled ABI-CODE words */
 2680: abifunc *f = (abifunc *)a_callee;
 2681: Float *fp_mem = fp;
 2682: sp = (*f)(sp, &fp_mem);
 2683: fp = fp_mem;
 2684: 
 2685: ;abi-code-exec ( #a_cfa ... -- ... ) gforth-internal semi_abi_code_exec
 2686: /* primitive for performing ;ABI-CODE words */
 2687: Float *fp_mem = fp;
 2688: semiabifunc *f = (semiabifunc *)DOES_CODE1(a_cfa);
 2689: Address body = (Address)PFA(a_cfa);
 2690: sp = (*f)(sp, &fp_mem, body);
 2691: fp = fp_mem;
 2692: 
 2693: lit-execute	( #a_addr -- )	new	lit_execute
 2694: /* for ;code and code words; a static superinstruction would be more general, 
 2695:    but VM_JUMP is currently not supported there */
 2696: #ifndef NO_IP
 2697: ip=IP;
 2698: #endif
 2699: SUPER_END;
 2700: VM_JUMP(EXEC1((Xt)a_addr));
 2701: 
 2702: 
 2703: \g static_super
 2704: 
 2705: ifdef(`STACK_CACHE_FILE',
 2706: `include(peeprules.vmg)')
 2707: 
 2708: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>