File:  [gforth] / gforth / prim
Revision 1.221: download - view: text, annotated - select for diffs
Mon Dec 31 17:34:58 2007 UTC (11 years, 9 months ago) by anton
Branches: MAIN
CVS tags: HEAD
updated copyright years

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006,2007 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E `include-skipped-insts' on \ static superinsts include cells for components
  113: \E                            \ useful for dynamic programming and
  114: \E                            \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dovalue) ( -- w )	gforth-internal	paren_doval
  207: ""run-time routine for constants""
  208: w = *(Cell *)PFA(CFA);
  209: #ifdef NO_IP
  210: INST_TAIL;
  211: goto *next_code;
  212: #endif /* defined(NO_IP) */
  213: 
  214: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  215: ""run-time routine for @code{does>}-defined words""
  216: #ifdef NO_IP
  217: a_retaddr = next_code;
  218: a_body = PFA(CFA);
  219: INST_TAIL;
  220: #ifdef DEBUG
  221: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  222: #endif
  223: goto **(Label *)DOES_CODE1(CFA);
  224: #else /* !defined(NO_IP) */
  225: a_retaddr = (Cell *)IP;
  226: a_body = PFA(CFA);
  227: #ifdef DEBUG
  228: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  229: #endif
  230: SET_IP(DOES_CODE1(CFA));
  231: #endif /* !defined(NO_IP) */
  232: 
  233: (does-handler) ( -- )	gforth-internal	paren_does_handler
  234: ""just a slot to have an encoding for the DOESJUMP, 
  235: which is no longer used anyway (!! eliminate this)""
  236: 
  237: \F [endif]
  238: 
  239: \g control
  240: 
  241: noop	( -- )		gforth
  242: :
  243:  ;
  244: 
  245: call	( #a_callee -- R:a_retaddr )	new
  246: ""Call callee (a variant of docol with inline argument).""
  247: #ifdef NO_IP
  248: assert(0);
  249: INST_TAIL;
  250: JUMP(a_callee);
  251: #else
  252: #ifdef DEBUG
  253:     {
  254:       CFA_TO_NAME((((Cell *)a_callee)-2));
  255:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  256: 	      len,name);
  257:     }
  258: #endif
  259: a_retaddr = (Cell *)IP;
  260: SET_IP((Xt *)a_callee);
  261: #endif
  262: 
  263: execute	( xt -- )		core
  264: ""Perform the semantics represented by the execution token, @i{xt}.""
  265: #ifdef DEBUG
  266: fprintf(stderr, "execute %08x\n", xt);
  267: #endif
  268: #ifndef NO_IP
  269: ip=IP;
  270: #endif
  271: SUPER_END;
  272: VM_JUMP(EXEC1(xt));
  273: 
  274: perform	( a_addr -- )	gforth
  275: ""@code{@@ execute}.""
  276: /* and pfe */
  277: #ifndef NO_IP
  278: ip=IP;
  279: #endif
  280: SUPER_END;
  281: VM_JUMP(EXEC1(*(Xt *)a_addr));
  282: :
  283:  @ execute ;
  284: 
  285: ;s	( R:w -- )		gforth	semis
  286: ""The primitive compiled by @code{EXIT}.""
  287: #ifdef NO_IP
  288: INST_TAIL;
  289: goto *(void *)w;
  290: #else
  291: SET_IP((Xt *)w);
  292: #endif
  293: 
  294: unloop	( R:w1 R:w2 -- )	core
  295: /* !! alias for 2rdrop */
  296: :
  297:  r> rdrop rdrop >r ;
  298: 
  299: lit-perform	( #a_addr -- )	new	lit_perform
  300: #ifndef NO_IP
  301: ip=IP;
  302: #endif
  303: SUPER_END;
  304: VM_JUMP(EXEC1(*(Xt *)a_addr));
  305: 
  306: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  307: #ifdef NO_IP
  308: /* compiled to LIT CALL by compile_prim */
  309: assert(0);
  310: #else
  311: a_pfa = PFA(a_cfa);
  312: nest = (Cell)IP;
  313: #ifdef DEBUG
  314:     {
  315:       CFA_TO_NAME(a_cfa);
  316:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  317: 	      (Cell)ip,(Cell)a_cfa,len,name);
  318:     }
  319: #endif
  320: SET_IP(DOES_CODE1(a_cfa));
  321: #endif
  322: 
  323: \+glocals
  324: 
  325: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  326: /* this will probably not be used */
  327: lp += nlocals;
  328: #ifdef NO_IP
  329: INST_TAIL;
  330: JUMP(a_target);
  331: #else
  332: SET_IP((Xt *)a_target);
  333: #endif
  334: 
  335: \+
  336: 
  337: branch	( #a_target -- )	gforth
  338: #ifdef NO_IP
  339: INST_TAIL;
  340: JUMP(a_target);
  341: #else
  342: SET_IP((Xt *)a_target);
  343: #endif
  344: :
  345:  r> @ >r ;
  346: 
  347: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  348: \ this is non-syntactical: code must open a brace that is closed by the macro
  349: define(condbranch,
  350: $1 ( `#'a_target $2 ) $3
  351: $4	#ifdef NO_IP
  352: INST_TAIL;
  353: #endif
  354: $5	#ifdef NO_IP
  355: JUMP(a_target);
  356: #else
  357: SET_IP((Xt *)a_target);
  358: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  359: #endif
  360: }
  361: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  362: $6
  363: 
  364: \+glocals
  365: 
  366: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  367: $4	#ifdef NO_IP
  368: INST_TAIL;
  369: #endif
  370: $5	lp += nlocals;
  371: #ifdef NO_IP
  372: JUMP(a_target);
  373: #else
  374: SET_IP((Xt *)a_target);
  375: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  376: #endif
  377: }
  378: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  379: 
  380: \+
  381: )
  382: 
  383: condbranch(?branch,f --,f83	question_branch,
  384: ,if (f==0) {
  385: ,:
  386:  0= dup 0=          \ !f f
  387:  r> tuck cell+      \ !f branchoffset f IP+
  388:  and -rot @ and or  \ f&IP+|!f&branch
  389:  >r ;)
  390: 
  391: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  392: \ is only used in if's (yet)
  393: 
  394: \+xconds
  395: 
  396: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  397: ""The run-time procedure compiled by @code{?DUP-IF}.""
  398: if (f==0) {
  399: #ifdef NO_IP
  400: INST_TAIL;
  401: JUMP(a_target);
  402: #else
  403: SET_IP((Xt *)a_target);
  404: #endif
  405: } else {
  406: sp--;
  407: sp[0]=f;
  408: }
  409: 
  410: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  411: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  412: if (f!=0) {
  413:   sp--;
  414:   sp[0]=f;
  415: #ifdef NO_IP
  416:   JUMP(a_target);
  417: #else
  418:   SET_IP((Xt *)a_target);
  419: #endif
  420: }
  421: 
  422: \+
  423: \fhas? skiploopprims 0= [IF]
  424: 
  425: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  426: n2=n1-1;
  427: ,if (n1) {
  428: ,:
  429:  r> r> dup 1- >r
  430:  IF @ >r ELSE cell+ >r THEN ;)
  431: 
  432: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  433: n2=n1+1;
  434: ,if (n2 != nlimit) {
  435: ,:
  436:  r> r> 1+ r> 2dup =
  437:  IF >r 1- >r cell+ >r
  438:  ELSE >r >r @ >r THEN ;)
  439: 
  440: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  441: /* !! check this thoroughly */
  442: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  443: /* dependent upon two's complement arithmetic */
  444: Cell olddiff = n1-nlimit;
  445: n2=n1+n;	
  446: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  447:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  448:     >=0) { /* & is used to avoid having two branches for gforth-native */
  449: ,:
  450:  r> swap
  451:  r> r> 2dup - >r
  452:  2 pick r@ + r@ xor 0< 0=
  453:  3 pick r> xor 0< 0= or
  454:  IF    >r + >r @ >r
  455:  ELSE  >r >r drop cell+ >r THEN ;)
  456: 
  457: \+xconds
  458: 
  459: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  460: UCell olddiff = n1-nlimit;
  461: n2=n1-u;
  462: ,if (olddiff>u) {
  463: ,)
  464: 
  465: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  466: ""The run-time procedure compiled by S+LOOP. It loops until the index
  467: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  468: version of (+LOOP).""
  469: /* !! check this thoroughly */
  470: Cell diff = n1-nlimit;
  471: Cell newdiff = diff+n;
  472: if (n<0) {
  473:     diff = -diff;
  474:     newdiff = -newdiff;
  475: }
  476: n2=n1+n;
  477: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  478: ,)
  479: 
  480: \+
  481: 
  482: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  483: /* or (for) = >r -- collides with unloop! */
  484: nlimit=0;
  485: :
  486:  r> swap 0 >r >r >r ;
  487: 
  488: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  489: :
  490:  r> swap rot >r >r >r ;
  491: 
  492: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  493: #ifdef NO_IP
  494:     INST_TAIL;
  495: #endif
  496: if (nstart == nlimit) {
  497: #ifdef NO_IP
  498:     JUMP(a_target);
  499: #else
  500:     SET_IP((Xt *)a_target);
  501: #endif
  502: }
  503: :
  504:   2dup =
  505:   IF   r> swap rot >r >r
  506:        @ >r
  507:   ELSE r> swap rot >r >r
  508:        cell+ >r
  509:   THEN ;				\ --> CORE-EXT
  510: 
  511: \+xconds
  512: 
  513: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  514: #ifdef NO_IP
  515:     INST_TAIL;
  516: #endif
  517: if (nstart >= nlimit) {
  518: #ifdef NO_IP
  519:     JUMP(a_target);
  520: #else
  521:     SET_IP((Xt *)a_target);
  522: #endif
  523: }
  524: :
  525:  swap 2dup
  526:  r> swap >r swap >r
  527:  >=
  528:  IF
  529:      @
  530:  ELSE
  531:      cell+
  532:  THEN  >r ;
  533: 
  534: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  535: #ifdef NO_IP
  536:     INST_TAIL;
  537: #endif
  538: if (ustart >= ulimit) {
  539: #ifdef NO_IP
  540: JUMP(a_target);
  541: #else
  542: SET_IP((Xt *)a_target);
  543: #endif
  544: }
  545: :
  546:  swap 2dup
  547:  r> swap >r swap >r
  548:  u>=
  549:  IF
  550:      @
  551:  ELSE
  552:      cell+
  553:  THEN  >r ;
  554: 
  555: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  556: #ifdef NO_IP
  557:     INST_TAIL;
  558: #endif
  559: if (nstart <= nlimit) {
  560: #ifdef NO_IP
  561: JUMP(a_target);
  562: #else
  563: SET_IP((Xt *)a_target);
  564: #endif
  565: }
  566: :
  567:  swap 2dup
  568:  r> swap >r swap >r
  569:  <=
  570:  IF
  571:      @
  572:  ELSE
  573:      cell+
  574:  THEN  >r ;
  575: 
  576: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  577: #ifdef NO_IP
  578:     INST_TAIL;
  579: #endif
  580: if (ustart <= ulimit) {
  581: #ifdef NO_IP
  582: JUMP(a_target);
  583: #else
  584: SET_IP((Xt *)a_target);
  585: #endif
  586: }
  587: :
  588:  swap 2dup
  589:  r> swap >r swap >r
  590:  u<=
  591:  IF
  592:      @
  593:  ELSE
  594:      cell+
  595:  THEN  >r ;
  596: 
  597: \+
  598: 
  599: \ don't make any assumptions where the return stack is!!
  600: \ implement this in machine code if it should run quickly!
  601: 
  602: i	( R:n -- R:n n )		core
  603: :
  604: \ rp@ cell+ @ ;
  605:   r> r> tuck >r >r ;
  606: 
  607: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  608: :
  609: \ rp@ cell+ cell+ @ ;
  610:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  611: variable itmp
  612: 
  613: j	( R:w R:w1 R:w2 -- w R:w R:w1 R:w2 )	core
  614: :
  615: \ rp@ cell+ cell+ cell+ @ ;
  616:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  617: [IFUNDEF] itmp variable itmp [THEN]
  618: 
  619: k	( R:w R:w1 R:w2 R:w3 R:w4 -- w R:w R:w1 R:w2 R:w3 R:w4 )	gforth
  620: :
  621: \ rp@ [ 5 cells ] Literal + @ ;
  622:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  623: [IFUNDEF] itmp variable itmp [THEN]
  624: 
  625: \f[THEN]
  626: 
  627: \ digit is high-level: 0/0%
  628: 
  629: \g strings
  630: 
  631: move	( c_from c_to ucount -- )		core
  632: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  633: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  634: /* !! note that the standard specifies addr, not c-addr */
  635: memmove(c_to,c_from,ucount);
  636: /* make an Ifdef for bsd and others? */
  637: :
  638:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  639: 
  640: cmove	( c_from c_to u -- )	string	c_move
  641: ""Copy the contents of @i{ucount} characters from data space at
  642: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  643: from low address to high address; i.e., for overlapping areas it is
  644: safe if @i{c-to}=<@i{c-from}.""
  645: cmove(c_from,c_to,u);
  646: :
  647:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  648: 
  649: cmove>	( c_from c_to u -- )	string	c_move_up
  650: ""Copy the contents of @i{ucount} characters from data space at
  651: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  652: from high address to low address; i.e., for overlapping areas it is
  653: safe if @i{c-to}>=@i{c-from}.""
  654: cmove_up(c_from,c_to,u);
  655: :
  656:  dup 0= IF  drop 2drop exit  THEN
  657:  rot over + -rot bounds swap 1-
  658:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  659: 
  660: fill	( c_addr u c -- )	core
  661: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  662: memset(c_addr,c,u);
  663: :
  664:  -rot bounds
  665:  ?DO  dup I c!  LOOP  drop ;
  666: 
  667: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  668: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  669: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  670: is 1. Currently this is based on the machine's character
  671: comparison. In the future, this may change to consider the current
  672: locale and its collation order.""
  673: /* close ' to keep fontify happy */ 
  674: n = compare(c_addr1, u1, c_addr2, u2);
  675: :
  676:  rot 2dup swap - >r min swap -text dup
  677:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  678: : -text ( c_addr1 u c_addr2 -- n )
  679:  swap bounds
  680:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  681:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  682: : sgn ( n -- -1/0/1 )
  683:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  684: 
  685: \ -text is only used by replaced primitives now; move it elsewhere
  686: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  687: \ n = memcmp(c_addr1, c_addr2, u);
  688: \ if (n<0)
  689: \   n = -1;
  690: \ else if (n>0)
  691: \   n = 1;
  692: \ :
  693: \  swap bounds
  694: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  695: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  696: \ : sgn ( n -- -1/0/1 )
  697: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  698: 
  699: toupper	( c1 -- c2 )	gforth
  700: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  701: is the equivalent upper-case character. All other characters are unchanged.""
  702: c2 = toupper(c1);
  703: :
  704:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  705: 
  706: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  707: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  708: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  709: is 1. Currently this is based on the machine's character
  710: comparison. In the future, this may change to consider the current
  711: locale and its collation order.""
  712: /* close ' to keep fontify happy */ 
  713: n = capscompare(c_addr1, u1, c_addr2, u2);
  714: 
  715: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  716: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  717: characters from the start of the string.""
  718: c_addr2 = c_addr1+n;
  719: u2 = u1-n;
  720: :
  721:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  722: 
  723: \g arith
  724: 
  725: lit	( #w -- w )		gforth
  726: :
  727:  r> dup @ swap cell+ >r ;
  728: 
  729: +	( n1 n2 -- n )		core	plus
  730: n = n1+n2;
  731: 
  732: \ lit+ / lit_plus = lit +
  733: 
  734: lit+	( n1 #n2 -- n )		new	lit_plus
  735: #ifdef DEBUG
  736: fprintf(stderr, "lit+ %08x\n", n2);
  737: #endif
  738: n=n1+n2;
  739: 
  740: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  741: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  742: ""add @i{n3} to @i{n1} (giving @i{n})""
  743: n = n1+n3;
  744: :
  745:  rot + swap ;
  746: 
  747: -	( n1 n2 -- n )		core	minus
  748: n = n1-n2;
  749: :
  750:  negate + ;
  751: 
  752: negate	( n1 -- n2 )		core
  753: /* use minus as alias */
  754: n2 = -n1;
  755: :
  756:  invert 1+ ;
  757: 
  758: 1+	( n1 -- n2 )		core		one_plus
  759: n2 = n1+1;
  760: :
  761:  1 + ;
  762: 
  763: 1-	( n1 -- n2 )		core		one_minus
  764: n2 = n1-1;
  765: :
  766:  1 - ;
  767: 
  768: max	( n1 n2 -- n )	core
  769: if (n1<n2)
  770:   n = n2;
  771: else
  772:   n = n1;
  773: :
  774:  2dup < IF swap THEN drop ;
  775: 
  776: min	( n1 n2 -- n )	core
  777: if (n1<n2)
  778:   n = n1;
  779: else
  780:   n = n2;
  781: :
  782:  2dup > IF swap THEN drop ;
  783: 
  784: abs	( n -- u )	core
  785: if (n<0)
  786:   u = -n;
  787: else
  788:   u = n;
  789: :
  790:  dup 0< IF negate THEN ;
  791: 
  792: *	( n1 n2 -- n )		core	star
  793: n = n1*n2;
  794: :
  795:  um* drop ;
  796: 
  797: /	( n1 n2 -- n )		core	slash
  798: n = n1/n2;
  799: if (CHECK_DIVISION_SW && n2 == 0)
  800:   throw(BALL_DIVZERO);
  801: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  802:   throw(BALL_RESULTRANGE);
  803: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  804:   n--;
  805: :
  806:  /mod nip ;
  807: 
  808: mod	( n1 n2 -- n )		core
  809: n = n1%n2;
  810: if (CHECK_DIVISION_SW && n2 == 0)
  811:   throw(BALL_DIVZERO);
  812: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  813:   throw(BALL_RESULTRANGE);
  814: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  815: :
  816:  /mod drop ;
  817: 
  818: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  819: n4 = n1/n2;
  820: n3 = n1%n2; /* !! is this correct? look into C standard! */
  821: if (CHECK_DIVISION_SW && n2 == 0)
  822:   throw(BALL_DIVZERO);
  823: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  824:   throw(BALL_RESULTRANGE);
  825: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  826:   n4--;
  827:   n3+=n2;
  828: }
  829: :
  830:  >r s>d r> fm/mod ;
  831: 
  832: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  833: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  834: #ifdef BUGGY_LL_MUL
  835: DCell d = mmul(n1,n2);
  836: #else
  837: DCell d = (DCell)n1 * (DCell)n2;
  838: #endif
  839: #ifdef ASM_SM_SLASH_REM
  840: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  841: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  842:   if (CHECK_DIVISION && n5 == CELL_MIN)
  843:     throw(BALL_RESULTRANGE);
  844:   n5--;
  845:   n4+=n3;
  846: }
  847: #else
  848: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  849: n4=DHI(r);
  850: n5=DLO(r);
  851: #endif
  852: :
  853:  >r m* r> fm/mod ;
  854: 
  855: */	( n1 n2 n3 -- n4 )	core	star_slash
  856: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  857: #ifdef BUGGY_LL_MUL
  858: DCell d = mmul(n1,n2);
  859: #else
  860: DCell d = (DCell)n1 * (DCell)n2;
  861: #endif
  862: #ifdef ASM_SM_SLASH_REM
  863: Cell remainder;
  864: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  865: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  866:   if (CHECK_DIVISION && n4 == CELL_MIN)
  867:     throw(BALL_RESULTRANGE);
  868:   n4--;
  869: }
  870: #else
  871: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  872: n4=DLO(r);
  873: #endif
  874: :
  875:  */mod nip ;
  876: 
  877: 2*	( n1 -- n2 )		core		two_star
  878: ""Shift left by 1; also works on unsigned numbers""
  879: n2 = 2*n1;
  880: :
  881:  dup + ;
  882: 
  883: 2/	( n1 -- n2 )		core		two_slash
  884: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  885: division by 2 (note that @code{/} not necessarily floors).""
  886: n2 = n1>>1;
  887: :
  888:  dup MINI and IF 1 ELSE 0 THEN
  889:  [ bits/char cell * 1- ] literal 
  890:  0 DO 2* swap dup 2* >r MINI and 
  891:      IF 1 ELSE 0 THEN or r> swap
  892:  LOOP nip ;
  893: 
  894: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  895: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  896: #ifdef ASM_SM_SLASH_REM
  897: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  898: if (((DHI(d1)^n1)<0) && n2!=0) {
  899:   if (CHECK_DIVISION && n3 == CELL_MIN)
  900:     throw(BALL_RESULTRANGE);
  901:   n3--;
  902:   n2+=n1;
  903: }
  904: #else /* !defined(ASM_SM_SLASH_REM) */
  905: DCell r = fmdiv(d1,n1);
  906: n2=DHI(r);
  907: n3=DLO(r);
  908: #endif /* !defined(ASM_SM_SLASH_REM) */
  909: :
  910:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  911:  over       0< IF  tuck + swap  THEN
  912:  um/mod
  913:  r> 0< IF  swap negate swap  THEN ;
  914: 
  915: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  916: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  917: #ifdef ASM_SM_SLASH_REM
  918: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  919: #else /* !defined(ASM_SM_SLASH_REM) */
  920: DCell r = smdiv(d1,n1);
  921: n2=DHI(r);
  922: n3=DLO(r);
  923: #endif /* !defined(ASM_SM_SLASH_REM) */
  924: :
  925:  over >r dup >r abs -rot
  926:  dabs rot um/mod
  927:  r> r@ xor 0< IF       negate       THEN
  928:  r>        0< IF  swap negate swap  THEN ;
  929: 
  930: m*	( n1 n2 -- d )		core	m_star
  931: #ifdef BUGGY_LL_MUL
  932: d = mmul(n1,n2);
  933: #else
  934: d = (DCell)n1 * (DCell)n2;
  935: #endif
  936: :
  937:  2dup      0< and >r
  938:  2dup swap 0< and >r
  939:  um* r> - r> - ;
  940: 
  941: um*	( u1 u2 -- ud )		core	u_m_star
  942: /* use u* as alias */
  943: #ifdef BUGGY_LL_MUL
  944: ud = ummul(u1,u2);
  945: #else
  946: ud = (UDCell)u1 * (UDCell)u2;
  947: #endif
  948: :
  949:    0 -rot dup [ 8 cells ] literal -
  950:    DO
  951: 	dup 0< I' and d2*+ drop
  952:    LOOP ;
  953: : d2*+ ( ud n -- ud+n c )
  954:    over MINI
  955:    and >r >r 2dup d+ swap r> + swap r> ;
  956: 
  957: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  958: ""ud=u3*u1+u2, u1>u2>=0""
  959: #ifdef ASM_UM_SLASH_MOD
  960: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  961: #else /* !defined(ASM_UM_SLASH_MOD) */
  962: UDCell r = umdiv(ud,u1);
  963: u2=DHI(r);
  964: u3=DLO(r);
  965: #endif /* !defined(ASM_UM_SLASH_MOD) */
  966: :
  967:    0 swap [ 8 cells 1 + ] literal 0
  968:    ?DO /modstep
  969:    LOOP drop swap 1 rshift or swap ;
  970: : /modstep ( ud c R: u -- ud-?u c R: u )
  971:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  972: : d2*+ ( ud n -- ud+n c )
  973:    over MINI
  974:    and >r >r 2dup d+ swap r> + swap r> ;
  975: 
  976: m+	( d1 n -- d2 )		double		m_plus
  977: #ifdef BUGGY_LL_ADD
  978: DLO_IS(d2, DLO(d1)+n);
  979: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
  980: #else
  981: d2 = d1+n;
  982: #endif
  983: :
  984:  s>d d+ ;
  985: 
  986: d+	( d1 d2 -- d )		double	d_plus
  987: #ifdef BUGGY_LL_ADD
  988: DLO_IS(d, DLO(d1) + DLO(d2));
  989: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
  990: #else
  991: d = d1+d2;
  992: #endif
  993: :
  994:  rot + >r tuck + swap over u> r> swap - ;
  995: 
  996: d-	( d1 d2 -- d )		double		d_minus
  997: #ifdef BUGGY_LL_ADD
  998: DLO_IS(d, DLO(d1) - DLO(d2));
  999: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1000: #else
 1001: d = d1-d2;
 1002: #endif
 1003: :
 1004:  dnegate d+ ;
 1005: 
 1006: dnegate	( d1 -- d2 )		double	d_negate
 1007: /* use dminus as alias */
 1008: #ifdef BUGGY_LL_ADD
 1009: d2 = dnegate(d1);
 1010: #else
 1011: d2 = -d1;
 1012: #endif
 1013: :
 1014:  invert swap negate tuck 0= - ;
 1015: 
 1016: d2*	( d1 -- d2 )		double		d_two_star
 1017: ""Shift left by 1; also works on unsigned numbers""
 1018: d2 = DLSHIFT(d1,1);
 1019: :
 1020:  2dup d+ ;
 1021: 
 1022: d2/	( d1 -- d2 )		double		d_two_slash
 1023: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1024: division by 2.""
 1025: #ifdef BUGGY_LL_SHIFT
 1026: DHI_IS(d2, DHI(d1)>>1);
 1027: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1028: #else
 1029: d2 = d1>>1;
 1030: #endif
 1031: :
 1032:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1033:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1034: 
 1035: and	( w1 w2 -- w )		core
 1036: w = w1&w2;
 1037: 
 1038: or	( w1 w2 -- w )		core
 1039: w = w1|w2;
 1040: :
 1041:  invert swap invert and invert ;
 1042: 
 1043: xor	( w1 w2 -- w )		core	x_or
 1044: w = w1^w2;
 1045: 
 1046: invert	( w1 -- w2 )		core
 1047: w2 = ~w1;
 1048: :
 1049:  MAXU xor ;
 1050: 
 1051: rshift	( u1 n -- u2 )		core	r_shift
 1052: ""Logical shift right by @i{n} bits.""
 1053: #ifdef BROKEN_SHIFT
 1054:   u2 = rshift(u1, n);
 1055: #else
 1056:   u2 = u1 >> n;
 1057: #endif
 1058: :
 1059:     0 ?DO 2/ MAXI and LOOP ;
 1060: 
 1061: lshift	( u1 n -- u2 )		core	l_shift
 1062: #ifdef BROKEN_SHIFT
 1063:   u2 = lshift(u1, n);
 1064: #else
 1065:   u2 = u1 << n;
 1066: #endif
 1067: :
 1068:     0 ?DO 2* LOOP ;
 1069: 
 1070: \g compare
 1071: 
 1072: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1073: define(comparisons,
 1074: $1=	( $2 -- f )		$6	$3equals
 1075: f = FLAG($4==$5);
 1076: :
 1077:     [ char $1x char 0 = [IF]
 1078: 	] IF false ELSE true THEN [
 1079:     [ELSE]
 1080: 	] xor 0= [
 1081:     [THEN] ] ;
 1082: 
 1083: $1<>	( $2 -- f )		$7	$3not_equals
 1084: f = FLAG($4!=$5);
 1085: :
 1086:     [ char $1x char 0 = [IF]
 1087: 	] IF true ELSE false THEN [
 1088:     [ELSE]
 1089: 	] xor 0<> [
 1090:     [THEN] ] ;
 1091: 
 1092: $1<	( $2 -- f )		$8	$3less_than
 1093: f = FLAG($4<$5);
 1094: :
 1095:     [ char $1x char 0 = [IF]
 1096: 	] MINI and 0<> [
 1097:     [ELSE] char $1x char u = [IF]
 1098: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1099: 	[ELSE]
 1100: 	    ] MINI xor >r MINI xor r> u< [
 1101: 	[THEN]
 1102:     [THEN] ] ;
 1103: 
 1104: $1>	( $2 -- f )		$9	$3greater_than
 1105: f = FLAG($4>$5);
 1106: :
 1107:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1108:     $1< ;
 1109: 
 1110: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1111: f = FLAG($4<=$5);
 1112: :
 1113:     $1> 0= ;
 1114: 
 1115: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1116: f = FLAG($4>=$5);
 1117: :
 1118:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1119:     $1<= ;
 1120: 
 1121: )
 1122: 
 1123: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1124: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1125: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1126: 
 1127: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1128: define(dcomparisons,
 1129: $1=	( $2 -- f )		$6	$3equals
 1130: #ifdef BUGGY_LL_CMP
 1131: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1132: #else
 1133: f = FLAG($4==$5);
 1134: #endif
 1135: 
 1136: $1<>	( $2 -- f )		$7	$3not_equals
 1137: #ifdef BUGGY_LL_CMP
 1138: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1139: #else
 1140: f = FLAG($4!=$5);
 1141: #endif
 1142: 
 1143: $1<	( $2 -- f )		$8	$3less_than
 1144: #ifdef BUGGY_LL_CMP
 1145: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1146: #else
 1147: f = FLAG($4<$5);
 1148: #endif
 1149: 
 1150: $1>	( $2 -- f )		$9	$3greater_than
 1151: #ifdef BUGGY_LL_CMP
 1152: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1153: #else
 1154: f = FLAG($4>$5);
 1155: #endif
 1156: 
 1157: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1158: #ifdef BUGGY_LL_CMP
 1159: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1160: #else
 1161: f = FLAG($4<=$5);
 1162: #endif
 1163: 
 1164: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1165: #ifdef BUGGY_LL_CMP
 1166: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1167: #else
 1168: f = FLAG($4>=$5);
 1169: #endif
 1170: 
 1171: )
 1172: 
 1173: \+dcomps
 1174: 
 1175: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1176: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1177: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1178: 
 1179: \+
 1180: 
 1181: within	( u1 u2 u3 -- f )		core-ext
 1182: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1183: unsigned and signed numbers (but not a mixture).  Another way to think
 1184: about this word is to consider the numbers as a circle (wrapping
 1185: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1186: min-n for signed numbers); now consider the range from u2 towards
 1187: increasing numbers up to and excluding u3 (giving an empty range if
 1188: u2=u3); if u1 is in this range, @code{within} returns true.""
 1189: f = FLAG(u1-u2 < u3-u2);
 1190: :
 1191:  over - >r - r> u< ;
 1192: 
 1193: \g stack
 1194: 
 1195: useraddr	( #u -- a_addr )	new
 1196: a_addr = (Cell *)(up+u);
 1197: 
 1198: up!	( a_addr -- )	gforth	up_store
 1199: gforth_UP=up=(Address)a_addr;
 1200: :
 1201:  up ! ;
 1202: Variable UP
 1203: 
 1204: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1205: a_addr = sp;
 1206: 
 1207: sp!	( a_addr -- S:... )		gforth		sp_store
 1208: sp = a_addr;
 1209: 
 1210: rp@	( -- a_addr )		gforth		rp_fetch
 1211: a_addr = rp;
 1212: 
 1213: rp!	( a_addr -- )		gforth		rp_store
 1214: rp = a_addr;
 1215: 
 1216: \+floating
 1217: 
 1218: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1219: f_addr = fp;
 1220: 
 1221: fp!	( f_addr -- f:... )	gforth	fp_store
 1222: fp = f_addr;
 1223: 
 1224: \+
 1225: 
 1226: >r	( w -- R:w )		core	to_r
 1227: :
 1228:  (>r) ;
 1229: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1230: 
 1231: r>	( R:w -- w )		core	r_from
 1232: :
 1233:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1234: Create (rdrop) ' ;s A,
 1235: 
 1236: rdrop	( R:w -- )		gforth
 1237: :
 1238:  r> r> drop >r ;
 1239: 
 1240: 2>r	( d -- R:d )	core-ext	two_to_r
 1241: :
 1242:  swap r> swap >r swap >r >r ;
 1243: 
 1244: 2r>	( R:d -- d )	core-ext	two_r_from
 1245: :
 1246:  r> r> swap r> swap >r swap ;
 1247: 
 1248: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1249: :
 1250:  i' j ;
 1251: 
 1252: 2rdrop	( R:d -- )		gforth	two_r_drop
 1253: :
 1254:  r> r> drop r> drop >r ;
 1255: 
 1256: over	( w1 w2 -- w1 w2 w1 )		core
 1257: :
 1258:  sp@ cell+ @ ;
 1259: 
 1260: drop	( w -- )		core
 1261: :
 1262:  IF THEN ;
 1263: 
 1264: swap	( w1 w2 -- w2 w1 )		core
 1265: :
 1266:  >r (swap) ! r> (swap) @ ;
 1267: Variable (swap)
 1268: 
 1269: dup	( w -- w w )		core	dupe
 1270: :
 1271:  sp@ @ ;
 1272: 
 1273: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1274: :
 1275: [ defined? (swap) [IF] ]
 1276:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1277: Variable (rot)
 1278: [ELSE] ]
 1279:     >r swap r> swap ;
 1280: [THEN]
 1281: 
 1282: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1283: :
 1284:  rot rot ;
 1285: 
 1286: nip	( w1 w2 -- w2 )		core-ext
 1287: :
 1288:  swap drop ;
 1289: 
 1290: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1291: :
 1292:  swap over ;
 1293: 
 1294: ?dup	( w -- S:... w )	core	question_dupe
 1295: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1296: @code{dup} if w is nonzero.""
 1297: if (w!=0) {
 1298:   *--sp = w;
 1299: }
 1300: :
 1301:  dup IF dup THEN ;
 1302: 
 1303: pick	( S:... u -- S:... w )		core-ext
 1304: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1305: w = sp[u];
 1306: :
 1307:  1+ cells sp@ + @ ;
 1308: 
 1309: 2drop	( w1 w2 -- )		core	two_drop
 1310: :
 1311:  drop drop ;
 1312: 
 1313: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1314: :
 1315:  over over ;
 1316: 
 1317: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1318: :
 1319:  3 pick 3 pick ;
 1320: 
 1321: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1322: :
 1323:  rot >r rot r> ;
 1324: 
 1325: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1326: :
 1327:  >r >r 2swap r> r> 2swap ;
 1328: 
 1329: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1330: :
 1331:  2swap 2drop ;
 1332: 
 1333: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1334: :
 1335:  2swap 2over ;
 1336: 
 1337: \ toggle is high-level: 0.11/0.42%
 1338: 
 1339: \g memory
 1340: 
 1341: @	( a_addr -- w )		core	fetch
 1342: ""@i{w} is the cell stored at @i{a_addr}.""
 1343: w = *a_addr;
 1344: 
 1345: \ lit@ / lit_fetch = lit @
 1346: 
 1347: lit@		( #a_addr -- w ) new	lit_fetch
 1348: w = *a_addr;
 1349: 
 1350: !	( w a_addr -- )		core	store
 1351: ""Store @i{w} into the cell at @i{a-addr}.""
 1352: *a_addr = w;
 1353: 
 1354: +!	( n a_addr -- )		core	plus_store
 1355: ""Add @i{n} to the cell at @i{a-addr}.""
 1356: *a_addr += n;
 1357: :
 1358:  tuck @ + swap ! ;
 1359: 
 1360: c@	( c_addr -- c )		core	c_fetch
 1361: ""@i{c} is the char stored at @i{c_addr}.""
 1362: c = *c_addr;
 1363: :
 1364: [ bigendian [IF] ]
 1365:     [ cell>bit 4 = [IF] ]
 1366: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1367: 	IF  $FF and  ELSE  8>>  THEN  ;
 1368:     [ [ELSE] ]
 1369: 	dup [ cell 1- ] literal and
 1370: 	tuck - @ swap [ cell 1- ] literal xor
 1371:  	0 ?DO 8>> LOOP $FF and
 1372:     [ [THEN] ]
 1373: [ [ELSE] ]
 1374:     [ cell>bit 4 = [IF] ]
 1375: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1376: 	IF  8>>  ELSE  $FF and  THEN
 1377:     [ [ELSE] ]
 1378: 	dup [ cell  1- ] literal and 
 1379: 	tuck - @ swap
 1380: 	0 ?DO 8>> LOOP 255 and
 1381:     [ [THEN] ]
 1382: [ [THEN] ]
 1383: ;
 1384: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1385: 
 1386: c!	( c c_addr -- )		core	c_store
 1387: ""Store @i{c} into the char at @i{c-addr}.""
 1388: *c_addr = c;
 1389: :
 1390: [ bigendian [IF] ]
 1391:     [ cell>bit 4 = [IF] ]
 1392: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1393: 	dup -2 and @ over 1 and cells masks + @ and
 1394: 	r> or swap -2 and ! ;
 1395: 	Create masks $00FF , $FF00 ,
 1396:     [ELSE] ]
 1397: 	dup [ cell 1- ] literal and dup 
 1398: 	[ cell 1- ] literal xor >r
 1399: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1400: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1401:     [THEN]
 1402: [ELSE] ]
 1403:     [ cell>bit 4 = [IF] ]
 1404: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1405: 	dup -2 and @ over 1 and cells masks + @ and
 1406: 	r> or swap -2 and ! ;
 1407: 	Create masks $FF00 , $00FF ,
 1408:     [ELSE] ]
 1409: 	dup [ cell 1- ] literal and dup >r
 1410: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1411: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1412:     [THEN]
 1413: [THEN]
 1414: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1415: 
 1416: 2!	( w1 w2 a_addr -- )		core	two_store
 1417: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1418: a_addr[0] = w2;
 1419: a_addr[1] = w1;
 1420: :
 1421:  tuck ! cell+ ! ;
 1422: 
 1423: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1424: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1425: the content of the next cell.""
 1426: w2 = a_addr[0];
 1427: w1 = a_addr[1];
 1428: :
 1429:  dup cell+ @ swap @ ;
 1430: 
 1431: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1432: ""@code{1 cells +}""
 1433: a_addr2 = a_addr1+1;
 1434: :
 1435:  cell + ;
 1436: 
 1437: cells	( n1 -- n2 )		core
 1438: "" @i{n2} is the number of address units of @i{n1} cells.""
 1439: n2 = n1 * sizeof(Cell);
 1440: :
 1441:  [ cell
 1442:  2/ dup [IF] ] 2* [ [THEN]
 1443:  2/ dup [IF] ] 2* [ [THEN]
 1444:  2/ dup [IF] ] 2* [ [THEN]
 1445:  2/ dup [IF] ] 2* [ [THEN]
 1446:  drop ] ;
 1447: 
 1448: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1449: ""@code{1 chars +}.""
 1450: c_addr2 = c_addr1 + 1;
 1451: :
 1452:  1+ ;
 1453: 
 1454: (chars)	( n1 -- n2 )	gforth	paren_chars
 1455: n2 = n1 * sizeof(Char);
 1456: :
 1457:  ;
 1458: 
 1459: count	( c_addr1 -- c_addr2 u )	core
 1460: ""@i{c-addr2} is the first character and @i{u} the length of the
 1461: counted string at @i{c-addr1}.""
 1462: u = *c_addr1;
 1463: c_addr2 = c_addr1+1;
 1464: :
 1465:  dup 1+ swap c@ ;
 1466: 
 1467: \g compiler
 1468: 
 1469: \+f83headerstring
 1470: 
 1471: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1472: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1473:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1474:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1475:     break;
 1476: f83name2=f83name1;
 1477: #ifdef DEBUG
 1478: fprintf(stderr, "F83find ");
 1479: fwrite(c_addr, u, 1, stderr);
 1480: fprintf(stderr, " found %08x\n", f83name2); 
 1481: #endif
 1482: :
 1483:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1484: 	>r 2dup r@ cell+ char+ capscomp  0=
 1485: 	IF  2drop r>  EXIT  THEN
 1486: 	r> @
 1487:     REPEAT  THEN  nip nip ;
 1488: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1489:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1490: : capscomp ( c_addr1 u c_addr2 -- n )
 1491:  swap bounds
 1492:  ?DO  dup c@ I c@ <>
 1493:      IF  dup c@ toupper I c@ toupper =
 1494:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1495:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1496: : sgn ( n -- -1/0/1 )
 1497:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1498: 
 1499: \-
 1500: 
 1501: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1502: longname2=listlfind(c_addr, u, longname1);
 1503: :
 1504:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1505: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1506: 	IF  2drop r>  EXIT  THEN
 1507: 	r> @
 1508:     REPEAT  THEN  nip nip ;
 1509: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1510:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1511: : capscomp ( c_addr1 u c_addr2 -- n )
 1512:  swap bounds
 1513:  ?DO  dup c@ I c@ <>
 1514:      IF  dup c@ toupper I c@ toupper =
 1515:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1516:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1517: : sgn ( n -- -1/0/1 )
 1518:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1519: 
 1520: \+hash
 1521: 
 1522: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1523: longname2 = hashlfind(c_addr, u, a_addr);
 1524: :
 1525:  BEGIN  dup  WHILE
 1526:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1527:         IF  2dup r@ cell+ cell+ capscomp 0=
 1528: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1529: 	rdrop r>
 1530:  REPEAT nip nip ;
 1531: 
 1532: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1533: ""A case-sensitive variant of @code{(hashfind)}""
 1534: longname2 = tablelfind(c_addr, u, a_addr);
 1535: :
 1536:  BEGIN  dup  WHILE
 1537:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1538:         IF  2dup r@ cell+ cell+ -text 0=
 1539: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1540: 	rdrop r>
 1541:  REPEAT nip nip ;
 1542: : -text ( c_addr1 u c_addr2 -- n )
 1543:  swap bounds
 1544:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1545:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1546: : sgn ( n -- -1/0/1 )
 1547:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1548: 
 1549: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1550: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1551: ukey = hashkey1(c_addr, u, ubits);
 1552: :
 1553:  dup rot-values + c@ over 1 swap lshift 1- >r
 1554:  tuck - 2swap r> 0 2swap bounds
 1555:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1556:       I c@ toupper xor
 1557:       over and  LOOP
 1558:  nip nip nip ;
 1559: Create rot-values
 1560:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1561:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1562:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1563:   7 c, 5 c, 5 c,
 1564: 
 1565: \+
 1566: 
 1567: \+
 1568: 
 1569: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1570: struct Cellpair r=parse_white(c_addr1, u1);
 1571: c_addr2 = (Char *)(r.n1);
 1572: u2 = r.n2;
 1573: :
 1574:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1575:  REPEAT  THEN  2dup
 1576:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1577:  REPEAT  THEN  nip - ;
 1578: 
 1579: aligned	( c_addr -- a_addr )	core
 1580: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1581: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1582: :
 1583:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1584: 
 1585: faligned	( c_addr -- f_addr )	float	f_aligned
 1586: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1587: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1588: :
 1589:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1590: 
 1591: \ threading stuff is currently only interesting if we have a compiler
 1592: \fhas? standardthreading has? compiler and [IF]
 1593: threading-method	( -- n )	gforth	threading_method
 1594: ""0 if the engine is direct threaded. Note that this may change during
 1595: the lifetime of an image.""
 1596: #if defined(DOUBLY_INDIRECT)
 1597: n=2;
 1598: #else
 1599: # if defined(DIRECT_THREADED)
 1600: n=0;
 1601: # else
 1602: n=1;
 1603: # endif
 1604: #endif
 1605: :
 1606:  1 ;
 1607: 
 1608: \f[THEN]
 1609: 
 1610: \g hostos
 1611: 
 1612: key-file	( wfileid -- c )		gforth	paren_key_file
 1613: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1614: buffering for @i{wfileid}.  If you want to read characters from a
 1615: terminal in non-canonical (raw) mode, you have to put the terminal in
 1616: non-canonical mode yourself (using the C interface); the exception is
 1617: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1618: #ifdef HAS_FILE
 1619: fflush(stdout);
 1620: c = key((FILE*)wfileid);
 1621: #else
 1622: c = key(stdin);
 1623: #endif
 1624: 
 1625: key?-file	( wfileid -- f )	        gforth	key_q_file
 1626: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1627: without blocking.  If you also want to use @code{read-file} or
 1628: @code{read-line} on the file, you have to call @code{key?-file} or
 1629: @code{key-file} first (these two words disable buffering).""
 1630: #ifdef HAS_FILE
 1631: fflush(stdout);
 1632: f = key_query((FILE*)wfileid);
 1633: #else
 1634: f = key_query(stdin);
 1635: #endif
 1636: 
 1637: stdin	( -- wfileid )	gforth
 1638: ""The standard input file of the Gforth process.""
 1639: wfileid = (Cell)stdin;
 1640: 
 1641: stdout	( -- wfileid )	gforth
 1642: ""The standard output file of the Gforth process.""
 1643: wfileid = (Cell)stdout;
 1644: 
 1645: stderr	( -- wfileid )	gforth
 1646: ""The standard error output file of the Gforth process.""
 1647: wfileid = (Cell)stderr;
 1648: 
 1649: \+os
 1650: 
 1651: form	( -- urows ucols )	gforth
 1652: ""The number of lines and columns in the terminal. These numbers may
 1653: change with the window size.  Note that it depends on the OS whether
 1654: this reflects the actual size and changes with the window size
 1655: (currently only on Unix-like OSs).  On other OSs you just get a
 1656: default, and can tell Gforth the terminal size by setting the
 1657: environment variables @code{COLUMNS} and @code{LINES} before starting
 1658: Gforth.""
 1659: /* we could block SIGWINCH here to get a consistent size, but I don't
 1660:  think this is necessary or always beneficial */
 1661: urows=rows;
 1662: ucols=cols;
 1663: 
 1664: wcwidth	( u -- n )	gforth
 1665: ""The number of fixed-width characters per unicode character u""
 1666: n = wcwidth(u);
 1667: 
 1668: flush-icache	( c_addr u -- )	gforth	flush_icache
 1669: ""Make sure that the instruction cache of the processor (if there is
 1670: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1671: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1672: automatically. Caveat: @code{flush-icache} might not work on your
 1673: installation; this is usually the case if direct threading is not
 1674: supported on your machine (take a look at your @file{machine.h}) and
 1675: your machine has a separate instruction cache. In such cases,
 1676: @code{flush-icache} does nothing instead of flushing the instruction
 1677: cache.""
 1678: FLUSH_ICACHE(c_addr,u);
 1679: 
 1680: (bye)	( n -- )	gforth	paren_bye
 1681: SUPER_END;
 1682: return (Label *)n;
 1683: 
 1684: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1685: wretval = gforth_system(c_addr, u);  
 1686: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1687: 
 1688: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1689: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1690: is the host operating system's expansion of that environment variable. If the
 1691: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1692: in length.""
 1693: /* close ' to keep fontify happy */
 1694: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1695: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1696: 
 1697: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1698: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1699: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1700: 
 1701: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1702: wretval = pclose((FILE *)wfileid);
 1703: wior = IOR(wretval==-1);
 1704: 
 1705: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1706: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1707: Months are numbered from 1.""
 1708: #if 1
 1709: time_t now;
 1710: struct tm *ltime;
 1711: time(&now);
 1712: ltime=localtime(&now);
 1713: #else
 1714: struct timeval time1;
 1715: struct timezone zone1;
 1716: struct tm *ltime;
 1717: gettimeofday(&time1,&zone1);
 1718: /* !! Single Unix specification: 
 1719:    If tzp is not a null pointer, the behaviour is unspecified. */
 1720: ltime=localtime((time_t *)&time1.tv_sec);
 1721: #endif
 1722: nyear =ltime->tm_year+1900;
 1723: nmonth=ltime->tm_mon+1;
 1724: nday  =ltime->tm_mday;
 1725: nhour =ltime->tm_hour;
 1726: nmin  =ltime->tm_min;
 1727: nsec  =ltime->tm_sec;
 1728: 
 1729: ms	( u -- )	facility-ext
 1730: ""Wait at least @i{n} milli-second.""
 1731: gforth_ms(u);
 1732: 
 1733: allocate	( u -- a_addr wior )	memory
 1734: ""Allocate @i{u} address units of contiguous data space. The initial
 1735: contents of the data space is undefined. If the allocation is successful,
 1736: @i{a-addr} is the start address of the allocated region and @i{wior}
 1737: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1738: is a non-zero I/O result code.""
 1739: a_addr = (Cell *)malloc(u?u:1);
 1740: wior = IOR(a_addr==NULL);
 1741: 
 1742: free	( a_addr -- wior )		memory
 1743: ""Return the region of data space starting at @i{a-addr} to the system.
 1744: The region must originally have been obtained using @code{allocate} or
 1745: @code{resize}. If the operational is successful, @i{wior} is 0.
 1746: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1747: free(a_addr);
 1748: wior = 0;
 1749: 
 1750: resize	( a_addr1 u -- a_addr2 wior )	memory
 1751: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1752: address units, possibly moving the contents to a different
 1753: area. @i{a-addr2} is the address of the resulting area.
 1754: If the operation is successful, @i{wior} is 0.
 1755: If the operation fails, @i{wior} is a non-zero
 1756: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1757: @code{resize} @code{allocate}s @i{u} address units.""
 1758: /* the following check is not necessary on most OSs, but it is needed
 1759:    on SunOS 4.1.2. */
 1760: /* close ' to keep fontify happy */
 1761: if (a_addr1==NULL)
 1762:   a_addr2 = (Cell *)malloc(u);
 1763: else
 1764:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1765: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1766: 
 1767: strerror	( n -- c_addr u )	gforth
 1768: c_addr = (Char *)strerror(n);
 1769: u = strlen((char *)c_addr);
 1770: 
 1771: strsignal	( n -- c_addr u )	gforth
 1772: c_addr = (Char *)strsignal(n);
 1773: u = strlen((char *)c_addr);
 1774: 
 1775: call-c	( ... w -- ... )	gforth	call_c
 1776: ""Call the C function pointed to by @i{w}. The C function has to
 1777: access the stack itself. The stack pointers are exported in the global
 1778: variables @code{gforth_SP} and @code{gforth_FP}.""
 1779: /* This is a first attempt at support for calls to C. This may change in
 1780:    the future */
 1781: gforth_FP=fp;
 1782: gforth_SP=sp;
 1783: ((void (*)())w)();
 1784: sp=gforth_SP;
 1785: fp=gforth_FP;
 1786: 
 1787: \+
 1788: \+file
 1789: 
 1790: close-file	( wfileid -- wior )		file	close_file
 1791: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1792: 
 1793: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1794: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, 0, &wior);
 1795: 
 1796: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1797: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, O_CREAT|O_TRUNC, &wior);
 1798: 
 1799: delete-file	( c_addr u -- wior )		file	delete_file
 1800: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1801: 
 1802: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1803: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1804: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1805: 
 1806: file-position	( wfileid -- ud wior )	file	file_position
 1807: /* !! use tell and lseek? */
 1808: ud = OFF2UD(ftello((FILE *)wfileid));
 1809: wior = IOR(UD2OFF(ud)==-1);
 1810: 
 1811: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1812: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1813: 
 1814: file-size	( wfileid -- ud wior )	file	file_size
 1815: struct stat buf;
 1816: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1817: ud = OFF2UD(buf.st_size);
 1818: 
 1819: resize-file	( ud wfileid -- wior )	file	resize_file
 1820: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1821: 
 1822: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1823: /* !! fread does not guarantee enough */
 1824: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1825: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1826: /* !! is the value of ferror errno-compatible? */
 1827: if (wior)
 1828:   clearerr((FILE *)wfileid);
 1829: 
 1830: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1831: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1832: u2   = r.n1;
 1833: flag = r.n2;
 1834: u3   = r.n3;
 1835: wior = r.n4;
 1836: 
 1837: \+
 1838: 
 1839: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1840: /* !! fwrite does not guarantee enough */
 1841: #ifdef HAS_FILE
 1842: {
 1843:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1844:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1845:   if (wior)
 1846:     clearerr((FILE *)wfileid);
 1847: }
 1848: #else
 1849: TYPE(c_addr, u1);
 1850: #endif
 1851: 
 1852: emit-file	( c wfileid -- wior )	gforth	emit_file
 1853: #ifdef HAS_FILE
 1854: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1855: if (wior)
 1856:   clearerr((FILE *)wfileid);
 1857: #else
 1858: PUTC(c);
 1859: #endif
 1860: 
 1861: \+file
 1862: 
 1863: flush-file	( wfileid -- wior )		file-ext	flush_file
 1864: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1865: 
 1866: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1867: struct Cellpair r = file_status(c_addr, u);
 1868: wfam = r.n1;
 1869: wior = r.n2;
 1870: 
 1871: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1872: flag = FLAG(feof((FILE *) wfileid));
 1873: 
 1874: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1875: ""Open the directory specified by @i{c-addr, u}
 1876: and return @i{dir-id} for futher access to it.""
 1877: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1878: wior =  IOR(wdirid == 0);
 1879: 
 1880: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1881: ""Attempt to read the next entry from the directory specified
 1882: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1883: If the attempt fails because there is no more entries,
 1884: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1885: If the attempt to read the next entry fails because of any other reason, 
 1886: return @i{ior}<>0.
 1887: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1888: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1889: If the length of the file name is greater than @i{u1}, 
 1890: store first @i{u1} characters from file name into the buffer and
 1891: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1892: struct dirent * dent;
 1893: dent = readdir((DIR *)wdirid);
 1894: wior = 0;
 1895: flag = -1;
 1896: if(dent == NULL) {
 1897:   u2 = 0;
 1898:   flag = 0;
 1899: } else {
 1900:   u2 = strlen((char *)dent->d_name);
 1901:   if(u2 > u1) {
 1902:     u2 = u1;
 1903:     wior = -512-ENAMETOOLONG;
 1904:   }
 1905:   memmove(c_addr, dent->d_name, u2);
 1906: }
 1907: 
 1908: close-dir	( wdirid -- wior )	gforth	close_dir
 1909: ""Close the directory specified by @i{dir-id}.""
 1910: wior = IOR(closedir((DIR *)wdirid));
 1911: 
 1912: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1913: char * string = cstr(c_addr1, u1, 1);
 1914: char * pattern = cstr(c_addr2, u2, 0);
 1915: flag = FLAG(!fnmatch(pattern, string, 0));
 1916: 
 1917: set-dir	( c_addr u -- wior )	gforth set_dir
 1918: ""Change the current directory to @i{c-addr, u}.
 1919: Return an error if this is not possible""
 1920: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1921: 
 1922: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1923: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1924: If the buffer size is not sufficient, return 0 0""
 1925: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1926: if(c_addr2 != NULL) {
 1927:   u2 = strlen((char *)c_addr2);
 1928: } else {
 1929:   u2 = 0;
 1930: }
 1931: 
 1932: \+
 1933: 
 1934: newline	( -- c_addr u )	gforth
 1935: ""String containing the newline sequence of the host OS""
 1936: char newline[] = {
 1937: #if DIRSEP=='/'
 1938: /* Unix */
 1939: '\n'
 1940: #else
 1941: /* DOS, Win, OS/2 */
 1942: '\r','\n'
 1943: #endif
 1944: };
 1945: c_addr=(Char *)newline;
 1946: u=sizeof(newline);
 1947: :
 1948:  "newline count ;
 1949: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1950: 
 1951: \+os
 1952: 
 1953: utime	( -- dtime )	gforth
 1954: ""Report the current time in microseconds since some epoch.""
 1955: struct timeval time1;
 1956: gettimeofday(&time1,NULL);
 1957: dtime = timeval2us(&time1);
 1958: 
 1959: cputime ( -- duser dsystem ) gforth
 1960: ""duser and dsystem are the respective user- and system-level CPU
 1961: times used since the start of the Forth system (excluding child
 1962: processes), in microseconds (the granularity may be much larger,
 1963: however).  On platforms without the getrusage call, it reports elapsed
 1964: time (since some epoch) for duser and 0 for dsystem.""
 1965: #ifdef HAVE_GETRUSAGE
 1966: struct rusage usage;
 1967: getrusage(RUSAGE_SELF, &usage);
 1968: duser = timeval2us(&usage.ru_utime);
 1969: dsystem = timeval2us(&usage.ru_stime);
 1970: #else
 1971: struct timeval time1;
 1972: gettimeofday(&time1,NULL);
 1973: duser = timeval2us(&time1);
 1974: dsystem = DZERO;
 1975: #endif
 1976: 
 1977: \+
 1978: 
 1979: \+floating
 1980: 
 1981: \g floating
 1982: 
 1983: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1984: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1985: 
 1986: s>f	( n -- r )		float	s_to_f
 1987: r = n;
 1988: 
 1989: d>f	( d -- r )		float	d_to_f
 1990: #ifdef BUGGY_LL_D2F
 1991: extern double ldexp(double x, int exp);
 1992: if (DHI(d)<0) {
 1993: #ifdef BUGGY_LL_ADD
 1994:   DCell d2=dnegate(d);
 1995: #else
 1996:   DCell d2=-d;
 1997: #endif
 1998:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 1999: } else
 2000:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2001: #else
 2002: r = d;
 2003: #endif
 2004: 
 2005: f>d	( r -- d )		float	f_to_d
 2006: extern DCell double2ll(Float r);
 2007: d = double2ll(r);
 2008: 
 2009: f>s	( r -- n )		float	f_to_s
 2010: n = (Cell)r;
 2011: 
 2012: f!	( r f_addr -- )	float	f_store
 2013: ""Store @i{r} into the float at address @i{f-addr}.""
 2014: *f_addr = r;
 2015: 
 2016: f@	( f_addr -- r )	float	f_fetch
 2017: ""@i{r} is the float at address @i{f-addr}.""
 2018: r = *f_addr;
 2019: 
 2020: df@	( df_addr -- r )	float-ext	d_f_fetch
 2021: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2022: #ifdef IEEE_FP
 2023: r = *df_addr;
 2024: #else
 2025: !! df@
 2026: #endif
 2027: 
 2028: df!	( r df_addr -- )	float-ext	d_f_store
 2029: ""Store @i{r} as double-precision IEEE floating-point value to the
 2030: address @i{df-addr}.""
 2031: #ifdef IEEE_FP
 2032: *df_addr = r;
 2033: #else
 2034: !! df!
 2035: #endif
 2036: 
 2037: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2038: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2039: #ifdef IEEE_FP
 2040: r = *sf_addr;
 2041: #else
 2042: !! sf@
 2043: #endif
 2044: 
 2045: sf!	( r sf_addr -- )	float-ext	s_f_store
 2046: ""Store @i{r} as single-precision IEEE floating-point value to the
 2047: address @i{sf-addr}.""
 2048: #ifdef IEEE_FP
 2049: *sf_addr = r;
 2050: #else
 2051: !! sf!
 2052: #endif
 2053: 
 2054: f+	( r1 r2 -- r3 )	float	f_plus
 2055: r3 = r1+r2;
 2056: 
 2057: f-	( r1 r2 -- r3 )	float	f_minus
 2058: r3 = r1-r2;
 2059: 
 2060: f*	( r1 r2 -- r3 )	float	f_star
 2061: r3 = r1*r2;
 2062: 
 2063: f/	( r1 r2 -- r3 )	float	f_slash
 2064: r3 = r1/r2;
 2065: 
 2066: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2067: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2068: r3 = pow(r1,r2);
 2069: 
 2070: fm*	( r1 n -- r2 )	gforth	fm_star
 2071: r2 = r1*n;
 2072: 
 2073: fm/	( r1 n -- r2 )	gforth	fm_slash
 2074: r2 = r1/n;
 2075: 
 2076: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2077: r2 = (r1*n1)/n2;
 2078: 
 2079: f**2	( r1 -- r2 )	gforth	fm_square
 2080: r2 = r1*r1;
 2081: 
 2082: fnegate	( r1 -- r2 )	float	f_negate
 2083: r2 = - r1;
 2084: 
 2085: fdrop	( r -- )		float	f_drop
 2086: 
 2087: fdup	( r -- r r )	float	f_dupe
 2088: 
 2089: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2090: 
 2091: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2092: 
 2093: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2094: 
 2095: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2096: 
 2097: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2098: 
 2099: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2100: ""@code{1 floats +}.""
 2101: f_addr2 = f_addr1+1;
 2102: 
 2103: floats	( n1 -- n2 )	float
 2104: ""@i{n2} is the number of address units of @i{n1} floats.""
 2105: n2 = n1*sizeof(Float);
 2106: 
 2107: floor	( r1 -- r2 )	float
 2108: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2109: /* !! unclear wording */
 2110: r2 = floor(r1);
 2111: 
 2112: fround	( r1 -- r2 )	float	f_round
 2113: ""Round to the nearest integral value.""
 2114: r2 = rint(r1);
 2115: 
 2116: fmax	( r1 r2 -- r3 )	float	f_max
 2117: if (r1<r2)
 2118:   r3 = r2;
 2119: else
 2120:   r3 = r1;
 2121: 
 2122: fmin	( r1 r2 -- r3 )	float	f_min
 2123: if (r1<r2)
 2124:   r3 = r1;
 2125: else
 2126:   r3 = r2;
 2127: 
 2128: represent	( r c_addr u -- n f1 f2 )	float
 2129: char *sig;
 2130: size_t siglen;
 2131: int flag;
 2132: int decpt;
 2133: sig=ecvt(r, u, &decpt, &flag);
 2134: n=(r==0. ? 1 : decpt);
 2135: f1=FLAG(flag!=0);
 2136: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2137: siglen=strlen((char *)sig);
 2138: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2139:   siglen=u;
 2140: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2141:   for (; sig[siglen-1]=='0'; siglen--);
 2142:     ;
 2143: memcpy(c_addr,sig,siglen);
 2144: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2145: 
 2146: >float	( c_addr u -- f:... flag )	float	to_float
 2147: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2148: character string @i{c-addr u} to internal floating-point
 2149: representation. If the string represents a valid floating-point number
 2150: @i{r} is placed on the floating-point stack and @i{flag} is
 2151: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2152: case and represents the floating-point number 0.""
 2153: Float r;
 2154: flag = to_float(c_addr, u, &r);
 2155: if (flag) {
 2156:   fp--;
 2157:   fp[0]=r;
 2158: }
 2159: 
 2160: fabs	( r1 -- r2 )	float-ext	f_abs
 2161: r2 = fabs(r1);
 2162: 
 2163: facos	( r1 -- r2 )	float-ext	f_a_cos
 2164: r2 = acos(r1);
 2165: 
 2166: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2167: r2 = asin(r1);
 2168: 
 2169: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2170: r2 = atan(r1);
 2171: 
 2172: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2173: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2174: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2175: r3 = atan2(r1,r2);
 2176: 
 2177: fcos	( r1 -- r2 )	float-ext	f_cos
 2178: r2 = cos(r1);
 2179: 
 2180: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2181: r2 = exp(r1);
 2182: 
 2183: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2184: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2185: #ifdef HAVE_EXPM1
 2186: extern double
 2187: #ifdef NeXT
 2188:               const
 2189: #endif
 2190:                     expm1(double);
 2191: r2 = expm1(r1);
 2192: #else
 2193: r2 = exp(r1)-1.;
 2194: #endif
 2195: 
 2196: fln	( r1 -- r2 )	float-ext	f_l_n
 2197: r2 = log(r1);
 2198: 
 2199: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2200: ""@i{r2}=ln(@i{r1}+1)""
 2201: #ifdef HAVE_LOG1P
 2202: extern double
 2203: #ifdef NeXT
 2204:               const
 2205: #endif
 2206:                     log1p(double);
 2207: r2 = log1p(r1);
 2208: #else
 2209: r2 = log(r1+1.);
 2210: #endif
 2211: 
 2212: flog	( r1 -- r2 )	float-ext	f_log
 2213: ""The decimal logarithm.""
 2214: r2 = log10(r1);
 2215: 
 2216: falog	( r1 -- r2 )	float-ext	f_a_log
 2217: ""@i{r2}=10**@i{r1}""
 2218: extern double pow10(double);
 2219: r2 = pow10(r1);
 2220: 
 2221: fsin	( r1 -- r2 )	float-ext	f_sine
 2222: r2 = sin(r1);
 2223: 
 2224: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2225: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2226: r2 = sin(r1);
 2227: r3 = cos(r1);
 2228: 
 2229: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2230: r2 = sqrt(r1);
 2231: 
 2232: ftan	( r1 -- r2 )	float-ext	f_tan
 2233: r2 = tan(r1);
 2234: :
 2235:  fsincos f/ ;
 2236: 
 2237: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2238: r2 = sinh(r1);
 2239: :
 2240:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2241: 
 2242: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2243: r2 = cosh(r1);
 2244: :
 2245:  fexp fdup 1/f f+ f2/ ;
 2246: 
 2247: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2248: r2 = tanh(r1);
 2249: :
 2250:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2251: 
 2252: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2253: r2 = asinh(r1);
 2254: :
 2255:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2256: 
 2257: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2258: r2 = acosh(r1);
 2259: :
 2260:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2261: 
 2262: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2263: r2 = atanh(r1);
 2264: :
 2265:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2266:  r> IF  fnegate  THEN ;
 2267: 
 2268: sfloats	( n1 -- n2 )	float-ext	s_floats
 2269: ""@i{n2} is the number of address units of @i{n1}
 2270: single-precision IEEE floating-point numbers.""
 2271: n2 = n1*sizeof(SFloat);
 2272: 
 2273: dfloats	( n1 -- n2 )	float-ext	d_floats
 2274: ""@i{n2} is the number of address units of @i{n1}
 2275: double-precision IEEE floating-point numbers.""
 2276: n2 = n1*sizeof(DFloat);
 2277: 
 2278: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2279: ""@i{sf-addr} is the first single-float-aligned address greater
 2280: than or equal to @i{c-addr}.""
 2281: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2282: :
 2283:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2284: 
 2285: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2286: ""@i{df-addr} is the first double-float-aligned address greater
 2287: than or equal to @i{c-addr}.""
 2288: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2289: :
 2290:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2291: 
 2292: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2293: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2294: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2295: ucount elements.""
 2296: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2297: :
 2298:  >r swap 2swap swap 0e r> 0 ?DO
 2299:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2300:  LOOP 2drop 2drop ; 
 2301: 
 2302: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2303: ""vy=ra*vx+vy""
 2304: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2305: :
 2306:  >r swap 2swap swap r> 0 ?DO
 2307:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2308:  LOOP 2drop 2drop fdrop ;
 2309: 
 2310: \+
 2311: 
 2312: \ The following words access machine/OS/installation-dependent
 2313: \   Gforth internals
 2314: \ !! how about environmental queries DIRECT-THREADED,
 2315: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2316: 
 2317: \ local variable implementation primitives
 2318: 
 2319: \+glocals
 2320: 
 2321: \g locals
 2322: 
 2323: @local#	( #noffset -- w )	gforth	fetch_local_number
 2324: w = *(Cell *)(lp+noffset);
 2325: 
 2326: @local0	( -- w )	new	fetch_local_zero
 2327: w = ((Cell *)lp)[0];
 2328: 
 2329: @local1	( -- w )	new	fetch_local_four
 2330: w = ((Cell *)lp)[1];
 2331: 
 2332: @local2	( -- w )	new	fetch_local_eight
 2333: w = ((Cell *)lp)[2];
 2334: 
 2335: @local3	( -- w )	new	fetch_local_twelve
 2336: w = ((Cell *)lp)[3];
 2337: 
 2338: \+floating
 2339: 
 2340: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2341: r = *(Float *)(lp+noffset);
 2342: 
 2343: f@local0	( -- r )	new	f_fetch_local_zero
 2344: r = ((Float *)lp)[0];
 2345: 
 2346: f@local1	( -- r )	new	f_fetch_local_eight
 2347: r = ((Float *)lp)[1];
 2348: 
 2349: \+
 2350: 
 2351: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2352: /* this can also be used to implement lp@ */
 2353: c_addr = (Char *)(lp+noffset);
 2354: 
 2355: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2356: ""used with negative immediate values it allocates memory on the
 2357: local stack, a positive immediate argument drops memory from the local
 2358: stack""
 2359: lp += noffset;
 2360: 
 2361: lp-	( -- )	new	minus_four_lp_plus_store
 2362: lp += -sizeof(Cell);
 2363: 
 2364: lp+	( -- )	new	eight_lp_plus_store
 2365: lp += sizeof(Float);
 2366: 
 2367: lp+2	( -- )	new	sixteen_lp_plus_store
 2368: lp += 2*sizeof(Float);
 2369: 
 2370: lp!	( c_addr -- )	gforth	lp_store
 2371: lp = (Address)c_addr;
 2372: 
 2373: >l	( w -- )	gforth	to_l
 2374: lp -= sizeof(Cell);
 2375: *(Cell *)lp = w;
 2376: 
 2377: \+floating
 2378: 
 2379: f>l	( r -- )	gforth	f_to_l
 2380: lp -= sizeof(Float);
 2381: *(Float *)lp = r;
 2382: 
 2383: fpick	( f:... u -- f:... r )		gforth
 2384: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2385: r = fp[u];
 2386: :
 2387:  floats fp@ + f@ ;
 2388: 
 2389: \+
 2390: \+
 2391: 
 2392: \+OS
 2393: 
 2394: \g syslib
 2395: 
 2396: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2397: #if 1
 2398: u2 = (UCell)lt_dlopen(cstr(c_addr1, u1, 1));
 2399: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2400: #ifndef RTLD_GLOBAL
 2401: #define RTLD_GLOBAL 0
 2402: #endif
 2403: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2404: #else
 2405: #  ifdef _WIN32
 2406: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2407: #  else
 2408: #warning Define open-lib!
 2409: u2 = 0;
 2410: #  endif
 2411: #endif
 2412: 
 2413: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2414: #if 1
 2415: u3 = (UCell) lt_dlsym((lt_dlhandle)u2, cstr(c_addr1, u1, 1));
 2416: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2417: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2418: #else
 2419: #  ifdef _WIN32
 2420: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2421: #  else
 2422: #warning Define lib-sym!
 2423: u3 = 0;
 2424: #  endif
 2425: #endif
 2426: 
 2427: wcall	( ... u -- ... )	gforth
 2428: gforth_FP=fp;
 2429: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2430: fp=gforth_FP;
 2431: 
 2432: uw@ ( c_addr -- u )	gforth u_w_fetch
 2433: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2434: u = *(UWyde*)(c_addr);
 2435: 
 2436: sw@ ( c_addr -- n )	gforth s_w_fetch
 2437: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2438: n = *(Wyde*)(c_addr);
 2439: 
 2440: w! ( w c_addr -- )	gforth w_store
 2441: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2442: *(Wyde*)(c_addr) = w;
 2443: 
 2444: ul@ ( c_addr -- u )	gforth u_l_fetch
 2445: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2446: u = *(UTetrabyte*)(c_addr);
 2447: 
 2448: sl@ ( c_addr -- n )	gforth s_l_fetch
 2449: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2450: n = *(Tetrabyte*)(c_addr);
 2451: 
 2452: l! ( w c_addr -- )	gforth l_store
 2453: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2454: *(Tetrabyte*)(c_addr) = w;
 2455: 
 2456: \+FFCALL
 2457: 
 2458: av-start-void	( c_addr -- )	gforth  av_start_void
 2459: av_start_void(alist, c_addr);
 2460: 
 2461: av-start-int	( c_addr -- )	gforth  av_start_int
 2462: av_start_int(alist, c_addr, &irv);
 2463: 
 2464: av-start-float	( c_addr -- )	gforth  av_start_float
 2465: av_start_float(alist, c_addr, &frv);
 2466: 
 2467: av-start-double	( c_addr -- )	gforth  av_start_double
 2468: av_start_double(alist, c_addr, &drv);
 2469: 
 2470: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2471: av_start_longlong(alist, c_addr, &llrv);
 2472: 
 2473: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2474: av_start_ptr(alist, c_addr, void*, &prv);
 2475: 
 2476: av-int  ( w -- )  gforth  av_int
 2477: av_int(alist, w);
 2478: 
 2479: av-float	( r -- )	gforth  av_float
 2480: av_float(alist, r);
 2481: 
 2482: av-double	( r -- )	gforth  av_double
 2483: av_double(alist, r);
 2484: 
 2485: av-longlong	( d -- )	gforth  av_longlong
 2486: #ifdef BUGGY_LL_SIZE
 2487: av_longlong(alist, DLO(d));
 2488: #else
 2489: av_longlong(alist, d);
 2490: #endif
 2491: 
 2492: av-ptr	( c_addr -- )	gforth  av_ptr
 2493: av_ptr(alist, void*, c_addr);
 2494: 
 2495: av-int-r  ( R:w -- )  gforth  av_int_r
 2496: av_int(alist, w);
 2497: 
 2498: av-float-r	( -- )	gforth  av_float_r
 2499: float r = *(Float*)lp;
 2500: lp += sizeof(Float);
 2501: av_float(alist, r);
 2502: 
 2503: av-double-r	( -- )	gforth  av_double_r
 2504: double r = *(Float*)lp;
 2505: lp += sizeof(Float);
 2506: av_double(alist, r);
 2507: 
 2508: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2509: #ifdef BUGGY_LL_SIZE
 2510: av_longlong(alist, DLO(d));
 2511: #else
 2512: av_longlong(alist, d);
 2513: #endif
 2514: 
 2515: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2516: av_ptr(alist, void*, c_addr);
 2517: 
 2518: av-call-void	( ... -- ... )	gforth  av_call_void
 2519: SAVE_REGS
 2520: av_call(alist);
 2521: REST_REGS
 2522: 
 2523: av-call-int	( ... -- ... w )	gforth  av_call_int
 2524: SAVE_REGS
 2525: av_call(alist);
 2526: REST_REGS
 2527: w = irv;
 2528: 
 2529: av-call-float	( ... -- ... r )	gforth  av_call_float
 2530: SAVE_REGS
 2531: av_call(alist);
 2532: REST_REGS
 2533: r = frv;
 2534: 
 2535: av-call-double	( ... -- ... r )	gforth  av_call_double
 2536: SAVE_REGS
 2537: av_call(alist);
 2538: REST_REGS
 2539: r = drv;
 2540: 
 2541: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2542: SAVE_REGS
 2543: av_call(alist);
 2544: REST_REGS
 2545: #ifdef BUGGY_LONG_LONG
 2546: DLO_IS(d, llrv);
 2547: DHI_IS(d, 0);
 2548: #else
 2549: d = llrv;
 2550: #endif
 2551: 
 2552: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2553: SAVE_REGS
 2554: av_call(alist);
 2555: REST_REGS
 2556: c_addr = prv;
 2557: 
 2558: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2559: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2560: 
 2561: va-start-void	( -- )	gforth	va_start_void
 2562: va_start_void(gforth_clist);
 2563: 
 2564: va-start-int	( -- )	gforth	va_start_int
 2565: va_start_int(gforth_clist);
 2566: 
 2567: va-start-longlong	( -- )	gforth	va_start_longlong
 2568: va_start_longlong(gforth_clist);
 2569: 
 2570: va-start-ptr	( -- )	gforth	va_start_ptr
 2571: va_start_ptr(gforth_clist, (char *));
 2572: 
 2573: va-start-float	( -- )	gforth	va_start_float
 2574: va_start_float(gforth_clist);
 2575: 
 2576: va-start-double	( -- )	gforth	va_start_double
 2577: va_start_double(gforth_clist);
 2578: 
 2579: va-arg-int	( -- w )	gforth	va_arg_int
 2580: w = va_arg_int(gforth_clist);
 2581: 
 2582: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2583: #ifdef BUGGY_LONG_LONG
 2584: DLO_IS(d, va_arg_longlong(gforth_clist));
 2585: DHI_IS(d, 0);
 2586: #else
 2587: d = va_arg_longlong(gforth_clist);
 2588: #endif
 2589: 
 2590: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2591: c_addr = (char *)va_arg_ptr(gforth_clist,char*);
 2592: 
 2593: va-arg-float	( -- r )	gforth	va_arg_float
 2594: r = va_arg_float(gforth_clist);
 2595: 
 2596: va-arg-double	( -- r )	gforth	va_arg_double
 2597: r = va_arg_double(gforth_clist);
 2598: 
 2599: va-return-void ( -- )	gforth va_return_void
 2600: va_return_void(gforth_clist);
 2601: return 0;
 2602: 
 2603: va-return-int ( w -- )	gforth va_return_int
 2604: va_return_int(gforth_clist, w);
 2605: return 0;
 2606: 
 2607: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2608: va_return_ptr(gforth_clist, void *, c_addr);
 2609: return 0;
 2610: 
 2611: va-return-longlong ( d -- )	gforth va_return_longlong
 2612: #ifdef BUGGY_LONG_LONG
 2613: va_return_longlong(gforth_clist, d.lo);
 2614: #else
 2615: va_return_longlong(gforth_clist, d);
 2616: #endif
 2617: return 0;
 2618: 
 2619: va-return-float ( r -- )	gforth va_return_float
 2620: va_return_float(gforth_clist, r);
 2621: return 0;
 2622: 
 2623: va-return-double ( r -- )	gforth va_return_double
 2624: va_return_double(gforth_clist, r);
 2625: return 0;
 2626: 
 2627: \+
 2628: 
 2629: \+LIBFFI
 2630: 
 2631: ffi-type ( n -- a_type )	gforth ffi_type
 2632: static void* ffi_types[] =
 2633:     { &ffi_type_void,
 2634:       &ffi_type_uint8, &ffi_type_sint8,
 2635:       &ffi_type_uint16, &ffi_type_sint16,
 2636:       &ffi_type_uint32, &ffi_type_sint32,
 2637:       &ffi_type_uint64, &ffi_type_sint64,
 2638:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2639:       &ffi_type_pointer };
 2640: a_type = ffi_types[n];
 2641: 
 2642: ffi-size ( n1 -- n2 )	gforth ffi_size
 2643: static int ffi_sizes[] =
 2644:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2645: n2 = ffi_sizes[n1];
 2646: 
 2647: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2648: w = ffi_prep_cif((ffi_cif *)a_cif, FFI_DEFAULT_ABI, n,
 2649: 	 (ffi_type *)a_rtype, (ffi_type **)a_atypes);
 2650: 
 2651: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2652: SAVE_REGS
 2653: ffi_call((ffi_cif *)a_cif, (void(*)())a_ip, (void *)a_rvalue, (void **)a_avalues);
 2654: REST_REGS
 2655: 
 2656: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2657: w = ffi_prep_closure((ffi_closure *)a_closure, (ffi_cif *)a_cif, gforth_callback, (void *)a_ip);
 2658: 
 2659: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2660: #ifdef BUGGY_LONG_LONG
 2661: DLO_IS(d, *(Cell*)(*a_addr));
 2662: DHI_IS(d, 0);
 2663: #else
 2664: d = *(DCell*)(a_addr);
 2665: #endif
 2666: 
 2667: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2668: #ifdef BUGGY_LONG_LONG
 2669: *(Cell*)(a_addr) = DLO(d);
 2670: #else
 2671: *(DCell*)(a_addr) = d;
 2672: #endif
 2673: 
 2674: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2675: w = *(int *)(*gforth_clist++);
 2676: 
 2677: ffi-arg-long ( -- w )	gforth ffi_arg_long
 2678: w = *(long *)(*gforth_clist++);
 2679: 
 2680: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2681: #ifdef BUGGY_LONG_LONG
 2682: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2683: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2684: #else
 2685: d = *(DCell*)(*gforth_clist++);
 2686: #endif
 2687: 
 2688: ffi-arg-dlong ( -- d )	gforth ffi_arg_dlong
 2689: #ifdef BUGGY_LONG_LONG
 2690: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2691: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2692: #else
 2693: d = *(Cell*)(*gforth_clist++);
 2694: #endif
 2695: 
 2696: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2697: c_addr = *(Char **)(*gforth_clist++);
 2698: 
 2699: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2700: r = *(float*)(*gforth_clist++);
 2701: 
 2702: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2703: r = *(double*)(*gforth_clist++);
 2704: 
 2705: ffi-ret-void ( -- )	gforth ffi_ret_void
 2706: return 0;
 2707: 
 2708: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2709: *(int*)(gforth_ritem) = w;
 2710: return 0;
 2711: 
 2712: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2713: #ifdef BUGGY_LONG_LONG
 2714: *(Cell*)(gforth_ritem) = DLO(d);
 2715: #else
 2716: *(DCell*)(gforth_ritem) = d;
 2717: #endif
 2718: return 0;
 2719: 
 2720: ffi-ret-dlong ( d -- )	gforth ffi_ret_dlong
 2721: #ifdef BUGGY_LONG_LONG
 2722: *(Cell*)(gforth_ritem) = DLO(d);
 2723: #else
 2724: *(Cell*)(gforth_ritem) = d;
 2725: #endif
 2726: return 0;
 2727: 
 2728: ffi-ret-long ( n -- )	gforth ffi_ret_long
 2729: *(Cell*)(gforth_ritem) = n;
 2730: return 0;
 2731: 
 2732: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2733: *(Char **)(gforth_ritem) = c_addr;
 2734: return 0;
 2735: 
 2736: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2737: *(float*)(gforth_ritem) = r;
 2738: return 0;
 2739: 
 2740: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2741: *(double*)(gforth_ritem) = r;
 2742: return 0;
 2743: 
 2744: \+
 2745: 
 2746: \+OLDCALL
 2747: 
 2748: define(`uploop',
 2749:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2750: define(`_uploop',
 2751:        `ifelse($1, `$3', `$5',
 2752: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2753: 
 2754: \ argflist(argnum): Forth argument list
 2755: define(argflist,
 2756:        `ifelse($1, 0, `',
 2757:                `uploop(`_i', 1, $1, ``u''`_i ', ``u''`_i')')')
 2758: \ argdlist(argnum): declare C's arguments
 2759: define(argdlist,
 2760:        `ifelse($1, 0, `',
 2761:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2762: \ argclist(argnum): pass C's arguments
 2763: define(argclist,
 2764:        `ifelse($1, 0, `',
 2765:                `uploop(`_i', 1, $1, ``u''`_i, ', ``u''`_i')')')
 2766: \ icall(argnum)
 2767: define(icall,
 2768: `icall$1	( argflist($1) u -- uret )	gforth
 2769: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2770: 
 2771: ')
 2772: define(fcall,
 2773: `fcall$1	( argflist($1) u -- rret )	gforth
 2774: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2775: 
 2776: ')
 2777: 
 2778: \ close ' to keep fontify happy
 2779: 
 2780: uploop(i, 0, 7, `icall(i)')
 2781: icall(20)
 2782: uploop(i, 0, 7, `fcall(i)')
 2783: fcall(20)
 2784: 
 2785: \+
 2786: \+
 2787: 
 2788: lib-error ( -- c_addr u )       gforth  lib_error
 2789: c_addr = lt_dlerror();
 2790: u = (c_addr == NULL) ? 0 : strlen(c_addr);
 2791: 
 2792: \g peephole
 2793: 
 2794: \+peephole
 2795: 
 2796: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2797: ""compile prim (incl. immargs) at @var{a_prim}""
 2798: compile_prim1(a_prim);
 2799: 
 2800: finish-code ( ... -- ... ) gforth finish_code
 2801: ""Perform delayed steps in code generation (branch resolution, I-cache
 2802: flushing).""
 2803: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2804:    to save spTOS (gforth-fast --enable-force-reg) */
 2805: finish_code();
 2806: 
 2807: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2808: f = forget_dyncode(c_code);
 2809: 
 2810: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2811: ""a_prim is the code address of the primitive that has been
 2812: compile_prim1ed to a_code""
 2813: a_prim = (Cell *)decompile_code((Label)a_code);
 2814: 
 2815: \ set-next-code and call2 do not appear in images and can be
 2816: \ renumbered arbitrarily
 2817: 
 2818: set-next-code ( #w -- ) gforth set_next_code
 2819: #ifdef NO_IP
 2820: next_code = (Label)w;
 2821: #endif
 2822: 
 2823: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2824: /* call with explicit return address */
 2825: #ifdef NO_IP
 2826: INST_TAIL;
 2827: JUMP(a_callee);
 2828: #else
 2829: assert(0);
 2830: #endif
 2831: 
 2832: tag-offsets ( -- a_addr ) gforth tag_offsets
 2833: extern Cell groups[32];
 2834: a_addr = groups;
 2835: 
 2836: \+
 2837: 
 2838: \g static_super
 2839: 
 2840: ifdef(`STACK_CACHE_FILE',
 2841: `include(peeprules.vmg)')
 2842: 
 2843: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>