File:  [gforth] / gforth / prim
Revision 1.216: download - view: text, annotated - select for diffs
Fri Jul 6 12:54:56 2007 UTC (16 years, 8 months ago) by anton
Branches: MAIN
CVS tags: HEAD
fixed most problems reported by "make checkdoc"

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E include-skipped-insts on \ static superinsts include cells for components
  113: \E                          \ useful for dynamic programming and
  114: \E                          \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  207: ""run-time routine for @code{does>}-defined words""
  208: #ifdef NO_IP
  209: a_retaddr = next_code;
  210: a_body = PFA(CFA);
  211: INST_TAIL;
  212: #ifdef DEBUG
  213: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  214: #endif
  215: goto **(Label *)DOES_CODE1(CFA);
  216: #else /* !defined(NO_IP) */
  217: a_retaddr = (Cell *)IP;
  218: a_body = PFA(CFA);
  219: #ifdef DEBUG
  220: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  221: #endif
  222: SET_IP(DOES_CODE1(CFA));
  223: #endif /* !defined(NO_IP) */
  224: 
  225: (does-handler) ( -- )	gforth-internal	paren_does_handler
  226: ""just a slot to have an encoding for the DOESJUMP, 
  227: which is no longer used anyway (!! eliminate this)""
  228: 
  229: \F [endif]
  230: 
  231: \g control
  232: 
  233: noop	( -- )		gforth
  234: :
  235:  ;
  236: 
  237: call	( #a_callee -- R:a_retaddr )	new
  238: ""Call callee (a variant of docol with inline argument).""
  239: #ifdef NO_IP
  240: assert(0);
  241: INST_TAIL;
  242: JUMP(a_callee);
  243: #else
  244: #ifdef DEBUG
  245:     {
  246:       CFA_TO_NAME((((Cell *)a_callee)-2));
  247:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  248: 	      len,name);
  249:     }
  250: #endif
  251: a_retaddr = (Cell *)IP;
  252: SET_IP((Xt *)a_callee);
  253: #endif
  254: 
  255: execute	( xt -- )		core
  256: ""Perform the semantics represented by the execution token, @i{xt}.""
  257: #ifdef DEBUG
  258: fprintf(stderr, "execute %08x\n", xt);
  259: #endif
  260: #ifndef NO_IP
  261: ip=IP;
  262: #endif
  263: SUPER_END;
  264: VM_JUMP(EXEC1(xt));
  265: 
  266: perform	( a_addr -- )	gforth
  267: ""@code{@@ execute}.""
  268: /* and pfe */
  269: #ifndef NO_IP
  270: ip=IP;
  271: #endif
  272: SUPER_END;
  273: VM_JUMP(EXEC1(*(Xt *)a_addr));
  274: :
  275:  @ execute ;
  276: 
  277: ;s	( R:w -- )		gforth	semis
  278: ""The primitive compiled by @code{EXIT}.""
  279: #ifdef NO_IP
  280: INST_TAIL;
  281: goto *(void *)w;
  282: #else
  283: SET_IP((Xt *)w);
  284: #endif
  285: 
  286: unloop	( R:w1 R:w2 -- )	core
  287: /* !! alias for 2rdrop */
  288: :
  289:  r> rdrop rdrop >r ;
  290: 
  291: lit-perform	( #a_addr -- )	new	lit_perform
  292: #ifndef NO_IP
  293: ip=IP;
  294: #endif
  295: SUPER_END;
  296: VM_JUMP(EXEC1(*(Xt *)a_addr));
  297: 
  298: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  299: #ifdef NO_IP
  300: /* compiled to LIT CALL by compile_prim */
  301: assert(0);
  302: #else
  303: a_pfa = PFA(a_cfa);
  304: nest = (Cell)IP;
  305: #ifdef DEBUG
  306:     {
  307:       CFA_TO_NAME(a_cfa);
  308:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  309: 	      (Cell)ip,(Cell)a_cfa,len,name);
  310:     }
  311: #endif
  312: SET_IP(DOES_CODE1(a_cfa));
  313: #endif
  314: 
  315: \+glocals
  316: 
  317: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  318: /* this will probably not be used */
  319: lp += nlocals;
  320: #ifdef NO_IP
  321: INST_TAIL;
  322: JUMP(a_target);
  323: #else
  324: SET_IP((Xt *)a_target);
  325: #endif
  326: 
  327: \+
  328: 
  329: branch	( #a_target -- )	gforth
  330: #ifdef NO_IP
  331: INST_TAIL;
  332: JUMP(a_target);
  333: #else
  334: SET_IP((Xt *)a_target);
  335: #endif
  336: :
  337:  r> @ >r ;
  338: 
  339: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  340: \ this is non-syntactical: code must open a brace that is closed by the macro
  341: define(condbranch,
  342: $1 ( `#'a_target $2 ) $3
  343: $4	#ifdef NO_IP
  344: INST_TAIL;
  345: #endif
  346: $5	#ifdef NO_IP
  347: JUMP(a_target);
  348: #else
  349: SET_IP((Xt *)a_target);
  350: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  351: #endif
  352: }
  353: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  354: $6
  355: 
  356: \+glocals
  357: 
  358: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  359: $4	#ifdef NO_IP
  360: INST_TAIL;
  361: #endif
  362: $5	lp += nlocals;
  363: #ifdef NO_IP
  364: JUMP(a_target);
  365: #else
  366: SET_IP((Xt *)a_target);
  367: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  368: #endif
  369: }
  370: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  371: 
  372: \+
  373: )
  374: 
  375: condbranch(?branch,f --,f83	question_branch,
  376: ,if (f==0) {
  377: ,:
  378:  0= dup 0=          \ !f f
  379:  r> tuck cell+      \ !f branchoffset f IP+
  380:  and -rot @ and or  \ f&IP+|!f&branch
  381:  >r ;)
  382: 
  383: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  384: \ is only used in if's (yet)
  385: 
  386: \+xconds
  387: 
  388: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  389: ""The run-time procedure compiled by @code{?DUP-IF}.""
  390: if (f==0) {
  391: #ifdef NO_IP
  392: INST_TAIL;
  393: JUMP(a_target);
  394: #else
  395: SET_IP((Xt *)a_target);
  396: #endif
  397: } else {
  398: sp--;
  399: sp[0]=f;
  400: }
  401: 
  402: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  403: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  404: if (f!=0) {
  405:   sp--;
  406:   sp[0]=f;
  407: #ifdef NO_IP
  408:   JUMP(a_target);
  409: #else
  410:   SET_IP((Xt *)a_target);
  411: #endif
  412: }
  413: 
  414: \+
  415: \fhas? skiploopprims 0= [IF]
  416: 
  417: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  418: n2=n1-1;
  419: ,if (n1) {
  420: ,:
  421:  r> r> dup 1- >r
  422:  IF @ >r ELSE cell+ >r THEN ;)
  423: 
  424: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  425: n2=n1+1;
  426: ,if (n2 != nlimit) {
  427: ,:
  428:  r> r> 1+ r> 2dup =
  429:  IF >r 1- >r cell+ >r
  430:  ELSE >r >r @ >r THEN ;)
  431: 
  432: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  433: /* !! check this thoroughly */
  434: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  435: /* dependent upon two's complement arithmetic */
  436: Cell olddiff = n1-nlimit;
  437: n2=n1+n;	
  438: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  439:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  440:     >=0) { /* & is used to avoid having two branches for gforth-native */
  441: ,:
  442:  r> swap
  443:  r> r> 2dup - >r
  444:  2 pick r@ + r@ xor 0< 0=
  445:  3 pick r> xor 0< 0= or
  446:  IF    >r + >r @ >r
  447:  ELSE  >r >r drop cell+ >r THEN ;)
  448: 
  449: \+xconds
  450: 
  451: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  452: UCell olddiff = n1-nlimit;
  453: n2=n1-u;
  454: ,if (olddiff>u) {
  455: ,)
  456: 
  457: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  458: ""The run-time procedure compiled by S+LOOP. It loops until the index
  459: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  460: version of (+LOOP).""
  461: /* !! check this thoroughly */
  462: Cell diff = n1-nlimit;
  463: Cell newdiff = diff+n;
  464: if (n<0) {
  465:     diff = -diff;
  466:     newdiff = -newdiff;
  467: }
  468: n2=n1+n;
  469: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  470: ,)
  471: 
  472: \+
  473: 
  474: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  475: /* or (for) = >r -- collides with unloop! */
  476: nlimit=0;
  477: :
  478:  r> swap 0 >r >r >r ;
  479: 
  480: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  481: :
  482:  r> swap rot >r >r >r ;
  483: 
  484: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  485: #ifdef NO_IP
  486:     INST_TAIL;
  487: #endif
  488: if (nstart == nlimit) {
  489: #ifdef NO_IP
  490:     JUMP(a_target);
  491: #else
  492:     SET_IP((Xt *)a_target);
  493: #endif
  494: }
  495: :
  496:   2dup =
  497:   IF   r> swap rot >r >r
  498:        @ >r
  499:   ELSE r> swap rot >r >r
  500:        cell+ >r
  501:   THEN ;				\ --> CORE-EXT
  502: 
  503: \+xconds
  504: 
  505: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  506: #ifdef NO_IP
  507:     INST_TAIL;
  508: #endif
  509: if (nstart >= nlimit) {
  510: #ifdef NO_IP
  511:     JUMP(a_target);
  512: #else
  513:     SET_IP((Xt *)a_target);
  514: #endif
  515: }
  516: :
  517:  swap 2dup
  518:  r> swap >r swap >r
  519:  >=
  520:  IF
  521:      @
  522:  ELSE
  523:      cell+
  524:  THEN  >r ;
  525: 
  526: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  527: #ifdef NO_IP
  528:     INST_TAIL;
  529: #endif
  530: if (ustart >= ulimit) {
  531: #ifdef NO_IP
  532: JUMP(a_target);
  533: #else
  534: SET_IP((Xt *)a_target);
  535: #endif
  536: }
  537: :
  538:  swap 2dup
  539:  r> swap >r swap >r
  540:  u>=
  541:  IF
  542:      @
  543:  ELSE
  544:      cell+
  545:  THEN  >r ;
  546: 
  547: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  548: #ifdef NO_IP
  549:     INST_TAIL;
  550: #endif
  551: if (nstart <= nlimit) {
  552: #ifdef NO_IP
  553: JUMP(a_target);
  554: #else
  555: SET_IP((Xt *)a_target);
  556: #endif
  557: }
  558: :
  559:  swap 2dup
  560:  r> swap >r swap >r
  561:  <=
  562:  IF
  563:      @
  564:  ELSE
  565:      cell+
  566:  THEN  >r ;
  567: 
  568: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  569: #ifdef NO_IP
  570:     INST_TAIL;
  571: #endif
  572: if (ustart <= ulimit) {
  573: #ifdef NO_IP
  574: JUMP(a_target);
  575: #else
  576: SET_IP((Xt *)a_target);
  577: #endif
  578: }
  579: :
  580:  swap 2dup
  581:  r> swap >r swap >r
  582:  u<=
  583:  IF
  584:      @
  585:  ELSE
  586:      cell+
  587:  THEN  >r ;
  588: 
  589: \+
  590: 
  591: \ don't make any assumptions where the return stack is!!
  592: \ implement this in machine code if it should run quickly!
  593: 
  594: i	( R:n -- R:n n )		core
  595: :
  596: \ rp@ cell+ @ ;
  597:   r> r> tuck >r >r ;
  598: 
  599: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  600: :
  601: \ rp@ cell+ cell+ @ ;
  602:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  603: variable itmp
  604: 
  605: j	( R:w R:w1 R:w2 -- w R:w R:w1 R:w2 )	core
  606: :
  607: \ rp@ cell+ cell+ cell+ @ ;
  608:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  609: [IFUNDEF] itmp variable itmp [THEN]
  610: 
  611: k	( R:w R:w1 R:w2 R:w3 R:w4 -- w R:w R:w1 R:w2 R:w3 R:w4 )	gforth
  612: :
  613: \ rp@ [ 5 cells ] Literal + @ ;
  614:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  615: [IFUNDEF] itmp variable itmp [THEN]
  616: 
  617: \f[THEN]
  618: 
  619: \ digit is high-level: 0/0%
  620: 
  621: \g strings
  622: 
  623: move	( c_from c_to ucount -- )		core
  624: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  625: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  626: /* !! note that the standard specifies addr, not c-addr */
  627: memmove(c_to,c_from,ucount);
  628: /* make an Ifdef for bsd and others? */
  629: :
  630:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  631: 
  632: cmove	( c_from c_to u -- )	string	c_move
  633: ""Copy the contents of @i{ucount} characters from data space at
  634: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  635: from low address to high address; i.e., for overlapping areas it is
  636: safe if @i{c-to}=<@i{c-from}.""
  637: cmove(c_from,c_to,u);
  638: :
  639:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  640: 
  641: cmove>	( c_from c_to u -- )	string	c_move_up
  642: ""Copy the contents of @i{ucount} characters from data space at
  643: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  644: from high address to low address; i.e., for overlapping areas it is
  645: safe if @i{c-to}>=@i{c-from}.""
  646: cmove_up(c_from,c_to,u);
  647: :
  648:  dup 0= IF  drop 2drop exit  THEN
  649:  rot over + -rot bounds swap 1-
  650:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  651: 
  652: fill	( c_addr u c -- )	core
  653: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  654: memset(c_addr,c,u);
  655: :
  656:  -rot bounds
  657:  ?DO  dup I c!  LOOP  drop ;
  658: 
  659: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  660: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  661: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  662: is 1. Currently this is based on the machine's character
  663: comparison. In the future, this may change to consider the current
  664: locale and its collation order.""
  665: /* close ' to keep fontify happy */ 
  666: n = compare(c_addr1, u1, c_addr2, u2);
  667: :
  668:  rot 2dup swap - >r min swap -text dup
  669:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  670: : -text ( c_addr1 u c_addr2 -- n )
  671:  swap bounds
  672:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  673:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  674: : sgn ( n -- -1/0/1 )
  675:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  676: 
  677: \ -text is only used by replaced primitives now; move it elsewhere
  678: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  679: \ n = memcmp(c_addr1, c_addr2, u);
  680: \ if (n<0)
  681: \   n = -1;
  682: \ else if (n>0)
  683: \   n = 1;
  684: \ :
  685: \  swap bounds
  686: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  687: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  688: \ : sgn ( n -- -1/0/1 )
  689: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  690: 
  691: toupper	( c1 -- c2 )	gforth
  692: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  693: is the equivalent upper-case character. All other characters are unchanged.""
  694: c2 = toupper(c1);
  695: :
  696:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  697: 
  698: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  699: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  700: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  701: is 1. Currently this is based on the machine's character
  702: comparison. In the future, this may change to consider the current
  703: locale and its collation order.""
  704: /* close ' to keep fontify happy */ 
  705: n = capscompare(c_addr1, u1, c_addr2, u2);
  706: 
  707: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  708: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  709: characters from the start of the string.""
  710: c_addr2 = c_addr1+n;
  711: u2 = u1-n;
  712: :
  713:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  714: 
  715: \g arith
  716: 
  717: lit	( #w -- w )		gforth
  718: :
  719:  r> dup @ swap cell+ >r ;
  720: 
  721: +	( n1 n2 -- n )		core	plus
  722: n = n1+n2;
  723: 
  724: \ lit+ / lit_plus = lit +
  725: 
  726: lit+	( n1 #n2 -- n )		new	lit_plus
  727: #ifdef DEBUG
  728: fprintf(stderr, "lit+ %08x\n", n2);
  729: #endif
  730: n=n1+n2;
  731: 
  732: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  733: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  734: ""add @i{n3} to @i{n1} (giving @i{n})""
  735: n = n1+n3;
  736: :
  737:  rot + swap ;
  738: 
  739: -	( n1 n2 -- n )		core	minus
  740: n = n1-n2;
  741: :
  742:  negate + ;
  743: 
  744: negate	( n1 -- n2 )		core
  745: /* use minus as alias */
  746: n2 = -n1;
  747: :
  748:  invert 1+ ;
  749: 
  750: 1+	( n1 -- n2 )		core		one_plus
  751: n2 = n1+1;
  752: :
  753:  1 + ;
  754: 
  755: 1-	( n1 -- n2 )		core		one_minus
  756: n2 = n1-1;
  757: :
  758:  1 - ;
  759: 
  760: max	( n1 n2 -- n )	core
  761: if (n1<n2)
  762:   n = n2;
  763: else
  764:   n = n1;
  765: :
  766:  2dup < IF swap THEN drop ;
  767: 
  768: min	( n1 n2 -- n )	core
  769: if (n1<n2)
  770:   n = n1;
  771: else
  772:   n = n2;
  773: :
  774:  2dup > IF swap THEN drop ;
  775: 
  776: abs	( n -- u )	core
  777: if (n<0)
  778:   u = -n;
  779: else
  780:   u = n;
  781: :
  782:  dup 0< IF negate THEN ;
  783: 
  784: *	( n1 n2 -- n )		core	star
  785: n = n1*n2;
  786: :
  787:  um* drop ;
  788: 
  789: /	( n1 n2 -- n )		core	slash
  790: n = n1/n2;
  791: if (CHECK_DIVISION_SW && n2 == 0)
  792:   throw(BALL_DIVZERO);
  793: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  794:   throw(BALL_RESULTRANGE);
  795: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  796:   n--;
  797: :
  798:  /mod nip ;
  799: 
  800: mod	( n1 n2 -- n )		core
  801: n = n1%n2;
  802: if (CHECK_DIVISION_SW && n2 == 0)
  803:   throw(BALL_DIVZERO);
  804: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  805:   throw(BALL_RESULTRANGE);
  806: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  807: :
  808:  /mod drop ;
  809: 
  810: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  811: n4 = n1/n2;
  812: n3 = n1%n2; /* !! is this correct? look into C standard! */
  813: if (CHECK_DIVISION_SW && n2 == 0)
  814:   throw(BALL_DIVZERO);
  815: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  816:   throw(BALL_RESULTRANGE);
  817: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  818:   n4--;
  819:   n3+=n2;
  820: }
  821: :
  822:  >r s>d r> fm/mod ;
  823: 
  824: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  825: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  826: #ifdef BUGGY_LL_MUL
  827: DCell d = mmul(n1,n2);
  828: #else
  829: DCell d = (DCell)n1 * (DCell)n2;
  830: #endif
  831: #ifdef ASM_SM_SLASH_REM
  832: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  833: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  834:   if (CHECK_DIVISION && n5 == CELL_MIN)
  835:     throw(BALL_RESULTRANGE);
  836:   n5--;
  837:   n4+=n3;
  838: }
  839: #else
  840: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  841: n4=DHI(r);
  842: n5=DLO(r);
  843: #endif
  844: :
  845:  >r m* r> fm/mod ;
  846: 
  847: */	( n1 n2 n3 -- n4 )	core	star_slash
  848: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  849: #ifdef BUGGY_LL_MUL
  850: DCell d = mmul(n1,n2);
  851: #else
  852: DCell d = (DCell)n1 * (DCell)n2;
  853: #endif
  854: #ifdef ASM_SM_SLASH_REM
  855: Cell remainder;
  856: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  857: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  858:   if (CHECK_DIVISION && n4 == CELL_MIN)
  859:     throw(BALL_RESULTRANGE);
  860:   n4--;
  861: }
  862: #else
  863: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  864: n4=DLO(r);
  865: #endif
  866: :
  867:  */mod nip ;
  868: 
  869: 2*	( n1 -- n2 )		core		two_star
  870: ""Shift left by 1; also works on unsigned numbers""
  871: n2 = 2*n1;
  872: :
  873:  dup + ;
  874: 
  875: 2/	( n1 -- n2 )		core		two_slash
  876: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  877: division by 2 (note that @code{/} not necessarily floors).""
  878: n2 = n1>>1;
  879: :
  880:  dup MINI and IF 1 ELSE 0 THEN
  881:  [ bits/char cell * 1- ] literal 
  882:  0 DO 2* swap dup 2* >r MINI and 
  883:      IF 1 ELSE 0 THEN or r> swap
  884:  LOOP nip ;
  885: 
  886: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  887: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  888: #ifdef ASM_SM_SLASH_REM
  889: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  890: if (((DHI(d1)^n1)<0) && n2!=0) {
  891:   if (CHECK_DIVISION && n3 == CELL_MIN)
  892:     throw(BALL_RESULTRANGE);
  893:   n3--;
  894:   n2+=n1;
  895: }
  896: #else /* !defined(ASM_SM_SLASH_REM) */
  897: DCell r = fmdiv(d1,n1);
  898: n2=DHI(r);
  899: n3=DLO(r);
  900: #endif /* !defined(ASM_SM_SLASH_REM) */
  901: :
  902:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  903:  over       0< IF  tuck + swap  THEN
  904:  um/mod
  905:  r> 0< IF  swap negate swap  THEN ;
  906: 
  907: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  908: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  909: #ifdef ASM_SM_SLASH_REM
  910: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  911: #else /* !defined(ASM_SM_SLASH_REM) */
  912: DCell r = smdiv(d1,n1);
  913: n2=DHI(r);
  914: n3=DLO(r);
  915: #endif /* !defined(ASM_SM_SLASH_REM) */
  916: :
  917:  over >r dup >r abs -rot
  918:  dabs rot um/mod
  919:  r> r@ xor 0< IF       negate       THEN
  920:  r>        0< IF  swap negate swap  THEN ;
  921: 
  922: m*	( n1 n2 -- d )		core	m_star
  923: #ifdef BUGGY_LL_MUL
  924: d = mmul(n1,n2);
  925: #else
  926: d = (DCell)n1 * (DCell)n2;
  927: #endif
  928: :
  929:  2dup      0< and >r
  930:  2dup swap 0< and >r
  931:  um* r> - r> - ;
  932: 
  933: um*	( u1 u2 -- ud )		core	u_m_star
  934: /* use u* as alias */
  935: #ifdef BUGGY_LL_MUL
  936: ud = ummul(u1,u2);
  937: #else
  938: ud = (UDCell)u1 * (UDCell)u2;
  939: #endif
  940: :
  941:    0 -rot dup [ 8 cells ] literal -
  942:    DO
  943: 	dup 0< I' and d2*+ drop
  944:    LOOP ;
  945: : d2*+ ( ud n -- ud+n c )
  946:    over MINI
  947:    and >r >r 2dup d+ swap r> + swap r> ;
  948: 
  949: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  950: ""ud=u3*u1+u2, u1>u2>=0""
  951: #ifdef ASM_UM_SLASH_MOD
  952: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  953: #else /* !defined(ASM_UM_SLASH_MOD) */
  954: UDCell r = umdiv(ud,u1);
  955: u2=DHI(r);
  956: u3=DLO(r);
  957: #endif /* !defined(ASM_UM_SLASH_MOD) */
  958: :
  959:    0 swap [ 8 cells 1 + ] literal 0
  960:    ?DO /modstep
  961:    LOOP drop swap 1 rshift or swap ;
  962: : /modstep ( ud c R: u -- ud-?u c R: u )
  963:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  964: : d2*+ ( ud n -- ud+n c )
  965:    over MINI
  966:    and >r >r 2dup d+ swap r> + swap r> ;
  967: 
  968: m+	( d1 n -- d2 )		double		m_plus
  969: #ifdef BUGGY_LL_ADD
  970: DLO_IS(d2, DLO(d1)+n);
  971: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
  972: #else
  973: d2 = d1+n;
  974: #endif
  975: :
  976:  s>d d+ ;
  977: 
  978: d+	( d1 d2 -- d )		double	d_plus
  979: #ifdef BUGGY_LL_ADD
  980: DLO_IS(d, DLO(d1) + DLO(d2));
  981: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
  982: #else
  983: d = d1+d2;
  984: #endif
  985: :
  986:  rot + >r tuck + swap over u> r> swap - ;
  987: 
  988: d-	( d1 d2 -- d )		double		d_minus
  989: #ifdef BUGGY_LL_ADD
  990: DLO_IS(d, DLO(d1) - DLO(d2));
  991: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
  992: #else
  993: d = d1-d2;
  994: #endif
  995: :
  996:  dnegate d+ ;
  997: 
  998: dnegate	( d1 -- d2 )		double	d_negate
  999: /* use dminus as alias */
 1000: #ifdef BUGGY_LL_ADD
 1001: d2 = dnegate(d1);
 1002: #else
 1003: d2 = -d1;
 1004: #endif
 1005: :
 1006:  invert swap negate tuck 0= - ;
 1007: 
 1008: d2*	( d1 -- d2 )		double		d_two_star
 1009: ""Shift left by 1; also works on unsigned numbers""
 1010: d2 = DLSHIFT(d1,1);
 1011: :
 1012:  2dup d+ ;
 1013: 
 1014: d2/	( d1 -- d2 )		double		d_two_slash
 1015: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1016: division by 2.""
 1017: #ifdef BUGGY_LL_SHIFT
 1018: DHI_IS(d2, DHI(d1)>>1);
 1019: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1020: #else
 1021: d2 = d1>>1;
 1022: #endif
 1023: :
 1024:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1025:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1026: 
 1027: and	( w1 w2 -- w )		core
 1028: w = w1&w2;
 1029: 
 1030: or	( w1 w2 -- w )		core
 1031: w = w1|w2;
 1032: :
 1033:  invert swap invert and invert ;
 1034: 
 1035: xor	( w1 w2 -- w )		core	x_or
 1036: w = w1^w2;
 1037: 
 1038: invert	( w1 -- w2 )		core
 1039: w2 = ~w1;
 1040: :
 1041:  MAXU xor ;
 1042: 
 1043: rshift	( u1 n -- u2 )		core	r_shift
 1044: ""Logical shift right by @i{n} bits.""
 1045: #ifdef BROKEN_SHIFT
 1046:   u2 = rshift(u1, n);
 1047: #else
 1048:   u2 = u1 >> n;
 1049: #endif
 1050: :
 1051:     0 ?DO 2/ MAXI and LOOP ;
 1052: 
 1053: lshift	( u1 n -- u2 )		core	l_shift
 1054: #ifdef BROKEN_SHIFT
 1055:   u2 = lshift(u1, n);
 1056: #else
 1057:   u2 = u1 << n;
 1058: #endif
 1059: :
 1060:     0 ?DO 2* LOOP ;
 1061: 
 1062: \g compare
 1063: 
 1064: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1065: define(comparisons,
 1066: $1=	( $2 -- f )		$6	$3equals
 1067: f = FLAG($4==$5);
 1068: :
 1069:     [ char $1x char 0 = [IF]
 1070: 	] IF false ELSE true THEN [
 1071:     [ELSE]
 1072: 	] xor 0= [
 1073:     [THEN] ] ;
 1074: 
 1075: $1<>	( $2 -- f )		$7	$3not_equals
 1076: f = FLAG($4!=$5);
 1077: :
 1078:     [ char $1x char 0 = [IF]
 1079: 	] IF true ELSE false THEN [
 1080:     [ELSE]
 1081: 	] xor 0<> [
 1082:     [THEN] ] ;
 1083: 
 1084: $1<	( $2 -- f )		$8	$3less_than
 1085: f = FLAG($4<$5);
 1086: :
 1087:     [ char $1x char 0 = [IF]
 1088: 	] MINI and 0<> [
 1089:     [ELSE] char $1x char u = [IF]
 1090: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1091: 	[ELSE]
 1092: 	    ] MINI xor >r MINI xor r> u< [
 1093: 	[THEN]
 1094:     [THEN] ] ;
 1095: 
 1096: $1>	( $2 -- f )		$9	$3greater_than
 1097: f = FLAG($4>$5);
 1098: :
 1099:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1100:     $1< ;
 1101: 
 1102: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1103: f = FLAG($4<=$5);
 1104: :
 1105:     $1> 0= ;
 1106: 
 1107: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1108: f = FLAG($4>=$5);
 1109: :
 1110:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1111:     $1<= ;
 1112: 
 1113: )
 1114: 
 1115: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1116: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1117: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1118: 
 1119: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1120: define(dcomparisons,
 1121: $1=	( $2 -- f )		$6	$3equals
 1122: #ifdef BUGGY_LL_CMP
 1123: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1124: #else
 1125: f = FLAG($4==$5);
 1126: #endif
 1127: 
 1128: $1<>	( $2 -- f )		$7	$3not_equals
 1129: #ifdef BUGGY_LL_CMP
 1130: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1131: #else
 1132: f = FLAG($4!=$5);
 1133: #endif
 1134: 
 1135: $1<	( $2 -- f )		$8	$3less_than
 1136: #ifdef BUGGY_LL_CMP
 1137: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1138: #else
 1139: f = FLAG($4<$5);
 1140: #endif
 1141: 
 1142: $1>	( $2 -- f )		$9	$3greater_than
 1143: #ifdef BUGGY_LL_CMP
 1144: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1145: #else
 1146: f = FLAG($4>$5);
 1147: #endif
 1148: 
 1149: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1150: #ifdef BUGGY_LL_CMP
 1151: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1152: #else
 1153: f = FLAG($4<=$5);
 1154: #endif
 1155: 
 1156: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1157: #ifdef BUGGY_LL_CMP
 1158: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1159: #else
 1160: f = FLAG($4>=$5);
 1161: #endif
 1162: 
 1163: )
 1164: 
 1165: \+dcomps
 1166: 
 1167: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1168: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1169: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1170: 
 1171: \+
 1172: 
 1173: within	( u1 u2 u3 -- f )		core-ext
 1174: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1175: unsigned and signed numbers (but not a mixture).  Another way to think
 1176: about this word is to consider the numbers as a circle (wrapping
 1177: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1178: min-n for signed numbers); now consider the range from u2 towards
 1179: increasing numbers up to and excluding u3 (giving an empty range if
 1180: u2=u3); if u1 is in this range, @code{within} returns true.""
 1181: f = FLAG(u1-u2 < u3-u2);
 1182: :
 1183:  over - >r - r> u< ;
 1184: 
 1185: \g stack
 1186: 
 1187: useraddr	( #u -- a_addr )	new
 1188: a_addr = (Cell *)(up+u);
 1189: 
 1190: up!	( a_addr -- )	gforth	up_store
 1191: gforth_UP=up=(Address)a_addr;
 1192: :
 1193:  up ! ;
 1194: Variable UP
 1195: 
 1196: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1197: a_addr = sp;
 1198: 
 1199: sp!	( a_addr -- S:... )		gforth		sp_store
 1200: sp = a_addr;
 1201: 
 1202: rp@	( -- a_addr )		gforth		rp_fetch
 1203: a_addr = rp;
 1204: 
 1205: rp!	( a_addr -- )		gforth		rp_store
 1206: rp = a_addr;
 1207: 
 1208: \+floating
 1209: 
 1210: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1211: f_addr = fp;
 1212: 
 1213: fp!	( f_addr -- f:... )	gforth	fp_store
 1214: fp = f_addr;
 1215: 
 1216: \+
 1217: 
 1218: >r	( w -- R:w )		core	to_r
 1219: :
 1220:  (>r) ;
 1221: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1222: 
 1223: r>	( R:w -- w )		core	r_from
 1224: :
 1225:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1226: Create (rdrop) ' ;s A,
 1227: 
 1228: rdrop	( R:w -- )		gforth
 1229: :
 1230:  r> r> drop >r ;
 1231: 
 1232: 2>r	( d -- R:d )	core-ext	two_to_r
 1233: :
 1234:  swap r> swap >r swap >r >r ;
 1235: 
 1236: 2r>	( R:d -- d )	core-ext	two_r_from
 1237: :
 1238:  r> r> swap r> swap >r swap ;
 1239: 
 1240: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1241: :
 1242:  i' j ;
 1243: 
 1244: 2rdrop	( R:d -- )		gforth	two_r_drop
 1245: :
 1246:  r> r> drop r> drop >r ;
 1247: 
 1248: over	( w1 w2 -- w1 w2 w1 )		core
 1249: :
 1250:  sp@ cell+ @ ;
 1251: 
 1252: drop	( w -- )		core
 1253: :
 1254:  IF THEN ;
 1255: 
 1256: swap	( w1 w2 -- w2 w1 )		core
 1257: :
 1258:  >r (swap) ! r> (swap) @ ;
 1259: Variable (swap)
 1260: 
 1261: dup	( w -- w w )		core	dupe
 1262: :
 1263:  sp@ @ ;
 1264: 
 1265: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1266: :
 1267: [ defined? (swap) [IF] ]
 1268:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1269: Variable (rot)
 1270: [ELSE] ]
 1271:     >r swap r> swap ;
 1272: [THEN]
 1273: 
 1274: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1275: :
 1276:  rot rot ;
 1277: 
 1278: nip	( w1 w2 -- w2 )		core-ext
 1279: :
 1280:  swap drop ;
 1281: 
 1282: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1283: :
 1284:  swap over ;
 1285: 
 1286: ?dup	( w -- S:... w )	core	question_dupe
 1287: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1288: @code{dup} if w is nonzero.""
 1289: if (w!=0) {
 1290:   *--sp = w;
 1291: }
 1292: :
 1293:  dup IF dup THEN ;
 1294: 
 1295: pick	( S:... u -- S:... w )		core-ext
 1296: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1297: w = sp[u];
 1298: :
 1299:  1+ cells sp@ + @ ;
 1300: 
 1301: 2drop	( w1 w2 -- )		core	two_drop
 1302: :
 1303:  drop drop ;
 1304: 
 1305: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1306: :
 1307:  over over ;
 1308: 
 1309: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1310: :
 1311:  3 pick 3 pick ;
 1312: 
 1313: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1314: :
 1315:  rot >r rot r> ;
 1316: 
 1317: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1318: :
 1319:  >r >r 2swap r> r> 2swap ;
 1320: 
 1321: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1322: :
 1323:  2swap 2drop ;
 1324: 
 1325: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1326: :
 1327:  2swap 2over ;
 1328: 
 1329: \ toggle is high-level: 0.11/0.42%
 1330: 
 1331: \g memory
 1332: 
 1333: @	( a_addr -- w )		core	fetch
 1334: ""@i{w} is the cell stored at @i{a_addr}.""
 1335: w = *a_addr;
 1336: 
 1337: \ lit@ / lit_fetch = lit @
 1338: 
 1339: lit@		( #a_addr -- w ) new	lit_fetch
 1340: w = *a_addr;
 1341: 
 1342: !	( w a_addr -- )		core	store
 1343: ""Store @i{w} into the cell at @i{a-addr}.""
 1344: *a_addr = w;
 1345: 
 1346: +!	( n a_addr -- )		core	plus_store
 1347: ""Add @i{n} to the cell at @i{a-addr}.""
 1348: *a_addr += n;
 1349: :
 1350:  tuck @ + swap ! ;
 1351: 
 1352: c@	( c_addr -- c )		core	c_fetch
 1353: ""@i{c} is the char stored at @i{c_addr}.""
 1354: c = *c_addr;
 1355: :
 1356: [ bigendian [IF] ]
 1357:     [ cell>bit 4 = [IF] ]
 1358: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1359: 	IF  $FF and  ELSE  8>>  THEN  ;
 1360:     [ [ELSE] ]
 1361: 	dup [ cell 1- ] literal and
 1362: 	tuck - @ swap [ cell 1- ] literal xor
 1363:  	0 ?DO 8>> LOOP $FF and
 1364:     [ [THEN] ]
 1365: [ [ELSE] ]
 1366:     [ cell>bit 4 = [IF] ]
 1367: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1368: 	IF  8>>  ELSE  $FF and  THEN
 1369:     [ [ELSE] ]
 1370: 	dup [ cell  1- ] literal and 
 1371: 	tuck - @ swap
 1372: 	0 ?DO 8>> LOOP 255 and
 1373:     [ [THEN] ]
 1374: [ [THEN] ]
 1375: ;
 1376: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1377: 
 1378: c!	( c c_addr -- )		core	c_store
 1379: ""Store @i{c} into the char at @i{c-addr}.""
 1380: *c_addr = c;
 1381: :
 1382: [ bigendian [IF] ]
 1383:     [ cell>bit 4 = [IF] ]
 1384: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1385: 	dup -2 and @ over 1 and cells masks + @ and
 1386: 	r> or swap -2 and ! ;
 1387: 	Create masks $00FF , $FF00 ,
 1388:     [ELSE] ]
 1389: 	dup [ cell 1- ] literal and dup 
 1390: 	[ cell 1- ] literal xor >r
 1391: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1392: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1393:     [THEN]
 1394: [ELSE] ]
 1395:     [ cell>bit 4 = [IF] ]
 1396: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1397: 	dup -2 and @ over 1 and cells masks + @ and
 1398: 	r> or swap -2 and ! ;
 1399: 	Create masks $FF00 , $00FF ,
 1400:     [ELSE] ]
 1401: 	dup [ cell 1- ] literal and dup >r
 1402: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1403: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1404:     [THEN]
 1405: [THEN]
 1406: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1407: 
 1408: 2!	( w1 w2 a_addr -- )		core	two_store
 1409: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1410: a_addr[0] = w2;
 1411: a_addr[1] = w1;
 1412: :
 1413:  tuck ! cell+ ! ;
 1414: 
 1415: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1416: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1417: the content of the next cell.""
 1418: w2 = a_addr[0];
 1419: w1 = a_addr[1];
 1420: :
 1421:  dup cell+ @ swap @ ;
 1422: 
 1423: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1424: ""@code{1 cells +}""
 1425: a_addr2 = a_addr1+1;
 1426: :
 1427:  cell + ;
 1428: 
 1429: cells	( n1 -- n2 )		core
 1430: "" @i{n2} is the number of address units of @i{n1} cells.""
 1431: n2 = n1 * sizeof(Cell);
 1432: :
 1433:  [ cell
 1434:  2/ dup [IF] ] 2* [ [THEN]
 1435:  2/ dup [IF] ] 2* [ [THEN]
 1436:  2/ dup [IF] ] 2* [ [THEN]
 1437:  2/ dup [IF] ] 2* [ [THEN]
 1438:  drop ] ;
 1439: 
 1440: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1441: ""@code{1 chars +}.""
 1442: c_addr2 = c_addr1 + 1;
 1443: :
 1444:  1+ ;
 1445: 
 1446: (chars)	( n1 -- n2 )	gforth	paren_chars
 1447: n2 = n1 * sizeof(Char);
 1448: :
 1449:  ;
 1450: 
 1451: count	( c_addr1 -- c_addr2 u )	core
 1452: ""@i{c-addr2} is the first character and @i{u} the length of the
 1453: counted string at @i{c-addr1}.""
 1454: u = *c_addr1;
 1455: c_addr2 = c_addr1+1;
 1456: :
 1457:  dup 1+ swap c@ ;
 1458: 
 1459: \g compiler
 1460: 
 1461: \+f83headerstring
 1462: 
 1463: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1464: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1465:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1466:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1467:     break;
 1468: f83name2=f83name1;
 1469: #ifdef DEBUG
 1470: fprintf(stderr, "F83find ");
 1471: fwrite(c_addr, u, 1, stderr);
 1472: fprintf(stderr, " found %08x\n", f83name2); 
 1473: #endif
 1474: :
 1475:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1476: 	>r 2dup r@ cell+ char+ capscomp  0=
 1477: 	IF  2drop r>  EXIT  THEN
 1478: 	r> @
 1479:     REPEAT  THEN  nip nip ;
 1480: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1481:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1482: : capscomp ( c_addr1 u c_addr2 -- n )
 1483:  swap bounds
 1484:  ?DO  dup c@ I c@ <>
 1485:      IF  dup c@ toupper I c@ toupper =
 1486:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1487:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1488: : sgn ( n -- -1/0/1 )
 1489:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1490: 
 1491: \-
 1492: 
 1493: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1494: longname2=listlfind(c_addr, u, longname1);
 1495: :
 1496:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1497: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1498: 	IF  2drop r>  EXIT  THEN
 1499: 	r> @
 1500:     REPEAT  THEN  nip nip ;
 1501: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1502:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1503: : capscomp ( c_addr1 u c_addr2 -- n )
 1504:  swap bounds
 1505:  ?DO  dup c@ I c@ <>
 1506:      IF  dup c@ toupper I c@ toupper =
 1507:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1508:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1509: : sgn ( n -- -1/0/1 )
 1510:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1511: 
 1512: \+hash
 1513: 
 1514: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1515: longname2 = hashlfind(c_addr, u, a_addr);
 1516: :
 1517:  BEGIN  dup  WHILE
 1518:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1519:         IF  2dup r@ cell+ cell+ capscomp 0=
 1520: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1521: 	rdrop r>
 1522:  REPEAT nip nip ;
 1523: 
 1524: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1525: ""A case-sensitive variant of @code{(hashfind)}""
 1526: longname2 = tablelfind(c_addr, u, a_addr);
 1527: :
 1528:  BEGIN  dup  WHILE
 1529:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1530:         IF  2dup r@ cell+ cell+ -text 0=
 1531: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1532: 	rdrop r>
 1533:  REPEAT nip nip ;
 1534: : -text ( c_addr1 u c_addr2 -- n )
 1535:  swap bounds
 1536:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1537:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1538: : sgn ( n -- -1/0/1 )
 1539:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1540: 
 1541: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1542: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1543: ukey = hashkey1(c_addr, u, ubits);
 1544: :
 1545:  dup rot-values + c@ over 1 swap lshift 1- >r
 1546:  tuck - 2swap r> 0 2swap bounds
 1547:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1548:       I c@ toupper xor
 1549:       over and  LOOP
 1550:  nip nip nip ;
 1551: Create rot-values
 1552:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1553:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1554:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1555:   7 c, 5 c, 5 c,
 1556: 
 1557: \+
 1558: 
 1559: \+
 1560: 
 1561: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1562: struct Cellpair r=parse_white(c_addr1, u1);
 1563: c_addr2 = (Char *)(r.n1);
 1564: u2 = r.n2;
 1565: :
 1566:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1567:  REPEAT  THEN  2dup
 1568:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1569:  REPEAT  THEN  nip - ;
 1570: 
 1571: aligned	( c_addr -- a_addr )	core
 1572: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1573: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1574: :
 1575:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1576: 
 1577: faligned	( c_addr -- f_addr )	float	f_aligned
 1578: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1579: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1580: :
 1581:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1582: 
 1583: \ threading stuff is currently only interesting if we have a compiler
 1584: \fhas? standardthreading has? compiler and [IF]
 1585: threading-method	( -- n )	gforth	threading_method
 1586: ""0 if the engine is direct threaded. Note that this may change during
 1587: the lifetime of an image.""
 1588: #if defined(DOUBLY_INDIRECT)
 1589: n=2;
 1590: #else
 1591: # if defined(DIRECT_THREADED)
 1592: n=0;
 1593: # else
 1594: n=1;
 1595: # endif
 1596: #endif
 1597: :
 1598:  1 ;
 1599: 
 1600: \f[THEN]
 1601: 
 1602: \g hostos
 1603: 
 1604: key-file	( wfileid -- c )		gforth	paren_key_file
 1605: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1606: buffering for @i{wfileid}.  If you want to read characters from a
 1607: terminal in non-canonical (raw) mode, you have to put the terminal in
 1608: non-canonical mode yourself (using the C interface); the exception is
 1609: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1610: #ifdef HAS_FILE
 1611: fflush(stdout);
 1612: c = key((FILE*)wfileid);
 1613: #else
 1614: c = key(stdin);
 1615: #endif
 1616: 
 1617: key?-file	( wfileid -- f )	        gforth	key_q_file
 1618: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1619: without blocking.  If you also want to use @code{read-file} or
 1620: @code{read-line} on the file, you have to call @code{key?-file} or
 1621: @code{key-file} first (these two words disable buffering).""
 1622: #ifdef HAS_FILE
 1623: fflush(stdout);
 1624: f = key_query((FILE*)wfileid);
 1625: #else
 1626: f = key_query(stdin);
 1627: #endif
 1628: 
 1629: stdin	( -- wfileid )	gforth
 1630: ""The standard input file of the Gforth process.""
 1631: wfileid = (Cell)stdin;
 1632: 
 1633: stdout	( -- wfileid )	gforth
 1634: ""The standard output file of the Gforth process.""
 1635: wfileid = (Cell)stdout;
 1636: 
 1637: stderr	( -- wfileid )	gforth
 1638: ""The standard error output file of the Gforth process.""
 1639: wfileid = (Cell)stderr;
 1640: 
 1641: \+os
 1642: 
 1643: form	( -- urows ucols )	gforth
 1644: ""The number of lines and columns in the terminal. These numbers may
 1645: change with the window size.  Note that it depends on the OS whether
 1646: this reflects the actual size and changes with the window size
 1647: (currently only on Unix-like OSs).  On other OSs you just get a
 1648: default, and can tell Gforth the terminal size by setting the
 1649: environment variables @code{COLUMNS} and @code{LINES} before starting
 1650: Gforth.""
 1651: /* we could block SIGWINCH here to get a consistent size, but I don't
 1652:  think this is necessary or always beneficial */
 1653: urows=rows;
 1654: ucols=cols;
 1655: 
 1656: wcwidth	( u -- n )	gforth
 1657: ""The number of fixed-width characters per unicode character u""
 1658: n = wcwidth(u);
 1659: 
 1660: flush-icache	( c_addr u -- )	gforth	flush_icache
 1661: ""Make sure that the instruction cache of the processor (if there is
 1662: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1663: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1664: automatically. Caveat: @code{flush-icache} might not work on your
 1665: installation; this is usually the case if direct threading is not
 1666: supported on your machine (take a look at your @file{machine.h}) and
 1667: your machine has a separate instruction cache. In such cases,
 1668: @code{flush-icache} does nothing instead of flushing the instruction
 1669: cache.""
 1670: FLUSH_ICACHE(c_addr,u);
 1671: 
 1672: (bye)	( n -- )	gforth	paren_bye
 1673: SUPER_END;
 1674: return (Label *)n;
 1675: 
 1676: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1677: wretval = gforth_system(c_addr, u);  
 1678: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1679: 
 1680: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1681: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1682: is the host operating system's expansion of that environment variable. If the
 1683: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1684: in length.""
 1685: /* close ' to keep fontify happy */
 1686: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1687: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1688: 
 1689: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1690: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1691: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1692: 
 1693: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1694: wretval = pclose((FILE *)wfileid);
 1695: wior = IOR(wretval==-1);
 1696: 
 1697: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1698: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1699: Months are numbered from 1.""
 1700: #if 1
 1701: time_t now;
 1702: struct tm *ltime;
 1703: time(&now);
 1704: ltime=localtime(&now);
 1705: #else
 1706: struct timeval time1;
 1707: struct timezone zone1;
 1708: struct tm *ltime;
 1709: gettimeofday(&time1,&zone1);
 1710: /* !! Single Unix specification: 
 1711:    If tzp is not a null pointer, the behaviour is unspecified. */
 1712: ltime=localtime((time_t *)&time1.tv_sec);
 1713: #endif
 1714: nyear =ltime->tm_year+1900;
 1715: nmonth=ltime->tm_mon+1;
 1716: nday  =ltime->tm_mday;
 1717: nhour =ltime->tm_hour;
 1718: nmin  =ltime->tm_min;
 1719: nsec  =ltime->tm_sec;
 1720: 
 1721: ms	( u -- )	facility-ext
 1722: ""Wait at least @i{n} milli-second.""
 1723: gforth_ms(u);
 1724: 
 1725: allocate	( u -- a_addr wior )	memory
 1726: ""Allocate @i{u} address units of contiguous data space. The initial
 1727: contents of the data space is undefined. If the allocation is successful,
 1728: @i{a-addr} is the start address of the allocated region and @i{wior}
 1729: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1730: is a non-zero I/O result code.""
 1731: a_addr = (Cell *)malloc(u?u:1);
 1732: wior = IOR(a_addr==NULL);
 1733: 
 1734: free	( a_addr -- wior )		memory
 1735: ""Return the region of data space starting at @i{a-addr} to the system.
 1736: The region must originally have been obtained using @code{allocate} or
 1737: @code{resize}. If the operational is successful, @i{wior} is 0.
 1738: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1739: free(a_addr);
 1740: wior = 0;
 1741: 
 1742: resize	( a_addr1 u -- a_addr2 wior )	memory
 1743: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1744: address units, possibly moving the contents to a different
 1745: area. @i{a-addr2} is the address of the resulting area.
 1746: If the operation is successful, @i{wior} is 0.
 1747: If the operation fails, @i{wior} is a non-zero
 1748: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1749: @code{resize} @code{allocate}s @i{u} address units.""
 1750: /* the following check is not necessary on most OSs, but it is needed
 1751:    on SunOS 4.1.2. */
 1752: /* close ' to keep fontify happy */
 1753: if (a_addr1==NULL)
 1754:   a_addr2 = (Cell *)malloc(u);
 1755: else
 1756:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1757: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1758: 
 1759: strerror	( n -- c_addr u )	gforth
 1760: c_addr = (Char *)strerror(n);
 1761: u = strlen((char *)c_addr);
 1762: 
 1763: strsignal	( n -- c_addr u )	gforth
 1764: c_addr = (Char *)strsignal(n);
 1765: u = strlen((char *)c_addr);
 1766: 
 1767: call-c	( ... w -- ... )	gforth	call_c
 1768: ""Call the C function pointed to by @i{w}. The C function has to
 1769: access the stack itself. The stack pointers are exported in the global
 1770: variables @code{gforth_SP} and @code{gforth_FP}.""
 1771: /* This is a first attempt at support for calls to C. This may change in
 1772:    the future */
 1773: gforth_FP=fp;
 1774: gforth_SP=sp;
 1775: ((void (*)())w)();
 1776: sp=gforth_SP;
 1777: fp=gforth_FP;
 1778: 
 1779: \+
 1780: \+file
 1781: 
 1782: close-file	( wfileid -- wior )		file	close_file
 1783: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1784: 
 1785: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1786: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1787: wior =  IOR(wfileid == 0);
 1788: 
 1789: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1790: Cell	fd;
 1791: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1792: if (fd != -1) {
 1793:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1794:   wior = IOR(wfileid == 0);
 1795: } else {
 1796:   wfileid = 0;
 1797:   wior = IOR(1);
 1798: }
 1799: 
 1800: delete-file	( c_addr u -- wior )		file	delete_file
 1801: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1802: 
 1803: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1804: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1805: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1806: 
 1807: file-position	( wfileid -- ud wior )	file	file_position
 1808: /* !! use tell and lseek? */
 1809: ud = OFF2UD(ftello((FILE *)wfileid));
 1810: wior = IOR(UD2OFF(ud)==-1);
 1811: 
 1812: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1813: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1814: 
 1815: file-size	( wfileid -- ud wior )	file	file_size
 1816: struct stat buf;
 1817: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1818: ud = OFF2UD(buf.st_size);
 1819: 
 1820: resize-file	( ud wfileid -- wior )	file	resize_file
 1821: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1822: 
 1823: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1824: /* !! fread does not guarantee enough */
 1825: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1826: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1827: /* !! is the value of ferror errno-compatible? */
 1828: if (wior)
 1829:   clearerr((FILE *)wfileid);
 1830: 
 1831: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1832: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1833: u2   = r.n1;
 1834: flag = r.n2;
 1835: u3   = r.n3;
 1836: wior = r.n4;
 1837: 
 1838: \+
 1839: 
 1840: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1841: /* !! fwrite does not guarantee enough */
 1842: #ifdef HAS_FILE
 1843: {
 1844:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1845:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1846:   if (wior)
 1847:     clearerr((FILE *)wfileid);
 1848: }
 1849: #else
 1850: TYPE(c_addr, u1);
 1851: #endif
 1852: 
 1853: emit-file	( c wfileid -- wior )	gforth	emit_file
 1854: #ifdef HAS_FILE
 1855: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1856: if (wior)
 1857:   clearerr((FILE *)wfileid);
 1858: #else
 1859: PUTC(c);
 1860: #endif
 1861: 
 1862: \+file
 1863: 
 1864: flush-file	( wfileid -- wior )		file-ext	flush_file
 1865: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1866: 
 1867: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1868: struct Cellpair r = file_status(c_addr, u);
 1869: wfam = r.n1;
 1870: wior = r.n2;
 1871: 
 1872: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1873: flag = FLAG(feof((FILE *) wfileid));
 1874: 
 1875: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1876: ""Open the directory specified by @i{c-addr, u}
 1877: and return @i{dir-id} for futher access to it.""
 1878: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1879: wior =  IOR(wdirid == 0);
 1880: 
 1881: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1882: ""Attempt to read the next entry from the directory specified
 1883: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1884: If the attempt fails because there is no more entries,
 1885: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1886: If the attempt to read the next entry fails because of any other reason, 
 1887: return @i{ior}<>0.
 1888: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1889: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1890: If the length of the file name is greater than @i{u1}, 
 1891: store first @i{u1} characters from file name into the buffer and
 1892: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1893: struct dirent * dent;
 1894: dent = readdir((DIR *)wdirid);
 1895: wior = 0;
 1896: flag = -1;
 1897: if(dent == NULL) {
 1898:   u2 = 0;
 1899:   flag = 0;
 1900: } else {
 1901:   u2 = strlen((char *)dent->d_name);
 1902:   if(u2 > u1) {
 1903:     u2 = u1;
 1904:     wior = -512-ENAMETOOLONG;
 1905:   }
 1906:   memmove(c_addr, dent->d_name, u2);
 1907: }
 1908: 
 1909: close-dir	( wdirid -- wior )	gforth	close_dir
 1910: ""Close the directory specified by @i{dir-id}.""
 1911: wior = IOR(closedir((DIR *)wdirid));
 1912: 
 1913: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1914: char * string = cstr(c_addr1, u1, 1);
 1915: char * pattern = cstr(c_addr2, u2, 0);
 1916: flag = FLAG(!fnmatch(pattern, string, 0));
 1917: 
 1918: set-dir	( c_addr u -- wior )	gforth set_dir
 1919: ""Change the current directory to @i{c-addr, u}.
 1920: Return an error if this is not possible""
 1921: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1922: 
 1923: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1924: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1925: If the buffer size is not sufficient, return 0 0""
 1926: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1927: if(c_addr2 != NULL) {
 1928:   u2 = strlen((char *)c_addr2);
 1929: } else {
 1930:   u2 = 0;
 1931: }
 1932: 
 1933: \+
 1934: 
 1935: newline	( -- c_addr u )	gforth
 1936: ""String containing the newline sequence of the host OS""
 1937: char newline[] = {
 1938: #if DIRSEP=='/'
 1939: /* Unix */
 1940: '\n'
 1941: #else
 1942: /* DOS, Win, OS/2 */
 1943: '\r','\n'
 1944: #endif
 1945: };
 1946: c_addr=(Char *)newline;
 1947: u=sizeof(newline);
 1948: :
 1949:  "newline count ;
 1950: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1951: 
 1952: \+os
 1953: 
 1954: utime	( -- dtime )	gforth
 1955: ""Report the current time in microseconds since some epoch.""
 1956: struct timeval time1;
 1957: gettimeofday(&time1,NULL);
 1958: dtime = timeval2us(&time1);
 1959: 
 1960: cputime ( -- duser dsystem ) gforth
 1961: ""duser and dsystem are the respective user- and system-level CPU
 1962: times used since the start of the Forth system (excluding child
 1963: processes), in microseconds (the granularity may be much larger,
 1964: however).  On platforms without the getrusage call, it reports elapsed
 1965: time (since some epoch) for duser and 0 for dsystem.""
 1966: #ifdef HAVE_GETRUSAGE
 1967: struct rusage usage;
 1968: getrusage(RUSAGE_SELF, &usage);
 1969: duser = timeval2us(&usage.ru_utime);
 1970: dsystem = timeval2us(&usage.ru_stime);
 1971: #else
 1972: struct timeval time1;
 1973: gettimeofday(&time1,NULL);
 1974: duser = timeval2us(&time1);
 1975: dsystem = DZERO;
 1976: #endif
 1977: 
 1978: \+
 1979: 
 1980: \+floating
 1981: 
 1982: \g floating
 1983: 
 1984: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1985: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1986: 
 1987: s>f	( n -- r )		float	s_to_f
 1988: r = n;
 1989: 
 1990: d>f	( d -- r )		float	d_to_f
 1991: #ifdef BUGGY_LL_D2F
 1992: extern double ldexp(double x, int exp);
 1993: if (DHI(d)<0) {
 1994: #ifdef BUGGY_LL_ADD
 1995:   DCell d2=dnegate(d);
 1996: #else
 1997:   DCell d2=-d;
 1998: #endif
 1999:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2000: } else
 2001:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2002: #else
 2003: r = d;
 2004: #endif
 2005: 
 2006: f>d	( r -- d )		float	f_to_d
 2007: extern DCell double2ll(Float r);
 2008: d = double2ll(r);
 2009: 
 2010: f>s	( r -- n )		float	f_to_s
 2011: n = (Cell)r;
 2012: 
 2013: f!	( r f_addr -- )	float	f_store
 2014: ""Store @i{r} into the float at address @i{f-addr}.""
 2015: *f_addr = r;
 2016: 
 2017: f@	( f_addr -- r )	float	f_fetch
 2018: ""@i{r} is the float at address @i{f-addr}.""
 2019: r = *f_addr;
 2020: 
 2021: df@	( df_addr -- r )	float-ext	d_f_fetch
 2022: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2023: #ifdef IEEE_FP
 2024: r = *df_addr;
 2025: #else
 2026: !! df@
 2027: #endif
 2028: 
 2029: df!	( r df_addr -- )	float-ext	d_f_store
 2030: ""Store @i{r} as double-precision IEEE floating-point value to the
 2031: address @i{df-addr}.""
 2032: #ifdef IEEE_FP
 2033: *df_addr = r;
 2034: #else
 2035: !! df!
 2036: #endif
 2037: 
 2038: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2039: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2040: #ifdef IEEE_FP
 2041: r = *sf_addr;
 2042: #else
 2043: !! sf@
 2044: #endif
 2045: 
 2046: sf!	( r sf_addr -- )	float-ext	s_f_store
 2047: ""Store @i{r} as single-precision IEEE floating-point value to the
 2048: address @i{sf-addr}.""
 2049: #ifdef IEEE_FP
 2050: *sf_addr = r;
 2051: #else
 2052: !! sf!
 2053: #endif
 2054: 
 2055: f+	( r1 r2 -- r3 )	float	f_plus
 2056: r3 = r1+r2;
 2057: 
 2058: f-	( r1 r2 -- r3 )	float	f_minus
 2059: r3 = r1-r2;
 2060: 
 2061: f*	( r1 r2 -- r3 )	float	f_star
 2062: r3 = r1*r2;
 2063: 
 2064: f/	( r1 r2 -- r3 )	float	f_slash
 2065: r3 = r1/r2;
 2066: 
 2067: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2068: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2069: r3 = pow(r1,r2);
 2070: 
 2071: fm*	( r1 n -- r2 )	gforth	fm_star
 2072: r2 = r1*n;
 2073: 
 2074: fm/	( r1 n -- r2 )	gforth	fm_slash
 2075: r2 = r1/n;
 2076: 
 2077: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2078: r2 = (r1*n1)/n2;
 2079: 
 2080: f**2	( r1 -- r2 )	gforth	fm_square
 2081: r2 = r1*r1;
 2082: 
 2083: fnegate	( r1 -- r2 )	float	f_negate
 2084: r2 = - r1;
 2085: 
 2086: fdrop	( r -- )		float	f_drop
 2087: 
 2088: fdup	( r -- r r )	float	f_dupe
 2089: 
 2090: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2091: 
 2092: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2093: 
 2094: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2095: 
 2096: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2097: 
 2098: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2099: 
 2100: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2101: ""@code{1 floats +}.""
 2102: f_addr2 = f_addr1+1;
 2103: 
 2104: floats	( n1 -- n2 )	float
 2105: ""@i{n2} is the number of address units of @i{n1} floats.""
 2106: n2 = n1*sizeof(Float);
 2107: 
 2108: floor	( r1 -- r2 )	float
 2109: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2110: /* !! unclear wording */
 2111: r2 = floor(r1);
 2112: 
 2113: fround	( r1 -- r2 )	float	f_round
 2114: ""Round to the nearest integral value.""
 2115: r2 = rint(r1);
 2116: 
 2117: fmax	( r1 r2 -- r3 )	float	f_max
 2118: if (r1<r2)
 2119:   r3 = r2;
 2120: else
 2121:   r3 = r1;
 2122: 
 2123: fmin	( r1 r2 -- r3 )	float	f_min
 2124: if (r1<r2)
 2125:   r3 = r1;
 2126: else
 2127:   r3 = r2;
 2128: 
 2129: represent	( r c_addr u -- n f1 f2 )	float
 2130: char *sig;
 2131: size_t siglen;
 2132: int flag;
 2133: int decpt;
 2134: sig=ecvt(r, u, &decpt, &flag);
 2135: n=(r==0. ? 1 : decpt);
 2136: f1=FLAG(flag!=0);
 2137: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2138: siglen=strlen((char *)sig);
 2139: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2140:   siglen=u;
 2141: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2142:   for (; sig[siglen-1]=='0'; siglen--);
 2143:     ;
 2144: memcpy(c_addr,sig,siglen);
 2145: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2146: 
 2147: >float	( c_addr u -- f:... flag )	float	to_float
 2148: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2149: character string @i{c-addr u} to internal floating-point
 2150: representation. If the string represents a valid floating-point number
 2151: @i{r} is placed on the floating-point stack and @i{flag} is
 2152: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2153: case and represents the floating-point number 0.""
 2154: Float r;
 2155: flag = to_float(c_addr, u, &r);
 2156: if (flag) {
 2157:   fp--;
 2158:   fp[0]=r;
 2159: }
 2160: 
 2161: fabs	( r1 -- r2 )	float-ext	f_abs
 2162: r2 = fabs(r1);
 2163: 
 2164: facos	( r1 -- r2 )	float-ext	f_a_cos
 2165: r2 = acos(r1);
 2166: 
 2167: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2168: r2 = asin(r1);
 2169: 
 2170: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2171: r2 = atan(r1);
 2172: 
 2173: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2174: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2175: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2176: r3 = atan2(r1,r2);
 2177: 
 2178: fcos	( r1 -- r2 )	float-ext	f_cos
 2179: r2 = cos(r1);
 2180: 
 2181: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2182: r2 = exp(r1);
 2183: 
 2184: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2185: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2186: #ifdef HAVE_EXPM1
 2187: extern double
 2188: #ifdef NeXT
 2189:               const
 2190: #endif
 2191:                     expm1(double);
 2192: r2 = expm1(r1);
 2193: #else
 2194: r2 = exp(r1)-1.;
 2195: #endif
 2196: 
 2197: fln	( r1 -- r2 )	float-ext	f_l_n
 2198: r2 = log(r1);
 2199: 
 2200: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2201: ""@i{r2}=ln(@i{r1}+1)""
 2202: #ifdef HAVE_LOG1P
 2203: extern double
 2204: #ifdef NeXT
 2205:               const
 2206: #endif
 2207:                     log1p(double);
 2208: r2 = log1p(r1);
 2209: #else
 2210: r2 = log(r1+1.);
 2211: #endif
 2212: 
 2213: flog	( r1 -- r2 )	float-ext	f_log
 2214: ""The decimal logarithm.""
 2215: r2 = log10(r1);
 2216: 
 2217: falog	( r1 -- r2 )	float-ext	f_a_log
 2218: ""@i{r2}=10**@i{r1}""
 2219: extern double pow10(double);
 2220: r2 = pow10(r1);
 2221: 
 2222: fsin	( r1 -- r2 )	float-ext	f_sine
 2223: r2 = sin(r1);
 2224: 
 2225: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2226: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2227: r2 = sin(r1);
 2228: r3 = cos(r1);
 2229: 
 2230: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2231: r2 = sqrt(r1);
 2232: 
 2233: ftan	( r1 -- r2 )	float-ext	f_tan
 2234: r2 = tan(r1);
 2235: :
 2236:  fsincos f/ ;
 2237: 
 2238: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2239: r2 = sinh(r1);
 2240: :
 2241:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2242: 
 2243: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2244: r2 = cosh(r1);
 2245: :
 2246:  fexp fdup 1/f f+ f2/ ;
 2247: 
 2248: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2249: r2 = tanh(r1);
 2250: :
 2251:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2252: 
 2253: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2254: r2 = asinh(r1);
 2255: :
 2256:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2257: 
 2258: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2259: r2 = acosh(r1);
 2260: :
 2261:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2262: 
 2263: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2264: r2 = atanh(r1);
 2265: :
 2266:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2267:  r> IF  fnegate  THEN ;
 2268: 
 2269: sfloats	( n1 -- n2 )	float-ext	s_floats
 2270: ""@i{n2} is the number of address units of @i{n1}
 2271: single-precision IEEE floating-point numbers.""
 2272: n2 = n1*sizeof(SFloat);
 2273: 
 2274: dfloats	( n1 -- n2 )	float-ext	d_floats
 2275: ""@i{n2} is the number of address units of @i{n1}
 2276: double-precision IEEE floating-point numbers.""
 2277: n2 = n1*sizeof(DFloat);
 2278: 
 2279: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2280: ""@i{sf-addr} is the first single-float-aligned address greater
 2281: than or equal to @i{c-addr}.""
 2282: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2283: :
 2284:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2285: 
 2286: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2287: ""@i{df-addr} is the first double-float-aligned address greater
 2288: than or equal to @i{c-addr}.""
 2289: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2290: :
 2291:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2292: 
 2293: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2294: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2295: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2296: ucount elements.""
 2297: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2298: :
 2299:  >r swap 2swap swap 0e r> 0 ?DO
 2300:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2301:  LOOP 2drop 2drop ; 
 2302: 
 2303: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2304: ""vy=ra*vx+vy""
 2305: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2306: :
 2307:  >r swap 2swap swap r> 0 ?DO
 2308:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2309:  LOOP 2drop 2drop fdrop ;
 2310: 
 2311: \+
 2312: 
 2313: \ The following words access machine/OS/installation-dependent
 2314: \   Gforth internals
 2315: \ !! how about environmental queries DIRECT-THREADED,
 2316: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2317: 
 2318: \ local variable implementation primitives
 2319: 
 2320: \+glocals
 2321: 
 2322: \g locals
 2323: 
 2324: @local#	( #noffset -- w )	gforth	fetch_local_number
 2325: w = *(Cell *)(lp+noffset);
 2326: 
 2327: @local0	( -- w )	new	fetch_local_zero
 2328: w = ((Cell *)lp)[0];
 2329: 
 2330: @local1	( -- w )	new	fetch_local_four
 2331: w = ((Cell *)lp)[1];
 2332: 
 2333: @local2	( -- w )	new	fetch_local_eight
 2334: w = ((Cell *)lp)[2];
 2335: 
 2336: @local3	( -- w )	new	fetch_local_twelve
 2337: w = ((Cell *)lp)[3];
 2338: 
 2339: \+floating
 2340: 
 2341: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2342: r = *(Float *)(lp+noffset);
 2343: 
 2344: f@local0	( -- r )	new	f_fetch_local_zero
 2345: r = ((Float *)lp)[0];
 2346: 
 2347: f@local1	( -- r )	new	f_fetch_local_eight
 2348: r = ((Float *)lp)[1];
 2349: 
 2350: \+
 2351: 
 2352: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2353: /* this can also be used to implement lp@ */
 2354: c_addr = (Char *)(lp+noffset);
 2355: 
 2356: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2357: ""used with negative immediate values it allocates memory on the
 2358: local stack, a positive immediate argument drops memory from the local
 2359: stack""
 2360: lp += noffset;
 2361: 
 2362: lp-	( -- )	new	minus_four_lp_plus_store
 2363: lp += -sizeof(Cell);
 2364: 
 2365: lp+	( -- )	new	eight_lp_plus_store
 2366: lp += sizeof(Float);
 2367: 
 2368: lp+2	( -- )	new	sixteen_lp_plus_store
 2369: lp += 2*sizeof(Float);
 2370: 
 2371: lp!	( c_addr -- )	gforth	lp_store
 2372: lp = (Address)c_addr;
 2373: 
 2374: >l	( w -- )	gforth	to_l
 2375: lp -= sizeof(Cell);
 2376: *(Cell *)lp = w;
 2377: 
 2378: \+floating
 2379: 
 2380: f>l	( r -- )	gforth	f_to_l
 2381: lp -= sizeof(Float);
 2382: *(Float *)lp = r;
 2383: 
 2384: fpick	( f:... u -- f:... r )		gforth
 2385: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2386: r = fp[u];
 2387: :
 2388:  floats fp@ + f@ ;
 2389: 
 2390: \+
 2391: \+
 2392: 
 2393: \+OS
 2394: 
 2395: \g syslib
 2396: 
 2397: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2398: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2399: #ifndef RTLD_GLOBAL
 2400: #define RTLD_GLOBAL 0
 2401: #endif
 2402: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2403: #else
 2404: #  ifdef _WIN32
 2405: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2406: #  else
 2407: #warning Define open-lib!
 2408: u2 = 0;
 2409: #  endif
 2410: #endif
 2411: 
 2412: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2413: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2414: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2415: #else
 2416: #  ifdef _WIN32
 2417: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2418: #  else
 2419: #warning Define lib-sym!
 2420: u3 = 0;
 2421: #  endif
 2422: #endif
 2423: 
 2424: wcall	( ... u -- ... )	gforth
 2425: gforth_FP=fp;
 2426: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2427: fp=gforth_FP;
 2428: 
 2429: uw@ ( c_addr -- u )	gforth u_w_fetch
 2430: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2431: u = *(UWyde*)(c_addr);
 2432: 
 2433: sw@ ( c_addr -- n )	gforth s_w_fetch
 2434: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2435: n = *(Wyde*)(c_addr);
 2436: 
 2437: w! ( w c_addr -- )	gforth w_store
 2438: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2439: *(Wyde*)(c_addr) = w;
 2440: 
 2441: ul@ ( c_addr -- u )	gforth u_l_fetch
 2442: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2443: u = *(UTetrabyte*)(c_addr);
 2444: 
 2445: sl@ ( c_addr -- n )	gforth s_l_fetch
 2446: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2447: n = *(Tetrabyte*)(c_addr);
 2448: 
 2449: l! ( w c_addr -- )	gforth l_store
 2450: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2451: *(Tetrabyte*)(c_addr) = w;
 2452: 
 2453: \+FFCALL
 2454: 
 2455: av-start-void	( c_addr -- )	gforth  av_start_void
 2456: av_start_void(alist, c_addr);
 2457: 
 2458: av-start-int	( c_addr -- )	gforth  av_start_int
 2459: av_start_int(alist, c_addr, &irv);
 2460: 
 2461: av-start-float	( c_addr -- )	gforth  av_start_float
 2462: av_start_float(alist, c_addr, &frv);
 2463: 
 2464: av-start-double	( c_addr -- )	gforth  av_start_double
 2465: av_start_double(alist, c_addr, &drv);
 2466: 
 2467: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2468: av_start_longlong(alist, c_addr, &llrv);
 2469: 
 2470: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2471: av_start_ptr(alist, c_addr, void*, &prv);
 2472: 
 2473: av-int  ( w -- )  gforth  av_int
 2474: av_int(alist, w);
 2475: 
 2476: av-float	( r -- )	gforth  av_float
 2477: av_float(alist, r);
 2478: 
 2479: av-double	( r -- )	gforth  av_double
 2480: av_double(alist, r);
 2481: 
 2482: av-longlong	( d -- )	gforth  av_longlong
 2483: #ifdef BUGGY_LL_SIZE
 2484: av_longlong(alist, DLO(d));
 2485: #else
 2486: av_longlong(alist, d);
 2487: #endif
 2488: 
 2489: av-ptr	( c_addr -- )	gforth  av_ptr
 2490: av_ptr(alist, void*, c_addr);
 2491: 
 2492: av-int-r  ( R:w -- )  gforth  av_int_r
 2493: av_int(alist, w);
 2494: 
 2495: av-float-r	( -- )	gforth  av_float_r
 2496: float r = *(Float*)lp;
 2497: lp += sizeof(Float);
 2498: av_float(alist, r);
 2499: 
 2500: av-double-r	( -- )	gforth  av_double_r
 2501: double r = *(Float*)lp;
 2502: lp += sizeof(Float);
 2503: av_double(alist, r);
 2504: 
 2505: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2506: #ifdef BUGGY_LL_SIZE
 2507: av_longlong(alist, DLO(d));
 2508: #else
 2509: av_longlong(alist, d);
 2510: #endif
 2511: 
 2512: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2513: av_ptr(alist, void*, c_addr);
 2514: 
 2515: av-call-void	( ... -- ... )	gforth  av_call_void
 2516: SAVE_REGS
 2517: av_call(alist);
 2518: REST_REGS
 2519: 
 2520: av-call-int	( ... -- ... w )	gforth  av_call_int
 2521: SAVE_REGS
 2522: av_call(alist);
 2523: REST_REGS
 2524: w = irv;
 2525: 
 2526: av-call-float	( ... -- ... r )	gforth  av_call_float
 2527: SAVE_REGS
 2528: av_call(alist);
 2529: REST_REGS
 2530: r = frv;
 2531: 
 2532: av-call-double	( ... -- ... r )	gforth  av_call_double
 2533: SAVE_REGS
 2534: av_call(alist);
 2535: REST_REGS
 2536: r = drv;
 2537: 
 2538: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2539: SAVE_REGS
 2540: av_call(alist);
 2541: REST_REGS
 2542: #ifdef BUGGY_LONG_LONG
 2543: DLO_IS(d, llrv);
 2544: DHI_IS(d, 0);
 2545: #else
 2546: d = llrv;
 2547: #endif
 2548: 
 2549: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2550: SAVE_REGS
 2551: av_call(alist);
 2552: REST_REGS
 2553: c_addr = prv;
 2554: 
 2555: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2556: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2557: 
 2558: va-start-void	( -- )	gforth	va_start_void
 2559: va_start_void(gforth_clist);
 2560: 
 2561: va-start-int	( -- )	gforth	va_start_int
 2562: va_start_int(gforth_clist);
 2563: 
 2564: va-start-longlong	( -- )	gforth	va_start_longlong
 2565: va_start_longlong(gforth_clist);
 2566: 
 2567: va-start-ptr	( -- )	gforth	va_start_ptr
 2568: va_start_ptr(gforth_clist, (char *));
 2569: 
 2570: va-start-float	( -- )	gforth	va_start_float
 2571: va_start_float(gforth_clist);
 2572: 
 2573: va-start-double	( -- )	gforth	va_start_double
 2574: va_start_double(gforth_clist);
 2575: 
 2576: va-arg-int	( -- w )	gforth	va_arg_int
 2577: w = va_arg_int(gforth_clist);
 2578: 
 2579: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2580: #ifdef BUGGY_LONG_LONG
 2581: DLO_IS(d, va_arg_longlong(gforth_clist));
 2582: DHI_IS(d, 0);
 2583: #else
 2584: d = va_arg_longlong(gforth_clist);
 2585: #endif
 2586: 
 2587: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2588: c_addr = (char *)va_arg_ptr(gforth_clist,char*);
 2589: 
 2590: va-arg-float	( -- r )	gforth	va_arg_float
 2591: r = va_arg_float(gforth_clist);
 2592: 
 2593: va-arg-double	( -- r )	gforth	va_arg_double
 2594: r = va_arg_double(gforth_clist);
 2595: 
 2596: va-return-void ( -- )	gforth va_return_void
 2597: va_return_void(gforth_clist);
 2598: return 0;
 2599: 
 2600: va-return-int ( w -- )	gforth va_return_int
 2601: va_return_int(gforth_clist, w);
 2602: return 0;
 2603: 
 2604: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2605: va_return_ptr(gforth_clist, void *, c_addr);
 2606: return 0;
 2607: 
 2608: va-return-longlong ( d -- )	gforth va_return_longlong
 2609: #ifdef BUGGY_LONG_LONG
 2610: va_return_longlong(gforth_clist, d.lo);
 2611: #else
 2612: va_return_longlong(gforth_clist, d);
 2613: #endif
 2614: return 0;
 2615: 
 2616: va-return-float ( r -- )	gforth va_return_float
 2617: va_return_float(gforth_clist, r);
 2618: return 0;
 2619: 
 2620: va-return-double ( r -- )	gforth va_return_double
 2621: va_return_double(gforth_clist, r);
 2622: return 0;
 2623: 
 2624: \+
 2625: 
 2626: \+LIBFFI
 2627: 
 2628: ffi-type ( n -- a_type )	gforth ffi_type
 2629: static void* ffi_types[] =
 2630:     { &ffi_type_void,
 2631:       &ffi_type_uint8, &ffi_type_sint8,
 2632:       &ffi_type_uint16, &ffi_type_sint16,
 2633:       &ffi_type_uint32, &ffi_type_sint32,
 2634:       &ffi_type_uint64, &ffi_type_sint64,
 2635:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2636:       &ffi_type_pointer };
 2637: a_type = ffi_types[n];
 2638: 
 2639: ffi-size ( n1 -- n2 )	gforth ffi_size
 2640: static int ffi_sizes[] =
 2641:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2642: n2 = ffi_sizes[n1];
 2643: 
 2644: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2645: w = ffi_prep_cif((ffi_cif *)a_cif, FFI_DEFAULT_ABI, n,
 2646: 	 (ffi_type *)a_rtype, (ffi_type **)a_atypes);
 2647: 
 2648: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2649: SAVE_REGS
 2650: ffi_call((ffi_cif *)a_cif, (void(*)())a_ip, (void *)a_rvalue, (void **)a_avalues);
 2651: REST_REGS
 2652: 
 2653: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2654: w = ffi_prep_closure((ffi_closure *)a_closure, (ffi_cif *)a_cif, gforth_callback, (void *)a_ip);
 2655: 
 2656: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2657: #ifdef BUGGY_LONG_LONG
 2658: DLO_IS(d, *(Cell*)(*a_addr));
 2659: DHI_IS(d, 0);
 2660: #else
 2661: d = *(DCell*)(a_addr);
 2662: #endif
 2663: 
 2664: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2665: #ifdef BUGGY_LONG_LONG
 2666: *(Cell*)(a_addr) = DLO(d);
 2667: #else
 2668: *(DCell*)(a_addr) = d;
 2669: #endif
 2670: 
 2671: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2672: w = *(int *)(*gforth_clist++);
 2673: 
 2674: ffi-arg-long ( -- w )	gforth ffi_arg_long
 2675: w = *(long *)(*gforth_clist++);
 2676: 
 2677: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2678: #ifdef BUGGY_LONG_LONG
 2679: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2680: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2681: #else
 2682: d = *(DCell*)(*gforth_clist++);
 2683: #endif
 2684: 
 2685: ffi-arg-dlong ( -- d )	gforth ffi_arg_dlong
 2686: #ifdef BUGGY_LONG_LONG
 2687: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2688: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2689: #else
 2690: d = *(Cell*)(*gforth_clist++);
 2691: #endif
 2692: 
 2693: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2694: c_addr = *(Char **)(*gforth_clist++);
 2695: 
 2696: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2697: r = *(float*)(*gforth_clist++);
 2698: 
 2699: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2700: r = *(double*)(*gforth_clist++);
 2701: 
 2702: ffi-ret-void ( -- )	gforth ffi_ret_void
 2703: return 0;
 2704: 
 2705: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2706: *(int*)(gforth_ritem) = w;
 2707: return 0;
 2708: 
 2709: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2710: #ifdef BUGGY_LONG_LONG
 2711: *(Cell*)(gforth_ritem) = DLO(d);
 2712: #else
 2713: *(DCell*)(gforth_ritem) = d;
 2714: #endif
 2715: return 0;
 2716: 
 2717: ffi-ret-dlong ( d -- )	gforth ffi_ret_dlong
 2718: #ifdef BUGGY_LONG_LONG
 2719: *(Cell*)(gforth_ritem) = DLO(d);
 2720: #else
 2721: *(Cell*)(gforth_ritem) = d;
 2722: #endif
 2723: return 0;
 2724: 
 2725: ffi-ret-long ( n -- )	gforth ffi_ret_long
 2726: *(Cell*)(gforth_ritem) = n;
 2727: return 0;
 2728: 
 2729: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2730: *(Char **)(gforth_ritem) = c_addr;
 2731: return 0;
 2732: 
 2733: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2734: *(float*)(gforth_ritem) = r;
 2735: return 0;
 2736: 
 2737: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2738: *(double*)(gforth_ritem) = r;
 2739: return 0;
 2740: 
 2741: \+
 2742: 
 2743: \+OLDCALL
 2744: 
 2745: define(`uploop',
 2746:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2747: define(`_uploop',
 2748:        `ifelse($1, `$3', `$5',
 2749: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2750: 
 2751: \ argflist(argnum): Forth argument list
 2752: define(argflist,
 2753:        `ifelse($1, 0, `',
 2754:                `uploop(`_i', 1, $1, ``u''`_i ', ``u''`_i')')')
 2755: \ argdlist(argnum): declare C's arguments
 2756: define(argdlist,
 2757:        `ifelse($1, 0, `',
 2758:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2759: \ argclist(argnum): pass C's arguments
 2760: define(argclist,
 2761:        `ifelse($1, 0, `',
 2762:                `uploop(`_i', 1, $1, ``u''`_i, ', ``u''`_i')')')
 2763: \ icall(argnum)
 2764: define(icall,
 2765: `icall$1	( argflist($1) u -- uret )	gforth
 2766: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2767: 
 2768: ')
 2769: define(fcall,
 2770: `fcall$1	( argflist($1) u -- rret )	gforth
 2771: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2772: 
 2773: ')
 2774: 
 2775: \ close ' to keep fontify happy
 2776: 
 2777: uploop(i, 0, 7, `icall(i)')
 2778: icall(20)
 2779: uploop(i, 0, 7, `fcall(i)')
 2780: fcall(20)
 2781: 
 2782: \+
 2783: \+
 2784: 
 2785: \g peephole
 2786: 
 2787: \+peephole
 2788: 
 2789: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2790: ""compile prim (incl. immargs) at @var{a_prim}""
 2791: compile_prim1(a_prim);
 2792: 
 2793: finish-code ( ... -- ... ) gforth finish_code
 2794: ""Perform delayed steps in code generation (branch resolution, I-cache
 2795: flushing).""
 2796: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2797:    to save spTOS (gforth-fast --enable-force-reg) */
 2798: finish_code();
 2799: 
 2800: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2801: f = forget_dyncode(c_code);
 2802: 
 2803: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2804: ""a_prim is the code address of the primitive that has been
 2805: compile_prim1ed to a_code""
 2806: a_prim = (Cell *)decompile_code((Label)a_code);
 2807: 
 2808: \ set-next-code and call2 do not appear in images and can be
 2809: \ renumbered arbitrarily
 2810: 
 2811: set-next-code ( #w -- ) gforth set_next_code
 2812: #ifdef NO_IP
 2813: next_code = (Label)w;
 2814: #endif
 2815: 
 2816: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2817: /* call with explicit return address */
 2818: #ifdef NO_IP
 2819: INST_TAIL;
 2820: JUMP(a_callee);
 2821: #else
 2822: assert(0);
 2823: #endif
 2824: 
 2825: tag-offsets ( -- a_addr ) gforth tag_offsets
 2826: extern Cell groups[32];
 2827: a_addr = groups;
 2828: 
 2829: \+
 2830: 
 2831: \g static_super
 2832: 
 2833: ifdef(`STACK_CACHE_FILE',
 2834: `include(peeprules.vmg)')
 2835: 
 2836: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>