File:  [gforth] / gforth / prim
Revision 1.212: download - view: text, annotated - select for diffs
Wed May 9 07:12:59 2007 UTC (16 years, 10 months ago) by anton
Branches: MAIN
CVS tags: HEAD
use nanosleep() for MS where available (thanks to Shawn K. Quinn).

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E include-skipped-insts on \ static superinsts include cells for components
  113: \E                          \ useful for dynamic programming and
  114: \E                          \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  207: ""run-time routine for @code{does>}-defined words""
  208: #ifdef NO_IP
  209: a_retaddr = next_code;
  210: a_body = PFA(CFA);
  211: INST_TAIL;
  212: #ifdef DEBUG
  213: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  214: #endif
  215: goto **(Label *)DOES_CODE1(CFA);
  216: #else /* !defined(NO_IP) */
  217: a_retaddr = (Cell *)IP;
  218: a_body = PFA(CFA);
  219: #ifdef DEBUG
  220: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  221: #endif
  222: SET_IP(DOES_CODE1(CFA));
  223: #endif /* !defined(NO_IP) */
  224: 
  225: (does-handler) ( -- )	gforth-internal	paren_does_handler
  226: ""just a slot to have an encoding for the DOESJUMP, 
  227: which is no longer used anyway (!! eliminate this)""
  228: 
  229: \F [endif]
  230: 
  231: \g control
  232: 
  233: noop	( -- )		gforth
  234: :
  235:  ;
  236: 
  237: call	( #a_callee -- R:a_retaddr )	new
  238: ""Call callee (a variant of docol with inline argument).""
  239: #ifdef NO_IP
  240: assert(0);
  241: INST_TAIL;
  242: JUMP(a_callee);
  243: #else
  244: #ifdef DEBUG
  245:     {
  246:       CFA_TO_NAME((((Cell *)a_callee)-2));
  247:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  248: 	      len,name);
  249:     }
  250: #endif
  251: a_retaddr = (Cell *)IP;
  252: SET_IP((Xt *)a_callee);
  253: #endif
  254: 
  255: execute	( xt -- )		core
  256: ""Perform the semantics represented by the execution token, @i{xt}.""
  257: #ifdef DEBUG
  258: fprintf(stderr, "execute %08x\n", xt);
  259: #endif
  260: #ifndef NO_IP
  261: ip=IP;
  262: #endif
  263: SUPER_END;
  264: VM_JUMP(EXEC1(xt));
  265: 
  266: perform	( a_addr -- )	gforth
  267: ""@code{@@ execute}.""
  268: /* and pfe */
  269: #ifndef NO_IP
  270: ip=IP;
  271: #endif
  272: SUPER_END;
  273: VM_JUMP(EXEC1(*(Xt *)a_addr));
  274: :
  275:  @ execute ;
  276: 
  277: ;s	( R:w -- )		gforth	semis
  278: ""The primitive compiled by @code{EXIT}.""
  279: #ifdef NO_IP
  280: INST_TAIL;
  281: goto *(void *)w;
  282: #else
  283: SET_IP((Xt *)w);
  284: #endif
  285: 
  286: unloop	( R:w1 R:w2 -- )	core
  287: /* !! alias for 2rdrop */
  288: :
  289:  r> rdrop rdrop >r ;
  290: 
  291: lit-perform	( #a_addr -- )	new	lit_perform
  292: #ifndef NO_IP
  293: ip=IP;
  294: #endif
  295: SUPER_END;
  296: VM_JUMP(EXEC1(*(Xt *)a_addr));
  297: 
  298: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  299: #ifdef NO_IP
  300: /* compiled to LIT CALL by compile_prim */
  301: assert(0);
  302: #else
  303: a_pfa = PFA(a_cfa);
  304: nest = (Cell)IP;
  305: #ifdef DEBUG
  306:     {
  307:       CFA_TO_NAME(a_cfa);
  308:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  309: 	      (Cell)ip,(Cell)a_cfa,len,name);
  310:     }
  311: #endif
  312: SET_IP(DOES_CODE1(a_cfa));
  313: #endif
  314: 
  315: \+glocals
  316: 
  317: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  318: /* this will probably not be used */
  319: lp += nlocals;
  320: #ifdef NO_IP
  321: INST_TAIL;
  322: JUMP(a_target);
  323: #else
  324: SET_IP((Xt *)a_target);
  325: #endif
  326: 
  327: \+
  328: 
  329: branch	( #a_target -- )	gforth
  330: #ifdef NO_IP
  331: INST_TAIL;
  332: JUMP(a_target);
  333: #else
  334: SET_IP((Xt *)a_target);
  335: #endif
  336: :
  337:  r> @ >r ;
  338: 
  339: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  340: \ this is non-syntactical: code must open a brace that is closed by the macro
  341: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  342: \ this is non-syntactical: code must open a brace that is closed by the macro
  343: define(condbranch,
  344: $1 ( `#'a_target $2 ) $3
  345: $4	#ifdef NO_IP
  346: INST_TAIL;
  347: #endif
  348: $5	#ifdef NO_IP
  349: JUMP(a_target);
  350: #else
  351: SET_IP((Xt *)a_target);
  352: #endif
  353: }
  354: $6
  355: 
  356: \+glocals
  357: 
  358: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  359: $4	#ifdef NO_IP
  360: INST_TAIL;
  361: #endif
  362: $5	lp += nlocals;
  363: #ifdef NO_IP
  364: JUMP(a_target);
  365: #else
  366: SET_IP((Xt *)a_target);
  367: #endif
  368: }
  369: 
  370: \+
  371: )
  372: 
  373: \ version that generates two jumps (not good for PR 15242 workaround)
  374: define(condbranch_twojump,
  375: $1 ( `#'a_target $2 ) $3
  376: $4	#ifdef NO_IP
  377: INST_TAIL;
  378: #endif
  379: $5	#ifdef NO_IP
  380: JUMP(a_target);
  381: #else
  382: SET_IP((Xt *)a_target);
  383: INST_TAIL; NEXT_P2;
  384: #endif
  385: }
  386: SUPER_CONTINUE;
  387: $6
  388: 
  389: \+glocals
  390: 
  391: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  392: $4	#ifdef NO_IP
  393: INST_TAIL;
  394: #endif
  395: $5	lp += nlocals;
  396: #ifdef NO_IP
  397: JUMP(a_target);
  398: #else
  399: SET_IP((Xt *)a_target);
  400: INST_TAIL; NEXT_P2;
  401: #endif
  402: }
  403: SUPER_CONTINUE;
  404: 
  405: \+
  406: )
  407: 
  408: condbranch(?branch,f --,f83	question_branch,
  409: ,if (f==0) {
  410: ,:
  411:  0= dup 0=          \ !f f
  412:  r> tuck cell+      \ !f branchoffset f IP+
  413:  and -rot @ and or  \ f&IP+|!f&branch
  414:  >r ;)
  415: 
  416: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  417: \ is only used in if's (yet)
  418: 
  419: \+xconds
  420: 
  421: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  422: ""The run-time procedure compiled by @code{?DUP-IF}.""
  423: if (f==0) {
  424: #ifdef NO_IP
  425: INST_TAIL;
  426: JUMP(a_target);
  427: #else
  428: SET_IP((Xt *)a_target);
  429: #endif
  430: } else {
  431: sp--;
  432: sp[0]=f;
  433: }
  434: 
  435: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  436: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  437: if (f!=0) {
  438:   sp--;
  439:   sp[0]=f;
  440: #ifdef NO_IP
  441:   JUMP(a_target);
  442: #else
  443:   SET_IP((Xt *)a_target);
  444: #endif
  445: }
  446: 
  447: \+
  448: \fhas? skiploopprims 0= [IF]
  449: 
  450: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  451: n2=n1-1;
  452: ,if (n1) {
  453: ,:
  454:  r> r> dup 1- >r
  455:  IF @ >r ELSE cell+ >r THEN ;)
  456: 
  457: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  458: n2=n1+1;
  459: ,if (n2 != nlimit) {
  460: ,:
  461:  r> r> 1+ r> 2dup =
  462:  IF >r 1- >r cell+ >r
  463:  ELSE >r >r @ >r THEN ;)
  464: 
  465: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  466: /* !! check this thoroughly */
  467: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  468: /* dependent upon two's complement arithmetic */
  469: Cell olddiff = n1-nlimit;
  470: n2=n1+n;	
  471: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  472:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  473:     >=0) { /* & is used to avoid having two branches for gforth-native */
  474: ,:
  475:  r> swap
  476:  r> r> 2dup - >r
  477:  2 pick r@ + r@ xor 0< 0=
  478:  3 pick r> xor 0< 0= or
  479:  IF    >r + >r @ >r
  480:  ELSE  >r >r drop cell+ >r THEN ;)
  481: 
  482: \+xconds
  483: 
  484: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  485: UCell olddiff = n1-nlimit;
  486: n2=n1-u;
  487: ,if (olddiff>u) {
  488: ,)
  489: 
  490: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  491: ""The run-time procedure compiled by S+LOOP. It loops until the index
  492: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  493: version of (+LOOP).""
  494: /* !! check this thoroughly */
  495: Cell diff = n1-nlimit;
  496: Cell newdiff = diff+n;
  497: if (n<0) {
  498:     diff = -diff;
  499:     newdiff = -newdiff;
  500: }
  501: n2=n1+n;
  502: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  503: ,)
  504: 
  505: \+
  506: 
  507: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  508: /* or (for) = >r -- collides with unloop! */
  509: nlimit=0;
  510: :
  511:  r> swap 0 >r >r >r ;
  512: 
  513: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  514: :
  515:  r> swap rot >r >r >r ;
  516: 
  517: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  518: #ifdef NO_IP
  519:     INST_TAIL;
  520: #endif
  521: if (nstart == nlimit) {
  522: #ifdef NO_IP
  523:     JUMP(a_target);
  524: #else
  525:     SET_IP((Xt *)a_target);
  526: #endif
  527: }
  528: :
  529:   2dup =
  530:   IF   r> swap rot >r >r
  531:        @ >r
  532:   ELSE r> swap rot >r >r
  533:        cell+ >r
  534:   THEN ;				\ --> CORE-EXT
  535: 
  536: \+xconds
  537: 
  538: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  539: #ifdef NO_IP
  540:     INST_TAIL;
  541: #endif
  542: if (nstart >= nlimit) {
  543: #ifdef NO_IP
  544:     JUMP(a_target);
  545: #else
  546:     SET_IP((Xt *)a_target);
  547: #endif
  548: }
  549: :
  550:  swap 2dup
  551:  r> swap >r swap >r
  552:  >=
  553:  IF
  554:      @
  555:  ELSE
  556:      cell+
  557:  THEN  >r ;
  558: 
  559: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  560: #ifdef NO_IP
  561:     INST_TAIL;
  562: #endif
  563: if (ustart >= ulimit) {
  564: #ifdef NO_IP
  565: JUMP(a_target);
  566: #else
  567: SET_IP((Xt *)a_target);
  568: #endif
  569: }
  570: :
  571:  swap 2dup
  572:  r> swap >r swap >r
  573:  u>=
  574:  IF
  575:      @
  576:  ELSE
  577:      cell+
  578:  THEN  >r ;
  579: 
  580: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  581: #ifdef NO_IP
  582:     INST_TAIL;
  583: #endif
  584: if (nstart <= nlimit) {
  585: #ifdef NO_IP
  586: JUMP(a_target);
  587: #else
  588: SET_IP((Xt *)a_target);
  589: #endif
  590: }
  591: :
  592:  swap 2dup
  593:  r> swap >r swap >r
  594:  <=
  595:  IF
  596:      @
  597:  ELSE
  598:      cell+
  599:  THEN  >r ;
  600: 
  601: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  602: #ifdef NO_IP
  603:     INST_TAIL;
  604: #endif
  605: if (ustart <= ulimit) {
  606: #ifdef NO_IP
  607: JUMP(a_target);
  608: #else
  609: SET_IP((Xt *)a_target);
  610: #endif
  611: }
  612: :
  613:  swap 2dup
  614:  r> swap >r swap >r
  615:  u<=
  616:  IF
  617:      @
  618:  ELSE
  619:      cell+
  620:  THEN  >r ;
  621: 
  622: \+
  623: 
  624: \ don't make any assumptions where the return stack is!!
  625: \ implement this in machine code if it should run quickly!
  626: 
  627: i	( R:n -- R:n n )		core
  628: :
  629: \ rp@ cell+ @ ;
  630:   r> r> tuck >r >r ;
  631: 
  632: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  633: :
  634: \ rp@ cell+ cell+ @ ;
  635:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  636: variable itmp
  637: 
  638: j	( R:n R:d1 -- n R:n R:d1 )		core
  639: :
  640: \ rp@ cell+ cell+ cell+ @ ;
  641:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  642: [IFUNDEF] itmp variable itmp [THEN]
  643: 
  644: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  645: :
  646: \ rp@ [ 5 cells ] Literal + @ ;
  647:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  648: [IFUNDEF] itmp variable itmp [THEN]
  649: 
  650: \f[THEN]
  651: 
  652: \ digit is high-level: 0/0%
  653: 
  654: \g strings
  655: 
  656: move	( c_from c_to ucount -- )		core
  657: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  658: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  659: /* !! note that the standard specifies addr, not c-addr */
  660: memmove(c_to,c_from,ucount);
  661: /* make an Ifdef for bsd and others? */
  662: :
  663:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  664: 
  665: cmove	( c_from c_to u -- )	string	c_move
  666: ""Copy the contents of @i{ucount} characters from data space at
  667: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  668: from low address to high address; i.e., for overlapping areas it is
  669: safe if @i{c-to}=<@i{c-from}.""
  670: cmove(c_from,c_to,u);
  671: :
  672:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  673: 
  674: cmove>	( c_from c_to u -- )	string	c_move_up
  675: ""Copy the contents of @i{ucount} characters from data space at
  676: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  677: from high address to low address; i.e., for overlapping areas it is
  678: safe if @i{c-to}>=@i{c-from}.""
  679: cmove_up(c_from,c_to,u);
  680: :
  681:  dup 0= IF  drop 2drop exit  THEN
  682:  rot over + -rot bounds swap 1-
  683:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  684: 
  685: fill	( c_addr u c -- )	core
  686: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  687: memset(c_addr,c,u);
  688: :
  689:  -rot bounds
  690:  ?DO  dup I c!  LOOP  drop ;
  691: 
  692: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  693: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  694: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  695: is 1. Currently this is based on the machine's character
  696: comparison. In the future, this may change to consider the current
  697: locale and its collation order.""
  698: /* close ' to keep fontify happy */ 
  699: n = compare(c_addr1, u1, c_addr2, u2);
  700: :
  701:  rot 2dup swap - >r min swap -text dup
  702:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  703: : -text ( c_addr1 u c_addr2 -- n )
  704:  swap bounds
  705:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  706:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  707: : sgn ( n -- -1/0/1 )
  708:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  709: 
  710: \ -text is only used by replaced primitives now; move it elsewhere
  711: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  712: \ n = memcmp(c_addr1, c_addr2, u);
  713: \ if (n<0)
  714: \   n = -1;
  715: \ else if (n>0)
  716: \   n = 1;
  717: \ :
  718: \  swap bounds
  719: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  720: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  721: \ : sgn ( n -- -1/0/1 )
  722: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  723: 
  724: toupper	( c1 -- c2 )	gforth
  725: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  726: is the equivalent upper-case character. All other characters are unchanged.""
  727: c2 = toupper(c1);
  728: :
  729:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  730: 
  731: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  732: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  733: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  734: is 1. Currently this is based on the machine's character
  735: comparison. In the future, this may change to consider the current
  736: locale and its collation order.""
  737: /* close ' to keep fontify happy */ 
  738: n = capscompare(c_addr1, u1, c_addr2, u2);
  739: 
  740: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  741: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  742: characters from the start of the string.""
  743: c_addr2 = c_addr1+n;
  744: u2 = u1-n;
  745: :
  746:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  747: 
  748: \g arith
  749: 
  750: lit	( #w -- w )		gforth
  751: :
  752:  r> dup @ swap cell+ >r ;
  753: 
  754: +	( n1 n2 -- n )		core	plus
  755: n = n1+n2;
  756: 
  757: \ lit+ / lit_plus = lit +
  758: 
  759: lit+	( n1 #n2 -- n )		new	lit_plus
  760: #ifdef DEBUG
  761: fprintf(stderr, "lit+ %08x\n", n2);
  762: #endif
  763: n=n1+n2;
  764: 
  765: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  766: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  767: ""add @i{n3} to @i{n1} (giving @i{n})""
  768: n = n1+n3;
  769: :
  770:  rot + swap ;
  771: 
  772: -	( n1 n2 -- n )		core	minus
  773: n = n1-n2;
  774: :
  775:  negate + ;
  776: 
  777: negate	( n1 -- n2 )		core
  778: /* use minus as alias */
  779: n2 = -n1;
  780: :
  781:  invert 1+ ;
  782: 
  783: 1+	( n1 -- n2 )		core		one_plus
  784: n2 = n1+1;
  785: :
  786:  1 + ;
  787: 
  788: 1-	( n1 -- n2 )		core		one_minus
  789: n2 = n1-1;
  790: :
  791:  1 - ;
  792: 
  793: max	( n1 n2 -- n )	core
  794: if (n1<n2)
  795:   n = n2;
  796: else
  797:   n = n1;
  798: :
  799:  2dup < IF swap THEN drop ;
  800: 
  801: min	( n1 n2 -- n )	core
  802: if (n1<n2)
  803:   n = n1;
  804: else
  805:   n = n2;
  806: :
  807:  2dup > IF swap THEN drop ;
  808: 
  809: abs	( n -- u )	core
  810: if (n<0)
  811:   u = -n;
  812: else
  813:   u = n;
  814: :
  815:  dup 0< IF negate THEN ;
  816: 
  817: *	( n1 n2 -- n )		core	star
  818: n = n1*n2;
  819: :
  820:  um* drop ;
  821: 
  822: /	( n1 n2 -- n )		core	slash
  823: n = n1/n2;
  824: if (CHECK_DIVISION_SW && n2 == 0)
  825:   throw(BALL_DIVZERO);
  826: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  827:   throw(BALL_RESULTRANGE);
  828: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  829:   n--;
  830: :
  831:  /mod nip ;
  832: 
  833: mod	( n1 n2 -- n )		core
  834: n = n1%n2;
  835: if (CHECK_DIVISION_SW && n2 == 0)
  836:   throw(BALL_DIVZERO);
  837: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  838:   throw(BALL_RESULTRANGE);
  839: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  840: :
  841:  /mod drop ;
  842: 
  843: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  844: n4 = n1/n2;
  845: n3 = n1%n2; /* !! is this correct? look into C standard! */
  846: if (CHECK_DIVISION_SW && n2 == 0)
  847:   throw(BALL_DIVZERO);
  848: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  849:   throw(BALL_RESULTRANGE);
  850: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  851:   n4--;
  852:   n3+=n2;
  853: }
  854: :
  855:  >r s>d r> fm/mod ;
  856: 
  857: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  858: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  859: #ifdef BUGGY_LL_MUL
  860: DCell d = mmul(n1,n2);
  861: #else
  862: DCell d = (DCell)n1 * (DCell)n2;
  863: #endif
  864: #ifdef ASM_SM_SLASH_REM
  865: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  866: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  867:   if (CHECK_DIVISION && n5 == CELL_MIN)
  868:     throw(BALL_RESULTRANGE);
  869:   n5--;
  870:   n4+=n3;
  871: }
  872: #else
  873: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  874: n4=DHI(r);
  875: n5=DLO(r);
  876: #endif
  877: :
  878:  >r m* r> fm/mod ;
  879: 
  880: */	( n1 n2 n3 -- n4 )	core	star_slash
  881: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  882: #ifdef BUGGY_LL_MUL
  883: DCell d = mmul(n1,n2);
  884: #else
  885: DCell d = (DCell)n1 * (DCell)n2;
  886: #endif
  887: #ifdef ASM_SM_SLASH_REM
  888: Cell remainder;
  889: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  890: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  891:   if (CHECK_DIVISION && n4 == CELL_MIN)
  892:     throw(BALL_RESULTRANGE);
  893:   n4--;
  894: }
  895: #else
  896: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  897: n4=DLO(r);
  898: #endif
  899: :
  900:  */mod nip ;
  901: 
  902: 2*	( n1 -- n2 )		core		two_star
  903: ""Shift left by 1; also works on unsigned numbers""
  904: n2 = 2*n1;
  905: :
  906:  dup + ;
  907: 
  908: 2/	( n1 -- n2 )		core		two_slash
  909: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  910: division by 2 (note that @code{/} not necessarily floors).""
  911: n2 = n1>>1;
  912: :
  913:  dup MINI and IF 1 ELSE 0 THEN
  914:  [ bits/char cell * 1- ] literal 
  915:  0 DO 2* swap dup 2* >r MINI and 
  916:      IF 1 ELSE 0 THEN or r> swap
  917:  LOOP nip ;
  918: 
  919: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  920: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  921: #ifdef ASM_SM_SLASH_REM
  922: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  923: if (((DHI(d1)^n1)<0) && n2!=0) {
  924:   if (CHECK_DIVISION && n3 == CELL_MIN)
  925:     throw(BALL_RESULTRANGE);
  926:   n3--;
  927:   n2+=n1;
  928: }
  929: #else /* !defined(ASM_SM_SLASH_REM) */
  930: DCell r = fmdiv(d1,n1);
  931: n2=DHI(r);
  932: n3=DLO(r);
  933: #endif /* !defined(ASM_SM_SLASH_REM) */
  934: :
  935:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  936:  over       0< IF  tuck + swap  THEN
  937:  um/mod
  938:  r> 0< IF  swap negate swap  THEN ;
  939: 
  940: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  941: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  942: #ifdef ASM_SM_SLASH_REM
  943: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  944: #else /* !defined(ASM_SM_SLASH_REM) */
  945: DCell r = smdiv(d1,n1);
  946: n2=DHI(r);
  947: n3=DLO(r);
  948: #endif /* !defined(ASM_SM_SLASH_REM) */
  949: :
  950:  over >r dup >r abs -rot
  951:  dabs rot um/mod
  952:  r> r@ xor 0< IF       negate       THEN
  953:  r>        0< IF  swap negate swap  THEN ;
  954: 
  955: m*	( n1 n2 -- d )		core	m_star
  956: #ifdef BUGGY_LL_MUL
  957: d = mmul(n1,n2);
  958: #else
  959: d = (DCell)n1 * (DCell)n2;
  960: #endif
  961: :
  962:  2dup      0< and >r
  963:  2dup swap 0< and >r
  964:  um* r> - r> - ;
  965: 
  966: um*	( u1 u2 -- ud )		core	u_m_star
  967: /* use u* as alias */
  968: #ifdef BUGGY_LL_MUL
  969: ud = ummul(u1,u2);
  970: #else
  971: ud = (UDCell)u1 * (UDCell)u2;
  972: #endif
  973: :
  974:    0 -rot dup [ 8 cells ] literal -
  975:    DO
  976: 	dup 0< I' and d2*+ drop
  977:    LOOP ;
  978: : d2*+ ( ud n -- ud+n c )
  979:    over MINI
  980:    and >r >r 2dup d+ swap r> + swap r> ;
  981: 
  982: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  983: ""ud=u3*u1+u2, u1>u2>=0""
  984: #ifdef ASM_UM_SLASH_MOD
  985: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  986: #else /* !defined(ASM_UM_SLASH_MOD) */
  987: UDCell r = umdiv(ud,u1);
  988: u2=DHI(r);
  989: u3=DLO(r);
  990: #endif /* !defined(ASM_UM_SLASH_MOD) */
  991: :
  992:    0 swap [ 8 cells 1 + ] literal 0
  993:    ?DO /modstep
  994:    LOOP drop swap 1 rshift or swap ;
  995: : /modstep ( ud c R: u -- ud-?u c R: u )
  996:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  997: : d2*+ ( ud n -- ud+n c )
  998:    over MINI
  999:    and >r >r 2dup d+ swap r> + swap r> ;
 1000: 
 1001: m+	( d1 n -- d2 )		double		m_plus
 1002: #ifdef BUGGY_LL_ADD
 1003: DLO_IS(d2, DLO(d1)+n);
 1004: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1005: #else
 1006: d2 = d1+n;
 1007: #endif
 1008: :
 1009:  s>d d+ ;
 1010: 
 1011: d+	( d1 d2 -- d )		double	d_plus
 1012: #ifdef BUGGY_LL_ADD
 1013: DLO_IS(d, DLO(d1) + DLO(d2));
 1014: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1015: #else
 1016: d = d1+d2;
 1017: #endif
 1018: :
 1019:  rot + >r tuck + swap over u> r> swap - ;
 1020: 
 1021: d-	( d1 d2 -- d )		double		d_minus
 1022: #ifdef BUGGY_LL_ADD
 1023: DLO_IS(d, DLO(d1) - DLO(d2));
 1024: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1025: #else
 1026: d = d1-d2;
 1027: #endif
 1028: :
 1029:  dnegate d+ ;
 1030: 
 1031: dnegate	( d1 -- d2 )		double	d_negate
 1032: /* use dminus as alias */
 1033: #ifdef BUGGY_LL_ADD
 1034: d2 = dnegate(d1);
 1035: #else
 1036: d2 = -d1;
 1037: #endif
 1038: :
 1039:  invert swap negate tuck 0= - ;
 1040: 
 1041: d2*	( d1 -- d2 )		double		d_two_star
 1042: ""Shift left by 1; also works on unsigned numbers""
 1043: d2 = DLSHIFT(d1,1);
 1044: :
 1045:  2dup d+ ;
 1046: 
 1047: d2/	( d1 -- d2 )		double		d_two_slash
 1048: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1049: division by 2.""
 1050: #ifdef BUGGY_LL_SHIFT
 1051: DHI_IS(d2, DHI(d1)>>1);
 1052: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1053: #else
 1054: d2 = d1>>1;
 1055: #endif
 1056: :
 1057:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1058:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1059: 
 1060: and	( w1 w2 -- w )		core
 1061: w = w1&w2;
 1062: 
 1063: or	( w1 w2 -- w )		core
 1064: w = w1|w2;
 1065: :
 1066:  invert swap invert and invert ;
 1067: 
 1068: xor	( w1 w2 -- w )		core	x_or
 1069: w = w1^w2;
 1070: 
 1071: invert	( w1 -- w2 )		core
 1072: w2 = ~w1;
 1073: :
 1074:  MAXU xor ;
 1075: 
 1076: rshift	( u1 n -- u2 )		core	r_shift
 1077: ""Logical shift right by @i{n} bits.""
 1078: #ifdef BROKEN_SHIFT
 1079:   u2 = rshift(u1, n);
 1080: #else
 1081:   u2 = u1 >> n;
 1082: #endif
 1083: :
 1084:     0 ?DO 2/ MAXI and LOOP ;
 1085: 
 1086: lshift	( u1 n -- u2 )		core	l_shift
 1087: #ifdef BROKEN_SHIFT
 1088:   u2 = lshift(u1, n);
 1089: #else
 1090:   u2 = u1 << n;
 1091: #endif
 1092: :
 1093:     0 ?DO 2* LOOP ;
 1094: 
 1095: \g compare
 1096: 
 1097: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1098: define(comparisons,
 1099: $1=	( $2 -- f )		$6	$3equals
 1100: f = FLAG($4==$5);
 1101: :
 1102:     [ char $1x char 0 = [IF]
 1103: 	] IF false ELSE true THEN [
 1104:     [ELSE]
 1105: 	] xor 0= [
 1106:     [THEN] ] ;
 1107: 
 1108: $1<>	( $2 -- f )		$7	$3not_equals
 1109: f = FLAG($4!=$5);
 1110: :
 1111:     [ char $1x char 0 = [IF]
 1112: 	] IF true ELSE false THEN [
 1113:     [ELSE]
 1114: 	] xor 0<> [
 1115:     [THEN] ] ;
 1116: 
 1117: $1<	( $2 -- f )		$8	$3less_than
 1118: f = FLAG($4<$5);
 1119: :
 1120:     [ char $1x char 0 = [IF]
 1121: 	] MINI and 0<> [
 1122:     [ELSE] char $1x char u = [IF]
 1123: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1124: 	[ELSE]
 1125: 	    ] MINI xor >r MINI xor r> u< [
 1126: 	[THEN]
 1127:     [THEN] ] ;
 1128: 
 1129: $1>	( $2 -- f )		$9	$3greater_than
 1130: f = FLAG($4>$5);
 1131: :
 1132:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1133:     $1< ;
 1134: 
 1135: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1136: f = FLAG($4<=$5);
 1137: :
 1138:     $1> 0= ;
 1139: 
 1140: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1141: f = FLAG($4>=$5);
 1142: :
 1143:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1144:     $1<= ;
 1145: 
 1146: )
 1147: 
 1148: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1149: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1150: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1151: 
 1152: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1153: define(dcomparisons,
 1154: $1=	( $2 -- f )		$6	$3equals
 1155: #ifdef BUGGY_LL_CMP
 1156: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1157: #else
 1158: f = FLAG($4==$5);
 1159: #endif
 1160: 
 1161: $1<>	( $2 -- f )		$7	$3not_equals
 1162: #ifdef BUGGY_LL_CMP
 1163: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1164: #else
 1165: f = FLAG($4!=$5);
 1166: #endif
 1167: 
 1168: $1<	( $2 -- f )		$8	$3less_than
 1169: #ifdef BUGGY_LL_CMP
 1170: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1171: #else
 1172: f = FLAG($4<$5);
 1173: #endif
 1174: 
 1175: $1>	( $2 -- f )		$9	$3greater_than
 1176: #ifdef BUGGY_LL_CMP
 1177: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1178: #else
 1179: f = FLAG($4>$5);
 1180: #endif
 1181: 
 1182: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1183: #ifdef BUGGY_LL_CMP
 1184: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1185: #else
 1186: f = FLAG($4<=$5);
 1187: #endif
 1188: 
 1189: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1190: #ifdef BUGGY_LL_CMP
 1191: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1192: #else
 1193: f = FLAG($4>=$5);
 1194: #endif
 1195: 
 1196: )
 1197: 
 1198: \+dcomps
 1199: 
 1200: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1201: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1202: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1203: 
 1204: \+
 1205: 
 1206: within	( u1 u2 u3 -- f )		core-ext
 1207: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1208: unsigned and signed numbers (but not a mixture).  Another way to think
 1209: about this word is to consider the numbers as a circle (wrapping
 1210: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1211: min-n for signed numbers); now consider the range from u2 towards
 1212: increasing numbers up to and excluding u3 (giving an empty range if
 1213: u2=u3); if u1 is in this range, @code{within} returns true.""
 1214: f = FLAG(u1-u2 < u3-u2);
 1215: :
 1216:  over - >r - r> u< ;
 1217: 
 1218: \g stack
 1219: 
 1220: useraddr	( #u -- a_addr )	new
 1221: a_addr = (Cell *)(up+u);
 1222: 
 1223: up!	( a_addr -- )	gforth	up_store
 1224: gforth_UP=up=(Address)a_addr;
 1225: :
 1226:  up ! ;
 1227: Variable UP
 1228: 
 1229: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1230: a_addr = sp;
 1231: 
 1232: sp!	( a_addr -- S:... )		gforth		sp_store
 1233: sp = a_addr;
 1234: 
 1235: rp@	( -- a_addr )		gforth		rp_fetch
 1236: a_addr = rp;
 1237: 
 1238: rp!	( a_addr -- )		gforth		rp_store
 1239: rp = a_addr;
 1240: 
 1241: \+floating
 1242: 
 1243: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1244: f_addr = fp;
 1245: 
 1246: fp!	( f_addr -- f:... )	gforth	fp_store
 1247: fp = f_addr;
 1248: 
 1249: \+
 1250: 
 1251: >r	( w -- R:w )		core	to_r
 1252: :
 1253:  (>r) ;
 1254: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1255: 
 1256: r>	( R:w -- w )		core	r_from
 1257: :
 1258:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1259: Create (rdrop) ' ;s A,
 1260: 
 1261: rdrop	( R:w -- )		gforth
 1262: :
 1263:  r> r> drop >r ;
 1264: 
 1265: 2>r	( d -- R:d )	core-ext	two_to_r
 1266: :
 1267:  swap r> swap >r swap >r >r ;
 1268: 
 1269: 2r>	( R:d -- d )	core-ext	two_r_from
 1270: :
 1271:  r> r> swap r> swap >r swap ;
 1272: 
 1273: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1274: :
 1275:  i' j ;
 1276: 
 1277: 2rdrop	( R:d -- )		gforth	two_r_drop
 1278: :
 1279:  r> r> drop r> drop >r ;
 1280: 
 1281: over	( w1 w2 -- w1 w2 w1 )		core
 1282: :
 1283:  sp@ cell+ @ ;
 1284: 
 1285: drop	( w -- )		core
 1286: :
 1287:  IF THEN ;
 1288: 
 1289: swap	( w1 w2 -- w2 w1 )		core
 1290: :
 1291:  >r (swap) ! r> (swap) @ ;
 1292: Variable (swap)
 1293: 
 1294: dup	( w -- w w )		core	dupe
 1295: :
 1296:  sp@ @ ;
 1297: 
 1298: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1299: :
 1300: [ defined? (swap) [IF] ]
 1301:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1302: Variable (rot)
 1303: [ELSE] ]
 1304:     >r swap r> swap ;
 1305: [THEN]
 1306: 
 1307: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1308: :
 1309:  rot rot ;
 1310: 
 1311: nip	( w1 w2 -- w2 )		core-ext
 1312: :
 1313:  swap drop ;
 1314: 
 1315: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1316: :
 1317:  swap over ;
 1318: 
 1319: ?dup	( w -- S:... w )	core	question_dupe
 1320: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1321: @code{dup} if w is nonzero.""
 1322: if (w!=0) {
 1323:   *--sp = w;
 1324: }
 1325: :
 1326:  dup IF dup THEN ;
 1327: 
 1328: pick	( S:... u -- S:... w )		core-ext
 1329: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1330: w = sp[u];
 1331: :
 1332:  1+ cells sp@ + @ ;
 1333: 
 1334: 2drop	( w1 w2 -- )		core	two_drop
 1335: :
 1336:  drop drop ;
 1337: 
 1338: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1339: :
 1340:  over over ;
 1341: 
 1342: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1343: :
 1344:  3 pick 3 pick ;
 1345: 
 1346: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1347: :
 1348:  rot >r rot r> ;
 1349: 
 1350: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1351: :
 1352:  >r >r 2swap r> r> 2swap ;
 1353: 
 1354: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1355: :
 1356:  2swap 2drop ;
 1357: 
 1358: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1359: :
 1360:  2swap 2over ;
 1361: 
 1362: \ toggle is high-level: 0.11/0.42%
 1363: 
 1364: \g memory
 1365: 
 1366: @	( a_addr -- w )		core	fetch
 1367: ""@i{w} is the cell stored at @i{a_addr}.""
 1368: w = *a_addr;
 1369: 
 1370: \ lit@ / lit_fetch = lit @
 1371: 
 1372: lit@		( #a_addr -- w ) new	lit_fetch
 1373: w = *a_addr;
 1374: 
 1375: !	( w a_addr -- )		core	store
 1376: ""Store @i{w} into the cell at @i{a-addr}.""
 1377: *a_addr = w;
 1378: 
 1379: +!	( n a_addr -- )		core	plus_store
 1380: ""Add @i{n} to the cell at @i{a-addr}.""
 1381: *a_addr += n;
 1382: :
 1383:  tuck @ + swap ! ;
 1384: 
 1385: c@	( c_addr -- c )		core	c_fetch
 1386: ""@i{c} is the char stored at @i{c_addr}.""
 1387: c = *c_addr;
 1388: :
 1389: [ bigendian [IF] ]
 1390:     [ cell>bit 4 = [IF] ]
 1391: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1392: 	IF  $FF and  ELSE  8>>  THEN  ;
 1393:     [ [ELSE] ]
 1394: 	dup [ cell 1- ] literal and
 1395: 	tuck - @ swap [ cell 1- ] literal xor
 1396:  	0 ?DO 8>> LOOP $FF and
 1397:     [ [THEN] ]
 1398: [ [ELSE] ]
 1399:     [ cell>bit 4 = [IF] ]
 1400: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1401: 	IF  8>>  ELSE  $FF and  THEN
 1402:     [ [ELSE] ]
 1403: 	dup [ cell  1- ] literal and 
 1404: 	tuck - @ swap
 1405: 	0 ?DO 8>> LOOP 255 and
 1406:     [ [THEN] ]
 1407: [ [THEN] ]
 1408: ;
 1409: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1410: 
 1411: c!	( c c_addr -- )		core	c_store
 1412: ""Store @i{c} into the char at @i{c-addr}.""
 1413: *c_addr = c;
 1414: :
 1415: [ bigendian [IF] ]
 1416:     [ cell>bit 4 = [IF] ]
 1417: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1418: 	dup -2 and @ over 1 and cells masks + @ and
 1419: 	r> or swap -2 and ! ;
 1420: 	Create masks $00FF , $FF00 ,
 1421:     [ELSE] ]
 1422: 	dup [ cell 1- ] literal and dup 
 1423: 	[ cell 1- ] literal xor >r
 1424: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1425: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1426:     [THEN]
 1427: [ELSE] ]
 1428:     [ cell>bit 4 = [IF] ]
 1429: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1430: 	dup -2 and @ over 1 and cells masks + @ and
 1431: 	r> or swap -2 and ! ;
 1432: 	Create masks $FF00 , $00FF ,
 1433:     [ELSE] ]
 1434: 	dup [ cell 1- ] literal and dup >r
 1435: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1436: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1437:     [THEN]
 1438: [THEN]
 1439: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1440: 
 1441: 2!	( w1 w2 a_addr -- )		core	two_store
 1442: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1443: a_addr[0] = w2;
 1444: a_addr[1] = w1;
 1445: :
 1446:  tuck ! cell+ ! ;
 1447: 
 1448: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1449: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1450: the content of the next cell.""
 1451: w2 = a_addr[0];
 1452: w1 = a_addr[1];
 1453: :
 1454:  dup cell+ @ swap @ ;
 1455: 
 1456: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1457: ""@code{1 cells +}""
 1458: a_addr2 = a_addr1+1;
 1459: :
 1460:  cell + ;
 1461: 
 1462: cells	( n1 -- n2 )		core
 1463: "" @i{n2} is the number of address units of @i{n1} cells.""
 1464: n2 = n1 * sizeof(Cell);
 1465: :
 1466:  [ cell
 1467:  2/ dup [IF] ] 2* [ [THEN]
 1468:  2/ dup [IF] ] 2* [ [THEN]
 1469:  2/ dup [IF] ] 2* [ [THEN]
 1470:  2/ dup [IF] ] 2* [ [THEN]
 1471:  drop ] ;
 1472: 
 1473: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1474: ""@code{1 chars +}.""
 1475: c_addr2 = c_addr1 + 1;
 1476: :
 1477:  1+ ;
 1478: 
 1479: (chars)	( n1 -- n2 )	gforth	paren_chars
 1480: n2 = n1 * sizeof(Char);
 1481: :
 1482:  ;
 1483: 
 1484: count	( c_addr1 -- c_addr2 u )	core
 1485: ""@i{c-addr2} is the first character and @i{u} the length of the
 1486: counted string at @i{c-addr1}.""
 1487: u = *c_addr1;
 1488: c_addr2 = c_addr1+1;
 1489: :
 1490:  dup 1+ swap c@ ;
 1491: 
 1492: \g compiler
 1493: 
 1494: \+f83headerstring
 1495: 
 1496: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1497: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1498:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1499:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1500:     break;
 1501: f83name2=f83name1;
 1502: #ifdef DEBUG
 1503: fprintf(stderr, "F83find ");
 1504: fwrite(c_addr, u, 1, stderr);
 1505: fprintf(stderr, " found %08x\n", f83name2); 
 1506: #endif
 1507: :
 1508:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1509: 	>r 2dup r@ cell+ char+ capscomp  0=
 1510: 	IF  2drop r>  EXIT  THEN
 1511: 	r> @
 1512:     REPEAT  THEN  nip nip ;
 1513: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1514:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1515: : capscomp ( c_addr1 u c_addr2 -- n )
 1516:  swap bounds
 1517:  ?DO  dup c@ I c@ <>
 1518:      IF  dup c@ toupper I c@ toupper =
 1519:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1520:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1521: : sgn ( n -- -1/0/1 )
 1522:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1523: 
 1524: \-
 1525: 
 1526: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1527: longname2=listlfind(c_addr, u, longname1);
 1528: :
 1529:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1530: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1531: 	IF  2drop r>  EXIT  THEN
 1532: 	r> @
 1533:     REPEAT  THEN  nip nip ;
 1534: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1535:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1536: : capscomp ( c_addr1 u c_addr2 -- n )
 1537:  swap bounds
 1538:  ?DO  dup c@ I c@ <>
 1539:      IF  dup c@ toupper I c@ toupper =
 1540:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1541:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1542: : sgn ( n -- -1/0/1 )
 1543:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1544: 
 1545: \+hash
 1546: 
 1547: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1548: longname2 = hashlfind(c_addr, u, a_addr);
 1549: :
 1550:  BEGIN  dup  WHILE
 1551:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1552:         IF  2dup r@ cell+ cell+ capscomp 0=
 1553: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1554: 	rdrop r>
 1555:  REPEAT nip nip ;
 1556: 
 1557: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1558: ""A case-sensitive variant of @code{(hashfind)}""
 1559: longname2 = tablelfind(c_addr, u, a_addr);
 1560: :
 1561:  BEGIN  dup  WHILE
 1562:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1563:         IF  2dup r@ cell+ cell+ -text 0=
 1564: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1565: 	rdrop r>
 1566:  REPEAT nip nip ;
 1567: : -text ( c_addr1 u c_addr2 -- n )
 1568:  swap bounds
 1569:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1570:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1571: : sgn ( n -- -1/0/1 )
 1572:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1573: 
 1574: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1575: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1576: ukey = hashkey1(c_addr, u, ubits);
 1577: :
 1578:  dup rot-values + c@ over 1 swap lshift 1- >r
 1579:  tuck - 2swap r> 0 2swap bounds
 1580:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1581:       I c@ toupper xor
 1582:       over and  LOOP
 1583:  nip nip nip ;
 1584: Create rot-values
 1585:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1586:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1587:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1588:   7 c, 5 c, 5 c,
 1589: 
 1590: \+
 1591: 
 1592: \+
 1593: 
 1594: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1595: struct Cellpair r=parse_white(c_addr1, u1);
 1596: c_addr2 = (Char *)(r.n1);
 1597: u2 = r.n2;
 1598: :
 1599:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1600:  REPEAT  THEN  2dup
 1601:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1602:  REPEAT  THEN  nip - ;
 1603: 
 1604: aligned	( c_addr -- a_addr )	core
 1605: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1606: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1607: :
 1608:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1609: 
 1610: faligned	( c_addr -- f_addr )	float	f_aligned
 1611: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1612: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1613: :
 1614:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1615: 
 1616: \ threading stuff is currently only interesting if we have a compiler
 1617: \fhas? standardthreading has? compiler and [IF]
 1618: threading-method	( -- n )	gforth	threading_method
 1619: ""0 if the engine is direct threaded. Note that this may change during
 1620: the lifetime of an image.""
 1621: #if defined(DOUBLY_INDIRECT)
 1622: n=2;
 1623: #else
 1624: # if defined(DIRECT_THREADED)
 1625: n=0;
 1626: # else
 1627: n=1;
 1628: # endif
 1629: #endif
 1630: :
 1631:  1 ;
 1632: 
 1633: \f[THEN]
 1634: 
 1635: \g hostos
 1636: 
 1637: key-file	( wfileid -- c )		gforth	paren_key_file
 1638: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1639: buffering for @i{wfileid}.  If you want to read characters from a
 1640: terminal in non-canonical (raw) mode, you have to put the terminal in
 1641: non-canonical mode yourself (using the C interface); the exception is
 1642: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1643: #ifdef HAS_FILE
 1644: fflush(stdout);
 1645: c = key((FILE*)wfileid);
 1646: #else
 1647: c = key(stdin);
 1648: #endif
 1649: 
 1650: key?-file	( wfileid -- f )	        gforth	key_q_file
 1651: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1652: without blocking.  If you also want to use @code{read-file} or
 1653: @code{read-line} on the file, you have to call @code{key?-file} or
 1654: @code{key-file} first (these two words disable buffering).""
 1655: #ifdef HAS_FILE
 1656: fflush(stdout);
 1657: f = key_query((FILE*)wfileid);
 1658: #else
 1659: f = key_query(stdin);
 1660: #endif
 1661: 
 1662: stdin	( -- wfileid )	gforth
 1663: ""The standard input file of the Gforth process.""
 1664: wfileid = (Cell)stdin;
 1665: 
 1666: stdout	( -- wfileid )	gforth
 1667: ""The standard output file of the Gforth process.""
 1668: wfileid = (Cell)stdout;
 1669: 
 1670: stderr	( -- wfileid )	gforth
 1671: ""The standard error output file of the Gforth process.""
 1672: wfileid = (Cell)stderr;
 1673: 
 1674: \+os
 1675: 
 1676: form	( -- urows ucols )	gforth
 1677: ""The number of lines and columns in the terminal. These numbers may
 1678: change with the window size.  Note that it depends on the OS whether
 1679: this reflects the actual size and changes with the window size
 1680: (currently only on Unix-like OSs).  On other OSs you just get a
 1681: default, and can tell Gforth the terminal size by setting the
 1682: environment variables @code{COLUMNS} and @code{LINES} before starting
 1683: Gforth.""
 1684: /* we could block SIGWINCH here to get a consistent size, but I don't
 1685:  think this is necessary or always beneficial */
 1686: urows=rows;
 1687: ucols=cols;
 1688: 
 1689: wcwidth	( u -- n )	gforth
 1690: ""The number of fixed-width characters per unicode character u""
 1691: n = wcwidth(u);
 1692: 
 1693: flush-icache	( c_addr u -- )	gforth	flush_icache
 1694: ""Make sure that the instruction cache of the processor (if there is
 1695: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1696: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1697: automatically. Caveat: @code{flush-icache} might not work on your
 1698: installation; this is usually the case if direct threading is not
 1699: supported on your machine (take a look at your @file{machine.h}) and
 1700: your machine has a separate instruction cache. In such cases,
 1701: @code{flush-icache} does nothing instead of flushing the instruction
 1702: cache.""
 1703: FLUSH_ICACHE(c_addr,u);
 1704: 
 1705: (bye)	( n -- )	gforth	paren_bye
 1706: SUPER_END;
 1707: return (Label *)n;
 1708: 
 1709: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1710: wretval = gforth_system(c_addr, u);  
 1711: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1712: 
 1713: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1714: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1715: is the host operating system's expansion of that environment variable. If the
 1716: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1717: in length.""
 1718: /* close ' to keep fontify happy */
 1719: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1720: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1721: 
 1722: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1723: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1724: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1725: 
 1726: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1727: wretval = pclose((FILE *)wfileid);
 1728: wior = IOR(wretval==-1);
 1729: 
 1730: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1731: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1732: Months are numbered from 1.""
 1733: #if 1
 1734: time_t now;
 1735: struct tm *ltime;
 1736: time(&now);
 1737: ltime=localtime(&now);
 1738: #else
 1739: struct timeval time1;
 1740: struct timezone zone1;
 1741: struct tm *ltime;
 1742: gettimeofday(&time1,&zone1);
 1743: /* !! Single Unix specification: 
 1744:    If tzp is not a null pointer, the behaviour is unspecified. */
 1745: ltime=localtime((time_t *)&time1.tv_sec);
 1746: #endif
 1747: nyear =ltime->tm_year+1900;
 1748: nmonth=ltime->tm_mon+1;
 1749: nday  =ltime->tm_mday;
 1750: nhour =ltime->tm_hour;
 1751: nmin  =ltime->tm_min;
 1752: nsec  =ltime->tm_sec;
 1753: 
 1754: ms	( u -- )	facility-ext
 1755: ""Wait at least @i{n} milli-second.""
 1756: gforth_ms(u);
 1757: 
 1758: allocate	( u -- a_addr wior )	memory
 1759: ""Allocate @i{u} address units of contiguous data space. The initial
 1760: contents of the data space is undefined. If the allocation is successful,
 1761: @i{a-addr} is the start address of the allocated region and @i{wior}
 1762: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1763: is a non-zero I/O result code.""
 1764: a_addr = (Cell *)malloc(u?u:1);
 1765: wior = IOR(a_addr==NULL);
 1766: 
 1767: free	( a_addr -- wior )		memory
 1768: ""Return the region of data space starting at @i{a-addr} to the system.
 1769: The region must originally have been obtained using @code{allocate} or
 1770: @code{resize}. If the operational is successful, @i{wior} is 0.
 1771: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1772: free(a_addr);
 1773: wior = 0;
 1774: 
 1775: resize	( a_addr1 u -- a_addr2 wior )	memory
 1776: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1777: address units, possibly moving the contents to a different
 1778: area. @i{a-addr2} is the address of the resulting area.
 1779: If the operation is successful, @i{wior} is 0.
 1780: If the operation fails, @i{wior} is a non-zero
 1781: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1782: @code{resize} @code{allocate}s @i{u} address units.""
 1783: /* the following check is not necessary on most OSs, but it is needed
 1784:    on SunOS 4.1.2. */
 1785: /* close ' to keep fontify happy */
 1786: if (a_addr1==NULL)
 1787:   a_addr2 = (Cell *)malloc(u);
 1788: else
 1789:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1790: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1791: 
 1792: strerror	( n -- c_addr u )	gforth
 1793: c_addr = (Char *)strerror(n);
 1794: u = strlen((char *)c_addr);
 1795: 
 1796: strsignal	( n -- c_addr u )	gforth
 1797: c_addr = (Char *)strsignal(n);
 1798: u = strlen((char *)c_addr);
 1799: 
 1800: call-c	( ... w -- ... )	gforth	call_c
 1801: ""Call the C function pointed to by @i{w}. The C function has to
 1802: access the stack itself. The stack pointers are exported in the global
 1803: variables @code{SP} and @code{FP}.""
 1804: /* This is a first attempt at support for calls to C. This may change in
 1805:    the future */
 1806: gforth_FP=fp;
 1807: gforth_SP=sp;
 1808: ((void (*)())w)();
 1809: sp=gforth_SP;
 1810: fp=gforth_FP;
 1811: 
 1812: \+
 1813: \+file
 1814: 
 1815: close-file	( wfileid -- wior )		file	close_file
 1816: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1817: 
 1818: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1819: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1820: wior =  IOR(wfileid == 0);
 1821: 
 1822: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1823: Cell	fd;
 1824: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1825: if (fd != -1) {
 1826:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1827:   wior = IOR(wfileid == 0);
 1828: } else {
 1829:   wfileid = 0;
 1830:   wior = IOR(1);
 1831: }
 1832: 
 1833: delete-file	( c_addr u -- wior )		file	delete_file
 1834: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1835: 
 1836: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1837: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1838: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1839: 
 1840: file-position	( wfileid -- ud wior )	file	file_position
 1841: /* !! use tell and lseek? */
 1842: ud = OFF2UD(ftello((FILE *)wfileid));
 1843: wior = IOR(UD2OFF(ud)==-1);
 1844: 
 1845: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1846: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1847: 
 1848: file-size	( wfileid -- ud wior )	file	file_size
 1849: struct stat buf;
 1850: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1851: ud = OFF2UD(buf.st_size);
 1852: 
 1853: resize-file	( ud wfileid -- wior )	file	resize_file
 1854: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1855: 
 1856: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1857: /* !! fread does not guarantee enough */
 1858: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1859: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1860: /* !! is the value of ferror errno-compatible? */
 1861: if (wior)
 1862:   clearerr((FILE *)wfileid);
 1863: 
 1864: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1865: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1866: u2   = r.n1;
 1867: flag = r.n2;
 1868: u3   = r.n3;
 1869: wior = r.n4;
 1870: 
 1871: \+
 1872: 
 1873: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1874: /* !! fwrite does not guarantee enough */
 1875: #ifdef HAS_FILE
 1876: {
 1877:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1878:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1879:   if (wior)
 1880:     clearerr((FILE *)wfileid);
 1881: }
 1882: #else
 1883: TYPE(c_addr, u1);
 1884: #endif
 1885: 
 1886: emit-file	( c wfileid -- wior )	gforth	emit_file
 1887: #ifdef HAS_FILE
 1888: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1889: if (wior)
 1890:   clearerr((FILE *)wfileid);
 1891: #else
 1892: PUTC(c);
 1893: #endif
 1894: 
 1895: \+file
 1896: 
 1897: flush-file	( wfileid -- wior )		file-ext	flush_file
 1898: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1899: 
 1900: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1901: struct Cellpair r = file_status(c_addr, u);
 1902: wfam = r.n1;
 1903: wior = r.n2;
 1904: 
 1905: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1906: flag = FLAG(feof((FILE *) wfileid));
 1907: 
 1908: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1909: ""Open the directory specified by @i{c-addr, u}
 1910: and return @i{dir-id} for futher access to it.""
 1911: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1912: wior =  IOR(wdirid == 0);
 1913: 
 1914: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1915: ""Attempt to read the next entry from the directory specified
 1916: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1917: If the attempt fails because there is no more entries,
 1918: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1919: If the attempt to read the next entry fails because of any other reason, 
 1920: return @i{ior}<>0.
 1921: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1922: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1923: If the length of the file name is greater than @i{u1}, 
 1924: store first @i{u1} characters from file name into the buffer and
 1925: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1926: struct dirent * dent;
 1927: dent = readdir((DIR *)wdirid);
 1928: wior = 0;
 1929: flag = -1;
 1930: if(dent == NULL) {
 1931:   u2 = 0;
 1932:   flag = 0;
 1933: } else {
 1934:   u2 = strlen((char *)dent->d_name);
 1935:   if(u2 > u1) {
 1936:     u2 = u1;
 1937:     wior = -512-ENAMETOOLONG;
 1938:   }
 1939:   memmove(c_addr, dent->d_name, u2);
 1940: }
 1941: 
 1942: close-dir	( wdirid -- wior )	gforth	close_dir
 1943: ""Close the directory specified by @i{dir-id}.""
 1944: wior = IOR(closedir((DIR *)wdirid));
 1945: 
 1946: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1947: char * string = cstr(c_addr1, u1, 1);
 1948: char * pattern = cstr(c_addr2, u2, 0);
 1949: flag = FLAG(!fnmatch(pattern, string, 0));
 1950: 
 1951: set-dir	( c_addr u -- wior )	gforth set_dir
 1952: ""Change the current directory to @i{c-addr, u}.
 1953: Return an error if this is not possible""
 1954: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1955: 
 1956: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1957: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1958: If the buffer size is not sufficient, return 0 0""
 1959: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1960: if(c_addr2 != NULL) {
 1961:   u2 = strlen((char *)c_addr2);
 1962: } else {
 1963:   u2 = 0;
 1964: }
 1965: 
 1966: \+
 1967: 
 1968: newline	( -- c_addr u )	gforth
 1969: ""String containing the newline sequence of the host OS""
 1970: char newline[] = {
 1971: #if DIRSEP=='/'
 1972: /* Unix */
 1973: '\n'
 1974: #else
 1975: /* DOS, Win, OS/2 */
 1976: '\r','\n'
 1977: #endif
 1978: };
 1979: c_addr=(Char *)newline;
 1980: u=sizeof(newline);
 1981: :
 1982:  "newline count ;
 1983: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1984: 
 1985: \+os
 1986: 
 1987: utime	( -- dtime )	gforth
 1988: ""Report the current time in microseconds since some epoch.""
 1989: struct timeval time1;
 1990: gettimeofday(&time1,NULL);
 1991: dtime = timeval2us(&time1);
 1992: 
 1993: cputime ( -- duser dsystem ) gforth
 1994: ""duser and dsystem are the respective user- and system-level CPU
 1995: times used since the start of the Forth system (excluding child
 1996: processes), in microseconds (the granularity may be much larger,
 1997: however).  On platforms without the getrusage call, it reports elapsed
 1998: time (since some epoch) for duser and 0 for dsystem.""
 1999: #ifdef HAVE_GETRUSAGE
 2000: struct rusage usage;
 2001: getrusage(RUSAGE_SELF, &usage);
 2002: duser = timeval2us(&usage.ru_utime);
 2003: dsystem = timeval2us(&usage.ru_stime);
 2004: #else
 2005: struct timeval time1;
 2006: gettimeofday(&time1,NULL);
 2007: duser = timeval2us(&time1);
 2008: dsystem = DZERO;
 2009: #endif
 2010: 
 2011: \+
 2012: 
 2013: \+floating
 2014: 
 2015: \g floating
 2016: 
 2017: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2018: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2019: 
 2020: s>f	( n -- r )		float	s_to_f
 2021: r = n;
 2022: 
 2023: d>f	( d -- r )		float	d_to_f
 2024: #ifdef BUGGY_LL_D2F
 2025: extern double ldexp(double x, int exp);
 2026: if (DHI(d)<0) {
 2027: #ifdef BUGGY_LL_ADD
 2028:   DCell d2=dnegate(d);
 2029: #else
 2030:   DCell d2=-d;
 2031: #endif
 2032:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2033: } else
 2034:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2035: #else
 2036: r = d;
 2037: #endif
 2038: 
 2039: f>d	( r -- d )		float	f_to_d
 2040: extern DCell double2ll(Float r);
 2041: d = double2ll(r);
 2042: 
 2043: f>s	( r -- n )		float	f_to_s
 2044: n = (Cell)r;
 2045: 
 2046: f!	( r f_addr -- )	float	f_store
 2047: ""Store @i{r} into the float at address @i{f-addr}.""
 2048: *f_addr = r;
 2049: 
 2050: f@	( f_addr -- r )	float	f_fetch
 2051: ""@i{r} is the float at address @i{f-addr}.""
 2052: r = *f_addr;
 2053: 
 2054: df@	( df_addr -- r )	float-ext	d_f_fetch
 2055: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2056: #ifdef IEEE_FP
 2057: r = *df_addr;
 2058: #else
 2059: !! df@
 2060: #endif
 2061: 
 2062: df!	( r df_addr -- )	float-ext	d_f_store
 2063: ""Store @i{r} as double-precision IEEE floating-point value to the
 2064: address @i{df-addr}.""
 2065: #ifdef IEEE_FP
 2066: *df_addr = r;
 2067: #else
 2068: !! df!
 2069: #endif
 2070: 
 2071: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2072: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2073: #ifdef IEEE_FP
 2074: r = *sf_addr;
 2075: #else
 2076: !! sf@
 2077: #endif
 2078: 
 2079: sf!	( r sf_addr -- )	float-ext	s_f_store
 2080: ""Store @i{r} as single-precision IEEE floating-point value to the
 2081: address @i{sf-addr}.""
 2082: #ifdef IEEE_FP
 2083: *sf_addr = r;
 2084: #else
 2085: !! sf!
 2086: #endif
 2087: 
 2088: f+	( r1 r2 -- r3 )	float	f_plus
 2089: r3 = r1+r2;
 2090: 
 2091: f-	( r1 r2 -- r3 )	float	f_minus
 2092: r3 = r1-r2;
 2093: 
 2094: f*	( r1 r2 -- r3 )	float	f_star
 2095: r3 = r1*r2;
 2096: 
 2097: f/	( r1 r2 -- r3 )	float	f_slash
 2098: r3 = r1/r2;
 2099: 
 2100: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2101: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2102: r3 = pow(r1,r2);
 2103: 
 2104: fm*	( r1 n -- r2 )	gforth	fm_star
 2105: r2 = r1*n;
 2106: 
 2107: fm/	( r1 n -- r2 )	gforth	fm_slash
 2108: r2 = r1/n;
 2109: 
 2110: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2111: r2 = (r1*n1)/n2;
 2112: 
 2113: f**2	( r1 -- r2 )	gforth	fm_square
 2114: r2 = r1*r1;
 2115: 
 2116: fnegate	( r1 -- r2 )	float	f_negate
 2117: r2 = - r1;
 2118: 
 2119: fdrop	( r -- )		float	f_drop
 2120: 
 2121: fdup	( r -- r r )	float	f_dupe
 2122: 
 2123: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2124: 
 2125: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2126: 
 2127: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2128: 
 2129: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2130: 
 2131: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2132: 
 2133: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2134: ""@code{1 floats +}.""
 2135: f_addr2 = f_addr1+1;
 2136: 
 2137: floats	( n1 -- n2 )	float
 2138: ""@i{n2} is the number of address units of @i{n1} floats.""
 2139: n2 = n1*sizeof(Float);
 2140: 
 2141: floor	( r1 -- r2 )	float
 2142: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2143: /* !! unclear wording */
 2144: r2 = floor(r1);
 2145: 
 2146: fround	( r1 -- r2 )	gforth	f_round
 2147: ""Round to the nearest integral value.""
 2148: r2 = rint(r1);
 2149: 
 2150: fmax	( r1 r2 -- r3 )	float	f_max
 2151: if (r1<r2)
 2152:   r3 = r2;
 2153: else
 2154:   r3 = r1;
 2155: 
 2156: fmin	( r1 r2 -- r3 )	float	f_min
 2157: if (r1<r2)
 2158:   r3 = r1;
 2159: else
 2160:   r3 = r2;
 2161: 
 2162: represent	( r c_addr u -- n f1 f2 )	float
 2163: char *sig;
 2164: size_t siglen;
 2165: int flag;
 2166: int decpt;
 2167: sig=ecvt(r, u, &decpt, &flag);
 2168: n=(r==0. ? 1 : decpt);
 2169: f1=FLAG(flag!=0);
 2170: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2171: siglen=strlen((char *)sig);
 2172: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2173:   siglen=u;
 2174: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2175:   for (; sig[siglen-1]=='0'; siglen--);
 2176:     ;
 2177: memcpy(c_addr,sig,siglen);
 2178: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2179: 
 2180: >float	( c_addr u -- f:... flag )	float	to_float
 2181: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2182: character string @i{c-addr u} to internal floating-point
 2183: representation. If the string represents a valid floating-point number
 2184: @i{r} is placed on the floating-point stack and @i{flag} is
 2185: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2186: case and represents the floating-point number 0.""
 2187: Float r;
 2188: flag = to_float(c_addr, u, &r);
 2189: if (flag) {
 2190:   fp--;
 2191:   fp[0]=r;
 2192: }
 2193: 
 2194: fabs	( r1 -- r2 )	float-ext	f_abs
 2195: r2 = fabs(r1);
 2196: 
 2197: facos	( r1 -- r2 )	float-ext	f_a_cos
 2198: r2 = acos(r1);
 2199: 
 2200: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2201: r2 = asin(r1);
 2202: 
 2203: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2204: r2 = atan(r1);
 2205: 
 2206: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2207: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2208: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2209: r3 = atan2(r1,r2);
 2210: 
 2211: fcos	( r1 -- r2 )	float-ext	f_cos
 2212: r2 = cos(r1);
 2213: 
 2214: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2215: r2 = exp(r1);
 2216: 
 2217: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2218: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2219: #ifdef HAVE_EXPM1
 2220: extern double
 2221: #ifdef NeXT
 2222:               const
 2223: #endif
 2224:                     expm1(double);
 2225: r2 = expm1(r1);
 2226: #else
 2227: r2 = exp(r1)-1.;
 2228: #endif
 2229: 
 2230: fln	( r1 -- r2 )	float-ext	f_l_n
 2231: r2 = log(r1);
 2232: 
 2233: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2234: ""@i{r2}=ln(@i{r1}+1)""
 2235: #ifdef HAVE_LOG1P
 2236: extern double
 2237: #ifdef NeXT
 2238:               const
 2239: #endif
 2240:                     log1p(double);
 2241: r2 = log1p(r1);
 2242: #else
 2243: r2 = log(r1+1.);
 2244: #endif
 2245: 
 2246: flog	( r1 -- r2 )	float-ext	f_log
 2247: ""The decimal logarithm.""
 2248: r2 = log10(r1);
 2249: 
 2250: falog	( r1 -- r2 )	float-ext	f_a_log
 2251: ""@i{r2}=10**@i{r1}""
 2252: extern double pow10(double);
 2253: r2 = pow10(r1);
 2254: 
 2255: fsin	( r1 -- r2 )	float-ext	f_sine
 2256: r2 = sin(r1);
 2257: 
 2258: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2259: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2260: r2 = sin(r1);
 2261: r3 = cos(r1);
 2262: 
 2263: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2264: r2 = sqrt(r1);
 2265: 
 2266: ftan	( r1 -- r2 )	float-ext	f_tan
 2267: r2 = tan(r1);
 2268: :
 2269:  fsincos f/ ;
 2270: 
 2271: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2272: r2 = sinh(r1);
 2273: :
 2274:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2275: 
 2276: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2277: r2 = cosh(r1);
 2278: :
 2279:  fexp fdup 1/f f+ f2/ ;
 2280: 
 2281: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2282: r2 = tanh(r1);
 2283: :
 2284:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2285: 
 2286: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2287: r2 = asinh(r1);
 2288: :
 2289:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2290: 
 2291: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2292: r2 = acosh(r1);
 2293: :
 2294:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2295: 
 2296: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2297: r2 = atanh(r1);
 2298: :
 2299:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2300:  r> IF  fnegate  THEN ;
 2301: 
 2302: sfloats	( n1 -- n2 )	float-ext	s_floats
 2303: ""@i{n2} is the number of address units of @i{n1}
 2304: single-precision IEEE floating-point numbers.""
 2305: n2 = n1*sizeof(SFloat);
 2306: 
 2307: dfloats	( n1 -- n2 )	float-ext	d_floats
 2308: ""@i{n2} is the number of address units of @i{n1}
 2309: double-precision IEEE floating-point numbers.""
 2310: n2 = n1*sizeof(DFloat);
 2311: 
 2312: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2313: ""@i{sf-addr} is the first single-float-aligned address greater
 2314: than or equal to @i{c-addr}.""
 2315: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2316: :
 2317:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2318: 
 2319: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2320: ""@i{df-addr} is the first double-float-aligned address greater
 2321: than or equal to @i{c-addr}.""
 2322: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2323: :
 2324:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2325: 
 2326: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2327: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2328: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2329: ucount elements.""
 2330: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2331: :
 2332:  >r swap 2swap swap 0e r> 0 ?DO
 2333:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2334:  LOOP 2drop 2drop ; 
 2335: 
 2336: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2337: ""vy=ra*vx+vy""
 2338: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2339: :
 2340:  >r swap 2swap swap r> 0 ?DO
 2341:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2342:  LOOP 2drop 2drop fdrop ;
 2343: 
 2344: \+
 2345: 
 2346: \ The following words access machine/OS/installation-dependent
 2347: \   Gforth internals
 2348: \ !! how about environmental queries DIRECT-THREADED,
 2349: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2350: 
 2351: \ local variable implementation primitives
 2352: 
 2353: \+glocals
 2354: 
 2355: \g locals
 2356: 
 2357: @local#	( #noffset -- w )	gforth	fetch_local_number
 2358: w = *(Cell *)(lp+noffset);
 2359: 
 2360: @local0	( -- w )	new	fetch_local_zero
 2361: w = ((Cell *)lp)[0];
 2362: 
 2363: @local1	( -- w )	new	fetch_local_four
 2364: w = ((Cell *)lp)[1];
 2365: 
 2366: @local2	( -- w )	new	fetch_local_eight
 2367: w = ((Cell *)lp)[2];
 2368: 
 2369: @local3	( -- w )	new	fetch_local_twelve
 2370: w = ((Cell *)lp)[3];
 2371: 
 2372: \+floating
 2373: 
 2374: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2375: r = *(Float *)(lp+noffset);
 2376: 
 2377: f@local0	( -- r )	new	f_fetch_local_zero
 2378: r = ((Float *)lp)[0];
 2379: 
 2380: f@local1	( -- r )	new	f_fetch_local_eight
 2381: r = ((Float *)lp)[1];
 2382: 
 2383: \+
 2384: 
 2385: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2386: /* this can also be used to implement lp@ */
 2387: c_addr = (Char *)(lp+noffset);
 2388: 
 2389: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2390: ""used with negative immediate values it allocates memory on the
 2391: local stack, a positive immediate argument drops memory from the local
 2392: stack""
 2393: lp += noffset;
 2394: 
 2395: lp-	( -- )	new	minus_four_lp_plus_store
 2396: lp += -sizeof(Cell);
 2397: 
 2398: lp+	( -- )	new	eight_lp_plus_store
 2399: lp += sizeof(Float);
 2400: 
 2401: lp+2	( -- )	new	sixteen_lp_plus_store
 2402: lp += 2*sizeof(Float);
 2403: 
 2404: lp!	( c_addr -- )	gforth	lp_store
 2405: lp = (Address)c_addr;
 2406: 
 2407: >l	( w -- )	gforth	to_l
 2408: lp -= sizeof(Cell);
 2409: *(Cell *)lp = w;
 2410: 
 2411: \+floating
 2412: 
 2413: f>l	( r -- )	gforth	f_to_l
 2414: lp -= sizeof(Float);
 2415: *(Float *)lp = r;
 2416: 
 2417: fpick	( f:... u -- f:... r )		gforth
 2418: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2419: r = fp[u];
 2420: :
 2421:  floats fp@ + f@ ;
 2422: 
 2423: \+
 2424: \+
 2425: 
 2426: \+OS
 2427: 
 2428: \g syslib
 2429: 
 2430: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2431: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2432: #ifndef RTLD_GLOBAL
 2433: #define RTLD_GLOBAL 0
 2434: #endif
 2435: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2436: #else
 2437: #  ifdef _WIN32
 2438: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2439: #  else
 2440: #warning Define open-lib!
 2441: u2 = 0;
 2442: #  endif
 2443: #endif
 2444: 
 2445: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2446: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2447: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2448: #else
 2449: #  ifdef _WIN32
 2450: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2451: #  else
 2452: #warning Define lib-sym!
 2453: u3 = 0;
 2454: #  endif
 2455: #endif
 2456: 
 2457: wcall	( ... u -- ... )	gforth
 2458: gforth_FP=fp;
 2459: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2460: fp=gforth_FP;
 2461: 
 2462: uw@ ( c_addr -- u )	gforth u_w_fetch
 2463: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2464: u = *(UWyde*)(c_addr);
 2465: 
 2466: sw@ ( c_addr -- n )	gforth s_w_fetch
 2467: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2468: n = *(Wyde*)(c_addr);
 2469: 
 2470: w! ( w c_addr -- )	gforth w_store
 2471: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2472: *(Wyde*)(c_addr) = w;
 2473: 
 2474: ul@ ( c_addr -- u )	gforth u_l_fetch
 2475: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2476: u = *(UTetrabyte*)(c_addr);
 2477: 
 2478: sl@ ( c_addr -- n )	gforth s_l_fetch
 2479: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2480: n = *(Tetrabyte*)(c_addr);
 2481: 
 2482: l! ( w c_addr -- )	gforth l_store
 2483: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2484: *(Tetrabyte*)(c_addr) = w;
 2485: 
 2486: \+FFCALL
 2487: 
 2488: av-start-void	( c_addr -- )	gforth  av_start_void
 2489: av_start_void(alist, c_addr);
 2490: 
 2491: av-start-int	( c_addr -- )	gforth  av_start_int
 2492: av_start_int(alist, c_addr, &irv);
 2493: 
 2494: av-start-float	( c_addr -- )	gforth  av_start_float
 2495: av_start_float(alist, c_addr, &frv);
 2496: 
 2497: av-start-double	( c_addr -- )	gforth  av_start_double
 2498: av_start_double(alist, c_addr, &drv);
 2499: 
 2500: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2501: av_start_longlong(alist, c_addr, &llrv);
 2502: 
 2503: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2504: av_start_ptr(alist, c_addr, void*, &prv);
 2505: 
 2506: av-int  ( w -- )  gforth  av_int
 2507: av_int(alist, w);
 2508: 
 2509: av-float	( r -- )	gforth  av_float
 2510: av_float(alist, r);
 2511: 
 2512: av-double	( r -- )	gforth  av_double
 2513: av_double(alist, r);
 2514: 
 2515: av-longlong	( d -- )	gforth  av_longlong
 2516: #ifdef BUGGY_LL_SIZE
 2517: av_longlong(alist, DLO(d));
 2518: #else
 2519: av_longlong(alist, d);
 2520: #endif
 2521: 
 2522: av-ptr	( c_addr -- )	gforth  av_ptr
 2523: av_ptr(alist, void*, c_addr);
 2524: 
 2525: av-int-r  ( R:w -- )  gforth  av_int_r
 2526: av_int(alist, w);
 2527: 
 2528: av-float-r	( -- )	gforth  av_float_r
 2529: float r = *(Float*)lp;
 2530: lp += sizeof(Float);
 2531: av_float(alist, r);
 2532: 
 2533: av-double-r	( -- )	gforth  av_double_r
 2534: double r = *(Float*)lp;
 2535: lp += sizeof(Float);
 2536: av_double(alist, r);
 2537: 
 2538: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2539: #ifdef BUGGY_LL_SIZE
 2540: av_longlong(alist, DLO(d));
 2541: #else
 2542: av_longlong(alist, d);
 2543: #endif
 2544: 
 2545: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2546: av_ptr(alist, void*, c_addr);
 2547: 
 2548: av-call-void	( ... -- ... )	gforth  av_call_void
 2549: SAVE_REGS
 2550: av_call(alist);
 2551: REST_REGS
 2552: 
 2553: av-call-int	( ... -- ... w )	gforth  av_call_int
 2554: SAVE_REGS
 2555: av_call(alist);
 2556: REST_REGS
 2557: w = irv;
 2558: 
 2559: av-call-float	( ... -- ... r )	gforth  av_call_float
 2560: SAVE_REGS
 2561: av_call(alist);
 2562: REST_REGS
 2563: r = frv;
 2564: 
 2565: av-call-double	( ... -- ... r )	gforth  av_call_double
 2566: SAVE_REGS
 2567: av_call(alist);
 2568: REST_REGS
 2569: r = drv;
 2570: 
 2571: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2572: SAVE_REGS
 2573: av_call(alist);
 2574: REST_REGS
 2575: #ifdef BUGGY_LONG_LONG
 2576: DLO_IS(d, llrv);
 2577: DHI_IS(d, 0);
 2578: #else
 2579: d = llrv;
 2580: #endif
 2581: 
 2582: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2583: SAVE_REGS
 2584: av_call(alist);
 2585: REST_REGS
 2586: c_addr = prv;
 2587: 
 2588: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2589: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2590: 
 2591: va-start-void	( -- )	gforth	va_start_void
 2592: va_start_void(gforth_clist);
 2593: 
 2594: va-start-int	( -- )	gforth	va_start_int
 2595: va_start_int(gforth_clist);
 2596: 
 2597: va-start-longlong	( -- )	gforth	va_start_longlong
 2598: va_start_longlong(gforth_clist);
 2599: 
 2600: va-start-ptr	( -- )	gforth	va_start_ptr
 2601: va_start_ptr(gforth_clist, (char *));
 2602: 
 2603: va-start-float	( -- )	gforth	va_start_float
 2604: va_start_float(gforth_clist);
 2605: 
 2606: va-start-double	( -- )	gforth	va_start_double
 2607: va_start_double(gforth_clist);
 2608: 
 2609: va-arg-int	( -- w )	gforth	va_arg_int
 2610: w = va_arg_int(gforth_clist);
 2611: 
 2612: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2613: #ifdef BUGGY_LONG_LONG
 2614: DLO_IS(d, va_arg_longlong(gforth_clist));
 2615: DHI_IS(d, 0);
 2616: #else
 2617: d = va_arg_longlong(gforth_clist);
 2618: #endif
 2619: 
 2620: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2621: c_addr = (char *)va_arg_ptr(gforth_clist,char*);
 2622: 
 2623: va-arg-float	( -- r )	gforth	va_arg_float
 2624: r = va_arg_float(gforth_clist);
 2625: 
 2626: va-arg-double	( -- r )	gforth	va_arg_double
 2627: r = va_arg_double(gforth_clist);
 2628: 
 2629: va-return-void ( -- )	gforth va_return_void
 2630: va_return_void(gforth_clist);
 2631: return 0;
 2632: 
 2633: va-return-int ( w -- )	gforth va_return_int
 2634: va_return_int(gforth_clist, w);
 2635: return 0;
 2636: 
 2637: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2638: va_return_ptr(gforth_clist, void *, c_addr);
 2639: return 0;
 2640: 
 2641: va-return-longlong ( d -- )	gforth va_return_longlong
 2642: #ifdef BUGGY_LONG_LONG
 2643: va_return_longlong(gforth_clist, d.lo);
 2644: #else
 2645: va_return_longlong(gforth_clist, d);
 2646: #endif
 2647: return 0;
 2648: 
 2649: va-return-float ( r -- )	gforth va_return_float
 2650: va_return_float(gforth_clist, r);
 2651: return 0;
 2652: 
 2653: va-return-double ( r -- )	gforth va_return_double
 2654: va_return_double(gforth_clist, r);
 2655: return 0;
 2656: 
 2657: \+
 2658: 
 2659: \+LIBFFI
 2660: 
 2661: ffi-type ( n -- a_type )	gforth ffi_type
 2662: static void* ffi_types[] =
 2663:     { &ffi_type_void,
 2664:       &ffi_type_uint8, &ffi_type_sint8,
 2665:       &ffi_type_uint16, &ffi_type_sint16,
 2666:       &ffi_type_uint32, &ffi_type_sint32,
 2667:       &ffi_type_uint64, &ffi_type_sint64,
 2668:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2669:       &ffi_type_pointer };
 2670: a_type = ffi_types[n];
 2671: 
 2672: ffi-size ( n1 -- n2 )	gforth ffi_size
 2673: static int ffi_sizes[] =
 2674:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2675: n2 = ffi_sizes[n1];
 2676: 
 2677: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2678: w = ffi_prep_cif((ffi_cif *)a_cif, FFI_DEFAULT_ABI, n,
 2679: 	 (ffi_type *)a_rtype, (ffi_type **)a_atypes);
 2680: 
 2681: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2682: SAVE_REGS
 2683: ffi_call((ffi_cif *)a_cif, (void(*)())a_ip, (void *)a_rvalue, (void **)a_avalues);
 2684: REST_REGS
 2685: 
 2686: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2687: w = ffi_prep_closure((ffi_closure *)a_closure, (ffi_cif *)a_cif, gforth_callback, (void *)a_ip);
 2688: 
 2689: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2690: #ifdef BUGGY_LONG_LONG
 2691: DLO_IS(d, *(Cell*)(*a_addr));
 2692: DHI_IS(d, 0);
 2693: #else
 2694: d = *(DCell*)(a_addr);
 2695: #endif
 2696: 
 2697: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2698: #ifdef BUGGY_LONG_LONG
 2699: *(Cell*)(a_addr) = DLO(d);
 2700: #else
 2701: *(DCell*)(a_addr) = d;
 2702: #endif
 2703: 
 2704: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2705: w = *(int *)(*gforth_clist++);
 2706: 
 2707: ffi-arg-long ( -- w )	gforth ffi_arg_long
 2708: w = *(long *)(*gforth_clist++);
 2709: 
 2710: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2711: #ifdef BUGGY_LONG_LONG
 2712: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2713: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2714: #else
 2715: d = *(DCell*)(*gforth_clist++);
 2716: #endif
 2717: 
 2718: ffi-arg-dlong ( -- d )	gforth ffi_arg_dlong
 2719: #ifdef BUGGY_LONG_LONG
 2720: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2721: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2722: #else
 2723: d = *(Cell*)(*gforth_clist++);
 2724: #endif
 2725: 
 2726: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2727: c_addr = *(Char **)(*gforth_clist++);
 2728: 
 2729: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2730: r = *(float*)(*gforth_clist++);
 2731: 
 2732: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2733: r = *(double*)(*gforth_clist++);
 2734: 
 2735: ffi-ret-void ( -- )	gforth ffi_ret_void
 2736: return 0;
 2737: 
 2738: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2739: *(int*)(gforth_ritem) = w;
 2740: return 0;
 2741: 
 2742: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2743: #ifdef BUGGY_LONG_LONG
 2744: *(Cell*)(gforth_ritem) = DLO(d);
 2745: #else
 2746: *(DCell*)(gforth_ritem) = d;
 2747: #endif
 2748: return 0;
 2749: 
 2750: ffi-ret-dlong ( d -- )	gforth ffi_ret_dlong
 2751: #ifdef BUGGY_LONG_LONG
 2752: *(Cell*)(gforth_ritem) = DLO(d);
 2753: #else
 2754: *(Cell*)(gforth_ritem) = d;
 2755: #endif
 2756: return 0;
 2757: 
 2758: ffi-ret-long ( n -- )	gforth ffi_ret_long
 2759: *(Cell*)(gforth_ritem) = n;
 2760: return 0;
 2761: 
 2762: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2763: *(Char **)(gforth_ritem) = c_addr;
 2764: return 0;
 2765: 
 2766: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2767: *(float*)(gforth_ritem) = r;
 2768: return 0;
 2769: 
 2770: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2771: *(double*)(gforth_ritem) = r;
 2772: return 0;
 2773: 
 2774: \+
 2775: 
 2776: \+OLDCALL
 2777: 
 2778: define(`uploop',
 2779:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2780: define(`_uploop',
 2781:        `ifelse($1, `$3', `$5',
 2782: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2783: 
 2784: \ argflist(argnum): Forth argument list
 2785: define(argflist,
 2786:        `ifelse($1, 0, `',
 2787:                `uploop(`_i', 1, $1, ``u''`_i ', ``u''`_i')')')
 2788: \ argdlist(argnum): declare C's arguments
 2789: define(argdlist,
 2790:        `ifelse($1, 0, `',
 2791:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2792: \ argclist(argnum): pass C's arguments
 2793: define(argclist,
 2794:        `ifelse($1, 0, `',
 2795:                `uploop(`_i', 1, $1, ``u''`_i, ', ``u''`_i')')')
 2796: \ icall(argnum)
 2797: define(icall,
 2798: `icall$1	( argflist($1) u -- uret )	gforth
 2799: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2800: 
 2801: ')
 2802: define(fcall,
 2803: `fcall$1	( argflist($1) u -- rret )	gforth
 2804: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2805: 
 2806: ')
 2807: 
 2808: \ close ' to keep fontify happy
 2809: 
 2810: uploop(i, 0, 7, `icall(i)')
 2811: icall(20)
 2812: uploop(i, 0, 7, `fcall(i)')
 2813: fcall(20)
 2814: 
 2815: \+
 2816: \+
 2817: 
 2818: \g peephole
 2819: 
 2820: \+peephole
 2821: 
 2822: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2823: ""compile prim (incl. immargs) at @var{a_prim}""
 2824: compile_prim1(a_prim);
 2825: 
 2826: finish-code ( ... -- ... ) gforth finish_code
 2827: ""Perform delayed steps in code generation (branch resolution, I-cache
 2828: flushing).""
 2829: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2830:    to save spTOS (gforth-fast --enable-force-reg) */
 2831: finish_code();
 2832: 
 2833: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2834: f = forget_dyncode(c_code);
 2835: 
 2836: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2837: ""a_prim is the code address of the primitive that has been
 2838: compile_prim1ed to a_code""
 2839: a_prim = (Cell *)decompile_code((Label)a_code);
 2840: 
 2841: \ set-next-code and call2 do not appear in images and can be
 2842: \ renumbered arbitrarily
 2843: 
 2844: set-next-code ( #w -- ) gforth set_next_code
 2845: #ifdef NO_IP
 2846: next_code = (Label)w;
 2847: #endif
 2848: 
 2849: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2850: /* call with explicit return address */
 2851: #ifdef NO_IP
 2852: INST_TAIL;
 2853: JUMP(a_callee);
 2854: #else
 2855: assert(0);
 2856: #endif
 2857: 
 2858: tag-offsets ( -- a_addr ) gforth tag_offsets
 2859: extern Cell groups[32];
 2860: a_addr = groups;
 2861: 
 2862: \+
 2863: 
 2864: \g static_super
 2865: 
 2866: ifdef(`STACK_CACHE_FILE',
 2867: `include(peeprules.vmg)')
 2868: 
 2869: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>