File:  [gforth] / gforth / prim
Revision 1.210: download - view: text, annotated - select for diffs
Sat Mar 31 21:43:18 2007 UTC (16 years, 11 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
Further work on NXT Gforth
Fixed problem with useless kernel error messages
TAGS generation works again

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E include-skipped-insts on \ static superinsts include cells for components
  113: \E                          \ useful for dynamic programming and
  114: \E                          \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  207: ""run-time routine for @code{does>}-defined words""
  208: #ifdef NO_IP
  209: a_retaddr = next_code;
  210: a_body = PFA(CFA);
  211: INST_TAIL;
  212: goto **(Label *)DOES_CODE1(CFA);
  213: #else /* !defined(NO_IP) */
  214: a_retaddr = (Cell *)IP;
  215: a_body = PFA(CFA);
  216: SET_IP(DOES_CODE1(CFA));
  217: #endif /* !defined(NO_IP) */
  218: 
  219: (does-handler) ( -- )	gforth-internal	paren_does_handler
  220: ""just a slot to have an encoding for the DOESJUMP, 
  221: which is no longer used anyway (!! eliminate this)""
  222: 
  223: \F [endif]
  224: 
  225: \g control
  226: 
  227: noop	( -- )		gforth
  228: :
  229:  ;
  230: 
  231: call	( #a_callee -- R:a_retaddr )	new
  232: ""Call callee (a variant of docol with inline argument).""
  233: #ifdef NO_IP
  234: assert(0);
  235: INST_TAIL;
  236: JUMP(a_callee);
  237: #else
  238: #ifdef DEBUG
  239:     {
  240:       CFA_TO_NAME((((Cell *)a_callee)-2));
  241:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  242: 	      len,name);
  243:     }
  244: #endif
  245: a_retaddr = (Cell *)IP;
  246: SET_IP((Xt *)a_callee);
  247: #endif
  248: 
  249: execute	( xt -- )		core
  250: ""Perform the semantics represented by the execution token, @i{xt}.""
  251: #ifdef DEBUG
  252: fprintf(stderr, "execute %08x\n", xt);
  253: #endif
  254: #ifndef NO_IP
  255: ip=IP;
  256: #endif
  257: SUPER_END;
  258: VM_JUMP(EXEC1(xt));
  259: 
  260: perform	( a_addr -- )	gforth
  261: ""@code{@@ execute}.""
  262: /* and pfe */
  263: #ifndef NO_IP
  264: ip=IP;
  265: #endif
  266: SUPER_END;
  267: VM_JUMP(EXEC1(*(Xt *)a_addr));
  268: :
  269:  @ execute ;
  270: 
  271: ;s	( R:w -- )		gforth	semis
  272: ""The primitive compiled by @code{EXIT}.""
  273: #ifdef NO_IP
  274: INST_TAIL;
  275: goto *(void *)w;
  276: #else
  277: SET_IP((Xt *)w);
  278: #endif
  279: 
  280: unloop	( R:w1 R:w2 -- )	core
  281: /* !! alias for 2rdrop */
  282: :
  283:  r> rdrop rdrop >r ;
  284: 
  285: lit-perform	( #a_addr -- )	new	lit_perform
  286: #ifndef NO_IP
  287: ip=IP;
  288: #endif
  289: SUPER_END;
  290: VM_JUMP(EXEC1(*(Xt *)a_addr));
  291: 
  292: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  293: #ifdef NO_IP
  294: /* compiled to LIT CALL by compile_prim */
  295: assert(0);
  296: #else
  297: a_pfa = PFA(a_cfa);
  298: nest = (Cell)IP;
  299: #ifdef DEBUG
  300:     {
  301:       CFA_TO_NAME(a_cfa);
  302:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  303: 	      (Cell)ip,(Cell)a_cfa,len,name);
  304:     }
  305: #endif
  306: SET_IP(DOES_CODE1(a_cfa));
  307: #endif
  308: 
  309: \+glocals
  310: 
  311: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  312: /* this will probably not be used */
  313: lp += nlocals;
  314: #ifdef NO_IP
  315: INST_TAIL;
  316: JUMP(a_target);
  317: #else
  318: SET_IP((Xt *)a_target);
  319: #endif
  320: 
  321: \+
  322: 
  323: branch	( #a_target -- )	gforth
  324: #ifdef NO_IP
  325: INST_TAIL;
  326: JUMP(a_target);
  327: #else
  328: SET_IP((Xt *)a_target);
  329: #endif
  330: :
  331:  r> @ >r ;
  332: 
  333: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  334: \ this is non-syntactical: code must open a brace that is closed by the macro
  335: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  336: \ this is non-syntactical: code must open a brace that is closed by the macro
  337: define(condbranch,
  338: $1 ( `#'a_target $2 ) $3
  339: $4	#ifdef NO_IP
  340: INST_TAIL;
  341: #endif
  342: $5	#ifdef NO_IP
  343: JUMP(a_target);
  344: #else
  345: SET_IP((Xt *)a_target);
  346: #endif
  347: }
  348: $6
  349: 
  350: \+glocals
  351: 
  352: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  353: $4	#ifdef NO_IP
  354: INST_TAIL;
  355: #endif
  356: $5	lp += nlocals;
  357: #ifdef NO_IP
  358: JUMP(a_target);
  359: #else
  360: SET_IP((Xt *)a_target);
  361: #endif
  362: }
  363: 
  364: \+
  365: )
  366: 
  367: \ version that generates two jumps (not good for PR 15242 workaround)
  368: define(condbranch_twojump,
  369: $1 ( `#'a_target $2 ) $3
  370: $4	#ifdef NO_IP
  371: INST_TAIL;
  372: #endif
  373: $5	#ifdef NO_IP
  374: JUMP(a_target);
  375: #else
  376: SET_IP((Xt *)a_target);
  377: INST_TAIL; NEXT_P2;
  378: #endif
  379: }
  380: SUPER_CONTINUE;
  381: $6
  382: 
  383: \+glocals
  384: 
  385: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  386: $4	#ifdef NO_IP
  387: INST_TAIL;
  388: #endif
  389: $5	lp += nlocals;
  390: #ifdef NO_IP
  391: JUMP(a_target);
  392: #else
  393: SET_IP((Xt *)a_target);
  394: INST_TAIL; NEXT_P2;
  395: #endif
  396: }
  397: SUPER_CONTINUE;
  398: 
  399: \+
  400: )
  401: 
  402: condbranch(?branch,f --,f83	question_branch,
  403: ,if (f==0) {
  404: ,:
  405:  0= dup 0=          \ !f f
  406:  r> tuck cell+      \ !f branchoffset f IP+
  407:  and -rot @ and or  \ f&IP+|!f&branch
  408:  >r ;)
  409: 
  410: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  411: \ is only used in if's (yet)
  412: 
  413: \+xconds
  414: 
  415: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  416: ""The run-time procedure compiled by @code{?DUP-IF}.""
  417: if (f==0) {
  418: #ifdef NO_IP
  419: INST_TAIL;
  420: JUMP(a_target);
  421: #else
  422: SET_IP((Xt *)a_target);
  423: #endif
  424: } else {
  425: sp--;
  426: sp[0]=f;
  427: }
  428: 
  429: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  430: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  431: if (f!=0) {
  432:   sp--;
  433:   sp[0]=f;
  434: #ifdef NO_IP
  435:   JUMP(a_target);
  436: #else
  437:   SET_IP((Xt *)a_target);
  438: #endif
  439: }
  440: 
  441: \+
  442: \fhas? skiploopprims 0= [IF]
  443: 
  444: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  445: n2=n1-1;
  446: ,if (n1) {
  447: ,:
  448:  r> r> dup 1- >r
  449:  IF @ >r ELSE cell+ >r THEN ;)
  450: 
  451: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  452: n2=n1+1;
  453: ,if (n2 != nlimit) {
  454: ,:
  455:  r> r> 1+ r> 2dup =
  456:  IF >r 1- >r cell+ >r
  457:  ELSE >r >r @ >r THEN ;)
  458: 
  459: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  460: /* !! check this thoroughly */
  461: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  462: /* dependent upon two's complement arithmetic */
  463: Cell olddiff = n1-nlimit;
  464: n2=n1+n;	
  465: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  466:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  467:     >=0) { /* & is used to avoid having two branches for gforth-native */
  468: ,:
  469:  r> swap
  470:  r> r> 2dup - >r
  471:  2 pick r@ + r@ xor 0< 0=
  472:  3 pick r> xor 0< 0= or
  473:  IF    >r + >r @ >r
  474:  ELSE  >r >r drop cell+ >r THEN ;)
  475: 
  476: \+xconds
  477: 
  478: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  479: UCell olddiff = n1-nlimit;
  480: n2=n1-u;
  481: ,if (olddiff>u) {
  482: ,)
  483: 
  484: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  485: ""The run-time procedure compiled by S+LOOP. It loops until the index
  486: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  487: version of (+LOOP).""
  488: /* !! check this thoroughly */
  489: Cell diff = n1-nlimit;
  490: Cell newdiff = diff+n;
  491: if (n<0) {
  492:     diff = -diff;
  493:     newdiff = -newdiff;
  494: }
  495: n2=n1+n;
  496: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  497: ,)
  498: 
  499: \+
  500: 
  501: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  502: /* or (for) = >r -- collides with unloop! */
  503: nlimit=0;
  504: :
  505:  r> swap 0 >r >r >r ;
  506: 
  507: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  508: :
  509:  r> swap rot >r >r >r ;
  510: 
  511: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  512: #ifdef NO_IP
  513:     INST_TAIL;
  514: #endif
  515: if (nstart == nlimit) {
  516: #ifdef NO_IP
  517:     JUMP(a_target);
  518: #else
  519:     SET_IP((Xt *)a_target);
  520: #endif
  521: }
  522: :
  523:   2dup =
  524:   IF   r> swap rot >r >r
  525:        @ >r
  526:   ELSE r> swap rot >r >r
  527:        cell+ >r
  528:   THEN ;				\ --> CORE-EXT
  529: 
  530: \+xconds
  531: 
  532: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  533: #ifdef NO_IP
  534:     INST_TAIL;
  535: #endif
  536: if (nstart >= nlimit) {
  537: #ifdef NO_IP
  538:     JUMP(a_target);
  539: #else
  540:     SET_IP((Xt *)a_target);
  541: #endif
  542: }
  543: :
  544:  swap 2dup
  545:  r> swap >r swap >r
  546:  >=
  547:  IF
  548:      @
  549:  ELSE
  550:      cell+
  551:  THEN  >r ;
  552: 
  553: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  554: #ifdef NO_IP
  555:     INST_TAIL;
  556: #endif
  557: if (ustart >= ulimit) {
  558: #ifdef NO_IP
  559: JUMP(a_target);
  560: #else
  561: SET_IP((Xt *)a_target);
  562: #endif
  563: }
  564: :
  565:  swap 2dup
  566:  r> swap >r swap >r
  567:  u>=
  568:  IF
  569:      @
  570:  ELSE
  571:      cell+
  572:  THEN  >r ;
  573: 
  574: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  575: #ifdef NO_IP
  576:     INST_TAIL;
  577: #endif
  578: if (nstart <= nlimit) {
  579: #ifdef NO_IP
  580: JUMP(a_target);
  581: #else
  582: SET_IP((Xt *)a_target);
  583: #endif
  584: }
  585: :
  586:  swap 2dup
  587:  r> swap >r swap >r
  588:  <=
  589:  IF
  590:      @
  591:  ELSE
  592:      cell+
  593:  THEN  >r ;
  594: 
  595: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  596: #ifdef NO_IP
  597:     INST_TAIL;
  598: #endif
  599: if (ustart <= ulimit) {
  600: #ifdef NO_IP
  601: JUMP(a_target);
  602: #else
  603: SET_IP((Xt *)a_target);
  604: #endif
  605: }
  606: :
  607:  swap 2dup
  608:  r> swap >r swap >r
  609:  u<=
  610:  IF
  611:      @
  612:  ELSE
  613:      cell+
  614:  THEN  >r ;
  615: 
  616: \+
  617: 
  618: \ don't make any assumptions where the return stack is!!
  619: \ implement this in machine code if it should run quickly!
  620: 
  621: i	( R:n -- R:n n )		core
  622: :
  623: \ rp@ cell+ @ ;
  624:   r> r> tuck >r >r ;
  625: 
  626: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  627: :
  628: \ rp@ cell+ cell+ @ ;
  629:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  630: variable itmp
  631: 
  632: j	( R:n R:d1 -- n R:n R:d1 )		core
  633: :
  634: \ rp@ cell+ cell+ cell+ @ ;
  635:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  636: [IFUNDEF] itmp variable itmp [THEN]
  637: 
  638: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  639: :
  640: \ rp@ [ 5 cells ] Literal + @ ;
  641:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  642: [IFUNDEF] itmp variable itmp [THEN]
  643: 
  644: \f[THEN]
  645: 
  646: \ digit is high-level: 0/0%
  647: 
  648: \g strings
  649: 
  650: move	( c_from c_to ucount -- )		core
  651: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  652: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  653: /* !! note that the standard specifies addr, not c-addr */
  654: memmove(c_to,c_from,ucount);
  655: /* make an Ifdef for bsd and others? */
  656: :
  657:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  658: 
  659: cmove	( c_from c_to u -- )	string	c_move
  660: ""Copy the contents of @i{ucount} characters from data space at
  661: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  662: from low address to high address; i.e., for overlapping areas it is
  663: safe if @i{c-to}=<@i{c-from}.""
  664: cmove(c_from,c_to,u);
  665: :
  666:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  667: 
  668: cmove>	( c_from c_to u -- )	string	c_move_up
  669: ""Copy the contents of @i{ucount} characters from data space at
  670: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  671: from high address to low address; i.e., for overlapping areas it is
  672: safe if @i{c-to}>=@i{c-from}.""
  673: cmove_up(c_from,c_to,u);
  674: :
  675:  dup 0= IF  drop 2drop exit  THEN
  676:  rot over + -rot bounds swap 1-
  677:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  678: 
  679: fill	( c_addr u c -- )	core
  680: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  681: memset(c_addr,c,u);
  682: :
  683:  -rot bounds
  684:  ?DO  dup I c!  LOOP  drop ;
  685: 
  686: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  687: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  688: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  689: is 1. Currently this is based on the machine's character
  690: comparison. In the future, this may change to consider the current
  691: locale and its collation order.""
  692: /* close ' to keep fontify happy */ 
  693: n = compare(c_addr1, u1, c_addr2, u2);
  694: :
  695:  rot 2dup swap - >r min swap -text dup
  696:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  697: : -text ( c_addr1 u c_addr2 -- n )
  698:  swap bounds
  699:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  700:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  701: : sgn ( n -- -1/0/1 )
  702:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  703: 
  704: \ -text is only used by replaced primitives now; move it elsewhere
  705: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  706: \ n = memcmp(c_addr1, c_addr2, u);
  707: \ if (n<0)
  708: \   n = -1;
  709: \ else if (n>0)
  710: \   n = 1;
  711: \ :
  712: \  swap bounds
  713: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  714: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  715: \ : sgn ( n -- -1/0/1 )
  716: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  717: 
  718: toupper	( c1 -- c2 )	gforth
  719: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  720: is the equivalent upper-case character. All other characters are unchanged.""
  721: c2 = toupper(c1);
  722: :
  723:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  724: 
  725: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  726: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  727: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  728: is 1. Currently this is based on the machine's character
  729: comparison. In the future, this may change to consider the current
  730: locale and its collation order.""
  731: /* close ' to keep fontify happy */ 
  732: n = capscompare(c_addr1, u1, c_addr2, u2);
  733: 
  734: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  735: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  736: characters from the start of the string.""
  737: c_addr2 = c_addr1+n;
  738: u2 = u1-n;
  739: :
  740:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  741: 
  742: \g arith
  743: 
  744: lit	( #w -- w )		gforth
  745: :
  746:  r> dup @ swap cell+ >r ;
  747: 
  748: +	( n1 n2 -- n )		core	plus
  749: n = n1+n2;
  750: 
  751: \ lit+ / lit_plus = lit +
  752: 
  753: lit+	( n1 #n2 -- n )		new	lit_plus
  754: n=n1+n2;
  755: 
  756: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  757: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  758: ""add @i{n3} to @i{n1} (giving @i{n})""
  759: n = n1+n3;
  760: :
  761:  rot + swap ;
  762: 
  763: -	( n1 n2 -- n )		core	minus
  764: n = n1-n2;
  765: :
  766:  negate + ;
  767: 
  768: negate	( n1 -- n2 )		core
  769: /* use minus as alias */
  770: n2 = -n1;
  771: :
  772:  invert 1+ ;
  773: 
  774: 1+	( n1 -- n2 )		core		one_plus
  775: n2 = n1+1;
  776: :
  777:  1 + ;
  778: 
  779: 1-	( n1 -- n2 )		core		one_minus
  780: n2 = n1-1;
  781: :
  782:  1 - ;
  783: 
  784: max	( n1 n2 -- n )	core
  785: if (n1<n2)
  786:   n = n2;
  787: else
  788:   n = n1;
  789: :
  790:  2dup < IF swap THEN drop ;
  791: 
  792: min	( n1 n2 -- n )	core
  793: if (n1<n2)
  794:   n = n1;
  795: else
  796:   n = n2;
  797: :
  798:  2dup > IF swap THEN drop ;
  799: 
  800: abs	( n -- u )	core
  801: if (n<0)
  802:   u = -n;
  803: else
  804:   u = n;
  805: :
  806:  dup 0< IF negate THEN ;
  807: 
  808: *	( n1 n2 -- n )		core	star
  809: n = n1*n2;
  810: :
  811:  um* drop ;
  812: 
  813: /	( n1 n2 -- n )		core	slash
  814: n = n1/n2;
  815: if (CHECK_DIVISION_SW && n2 == 0)
  816:   throw(BALL_DIVZERO);
  817: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  818:   throw(BALL_RESULTRANGE);
  819: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  820:   n--;
  821: :
  822:  /mod nip ;
  823: 
  824: mod	( n1 n2 -- n )		core
  825: n = n1%n2;
  826: if (CHECK_DIVISION_SW && n2 == 0)
  827:   throw(BALL_DIVZERO);
  828: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  829:   throw(BALL_RESULTRANGE);
  830: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  831: :
  832:  /mod drop ;
  833: 
  834: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  835: n4 = n1/n2;
  836: n3 = n1%n2; /* !! is this correct? look into C standard! */
  837: if (CHECK_DIVISION_SW && n2 == 0)
  838:   throw(BALL_DIVZERO);
  839: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  840:   throw(BALL_RESULTRANGE);
  841: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  842:   n4--;
  843:   n3+=n2;
  844: }
  845: :
  846:  >r s>d r> fm/mod ;
  847: 
  848: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  849: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  850: #ifdef BUGGY_LL_MUL
  851: DCell d = mmul(n1,n2);
  852: #else
  853: DCell d = (DCell)n1 * (DCell)n2;
  854: #endif
  855: #ifdef ASM_SM_SLASH_REM
  856: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  857: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  858:   if (CHECK_DIVISION && n5 == CELL_MIN)
  859:     throw(BALL_RESULTRANGE);
  860:   n5--;
  861:   n4+=n3;
  862: }
  863: #else
  864: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  865: n4=DHI(r);
  866: n5=DLO(r);
  867: #endif
  868: :
  869:  >r m* r> fm/mod ;
  870: 
  871: */	( n1 n2 n3 -- n4 )	core	star_slash
  872: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  873: #ifdef BUGGY_LL_MUL
  874: DCell d = mmul(n1,n2);
  875: #else
  876: DCell d = (DCell)n1 * (DCell)n2;
  877: #endif
  878: #ifdef ASM_SM_SLASH_REM
  879: Cell remainder;
  880: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  881: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  882:   if (CHECK_DIVISION && n4 == CELL_MIN)
  883:     throw(BALL_RESULTRANGE);
  884:   n4--;
  885: }
  886: #else
  887: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  888: n4=DLO(r);
  889: #endif
  890: :
  891:  */mod nip ;
  892: 
  893: 2*	( n1 -- n2 )		core		two_star
  894: ""Shift left by 1; also works on unsigned numbers""
  895: n2 = 2*n1;
  896: :
  897:  dup + ;
  898: 
  899: 2/	( n1 -- n2 )		core		two_slash
  900: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  901: division by 2 (note that @code{/} not necessarily floors).""
  902: n2 = n1>>1;
  903: :
  904:  dup MINI and IF 1 ELSE 0 THEN
  905:  [ bits/char cell * 1- ] literal 
  906:  0 DO 2* swap dup 2* >r MINI and 
  907:      IF 1 ELSE 0 THEN or r> swap
  908:  LOOP nip ;
  909: 
  910: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  911: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  912: #ifdef ASM_SM_SLASH_REM
  913: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  914: if (((DHI(d1)^n1)<0) && n2!=0) {
  915:   if (CHECK_DIVISION && n3 == CELL_MIN)
  916:     throw(BALL_RESULTRANGE);
  917:   n3--;
  918:   n2+=n1;
  919: }
  920: #else /* !defined(ASM_SM_SLASH_REM) */
  921: DCell r = fmdiv(d1,n1);
  922: n2=DHI(r);
  923: n3=DLO(r);
  924: #endif /* !defined(ASM_SM_SLASH_REM) */
  925: :
  926:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  927:  over       0< IF  tuck + swap  THEN
  928:  um/mod
  929:  r> 0< IF  swap negate swap  THEN ;
  930: 
  931: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  932: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  933: #ifdef ASM_SM_SLASH_REM
  934: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  935: #else /* !defined(ASM_SM_SLASH_REM) */
  936: DCell r = smdiv(d1,n1);
  937: n2=DHI(r);
  938: n3=DLO(r);
  939: #endif /* !defined(ASM_SM_SLASH_REM) */
  940: :
  941:  over >r dup >r abs -rot
  942:  dabs rot um/mod
  943:  r> r@ xor 0< IF       negate       THEN
  944:  r>        0< IF  swap negate swap  THEN ;
  945: 
  946: m*	( n1 n2 -- d )		core	m_star
  947: #ifdef BUGGY_LL_MUL
  948: d = mmul(n1,n2);
  949: #else
  950: d = (DCell)n1 * (DCell)n2;
  951: #endif
  952: :
  953:  2dup      0< and >r
  954:  2dup swap 0< and >r
  955:  um* r> - r> - ;
  956: 
  957: um*	( u1 u2 -- ud )		core	u_m_star
  958: /* use u* as alias */
  959: #ifdef BUGGY_LL_MUL
  960: ud = ummul(u1,u2);
  961: #else
  962: ud = (UDCell)u1 * (UDCell)u2;
  963: #endif
  964: :
  965:    0 -rot dup [ 8 cells ] literal -
  966:    DO
  967: 	dup 0< I' and d2*+ drop
  968:    LOOP ;
  969: : d2*+ ( ud n -- ud+n c )
  970:    over MINI
  971:    and >r >r 2dup d+ swap r> + swap r> ;
  972: 
  973: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  974: ""ud=u3*u1+u2, u1>u2>=0""
  975: #ifdef ASM_UM_SLASH_MOD
  976: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  977: #else /* !defined(ASM_UM_SLASH_MOD) */
  978: UDCell r = umdiv(ud,u1);
  979: u2=DHI(r);
  980: u3=DLO(r);
  981: #endif /* !defined(ASM_UM_SLASH_MOD) */
  982: :
  983:    0 swap [ 8 cells 1 + ] literal 0
  984:    ?DO /modstep
  985:    LOOP drop swap 1 rshift or swap ;
  986: : /modstep ( ud c R: u -- ud-?u c R: u )
  987:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  988: : d2*+ ( ud n -- ud+n c )
  989:    over MINI
  990:    and >r >r 2dup d+ swap r> + swap r> ;
  991: 
  992: m+	( d1 n -- d2 )		double		m_plus
  993: #ifdef BUGGY_LL_ADD
  994: DLO_IS(d2, DLO(d1)+n);
  995: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
  996: #else
  997: d2 = d1+n;
  998: #endif
  999: :
 1000:  s>d d+ ;
 1001: 
 1002: d+	( d1 d2 -- d )		double	d_plus
 1003: #ifdef BUGGY_LL_ADD
 1004: DLO_IS(d, DLO(d1) + DLO(d2));
 1005: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1006: #else
 1007: d = d1+d2;
 1008: #endif
 1009: :
 1010:  rot + >r tuck + swap over u> r> swap - ;
 1011: 
 1012: d-	( d1 d2 -- d )		double		d_minus
 1013: #ifdef BUGGY_LL_ADD
 1014: DLO_IS(d, DLO(d1) - DLO(d2));
 1015: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1016: #else
 1017: d = d1-d2;
 1018: #endif
 1019: :
 1020:  dnegate d+ ;
 1021: 
 1022: dnegate	( d1 -- d2 )		double	d_negate
 1023: /* use dminus as alias */
 1024: #ifdef BUGGY_LL_ADD
 1025: d2 = dnegate(d1);
 1026: #else
 1027: d2 = -d1;
 1028: #endif
 1029: :
 1030:  invert swap negate tuck 0= - ;
 1031: 
 1032: d2*	( d1 -- d2 )		double		d_two_star
 1033: ""Shift left by 1; also works on unsigned numbers""
 1034: d2 = DLSHIFT(d1,1);
 1035: :
 1036:  2dup d+ ;
 1037: 
 1038: d2/	( d1 -- d2 )		double		d_two_slash
 1039: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1040: division by 2.""
 1041: #ifdef BUGGY_LL_SHIFT
 1042: DHI_IS(d2, DHI(d1)>>1);
 1043: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1044: #else
 1045: d2 = d1>>1;
 1046: #endif
 1047: :
 1048:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1049:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1050: 
 1051: and	( w1 w2 -- w )		core
 1052: w = w1&w2;
 1053: 
 1054: or	( w1 w2 -- w )		core
 1055: w = w1|w2;
 1056: :
 1057:  invert swap invert and invert ;
 1058: 
 1059: xor	( w1 w2 -- w )		core	x_or
 1060: w = w1^w2;
 1061: 
 1062: invert	( w1 -- w2 )		core
 1063: w2 = ~w1;
 1064: :
 1065:  MAXU xor ;
 1066: 
 1067: rshift	( u1 n -- u2 )		core	r_shift
 1068: ""Logical shift right by @i{n} bits.""
 1069: #ifdef BROKEN_SHIFT
 1070:   u2 = rshift(u1, n);
 1071: #else
 1072:   u2 = u1 >> n;
 1073: #endif
 1074: :
 1075:     0 ?DO 2/ MAXI and LOOP ;
 1076: 
 1077: lshift	( u1 n -- u2 )		core	l_shift
 1078: #ifdef BROKEN_SHIFT
 1079:   u2 = lshift(u1, n);
 1080: #else
 1081:   u2 = u1 << n;
 1082: #endif
 1083: :
 1084:     0 ?DO 2* LOOP ;
 1085: 
 1086: \g compare
 1087: 
 1088: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1089: define(comparisons,
 1090: $1=	( $2 -- f )		$6	$3equals
 1091: f = FLAG($4==$5);
 1092: :
 1093:     [ char $1x char 0 = [IF]
 1094: 	] IF false ELSE true THEN [
 1095:     [ELSE]
 1096: 	] xor 0= [
 1097:     [THEN] ] ;
 1098: 
 1099: $1<>	( $2 -- f )		$7	$3not_equals
 1100: f = FLAG($4!=$5);
 1101: :
 1102:     [ char $1x char 0 = [IF]
 1103: 	] IF true ELSE false THEN [
 1104:     [ELSE]
 1105: 	] xor 0<> [
 1106:     [THEN] ] ;
 1107: 
 1108: $1<	( $2 -- f )		$8	$3less_than
 1109: f = FLAG($4<$5);
 1110: :
 1111:     [ char $1x char 0 = [IF]
 1112: 	] MINI and 0<> [
 1113:     [ELSE] char $1x char u = [IF]
 1114: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1115: 	[ELSE]
 1116: 	    ] MINI xor >r MINI xor r> u< [
 1117: 	[THEN]
 1118:     [THEN] ] ;
 1119: 
 1120: $1>	( $2 -- f )		$9	$3greater_than
 1121: f = FLAG($4>$5);
 1122: :
 1123:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1124:     $1< ;
 1125: 
 1126: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1127: f = FLAG($4<=$5);
 1128: :
 1129:     $1> 0= ;
 1130: 
 1131: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1132: f = FLAG($4>=$5);
 1133: :
 1134:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1135:     $1<= ;
 1136: 
 1137: )
 1138: 
 1139: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1140: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1141: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1142: 
 1143: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1144: define(dcomparisons,
 1145: $1=	( $2 -- f )		$6	$3equals
 1146: #ifdef BUGGY_LL_CMP
 1147: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1148: #else
 1149: f = FLAG($4==$5);
 1150: #endif
 1151: 
 1152: $1<>	( $2 -- f )		$7	$3not_equals
 1153: #ifdef BUGGY_LL_CMP
 1154: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1155: #else
 1156: f = FLAG($4!=$5);
 1157: #endif
 1158: 
 1159: $1<	( $2 -- f )		$8	$3less_than
 1160: #ifdef BUGGY_LL_CMP
 1161: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1162: #else
 1163: f = FLAG($4<$5);
 1164: #endif
 1165: 
 1166: $1>	( $2 -- f )		$9	$3greater_than
 1167: #ifdef BUGGY_LL_CMP
 1168: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1169: #else
 1170: f = FLAG($4>$5);
 1171: #endif
 1172: 
 1173: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1174: #ifdef BUGGY_LL_CMP
 1175: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1176: #else
 1177: f = FLAG($4<=$5);
 1178: #endif
 1179: 
 1180: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1181: #ifdef BUGGY_LL_CMP
 1182: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1183: #else
 1184: f = FLAG($4>=$5);
 1185: #endif
 1186: 
 1187: )
 1188: 
 1189: \+dcomps
 1190: 
 1191: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1192: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1193: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1194: 
 1195: \+
 1196: 
 1197: within	( u1 u2 u3 -- f )		core-ext
 1198: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1199: unsigned and signed numbers (but not a mixture).  Another way to think
 1200: about this word is to consider the numbers as a circle (wrapping
 1201: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1202: min-n for signed numbers); now consider the range from u2 towards
 1203: increasing numbers up to and excluding u3 (giving an empty range if
 1204: u2=u3); if u1 is in this range, @code{within} returns true.""
 1205: f = FLAG(u1-u2 < u3-u2);
 1206: :
 1207:  over - >r - r> u< ;
 1208: 
 1209: \g stack
 1210: 
 1211: useraddr	( #u -- a_addr )	new
 1212: a_addr = (Cell *)(up+u);
 1213: 
 1214: up!	( a_addr -- )	gforth	up_store
 1215: gforth_UP=up=(Address)a_addr;
 1216: :
 1217:  up ! ;
 1218: Variable UP
 1219: 
 1220: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1221: a_addr = sp;
 1222: 
 1223: sp!	( a_addr -- S:... )		gforth		sp_store
 1224: sp = a_addr;
 1225: 
 1226: rp@	( -- a_addr )		gforth		rp_fetch
 1227: a_addr = rp;
 1228: 
 1229: rp!	( a_addr -- )		gforth		rp_store
 1230: rp = a_addr;
 1231: 
 1232: \+floating
 1233: 
 1234: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1235: f_addr = fp;
 1236: 
 1237: fp!	( f_addr -- f:... )	gforth	fp_store
 1238: fp = f_addr;
 1239: 
 1240: \+
 1241: 
 1242: >r	( w -- R:w )		core	to_r
 1243: :
 1244:  (>r) ;
 1245: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1246: 
 1247: r>	( R:w -- w )		core	r_from
 1248: :
 1249:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1250: Create (rdrop) ' ;s A,
 1251: 
 1252: rdrop	( R:w -- )		gforth
 1253: :
 1254:  r> r> drop >r ;
 1255: 
 1256: 2>r	( d -- R:d )	core-ext	two_to_r
 1257: :
 1258:  swap r> swap >r swap >r >r ;
 1259: 
 1260: 2r>	( R:d -- d )	core-ext	two_r_from
 1261: :
 1262:  r> r> swap r> swap >r swap ;
 1263: 
 1264: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1265: :
 1266:  i' j ;
 1267: 
 1268: 2rdrop	( R:d -- )		gforth	two_r_drop
 1269: :
 1270:  r> r> drop r> drop >r ;
 1271: 
 1272: over	( w1 w2 -- w1 w2 w1 )		core
 1273: :
 1274:  sp@ cell+ @ ;
 1275: 
 1276: drop	( w -- )		core
 1277: :
 1278:  IF THEN ;
 1279: 
 1280: swap	( w1 w2 -- w2 w1 )		core
 1281: :
 1282:  >r (swap) ! r> (swap) @ ;
 1283: Variable (swap)
 1284: 
 1285: dup	( w -- w w )		core	dupe
 1286: :
 1287:  sp@ @ ;
 1288: 
 1289: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1290: :
 1291: [ defined? (swap) [IF] ]
 1292:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1293: Variable (rot)
 1294: [ELSE] ]
 1295:     >r swap r> swap ;
 1296: [THEN]
 1297: 
 1298: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1299: :
 1300:  rot rot ;
 1301: 
 1302: nip	( w1 w2 -- w2 )		core-ext
 1303: :
 1304:  swap drop ;
 1305: 
 1306: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1307: :
 1308:  swap over ;
 1309: 
 1310: ?dup	( w -- S:... w )	core	question_dupe
 1311: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1312: @code{dup} if w is nonzero.""
 1313: if (w!=0) {
 1314:   *--sp = w;
 1315: }
 1316: :
 1317:  dup IF dup THEN ;
 1318: 
 1319: pick	( S:... u -- S:... w )		core-ext
 1320: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1321: w = sp[u];
 1322: :
 1323:  1+ cells sp@ + @ ;
 1324: 
 1325: 2drop	( w1 w2 -- )		core	two_drop
 1326: :
 1327:  drop drop ;
 1328: 
 1329: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1330: :
 1331:  over over ;
 1332: 
 1333: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1334: :
 1335:  3 pick 3 pick ;
 1336: 
 1337: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1338: :
 1339:  rot >r rot r> ;
 1340: 
 1341: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1342: :
 1343:  >r >r 2swap r> r> 2swap ;
 1344: 
 1345: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1346: :
 1347:  2swap 2drop ;
 1348: 
 1349: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1350: :
 1351:  2swap 2over ;
 1352: 
 1353: \ toggle is high-level: 0.11/0.42%
 1354: 
 1355: \g memory
 1356: 
 1357: @	( a_addr -- w )		core	fetch
 1358: ""@i{w} is the cell stored at @i{a_addr}.""
 1359: w = *a_addr;
 1360: 
 1361: \ lit@ / lit_fetch = lit @
 1362: 
 1363: lit@		( #a_addr -- w ) new	lit_fetch
 1364: w = *a_addr;
 1365: 
 1366: !	( w a_addr -- )		core	store
 1367: ""Store @i{w} into the cell at @i{a-addr}.""
 1368: *a_addr = w;
 1369: 
 1370: +!	( n a_addr -- )		core	plus_store
 1371: ""Add @i{n} to the cell at @i{a-addr}.""
 1372: *a_addr += n;
 1373: :
 1374:  tuck @ + swap ! ;
 1375: 
 1376: c@	( c_addr -- c )		core	c_fetch
 1377: ""@i{c} is the char stored at @i{c_addr}.""
 1378: c = *c_addr;
 1379: :
 1380: [ bigendian [IF] ]
 1381:     [ cell>bit 4 = [IF] ]
 1382: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1383: 	IF  $FF and  ELSE  8>>  THEN  ;
 1384:     [ [ELSE] ]
 1385: 	dup [ cell 1- ] literal and
 1386: 	tuck - @ swap [ cell 1- ] literal xor
 1387:  	0 ?DO 8>> LOOP $FF and
 1388:     [ [THEN] ]
 1389: [ [ELSE] ]
 1390:     [ cell>bit 4 = [IF] ]
 1391: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1392: 	IF  8>>  ELSE  $FF and  THEN
 1393:     [ [ELSE] ]
 1394: 	dup [ cell  1- ] literal and 
 1395: 	tuck - @ swap
 1396: 	0 ?DO 8>> LOOP 255 and
 1397:     [ [THEN] ]
 1398: [ [THEN] ]
 1399: ;
 1400: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1401: 
 1402: c!	( c c_addr -- )		core	c_store
 1403: ""Store @i{c} into the char at @i{c-addr}.""
 1404: *c_addr = c;
 1405: :
 1406: [ bigendian [IF] ]
 1407:     [ cell>bit 4 = [IF] ]
 1408: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1409: 	dup -2 and @ over 1 and cells masks + @ and
 1410: 	r> or swap -2 and ! ;
 1411: 	Create masks $00FF , $FF00 ,
 1412:     [ELSE] ]
 1413: 	dup [ cell 1- ] literal and dup 
 1414: 	[ cell 1- ] literal xor >r
 1415: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1416: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1417:     [THEN]
 1418: [ELSE] ]
 1419:     [ cell>bit 4 = [IF] ]
 1420: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1421: 	dup -2 and @ over 1 and cells masks + @ and
 1422: 	r> or swap -2 and ! ;
 1423: 	Create masks $FF00 , $00FF ,
 1424:     [ELSE] ]
 1425: 	dup [ cell 1- ] literal and dup >r
 1426: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1427: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1428:     [THEN]
 1429: [THEN]
 1430: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1431: 
 1432: 2!	( w1 w2 a_addr -- )		core	two_store
 1433: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1434: a_addr[0] = w2;
 1435: a_addr[1] = w1;
 1436: :
 1437:  tuck ! cell+ ! ;
 1438: 
 1439: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1440: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1441: the content of the next cell.""
 1442: w2 = a_addr[0];
 1443: w1 = a_addr[1];
 1444: :
 1445:  dup cell+ @ swap @ ;
 1446: 
 1447: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1448: ""@code{1 cells +}""
 1449: a_addr2 = a_addr1+1;
 1450: :
 1451:  cell + ;
 1452: 
 1453: cells	( n1 -- n2 )		core
 1454: "" @i{n2} is the number of address units of @i{n1} cells.""
 1455: n2 = n1 * sizeof(Cell);
 1456: :
 1457:  [ cell
 1458:  2/ dup [IF] ] 2* [ [THEN]
 1459:  2/ dup [IF] ] 2* [ [THEN]
 1460:  2/ dup [IF] ] 2* [ [THEN]
 1461:  2/ dup [IF] ] 2* [ [THEN]
 1462:  drop ] ;
 1463: 
 1464: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1465: ""@code{1 chars +}.""
 1466: c_addr2 = c_addr1 + 1;
 1467: :
 1468:  1+ ;
 1469: 
 1470: (chars)	( n1 -- n2 )	gforth	paren_chars
 1471: n2 = n1 * sizeof(Char);
 1472: :
 1473:  ;
 1474: 
 1475: count	( c_addr1 -- c_addr2 u )	core
 1476: ""@i{c-addr2} is the first character and @i{u} the length of the
 1477: counted string at @i{c-addr1}.""
 1478: u = *c_addr1;
 1479: c_addr2 = c_addr1+1;
 1480: :
 1481:  dup 1+ swap c@ ;
 1482: 
 1483: \g compiler
 1484: 
 1485: \+f83headerstring
 1486: 
 1487: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1488: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1489:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1490:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1491:     break;
 1492: f83name2=f83name1;
 1493: #ifdef DEBUG
 1494: fprintf(stderr, "F83find ");
 1495: fwrite(c_addr, u, 1, stderr);
 1496: fprintf(stderr, " found %08x\n", f83name2); 
 1497: #endif
 1498: :
 1499:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1500: 	>r 2dup r@ cell+ char+ capscomp  0=
 1501: 	IF  2drop r>  EXIT  THEN
 1502: 	r> @
 1503:     REPEAT  THEN  nip nip ;
 1504: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1505:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1506: : capscomp ( c_addr1 u c_addr2 -- n )
 1507:  swap bounds
 1508:  ?DO  dup c@ I c@ <>
 1509:      IF  dup c@ toupper I c@ toupper =
 1510:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1511:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1512: : sgn ( n -- -1/0/1 )
 1513:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1514: 
 1515: \-
 1516: 
 1517: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1518: longname2=listlfind(c_addr, u, longname1);
 1519: :
 1520:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1521: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1522: 	IF  2drop r>  EXIT  THEN
 1523: 	r> @
 1524:     REPEAT  THEN  nip nip ;
 1525: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1526:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1527: : capscomp ( c_addr1 u c_addr2 -- n )
 1528:  swap bounds
 1529:  ?DO  dup c@ I c@ <>
 1530:      IF  dup c@ toupper I c@ toupper =
 1531:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1532:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1533: : sgn ( n -- -1/0/1 )
 1534:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1535: 
 1536: \+hash
 1537: 
 1538: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1539: longname2 = hashlfind(c_addr, u, a_addr);
 1540: :
 1541:  BEGIN  dup  WHILE
 1542:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1543:         IF  2dup r@ cell+ cell+ capscomp 0=
 1544: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1545: 	rdrop r>
 1546:  REPEAT nip nip ;
 1547: 
 1548: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1549: ""A case-sensitive variant of @code{(hashfind)}""
 1550: longname2 = tablelfind(c_addr, u, a_addr);
 1551: :
 1552:  BEGIN  dup  WHILE
 1553:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1554:         IF  2dup r@ cell+ cell+ -text 0=
 1555: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1556: 	rdrop r>
 1557:  REPEAT nip nip ;
 1558: : -text ( c_addr1 u c_addr2 -- n )
 1559:  swap bounds
 1560:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1561:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1562: : sgn ( n -- -1/0/1 )
 1563:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1564: 
 1565: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1566: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1567: ukey = hashkey1(c_addr, u, ubits);
 1568: :
 1569:  dup rot-values + c@ over 1 swap lshift 1- >r
 1570:  tuck - 2swap r> 0 2swap bounds
 1571:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1572:       I c@ toupper xor
 1573:       over and  LOOP
 1574:  nip nip nip ;
 1575: Create rot-values
 1576:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1577:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1578:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1579:   7 c, 5 c, 5 c,
 1580: 
 1581: \+
 1582: 
 1583: \+
 1584: 
 1585: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1586: struct Cellpair r=parse_white(c_addr1, u1);
 1587: c_addr2 = (Char *)(r.n1);
 1588: u2 = r.n2;
 1589: :
 1590:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1591:  REPEAT  THEN  2dup
 1592:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1593:  REPEAT  THEN  nip - ;
 1594: 
 1595: aligned	( c_addr -- a_addr )	core
 1596: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1597: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1598: :
 1599:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1600: 
 1601: faligned	( c_addr -- f_addr )	float	f_aligned
 1602: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1603: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1604: :
 1605:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1606: 
 1607: \ threading stuff is currently only interesting if we have a compiler
 1608: \fhas? standardthreading has? compiler and [IF]
 1609: threading-method	( -- n )	gforth	threading_method
 1610: ""0 if the engine is direct threaded. Note that this may change during
 1611: the lifetime of an image.""
 1612: #if defined(DOUBLY_INDIRECT)
 1613: n=2;
 1614: #else
 1615: # if defined(DIRECT_THREADED)
 1616: n=0;
 1617: # else
 1618: n=1;
 1619: # endif
 1620: #endif
 1621: :
 1622:  1 ;
 1623: 
 1624: \f[THEN]
 1625: 
 1626: \g hostos
 1627: 
 1628: key-file	( wfileid -- c )		gforth	paren_key_file
 1629: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1630: buffering for @i{wfileid}.  If you want to read characters from a
 1631: terminal in non-canonical (raw) mode, you have to put the terminal in
 1632: non-canonical mode yourself (using the C interface); the exception is
 1633: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1634: #ifdef HAS_FILE
 1635: fflush(stdout);
 1636: c = key((FILE*)wfileid);
 1637: #else
 1638: c = key(stdin);
 1639: #endif
 1640: 
 1641: key?-file	( wfileid -- f )	        gforth	key_q_file
 1642: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1643: without blocking.  If you also want to use @code{read-file} or
 1644: @code{read-line} on the file, you have to call @code{key?-file} or
 1645: @code{key-file} first (these two words disable buffering).""
 1646: #ifdef HAS_FILE
 1647: fflush(stdout);
 1648: f = key_query((FILE*)wfileid);
 1649: #else
 1650: f = key_query(stdin);
 1651: #endif
 1652: 
 1653: stdin	( -- wfileid )	gforth
 1654: ""The standard input file of the Gforth process.""
 1655: wfileid = (Cell)stdin;
 1656: 
 1657: stdout	( -- wfileid )	gforth
 1658: ""The standard output file of the Gforth process.""
 1659: wfileid = (Cell)stdout;
 1660: 
 1661: stderr	( -- wfileid )	gforth
 1662: ""The standard error output file of the Gforth process.""
 1663: wfileid = (Cell)stderr;
 1664: 
 1665: \+os
 1666: 
 1667: form	( -- urows ucols )	gforth
 1668: ""The number of lines and columns in the terminal. These numbers may
 1669: change with the window size.  Note that it depends on the OS whether
 1670: this reflects the actual size and changes with the window size
 1671: (currently only on Unix-like OSs).  On other OSs you just get a
 1672: default, and can tell Gforth the terminal size by setting the
 1673: environment variables @code{COLUMNS} and @code{LINES} before starting
 1674: Gforth.""
 1675: /* we could block SIGWINCH here to get a consistent size, but I don't
 1676:  think this is necessary or always beneficial */
 1677: urows=rows;
 1678: ucols=cols;
 1679: 
 1680: wcwidth	( u -- n )	gforth
 1681: ""The number of fixed-width characters per unicode character u""
 1682: n = wcwidth(u);
 1683: 
 1684: flush-icache	( c_addr u -- )	gforth	flush_icache
 1685: ""Make sure that the instruction cache of the processor (if there is
 1686: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1687: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1688: automatically. Caveat: @code{flush-icache} might not work on your
 1689: installation; this is usually the case if direct threading is not
 1690: supported on your machine (take a look at your @file{machine.h}) and
 1691: your machine has a separate instruction cache. In such cases,
 1692: @code{flush-icache} does nothing instead of flushing the instruction
 1693: cache.""
 1694: FLUSH_ICACHE(c_addr,u);
 1695: 
 1696: (bye)	( n -- )	gforth	paren_bye
 1697: SUPER_END;
 1698: return (Label *)n;
 1699: 
 1700: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1701: wretval = gforth_system(c_addr, u);  
 1702: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1703: 
 1704: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1705: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1706: is the host operating system's expansion of that environment variable. If the
 1707: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1708: in length.""
 1709: /* close ' to keep fontify happy */
 1710: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1711: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1712: 
 1713: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1714: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1715: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1716: 
 1717: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1718: wretval = pclose((FILE *)wfileid);
 1719: wior = IOR(wretval==-1);
 1720: 
 1721: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1722: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1723: Months are numbered from 1.""
 1724: #if 1
 1725: time_t now;
 1726: struct tm *ltime;
 1727: time(&now);
 1728: ltime=localtime(&now);
 1729: #else
 1730: struct timeval time1;
 1731: struct timezone zone1;
 1732: struct tm *ltime;
 1733: gettimeofday(&time1,&zone1);
 1734: /* !! Single Unix specification: 
 1735:    If tzp is not a null pointer, the behaviour is unspecified. */
 1736: ltime=localtime((time_t *)&time1.tv_sec);
 1737: #endif
 1738: nyear =ltime->tm_year+1900;
 1739: nmonth=ltime->tm_mon+1;
 1740: nday  =ltime->tm_mday;
 1741: nhour =ltime->tm_hour;
 1742: nmin  =ltime->tm_min;
 1743: nsec  =ltime->tm_sec;
 1744: 
 1745: ms	( n -- )	facility-ext
 1746: ""Wait at least @i{n} milli-second.""
 1747: struct timeval timeout;
 1748: timeout.tv_sec=n/1000;
 1749: timeout.tv_usec=1000*(n%1000);
 1750: (void)select(0,0,0,0,&timeout);
 1751: 
 1752: allocate	( u -- a_addr wior )	memory
 1753: ""Allocate @i{u} address units of contiguous data space. The initial
 1754: contents of the data space is undefined. If the allocation is successful,
 1755: @i{a-addr} is the start address of the allocated region and @i{wior}
 1756: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1757: is a non-zero I/O result code.""
 1758: a_addr = (Cell *)malloc(u?u:1);
 1759: wior = IOR(a_addr==NULL);
 1760: 
 1761: free	( a_addr -- wior )		memory
 1762: ""Return the region of data space starting at @i{a-addr} to the system.
 1763: The region must originally have been obtained using @code{allocate} or
 1764: @code{resize}. If the operational is successful, @i{wior} is 0.
 1765: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1766: free(a_addr);
 1767: wior = 0;
 1768: 
 1769: resize	( a_addr1 u -- a_addr2 wior )	memory
 1770: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1771: address units, possibly moving the contents to a different
 1772: area. @i{a-addr2} is the address of the resulting area.
 1773: If the operation is successful, @i{wior} is 0.
 1774: If the operation fails, @i{wior} is a non-zero
 1775: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1776: @code{resize} @code{allocate}s @i{u} address units.""
 1777: /* the following check is not necessary on most OSs, but it is needed
 1778:    on SunOS 4.1.2. */
 1779: /* close ' to keep fontify happy */
 1780: if (a_addr1==NULL)
 1781:   a_addr2 = (Cell *)malloc(u);
 1782: else
 1783:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1784: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1785: 
 1786: strerror	( n -- c_addr u )	gforth
 1787: c_addr = (Char *)strerror(n);
 1788: u = strlen((char *)c_addr);
 1789: 
 1790: strsignal	( n -- c_addr u )	gforth
 1791: c_addr = (Char *)strsignal(n);
 1792: u = strlen((char *)c_addr);
 1793: 
 1794: call-c	( ... w -- ... )	gforth	call_c
 1795: ""Call the C function pointed to by @i{w}. The C function has to
 1796: access the stack itself. The stack pointers are exported in the global
 1797: variables @code{SP} and @code{FP}.""
 1798: /* This is a first attempt at support for calls to C. This may change in
 1799:    the future */
 1800: gforth_FP=fp;
 1801: gforth_SP=sp;
 1802: ((void (*)())w)();
 1803: sp=gforth_SP;
 1804: fp=gforth_FP;
 1805: 
 1806: \+
 1807: \+file
 1808: 
 1809: close-file	( wfileid -- wior )		file	close_file
 1810: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1811: 
 1812: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1813: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1814: wior =  IOR(wfileid == 0);
 1815: 
 1816: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1817: Cell	fd;
 1818: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1819: if (fd != -1) {
 1820:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1821:   wior = IOR(wfileid == 0);
 1822: } else {
 1823:   wfileid = 0;
 1824:   wior = IOR(1);
 1825: }
 1826: 
 1827: delete-file	( c_addr u -- wior )		file	delete_file
 1828: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1829: 
 1830: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1831: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1832: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1833: 
 1834: file-position	( wfileid -- ud wior )	file	file_position
 1835: /* !! use tell and lseek? */
 1836: ud = OFF2UD(ftello((FILE *)wfileid));
 1837: wior = IOR(UD2OFF(ud)==-1);
 1838: 
 1839: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1840: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1841: 
 1842: file-size	( wfileid -- ud wior )	file	file_size
 1843: struct stat buf;
 1844: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1845: ud = OFF2UD(buf.st_size);
 1846: 
 1847: resize-file	( ud wfileid -- wior )	file	resize_file
 1848: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1849: 
 1850: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1851: /* !! fread does not guarantee enough */
 1852: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1853: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1854: /* !! is the value of ferror errno-compatible? */
 1855: if (wior)
 1856:   clearerr((FILE *)wfileid);
 1857: 
 1858: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1859: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1860: u2   = r.n1;
 1861: flag = r.n2;
 1862: u3   = r.n3;
 1863: wior = r.n4;
 1864: 
 1865: \+
 1866: 
 1867: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1868: /* !! fwrite does not guarantee enough */
 1869: #ifdef HAS_FILE
 1870: {
 1871:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1872:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1873:   if (wior)
 1874:     clearerr((FILE *)wfileid);
 1875: }
 1876: #else
 1877: TYPE(c_addr, u1);
 1878: #endif
 1879: 
 1880: emit-file	( c wfileid -- wior )	gforth	emit_file
 1881: #ifdef HAS_FILE
 1882: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1883: if (wior)
 1884:   clearerr((FILE *)wfileid);
 1885: #else
 1886: PUTC(c);
 1887: #endif
 1888: 
 1889: \+file
 1890: 
 1891: flush-file	( wfileid -- wior )		file-ext	flush_file
 1892: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1893: 
 1894: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1895: struct Cellpair r = file_status(c_addr, u);
 1896: wfam = r.n1;
 1897: wior = r.n2;
 1898: 
 1899: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1900: flag = FLAG(feof((FILE *) wfileid));
 1901: 
 1902: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1903: ""Open the directory specified by @i{c-addr, u}
 1904: and return @i{dir-id} for futher access to it.""
 1905: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1906: wior =  IOR(wdirid == 0);
 1907: 
 1908: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1909: ""Attempt to read the next entry from the directory specified
 1910: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1911: If the attempt fails because there is no more entries,
 1912: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1913: If the attempt to read the next entry fails because of any other reason, 
 1914: return @i{ior}<>0.
 1915: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1916: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1917: If the length of the file name is greater than @i{u1}, 
 1918: store first @i{u1} characters from file name into the buffer and
 1919: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1920: struct dirent * dent;
 1921: dent = readdir((DIR *)wdirid);
 1922: wior = 0;
 1923: flag = -1;
 1924: if(dent == NULL) {
 1925:   u2 = 0;
 1926:   flag = 0;
 1927: } else {
 1928:   u2 = strlen((char *)dent->d_name);
 1929:   if(u2 > u1) {
 1930:     u2 = u1;
 1931:     wior = -512-ENAMETOOLONG;
 1932:   }
 1933:   memmove(c_addr, dent->d_name, u2);
 1934: }
 1935: 
 1936: close-dir	( wdirid -- wior )	gforth	close_dir
 1937: ""Close the directory specified by @i{dir-id}.""
 1938: wior = IOR(closedir((DIR *)wdirid));
 1939: 
 1940: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1941: char * string = cstr(c_addr1, u1, 1);
 1942: char * pattern = cstr(c_addr2, u2, 0);
 1943: flag = FLAG(!fnmatch(pattern, string, 0));
 1944: 
 1945: set-dir	( c_addr u -- wior )	gforth set_dir
 1946: ""Change the current directory to @i{c-addr, u}.
 1947: Return an error if this is not possible""
 1948: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1949: 
 1950: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1951: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1952: If the buffer size is not sufficient, return 0 0""
 1953: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1954: if(c_addr2 != NULL) {
 1955:   u2 = strlen((char *)c_addr2);
 1956: } else {
 1957:   u2 = 0;
 1958: }
 1959: 
 1960: \+
 1961: 
 1962: newline	( -- c_addr u )	gforth
 1963: ""String containing the newline sequence of the host OS""
 1964: char newline[] = {
 1965: #if DIRSEP=='/'
 1966: /* Unix */
 1967: '\n'
 1968: #else
 1969: /* DOS, Win, OS/2 */
 1970: '\r','\n'
 1971: #endif
 1972: };
 1973: c_addr=(Char *)newline;
 1974: u=sizeof(newline);
 1975: :
 1976:  "newline count ;
 1977: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1978: 
 1979: \+os
 1980: 
 1981: utime	( -- dtime )	gforth
 1982: ""Report the current time in microseconds since some epoch.""
 1983: struct timeval time1;
 1984: gettimeofday(&time1,NULL);
 1985: dtime = timeval2us(&time1);
 1986: 
 1987: cputime ( -- duser dsystem ) gforth
 1988: ""duser and dsystem are the respective user- and system-level CPU
 1989: times used since the start of the Forth system (excluding child
 1990: processes), in microseconds (the granularity may be much larger,
 1991: however).  On platforms without the getrusage call, it reports elapsed
 1992: time (since some epoch) for duser and 0 for dsystem.""
 1993: #ifdef HAVE_GETRUSAGE
 1994: struct rusage usage;
 1995: getrusage(RUSAGE_SELF, &usage);
 1996: duser = timeval2us(&usage.ru_utime);
 1997: dsystem = timeval2us(&usage.ru_stime);
 1998: #else
 1999: struct timeval time1;
 2000: gettimeofday(&time1,NULL);
 2001: duser = timeval2us(&time1);
 2002: dsystem = DZERO;
 2003: #endif
 2004: 
 2005: \+
 2006: 
 2007: \+floating
 2008: 
 2009: \g floating
 2010: 
 2011: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2012: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2013: 
 2014: s>f	( n -- r )		float	s_to_f
 2015: r = n;
 2016: 
 2017: d>f	( d -- r )		float	d_to_f
 2018: #ifdef BUGGY_LL_D2F
 2019: extern double ldexp(double x, int exp);
 2020: if (DHI(d)<0) {
 2021: #ifdef BUGGY_LL_ADD
 2022:   DCell d2=dnegate(d);
 2023: #else
 2024:   DCell d2=-d;
 2025: #endif
 2026:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2027: } else
 2028:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2029: #else
 2030: r = d;
 2031: #endif
 2032: 
 2033: f>d	( r -- d )		float	f_to_d
 2034: extern DCell double2ll(Float r);
 2035: d = double2ll(r);
 2036: 
 2037: f>s	( r -- n )		float	f_to_s
 2038: n = (Cell)r;
 2039: 
 2040: f!	( r f_addr -- )	float	f_store
 2041: ""Store @i{r} into the float at address @i{f-addr}.""
 2042: *f_addr = r;
 2043: 
 2044: f@	( f_addr -- r )	float	f_fetch
 2045: ""@i{r} is the float at address @i{f-addr}.""
 2046: r = *f_addr;
 2047: 
 2048: df@	( df_addr -- r )	float-ext	d_f_fetch
 2049: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2050: #ifdef IEEE_FP
 2051: r = *df_addr;
 2052: #else
 2053: !! df@
 2054: #endif
 2055: 
 2056: df!	( r df_addr -- )	float-ext	d_f_store
 2057: ""Store @i{r} as double-precision IEEE floating-point value to the
 2058: address @i{df-addr}.""
 2059: #ifdef IEEE_FP
 2060: *df_addr = r;
 2061: #else
 2062: !! df!
 2063: #endif
 2064: 
 2065: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2066: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2067: #ifdef IEEE_FP
 2068: r = *sf_addr;
 2069: #else
 2070: !! sf@
 2071: #endif
 2072: 
 2073: sf!	( r sf_addr -- )	float-ext	s_f_store
 2074: ""Store @i{r} as single-precision IEEE floating-point value to the
 2075: address @i{sf-addr}.""
 2076: #ifdef IEEE_FP
 2077: *sf_addr = r;
 2078: #else
 2079: !! sf!
 2080: #endif
 2081: 
 2082: f+	( r1 r2 -- r3 )	float	f_plus
 2083: r3 = r1+r2;
 2084: 
 2085: f-	( r1 r2 -- r3 )	float	f_minus
 2086: r3 = r1-r2;
 2087: 
 2088: f*	( r1 r2 -- r3 )	float	f_star
 2089: r3 = r1*r2;
 2090: 
 2091: f/	( r1 r2 -- r3 )	float	f_slash
 2092: r3 = r1/r2;
 2093: 
 2094: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2095: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2096: r3 = pow(r1,r2);
 2097: 
 2098: fm*	( r1 n -- r2 )	gforth	fm_star
 2099: r2 = r1*n;
 2100: 
 2101: fm/	( r1 n -- r2 )	gforth	fm_slash
 2102: r2 = r1/n;
 2103: 
 2104: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2105: r2 = (r1*n1)/n2;
 2106: 
 2107: f**2	( r1 -- r2 )	gforth	fm_square
 2108: r2 = r1*r1;
 2109: 
 2110: fnegate	( r1 -- r2 )	float	f_negate
 2111: r2 = - r1;
 2112: 
 2113: fdrop	( r -- )		float	f_drop
 2114: 
 2115: fdup	( r -- r r )	float	f_dupe
 2116: 
 2117: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2118: 
 2119: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2120: 
 2121: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2122: 
 2123: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2124: 
 2125: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2126: 
 2127: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2128: ""@code{1 floats +}.""
 2129: f_addr2 = f_addr1+1;
 2130: 
 2131: floats	( n1 -- n2 )	float
 2132: ""@i{n2} is the number of address units of @i{n1} floats.""
 2133: n2 = n1*sizeof(Float);
 2134: 
 2135: floor	( r1 -- r2 )	float
 2136: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2137: /* !! unclear wording */
 2138: r2 = floor(r1);
 2139: 
 2140: fround	( r1 -- r2 )	gforth	f_round
 2141: ""Round to the nearest integral value.""
 2142: r2 = rint(r1);
 2143: 
 2144: fmax	( r1 r2 -- r3 )	float	f_max
 2145: if (r1<r2)
 2146:   r3 = r2;
 2147: else
 2148:   r3 = r1;
 2149: 
 2150: fmin	( r1 r2 -- r3 )	float	f_min
 2151: if (r1<r2)
 2152:   r3 = r1;
 2153: else
 2154:   r3 = r2;
 2155: 
 2156: represent	( r c_addr u -- n f1 f2 )	float
 2157: char *sig;
 2158: size_t siglen;
 2159: int flag;
 2160: int decpt;
 2161: sig=ecvt(r, u, &decpt, &flag);
 2162: n=(r==0. ? 1 : decpt);
 2163: f1=FLAG(flag!=0);
 2164: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2165: siglen=strlen((char *)sig);
 2166: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2167:   siglen=u;
 2168: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2169:   for (; sig[siglen-1]=='0'; siglen--);
 2170:     ;
 2171: memcpy(c_addr,sig,siglen);
 2172: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2173: 
 2174: >float	( c_addr u -- f:... flag )	float	to_float
 2175: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2176: character string @i{c-addr u} to internal floating-point
 2177: representation. If the string represents a valid floating-point number
 2178: @i{r} is placed on the floating-point stack and @i{flag} is
 2179: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2180: case and represents the floating-point number 0.""
 2181: Float r;
 2182: flag = to_float(c_addr, u, &r);
 2183: if (flag) {
 2184:   fp--;
 2185:   fp[0]=r;
 2186: }
 2187: 
 2188: fabs	( r1 -- r2 )	float-ext	f_abs
 2189: r2 = fabs(r1);
 2190: 
 2191: facos	( r1 -- r2 )	float-ext	f_a_cos
 2192: r2 = acos(r1);
 2193: 
 2194: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2195: r2 = asin(r1);
 2196: 
 2197: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2198: r2 = atan(r1);
 2199: 
 2200: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2201: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2202: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2203: r3 = atan2(r1,r2);
 2204: 
 2205: fcos	( r1 -- r2 )	float-ext	f_cos
 2206: r2 = cos(r1);
 2207: 
 2208: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2209: r2 = exp(r1);
 2210: 
 2211: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2212: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2213: #ifdef HAVE_EXPM1
 2214: extern double
 2215: #ifdef NeXT
 2216:               const
 2217: #endif
 2218:                     expm1(double);
 2219: r2 = expm1(r1);
 2220: #else
 2221: r2 = exp(r1)-1.;
 2222: #endif
 2223: 
 2224: fln	( r1 -- r2 )	float-ext	f_l_n
 2225: r2 = log(r1);
 2226: 
 2227: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2228: ""@i{r2}=ln(@i{r1}+1)""
 2229: #ifdef HAVE_LOG1P
 2230: extern double
 2231: #ifdef NeXT
 2232:               const
 2233: #endif
 2234:                     log1p(double);
 2235: r2 = log1p(r1);
 2236: #else
 2237: r2 = log(r1+1.);
 2238: #endif
 2239: 
 2240: flog	( r1 -- r2 )	float-ext	f_log
 2241: ""The decimal logarithm.""
 2242: r2 = log10(r1);
 2243: 
 2244: falog	( r1 -- r2 )	float-ext	f_a_log
 2245: ""@i{r2}=10**@i{r1}""
 2246: extern double pow10(double);
 2247: r2 = pow10(r1);
 2248: 
 2249: fsin	( r1 -- r2 )	float-ext	f_sine
 2250: r2 = sin(r1);
 2251: 
 2252: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2253: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2254: r2 = sin(r1);
 2255: r3 = cos(r1);
 2256: 
 2257: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2258: r2 = sqrt(r1);
 2259: 
 2260: ftan	( r1 -- r2 )	float-ext	f_tan
 2261: r2 = tan(r1);
 2262: :
 2263:  fsincos f/ ;
 2264: 
 2265: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2266: r2 = sinh(r1);
 2267: :
 2268:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2269: 
 2270: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2271: r2 = cosh(r1);
 2272: :
 2273:  fexp fdup 1/f f+ f2/ ;
 2274: 
 2275: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2276: r2 = tanh(r1);
 2277: :
 2278:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2279: 
 2280: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2281: r2 = asinh(r1);
 2282: :
 2283:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2284: 
 2285: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2286: r2 = acosh(r1);
 2287: :
 2288:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2289: 
 2290: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2291: r2 = atanh(r1);
 2292: :
 2293:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2294:  r> IF  fnegate  THEN ;
 2295: 
 2296: sfloats	( n1 -- n2 )	float-ext	s_floats
 2297: ""@i{n2} is the number of address units of @i{n1}
 2298: single-precision IEEE floating-point numbers.""
 2299: n2 = n1*sizeof(SFloat);
 2300: 
 2301: dfloats	( n1 -- n2 )	float-ext	d_floats
 2302: ""@i{n2} is the number of address units of @i{n1}
 2303: double-precision IEEE floating-point numbers.""
 2304: n2 = n1*sizeof(DFloat);
 2305: 
 2306: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2307: ""@i{sf-addr} is the first single-float-aligned address greater
 2308: than or equal to @i{c-addr}.""
 2309: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2310: :
 2311:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2312: 
 2313: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2314: ""@i{df-addr} is the first double-float-aligned address greater
 2315: than or equal to @i{c-addr}.""
 2316: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2317: :
 2318:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2319: 
 2320: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2321: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2322: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2323: ucount elements.""
 2324: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2325: :
 2326:  >r swap 2swap swap 0e r> 0 ?DO
 2327:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2328:  LOOP 2drop 2drop ; 
 2329: 
 2330: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2331: ""vy=ra*vx+vy""
 2332: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2333: :
 2334:  >r swap 2swap swap r> 0 ?DO
 2335:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2336:  LOOP 2drop 2drop fdrop ;
 2337: 
 2338: \+
 2339: 
 2340: \ The following words access machine/OS/installation-dependent
 2341: \   Gforth internals
 2342: \ !! how about environmental queries DIRECT-THREADED,
 2343: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2344: 
 2345: \ local variable implementation primitives
 2346: 
 2347: \+glocals
 2348: 
 2349: \g locals
 2350: 
 2351: @local#	( #noffset -- w )	gforth	fetch_local_number
 2352: w = *(Cell *)(lp+noffset);
 2353: 
 2354: @local0	( -- w )	new	fetch_local_zero
 2355: w = ((Cell *)lp)[0];
 2356: 
 2357: @local1	( -- w )	new	fetch_local_four
 2358: w = ((Cell *)lp)[1];
 2359: 
 2360: @local2	( -- w )	new	fetch_local_eight
 2361: w = ((Cell *)lp)[2];
 2362: 
 2363: @local3	( -- w )	new	fetch_local_twelve
 2364: w = ((Cell *)lp)[3];
 2365: 
 2366: \+floating
 2367: 
 2368: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2369: r = *(Float *)(lp+noffset);
 2370: 
 2371: f@local0	( -- r )	new	f_fetch_local_zero
 2372: r = ((Float *)lp)[0];
 2373: 
 2374: f@local1	( -- r )	new	f_fetch_local_eight
 2375: r = ((Float *)lp)[1];
 2376: 
 2377: \+
 2378: 
 2379: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2380: /* this can also be used to implement lp@ */
 2381: c_addr = (Char *)(lp+noffset);
 2382: 
 2383: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2384: ""used with negative immediate values it allocates memory on the
 2385: local stack, a positive immediate argument drops memory from the local
 2386: stack""
 2387: lp += noffset;
 2388: 
 2389: lp-	( -- )	new	minus_four_lp_plus_store
 2390: lp += -sizeof(Cell);
 2391: 
 2392: lp+	( -- )	new	eight_lp_plus_store
 2393: lp += sizeof(Float);
 2394: 
 2395: lp+2	( -- )	new	sixteen_lp_plus_store
 2396: lp += 2*sizeof(Float);
 2397: 
 2398: lp!	( c_addr -- )	gforth	lp_store
 2399: lp = (Address)c_addr;
 2400: 
 2401: >l	( w -- )	gforth	to_l
 2402: lp -= sizeof(Cell);
 2403: *(Cell *)lp = w;
 2404: 
 2405: \+floating
 2406: 
 2407: f>l	( r -- )	gforth	f_to_l
 2408: lp -= sizeof(Float);
 2409: *(Float *)lp = r;
 2410: 
 2411: fpick	( f:... u -- f:... r )		gforth
 2412: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2413: r = fp[u];
 2414: :
 2415:  floats fp@ + f@ ;
 2416: 
 2417: \+
 2418: \+
 2419: 
 2420: \+OS
 2421: 
 2422: \g syslib
 2423: 
 2424: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2425: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2426: #ifndef RTLD_GLOBAL
 2427: #define RTLD_GLOBAL 0
 2428: #endif
 2429: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2430: #else
 2431: #  ifdef _WIN32
 2432: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2433: #  else
 2434: #warning Define open-lib!
 2435: u2 = 0;
 2436: #  endif
 2437: #endif
 2438: 
 2439: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2440: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2441: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2442: #else
 2443: #  ifdef _WIN32
 2444: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2445: #  else
 2446: #warning Define lib-sym!
 2447: u3 = 0;
 2448: #  endif
 2449: #endif
 2450: 
 2451: wcall	( ... u -- ... )	gforth
 2452: gforth_FP=fp;
 2453: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2454: fp=gforth_FP;
 2455: 
 2456: uw@ ( c_addr -- u )	gforth u_w_fetch
 2457: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2458: u = *(UWyde*)(c_addr);
 2459: 
 2460: sw@ ( c_addr -- n )	gforth s_w_fetch
 2461: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2462: n = *(Wyde*)(c_addr);
 2463: 
 2464: w! ( w c_addr -- )	gforth w_store
 2465: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2466: *(Wyde*)(c_addr) = w;
 2467: 
 2468: ul@ ( c_addr -- u )	gforth u_l_fetch
 2469: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2470: u = *(UTetrabyte*)(c_addr);
 2471: 
 2472: sl@ ( c_addr -- n )	gforth s_l_fetch
 2473: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2474: n = *(Tetrabyte*)(c_addr);
 2475: 
 2476: l! ( w c_addr -- )	gforth l_store
 2477: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2478: *(Tetrabyte*)(c_addr) = w;
 2479: 
 2480: \+FFCALL
 2481: 
 2482: av-start-void	( c_addr -- )	gforth  av_start_void
 2483: av_start_void(alist, c_addr);
 2484: 
 2485: av-start-int	( c_addr -- )	gforth  av_start_int
 2486: av_start_int(alist, c_addr, &irv);
 2487: 
 2488: av-start-float	( c_addr -- )	gforth  av_start_float
 2489: av_start_float(alist, c_addr, &frv);
 2490: 
 2491: av-start-double	( c_addr -- )	gforth  av_start_double
 2492: av_start_double(alist, c_addr, &drv);
 2493: 
 2494: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2495: av_start_longlong(alist, c_addr, &llrv);
 2496: 
 2497: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2498: av_start_ptr(alist, c_addr, void*, &prv);
 2499: 
 2500: av-int  ( w -- )  gforth  av_int
 2501: av_int(alist, w);
 2502: 
 2503: av-float	( r -- )	gforth  av_float
 2504: av_float(alist, r);
 2505: 
 2506: av-double	( r -- )	gforth  av_double
 2507: av_double(alist, r);
 2508: 
 2509: av-longlong	( d -- )	gforth  av_longlong
 2510: #ifdef BUGGY_LL_SIZE
 2511: av_longlong(alist, DLO(d));
 2512: #else
 2513: av_longlong(alist, d);
 2514: #endif
 2515: 
 2516: av-ptr	( c_addr -- )	gforth  av_ptr
 2517: av_ptr(alist, void*, c_addr);
 2518: 
 2519: av-int-r  ( R:w -- )  gforth  av_int_r
 2520: av_int(alist, w);
 2521: 
 2522: av-float-r	( -- )	gforth  av_float_r
 2523: float r = *(Float*)lp;
 2524: lp += sizeof(Float);
 2525: av_float(alist, r);
 2526: 
 2527: av-double-r	( -- )	gforth  av_double_r
 2528: double r = *(Float*)lp;
 2529: lp += sizeof(Float);
 2530: av_double(alist, r);
 2531: 
 2532: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2533: #ifdef BUGGY_LL_SIZE
 2534: av_longlong(alist, DLO(d));
 2535: #else
 2536: av_longlong(alist, d);
 2537: #endif
 2538: 
 2539: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2540: av_ptr(alist, void*, c_addr);
 2541: 
 2542: av-call-void	( ... -- ... )	gforth  av_call_void
 2543: SAVE_REGS
 2544: av_call(alist);
 2545: REST_REGS
 2546: 
 2547: av-call-int	( ... -- ... w )	gforth  av_call_int
 2548: SAVE_REGS
 2549: av_call(alist);
 2550: REST_REGS
 2551: w = irv;
 2552: 
 2553: av-call-float	( ... -- ... r )	gforth  av_call_float
 2554: SAVE_REGS
 2555: av_call(alist);
 2556: REST_REGS
 2557: r = frv;
 2558: 
 2559: av-call-double	( ... -- ... r )	gforth  av_call_double
 2560: SAVE_REGS
 2561: av_call(alist);
 2562: REST_REGS
 2563: r = drv;
 2564: 
 2565: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2566: SAVE_REGS
 2567: av_call(alist);
 2568: REST_REGS
 2569: #ifdef BUGGY_LONG_LONG
 2570: DLO_IS(d, llrv);
 2571: DHI_IS(d, 0);
 2572: #else
 2573: d = llrv;
 2574: #endif
 2575: 
 2576: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2577: SAVE_REGS
 2578: av_call(alist);
 2579: REST_REGS
 2580: c_addr = prv;
 2581: 
 2582: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2583: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2584: 
 2585: va-start-void	( -- )	gforth	va_start_void
 2586: va_start_void(gforth_clist);
 2587: 
 2588: va-start-int	( -- )	gforth	va_start_int
 2589: va_start_int(gforth_clist);
 2590: 
 2591: va-start-longlong	( -- )	gforth	va_start_longlong
 2592: va_start_longlong(gforth_clist);
 2593: 
 2594: va-start-ptr	( -- )	gforth	va_start_ptr
 2595: va_start_ptr(gforth_clist, (char *));
 2596: 
 2597: va-start-float	( -- )	gforth	va_start_float
 2598: va_start_float(gforth_clist);
 2599: 
 2600: va-start-double	( -- )	gforth	va_start_double
 2601: va_start_double(gforth_clist);
 2602: 
 2603: va-arg-int	( -- w )	gforth	va_arg_int
 2604: w = va_arg_int(gforth_clist);
 2605: 
 2606: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2607: #ifdef BUGGY_LONG_LONG
 2608: DLO_IS(d, va_arg_longlong(gforth_clist));
 2609: DHI_IS(d, 0);
 2610: #else
 2611: d = va_arg_longlong(gforth_clist);
 2612: #endif
 2613: 
 2614: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2615: c_addr = (char *)va_arg_ptr(gforth_clist,char*);
 2616: 
 2617: va-arg-float	( -- r )	gforth	va_arg_float
 2618: r = va_arg_float(gforth_clist);
 2619: 
 2620: va-arg-double	( -- r )	gforth	va_arg_double
 2621: r = va_arg_double(gforth_clist);
 2622: 
 2623: va-return-void ( -- )	gforth va_return_void
 2624: va_return_void(gforth_clist);
 2625: return 0;
 2626: 
 2627: va-return-int ( w -- )	gforth va_return_int
 2628: va_return_int(gforth_clist, w);
 2629: return 0;
 2630: 
 2631: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2632: va_return_ptr(gforth_clist, void *, c_addr);
 2633: return 0;
 2634: 
 2635: va-return-longlong ( d -- )	gforth va_return_longlong
 2636: #ifdef BUGGY_LONG_LONG
 2637: va_return_longlong(gforth_clist, d.lo);
 2638: #else
 2639: va_return_longlong(gforth_clist, d);
 2640: #endif
 2641: return 0;
 2642: 
 2643: va-return-float ( r -- )	gforth va_return_float
 2644: va_return_float(gforth_clist, r);
 2645: return 0;
 2646: 
 2647: va-return-double ( r -- )	gforth va_return_double
 2648: va_return_double(gforth_clist, r);
 2649: return 0;
 2650: 
 2651: \+
 2652: 
 2653: \+LIBFFI
 2654: 
 2655: ffi-type ( n -- a_type )	gforth ffi_type
 2656: static void* ffi_types[] =
 2657:     { &ffi_type_void,
 2658:       &ffi_type_uint8, &ffi_type_sint8,
 2659:       &ffi_type_uint16, &ffi_type_sint16,
 2660:       &ffi_type_uint32, &ffi_type_sint32,
 2661:       &ffi_type_uint64, &ffi_type_sint64,
 2662:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2663:       &ffi_type_pointer };
 2664: a_type = ffi_types[n];
 2665: 
 2666: ffi-size ( n1 -- n2 )	gforth ffi_size
 2667: static int ffi_sizes[] =
 2668:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2669: n2 = ffi_sizes[n1];
 2670: 
 2671: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2672: w = ffi_prep_cif((ffi_cif *)a_cif, FFI_DEFAULT_ABI, n,
 2673: 	 (ffi_type *)a_rtype, (ffi_type **)a_atypes);
 2674: 
 2675: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2676: SAVE_REGS
 2677: ffi_call((ffi_cif *)a_cif, (void(*)())a_ip, (void *)a_rvalue, (void **)a_avalues);
 2678: REST_REGS
 2679: 
 2680: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2681: w = ffi_prep_closure((ffi_closure *)a_closure, (ffi_cif *)a_cif, gforth_callback, (void *)a_ip);
 2682: 
 2683: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2684: #ifdef BUGGY_LONG_LONG
 2685: DLO_IS(d, *(Cell*)(*a_addr));
 2686: DHI_IS(d, 0);
 2687: #else
 2688: d = *(DCell*)(a_addr);
 2689: #endif
 2690: 
 2691: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2692: #ifdef BUGGY_LONG_LONG
 2693: *(Cell*)(a_addr) = DLO(d);
 2694: #else
 2695: *(DCell*)(a_addr) = d;
 2696: #endif
 2697: 
 2698: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2699: w = *(int *)(*gforth_clist++);
 2700: 
 2701: ffi-arg-long ( -- w )	gforth ffi_arg_long
 2702: w = *(long *)(*gforth_clist++);
 2703: 
 2704: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2705: #ifdef BUGGY_LONG_LONG
 2706: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2707: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2708: #else
 2709: d = *(DCell*)(*gforth_clist++);
 2710: #endif
 2711: 
 2712: ffi-arg-dlong ( -- d )	gforth ffi_arg_dlong
 2713: #ifdef BUGGY_LONG_LONG
 2714: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2715: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2716: #else
 2717: d = *(Cell*)(*gforth_clist++);
 2718: #endif
 2719: 
 2720: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2721: c_addr = *(Char **)(*gforth_clist++);
 2722: 
 2723: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2724: r = *(float*)(*gforth_clist++);
 2725: 
 2726: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2727: r = *(double*)(*gforth_clist++);
 2728: 
 2729: ffi-ret-void ( -- )	gforth ffi_ret_void
 2730: return 0;
 2731: 
 2732: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2733: *(int*)(gforth_ritem) = w;
 2734: return 0;
 2735: 
 2736: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2737: #ifdef BUGGY_LONG_LONG
 2738: *(Cell*)(gforth_ritem) = DLO(d);
 2739: #else
 2740: *(DCell*)(gforth_ritem) = d;
 2741: #endif
 2742: return 0;
 2743: 
 2744: ffi-ret-dlong ( d -- )	gforth ffi_ret_dlong
 2745: #ifdef BUGGY_LONG_LONG
 2746: *(Cell*)(gforth_ritem) = DLO(d);
 2747: #else
 2748: *(Cell*)(gforth_ritem) = d;
 2749: #endif
 2750: return 0;
 2751: 
 2752: ffi-ret-long ( n -- )	gforth ffi_ret_long
 2753: *(Cell*)(gforth_ritem) = n;
 2754: return 0;
 2755: 
 2756: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2757: *(Char **)(gforth_ritem) = c_addr;
 2758: return 0;
 2759: 
 2760: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2761: *(float*)(gforth_ritem) = r;
 2762: return 0;
 2763: 
 2764: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2765: *(double*)(gforth_ritem) = r;
 2766: return 0;
 2767: 
 2768: \+
 2769: 
 2770: \+OLDCALL
 2771: 
 2772: define(`uploop',
 2773:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2774: define(`_uploop',
 2775:        `ifelse($1, `$3', `$5',
 2776: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2777: 
 2778: \ argflist(argnum): Forth argument list
 2779: define(argflist,
 2780:        `ifelse($1, 0, `',
 2781:                `uploop(`_i', 1, $1, ``u''`_i ', ``u''`_i')')')
 2782: \ argdlist(argnum): declare C's arguments
 2783: define(argdlist,
 2784:        `ifelse($1, 0, `',
 2785:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2786: \ argclist(argnum): pass C's arguments
 2787: define(argclist,
 2788:        `ifelse($1, 0, `',
 2789:                `uploop(`_i', 1, $1, ``u''`_i, ', ``u''`_i')')')
 2790: \ icall(argnum)
 2791: define(icall,
 2792: `icall$1	( argflist($1) u -- uret )	gforth
 2793: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2794: 
 2795: ')
 2796: define(fcall,
 2797: `fcall$1	( argflist($1) u -- rret )	gforth
 2798: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2799: 
 2800: ')
 2801: 
 2802: \ close ' to keep fontify happy
 2803: 
 2804: uploop(i, 0, 7, `icall(i)')
 2805: icall(20)
 2806: uploop(i, 0, 7, `fcall(i)')
 2807: fcall(20)
 2808: 
 2809: \+
 2810: \+
 2811: 
 2812: \g peephole
 2813: 
 2814: \+peephole
 2815: 
 2816: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2817: ""compile prim (incl. immargs) at @var{a_prim}""
 2818: compile_prim1(a_prim);
 2819: 
 2820: finish-code ( ... -- ... ) gforth finish_code
 2821: ""Perform delayed steps in code generation (branch resolution, I-cache
 2822: flushing).""
 2823: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2824:    to save spTOS (gforth-fast --enable-force-reg) */
 2825: finish_code();
 2826: 
 2827: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2828: f = forget_dyncode(c_code);
 2829: 
 2830: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2831: ""a_prim is the code address of the primitive that has been
 2832: compile_prim1ed to a_code""
 2833: a_prim = (Cell *)decompile_code((Label)a_code);
 2834: 
 2835: \ set-next-code and call2 do not appear in images and can be
 2836: \ renumbered arbitrarily
 2837: 
 2838: set-next-code ( #w -- ) gforth set_next_code
 2839: #ifdef NO_IP
 2840: next_code = (Label)w;
 2841: #endif
 2842: 
 2843: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2844: /* call with explicit return address */
 2845: #ifdef NO_IP
 2846: INST_TAIL;
 2847: JUMP(a_callee);
 2848: #else
 2849: assert(0);
 2850: #endif
 2851: 
 2852: tag-offsets ( -- a_addr ) gforth tag_offsets
 2853: extern Cell groups[32];
 2854: a_addr = groups;
 2855: 
 2856: \+
 2857: 
 2858: \g static_super
 2859: 
 2860: ifdef(`STACK_CACHE_FILE',
 2861: `include(peeprules.vmg)')
 2862: 
 2863: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>