File:  [gforth] / gforth / prim
Revision 1.189: download - view: text, annotated - select for diffs
Sun Feb 19 17:27:12 2006 UTC (13 years, 7 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
Added x-width
Further r8c work

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E include-skipped-insts on \ static superinsts include cells for components
  113: \E                          \ useful for dynamic programming and
  114: \E                          \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  207: ""run-time routine for @code{does>}-defined words""
  208: #ifdef NO_IP
  209: a_retaddr = next_code;
  210: a_body = PFA(CFA);
  211: INST_TAIL;
  212: goto **(Label *)DOES_CODE1(CFA);
  213: #else /* !defined(NO_IP) */
  214: a_retaddr = (Cell *)IP;
  215: a_body = PFA(CFA);
  216: SET_IP(DOES_CODE1(CFA));
  217: #endif /* !defined(NO_IP) */
  218: 
  219: (does-handler) ( -- )	gforth-internal	paren_does_handler
  220: ""just a slot to have an encoding for the DOESJUMP, 
  221: which is no longer used anyway (!! eliminate this)""
  222: 
  223: \F [endif]
  224: 
  225: \g control
  226: 
  227: noop	( -- )		gforth
  228: :
  229:  ;
  230: 
  231: call	( #a_callee -- R:a_retaddr )	new
  232: ""Call callee (a variant of docol with inline argument).""
  233: #ifdef NO_IP
  234: assert(0);
  235: INST_TAIL;
  236: JUMP(a_callee);
  237: #else
  238: #ifdef DEBUG
  239:     {
  240:       CFA_TO_NAME((((Cell *)a_callee)-2));
  241:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  242: 	      len,name);
  243:     }
  244: #endif
  245: a_retaddr = (Cell *)IP;
  246: SET_IP((Xt *)a_callee);
  247: #endif
  248: 
  249: execute	( xt -- )		core
  250: ""Perform the semantics represented by the execution token, @i{xt}.""
  251: #ifndef NO_IP
  252: ip=IP;
  253: #endif
  254: SUPER_END;
  255: VM_JUMP(EXEC1(xt));
  256: 
  257: perform	( a_addr -- )	gforth
  258: ""@code{@@ execute}.""
  259: /* and pfe */
  260: #ifndef NO_IP
  261: ip=IP;
  262: #endif
  263: SUPER_END;
  264: VM_JUMP(EXEC1(*(Xt *)a_addr));
  265: :
  266:  @ execute ;
  267: 
  268: ;s	( R:w -- )		gforth	semis
  269: ""The primitive compiled by @code{EXIT}.""
  270: #ifdef NO_IP
  271: INST_TAIL;
  272: goto *(void *)w;
  273: #else
  274: SET_IP((Xt *)w);
  275: #endif
  276: 
  277: unloop	( R:w1 R:w2 -- )	core
  278: /* !! alias for 2rdrop */
  279: :
  280:  r> rdrop rdrop >r ;
  281: 
  282: lit-perform	( #a_addr -- )	new	lit_perform
  283: #ifndef NO_IP
  284: ip=IP;
  285: #endif
  286: SUPER_END;
  287: VM_JUMP(EXEC1(*(Xt *)a_addr));
  288: 
  289: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  290: #ifdef NO_IP
  291: /* compiled to LIT CALL by compile_prim */
  292: assert(0);
  293: #else
  294: a_pfa = PFA(a_cfa);
  295: nest = (Cell)IP;
  296: #ifdef DEBUG
  297:     {
  298:       CFA_TO_NAME(a_cfa);
  299:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  300: 	      (Cell)ip,(Cell)a_cfa,len,name);
  301:     }
  302: #endif
  303: SET_IP(DOES_CODE1(a_cfa));
  304: #endif
  305: 
  306: \+glocals
  307: 
  308: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  309: /* this will probably not be used */
  310: lp += nlocals;
  311: #ifdef NO_IP
  312: INST_TAIL;
  313: JUMP(a_target);
  314: #else
  315: SET_IP((Xt *)a_target);
  316: #endif
  317: 
  318: \+
  319: 
  320: branch	( #a_target -- )	gforth
  321: #ifdef NO_IP
  322: INST_TAIL;
  323: JUMP(a_target);
  324: #else
  325: SET_IP((Xt *)a_target);
  326: #endif
  327: :
  328:  r> @ >r ;
  329: 
  330: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  331: \ this is non-syntactical: code must open a brace that is closed by the macro
  332: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  333: \ this is non-syntactical: code must open a brace that is closed by the macro
  334: define(condbranch,
  335: $1 ( `#'a_target $2 ) $3
  336: $4	#ifdef NO_IP
  337: INST_TAIL;
  338: #endif
  339: $5	#ifdef NO_IP
  340: JUMP(a_target);
  341: #else
  342: SET_IP((Xt *)a_target);
  343: #endif
  344: }
  345: $6
  346: 
  347: \+glocals
  348: 
  349: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  350: $4	#ifdef NO_IP
  351: INST_TAIL;
  352: #endif
  353: $5	lp += nlocals;
  354: #ifdef NO_IP
  355: JUMP(a_target);
  356: #else
  357: SET_IP((Xt *)a_target);
  358: #endif
  359: }
  360: 
  361: \+
  362: )
  363: 
  364: \ version that generates two jumps (not good for PR 15242 workaround)
  365: define(condbranch_twojump,
  366: $1 ( `#'a_target $2 ) $3
  367: $4	#ifdef NO_IP
  368: INST_TAIL;
  369: #endif
  370: $5	#ifdef NO_IP
  371: JUMP(a_target);
  372: #else
  373: SET_IP((Xt *)a_target);
  374: INST_TAIL; NEXT_P2;
  375: #endif
  376: }
  377: SUPER_CONTINUE;
  378: $6
  379: 
  380: \+glocals
  381: 
  382: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  383: $4	#ifdef NO_IP
  384: INST_TAIL;
  385: #endif
  386: $5	lp += nlocals;
  387: #ifdef NO_IP
  388: JUMP(a_target);
  389: #else
  390: SET_IP((Xt *)a_target);
  391: INST_TAIL; NEXT_P2;
  392: #endif
  393: }
  394: SUPER_CONTINUE;
  395: 
  396: \+
  397: )
  398: 
  399: condbranch(?branch,f --,f83	question_branch,
  400: ,if (f==0) {
  401: ,:
  402:  0= dup 0=          \ !f f
  403:  r> tuck cell+      \ !f branchoffset f IP+
  404:  and -rot @ and or  \ f&IP+|!f&branch
  405:  >r ;)
  406: 
  407: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  408: \ is only used in if's (yet)
  409: 
  410: \+xconds
  411: 
  412: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  413: ""The run-time procedure compiled by @code{?DUP-IF}.""
  414: if (f==0) {
  415: #ifdef NO_IP
  416: INST_TAIL;
  417: JUMP(a_target);
  418: #else
  419: SET_IP((Xt *)a_target);
  420: #endif
  421: } else {
  422: sp--;
  423: sp[0]=f;
  424: }
  425: 
  426: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  427: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  428: if (f!=0) {
  429:   sp--;
  430:   sp[0]=f;
  431: #ifdef NO_IP
  432:   JUMP(a_target);
  433: #else
  434:   SET_IP((Xt *)a_target);
  435: #endif
  436: }
  437: 
  438: \+
  439: \fhas? skiploopprims 0= [IF]
  440: 
  441: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  442: n2=n1-1;
  443: ,if (n1) {
  444: ,:
  445:  r> r> dup 1- >r
  446:  IF @ >r ELSE cell+ >r THEN ;)
  447: 
  448: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  449: n2=n1+1;
  450: ,if (n2 != nlimit) {
  451: ,:
  452:  r> r> 1+ r> 2dup =
  453:  IF >r 1- >r cell+ >r
  454:  ELSE >r >r @ >r THEN ;)
  455: 
  456: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  457: /* !! check this thoroughly */
  458: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  459: /* dependent upon two's complement arithmetic */
  460: Cell olddiff = n1-nlimit;
  461: n2=n1+n;	
  462: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  463:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  464:     >=0) { /* & is used to avoid having two branches for gforth-native */
  465: ,:
  466:  r> swap
  467:  r> r> 2dup - >r
  468:  2 pick r@ + r@ xor 0< 0=
  469:  3 pick r> xor 0< 0= or
  470:  IF    >r + >r @ >r
  471:  ELSE  >r >r drop cell+ >r THEN ;)
  472: 
  473: \+xconds
  474: 
  475: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  476: UCell olddiff = n1-nlimit;
  477: n2=n1-u;
  478: ,if (olddiff>u) {
  479: ,)
  480: 
  481: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  482: ""The run-time procedure compiled by S+LOOP. It loops until the index
  483: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  484: version of (+LOOP).""
  485: /* !! check this thoroughly */
  486: Cell diff = n1-nlimit;
  487: Cell newdiff = diff+n;
  488: if (n<0) {
  489:     diff = -diff;
  490:     newdiff = -newdiff;
  491: }
  492: n2=n1+n;
  493: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  494: ,)
  495: 
  496: \+
  497: 
  498: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  499: /* or (for) = >r -- collides with unloop! */
  500: nlimit=0;
  501: :
  502:  r> swap 0 >r >r >r ;
  503: 
  504: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  505: :
  506:  r> swap rot >r >r >r ;
  507: 
  508: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  509: #ifdef NO_IP
  510:     INST_TAIL;
  511: #endif
  512: if (nstart == nlimit) {
  513: #ifdef NO_IP
  514:     JUMP(a_target);
  515: #else
  516:     SET_IP((Xt *)a_target);
  517: #endif
  518: }
  519: :
  520:   2dup =
  521:   IF   r> swap rot >r >r
  522:        @ >r
  523:   ELSE r> swap rot >r >r
  524:        cell+ >r
  525:   THEN ;				\ --> CORE-EXT
  526: 
  527: \+xconds
  528: 
  529: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  530: #ifdef NO_IP
  531:     INST_TAIL;
  532: #endif
  533: if (nstart >= nlimit) {
  534: #ifdef NO_IP
  535:     JUMP(a_target);
  536: #else
  537:     SET_IP((Xt *)a_target);
  538: #endif
  539: }
  540: :
  541:  swap 2dup
  542:  r> swap >r swap >r
  543:  >=
  544:  IF
  545:      @
  546:  ELSE
  547:      cell+
  548:  THEN  >r ;
  549: 
  550: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  551: #ifdef NO_IP
  552:     INST_TAIL;
  553: #endif
  554: if (ustart >= ulimit) {
  555: #ifdef NO_IP
  556: JUMP(a_target);
  557: #else
  558: SET_IP((Xt *)a_target);
  559: #endif
  560: }
  561: :
  562:  swap 2dup
  563:  r> swap >r swap >r
  564:  u>=
  565:  IF
  566:      @
  567:  ELSE
  568:      cell+
  569:  THEN  >r ;
  570: 
  571: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  572: #ifdef NO_IP
  573:     INST_TAIL;
  574: #endif
  575: if (nstart <= nlimit) {
  576: #ifdef NO_IP
  577: JUMP(a_target);
  578: #else
  579: SET_IP((Xt *)a_target);
  580: #endif
  581: }
  582: :
  583:  swap 2dup
  584:  r> swap >r swap >r
  585:  <=
  586:  IF
  587:      @
  588:  ELSE
  589:      cell+
  590:  THEN  >r ;
  591: 
  592: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  593: #ifdef NO_IP
  594:     INST_TAIL;
  595: #endif
  596: if (ustart <= ulimit) {
  597: #ifdef NO_IP
  598: JUMP(a_target);
  599: #else
  600: SET_IP((Xt *)a_target);
  601: #endif
  602: }
  603: :
  604:  swap 2dup
  605:  r> swap >r swap >r
  606:  u<=
  607:  IF
  608:      @
  609:  ELSE
  610:      cell+
  611:  THEN  >r ;
  612: 
  613: \+
  614: 
  615: \ don't make any assumptions where the return stack is!!
  616: \ implement this in machine code if it should run quickly!
  617: 
  618: i	( R:n -- R:n n )		core
  619: :
  620: \ rp@ cell+ @ ;
  621:   r> r> tuck >r >r ;
  622: 
  623: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  624: :
  625: \ rp@ cell+ cell+ @ ;
  626:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  627: variable itmp
  628: 
  629: j	( R:n R:d1 -- n R:n R:d1 )		core
  630: :
  631: \ rp@ cell+ cell+ cell+ @ ;
  632:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  633: [IFUNDEF] itmp variable itmp [THEN]
  634: 
  635: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  636: :
  637: \ rp@ [ 5 cells ] Literal + @ ;
  638:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  639: [IFUNDEF] itmp variable itmp [THEN]
  640: 
  641: \f[THEN]
  642: 
  643: \ digit is high-level: 0/0%
  644: 
  645: \g strings
  646: 
  647: move	( c_from c_to ucount -- )		core
  648: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  649: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  650: /* !! note that the standard specifies addr, not c-addr */
  651: memmove(c_to,c_from,ucount);
  652: /* make an Ifdef for bsd and others? */
  653: :
  654:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  655: 
  656: cmove	( c_from c_to u -- )	string	c_move
  657: ""Copy the contents of @i{ucount} characters from data space at
  658: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  659: from low address to high address; i.e., for overlapping areas it is
  660: safe if @i{c-to}=<@i{c-from}.""
  661: cmove(c_from,c_to,u);
  662: :
  663:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  664: 
  665: cmove>	( c_from c_to u -- )	string	c_move_up
  666: ""Copy the contents of @i{ucount} characters from data space at
  667: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  668: from high address to low address; i.e., for overlapping areas it is
  669: safe if @i{c-to}>=@i{c-from}.""
  670: cmove_up(c_from,c_to,u);
  671: :
  672:  dup 0= IF  drop 2drop exit  THEN
  673:  rot over + -rot bounds swap 1-
  674:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  675: 
  676: fill	( c_addr u c -- )	core
  677: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  678: memset(c_addr,c,u);
  679: :
  680:  -rot bounds
  681:  ?DO  dup I c!  LOOP  drop ;
  682: 
  683: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  684: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  685: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  686: is 1. Currently this is based on the machine's character
  687: comparison. In the future, this may change to consider the current
  688: locale and its collation order.""
  689: /* close ' to keep fontify happy */ 
  690: n = compare(c_addr1, u1, c_addr2, u2);
  691: :
  692:  rot 2dup swap - >r min swap -text dup
  693:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  694: : -text ( c_addr1 u c_addr2 -- n )
  695:  swap bounds
  696:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  697:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  698: : sgn ( n -- -1/0/1 )
  699:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  700: 
  701: \ -text is only used by replaced primitives now; move it elsewhere
  702: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  703: \ n = memcmp(c_addr1, c_addr2, u);
  704: \ if (n<0)
  705: \   n = -1;
  706: \ else if (n>0)
  707: \   n = 1;
  708: \ :
  709: \  swap bounds
  710: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  711: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  712: \ : sgn ( n -- -1/0/1 )
  713: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  714: 
  715: toupper	( c1 -- c2 )	gforth
  716: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  717: is the equivalent upper-case character. All other characters are unchanged.""
  718: c2 = toupper(c1);
  719: :
  720:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  721: 
  722: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  723: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  724: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  725: is 1. Currently this is based on the machine's character
  726: comparison. In the future, this may change to consider the current
  727: locale and its collation order.""
  728: /* close ' to keep fontify happy */ 
  729: n = capscompare(c_addr1, u1, c_addr2, u2);
  730: 
  731: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  732: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  733: characters from the start of the string.""
  734: c_addr2 = c_addr1+n;
  735: u2 = u1-n;
  736: :
  737:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  738: 
  739: \g arith
  740: 
  741: lit	( #w -- w )		gforth
  742: :
  743:  r> dup @ swap cell+ >r ;
  744: 
  745: +	( n1 n2 -- n )		core	plus
  746: n = n1+n2;
  747: 
  748: \ lit+ / lit_plus = lit +
  749: 
  750: lit+	( n1 #n2 -- n )		new	lit_plus
  751: n=n1+n2;
  752: 
  753: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  754: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  755: ""add @i{n3} to @i{n1} (giving @i{n})""
  756: n = n1+n3;
  757: :
  758:  rot + swap ;
  759: 
  760: -	( n1 n2 -- n )		core	minus
  761: n = n1-n2;
  762: :
  763:  negate + ;
  764: 
  765: negate	( n1 -- n2 )		core
  766: /* use minus as alias */
  767: n2 = -n1;
  768: :
  769:  invert 1+ ;
  770: 
  771: 1+	( n1 -- n2 )		core		one_plus
  772: n2 = n1+1;
  773: :
  774:  1 + ;
  775: 
  776: 1-	( n1 -- n2 )		core		one_minus
  777: n2 = n1-1;
  778: :
  779:  1 - ;
  780: 
  781: max	( n1 n2 -- n )	core
  782: if (n1<n2)
  783:   n = n2;
  784: else
  785:   n = n1;
  786: :
  787:  2dup < IF swap THEN drop ;
  788: 
  789: min	( n1 n2 -- n )	core
  790: if (n1<n2)
  791:   n = n1;
  792: else
  793:   n = n2;
  794: :
  795:  2dup > IF swap THEN drop ;
  796: 
  797: abs	( n -- u )	core
  798: if (n<0)
  799:   u = -n;
  800: else
  801:   u = n;
  802: :
  803:  dup 0< IF negate THEN ;
  804: 
  805: *	( n1 n2 -- n )		core	star
  806: n = n1*n2;
  807: :
  808:  um* drop ;
  809: 
  810: /	( n1 n2 -- n )		core	slash
  811: n = n1/n2;
  812: if(FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0)) n--;
  813: :
  814:  /mod nip ;
  815: 
  816: mod	( n1 n2 -- n )		core
  817: n = n1%n2;
  818: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  819: :
  820:  /mod drop ;
  821: 
  822: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  823: n4 = n1/n2;
  824: n3 = n1%n2; /* !! is this correct? look into C standard! */
  825: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  826:   n4--;
  827:   n3+=n2;
  828: }
  829: :
  830:  >r s>d r> fm/mod ;
  831: 
  832: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  833: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  834: #ifdef BUGGY_LL_MUL
  835: DCell d = mmul(n1,n2);
  836: #else
  837: DCell d = (DCell)n1 * (DCell)n2;
  838: #endif
  839: #ifdef BUGGY_LL_DIV
  840: DCell r = fmdiv(d,n3);
  841: n4=DHI(r);
  842: n5=DLO(r);
  843: #else
  844: /* assumes that the processor uses either floored or symmetric division */
  845: n5 = d/n3;
  846: n4 = d%n3;
  847: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  848:   n5--;
  849:   n4+=n3;
  850: }
  851: #endif
  852: :
  853:  >r m* r> fm/mod ;
  854: 
  855: */	( n1 n2 n3 -- n4 )	core	star_slash
  856: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  857: #ifdef BUGGY_LL_MUL
  858: DCell d = mmul(n1,n2);
  859: #else
  860: DCell d = (DCell)n1 * (DCell)n2;
  861: #endif
  862: #ifdef BUGGY_LL_DIV
  863: DCell r = fmdiv(d,n3);
  864: n4=DLO(r);
  865: #else
  866: /* assumes that the processor uses either floored or symmetric division */
  867: n4 = d/n3;
  868: if (FLOORED_DIV && ((DHI(d)^n3)<0) && (d%n3)!=0) n4--;
  869: #endif
  870: :
  871:  */mod nip ;
  872: 
  873: 2*	( n1 -- n2 )		core		two_star
  874: ""Shift left by 1; also works on unsigned numbers""
  875: n2 = 2*n1;
  876: :
  877:  dup + ;
  878: 
  879: 2/	( n1 -- n2 )		core		two_slash
  880: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  881: division by 2 (note that @code{/} not necessarily floors).""
  882: n2 = n1>>1;
  883: :
  884:  dup MINI and IF 1 ELSE 0 THEN
  885:  [ bits/char cell * 1- ] literal 
  886:  0 DO 2* swap dup 2* >r MINI and 
  887:      IF 1 ELSE 0 THEN or r> swap
  888:  LOOP nip ;
  889: 
  890: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  891: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  892: #ifdef BUGGY_LL_DIV
  893: #ifdef ASM_SM_SLASH_REM
  894: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  895: if (((DHI(d1)^n1)<0) && n2!=0) {
  896:   n3--;
  897:   n2+=n1;
  898: }
  899: #else /* !defined(ASM_SM_SLASH_REM) */
  900: DCell r = fmdiv(d1,n1);
  901: n2=DHI(r);
  902: n3=DLO(r);
  903: #endif /* !defined(ASM_SM_SLASH_REM) */
  904: #else
  905: #ifdef ASM_SM_SLASH_REM4
  906: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  907: if (((DHI(d1)^n1)<0) && n2!=0) {
  908:   n3--;
  909:   n2+=n1;
  910: }
  911: #else /* !defined(ASM_SM_SLASH_REM4) */
  912: /* assumes that the processor uses either floored or symmetric division */
  913: n3 = d1/n1;
  914: n2 = d1%n1;
  915: /* note that this 1%-3>0 is optimized by the compiler */
  916: if (1%-3>0 && ((DHI(d1)^n1)<0) && n2!=0) {
  917:   n3--;
  918:   n2+=n1;
  919: }
  920: #endif /* !defined(ASM_SM_SLASH_REM4) */
  921: #endif
  922: :
  923:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  924:  over       0< IF  tuck + swap  THEN
  925:  um/mod
  926:  r> 0< IF  swap negate swap  THEN ;
  927: 
  928: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  929: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  930: #ifdef BUGGY_LL_DIV
  931: #ifdef ASM_SM_SLASH_REM
  932: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  933: #else /* !defined(ASM_SM_SLASH_REM) */
  934: DCell r = smdiv(d1,n1);
  935: n2=DHI(r);
  936: n3=DLO(r);
  937: #endif /* !defined(ASM_SM_SLASH_REM) */
  938: #else
  939: #ifdef ASM_SM_SLASH_REM4
  940: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  941: #else /* !defined(ASM_SM_SLASH_REM4) */
  942: /* assumes that the processor uses either floored or symmetric division */
  943: n3 = d1/n1;
  944: n2 = d1%n1;
  945: /* note that this 1%-3<0 is optimized by the compiler */
  946: if (1%-3<0 && ((DHI(d1)^n1)<0) && n2!=0) {
  947:   n3++;
  948:   n2-=n1;
  949: }
  950: #endif /* !defined(ASM_SM_SLASH_REM4) */
  951: #endif
  952: :
  953:  over >r dup >r abs -rot
  954:  dabs rot um/mod
  955:  r> r@ xor 0< IF       negate       THEN
  956:  r>        0< IF  swap negate swap  THEN ;
  957: 
  958: m*	( n1 n2 -- d )		core	m_star
  959: #ifdef BUGGY_LL_MUL
  960: d = mmul(n1,n2);
  961: #else
  962: d = (DCell)n1 * (DCell)n2;
  963: #endif
  964: :
  965:  2dup      0< and >r
  966:  2dup swap 0< and >r
  967:  um* r> - r> - ;
  968: 
  969: um*	( u1 u2 -- ud )		core	u_m_star
  970: /* use u* as alias */
  971: #ifdef BUGGY_LL_MUL
  972: ud = ummul(u1,u2);
  973: #else
  974: ud = (UDCell)u1 * (UDCell)u2;
  975: #endif
  976: :
  977:    0 -rot dup [ 8 cells ] literal -
  978:    DO
  979: 	dup 0< I' and d2*+ drop
  980:    LOOP ;
  981: : d2*+ ( ud n -- ud+n c )
  982:    over MINI
  983:    and >r >r 2dup d+ swap r> + swap r> ;
  984: 
  985: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  986: ""ud=u3*u1+u2, u1>u2>=0""
  987: #ifdef BUGGY_LL_DIV
  988: #ifdef ASM_UM_SLASH_MOD
  989: ASM_UM_SLASH_MOD(ud.lo, ud.hi, u1, u2, u3);
  990: #else /* !defined(ASM_UM_SLASH_MOD) */
  991: UDCell r = umdiv(ud,u1);
  992: u2=DHI(r);
  993: u3=DLO(r);
  994: #endif /* !defined(ASM_UM_SLASH_MOD) */
  995: #else
  996: #ifdef ASM_UM_SLASH_MOD4
  997: ASM_UM_SLASH_MOD4(ud, u1, u2, u3);
  998: #else /* !defined(ASM_UM_SLASH_MOD4) */
  999: u3 = ud/u1;
 1000: u2 = ud%u1;
 1001: #endif /* !defined(ASM_UM_SLASH_MOD4) */
 1002: #endif
 1003: :
 1004:    0 swap [ 8 cells 1 + ] literal 0
 1005:    ?DO /modstep
 1006:    LOOP drop swap 1 rshift or swap ;
 1007: : /modstep ( ud c R: u -- ud-?u c R: u )
 1008:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
 1009: : d2*+ ( ud n -- ud+n c )
 1010:    over MINI
 1011:    and >r >r 2dup d+ swap r> + swap r> ;
 1012: 
 1013: m+	( d1 n -- d2 )		double		m_plus
 1014: #ifdef BUGGY_LL_ADD
 1015: DLO_IS(d2, DLO(d1)+n);
 1016: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1017: #else
 1018: d2 = d1+n;
 1019: #endif
 1020: :
 1021:  s>d d+ ;
 1022: 
 1023: d+	( d1 d2 -- d )		double	d_plus
 1024: #ifdef BUGGY_LL_ADD
 1025: DLO_IS(d, DLO(d1) + DLO(d2));
 1026: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1027: #else
 1028: d = d1+d2;
 1029: #endif
 1030: :
 1031:  rot + >r tuck + swap over u> r> swap - ;
 1032: 
 1033: d-	( d1 d2 -- d )		double		d_minus
 1034: #ifdef BUGGY_LL_ADD
 1035: DLO_IS(d, DLO(d1) - DLO(d2));
 1036: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1037: #else
 1038: d = d1-d2;
 1039: #endif
 1040: :
 1041:  dnegate d+ ;
 1042: 
 1043: dnegate	( d1 -- d2 )		double	d_negate
 1044: /* use dminus as alias */
 1045: #ifdef BUGGY_LL_ADD
 1046: d2 = dnegate(d1);
 1047: #else
 1048: d2 = -d1;
 1049: #endif
 1050: :
 1051:  invert swap negate tuck 0= - ;
 1052: 
 1053: d2*	( d1 -- d2 )		double		d_two_star
 1054: ""Shift left by 1; also works on unsigned numbers""
 1055: #ifdef BUGGY_LL_SHIFT
 1056: DLO_IS(d2, DLO(d1)<<1);
 1057: DHI_IS(d2, (DHI(d1)<<1) | (DLO(d1)>>(CELL_BITS-1)));
 1058: #else
 1059: d2 = 2*d1;
 1060: #endif
 1061: :
 1062:  2dup d+ ;
 1063: 
 1064: d2/	( d1 -- d2 )		double		d_two_slash
 1065: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1066: division by 2.""
 1067: #ifdef BUGGY_LL_SHIFT
 1068: DHI_IS(d2, DHI(d1)>>1);
 1069: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1070: #else
 1071: d2 = d1>>1;
 1072: #endif
 1073: :
 1074:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1075:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1076: 
 1077: and	( w1 w2 -- w )		core
 1078: w = w1&w2;
 1079: 
 1080: or	( w1 w2 -- w )		core
 1081: w = w1|w2;
 1082: :
 1083:  invert swap invert and invert ;
 1084: 
 1085: xor	( w1 w2 -- w )		core	x_or
 1086: w = w1^w2;
 1087: 
 1088: invert	( w1 -- w2 )		core
 1089: w2 = ~w1;
 1090: :
 1091:  MAXU xor ;
 1092: 
 1093: rshift	( u1 n -- u2 )		core	r_shift
 1094: ""Logical shift right by @i{n} bits.""
 1095: #ifdef BROKEN_SHIFT
 1096:   u2 = rshift(u1, n);
 1097: #else
 1098:   u2 = u1 >> n;
 1099: #endif
 1100: :
 1101:     0 ?DO 2/ MAXI and LOOP ;
 1102: 
 1103: lshift	( u1 n -- u2 )		core	l_shift
 1104: #ifdef BROKEN_SHIFT
 1105:   u2 = lshift(u1, n);
 1106: #else
 1107:   u2 = u1 << n;
 1108: #endif
 1109: :
 1110:     0 ?DO 2* LOOP ;
 1111: 
 1112: \g compare
 1113: 
 1114: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1115: define(comparisons,
 1116: $1=	( $2 -- f )		$6	$3equals
 1117: f = FLAG($4==$5);
 1118: :
 1119:     [ char $1x char 0 = [IF]
 1120: 	] IF false ELSE true THEN [
 1121:     [ELSE]
 1122: 	] xor 0= [
 1123:     [THEN] ] ;
 1124: 
 1125: $1<>	( $2 -- f )		$7	$3not_equals
 1126: f = FLAG($4!=$5);
 1127: :
 1128:     [ char $1x char 0 = [IF]
 1129: 	] IF true ELSE false THEN [
 1130:     [ELSE]
 1131: 	] xor 0<> [
 1132:     [THEN] ] ;
 1133: 
 1134: $1<	( $2 -- f )		$8	$3less_than
 1135: f = FLAG($4<$5);
 1136: :
 1137:     [ char $1x char 0 = [IF]
 1138: 	] MINI and 0<> [
 1139:     [ELSE] char $1x char u = [IF]
 1140: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1141: 	[ELSE]
 1142: 	    ] MINI xor >r MINI xor r> u< [
 1143: 	[THEN]
 1144:     [THEN] ] ;
 1145: 
 1146: $1>	( $2 -- f )		$9	$3greater_than
 1147: f = FLAG($4>$5);
 1148: :
 1149:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1150:     $1< ;
 1151: 
 1152: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1153: f = FLAG($4<=$5);
 1154: :
 1155:     $1> 0= ;
 1156: 
 1157: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1158: f = FLAG($4>=$5);
 1159: :
 1160:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1161:     $1<= ;
 1162: 
 1163: )
 1164: 
 1165: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1166: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1167: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1168: 
 1169: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1170: define(dcomparisons,
 1171: $1=	( $2 -- f )		$6	$3equals
 1172: #ifdef BUGGY_LL_CMP
 1173: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1174: #else
 1175: f = FLAG($4==$5);
 1176: #endif
 1177: 
 1178: $1<>	( $2 -- f )		$7	$3not_equals
 1179: #ifdef BUGGY_LL_CMP
 1180: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1181: #else
 1182: f = FLAG($4!=$5);
 1183: #endif
 1184: 
 1185: $1<	( $2 -- f )		$8	$3less_than
 1186: #ifdef BUGGY_LL_CMP
 1187: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1188: #else
 1189: f = FLAG($4<$5);
 1190: #endif
 1191: 
 1192: $1>	( $2 -- f )		$9	$3greater_than
 1193: #ifdef BUGGY_LL_CMP
 1194: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1195: #else
 1196: f = FLAG($4>$5);
 1197: #endif
 1198: 
 1199: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1200: #ifdef BUGGY_LL_CMP
 1201: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1202: #else
 1203: f = FLAG($4<=$5);
 1204: #endif
 1205: 
 1206: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1207: #ifdef BUGGY_LL_CMP
 1208: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1209: #else
 1210: f = FLAG($4>=$5);
 1211: #endif
 1212: 
 1213: )
 1214: 
 1215: \+dcomps
 1216: 
 1217: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1218: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1219: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1220: 
 1221: \+
 1222: 
 1223: within	( u1 u2 u3 -- f )		core-ext
 1224: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1225: unsigned and signed numbers (but not a mixture).  Another way to think
 1226: about this word is to consider the numbers as a circle (wrapping
 1227: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1228: min-n for signed numbers); now consider the range from u2 towards
 1229: increasing numbers up to and excluding u3 (giving an empty range if
 1230: u2=u3); if u1 is in this range, @code{within} returns true.""
 1231: f = FLAG(u1-u2 < u3-u2);
 1232: :
 1233:  over - >r - r> u< ;
 1234: 
 1235: \g stack
 1236: 
 1237: useraddr	( #u -- a_addr )	new
 1238: a_addr = (Cell *)(up+u);
 1239: 
 1240: up!	( a_addr -- )	gforth	up_store
 1241: gforth_UP=up=(char *)a_addr;
 1242: :
 1243:  up ! ;
 1244: Variable UP
 1245: 
 1246: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1247: a_addr = sp;
 1248: 
 1249: sp!	( a_addr -- S:... )		gforth		sp_store
 1250: sp = a_addr;
 1251: 
 1252: rp@	( -- a_addr )		gforth		rp_fetch
 1253: a_addr = rp;
 1254: 
 1255: rp!	( a_addr -- )		gforth		rp_store
 1256: rp = a_addr;
 1257: 
 1258: \+floating
 1259: 
 1260: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1261: f_addr = fp;
 1262: 
 1263: fp!	( f_addr -- f:... )	gforth	fp_store
 1264: fp = f_addr;
 1265: 
 1266: \+
 1267: 
 1268: >r	( w -- R:w )		core	to_r
 1269: :
 1270:  (>r) ;
 1271: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1272: 
 1273: r>	( R:w -- w )		core	r_from
 1274: :
 1275:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1276: Create (rdrop) ' ;s A,
 1277: 
 1278: rdrop	( R:w -- )		gforth
 1279: :
 1280:  r> r> drop >r ;
 1281: 
 1282: 2>r	( d -- R:d )	core-ext	two_to_r
 1283: :
 1284:  swap r> swap >r swap >r >r ;
 1285: 
 1286: 2r>	( R:d -- d )	core-ext	two_r_from
 1287: :
 1288:  r> r> swap r> swap >r swap ;
 1289: 
 1290: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1291: :
 1292:  i' j ;
 1293: 
 1294: 2rdrop	( R:d -- )		gforth	two_r_drop
 1295: :
 1296:  r> r> drop r> drop >r ;
 1297: 
 1298: over	( w1 w2 -- w1 w2 w1 )		core
 1299: :
 1300:  sp@ cell+ @ ;
 1301: 
 1302: drop	( w -- )		core
 1303: :
 1304:  IF THEN ;
 1305: 
 1306: swap	( w1 w2 -- w2 w1 )		core
 1307: :
 1308:  >r (swap) ! r> (swap) @ ;
 1309: Variable (swap)
 1310: 
 1311: dup	( w -- w w )		core	dupe
 1312: :
 1313:  sp@ @ ;
 1314: 
 1315: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1316: :
 1317: [ defined? (swap) [IF] ]
 1318:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1319: Variable (rot)
 1320: [ELSE] ]
 1321:     >r swap r> swap ;
 1322: [THEN]
 1323: 
 1324: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1325: :
 1326:  rot rot ;
 1327: 
 1328: nip	( w1 w2 -- w2 )		core-ext
 1329: :
 1330:  swap drop ;
 1331: 
 1332: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1333: :
 1334:  swap over ;
 1335: 
 1336: ?dup	( w -- S:... w )	core	question_dupe
 1337: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1338: @code{dup} if w is nonzero.""
 1339: if (w!=0) {
 1340:   *--sp = w;
 1341: }
 1342: :
 1343:  dup IF dup THEN ;
 1344: 
 1345: pick	( S:... u -- S:... w )		core-ext
 1346: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1347: w = sp[u];
 1348: :
 1349:  1+ cells sp@ + @ ;
 1350: 
 1351: 2drop	( w1 w2 -- )		core	two_drop
 1352: :
 1353:  drop drop ;
 1354: 
 1355: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1356: :
 1357:  over over ;
 1358: 
 1359: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1360: :
 1361:  3 pick 3 pick ;
 1362: 
 1363: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1364: :
 1365:  rot >r rot r> ;
 1366: 
 1367: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1368: :
 1369:  >r >r 2swap r> r> 2swap ;
 1370: 
 1371: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1372: :
 1373:  2swap 2drop ;
 1374: 
 1375: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1376: :
 1377:  2swap 2over ;
 1378: 
 1379: \ toggle is high-level: 0.11/0.42%
 1380: 
 1381: \g memory
 1382: 
 1383: @	( a_addr -- w )		core	fetch
 1384: ""@i{w} is the cell stored at @i{a_addr}.""
 1385: w = *a_addr;
 1386: 
 1387: \ lit@ / lit_fetch = lit @
 1388: 
 1389: lit@		( #a_addr -- w ) new	lit_fetch
 1390: w = *a_addr;
 1391: 
 1392: !	( w a_addr -- )		core	store
 1393: ""Store @i{w} into the cell at @i{a-addr}.""
 1394: *a_addr = w;
 1395: 
 1396: +!	( n a_addr -- )		core	plus_store
 1397: ""Add @i{n} to the cell at @i{a-addr}.""
 1398: *a_addr += n;
 1399: :
 1400:  tuck @ + swap ! ;
 1401: 
 1402: c@	( c_addr -- c )		core	c_fetch
 1403: ""@i{c} is the char stored at @i{c_addr}.""
 1404: c = *c_addr;
 1405: :
 1406: [ bigendian [IF] ]
 1407:     [ cell>bit 4 = [IF] ]
 1408: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1409: 	IF  $FF and  ELSE  8>>  THEN  ;
 1410:     [ [ELSE] ]
 1411: 	dup [ cell 1- ] literal and
 1412: 	tuck - @ swap [ cell 1- ] literal xor
 1413:  	0 ?DO 8>> LOOP $FF and
 1414:     [ [THEN] ]
 1415: [ [ELSE] ]
 1416:     [ cell>bit 4 = [IF] ]
 1417: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1418: 	IF  8>>  ELSE  $FF and  THEN
 1419:     [ [ELSE] ]
 1420: 	dup [ cell  1- ] literal and 
 1421: 	tuck - @ swap
 1422: 	0 ?DO 8>> LOOP 255 and
 1423:     [ [THEN] ]
 1424: [ [THEN] ]
 1425: ;
 1426: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1427: 
 1428: c!	( c c_addr -- )		core	c_store
 1429: ""Store @i{c} into the char at @i{c-addr}.""
 1430: *c_addr = c;
 1431: :
 1432: [ bigendian [IF] ]
 1433:     [ cell>bit 4 = [IF] ]
 1434: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1435: 	dup -2 and @ over 1 and cells masks + @ and
 1436: 	r> or swap -2 and ! ;
 1437: 	Create masks $00FF , $FF00 ,
 1438:     [ELSE] ]
 1439: 	dup [ cell 1- ] literal and dup 
 1440: 	[ cell 1- ] literal xor >r
 1441: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1442: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1443:     [THEN]
 1444: [ELSE] ]
 1445:     [ cell>bit 4 = [IF] ]
 1446: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1447: 	dup -2 and @ over 1 and cells masks + @ and
 1448: 	r> or swap -2 and ! ;
 1449: 	Create masks $FF00 , $00FF ,
 1450:     [ELSE] ]
 1451: 	dup [ cell 1- ] literal and dup >r
 1452: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1453: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1454:     [THEN]
 1455: [THEN]
 1456: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1457: 
 1458: 2!	( w1 w2 a_addr -- )		core	two_store
 1459: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1460: a_addr[0] = w2;
 1461: a_addr[1] = w1;
 1462: :
 1463:  tuck ! cell+ ! ;
 1464: 
 1465: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1466: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1467: the content of the next cell.""
 1468: w2 = a_addr[0];
 1469: w1 = a_addr[1];
 1470: :
 1471:  dup cell+ @ swap @ ;
 1472: 
 1473: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1474: ""@code{1 cells +}""
 1475: a_addr2 = a_addr1+1;
 1476: :
 1477:  cell + ;
 1478: 
 1479: cells	( n1 -- n2 )		core
 1480: "" @i{n2} is the number of address units of @i{n1} cells.""
 1481: n2 = n1 * sizeof(Cell);
 1482: :
 1483:  [ cell
 1484:  2/ dup [IF] ] 2* [ [THEN]
 1485:  2/ dup [IF] ] 2* [ [THEN]
 1486:  2/ dup [IF] ] 2* [ [THEN]
 1487:  2/ dup [IF] ] 2* [ [THEN]
 1488:  drop ] ;
 1489: 
 1490: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1491: ""@code{1 chars +}.""
 1492: c_addr2 = c_addr1 + 1;
 1493: :
 1494:  1+ ;
 1495: 
 1496: (chars)	( n1 -- n2 )	gforth	paren_chars
 1497: n2 = n1 * sizeof(Char);
 1498: :
 1499:  ;
 1500: 
 1501: count	( c_addr1 -- c_addr2 u )	core
 1502: ""@i{c-addr2} is the first character and @i{u} the length of the
 1503: counted string at @i{c-addr1}.""
 1504: u = *c_addr1;
 1505: c_addr2 = c_addr1+1;
 1506: :
 1507:  dup 1+ swap c@ ;
 1508: 
 1509: \g compiler
 1510: 
 1511: \+f83headerstring
 1512: 
 1513: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1514: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1515:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1516:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1517:     break;
 1518: f83name2=f83name1;
 1519: :
 1520:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1521: 	>r 2dup r@ cell+ char+ capscomp  0=
 1522: 	IF  2drop r>  EXIT  THEN
 1523: 	r> @
 1524:     REPEAT  THEN  nip nip ;
 1525: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1526:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1527: : capscomp ( c_addr1 u c_addr2 -- n )
 1528:  swap bounds
 1529:  ?DO  dup c@ I c@ <>
 1530:      IF  dup c@ toupper I c@ toupper =
 1531:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1532:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1533: : sgn ( n -- -1/0/1 )
 1534:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1535: 
 1536: \-
 1537: 
 1538: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1539: longname2=listlfind(c_addr, u, longname1);
 1540: :
 1541:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1542: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1543: 	IF  2drop r>  EXIT  THEN
 1544: 	r> @
 1545:     REPEAT  THEN  nip nip ;
 1546: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1547:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1548: : capscomp ( c_addr1 u c_addr2 -- n )
 1549:  swap bounds
 1550:  ?DO  dup c@ I c@ <>
 1551:      IF  dup c@ toupper I c@ toupper =
 1552:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1553:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1554: : sgn ( n -- -1/0/1 )
 1555:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1556: 
 1557: \+hash
 1558: 
 1559: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1560: longname2 = hashlfind(c_addr, u, a_addr);
 1561: :
 1562:  BEGIN  dup  WHILE
 1563:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1564:         IF  2dup r@ cell+ cell+ capscomp 0=
 1565: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1566: 	rdrop r>
 1567:  REPEAT nip nip ;
 1568: 
 1569: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1570: ""A case-sensitive variant of @code{(hashfind)}""
 1571: longname2 = tablelfind(c_addr, u, a_addr);
 1572: :
 1573:  BEGIN  dup  WHILE
 1574:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1575:         IF  2dup r@ cell+ cell+ -text 0=
 1576: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1577: 	rdrop r>
 1578:  REPEAT nip nip ;
 1579: : -text ( c_addr1 u c_addr2 -- n )
 1580:  swap bounds
 1581:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1582:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1583: : sgn ( n -- -1/0/1 )
 1584:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1585: 
 1586: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1587: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1588: ukey = hashkey1(c_addr, u, ubits);
 1589: :
 1590:  dup rot-values + c@ over 1 swap lshift 1- >r
 1591:  tuck - 2swap r> 0 2swap bounds
 1592:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1593:       I c@ toupper xor
 1594:       over and  LOOP
 1595:  nip nip nip ;
 1596: Create rot-values
 1597:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1598:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1599:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1600:   7 c, 5 c, 5 c,
 1601: 
 1602: \+
 1603: 
 1604: \+
 1605: 
 1606: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1607: struct Cellpair r=parse_white(c_addr1, u1);
 1608: c_addr2 = (Char *)(r.n1);
 1609: u2 = r.n2;
 1610: :
 1611:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1612:  REPEAT  THEN  2dup
 1613:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1614:  REPEAT  THEN  nip - ;
 1615: 
 1616: aligned	( c_addr -- a_addr )	core
 1617: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1618: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1619: :
 1620:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1621: 
 1622: faligned	( c_addr -- f_addr )	float	f_aligned
 1623: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1624: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1625: :
 1626:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1627: 
 1628: \ threading stuff is currently only interesting if we have a compiler
 1629: \fhas? standardthreading has? compiler and [IF]
 1630: threading-method	( -- n )	gforth	threading_method
 1631: ""0 if the engine is direct threaded. Note that this may change during
 1632: the lifetime of an image.""
 1633: #if defined(DOUBLY_INDIRECT)
 1634: n=2;
 1635: #else
 1636: # if defined(DIRECT_THREADED)
 1637: n=0;
 1638: # else
 1639: n=1;
 1640: # endif
 1641: #endif
 1642: :
 1643:  1 ;
 1644: 
 1645: \f[THEN]
 1646: 
 1647: \g hostos
 1648: 
 1649: key-file	( wfileid -- n )		gforth	paren_key_file
 1650: #ifdef HAS_FILE
 1651: fflush(stdout);
 1652: n = key((FILE*)wfileid);
 1653: #else
 1654: n = key(stdin);
 1655: #endif
 1656: 
 1657: key?-file	( wfileid -- n )	        gforth	key_q_file
 1658: #ifdef HAS_FILE
 1659: fflush(stdout);
 1660: n = key_query((FILE*)wfileid);
 1661: #else
 1662: n = key_query(stdin);
 1663: #endif
 1664: 
 1665: \+os
 1666: 
 1667: stdin	( -- wfileid )	gforth
 1668: wfileid = (Cell)stdin;
 1669: 
 1670: stdout	( -- wfileid )	gforth
 1671: wfileid = (Cell)stdout;
 1672: 
 1673: stderr	( -- wfileid )	gforth
 1674: wfileid = (Cell)stderr;
 1675: 
 1676: form	( -- urows ucols )	gforth
 1677: ""The number of lines and columns in the terminal. These numbers may change
 1678: with the window size.""
 1679: /* we could block SIGWINCH here to get a consistent size, but I don't
 1680:  think this is necessary or always beneficial */
 1681: urows=rows;
 1682: ucols=cols;
 1683: 
 1684: wcwidth	( u -- n )	gforth
 1685: ""The number of fixed-width characters per unicode character u""
 1686: n = wcwidth(u);
 1687: 
 1688: flush-icache	( c_addr u -- )	gforth	flush_icache
 1689: ""Make sure that the instruction cache of the processor (if there is
 1690: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1691: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1692: automatically. Caveat: @code{flush-icache} might not work on your
 1693: installation; this is usually the case if direct threading is not
 1694: supported on your machine (take a look at your @file{machine.h}) and
 1695: your machine has a separate instruction cache. In such cases,
 1696: @code{flush-icache} does nothing instead of flushing the instruction
 1697: cache.""
 1698: FLUSH_ICACHE(c_addr,u);
 1699: 
 1700: (bye)	( n -- )	gforth	paren_bye
 1701: SUPER_END;
 1702: return (Label *)n;
 1703: 
 1704: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1705: wretval = gforth_system(c_addr, u);  
 1706: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1707: 
 1708: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1709: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1710: is the host operating system's expansion of that environment variable. If the
 1711: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1712: in length.""
 1713: /* close ' to keep fontify happy */
 1714: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1715: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1716: 
 1717: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1718: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1719: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1720: 
 1721: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1722: wretval = pclose((FILE *)wfileid);
 1723: wior = IOR(wretval==-1);
 1724: 
 1725: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1726: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1727: Months are numbered from 1.""
 1728: #if 1
 1729: time_t now;
 1730: struct tm *ltime;
 1731: time(&now);
 1732: ltime=localtime(&now);
 1733: #else
 1734: struct timeval time1;
 1735: struct timezone zone1;
 1736: struct tm *ltime;
 1737: gettimeofday(&time1,&zone1);
 1738: /* !! Single Unix specification: 
 1739:    If tzp is not a null pointer, the behaviour is unspecified. */
 1740: ltime=localtime((time_t *)&time1.tv_sec);
 1741: #endif
 1742: nyear =ltime->tm_year+1900;
 1743: nmonth=ltime->tm_mon+1;
 1744: nday  =ltime->tm_mday;
 1745: nhour =ltime->tm_hour;
 1746: nmin  =ltime->tm_min;
 1747: nsec  =ltime->tm_sec;
 1748: 
 1749: ms	( n -- )	facility-ext
 1750: ""Wait at least @i{n} milli-second.""
 1751: struct timeval timeout;
 1752: timeout.tv_sec=n/1000;
 1753: timeout.tv_usec=1000*(n%1000);
 1754: (void)select(0,0,0,0,&timeout);
 1755: 
 1756: allocate	( u -- a_addr wior )	memory
 1757: ""Allocate @i{u} address units of contiguous data space. The initial
 1758: contents of the data space is undefined. If the allocation is successful,
 1759: @i{a-addr} is the start address of the allocated region and @i{wior}
 1760: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1761: is a non-zero I/O result code.""
 1762: a_addr = (Cell *)malloc(u?u:1);
 1763: wior = IOR(a_addr==NULL);
 1764: 
 1765: free	( a_addr -- wior )		memory
 1766: ""Return the region of data space starting at @i{a-addr} to the system.
 1767: The region must originally have been obtained using @code{allocate} or
 1768: @code{resize}. If the operational is successful, @i{wior} is 0.
 1769: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1770: free(a_addr);
 1771: wior = 0;
 1772: 
 1773: resize	( a_addr1 u -- a_addr2 wior )	memory
 1774: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1775: address units, possibly moving the contents to a different
 1776: area. @i{a-addr2} is the address of the resulting area.
 1777: If the operation is successful, @i{wior} is 0.
 1778: If the operation fails, @i{wior} is a non-zero
 1779: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1780: @code{resize} @code{allocate}s @i{u} address units.""
 1781: /* the following check is not necessary on most OSs, but it is needed
 1782:    on SunOS 4.1.2. */
 1783: /* close ' to keep fontify happy */
 1784: if (a_addr1==NULL)
 1785:   a_addr2 = (Cell *)malloc(u);
 1786: else
 1787:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1788: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1789: 
 1790: strerror	( n -- c_addr u )	gforth
 1791: c_addr = strerror(n);
 1792: u = strlen(c_addr);
 1793: 
 1794: strsignal	( n -- c_addr u )	gforth
 1795: c_addr = (Address)strsignal(n);
 1796: u = strlen(c_addr);
 1797: 
 1798: call-c	( ... w -- ... )	gforth	call_c
 1799: ""Call the C function pointed to by @i{w}. The C function has to
 1800: access the stack itself. The stack pointers are exported in the global
 1801: variables @code{SP} and @code{FP}.""
 1802: /* This is a first attempt at support for calls to C. This may change in
 1803:    the future */
 1804: gforth_FP=fp;
 1805: gforth_SP=sp;
 1806: ((void (*)())w)();
 1807: sp=gforth_SP;
 1808: fp=gforth_FP;
 1809: 
 1810: \+
 1811: \+file
 1812: 
 1813: close-file	( wfileid -- wior )		file	close_file
 1814: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1815: 
 1816: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1817: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1818: wior =  IOR(wfileid == 0);
 1819: 
 1820: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1821: Cell	fd;
 1822: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1823: if (fd != -1) {
 1824:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1825:   wior = IOR(wfileid == 0);
 1826: } else {
 1827:   wfileid = 0;
 1828:   wior = IOR(1);
 1829: }
 1830: 
 1831: delete-file	( c_addr u -- wior )		file	delete_file
 1832: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1833: 
 1834: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1835: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1836: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1837: 
 1838: file-position	( wfileid -- ud wior )	file	file_position
 1839: /* !! use tell and lseek? */
 1840: ud = OFF2UD(ftello((FILE *)wfileid));
 1841: wior = IOR(UD2OFF(ud)==-1);
 1842: 
 1843: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1844: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1845: 
 1846: file-size	( wfileid -- ud wior )	file	file_size
 1847: struct stat buf;
 1848: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1849: ud = OFF2UD(buf.st_size);
 1850: 
 1851: resize-file	( ud wfileid -- wior )	file	resize_file
 1852: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1853: 
 1854: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1855: /* !! fread does not guarantee enough */
 1856: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1857: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1858: /* !! is the value of ferror errno-compatible? */
 1859: if (wior)
 1860:   clearerr((FILE *)wfileid);
 1861: 
 1862: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1863: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1864: u2   = r.n1;
 1865: flag = r.n2;
 1866: u3   = r.n3;
 1867: wior = r.n4;
 1868: 
 1869: \+
 1870: 
 1871: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1872: /* !! fwrite does not guarantee enough */
 1873: #ifdef HAS_FILE
 1874: {
 1875:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1876:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1877:   if (wior)
 1878:     clearerr((FILE *)wfileid);
 1879: }
 1880: #else
 1881: TYPE(c_addr, u1);
 1882: #endif
 1883: 
 1884: emit-file	( c wfileid -- wior )	gforth	emit_file
 1885: #ifdef HAS_FILE
 1886: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1887: if (wior)
 1888:   clearerr((FILE *)wfileid);
 1889: #else
 1890: PUTC(c);
 1891: #endif
 1892: 
 1893: \+file
 1894: 
 1895: flush-file	( wfileid -- wior )		file-ext	flush_file
 1896: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1897: 
 1898: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1899: struct Cellpair r = file_status(c_addr, u);
 1900: wfam = r.n1;
 1901: wior = r.n2;
 1902: 
 1903: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1904: flag = FLAG(feof((FILE *) wfileid));
 1905: 
 1906: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1907: ""Open the directory specified by @i{c-addr, u}
 1908: and return @i{dir-id} for futher access to it.""
 1909: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1910: wior =  IOR(wdirid == 0);
 1911: 
 1912: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1913: ""Attempt to read the next entry from the directory specified
 1914: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1915: If the attempt fails because there is no more entries,
 1916: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1917: If the attempt to read the next entry fails because of any other reason, 
 1918: return @i{ior}<>0.
 1919: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1920: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1921: If the length of the file name is greater than @i{u1}, 
 1922: store first @i{u1} characters from file name into the buffer and
 1923: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1924: struct dirent * dent;
 1925: dent = readdir((DIR *)wdirid);
 1926: wior = 0;
 1927: flag = -1;
 1928: if(dent == NULL) {
 1929:   u2 = 0;
 1930:   flag = 0;
 1931: } else {
 1932:   u2 = strlen(dent->d_name);
 1933:   if(u2 > u1) {
 1934:     u2 = u1;
 1935:     wior = -512-ENAMETOOLONG;
 1936:   }
 1937:   memmove(c_addr, dent->d_name, u2);
 1938: }
 1939: 
 1940: close-dir	( wdirid -- wior )	gforth	close_dir
 1941: ""Close the directory specified by @i{dir-id}.""
 1942: wior = IOR(closedir((DIR *)wdirid));
 1943: 
 1944: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1945: char * string = cstr(c_addr1, u1, 1);
 1946: char * pattern = cstr(c_addr2, u2, 0);
 1947: flag = FLAG(!fnmatch(pattern, string, 0));
 1948: 
 1949: set-dir	( c_addr u -- wior )	gforth set_dir
 1950: ""Change the current directory to @i{c-addr, u}.
 1951: Return an error if this is not possible""
 1952: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1953: 
 1954: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1955: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1956: If the buffer size is not sufficient, return 0 0""
 1957: c_addr2 = getcwd(c_addr1, u1);
 1958: if(c_addr2 != NULL) {
 1959:   u2 = strlen(c_addr2);
 1960: } else {
 1961:   u2 = 0;
 1962: }
 1963: 
 1964: \+
 1965: 
 1966: newline	( -- c_addr u )	gforth
 1967: ""String containing the newline sequence of the host OS""
 1968: char newline[] = {
 1969: #if DIRSEP=='/'
 1970: /* Unix */
 1971: '\n'
 1972: #else
 1973: /* DOS, Win, OS/2 */
 1974: '\r','\n'
 1975: #endif
 1976: };
 1977: c_addr=newline;
 1978: u=sizeof(newline);
 1979: :
 1980:  "newline count ;
 1981: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1982: 
 1983: \+os
 1984: 
 1985: utime	( -- dtime )	gforth
 1986: ""Report the current time in microseconds since some epoch.""
 1987: struct timeval time1;
 1988: gettimeofday(&time1,NULL);
 1989: dtime = timeval2us(&time1);
 1990: 
 1991: cputime ( -- duser dsystem ) gforth
 1992: ""duser and dsystem are the respective user- and system-level CPU
 1993: times used since the start of the Forth system (excluding child
 1994: processes), in microseconds (the granularity may be much larger,
 1995: however).  On platforms without the getrusage call, it reports elapsed
 1996: time (since some epoch) for duser and 0 for dsystem.""
 1997: #ifdef HAVE_GETRUSAGE
 1998: struct rusage usage;
 1999: getrusage(RUSAGE_SELF, &usage);
 2000: duser = timeval2us(&usage.ru_utime);
 2001: dsystem = timeval2us(&usage.ru_stime);
 2002: #else
 2003: struct timeval time1;
 2004: gettimeofday(&time1,NULL);
 2005: duser = timeval2us(&time1);
 2006: dsystem = DZERO;
 2007: #endif
 2008: 
 2009: \+
 2010: 
 2011: \+floating
 2012: 
 2013: \g floating
 2014: 
 2015: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2016: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2017: 
 2018: s>f	( n -- r )		float	s_to_f
 2019: r = n;
 2020: 
 2021: d>f	( d -- r )		float	d_to_f
 2022: #ifdef BUGGY_LL_D2F
 2023: extern double ldexp(double x, int exp);
 2024: if (DHI(d)<0) {
 2025: #ifdef BUGGY_LL_ADD
 2026:   DCell d2=dnegate(d);
 2027: #else
 2028:   DCell d2=-d;
 2029: #endif
 2030:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2031: } else
 2032:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2033: #else
 2034: r = d;
 2035: #endif
 2036: 
 2037: f>d	( r -- d )		float	f_to_d
 2038: extern DCell double2ll(Float r);
 2039: d = double2ll(r);
 2040: 
 2041: f>s	( r -- n )		float	f_to_s
 2042: n = (Cell)r;
 2043: 
 2044: f!	( r f_addr -- )	float	f_store
 2045: ""Store @i{r} into the float at address @i{f-addr}.""
 2046: *f_addr = r;
 2047: 
 2048: f@	( f_addr -- r )	float	f_fetch
 2049: ""@i{r} is the float at address @i{f-addr}.""
 2050: r = *f_addr;
 2051: 
 2052: df@	( df_addr -- r )	float-ext	d_f_fetch
 2053: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2054: #ifdef IEEE_FP
 2055: r = *df_addr;
 2056: #else
 2057: !! df@
 2058: #endif
 2059: 
 2060: df!	( r df_addr -- )	float-ext	d_f_store
 2061: ""Store @i{r} as double-precision IEEE floating-point value to the
 2062: address @i{df-addr}.""
 2063: #ifdef IEEE_FP
 2064: *df_addr = r;
 2065: #else
 2066: !! df!
 2067: #endif
 2068: 
 2069: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2070: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2071: #ifdef IEEE_FP
 2072: r = *sf_addr;
 2073: #else
 2074: !! sf@
 2075: #endif
 2076: 
 2077: sf!	( r sf_addr -- )	float-ext	s_f_store
 2078: ""Store @i{r} as single-precision IEEE floating-point value to the
 2079: address @i{sf-addr}.""
 2080: #ifdef IEEE_FP
 2081: *sf_addr = r;
 2082: #else
 2083: !! sf!
 2084: #endif
 2085: 
 2086: f+	( r1 r2 -- r3 )	float	f_plus
 2087: r3 = r1+r2;
 2088: 
 2089: f-	( r1 r2 -- r3 )	float	f_minus
 2090: r3 = r1-r2;
 2091: 
 2092: f*	( r1 r2 -- r3 )	float	f_star
 2093: r3 = r1*r2;
 2094: 
 2095: f/	( r1 r2 -- r3 )	float	f_slash
 2096: r3 = r1/r2;
 2097: 
 2098: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2099: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2100: r3 = pow(r1,r2);
 2101: 
 2102: fm*	( r1 n -- r2 )	gforth	fm_star
 2103: r2 = r1*n;
 2104: 
 2105: fm/	( r1 n -- r2 )	gforth	fm_slash
 2106: r2 = r1/n;
 2107: 
 2108: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2109: r2 = (r1*n1)/n2;
 2110: 
 2111: f**2	( r1 -- r2 )	gforth	fm_square
 2112: r2 = r1*r1;
 2113: 
 2114: fnegate	( r1 -- r2 )	float	f_negate
 2115: r2 = - r1;
 2116: 
 2117: fdrop	( r -- )		float	f_drop
 2118: 
 2119: fdup	( r -- r r )	float	f_dupe
 2120: 
 2121: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2122: 
 2123: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2124: 
 2125: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2126: 
 2127: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2128: 
 2129: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2130: 
 2131: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2132: ""@code{1 floats +}.""
 2133: f_addr2 = f_addr1+1;
 2134: 
 2135: floats	( n1 -- n2 )	float
 2136: ""@i{n2} is the number of address units of @i{n1} floats.""
 2137: n2 = n1*sizeof(Float);
 2138: 
 2139: floor	( r1 -- r2 )	float
 2140: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2141: /* !! unclear wording */
 2142: r2 = floor(r1);
 2143: 
 2144: fround	( r1 -- r2 )	gforth	f_round
 2145: ""Round to the nearest integral value.""
 2146: r2 = rint(r1);
 2147: 
 2148: fmax	( r1 r2 -- r3 )	float	f_max
 2149: if (r1<r2)
 2150:   r3 = r2;
 2151: else
 2152:   r3 = r1;
 2153: 
 2154: fmin	( r1 r2 -- r3 )	float	f_min
 2155: if (r1<r2)
 2156:   r3 = r1;
 2157: else
 2158:   r3 = r2;
 2159: 
 2160: represent	( r c_addr u -- n f1 f2 )	float
 2161: char *sig;
 2162: size_t siglen;
 2163: int flag;
 2164: int decpt;
 2165: sig=ecvt(r, u, &decpt, &flag);
 2166: n=(r==0. ? 1 : decpt);
 2167: f1=FLAG(flag!=0);
 2168: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2169: siglen=strlen(sig);
 2170: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2171:   siglen=u;
 2172: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2173:   for (; sig[siglen-1]=='0'; siglen--);
 2174:     ;
 2175: memcpy(c_addr,sig,siglen);
 2176: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2177: 
 2178: >float	( c_addr u -- f:... flag )	float	to_float
 2179: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2180: character string @i{c-addr u} to internal floating-point
 2181: representation. If the string represents a valid floating-point number
 2182: @i{r} is placed on the floating-point stack and @i{flag} is
 2183: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2184: case and represents the floating-point number 0.""
 2185: Float r;
 2186: flag = to_float(c_addr, u, &r);
 2187: if (flag) {
 2188:   fp--;
 2189:   fp[0]=r;
 2190: }
 2191: 
 2192: fabs	( r1 -- r2 )	float-ext	f_abs
 2193: r2 = fabs(r1);
 2194: 
 2195: facos	( r1 -- r2 )	float-ext	f_a_cos
 2196: r2 = acos(r1);
 2197: 
 2198: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2199: r2 = asin(r1);
 2200: 
 2201: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2202: r2 = atan(r1);
 2203: 
 2204: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2205: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2206: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2207: r3 = atan2(r1,r2);
 2208: 
 2209: fcos	( r1 -- r2 )	float-ext	f_cos
 2210: r2 = cos(r1);
 2211: 
 2212: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2213: r2 = exp(r1);
 2214: 
 2215: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2216: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2217: #ifdef HAVE_EXPM1
 2218: extern double
 2219: #ifdef NeXT
 2220:               const
 2221: #endif
 2222:                     expm1(double);
 2223: r2 = expm1(r1);
 2224: #else
 2225: r2 = exp(r1)-1.;
 2226: #endif
 2227: 
 2228: fln	( r1 -- r2 )	float-ext	f_l_n
 2229: r2 = log(r1);
 2230: 
 2231: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2232: ""@i{r2}=ln(@i{r1}+1)""
 2233: #ifdef HAVE_LOG1P
 2234: extern double
 2235: #ifdef NeXT
 2236:               const
 2237: #endif
 2238:                     log1p(double);
 2239: r2 = log1p(r1);
 2240: #else
 2241: r2 = log(r1+1.);
 2242: #endif
 2243: 
 2244: flog	( r1 -- r2 )	float-ext	f_log
 2245: ""The decimal logarithm.""
 2246: r2 = log10(r1);
 2247: 
 2248: falog	( r1 -- r2 )	float-ext	f_a_log
 2249: ""@i{r2}=10**@i{r1}""
 2250: extern double pow10(double);
 2251: r2 = pow10(r1);
 2252: 
 2253: fsin	( r1 -- r2 )	float-ext	f_sine
 2254: r2 = sin(r1);
 2255: 
 2256: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2257: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2258: r2 = sin(r1);
 2259: r3 = cos(r1);
 2260: 
 2261: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2262: r2 = sqrt(r1);
 2263: 
 2264: ftan	( r1 -- r2 )	float-ext	f_tan
 2265: r2 = tan(r1);
 2266: :
 2267:  fsincos f/ ;
 2268: 
 2269: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2270: r2 = sinh(r1);
 2271: :
 2272:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2273: 
 2274: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2275: r2 = cosh(r1);
 2276: :
 2277:  fexp fdup 1/f f+ f2/ ;
 2278: 
 2279: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2280: r2 = tanh(r1);
 2281: :
 2282:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2283: 
 2284: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2285: r2 = asinh(r1);
 2286: :
 2287:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2288: 
 2289: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2290: r2 = acosh(r1);
 2291: :
 2292:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2293: 
 2294: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2295: r2 = atanh(r1);
 2296: :
 2297:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2298:  r> IF  fnegate  THEN ;
 2299: 
 2300: sfloats	( n1 -- n2 )	float-ext	s_floats
 2301: ""@i{n2} is the number of address units of @i{n1}
 2302: single-precision IEEE floating-point numbers.""
 2303: n2 = n1*sizeof(SFloat);
 2304: 
 2305: dfloats	( n1 -- n2 )	float-ext	d_floats
 2306: ""@i{n2} is the number of address units of @i{n1}
 2307: double-precision IEEE floating-point numbers.""
 2308: n2 = n1*sizeof(DFloat);
 2309: 
 2310: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2311: ""@i{sf-addr} is the first single-float-aligned address greater
 2312: than or equal to @i{c-addr}.""
 2313: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2314: :
 2315:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2316: 
 2317: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2318: ""@i{df-addr} is the first double-float-aligned address greater
 2319: than or equal to @i{c-addr}.""
 2320: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2321: :
 2322:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2323: 
 2324: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2325: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2326: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2327: ucount elements.""
 2328: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2329: :
 2330:  >r swap 2swap swap 0e r> 0 ?DO
 2331:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2332:  LOOP 2drop 2drop ; 
 2333: 
 2334: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2335: ""vy=ra*vx+vy""
 2336: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2337: :
 2338:  >r swap 2swap swap r> 0 ?DO
 2339:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2340:  LOOP 2drop 2drop fdrop ;
 2341: 
 2342: \+
 2343: 
 2344: \ The following words access machine/OS/installation-dependent
 2345: \   Gforth internals
 2346: \ !! how about environmental queries DIRECT-THREADED,
 2347: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2348: 
 2349: \ local variable implementation primitives
 2350: 
 2351: \+glocals
 2352: 
 2353: \g locals
 2354: 
 2355: @local#	( #noffset -- w )	gforth	fetch_local_number
 2356: w = *(Cell *)(lp+noffset);
 2357: 
 2358: @local0	( -- w )	new	fetch_local_zero
 2359: w = ((Cell *)lp)[0];
 2360: 
 2361: @local1	( -- w )	new	fetch_local_four
 2362: w = ((Cell *)lp)[1];
 2363: 
 2364: @local2	( -- w )	new	fetch_local_eight
 2365: w = ((Cell *)lp)[2];
 2366: 
 2367: @local3	( -- w )	new	fetch_local_twelve
 2368: w = ((Cell *)lp)[3];
 2369: 
 2370: \+floating
 2371: 
 2372: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2373: r = *(Float *)(lp+noffset);
 2374: 
 2375: f@local0	( -- r )	new	f_fetch_local_zero
 2376: r = ((Float *)lp)[0];
 2377: 
 2378: f@local1	( -- r )	new	f_fetch_local_eight
 2379: r = ((Float *)lp)[1];
 2380: 
 2381: \+
 2382: 
 2383: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2384: /* this can also be used to implement lp@ */
 2385: c_addr = (Char *)(lp+noffset);
 2386: 
 2387: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2388: ""used with negative immediate values it allocates memory on the
 2389: local stack, a positive immediate argument drops memory from the local
 2390: stack""
 2391: lp += noffset;
 2392: 
 2393: lp-	( -- )	new	minus_four_lp_plus_store
 2394: lp += -sizeof(Cell);
 2395: 
 2396: lp+	( -- )	new	eight_lp_plus_store
 2397: lp += sizeof(Float);
 2398: 
 2399: lp+2	( -- )	new	sixteen_lp_plus_store
 2400: lp += 2*sizeof(Float);
 2401: 
 2402: lp!	( c_addr -- )	gforth	lp_store
 2403: lp = (Address)c_addr;
 2404: 
 2405: >l	( w -- )	gforth	to_l
 2406: lp -= sizeof(Cell);
 2407: *(Cell *)lp = w;
 2408: 
 2409: \+floating
 2410: 
 2411: f>l	( r -- )	gforth	f_to_l
 2412: lp -= sizeof(Float);
 2413: *(Float *)lp = r;
 2414: 
 2415: fpick	( f:... u -- f:... r )		gforth
 2416: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2417: r = fp[u];
 2418: :
 2419:  floats fp@ + f@ ;
 2420: 
 2421: \+
 2422: \+
 2423: 
 2424: \+OS
 2425: 
 2426: \g syslib
 2427: 
 2428: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2429: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2430: #ifndef RTLD_GLOBAL
 2431: #define RTLD_GLOBAL 0
 2432: #endif
 2433: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2434: #else
 2435: #  ifdef _WIN32
 2436: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2437: #  else
 2438: #warning Define open-lib!
 2439: u2 = 0;
 2440: #  endif
 2441: #endif
 2442: 
 2443: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2444: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2445: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2446: #else
 2447: #  ifdef _WIN32
 2448: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2449: #  else
 2450: #warning Define lib-sym!
 2451: u3 = 0;
 2452: #  endif
 2453: #endif
 2454: 
 2455: wcall	( ... u -- ... )	gforth
 2456: gforth_FP=fp;
 2457: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2458: fp=gforth_FP;
 2459: 
 2460: uw@ ( c_addr -- u )	gforth u_w_fetch
 2461: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2462: u = *(UWyde*)(c_addr);
 2463: 
 2464: sw@ ( c_addr -- n )	gforth s_w_fetch
 2465: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2466: n = *(Wyde*)(c_addr);
 2467: 
 2468: w! ( w c_addr -- )	gforth w_store
 2469: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2470: *(Wyde*)(c_addr) = w;
 2471: 
 2472: ul@ ( c_addr -- u )	gforth u_l_fetch
 2473: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2474: u = *(UTetrabyte*)(c_addr);
 2475: 
 2476: sl@ ( c_addr -- n )	gforth s_l_fetch
 2477: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2478: n = *(Tetrabyte*)(c_addr);
 2479: 
 2480: l! ( w c_addr -- )	gforth l_store
 2481: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2482: *(Tetrabyte*)(c_addr) = w;
 2483: 
 2484: \+FFCALL
 2485: 
 2486: av-start-void	( c_addr -- )	gforth  av_start_void
 2487: av_start_void(alist, c_addr);
 2488: 
 2489: av-start-int	( c_addr -- )	gforth  av_start_int
 2490: av_start_int(alist, c_addr, &irv);
 2491: 
 2492: av-start-float	( c_addr -- )	gforth  av_start_float
 2493: av_start_float(alist, c_addr, &frv);
 2494: 
 2495: av-start-double	( c_addr -- )	gforth  av_start_double
 2496: av_start_double(alist, c_addr, &drv);
 2497: 
 2498: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2499: av_start_longlong(alist, c_addr, &llrv);
 2500: 
 2501: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2502: av_start_ptr(alist, c_addr, void*, &prv);
 2503: 
 2504: av-int  ( w -- )  gforth  av_int
 2505: av_int(alist, w);
 2506: 
 2507: av-float	( r -- )	gforth  av_float
 2508: av_float(alist, r);
 2509: 
 2510: av-double	( r -- )	gforth  av_double
 2511: av_double(alist, r);
 2512: 
 2513: av-longlong	( d -- )	gforth  av_longlong
 2514: #ifdef BUGGY_LL_SIZE
 2515: av_longlong(alist, DLO(d));
 2516: #else
 2517: av_longlong(alist, d);
 2518: #endif
 2519: 
 2520: av-ptr	( c_addr -- )	gforth  av_ptr
 2521: av_ptr(alist, void*, c_addr);
 2522: 
 2523: av-int-r  ( R:w -- )  gforth  av_int_r
 2524: av_int(alist, w);
 2525: 
 2526: av-float-r	( -- )	gforth  av_float_r
 2527: float r = *(Float*)lp;
 2528: lp += sizeof(Float);
 2529: av_float(alist, r);
 2530: 
 2531: av-double-r	( -- )	gforth  av_double_r
 2532: double r = *(Float*)lp;
 2533: lp += sizeof(Float);
 2534: av_double(alist, r);
 2535: 
 2536: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2537: #ifdef BUGGY_LL_SIZE
 2538: av_longlong(alist, DLO(d));
 2539: #else
 2540: av_longlong(alist, d);
 2541: #endif
 2542: 
 2543: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2544: av_ptr(alist, void*, c_addr);
 2545: 
 2546: av-call-void	( ... -- ... )	gforth  av_call_void
 2547: SAVE_REGS
 2548: av_call(alist);
 2549: REST_REGS
 2550: 
 2551: av-call-int	( ... -- ... w )	gforth  av_call_int
 2552: SAVE_REGS
 2553: av_call(alist);
 2554: REST_REGS
 2555: w = irv;
 2556: 
 2557: av-call-float	( ... -- ... r )	gforth  av_call_float
 2558: SAVE_REGS
 2559: av_call(alist);
 2560: REST_REGS
 2561: r = frv;
 2562: 
 2563: av-call-double	( ... -- ... r )	gforth  av_call_double
 2564: SAVE_REGS
 2565: av_call(alist);
 2566: REST_REGS
 2567: r = drv;
 2568: 
 2569: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2570: SAVE_REGS
 2571: av_call(alist);
 2572: REST_REGS
 2573: #ifdef BUGGY_LONG_LONG
 2574: DLO_IS(d, llrv);
 2575: DHI_IS(d, 0);
 2576: #else
 2577: d = llrv;
 2578: #endif
 2579: 
 2580: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2581: SAVE_REGS
 2582: av_call(alist);
 2583: REST_REGS
 2584: c_addr = prv;
 2585: 
 2586: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2587: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2588: 
 2589: va-start-void	( -- )	gforth	va_start_void
 2590: va_start_void(clist);
 2591: 
 2592: va-start-int	( -- )	gforth	va_start_int
 2593: va_start_int(clist);
 2594: 
 2595: va-start-longlong	( -- )	gforth	va_start_longlong
 2596: va_start_longlong(clist);
 2597: 
 2598: va-start-ptr	( -- )	gforth	va_start_ptr
 2599: va_start_ptr(clist, (char *));
 2600: 
 2601: va-start-float	( -- )	gforth	va_start_float
 2602: va_start_float(clist);
 2603: 
 2604: va-start-double	( -- )	gforth	va_start_double
 2605: va_start_double(clist);
 2606: 
 2607: va-arg-int	( -- w )	gforth	va_arg_int
 2608: w = va_arg_int(clist);
 2609: 
 2610: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2611: #ifdef BUGGY_LONG_LONG
 2612: DLO_IS(d, va_arg_longlong(clist));
 2613: DHI_IS(d, 0);
 2614: #else
 2615: d = va_arg_longlong(clist);
 2616: #endif
 2617: 
 2618: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2619: c_addr = (char *)va_arg_ptr(clist,char*);
 2620: 
 2621: va-arg-float	( -- r )	gforth	va_arg_float
 2622: r = va_arg_float(clist);
 2623: 
 2624: va-arg-double	( -- r )	gforth	va_arg_double
 2625: r = va_arg_double(clist);
 2626: 
 2627: va-return-void ( -- )	gforth va_return_void
 2628: va_return_void(clist);
 2629: return 0;
 2630: 
 2631: va-return-int ( w -- )	gforth va_return_int
 2632: va_return_int(clist, w);
 2633: return 0;
 2634: 
 2635: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2636: va_return_ptr(clist, void *, c_addr);
 2637: return 0;
 2638: 
 2639: va-return-longlong ( d -- )	gforth va_return_longlong
 2640: #ifdef BUGGY_LONG_LONG
 2641: va_return_longlong(clist, d.lo);
 2642: #else
 2643: va_return_longlong(clist, d);
 2644: #endif
 2645: return 0;
 2646: 
 2647: va-return-float ( r -- )	gforth va_return_float
 2648: va_return_float(clist, r);
 2649: return 0;
 2650: 
 2651: va-return-double ( r -- )	gforth va_return_double
 2652: va_return_double(clist, r);
 2653: return 0;
 2654: 
 2655: \+
 2656: 
 2657: \+LIBFFI
 2658: 
 2659: ffi-type ( n -- a_type )	gforth ffi_type
 2660: static void* ffi_types[] =
 2661:     { &ffi_type_void,
 2662:       &ffi_type_uint8, &ffi_type_sint8,
 2663:       &ffi_type_uint16, &ffi_type_sint16,
 2664:       &ffi_type_uint32, &ffi_type_sint32,
 2665:       &ffi_type_uint64, &ffi_type_sint64,
 2666:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2667:       &ffi_type_pointer };
 2668: a_type = ffi_types[n];
 2669: 
 2670: ffi-size ( n1 -- n2 )	gforth ffi_size
 2671: static int ffi_sizes[] =
 2672:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2673: n2 = ffi_sizes[n1];
 2674: 
 2675: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2676: w = ffi_prep_cif(a_cif, FFI_DEFAULT_ABI, n, a_rtype, a_atypes);
 2677: 
 2678: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2679: SAVE_REGS
 2680: ffi_call(a_cif, a_ip, a_rvalue, a_avalues);
 2681: REST_REGS
 2682: 
 2683: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2684: w = ffi_prep_closure(a_closure, a_cif, gforth_callback, a_ip);
 2685: 
 2686: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2687: #ifdef BUGGY_LONG_LONG
 2688: DLO_IS(d, (Cell*)(*a_addr));
 2689: DHI_IS(d, 0);
 2690: #else
 2691: d = *(DCell*)(a_addr);
 2692: #endif
 2693: 
 2694: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2695: #ifdef BUGGY_LONG_LONG
 2696: *(Cell*)(a_addr) = DLO(d);
 2697: #else
 2698: *(DCell*)(a_addr) = d;
 2699: #endif
 2700: 
 2701: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2702: w = *(int *)(*clist++);
 2703: 
 2704: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2705: #ifdef BUGGY_LONG_LONG
 2706: DLO_IS(d, (Cell*)(*clist++));
 2707: DHI_IS(d, 0);
 2708: #else
 2709: d = *(DCell*)(*clist++);
 2710: #endif
 2711: 
 2712: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2713: c_addr = *(char **)(*clist++);
 2714: 
 2715: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2716: r = *(float*)(*clist++);
 2717: 
 2718: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2719: r = *(double*)(*clist++);
 2720: 
 2721: ffi-ret-void ( -- )	gforth ffi_ret_void
 2722: return 0;
 2723: 
 2724: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2725: *(int*)(ritem) = w;
 2726: return 0;
 2727: 
 2728: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2729: #ifdef BUGGY_LONG_LONG
 2730: *(Cell*)(ritem) = DLO(d);
 2731: #else
 2732: *(DCell*)(ritem) = d;
 2733: #endif
 2734: return 0;
 2735: 
 2736: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2737: *(char **)(ritem) = c_addr;
 2738: return 0;
 2739: 
 2740: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2741: *(float*)(ritem) = r;
 2742: return 0;
 2743: 
 2744: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2745: *(double*)(ritem) = r;
 2746: return 0;
 2747: 
 2748: \+
 2749: 
 2750: \+OLDCALL
 2751: 
 2752: define(`uploop',
 2753:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2754: define(`_uploop',
 2755:        `ifelse($1, `$3', `$5',
 2756: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2757: \ argflist(argnum): Forth argument list
 2758: define(argflist,
 2759:        `ifelse($1, 0, `',
 2760:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2761: \ argdlist(argnum): declare C's arguments
 2762: define(argdlist,
 2763:        `ifelse($1, 0, `',
 2764:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2765: \ argclist(argnum): pass C's arguments
 2766: define(argclist,
 2767:        `ifelse($1, 0, `',
 2768:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2769: \ icall(argnum)
 2770: define(icall,
 2771: `icall$1	( argflist($1)u -- uret )	gforth
 2772: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2773: 
 2774: ')
 2775: define(fcall,
 2776: `fcall$1	( argflist($1)u -- rret )	gforth
 2777: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2778: 
 2779: ')
 2780: 
 2781: \ close ' to keep fontify happy
 2782: 
 2783: uploop(i, 0, 7, `icall(i)')
 2784: icall(20)
 2785: uploop(i, 0, 7, `fcall(i)')
 2786: fcall(20)
 2787: 
 2788: \+
 2789: \+
 2790: 
 2791: \g peephole
 2792: 
 2793: \+peephole
 2794: 
 2795: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2796: ""compile prim (incl. immargs) at @var{a_prim}""
 2797: compile_prim1(a_prim);
 2798: 
 2799: finish-code ( ... -- ... ) gforth finish_code
 2800: ""Perform delayed steps in code generation (branch resolution, I-cache
 2801: flushing).""
 2802: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2803:    to save spTOS (gforth-fast --enable-force-reg) */
 2804: finish_code();
 2805: 
 2806: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2807: f = forget_dyncode(c_code);
 2808: 
 2809: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2810: ""a_prim is the code address of the primitive that has been
 2811: compile_prim1ed to a_code""
 2812: a_prim = (Cell *)decompile_code((Label)a_code);
 2813: 
 2814: \ set-next-code and call2 do not appear in images and can be
 2815: \ renumbered arbitrarily
 2816: 
 2817: set-next-code ( #w -- ) gforth set_next_code
 2818: #ifdef NO_IP
 2819: next_code = (Label)w;
 2820: #endif
 2821: 
 2822: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2823: /* call with explicit return address */
 2824: #ifdef NO_IP
 2825: INST_TAIL;
 2826: JUMP(a_callee);
 2827: #else
 2828: assert(0);
 2829: #endif
 2830: 
 2831: tag-offsets ( -- a_addr ) gforth tag_offsets
 2832: extern Cell groups[32];
 2833: a_addr = groups;
 2834: 
 2835: \+
 2836: 
 2837: \g static_super
 2838: 
 2839: ifdef(`STACK_CACHE_FILE',
 2840: `include(peeprules.vmg)')
 2841: 
 2842: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>