File:  [gforth] / gforth / prim
Revision 1.171: download - view: text, annotated - select for diffs
Wed Jul 27 19:44:20 2005 UTC (18 years, 7 months ago) by anton
Branches: MAIN
CVS tags: HEAD
added support for ... stack items to prims2x.fs
minor cleanup in prim

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E return-stack stack-prefix R:
  104: \E inst-stream  stack-prefix #
  105: \E 
  106: \E set-current
  107: \E store-optimization on
  108: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  109: \E
  110: \E include-skipped-insts on \ static superinsts include cells for components
  111: \E                          \ useful for dynamic programming and
  112: \E                          \ superinsts across entry points
  113: 
  114: \ 
  115: \ 
  116: \ 
  117: \ In addition the following names can be used:
  118: \ ip	the instruction pointer
  119: \ sp	the data stack pointer
  120: \ rp	the parameter stack pointer
  121: \ lp	the locals stack pointer
  122: \ NEXT	executes NEXT
  123: \ cfa	
  124: \ NEXT1	executes NEXT1
  125: \ FLAG(x)	makes a Forth flag from a C flag
  126: \ 
  127: \ 
  128: \ 
  129: \ Percentages in comments are from Koopmans book: average/maximum use
  130: \ (taken from four, not very representative benchmarks)
  131: \ 
  132: \ 
  133: \ 
  134: \ To do:
  135: \ 
  136: \ throw execute, cfa and NEXT1 out?
  137: \ macroize *ip, ip++, *ip++ (pipelining)?
  138: 
  139: \ Stack caching setup
  140: 
  141: ifdef(`M4_ENGINE_FAST', `include(cache1.vmg)', `include(cache0.vmg)')
  142: 
  143: \ these m4 macros would collide with identifiers
  144: undefine(`index')
  145: undefine(`shift')
  146: undefine(`symbols')
  147: 
  148: \F 0 [if]
  149: 
  150: \ run-time routines for non-primitives.  They are defined as
  151: \ primitives, because that simplifies things.
  152: 
  153: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  154: ""run-time routine for colon definitions""
  155: #ifdef NO_IP
  156: a_retaddr = next_code;
  157: INST_TAIL;
  158: goto **(Label *)PFA(CFA);
  159: #else /* !defined(NO_IP) */
  160: a_retaddr = (Cell *)IP;
  161: SET_IP((Xt *)PFA(CFA));
  162: #endif /* !defined(NO_IP) */
  163: 
  164: (docon) ( -- w )	gforth-internal	paren_docon
  165: ""run-time routine for constants""
  166: w = *(Cell *)PFA(CFA);
  167: #ifdef NO_IP
  168: INST_TAIL;
  169: goto *next_code;
  170: #endif /* defined(NO_IP) */
  171: 
  172: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  173: ""run-time routine for variables and CREATEd words""
  174: a_body = PFA(CFA);
  175: #ifdef NO_IP
  176: INST_TAIL;
  177: goto *next_code;
  178: #endif /* defined(NO_IP) */
  179: 
  180: (douser) ( -- a_user )	gforth-internal	paren_douser
  181: ""run-time routine for constants""
  182: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  183: #ifdef NO_IP
  184: INST_TAIL;
  185: goto *next_code;
  186: #endif /* defined(NO_IP) */
  187: 
  188: (dodefer) ( -- )	gforth-internal	paren_dodefer
  189: ""run-time routine for deferred words""
  190: #ifndef NO_IP
  191: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  192: #endif /* !defined(NO_IP) */
  193: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  194: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  195: 
  196: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  197: ""run-time routine for fields""
  198: n2 = n1 + *(Cell *)PFA(CFA);
  199: #ifdef NO_IP
  200: INST_TAIL;
  201: goto *next_code;
  202: #endif /* defined(NO_IP) */
  203: 
  204: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  205: ""run-time routine for @code{does>}-defined words""
  206: #ifdef NO_IP
  207: a_retaddr = next_code;
  208: a_body = PFA(CFA);
  209: INST_TAIL;
  210: goto **(Label *)DOES_CODE1(CFA);
  211: #else /* !defined(NO_IP) */
  212: a_retaddr = (Cell *)IP;
  213: a_body = PFA(CFA);
  214: SET_IP(DOES_CODE1(CFA));
  215: #endif /* !defined(NO_IP) */
  216: 
  217: (does-handler) ( -- )	gforth-internal	paren_does_handler
  218: ""just a slot to have an encoding for the DOESJUMP, 
  219: which is no longer used anyway (!! eliminate this)""
  220: 
  221: \F [endif]
  222: 
  223: \g control
  224: 
  225: noop	( -- )		gforth
  226: :
  227:  ;
  228: 
  229: call	( #a_callee -- R:a_retaddr )	new
  230: ""Call callee (a variant of docol with inline argument).""
  231: #ifdef NO_IP
  232: assert(0);
  233: INST_TAIL;
  234: JUMP(a_callee);
  235: #else
  236: #ifdef DEBUG
  237:     {
  238:       CFA_TO_NAME((((Cell *)a_callee)-2));
  239:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  240: 	      len,name);
  241:     }
  242: #endif
  243: a_retaddr = (Cell *)IP;
  244: SET_IP((Xt *)a_callee);
  245: #endif
  246: 
  247: execute	( xt -- )		core
  248: ""Perform the semantics represented by the execution token, @i{xt}.""
  249: #ifndef NO_IP
  250: ip=IP;
  251: #endif
  252: SUPER_END;
  253: VM_JUMP(EXEC1(xt));
  254: 
  255: perform	( a_addr -- )	gforth
  256: ""@code{@@ execute}.""
  257: /* and pfe */
  258: #ifndef NO_IP
  259: ip=IP;
  260: #endif
  261: SUPER_END;
  262: VM_JUMP(EXEC1(*(Xt *)a_addr));
  263: :
  264:  @ execute ;
  265: 
  266: ;s	( R:w -- )		gforth	semis
  267: ""The primitive compiled by @code{EXIT}.""
  268: #ifdef NO_IP
  269: INST_TAIL;
  270: goto *(void *)w;
  271: #else
  272: SET_IP((Xt *)w);
  273: #endif
  274: 
  275: unloop	( R:w1 R:w2 -- )	core
  276: /* !! alias for 2rdrop */
  277: :
  278:  r> rdrop rdrop >r ;
  279: 
  280: lit-perform	( #a_addr -- )	new	lit_perform
  281: #ifndef NO_IP
  282: ip=IP;
  283: #endif
  284: SUPER_END;
  285: VM_JUMP(EXEC1(*(Xt *)a_addr));
  286: 
  287: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  288: #ifdef NO_IP
  289: /* compiled to LIT CALL by compile_prim */
  290: assert(0);
  291: #else
  292: a_pfa = PFA(a_cfa);
  293: nest = (Cell)IP;
  294: #ifdef DEBUG
  295:     {
  296:       CFA_TO_NAME(a_cfa);
  297:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  298: 	      (Cell)ip,(Cell)a_cfa,len,name);
  299:     }
  300: #endif
  301: SET_IP(DOES_CODE1(a_cfa));
  302: #endif
  303: 
  304: \+glocals
  305: 
  306: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  307: /* this will probably not be used */
  308: lp += nlocals;
  309: #ifdef NO_IP
  310: INST_TAIL;
  311: JUMP(a_target);
  312: #else
  313: SET_IP((Xt *)a_target);
  314: #endif
  315: 
  316: \+
  317: 
  318: branch	( #a_target -- )	gforth
  319: #ifdef NO_IP
  320: INST_TAIL;
  321: JUMP(a_target);
  322: #else
  323: SET_IP((Xt *)a_target);
  324: #endif
  325: :
  326:  r> @ >r ;
  327: 
  328: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  329: \ this is non-syntactical: code must open a brace that is closed by the macro
  330: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  331: \ this is non-syntactical: code must open a brace that is closed by the macro
  332: define(condbranch,
  333: $1 ( `#'a_target $2 ) $3
  334: $4	#ifdef NO_IP
  335: INST_TAIL;
  336: #endif
  337: $5	#ifdef NO_IP
  338: JUMP(a_target);
  339: #else
  340: SET_IP((Xt *)a_target);
  341: #endif
  342: }
  343: $6
  344: 
  345: \+glocals
  346: 
  347: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  348: $4	#ifdef NO_IP
  349: INST_TAIL;
  350: #endif
  351: $5	lp += nlocals;
  352: #ifdef NO_IP
  353: JUMP(a_target);
  354: #else
  355: SET_IP((Xt *)a_target);
  356: #endif
  357: }
  358: 
  359: \+
  360: )
  361: 
  362: \ version that generates two jumps (not good for PR 15242 workaround)
  363: define(condbranch_twojump,
  364: $1 ( `#'a_target $2 ) $3
  365: $4	#ifdef NO_IP
  366: INST_TAIL;
  367: #endif
  368: $5	#ifdef NO_IP
  369: JUMP(a_target);
  370: #else
  371: SET_IP((Xt *)a_target);
  372: INST_TAIL; NEXT_P2;
  373: #endif
  374: }
  375: SUPER_CONTINUE;
  376: $6
  377: 
  378: \+glocals
  379: 
  380: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  381: $4	#ifdef NO_IP
  382: INST_TAIL;
  383: #endif
  384: $5	lp += nlocals;
  385: #ifdef NO_IP
  386: JUMP(a_target);
  387: #else
  388: SET_IP((Xt *)a_target);
  389: INST_TAIL; NEXT_P2;
  390: #endif
  391: }
  392: SUPER_CONTINUE;
  393: 
  394: \+
  395: )
  396: 
  397: condbranch(?branch,f --,f83	question_branch,
  398: ,if (f==0) {
  399: ,:
  400:  0= dup 0=          \ !f f
  401:  r> tuck cell+      \ !f branchoffset f IP+
  402:  and -rot @ and or  \ f&IP+|!f&branch
  403:  >r ;)
  404: 
  405: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  406: \ is only used in if's (yet)
  407: 
  408: \+xconds
  409: 
  410: ?dup-?branch	( #a_target f -- f )	new	question_dupe_question_branch
  411: ""The run-time procedure compiled by @code{?DUP-IF}.""
  412: if (f==0) {
  413:   sp++;
  414:   IF_spTOS(spTOS = sp[0]);
  415: #ifdef NO_IP
  416: INST_TAIL;
  417: JUMP(a_target);
  418: #else
  419: SET_IP((Xt *)a_target);
  420:   INST_TAIL; NEXT_P2;
  421: #endif
  422: }
  423: SUPER_CONTINUE;
  424: 
  425: ?dup-0=-?branch ( #a_target f -- ) new	question_dupe_zero_equals_question_branch
  426: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  427: /* the approach taken here of declaring the word as having the stack
  428: effect ( f -- ) and correcting for it in the branch-taken case costs a
  429: few cycles in that case, but is easy to convert to a CONDBRANCH
  430: invocation */
  431: if (f!=0) {
  432:   sp--;
  433: #ifdef NO_IP
  434:   JUMP(a_target);
  435: #else
  436:   SET_IP((Xt *)a_target);
  437:   NEXT;
  438: #endif
  439: }
  440: SUPER_CONTINUE;
  441: 
  442: \+
  443: \fhas? skiploopprims 0= [IF]
  444: 
  445: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  446: n2=n1-1;
  447: ,if (n1) {
  448: ,:
  449:  r> r> dup 1- >r
  450:  IF @ >r ELSE cell+ >r THEN ;)
  451: 
  452: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  453: n2=n1+1;
  454: ,if (n2 != nlimit) {
  455: ,:
  456:  r> r> 1+ r> 2dup =
  457:  IF >r 1- >r cell+ >r
  458:  ELSE >r >r @ >r THEN ;)
  459: 
  460: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  461: /* !! check this thoroughly */
  462: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  463: /* dependent upon two's complement arithmetic */
  464: Cell olddiff = n1-nlimit;
  465: n2=n1+n;	
  466: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  467:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  468:     >=0) { /* & is used to avoid having two branches for gforth-native */
  469: ,:
  470:  r> swap
  471:  r> r> 2dup - >r
  472:  2 pick r@ + r@ xor 0< 0=
  473:  3 pick r> xor 0< 0= or
  474:  IF    >r + >r @ >r
  475:  ELSE  >r >r drop cell+ >r THEN ;)
  476: 
  477: \+xconds
  478: 
  479: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  480: UCell olddiff = n1-nlimit;
  481: n2=n1-u;
  482: ,if (olddiff>u) {
  483: ,)
  484: 
  485: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  486: ""The run-time procedure compiled by S+LOOP. It loops until the index
  487: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  488: version of (+LOOP).""
  489: /* !! check this thoroughly */
  490: Cell diff = n1-nlimit;
  491: Cell newdiff = diff+n;
  492: if (n<0) {
  493:     diff = -diff;
  494:     newdiff = -newdiff;
  495: }
  496: n2=n1+n;
  497: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  498: ,)
  499: 
  500: \+
  501: 
  502: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  503: /* or (for) = >r -- collides with unloop! */
  504: nlimit=0;
  505: :
  506:  r> swap 0 >r >r >r ;
  507: 
  508: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  509: :
  510:  r> swap rot >r >r >r ;
  511: 
  512: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  513: #ifdef NO_IP
  514:     INST_TAIL;
  515: #endif
  516: if (nstart == nlimit) {
  517: #ifdef NO_IP
  518:     JUMP(a_target);
  519: #else
  520:     SET_IP((Xt *)a_target);
  521: #endif
  522: }
  523: :
  524:   2dup =
  525:   IF   r> swap rot >r >r
  526:        @ >r
  527:   ELSE r> swap rot >r >r
  528:        cell+ >r
  529:   THEN ;				\ --> CORE-EXT
  530: 
  531: \+xconds
  532: 
  533: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  534: #ifdef NO_IP
  535:     INST_TAIL;
  536: #endif
  537: if (nstart >= nlimit) {
  538: #ifdef NO_IP
  539:     JUMP(a_target);
  540: #else
  541:     SET_IP((Xt *)a_target);
  542: #endif
  543: }
  544: :
  545:  swap 2dup
  546:  r> swap >r swap >r
  547:  >=
  548:  IF
  549:      @
  550:  ELSE
  551:      cell+
  552:  THEN  >r ;
  553: 
  554: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  555: #ifdef NO_IP
  556:     INST_TAIL;
  557: #endif
  558: if (ustart >= ulimit) {
  559: #ifdef NO_IP
  560: JUMP(a_target);
  561: #else
  562: SET_IP((Xt *)a_target);
  563: #endif
  564: }
  565: :
  566:  swap 2dup
  567:  r> swap >r swap >r
  568:  u>=
  569:  IF
  570:      @
  571:  ELSE
  572:      cell+
  573:  THEN  >r ;
  574: 
  575: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  576: #ifdef NO_IP
  577:     INST_TAIL;
  578: #endif
  579: if (nstart <= nlimit) {
  580: #ifdef NO_IP
  581: JUMP(a_target);
  582: #else
  583: SET_IP((Xt *)a_target);
  584: #endif
  585: }
  586: :
  587:  swap 2dup
  588:  r> swap >r swap >r
  589:  <=
  590:  IF
  591:      @
  592:  ELSE
  593:      cell+
  594:  THEN  >r ;
  595: 
  596: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  597: #ifdef NO_IP
  598:     INST_TAIL;
  599: #endif
  600: if (ustart <= ulimit) {
  601: #ifdef NO_IP
  602: JUMP(a_target);
  603: #else
  604: SET_IP((Xt *)a_target);
  605: #endif
  606: }
  607: :
  608:  swap 2dup
  609:  r> swap >r swap >r
  610:  u<=
  611:  IF
  612:      @
  613:  ELSE
  614:      cell+
  615:  THEN  >r ;
  616: 
  617: \+
  618: 
  619: \ don't make any assumptions where the return stack is!!
  620: \ implement this in machine code if it should run quickly!
  621: 
  622: i	( R:n -- R:n n )		core
  623: :
  624: \ rp@ cell+ @ ;
  625:   r> r> tuck >r >r ;
  626: 
  627: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  628: :
  629: \ rp@ cell+ cell+ @ ;
  630:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  631: variable itmp
  632: 
  633: j	( R:n R:d1 -- n R:n R:d1 )		core
  634: :
  635: \ rp@ cell+ cell+ cell+ @ ;
  636:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  637: [IFUNDEF] itmp variable itmp [THEN]
  638: 
  639: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  640: :
  641: \ rp@ [ 5 cells ] Literal + @ ;
  642:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  643: [IFUNDEF] itmp variable itmp [THEN]
  644: 
  645: \f[THEN]
  646: 
  647: \ digit is high-level: 0/0%
  648: 
  649: \g strings
  650: 
  651: move	( c_from c_to ucount -- )		core
  652: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  653: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  654: /* !! note that the standard specifies addr, not c-addr */
  655: memmove(c_to,c_from,ucount);
  656: /* make an Ifdef for bsd and others? */
  657: :
  658:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  659: 
  660: cmove	( c_from c_to u -- )	string	c_move
  661: ""Copy the contents of @i{ucount} characters from data space at
  662: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  663: from low address to high address; i.e., for overlapping areas it is
  664: safe if @i{c-to}=<@i{c-from}.""
  665: cmove(c_from,c_to,u);
  666: :
  667:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  668: 
  669: cmove>	( c_from c_to u -- )	string	c_move_up
  670: ""Copy the contents of @i{ucount} characters from data space at
  671: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  672: from high address to low address; i.e., for overlapping areas it is
  673: safe if @i{c-to}>=@i{c-from}.""
  674: cmove_up(c_from,c_to,u);
  675: :
  676:  dup 0= IF  drop 2drop exit  THEN
  677:  rot over + -rot bounds swap 1-
  678:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  679: 
  680: fill	( c_addr u c -- )	core
  681: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  682: memset(c_addr,c,u);
  683: :
  684:  -rot bounds
  685:  ?DO  dup I c!  LOOP  drop ;
  686: 
  687: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  688: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  689: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  690: is 1. Currently this is based on the machine's character
  691: comparison. In the future, this may change to consider the current
  692: locale and its collation order.""
  693: /* close ' to keep fontify happy */ 
  694: n = compare(c_addr1, u1, c_addr2, u2);
  695: :
  696:  rot 2dup swap - >r min swap -text dup
  697:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  698: : -text ( c_addr1 u c_addr2 -- n )
  699:  swap bounds
  700:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  701:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  702: : sgn ( n -- -1/0/1 )
  703:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  704: 
  705: \ -text is only used by replaced primitives now; move it elsewhere
  706: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  707: \ n = memcmp(c_addr1, c_addr2, u);
  708: \ if (n<0)
  709: \   n = -1;
  710: \ else if (n>0)
  711: \   n = 1;
  712: \ :
  713: \  swap bounds
  714: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  715: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  716: \ : sgn ( n -- -1/0/1 )
  717: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  718: 
  719: toupper	( c1 -- c2 )	gforth
  720: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  721: is the equivalent upper-case character. All other characters are unchanged.""
  722: c2 = toupper(c1);
  723: :
  724:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  725: 
  726: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  727: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  728: characters from the start of the string.""
  729: c_addr2 = c_addr1+n;
  730: u2 = u1-n;
  731: :
  732:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  733: 
  734: \g arith
  735: 
  736: lit	( #w -- w )		gforth
  737: :
  738:  r> dup @ swap cell+ >r ;
  739: 
  740: +	( n1 n2 -- n )		core	plus
  741: n = n1+n2;
  742: 
  743: \ lit+ / lit_plus = lit +
  744: 
  745: lit+	( n1 #n2 -- n )		new	lit_plus
  746: n=n1+n2;
  747: 
  748: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  749: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  750: ""add @i{n3} to @i{n1} (giving @i{n})""
  751: n = n1+n3;
  752: :
  753:  rot + swap ;
  754: 
  755: -	( n1 n2 -- n )		core	minus
  756: n = n1-n2;
  757: :
  758:  negate + ;
  759: 
  760: negate	( n1 -- n2 )		core
  761: /* use minus as alias */
  762: n2 = -n1;
  763: :
  764:  invert 1+ ;
  765: 
  766: 1+	( n1 -- n2 )		core		one_plus
  767: n2 = n1+1;
  768: :
  769:  1 + ;
  770: 
  771: 1-	( n1 -- n2 )		core		one_minus
  772: n2 = n1-1;
  773: :
  774:  1 - ;
  775: 
  776: max	( n1 n2 -- n )	core
  777: if (n1<n2)
  778:   n = n2;
  779: else
  780:   n = n1;
  781: :
  782:  2dup < IF swap THEN drop ;
  783: 
  784: min	( n1 n2 -- n )	core
  785: if (n1<n2)
  786:   n = n1;
  787: else
  788:   n = n2;
  789: :
  790:  2dup > IF swap THEN drop ;
  791: 
  792: abs	( n -- u )	core
  793: if (n<0)
  794:   u = -n;
  795: else
  796:   u = n;
  797: :
  798:  dup 0< IF negate THEN ;
  799: 
  800: *	( n1 n2 -- n )		core	star
  801: n = n1*n2;
  802: :
  803:  um* drop ;
  804: 
  805: /	( n1 n2 -- n )		core	slash
  806: n = n1/n2;
  807: if(FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0)) n--;
  808: :
  809:  /mod nip ;
  810: 
  811: mod	( n1 n2 -- n )		core
  812: n = n1%n2;
  813: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  814: :
  815:  /mod drop ;
  816: 
  817: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  818: n4 = n1/n2;
  819: n3 = n1%n2; /* !! is this correct? look into C standard! */
  820: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  821:   n4--;
  822:   n3+=n2;
  823: }
  824: :
  825:  >r s>d r> fm/mod ;
  826: 
  827: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  828: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  829: #ifdef BUGGY_LL_MUL
  830: DCell d = mmul(n1,n2);
  831: #else
  832: DCell d = (DCell)n1 * (DCell)n2;
  833: #endif
  834: #ifdef BUGGY_LL_DIV
  835: DCell r = fmdiv(d,n3);
  836: n4=DHI(r);
  837: n5=DLO(r);
  838: #else
  839: /* assumes that the processor uses either floored or symmetric division */
  840: n5 = d/n3;
  841: n4 = d%n3;
  842: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  843:   n5--;
  844:   n4+=n3;
  845: }
  846: #endif
  847: :
  848:  >r m* r> fm/mod ;
  849: 
  850: */	( n1 n2 n3 -- n4 )	core	star_slash
  851: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  852: #ifdef BUGGY_LL_MUL
  853: DCell d = mmul(n1,n2);
  854: #else
  855: DCell d = (DCell)n1 * (DCell)n2;
  856: #endif
  857: #ifdef BUGGY_LL_DIV
  858: DCell r = fmdiv(d,n3);
  859: n4=DLO(r);
  860: #else
  861: /* assumes that the processor uses either floored or symmetric division */
  862: n4 = d/n3;
  863: if (FLOORED_DIV && ((DHI(d)^n3)<0) && (d%n3)!=0) n4--;
  864: #endif
  865: :
  866:  */mod nip ;
  867: 
  868: 2*	( n1 -- n2 )		core		two_star
  869: ""Shift left by 1; also works on unsigned numbers""
  870: n2 = 2*n1;
  871: :
  872:  dup + ;
  873: 
  874: 2/	( n1 -- n2 )		core		two_slash
  875: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  876: division by 2 (note that @code{/} not necessarily floors).""
  877: n2 = n1>>1;
  878: :
  879:  dup MINI and IF 1 ELSE 0 THEN
  880:  [ bits/byte cell * 1- ] literal 
  881:  0 DO 2* swap dup 2* >r MINI and 
  882:      IF 1 ELSE 0 THEN or r> swap
  883:  LOOP nip ;
  884: 
  885: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  886: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  887: #ifdef BUGGY_LL_DIV
  888: #ifdef ASM_SM_SLASH_REM
  889: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  890: if (((DHI(d1)^n1)<0) && n2!=0) {
  891:   n3--;
  892:   n2+=n1;
  893: }
  894: #else /* !defined(ASM_SM_SLASH_REM) */
  895: DCell r = fmdiv(d1,n1);
  896: n2=DHI(r);
  897: n3=DLO(r);
  898: #endif /* !defined(ASM_SM_SLASH_REM) */
  899: #else
  900: #ifdef ASM_SM_SLASH_REM4
  901: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  902: if (((DHI(d1)^n1)<0) && n2!=0) {
  903:   n3--;
  904:   n2+=n1;
  905: }
  906: #else /* !defined(ASM_SM_SLASH_REM4) */
  907: /* assumes that the processor uses either floored or symmetric division */
  908: n3 = d1/n1;
  909: n2 = d1%n1;
  910: /* note that this 1%-3>0 is optimized by the compiler */
  911: if (1%-3>0 && ((DHI(d1)^n1)<0) && n2!=0) {
  912:   n3--;
  913:   n2+=n1;
  914: }
  915: #endif /* !defined(ASM_SM_SLASH_REM4) */
  916: #endif
  917: :
  918:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  919:  over       0< IF  tuck + swap  THEN
  920:  um/mod
  921:  r> 0< IF  swap negate swap  THEN ;
  922: 
  923: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  924: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  925: #ifdef BUGGY_LL_DIV
  926: #ifdef ASM_SM_SLASH_REM
  927: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  928: #else /* !defined(ASM_SM_SLASH_REM) */
  929: DCell r = smdiv(d1,n1);
  930: n2=DHI(r);
  931: n3=DLO(r);
  932: #endif /* !defined(ASM_SM_SLASH_REM) */
  933: #else
  934: #ifdef ASM_SM_SLASH_REM4
  935: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  936: #else /* !defined(ASM_SM_SLASH_REM4) */
  937: /* assumes that the processor uses either floored or symmetric division */
  938: n3 = d1/n1;
  939: n2 = d1%n1;
  940: /* note that this 1%-3<0 is optimized by the compiler */
  941: if (1%-3<0 && ((DHI(d1)^n1)<0) && n2!=0) {
  942:   n3++;
  943:   n2-=n1;
  944: }
  945: #endif /* !defined(ASM_SM_SLASH_REM4) */
  946: #endif
  947: :
  948:  over >r dup >r abs -rot
  949:  dabs rot um/mod
  950:  r> r@ xor 0< IF       negate       THEN
  951:  r>        0< IF  swap negate swap  THEN ;
  952: 
  953: m*	( n1 n2 -- d )		core	m_star
  954: #ifdef BUGGY_LL_MUL
  955: d = mmul(n1,n2);
  956: #else
  957: d = (DCell)n1 * (DCell)n2;
  958: #endif
  959: :
  960:  2dup      0< and >r
  961:  2dup swap 0< and >r
  962:  um* r> - r> - ;
  963: 
  964: um*	( u1 u2 -- ud )		core	u_m_star
  965: /* use u* as alias */
  966: #ifdef BUGGY_LL_MUL
  967: ud = ummul(u1,u2);
  968: #else
  969: ud = (UDCell)u1 * (UDCell)u2;
  970: #endif
  971: :
  972:    0 -rot dup [ 8 cells ] literal -
  973:    DO
  974: 	dup 0< I' and d2*+ drop
  975:    LOOP ;
  976: : d2*+ ( ud n -- ud+n c )
  977:    over MINI
  978:    and >r >r 2dup d+ swap r> + swap r> ;
  979: 
  980: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  981: ""ud=u3*u1+u2, u1>u2>=0""
  982: #ifdef BUGGY_LL_DIV
  983: #ifdef ASM_UM_SLASH_MOD
  984: ASM_UM_SLASH_MOD(ud.lo, ud.hi, u1, u2, u3);
  985: #else /* !defined(ASM_UM_SLASH_MOD) */
  986: UDCell r = umdiv(ud,u1);
  987: u2=DHI(r);
  988: u3=DLO(r);
  989: #endif /* !defined(ASM_UM_SLASH_MOD) */
  990: #else
  991: #ifdef ASM_UM_SLASH_MOD4
  992: ASM_UM_SLASH_MOD4(ud, u1, u2, u3);
  993: #else /* !defined(ASM_UM_SLASH_MOD4) */
  994: u3 = ud/u1;
  995: u2 = ud%u1;
  996: #endif /* !defined(ASM_UM_SLASH_MOD4) */
  997: #endif
  998: :
  999:    0 swap [ 8 cells 1 + ] literal 0
 1000:    ?DO /modstep
 1001:    LOOP drop swap 1 rshift or swap ;
 1002: : /modstep ( ud c R: u -- ud-?u c R: u )
 1003:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
 1004: : d2*+ ( ud n -- ud+n c )
 1005:    over MINI
 1006:    and >r >r 2dup d+ swap r> + swap r> ;
 1007: 
 1008: m+	( d1 n -- d2 )		double		m_plus
 1009: #ifdef BUGGY_LL_ADD
 1010: DLO_IS(d2, DLO(d1)+n);
 1011: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1012: #else
 1013: d2 = d1+n;
 1014: #endif
 1015: :
 1016:  s>d d+ ;
 1017: 
 1018: d+	( d1 d2 -- d )		double	d_plus
 1019: #ifdef BUGGY_LL_ADD
 1020: DLO_IS(d, DLO(d1) + DLO(d2));
 1021: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1022: #else
 1023: d = d1+d2;
 1024: #endif
 1025: :
 1026:  rot + >r tuck + swap over u> r> swap - ;
 1027: 
 1028: d-	( d1 d2 -- d )		double		d_minus
 1029: #ifdef BUGGY_LL_ADD
 1030: DLO_IS(d, DLO(d1) - DLO(d2));
 1031: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1032: #else
 1033: d = d1-d2;
 1034: #endif
 1035: :
 1036:  dnegate d+ ;
 1037: 
 1038: dnegate	( d1 -- d2 )		double	d_negate
 1039: /* use dminus as alias */
 1040: #ifdef BUGGY_LL_ADD
 1041: d2 = dnegate(d1);
 1042: #else
 1043: d2 = -d1;
 1044: #endif
 1045: :
 1046:  invert swap negate tuck 0= - ;
 1047: 
 1048: d2*	( d1 -- d2 )		double		d_two_star
 1049: ""Shift left by 1; also works on unsigned numbers""
 1050: #ifdef BUGGY_LL_SHIFT
 1051: DLO_IS(d2, DLO(d1)<<1);
 1052: DHI_IS(d2, (DHI(d1)<<1) | (DLO(d1)>>(CELL_BITS-1)));
 1053: #else
 1054: d2 = 2*d1;
 1055: #endif
 1056: :
 1057:  2dup d+ ;
 1058: 
 1059: d2/	( d1 -- d2 )		double		d_two_slash
 1060: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1061: division by 2.""
 1062: #ifdef BUGGY_LL_SHIFT
 1063: DHI_IS(d2, DHI(d1)>>1);
 1064: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1065: #else
 1066: d2 = d1>>1;
 1067: #endif
 1068: :
 1069:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1070:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1071: 
 1072: and	( w1 w2 -- w )		core
 1073: w = w1&w2;
 1074: 
 1075: or	( w1 w2 -- w )		core
 1076: w = w1|w2;
 1077: :
 1078:  invert swap invert and invert ;
 1079: 
 1080: xor	( w1 w2 -- w )		core	x_or
 1081: w = w1^w2;
 1082: 
 1083: invert	( w1 -- w2 )		core
 1084: w2 = ~w1;
 1085: :
 1086:  MAXU xor ;
 1087: 
 1088: rshift	( u1 n -- u2 )		core	r_shift
 1089: ""Logical shift right by @i{n} bits.""
 1090: #ifdef BROKEN_SHIFT
 1091:   u2 = rshift(u1, n);
 1092: #else
 1093:   u2 = u1 >> n;
 1094: #endif
 1095: :
 1096:     0 ?DO 2/ MAXI and LOOP ;
 1097: 
 1098: lshift	( u1 n -- u2 )		core	l_shift
 1099: #ifdef BROKEN_SHIFT
 1100:   u2 = lshift(u1, n);
 1101: #else
 1102:   u2 = u1 << n;
 1103: #endif
 1104: :
 1105:     0 ?DO 2* LOOP ;
 1106: 
 1107: \g compare
 1108: 
 1109: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1110: define(comparisons,
 1111: $1=	( $2 -- f )		$6	$3equals
 1112: f = FLAG($4==$5);
 1113: :
 1114:     [ char $1x char 0 = [IF]
 1115: 	] IF false ELSE true THEN [
 1116:     [ELSE]
 1117: 	] xor 0= [
 1118:     [THEN] ] ;
 1119: 
 1120: $1<>	( $2 -- f )		$7	$3not_equals
 1121: f = FLAG($4!=$5);
 1122: :
 1123:     [ char $1x char 0 = [IF]
 1124: 	] IF true ELSE false THEN [
 1125:     [ELSE]
 1126: 	] xor 0<> [
 1127:     [THEN] ] ;
 1128: 
 1129: $1<	( $2 -- f )		$8	$3less_than
 1130: f = FLAG($4<$5);
 1131: :
 1132:     [ char $1x char 0 = [IF]
 1133: 	] MINI and 0<> [
 1134:     [ELSE] char $1x char u = [IF]
 1135: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1136: 	[ELSE]
 1137: 	    ] MINI xor >r MINI xor r> u< [
 1138: 	[THEN]
 1139:     [THEN] ] ;
 1140: 
 1141: $1>	( $2 -- f )		$9	$3greater_than
 1142: f = FLAG($4>$5);
 1143: :
 1144:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1145:     $1< ;
 1146: 
 1147: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1148: f = FLAG($4<=$5);
 1149: :
 1150:     $1> 0= ;
 1151: 
 1152: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1153: f = FLAG($4>=$5);
 1154: :
 1155:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1156:     $1<= ;
 1157: 
 1158: )
 1159: 
 1160: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1161: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1162: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1163: 
 1164: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1165: define(dcomparisons,
 1166: $1=	( $2 -- f )		$6	$3equals
 1167: #ifdef BUGGY_LL_CMP
 1168: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1169: #else
 1170: f = FLAG($4==$5);
 1171: #endif
 1172: 
 1173: $1<>	( $2 -- f )		$7	$3not_equals
 1174: #ifdef BUGGY_LL_CMP
 1175: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1176: #else
 1177: f = FLAG($4!=$5);
 1178: #endif
 1179: 
 1180: $1<	( $2 -- f )		$8	$3less_than
 1181: #ifdef BUGGY_LL_CMP
 1182: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1183: #else
 1184: f = FLAG($4<$5);
 1185: #endif
 1186: 
 1187: $1>	( $2 -- f )		$9	$3greater_than
 1188: #ifdef BUGGY_LL_CMP
 1189: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1190: #else
 1191: f = FLAG($4>$5);
 1192: #endif
 1193: 
 1194: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1195: #ifdef BUGGY_LL_CMP
 1196: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1197: #else
 1198: f = FLAG($4<=$5);
 1199: #endif
 1200: 
 1201: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1202: #ifdef BUGGY_LL_CMP
 1203: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1204: #else
 1205: f = FLAG($4>=$5);
 1206: #endif
 1207: 
 1208: )
 1209: 
 1210: \+dcomps
 1211: 
 1212: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1213: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1214: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1215: 
 1216: \+
 1217: 
 1218: within	( u1 u2 u3 -- f )		core-ext
 1219: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1220: unsigned and signed numbers (but not a mixture).  Another way to think
 1221: about this word is to consider the numbers as a circle (wrapping
 1222: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1223: min-n for signed numbers); now consider the range from u2 towards
 1224: increasing numbers up to and excluding u3 (giving an empty range if
 1225: u2=u3); if u1 is in this range, @code{within} returns true.""
 1226: f = FLAG(u1-u2 < u3-u2);
 1227: :
 1228:  over - >r - r> u< ;
 1229: 
 1230: \g stack
 1231: 
 1232: useraddr	( #u -- a_addr )	new
 1233: a_addr = (Cell *)(up+u);
 1234: 
 1235: up!	( a_addr -- )	gforth	up_store
 1236: UP=up=(char *)a_addr;
 1237: :
 1238:  up ! ;
 1239: Variable UP
 1240: 
 1241: sp@	( -- a_addr )		gforth		sp_fetch
 1242: a_addr = sp+1;
 1243: 
 1244: sp!	( a_addr -- )		gforth		sp_store
 1245: sp = a_addr;
 1246: /* works with and without spTOS caching */
 1247: 
 1248: rp@	( -- a_addr )		gforth		rp_fetch
 1249: a_addr = rp;
 1250: 
 1251: rp!	( a_addr -- )		gforth		rp_store
 1252: rp = a_addr;
 1253: 
 1254: \+floating
 1255: 
 1256: fp@	( -- f_addr )	gforth	fp_fetch
 1257: f_addr = fp;
 1258: 
 1259: fp!	( f_addr -- )	gforth	fp_store
 1260: fp = f_addr;
 1261: 
 1262: \+
 1263: 
 1264: >r	( w -- R:w )		core	to_r
 1265: :
 1266:  (>r) ;
 1267: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1268: 
 1269: r>	( R:w -- w )		core	r_from
 1270: :
 1271:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1272: Create (rdrop) ' ;s A,
 1273: 
 1274: rdrop	( R:w -- )		gforth
 1275: :
 1276:  r> r> drop >r ;
 1277: 
 1278: 2>r	( d -- R:d )	core-ext	two_to_r
 1279: :
 1280:  swap r> swap >r swap >r >r ;
 1281: 
 1282: 2r>	( R:d -- d )	core-ext	two_r_from
 1283: :
 1284:  r> r> swap r> swap >r swap ;
 1285: 
 1286: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1287: :
 1288:  i' j ;
 1289: 
 1290: 2rdrop	( R:d -- )		gforth	two_r_drop
 1291: :
 1292:  r> r> drop r> drop >r ;
 1293: 
 1294: over	( w1 w2 -- w1 w2 w1 )		core
 1295: :
 1296:  sp@ cell+ @ ;
 1297: 
 1298: drop	( w -- )		core
 1299: :
 1300:  IF THEN ;
 1301: 
 1302: swap	( w1 w2 -- w2 w1 )		core
 1303: :
 1304:  >r (swap) ! r> (swap) @ ;
 1305: Variable (swap)
 1306: 
 1307: dup	( w -- w w )		core	dupe
 1308: :
 1309:  sp@ @ ;
 1310: 
 1311: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1312: :
 1313: [ defined? (swap) [IF] ]
 1314:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1315: Variable (rot)
 1316: [ELSE] ]
 1317:     >r swap r> swap ;
 1318: [THEN]
 1319: 
 1320: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1321: :
 1322:  rot rot ;
 1323: 
 1324: nip	( w1 w2 -- w2 )		core-ext
 1325: :
 1326:  swap drop ;
 1327: 
 1328: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1329: :
 1330:  swap over ;
 1331: 
 1332: ?dup	( w -- w )			core	question_dupe
 1333: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1334: @code{dup} if w is nonzero.""
 1335: if (w!=0) {
 1336:   IF_spTOS(*sp-- = w;)
 1337: #ifndef USE_TOS
 1338:   *--sp = w;
 1339: #endif
 1340: }
 1341: :
 1342:  dup IF dup THEN ;
 1343: 
 1344: pick	( u -- w )			core-ext
 1345: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1346: w = sp[u+1];
 1347: :
 1348:  1+ cells sp@ + @ ;
 1349: 
 1350: 2drop	( w1 w2 -- )		core	two_drop
 1351: :
 1352:  drop drop ;
 1353: 
 1354: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1355: :
 1356:  over over ;
 1357: 
 1358: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1359: :
 1360:  3 pick 3 pick ;
 1361: 
 1362: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1363: :
 1364:  rot >r rot r> ;
 1365: 
 1366: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1367: :
 1368:  >r >r 2swap r> r> 2swap ;
 1369: 
 1370: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1371: :
 1372:  2swap 2drop ;
 1373: 
 1374: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1375: :
 1376:  2swap 2over ;
 1377: 
 1378: \ toggle is high-level: 0.11/0.42%
 1379: 
 1380: \g memory
 1381: 
 1382: @	( a_addr -- w )		core	fetch
 1383: ""@i{w} is the cell stored at @i{a_addr}.""
 1384: w = *a_addr;
 1385: 
 1386: \ lit@ / lit_fetch = lit @
 1387: 
 1388: lit@		( #a_addr -- w ) new	lit_fetch
 1389: w = *a_addr;
 1390: 
 1391: !	( w a_addr -- )		core	store
 1392: ""Store @i{w} into the cell at @i{a-addr}.""
 1393: *a_addr = w;
 1394: 
 1395: +!	( n a_addr -- )		core	plus_store
 1396: ""Add @i{n} to the cell at @i{a-addr}.""
 1397: *a_addr += n;
 1398: :
 1399:  tuck @ + swap ! ;
 1400: 
 1401: c@	( c_addr -- c )		core	c_fetch
 1402: ""@i{c} is the char stored at @i{c_addr}.""
 1403: c = *c_addr;
 1404: :
 1405: [ bigendian [IF] ]
 1406:     [ cell>bit 4 = [IF] ]
 1407: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1408: 	IF  $FF and  ELSE  8>>  THEN  ;
 1409:     [ [ELSE] ]
 1410: 	dup [ cell 1- ] literal and
 1411: 	tuck - @ swap [ cell 1- ] literal xor
 1412:  	0 ?DO 8>> LOOP $FF and
 1413:     [ [THEN] ]
 1414: [ [ELSE] ]
 1415:     [ cell>bit 4 = [IF] ]
 1416: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1417: 	IF  8>>  ELSE  $FF and  THEN
 1418:     [ [ELSE] ]
 1419: 	dup [ cell  1- ] literal and 
 1420: 	tuck - @ swap
 1421: 	0 ?DO 8>> LOOP 255 and
 1422:     [ [THEN] ]
 1423: [ [THEN] ]
 1424: ;
 1425: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1426: 
 1427: c!	( c c_addr -- )		core	c_store
 1428: ""Store @i{c} into the char at @i{c-addr}.""
 1429: *c_addr = c;
 1430: :
 1431: [ bigendian [IF] ]
 1432:     [ cell>bit 4 = [IF] ]
 1433: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1434: 	dup -2 and @ over 1 and cells masks + @ and
 1435: 	r> or swap -2 and ! ;
 1436: 	Create masks $00FF , $FF00 ,
 1437:     [ELSE] ]
 1438: 	dup [ cell 1- ] literal and dup 
 1439: 	[ cell 1- ] literal xor >r
 1440: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1441: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1442:     [THEN]
 1443: [ELSE] ]
 1444:     [ cell>bit 4 = [IF] ]
 1445: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1446: 	dup -2 and @ over 1 and cells masks + @ and
 1447: 	r> or swap -2 and ! ;
 1448: 	Create masks $FF00 , $00FF ,
 1449:     [ELSE] ]
 1450: 	dup [ cell 1- ] literal and dup >r
 1451: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1452: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1453:     [THEN]
 1454: [THEN]
 1455: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1456: 
 1457: 2!	( w1 w2 a_addr -- )		core	two_store
 1458: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1459: a_addr[0] = w2;
 1460: a_addr[1] = w1;
 1461: :
 1462:  tuck ! cell+ ! ;
 1463: 
 1464: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1465: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1466: the content of the next cell.""
 1467: w2 = a_addr[0];
 1468: w1 = a_addr[1];
 1469: :
 1470:  dup cell+ @ swap @ ;
 1471: 
 1472: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1473: ""@code{1 cells +}""
 1474: a_addr2 = a_addr1+1;
 1475: :
 1476:  cell + ;
 1477: 
 1478: cells	( n1 -- n2 )		core
 1479: "" @i{n2} is the number of address units of @i{n1} cells.""
 1480: n2 = n1 * sizeof(Cell);
 1481: :
 1482:  [ cell
 1483:  2/ dup [IF] ] 2* [ [THEN]
 1484:  2/ dup [IF] ] 2* [ [THEN]
 1485:  2/ dup [IF] ] 2* [ [THEN]
 1486:  2/ dup [IF] ] 2* [ [THEN]
 1487:  drop ] ;
 1488: 
 1489: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1490: ""@code{1 chars +}.""
 1491: c_addr2 = c_addr1 + 1;
 1492: :
 1493:  1+ ;
 1494: 
 1495: (chars)	( n1 -- n2 )	gforth	paren_chars
 1496: n2 = n1 * sizeof(Char);
 1497: :
 1498:  ;
 1499: 
 1500: count	( c_addr1 -- c_addr2 u )	core
 1501: ""@i{c-addr2} is the first character and @i{u} the length of the
 1502: counted string at @i{c-addr1}.""
 1503: u = *c_addr1;
 1504: c_addr2 = c_addr1+1;
 1505: :
 1506:  dup 1+ swap c@ ;
 1507: 
 1508: \g compiler
 1509: 
 1510: \+f83headerstring
 1511: 
 1512: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1513: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1514:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1515:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1516:     break;
 1517: f83name2=f83name1;
 1518: :
 1519:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1520: 	>r 2dup r@ cell+ char+ capscomp  0=
 1521: 	IF  2drop r>  EXIT  THEN
 1522: 	r> @
 1523:     REPEAT  THEN  nip nip ;
 1524: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1525:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1526: : capscomp ( c_addr1 u c_addr2 -- n )
 1527:  swap bounds
 1528:  ?DO  dup c@ I c@ <>
 1529:      IF  dup c@ toupper I c@ toupper =
 1530:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1531:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1532: : sgn ( n -- -1/0/1 )
 1533:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1534: 
 1535: \-
 1536: 
 1537: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1538: longname2=listlfind(c_addr, u, longname1);
 1539: :
 1540:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1541: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1542: 	IF  2drop r>  EXIT  THEN
 1543: 	r> @
 1544:     REPEAT  THEN  nip nip ;
 1545: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1546:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1547: : capscomp ( c_addr1 u c_addr2 -- n )
 1548:  swap bounds
 1549:  ?DO  dup c@ I c@ <>
 1550:      IF  dup c@ toupper I c@ toupper =
 1551:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1552:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1553: : sgn ( n -- -1/0/1 )
 1554:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1555: 
 1556: \+hash
 1557: 
 1558: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1559: longname2 = hashlfind(c_addr, u, a_addr);
 1560: :
 1561:  BEGIN  dup  WHILE
 1562:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1563:         IF  2dup r@ cell+ cell+ capscomp 0=
 1564: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1565: 	rdrop r>
 1566:  REPEAT nip nip ;
 1567: 
 1568: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1569: ""A case-sensitive variant of @code{(hashfind)}""
 1570: longname2 = tablelfind(c_addr, u, a_addr);
 1571: :
 1572:  BEGIN  dup  WHILE
 1573:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1574:         IF  2dup r@ cell+ cell+ -text 0=
 1575: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1576: 	rdrop r>
 1577:  REPEAT nip nip ;
 1578: : -text ( c_addr1 u c_addr2 -- n )
 1579:  swap bounds
 1580:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1581:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1582: : sgn ( n -- -1/0/1 )
 1583:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1584: 
 1585: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1586: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1587: ukey = hashkey1(c_addr, u, ubits);
 1588: :
 1589:  dup rot-values + c@ over 1 swap lshift 1- >r
 1590:  tuck - 2swap r> 0 2swap bounds
 1591:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1592:       I c@ toupper xor
 1593:       over and  LOOP
 1594:  nip nip nip ;
 1595: Create rot-values
 1596:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1597:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1598:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1599:   7 c, 5 c, 5 c,
 1600: 
 1601: \+
 1602: 
 1603: \+
 1604: 
 1605: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1606: struct Cellpair r=parse_white(c_addr1, u1);
 1607: c_addr2 = (Char *)(r.n1);
 1608: u2 = r.n2;
 1609: :
 1610:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1611:  REPEAT  THEN  2dup
 1612:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1613:  REPEAT  THEN  nip - ;
 1614: 
 1615: aligned	( c_addr -- a_addr )	core
 1616: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1617: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1618: :
 1619:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1620: 
 1621: faligned	( c_addr -- f_addr )	float	f_aligned
 1622: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1623: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1624: :
 1625:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1626: 
 1627: \ threading stuff is currently only interesting if we have a compiler
 1628: \fhas? standardthreading has? compiler and [IF]
 1629: threading-method	( -- n )	gforth	threading_method
 1630: ""0 if the engine is direct threaded. Note that this may change during
 1631: the lifetime of an image.""
 1632: #if defined(DOUBLY_INDIRECT)
 1633: n=2;
 1634: #else
 1635: # if defined(DIRECT_THREADED)
 1636: n=0;
 1637: # else
 1638: n=1;
 1639: # endif
 1640: #endif
 1641: :
 1642:  1 ;
 1643: 
 1644: \f[THEN]
 1645: 
 1646: \g hostos
 1647: 
 1648: key-file	( wfileid -- n )		gforth	paren_key_file
 1649: #ifdef HAS_FILE
 1650: fflush(stdout);
 1651: n = key((FILE*)wfileid);
 1652: #else
 1653: n = key(stdin);
 1654: #endif
 1655: 
 1656: key?-file	( wfileid -- n )		facility	key_q_file
 1657: #ifdef HAS_FILE
 1658: fflush(stdout);
 1659: n = key_query((FILE*)wfileid);
 1660: #else
 1661: n = key_query(stdin);
 1662: #endif
 1663: 
 1664: \+os
 1665: 
 1666: stdin	( -- wfileid )	gforth
 1667: wfileid = (Cell)stdin;
 1668: 
 1669: stdout	( -- wfileid )	gforth
 1670: wfileid = (Cell)stdout;
 1671: 
 1672: stderr	( -- wfileid )	gforth
 1673: wfileid = (Cell)stderr;
 1674: 
 1675: form	( -- urows ucols )	gforth
 1676: ""The number of lines and columns in the terminal. These numbers may change
 1677: with the window size.""
 1678: /* we could block SIGWINCH here to get a consistent size, but I don't
 1679:  think this is necessary or always beneficial */
 1680: urows=rows;
 1681: ucols=cols;
 1682: 
 1683: flush-icache	( c_addr u -- )	gforth	flush_icache
 1684: ""Make sure that the instruction cache of the processor (if there is
 1685: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1686: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1687: automatically. Caveat: @code{flush-icache} might not work on your
 1688: installation; this is usually the case if direct threading is not
 1689: supported on your machine (take a look at your @file{machine.h}) and
 1690: your machine has a separate instruction cache. In such cases,
 1691: @code{flush-icache} does nothing instead of flushing the instruction
 1692: cache.""
 1693: FLUSH_ICACHE(c_addr,u);
 1694: 
 1695: (bye)	( n -- )	gforth	paren_bye
 1696: SUPER_END;
 1697: return (Label *)n;
 1698: 
 1699: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1700: wretval = gforth_system(c_addr, u);  
 1701: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1702: 
 1703: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1704: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1705: is the host operating system's expansion of that environment variable. If the
 1706: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1707: in length.""
 1708: /* close ' to keep fontify happy */
 1709: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1710: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1711: 
 1712: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1713: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1714: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1715: 
 1716: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1717: wretval = pclose((FILE *)wfileid);
 1718: wior = IOR(wretval==-1);
 1719: 
 1720: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1721: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1722: Months are numbered from 1.""
 1723: #if 1
 1724: time_t now;
 1725: struct tm *ltime;
 1726: time(&now);
 1727: ltime=localtime(&now);
 1728: #else
 1729: struct timeval time1;
 1730: struct timezone zone1;
 1731: struct tm *ltime;
 1732: gettimeofday(&time1,&zone1);
 1733: /* !! Single Unix specification: 
 1734:    If tzp is not a null pointer, the behaviour is unspecified. */
 1735: ltime=localtime((time_t *)&time1.tv_sec);
 1736: #endif
 1737: nyear =ltime->tm_year+1900;
 1738: nmonth=ltime->tm_mon+1;
 1739: nday  =ltime->tm_mday;
 1740: nhour =ltime->tm_hour;
 1741: nmin  =ltime->tm_min;
 1742: nsec  =ltime->tm_sec;
 1743: 
 1744: ms	( n -- )	facility-ext
 1745: ""Wait at least @i{n} milli-second.""
 1746: struct timeval timeout;
 1747: timeout.tv_sec=n/1000;
 1748: timeout.tv_usec=1000*(n%1000);
 1749: (void)select(0,0,0,0,&timeout);
 1750: 
 1751: allocate	( u -- a_addr wior )	memory
 1752: ""Allocate @i{u} address units of contiguous data space. The initial
 1753: contents of the data space is undefined. If the allocation is successful,
 1754: @i{a-addr} is the start address of the allocated region and @i{wior}
 1755: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1756: is a non-zero I/O result code.""
 1757: a_addr = (Cell *)malloc(u?u:1);
 1758: wior = IOR(a_addr==NULL);
 1759: 
 1760: free	( a_addr -- wior )		memory
 1761: ""Return the region of data space starting at @i{a-addr} to the system.
 1762: The region must originally have been obtained using @code{allocate} or
 1763: @code{resize}. If the operational is successful, @i{wior} is 0.
 1764: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1765: free(a_addr);
 1766: wior = 0;
 1767: 
 1768: resize	( a_addr1 u -- a_addr2 wior )	memory
 1769: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1770: address units, possibly moving the contents to a different
 1771: area. @i{a-addr2} is the address of the resulting area.
 1772: If the operation is successful, @i{wior} is 0.
 1773: If the operation fails, @i{wior} is a non-zero
 1774: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1775: @code{resize} @code{allocate}s @i{u} address units.""
 1776: /* the following check is not necessary on most OSs, but it is needed
 1777:    on SunOS 4.1.2. */
 1778: /* close ' to keep fontify happy */
 1779: if (a_addr1==NULL)
 1780:   a_addr2 = (Cell *)malloc(u);
 1781: else
 1782:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1783: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1784: 
 1785: strerror	( n -- c_addr u )	gforth
 1786: c_addr = strerror(n);
 1787: u = strlen(c_addr);
 1788: 
 1789: strsignal	( n -- c_addr u )	gforth
 1790: c_addr = (Address)strsignal(n);
 1791: u = strlen(c_addr);
 1792: 
 1793: call-c	( w -- )	gforth	call_c
 1794: ""Call the C function pointed to by @i{w}. The C function has to
 1795: access the stack itself. The stack pointers are exported in the global
 1796: variables @code{SP} and @code{FP}.""
 1797: /* This is a first attempt at support for calls to C. This may change in
 1798:    the future */
 1799: IF_fpTOS(fp[0]=fpTOS);
 1800: FP=fp;
 1801: SP=sp;
 1802: ((void (*)())w)();
 1803: sp=SP;
 1804: fp=FP;
 1805: IF_spTOS(spTOS=sp[0]);
 1806: IF_fpTOS(fpTOS=fp[0]);
 1807: 
 1808: \+
 1809: \+file
 1810: 
 1811: close-file	( wfileid -- wior )		file	close_file
 1812: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1813: 
 1814: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1815: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1816: wior =  IOR(wfileid == 0);
 1817: 
 1818: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1819: Cell	fd;
 1820: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1821: if (fd != -1) {
 1822:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1823:   wior = IOR(wfileid == 0);
 1824: } else {
 1825:   wfileid = 0;
 1826:   wior = IOR(1);
 1827: }
 1828: 
 1829: delete-file	( c_addr u -- wior )		file	delete_file
 1830: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1831: 
 1832: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1833: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1834: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1835: 
 1836: file-position	( wfileid -- ud wior )	file	file_position
 1837: /* !! use tell and lseek? */
 1838: ud = OFF2UD(ftello((FILE *)wfileid));
 1839: wior = IOR(UD2OFF(ud)==-1);
 1840: 
 1841: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1842: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1843: 
 1844: file-size	( wfileid -- ud wior )	file	file_size
 1845: struct stat buf;
 1846: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1847: ud = OFF2UD(buf.st_size);
 1848: 
 1849: resize-file	( ud wfileid -- wior )	file	resize_file
 1850: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1851: 
 1852: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1853: /* !! fread does not guarantee enough */
 1854: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1855: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1856: /* !! is the value of ferror errno-compatible? */
 1857: if (wior)
 1858:   clearerr((FILE *)wfileid);
 1859: 
 1860: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1861: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1862: u2   = r.n1;
 1863: flag = r.n2;
 1864: u3   = r.n3;
 1865: wior = r.n4;
 1866: 
 1867: \+
 1868: 
 1869: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1870: /* !! fwrite does not guarantee enough */
 1871: #ifdef HAS_FILE
 1872: {
 1873:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1874:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1875:   if (wior)
 1876:     clearerr((FILE *)wfileid);
 1877: }
 1878: #else
 1879: TYPE(c_addr, u1);
 1880: #endif
 1881: 
 1882: emit-file	( c wfileid -- wior )	gforth	emit_file
 1883: #ifdef HAS_FILE
 1884: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1885: if (wior)
 1886:   clearerr((FILE *)wfileid);
 1887: #else
 1888: PUTC(c);
 1889: #endif
 1890: 
 1891: \+file
 1892: 
 1893: flush-file	( wfileid -- wior )		file-ext	flush_file
 1894: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1895: 
 1896: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1897: struct Cellpair r = file_status(c_addr, u);
 1898: wfam = r.n1;
 1899: wior = r.n2;
 1900: 
 1901: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1902: flag = FLAG(feof((FILE *) wfileid));
 1903: 
 1904: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1905: ""Open the directory specified by @i{c-addr, u}
 1906: and return @i{dir-id} for futher access to it.""
 1907: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1908: wior =  IOR(wdirid == 0);
 1909: 
 1910: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1911: ""Attempt to read the next entry from the directory specified
 1912: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1913: If the attempt fails because there is no more entries,
 1914: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1915: If the attempt to read the next entry fails because of any other reason, 
 1916: return @i{ior}<>0.
 1917: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1918: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1919: If the length of the file name is greater than @i{u1}, 
 1920: store first @i{u1} characters from file name into the buffer and
 1921: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1922: struct dirent * dent;
 1923: dent = readdir((DIR *)wdirid);
 1924: wior = 0;
 1925: flag = -1;
 1926: if(dent == NULL) {
 1927:   u2 = 0;
 1928:   flag = 0;
 1929: } else {
 1930:   u2 = strlen(dent->d_name);
 1931:   if(u2 > u1) {
 1932:     u2 = u1;
 1933:     wior = -512-ENAMETOOLONG;
 1934:   }
 1935:   memmove(c_addr, dent->d_name, u2);
 1936: }
 1937: 
 1938: close-dir	( wdirid -- wior )	gforth	close_dir
 1939: ""Close the directory specified by @i{dir-id}.""
 1940: wior = IOR(closedir((DIR *)wdirid));
 1941: 
 1942: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1943: char * string = cstr(c_addr1, u1, 1);
 1944: char * pattern = cstr(c_addr2, u2, 0);
 1945: flag = FLAG(!fnmatch(pattern, string, 0));
 1946: 
 1947: set-dir	( c_addr u -- wior )	gforth set_dir
 1948: ""Change the current directory to @i{c-addr, u}.
 1949: Return an error if this is not possible""
 1950: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1951: 
 1952: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1953: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1954: If the buffer size is not sufficient, return 0 0""
 1955: c_addr2 = getcwd(c_addr1, u1);
 1956: if(c_addr2 != NULL) {
 1957:   u2 = strlen(c_addr2);
 1958: } else {
 1959:   u2 = 0;
 1960: }
 1961: 
 1962: \+
 1963: 
 1964: newline	( -- c_addr u )	gforth
 1965: ""String containing the newline sequence of the host OS""
 1966: char newline[] = {
 1967: #if DIRSEP=='/'
 1968: /* Unix */
 1969: '\n'
 1970: #else
 1971: /* DOS, Win, OS/2 */
 1972: '\r','\n'
 1973: #endif
 1974: };
 1975: c_addr=newline;
 1976: u=sizeof(newline);
 1977: :
 1978:  "newline count ;
 1979: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1980: 
 1981: \+os
 1982: 
 1983: utime	( -- dtime )	gforth
 1984: ""Report the current time in microseconds since some epoch.""
 1985: struct timeval time1;
 1986: gettimeofday(&time1,NULL);
 1987: dtime = timeval2us(&time1);
 1988: 
 1989: cputime ( -- duser dsystem ) gforth
 1990: ""duser and dsystem are the respective user- and system-level CPU
 1991: times used since the start of the Forth system (excluding child
 1992: processes), in microseconds (the granularity may be much larger,
 1993: however).  On platforms without the getrusage call, it reports elapsed
 1994: time (since some epoch) for duser and 0 for dsystem.""
 1995: #ifdef HAVE_GETRUSAGE
 1996: struct rusage usage;
 1997: getrusage(RUSAGE_SELF, &usage);
 1998: duser = timeval2us(&usage.ru_utime);
 1999: dsystem = timeval2us(&usage.ru_stime);
 2000: #else
 2001: struct timeval time1;
 2002: gettimeofday(&time1,NULL);
 2003: duser = timeval2us(&time1);
 2004: dsystem = DZERO;
 2005: #endif
 2006: 
 2007: \+
 2008: 
 2009: \+floating
 2010: 
 2011: \g floating
 2012: 
 2013: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2014: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2015: 
 2016: d>f	( d -- r )		float	d_to_f
 2017: #ifdef BUGGY_LL_D2F
 2018: extern double ldexp(double x, int exp);
 2019: if (DHI(d)<0) {
 2020: #ifdef BUGGY_LL_ADD
 2021:   DCell d2=dnegate(d);
 2022: #else
 2023:   DCell d2=-d;
 2024: #endif
 2025:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2026: } else
 2027:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2028: #else
 2029: r = d;
 2030: #endif
 2031: 
 2032: f>d	( r -- d )		float	f_to_d
 2033: extern DCell double2ll(Float r);
 2034: d = double2ll(r);
 2035: 
 2036: f!	( r f_addr -- )	float	f_store
 2037: ""Store @i{r} into the float at address @i{f-addr}.""
 2038: *f_addr = r;
 2039: 
 2040: f@	( f_addr -- r )	float	f_fetch
 2041: ""@i{r} is the float at address @i{f-addr}.""
 2042: r = *f_addr;
 2043: 
 2044: df@	( df_addr -- r )	float-ext	d_f_fetch
 2045: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2046: #ifdef IEEE_FP
 2047: r = *df_addr;
 2048: #else
 2049: !! df@
 2050: #endif
 2051: 
 2052: df!	( r df_addr -- )	float-ext	d_f_store
 2053: ""Store @i{r} as double-precision IEEE floating-point value to the
 2054: address @i{df-addr}.""
 2055: #ifdef IEEE_FP
 2056: *df_addr = r;
 2057: #else
 2058: !! df!
 2059: #endif
 2060: 
 2061: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2062: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2063: #ifdef IEEE_FP
 2064: r = *sf_addr;
 2065: #else
 2066: !! sf@
 2067: #endif
 2068: 
 2069: sf!	( r sf_addr -- )	float-ext	s_f_store
 2070: ""Store @i{r} as single-precision IEEE floating-point value to the
 2071: address @i{sf-addr}.""
 2072: #ifdef IEEE_FP
 2073: *sf_addr = r;
 2074: #else
 2075: !! sf!
 2076: #endif
 2077: 
 2078: f+	( r1 r2 -- r3 )	float	f_plus
 2079: r3 = r1+r2;
 2080: 
 2081: f-	( r1 r2 -- r3 )	float	f_minus
 2082: r3 = r1-r2;
 2083: 
 2084: f*	( r1 r2 -- r3 )	float	f_star
 2085: r3 = r1*r2;
 2086: 
 2087: f/	( r1 r2 -- r3 )	float	f_slash
 2088: r3 = r1/r2;
 2089: 
 2090: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2091: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2092: r3 = pow(r1,r2);
 2093: 
 2094: fnegate	( r1 -- r2 )	float	f_negate
 2095: r2 = - r1;
 2096: 
 2097: fdrop	( r -- )		float	f_drop
 2098: 
 2099: fdup	( r -- r r )	float	f_dupe
 2100: 
 2101: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2102: 
 2103: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2104: 
 2105: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2106: 
 2107: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2108: 
 2109: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2110: 
 2111: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2112: ""@code{1 floats +}.""
 2113: f_addr2 = f_addr1+1;
 2114: 
 2115: floats	( n1 -- n2 )	float
 2116: ""@i{n2} is the number of address units of @i{n1} floats.""
 2117: n2 = n1*sizeof(Float);
 2118: 
 2119: floor	( r1 -- r2 )	float
 2120: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2121: /* !! unclear wording */
 2122: r2 = floor(r1);
 2123: 
 2124: fround	( r1 -- r2 )	gforth	f_round
 2125: ""Round to the nearest integral value.""
 2126: r2 = rint(r1);
 2127: 
 2128: fmax	( r1 r2 -- r3 )	float	f_max
 2129: if (r1<r2)
 2130:   r3 = r2;
 2131: else
 2132:   r3 = r1;
 2133: 
 2134: fmin	( r1 r2 -- r3 )	float	f_min
 2135: if (r1<r2)
 2136:   r3 = r1;
 2137: else
 2138:   r3 = r2;
 2139: 
 2140: represent	( r c_addr u -- n f1 f2 )	float
 2141: char *sig;
 2142: size_t siglen;
 2143: int flag;
 2144: int decpt;
 2145: sig=ecvt(r, u, &decpt, &flag);
 2146: n=(r==0. ? 1 : decpt);
 2147: f1=FLAG(flag!=0);
 2148: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2149: siglen=strlen(sig);
 2150: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2151:   siglen=u;
 2152: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2153:   for (; sig[siglen-1]=='0'; siglen--);
 2154:     ;
 2155: memcpy(c_addr,sig,siglen);
 2156: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2157: 
 2158: >float	( c_addr u -- flag )	float	to_float
 2159: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2160: character string @i{c-addr u} to internal floating-point
 2161: representation. If the string represents a valid floating-point number
 2162: @i{r} is placed on the floating-point stack and @i{flag} is
 2163: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2164: case and represents the floating-point number 0.""
 2165: Float r;
 2166: flag = to_float(c_addr, u, &r);
 2167: if (flag) {
 2168:   IF_fpTOS(fp[0] = fpTOS);
 2169:   fp += -1;
 2170:   fpTOS = r;
 2171: }
 2172: 
 2173: fabs	( r1 -- r2 )	float-ext	f_abs
 2174: r2 = fabs(r1);
 2175: 
 2176: facos	( r1 -- r2 )	float-ext	f_a_cos
 2177: r2 = acos(r1);
 2178: 
 2179: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2180: r2 = asin(r1);
 2181: 
 2182: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2183: r2 = atan(r1);
 2184: 
 2185: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2186: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2187: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2188: r3 = atan2(r1,r2);
 2189: 
 2190: fcos	( r1 -- r2 )	float-ext	f_cos
 2191: r2 = cos(r1);
 2192: 
 2193: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2194: r2 = exp(r1);
 2195: 
 2196: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2197: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2198: #ifdef HAVE_EXPM1
 2199: extern double
 2200: #ifdef NeXT
 2201:               const
 2202: #endif
 2203:                     expm1(double);
 2204: r2 = expm1(r1);
 2205: #else
 2206: r2 = exp(r1)-1.;
 2207: #endif
 2208: 
 2209: fln	( r1 -- r2 )	float-ext	f_l_n
 2210: r2 = log(r1);
 2211: 
 2212: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2213: ""@i{r2}=ln(@i{r1}+1)""
 2214: #ifdef HAVE_LOG1P
 2215: extern double
 2216: #ifdef NeXT
 2217:               const
 2218: #endif
 2219:                     log1p(double);
 2220: r2 = log1p(r1);
 2221: #else
 2222: r2 = log(r1+1.);
 2223: #endif
 2224: 
 2225: flog	( r1 -- r2 )	float-ext	f_log
 2226: ""The decimal logarithm.""
 2227: r2 = log10(r1);
 2228: 
 2229: falog	( r1 -- r2 )	float-ext	f_a_log
 2230: ""@i{r2}=10**@i{r1}""
 2231: extern double pow10(double);
 2232: r2 = pow10(r1);
 2233: 
 2234: fsin	( r1 -- r2 )	float-ext	f_sine
 2235: r2 = sin(r1);
 2236: 
 2237: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2238: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2239: r2 = sin(r1);
 2240: r3 = cos(r1);
 2241: 
 2242: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2243: r2 = sqrt(r1);
 2244: 
 2245: ftan	( r1 -- r2 )	float-ext	f_tan
 2246: r2 = tan(r1);
 2247: :
 2248:  fsincos f/ ;
 2249: 
 2250: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2251: r2 = sinh(r1);
 2252: :
 2253:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2254: 
 2255: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2256: r2 = cosh(r1);
 2257: :
 2258:  fexp fdup 1/f f+ f2/ ;
 2259: 
 2260: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2261: r2 = tanh(r1);
 2262: :
 2263:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2264: 
 2265: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2266: r2 = asinh(r1);
 2267: :
 2268:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2269: 
 2270: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2271: r2 = acosh(r1);
 2272: :
 2273:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2274: 
 2275: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2276: r2 = atanh(r1);
 2277: :
 2278:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2279:  r> IF  fnegate  THEN ;
 2280: 
 2281: sfloats	( n1 -- n2 )	float-ext	s_floats
 2282: ""@i{n2} is the number of address units of @i{n1}
 2283: single-precision IEEE floating-point numbers.""
 2284: n2 = n1*sizeof(SFloat);
 2285: 
 2286: dfloats	( n1 -- n2 )	float-ext	d_floats
 2287: ""@i{n2} is the number of address units of @i{n1}
 2288: double-precision IEEE floating-point numbers.""
 2289: n2 = n1*sizeof(DFloat);
 2290: 
 2291: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2292: ""@i{sf-addr} is the first single-float-aligned address greater
 2293: than or equal to @i{c-addr}.""
 2294: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2295: :
 2296:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2297: 
 2298: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2299: ""@i{df-addr} is the first double-float-aligned address greater
 2300: than or equal to @i{c-addr}.""
 2301: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2302: :
 2303:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2304: 
 2305: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2306: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2307: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2308: ucount elements.""
 2309: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2310: :
 2311:  >r swap 2swap swap 0e r> 0 ?DO
 2312:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2313:  LOOP 2drop 2drop ; 
 2314: 
 2315: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2316: ""vy=ra*vx+vy""
 2317: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2318: :
 2319:  >r swap 2swap swap r> 0 ?DO
 2320:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2321:  LOOP 2drop 2drop fdrop ;
 2322: 
 2323: \+
 2324: 
 2325: \ The following words access machine/OS/installation-dependent
 2326: \   Gforth internals
 2327: \ !! how about environmental queries DIRECT-THREADED,
 2328: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2329: 
 2330: \ local variable implementation primitives
 2331: 
 2332: \+glocals
 2333: 
 2334: \g locals
 2335: 
 2336: @local#	( #noffset -- w )	gforth	fetch_local_number
 2337: w = *(Cell *)(lp+noffset);
 2338: 
 2339: @local0	( -- w )	new	fetch_local_zero
 2340: w = ((Cell *)lp)[0];
 2341: 
 2342: @local1	( -- w )	new	fetch_local_four
 2343: w = ((Cell *)lp)[1];
 2344: 
 2345: @local2	( -- w )	new	fetch_local_eight
 2346: w = ((Cell *)lp)[2];
 2347: 
 2348: @local3	( -- w )	new	fetch_local_twelve
 2349: w = ((Cell *)lp)[3];
 2350: 
 2351: \+floating
 2352: 
 2353: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2354: r = *(Float *)(lp+noffset);
 2355: 
 2356: f@local0	( -- r )	new	f_fetch_local_zero
 2357: r = ((Float *)lp)[0];
 2358: 
 2359: f@local1	( -- r )	new	f_fetch_local_eight
 2360: r = ((Float *)lp)[1];
 2361: 
 2362: \+
 2363: 
 2364: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2365: /* this can also be used to implement lp@ */
 2366: c_addr = (Char *)(lp+noffset);
 2367: 
 2368: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2369: ""used with negative immediate values it allocates memory on the
 2370: local stack, a positive immediate argument drops memory from the local
 2371: stack""
 2372: lp += noffset;
 2373: 
 2374: lp-	( -- )	new	minus_four_lp_plus_store
 2375: lp += -sizeof(Cell);
 2376: 
 2377: lp+	( -- )	new	eight_lp_plus_store
 2378: lp += sizeof(Float);
 2379: 
 2380: lp+2	( -- )	new	sixteen_lp_plus_store
 2381: lp += 2*sizeof(Float);
 2382: 
 2383: lp!	( c_addr -- )	gforth	lp_store
 2384: lp = (Address)c_addr;
 2385: 
 2386: >l	( w -- )	gforth	to_l
 2387: lp -= sizeof(Cell);
 2388: *(Cell *)lp = w;
 2389: 
 2390: \+floating
 2391: 
 2392: f>l	( r -- )	gforth	f_to_l
 2393: lp -= sizeof(Float);
 2394: *(Float *)lp = r;
 2395: 
 2396: fpick	( u -- r )		gforth
 2397: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2398: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2399: :
 2400:  floats fp@ + f@ ;
 2401: 
 2402: \+
 2403: \+
 2404: 
 2405: \+OS
 2406: 
 2407: \g syslib
 2408: 
 2409: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2410: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2411: #ifndef RTLD_GLOBAL
 2412: #define RTLD_GLOBAL 0
 2413: #endif
 2414: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2415: #else
 2416: #  ifdef _WIN32
 2417: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2418: #  else
 2419: #warning Define open-lib!
 2420: u2 = 0;
 2421: #  endif
 2422: #endif
 2423: 
 2424: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2425: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2426: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2427: #else
 2428: #  ifdef _WIN32
 2429: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2430: #  else
 2431: #warning Define lib-sym!
 2432: u3 = 0;
 2433: #  endif
 2434: #endif
 2435: 
 2436: wcall	( u -- )	gforth
 2437: IF_fpTOS(fp[0]=fpTOS);
 2438: FP=fp;
 2439: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &FP);
 2440: fp=FP;
 2441: IF_spTOS(spTOS=sp[0];)
 2442: IF_fpTOS(fpTOS=fp[0]);
 2443: 
 2444: \+FFCALL
 2445: 
 2446: av-start-void	( c_addr -- )	gforth  av_start_void
 2447: av_start_void(alist, c_addr);
 2448: 
 2449: av-start-int	( c_addr -- )	gforth  av_start_int
 2450: av_start_int(alist, c_addr, &irv);
 2451: 
 2452: av-start-float	( c_addr -- )	gforth  av_start_float
 2453: av_start_float(alist, c_addr, &frv);
 2454: 
 2455: av-start-double	( c_addr -- )	gforth  av_start_double
 2456: av_start_double(alist, c_addr, &drv);
 2457: 
 2458: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2459: av_start_longlong(alist, c_addr, &llrv);
 2460: 
 2461: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2462: av_start_ptr(alist, c_addr, void*, &prv);
 2463: 
 2464: av-int  ( w -- )  gforth  av_int
 2465: av_int(alist, w);
 2466: 
 2467: av-float	( r -- )	gforth  av_float
 2468: av_float(alist, r);
 2469: 
 2470: av-double	( r -- )	gforth  av_double
 2471: av_double(alist, r);
 2472: 
 2473: av-longlong	( d -- )	gforth  av_longlong
 2474: #ifdef BUGGY_LL_SIZE
 2475: av_longlong(alist, DLO(d));
 2476: #else
 2477: av_longlong(alist, d);
 2478: #endif
 2479: 
 2480: av-ptr	( c_addr -- )	gforth  av_ptr
 2481: av_ptr(alist, void*, c_addr);
 2482: 
 2483: av-int-r  ( R:w -- )  gforth  av_int_r
 2484: av_int(alist, w);
 2485: 
 2486: av-float-r	( -- )	gforth  av_float_r
 2487: float r = *(Float*)lp;
 2488: lp += sizeof(Float);
 2489: av_float(alist, r);
 2490: 
 2491: av-double-r	( -- )	gforth  av_double_r
 2492: double r = *(Float*)lp;
 2493: lp += sizeof(Float);
 2494: av_double(alist, r);
 2495: 
 2496: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2497: #ifdef BUGGY_LL_SIZE
 2498: av_longlong(alist, DLO(d));
 2499: #else
 2500: av_longlong(alist, d);
 2501: #endif
 2502: 
 2503: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2504: av_ptr(alist, void*, c_addr);
 2505: 
 2506: av-call-void	( -- )	gforth  av_call_void
 2507: SAVE_REGS
 2508: av_call(alist);
 2509: REST_REGS
 2510: 
 2511: av-call-int	( -- w )	gforth  av_call_int
 2512: SAVE_REGS
 2513: av_call(alist);
 2514: REST_REGS
 2515: w = irv;
 2516: 
 2517: av-call-float	( -- r )	gforth  av_call_float
 2518: SAVE_REGS
 2519: av_call(alist);
 2520: REST_REGS
 2521: r = frv;
 2522: 
 2523: av-call-double	( -- r )	gforth  av_call_double
 2524: SAVE_REGS
 2525: av_call(alist);
 2526: REST_REGS
 2527: r = drv;
 2528: 
 2529: av-call-longlong	( -- d )	gforth  av_call_longlong
 2530: SAVE_REGS
 2531: av_call(alist);
 2532: REST_REGS
 2533: #ifdef BUGGY_LONG_LONG
 2534: DLO_IS(d, llrv);
 2535: DHI_IS(d, 0);
 2536: #else
 2537: d = llrv;
 2538: #endif
 2539: 
 2540: av-call-ptr	( -- c_addr )	gforth  av_call_ptr
 2541: SAVE_REGS
 2542: av_call(alist);
 2543: REST_REGS
 2544: c_addr = prv;
 2545: 
 2546: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2547: c_addr = (char *)alloc_callback(engine_callback, (Xt *)a_ip);
 2548: 
 2549: va-start-void	( -- )	gforth	va_start_void
 2550: va_start_void(clist);
 2551: 
 2552: va-start-int	( -- )	gforth	va_start_int
 2553: va_start_int(clist);
 2554: 
 2555: va-start-longlong	( -- )	gforth	va_start_longlong
 2556: va_start_longlong(clist);
 2557: 
 2558: va-start-ptr	( -- )	gforth	va_start_ptr
 2559: va_start_ptr(clist, (char *));
 2560: 
 2561: va-start-float	( -- )	gforth	va_start_float
 2562: va_start_float(clist);
 2563: 
 2564: va-start-double	( -- )	gforth	va_start_double
 2565: va_start_double(clist);
 2566: 
 2567: va-arg-int	( -- w )	gforth	va_arg_int
 2568: w = va_arg_int(clist);
 2569: 
 2570: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2571: #ifdef BUGGY_LONG_LONG
 2572: DLO_IS(d, va_arg_longlong(clist));
 2573: DHI_IS(d, 0);
 2574: #else
 2575: d = va_arg_longlong(clist);
 2576: #endif
 2577: 
 2578: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2579: c_addr = (char *)va_arg_ptr(clist,char*);
 2580: 
 2581: va-arg-float	( -- r )	gforth	va_arg_float
 2582: r = va_arg_float(clist);
 2583: 
 2584: va-arg-double	( -- r )	gforth	va_arg_double
 2585: r = va_arg_double(clist);
 2586: 
 2587: va-return-void ( -- )	gforth va_return_void
 2588: va_return_void(clist);
 2589: return 0;
 2590: 
 2591: va-return-int ( w -- )	gforth va_return_int
 2592: va_return_int(clist, w);
 2593: return 0;
 2594: 
 2595: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2596: va_return_ptr(clist, void *, c_addr);
 2597: return 0;
 2598: 
 2599: va-return-longlong ( d -- )	gforth va_return_longlong
 2600: #ifdef BUGGY_LONG_LONG
 2601: va_return_longlong(clist, d.lo);
 2602: #else
 2603: va_return_longlong(clist, d);
 2604: #endif
 2605: return 0;
 2606: 
 2607: va-return-float ( r -- )	gforth va_return_float
 2608: va_return_float(clist, r);
 2609: return 0;
 2610: 
 2611: va-return-double ( r -- )	gforth va_return_double
 2612: va_return_double(clist, r);
 2613: return 0;
 2614: 
 2615: \+
 2616: 
 2617: \+OLDCALL
 2618: 
 2619: define(`uploop',
 2620:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2621: define(`_uploop',
 2622:        `ifelse($1, `$3', `$5',
 2623: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2624: \ argflist(argnum): Forth argument list
 2625: define(argflist,
 2626:        `ifelse($1, 0, `',
 2627:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2628: \ argdlist(argnum): declare C's arguments
 2629: define(argdlist,
 2630:        `ifelse($1, 0, `',
 2631:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2632: \ argclist(argnum): pass C's arguments
 2633: define(argclist,
 2634:        `ifelse($1, 0, `',
 2635:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2636: \ icall(argnum)
 2637: define(icall,
 2638: `icall$1	( argflist($1)u -- uret )	gforth
 2639: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2640: 
 2641: ')
 2642: define(fcall,
 2643: `fcall$1	( argflist($1)u -- rret )	gforth
 2644: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2645: 
 2646: ')
 2647: 
 2648: \ close ' to keep fontify happy
 2649: 
 2650: uploop(i, 0, 7, `icall(i)')
 2651: icall(20)
 2652: uploop(i, 0, 7, `fcall(i)')
 2653: fcall(20)
 2654: 
 2655: \+
 2656: \+
 2657: 
 2658: \g peephole
 2659: 
 2660: \+peephole
 2661: 
 2662: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2663: ""compile prim (incl. immargs) at @var{a_prim}""
 2664: compile_prim1(a_prim);
 2665: 
 2666: finish-code ( -- ) gforth finish_code
 2667: ""Perform delayed steps in code generation (branch resolution, I-cache
 2668: flushing).""
 2669: IF_spTOS(sp[0]=spTOS); /* workaround for failing to save spTOS
 2670: 			  (gcc-2.95.1, gforth-fast --enable-force-reg) */
 2671: finish_code();
 2672: IF_spTOS(spTOS=sp[0]);
 2673: 
 2674: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2675: f = forget_dyncode(c_code);
 2676: 
 2677: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2678: ""a_prim is the code address of the primitive that has been
 2679: compile_prim1ed to a_code""
 2680: a_prim = (Cell *)decompile_code((Label)a_code);
 2681: 
 2682: \ set-next-code and call2 do not appear in images and can be
 2683: \ renumbered arbitrarily
 2684: 
 2685: set-next-code ( #w -- ) gforth set_next_code
 2686: #ifdef NO_IP
 2687: next_code = (Label)w;
 2688: #endif
 2689: 
 2690: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2691: /* call with explicit return address */
 2692: #ifdef NO_IP
 2693: INST_TAIL;
 2694: JUMP(a_callee);
 2695: #else
 2696: assert(0);
 2697: #endif
 2698: 
 2699: tag-offsets ( -- a_addr ) gforth tag_offsets
 2700: extern Cell groups[32];
 2701: a_addr = groups;
 2702: 
 2703: \+
 2704: 
 2705: \g static_super
 2706: 
 2707: ifdef(`M4_ENGINE_FAST',
 2708: `include(peeprules.vmg)')
 2709: 
 2710: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>