File:  [gforth] / gforth / prim
Revision 1.134: download - view: text, annotated - select for diffs
Fri Aug 15 16:47:43 2003 UTC (16 years, 2 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
fixed REST_REGS in av-call-int

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E return-stack stack-prefix R:
  104: \E inst-stream  stack-prefix #
  105: \E 
  106: \E set-current
  107: \E store-optimization on
  108: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  109: \E
  110: \E include-skipped-insts on \ static superinsts include cells for components
  111: \E                          \ useful for dynamic programming and
  112: \E                          \ superinsts across entry points
  113: 
  114: \ 
  115: \ 
  116: \ 
  117: \ In addition the following names can be used:
  118: \ ip	the instruction pointer
  119: \ sp	the data stack pointer
  120: \ rp	the parameter stack pointer
  121: \ lp	the locals stack pointer
  122: \ NEXT	executes NEXT
  123: \ cfa	
  124: \ NEXT1	executes NEXT1
  125: \ FLAG(x)	makes a Forth flag from a C flag
  126: \ 
  127: \ 
  128: \ 
  129: \ Percentages in comments are from Koopmans book: average/maximum use
  130: \ (taken from four, not very representative benchmarks)
  131: \ 
  132: \ 
  133: \ 
  134: \ To do:
  135: \ 
  136: \ throw execute, cfa and NEXT1 out?
  137: \ macroize *ip, ip++, *ip++ (pipelining)?
  138: 
  139: \ these m4 macros would collide with identifiers
  140: undefine(`index')
  141: undefine(`shift')
  142: undefine(`symbols')
  143: 
  144: \g control
  145: 
  146: noop	( -- )		gforth
  147: :
  148:  ;
  149: 
  150: call	( #a_callee -- R:a_retaddr )	new
  151: ""Call callee (a variant of docol with inline argument).""
  152: #ifdef NO_IP
  153: INST_TAIL;
  154: JUMP(a_callee);
  155: #else
  156: #ifdef DEBUG
  157:     {
  158:       CFA_TO_NAME((((Cell *)a_callee)-2));
  159:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  160: 	      len,name);
  161:     }
  162: #endif
  163: a_retaddr = (Cell *)IP;
  164: SET_IP((Xt *)a_callee);
  165: #endif
  166: 
  167: execute	( xt -- )		core
  168: ""Perform the semantics represented by the execution token, @i{xt}.""
  169: #ifndef NO_IP
  170: ip=IP;
  171: #endif
  172: IF_spTOS(spTOS = sp[0]);
  173: SUPER_END;
  174: EXEC(xt);
  175: 
  176: perform	( a_addr -- )	gforth
  177: ""@code{@@ execute}.""
  178: /* and pfe */
  179: #ifndef NO_IP
  180: ip=IP;
  181: #endif
  182: IF_spTOS(spTOS = sp[0]);
  183: SUPER_END;
  184: EXEC(*(Xt *)a_addr);
  185: :
  186:  @ execute ;
  187: 
  188: ;s	( R:w -- )		gforth	semis
  189: ""The primitive compiled by @code{EXIT}.""
  190: #ifdef NO_IP
  191: INST_TAIL;
  192: goto *(void *)w;
  193: #else
  194: SET_IP((Xt *)w);
  195: #endif
  196: 
  197: unloop	( R:w1 R:w2 -- )	core
  198: /* !! alias for 2rdrop */
  199: :
  200:  r> rdrop rdrop >r ;
  201: 
  202: lit-perform	( #a_addr -- )	new	lit_perform
  203: #ifndef NO_IP
  204: ip=IP;
  205: #endif
  206: SUPER_END;
  207: EXEC(*(Xt *)a_addr);
  208: 
  209: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  210: #ifdef NO_IP
  211: /* compiled to LIT CALL by compile_prim */
  212: assert(0);
  213: #else
  214: a_pfa = PFA(a_cfa);
  215: nest = (Cell)IP;
  216: IF_spTOS(spTOS = sp[0]);
  217: #ifdef DEBUG
  218:     {
  219:       CFA_TO_NAME(a_cfa);
  220:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  221: 	      (Cell)ip,(Cell)a_cfa,len,name);
  222:     }
  223: #endif
  224: SET_IP(DOES_CODE1(a_cfa));
  225: #endif
  226: 
  227: \+glocals
  228: 
  229: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  230: /* this will probably not be used */
  231: lp += nlocals;
  232: #ifdef NO_IP
  233: INST_TAIL;
  234: JUMP(a_target);
  235: #else
  236: SET_IP((Xt *)a_target);
  237: #endif
  238: 
  239: \+
  240: 
  241: branch	( #a_target -- )	gforth
  242: #ifdef NO_IP
  243: INST_TAIL;
  244: JUMP(a_target);
  245: #else
  246: SET_IP((Xt *)a_target);
  247: #endif
  248: :
  249:  r> @ >r ;
  250: 
  251: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  252: \ this is non-syntactical: code must open a brace that is closed by the macro
  253: define(condbranch,
  254: $1 ( `#'a_target $2 ) $3
  255: $4	#ifdef NO_IP
  256: INST_TAIL;
  257: #endif
  258: $5	#ifdef NO_IP
  259: JUMP(a_target);
  260: #else
  261: SET_IP((Xt *)a_target);
  262: INST_TAIL; NEXT_P2;
  263: #endif
  264: }
  265: SUPER_CONTINUE;
  266: $6
  267: 
  268: \+glocals
  269: 
  270: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  271: $4	#ifdef NO_IP
  272: INST_TAIL;
  273: #endif
  274: $5	lp += nlocals;
  275: #ifdef NO_IP
  276: JUMP(a_target);
  277: #else
  278: SET_IP((Xt *)a_target);
  279: INST_TAIL; NEXT_P2;
  280: #endif
  281: }
  282: SUPER_CONTINUE;
  283: 
  284: \+
  285: )
  286: 
  287: condbranch(?branch,f --,f83	question_branch,
  288: ,if (f==0) {
  289: ,:
  290:  0= dup 0=          \ !f f
  291:  r> tuck cell+      \ !f branchoffset f IP+
  292:  and -rot @ and or  \ f&IP+|!f&branch
  293:  >r ;)
  294: 
  295: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  296: \ is only used in if's (yet)
  297: 
  298: \+xconds
  299: 
  300: ?dup-?branch	( #a_target f -- f )	new	question_dupe_question_branch
  301: ""The run-time procedure compiled by @code{?DUP-IF}.""
  302: if (f==0) {
  303:   sp++;
  304:   IF_spTOS(spTOS = sp[0]);
  305: #ifdef NO_IP
  306: INST_TAIL;
  307: JUMP(a_target);
  308: #else
  309: SET_IP((Xt *)a_target);
  310:   INST_TAIL; NEXT_P2;
  311: #endif
  312: }
  313: SUPER_CONTINUE;
  314: 
  315: ?dup-0=-?branch ( #a_target f -- ) new	question_dupe_zero_equals_question_branch
  316: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  317: /* the approach taken here of declaring the word as having the stack
  318: effect ( f -- ) and correcting for it in the branch-taken case costs a
  319: few cycles in that case, but is easy to convert to a CONDBRANCH
  320: invocation */
  321: if (f!=0) {
  322:   sp--;
  323: #ifdef NO_IP
  324:   JUMP(a_target);
  325: #else
  326:   SET_IP((Xt *)a_target);
  327:   NEXT;
  328: #endif
  329: }
  330: SUPER_CONTINUE;
  331: 
  332: \+
  333: \fhas? skiploopprims 0= [IF]
  334: 
  335: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  336: n2=n1-1;
  337: ,if (n1) {
  338: ,:
  339:  r> r> dup 1- >r
  340:  IF @ >r ELSE cell+ >r THEN ;)
  341: 
  342: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  343: n2=n1+1;
  344: ,if (n2 != nlimit) {
  345: ,:
  346:  r> r> 1+ r> 2dup =
  347:  IF >r 1- >r cell+ >r
  348:  ELSE >r >r @ >r THEN ;)
  349: 
  350: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  351: /* !! check this thoroughly */
  352: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  353: /* dependent upon two's complement arithmetic */
  354: Cell olddiff = n1-nlimit;
  355: n2=n1+n;	
  356: ,if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  357:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  358: ,:
  359:  r> swap
  360:  r> r> 2dup - >r
  361:  2 pick r@ + r@ xor 0< 0=
  362:  3 pick r> xor 0< 0= or
  363:  IF    >r + >r @ >r
  364:  ELSE  >r >r drop cell+ >r THEN ;)
  365: 
  366: \+xconds
  367: 
  368: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  369: UCell olddiff = n1-nlimit;
  370: n2=n1-u;
  371: ,if (olddiff>u) {
  372: ,)
  373: 
  374: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  375: ""The run-time procedure compiled by S+LOOP. It loops until the index
  376: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  377: version of (+LOOP).""
  378: /* !! check this thoroughly */
  379: Cell diff = n1-nlimit;
  380: Cell newdiff = diff+n;
  381: if (n<0) {
  382:     diff = -diff;
  383:     newdiff = -newdiff;
  384: }
  385: n2=n1+n;
  386: ,if (diff>=0 || newdiff<0) {
  387: ,)
  388: 
  389: \+
  390: 
  391: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  392: /* or (for) = >r -- collides with unloop! */
  393: nlimit=0;
  394: :
  395:  r> swap 0 >r >r >r ;
  396: 
  397: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  398: :
  399:  r> swap rot >r >r >r ;
  400: 
  401: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  402: #ifdef NO_IP
  403:     INST_TAIL;
  404: #endif
  405: if (nstart == nlimit) {
  406: #ifdef NO_IP
  407:     JUMP(a_target);
  408: #else
  409:     SET_IP((Xt *)a_target);
  410:     INST_TAIL; NEXT_P2;
  411: #endif
  412: }
  413: SUPER_CONTINUE;
  414: :
  415:   2dup =
  416:   IF   r> swap rot >r >r
  417:        @ >r
  418:   ELSE r> swap rot >r >r
  419:        cell+ >r
  420:   THEN ;				\ --> CORE-EXT
  421: 
  422: \+xconds
  423: 
  424: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  425: #ifdef NO_IP
  426:     INST_TAIL;
  427: #endif
  428: if (nstart >= nlimit) {
  429: #ifdef NO_IP
  430:     JUMP(a_target);
  431: #else
  432:     SET_IP((Xt *)a_target);
  433:     INST_TAIL; NEXT_P2;
  434: #endif
  435: }
  436: SUPER_CONTINUE;
  437: :
  438:  swap 2dup
  439:  r> swap >r swap >r
  440:  >=
  441:  IF
  442:      @
  443:  ELSE
  444:      cell+
  445:  THEN  >r ;
  446: 
  447: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  448: #ifdef NO_IP
  449:     INST_TAIL;
  450: #endif
  451: if (ustart >= ulimit) {
  452: #ifdef NO_IP
  453: JUMP(a_target);
  454: #else
  455: SET_IP((Xt *)a_target);
  456: INST_TAIL; NEXT_P2;
  457: #endif
  458: }
  459: SUPER_CONTINUE;
  460: :
  461:  swap 2dup
  462:  r> swap >r swap >r
  463:  u>=
  464:  IF
  465:      @
  466:  ELSE
  467:      cell+
  468:  THEN  >r ;
  469: 
  470: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  471: #ifdef NO_IP
  472:     INST_TAIL;
  473: #endif
  474: if (nstart <= nlimit) {
  475: #ifdef NO_IP
  476: JUMP(a_target);
  477: #else
  478: SET_IP((Xt *)a_target);
  479: INST_TAIL; NEXT_P2;
  480: #endif
  481: }
  482: SUPER_CONTINUE;
  483: :
  484:  swap 2dup
  485:  r> swap >r swap >r
  486:  <=
  487:  IF
  488:      @
  489:  ELSE
  490:      cell+
  491:  THEN  >r ;
  492: 
  493: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  494: #ifdef NO_IP
  495:     INST_TAIL;
  496: #endif
  497: if (ustart <= ulimit) {
  498: #ifdef NO_IP
  499: JUMP(a_target);
  500: #else
  501: SET_IP((Xt *)a_target);
  502: INST_TAIL; NEXT_P2;
  503: #endif
  504: }
  505: SUPER_CONTINUE;
  506: :
  507:  swap 2dup
  508:  r> swap >r swap >r
  509:  u<=
  510:  IF
  511:      @
  512:  ELSE
  513:      cell+
  514:  THEN  >r ;
  515: 
  516: \+
  517: 
  518: \ don't make any assumptions where the return stack is!!
  519: \ implement this in machine code if it should run quickly!
  520: 
  521: i	( R:n -- R:n n )		core
  522: :
  523: \ rp@ cell+ @ ;
  524:   r> r> tuck >r >r ;
  525: 
  526: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  527: :
  528: \ rp@ cell+ cell+ @ ;
  529:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  530: variable itmp
  531: 
  532: j	( R:n R:d1 -- n R:n R:d1 )		core
  533: :
  534: \ rp@ cell+ cell+ cell+ @ ;
  535:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  536: [IFUNDEF] itmp variable itmp [THEN]
  537: 
  538: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  539: :
  540: \ rp@ [ 5 cells ] Literal + @ ;
  541:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  542: [IFUNDEF] itmp variable itmp [THEN]
  543: 
  544: \f[THEN]
  545: 
  546: \ digit is high-level: 0/0%
  547: 
  548: \g strings
  549: 
  550: move	( c_from c_to ucount -- )		core
  551: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  552: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  553: /* !! note that the standard specifies addr, not c-addr */
  554: memmove(c_to,c_from,ucount);
  555: /* make an Ifdef for bsd and others? */
  556: :
  557:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  558: 
  559: cmove	( c_from c_to u -- )	string	c_move
  560: ""Copy the contents of @i{ucount} characters from data space at
  561: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  562: from low address to high address; i.e., for overlapping areas it is
  563: safe if @i{c-to}=<@i{c-from}.""
  564: cmove(c_from,c_to,u);
  565: :
  566:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  567: 
  568: cmove>	( c_from c_to u -- )	string	c_move_up
  569: ""Copy the contents of @i{ucount} characters from data space at
  570: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  571: from high address to low address; i.e., for overlapping areas it is
  572: safe if @i{c-to}>=@i{c-from}.""
  573: cmove_up(c_from,c_to,u);
  574: :
  575:  dup 0= IF  drop 2drop exit  THEN
  576:  rot over + -rot bounds swap 1-
  577:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  578: 
  579: fill	( c_addr u c -- )	core
  580: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  581: memset(c_addr,c,u);
  582: :
  583:  -rot bounds
  584:  ?DO  dup I c!  LOOP  drop ;
  585: 
  586: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  587: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  588: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  589: is 1. Currently this is based on the machine's character
  590: comparison. In the future, this may change to consider the current
  591: locale and its collation order.""
  592: /* close ' to keep fontify happy */ 
  593: n = compare(c_addr1, u1, c_addr2, u2);
  594: :
  595:  rot 2dup swap - >r min swap -text dup
  596:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  597: : sgn ( n -- -1/0/1 )
  598:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  599: 
  600: \ -text is only used by replaced primitives now; move it elsewhere
  601: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  602: \ n = memcmp(c_addr1, c_addr2, u);
  603: \ if (n<0)
  604: \   n = -1;
  605: \ else if (n>0)
  606: \   n = 1;
  607: \ :
  608: \  swap bounds
  609: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  610: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  611: \ : sgn ( n -- -1/0/1 )
  612: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  613: 
  614: toupper	( c1 -- c2 )	gforth
  615: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  616: is the equivalent upper-case character. All other characters are unchanged.""
  617: c2 = toupper(c1);
  618: :
  619:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  620: 
  621: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  622: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  623: characters from the start of the string.""
  624: c_addr2 = c_addr1+n;
  625: u2 = u1-n;
  626: :
  627:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  628: 
  629: \g arith
  630: 
  631: lit	( #w -- w )		gforth
  632: :
  633:  r> dup @ swap cell+ >r ;
  634: 
  635: +	( n1 n2 -- n )		core	plus
  636: n = n1+n2;
  637: 
  638: \ lit+ / lit_plus = lit +
  639: 
  640: lit+	( n1 #n2 -- n )		new	lit_plus
  641: n=n1+n2;
  642: 
  643: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  644: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  645: ""add @i{n3} to @i{n1} (giving @i{n})""
  646: n = n1+n3;
  647: :
  648:  rot + swap ;
  649: 
  650: -	( n1 n2 -- n )		core	minus
  651: n = n1-n2;
  652: :
  653:  negate + ;
  654: 
  655: negate	( n1 -- n2 )		core
  656: /* use minus as alias */
  657: n2 = -n1;
  658: :
  659:  invert 1+ ;
  660: 
  661: 1+	( n1 -- n2 )		core		one_plus
  662: n2 = n1+1;
  663: :
  664:  1 + ;
  665: 
  666: 1-	( n1 -- n2 )		core		one_minus
  667: n2 = n1-1;
  668: :
  669:  1 - ;
  670: 
  671: max	( n1 n2 -- n )	core
  672: if (n1<n2)
  673:   n = n2;
  674: else
  675:   n = n1;
  676: :
  677:  2dup < IF swap THEN drop ;
  678: 
  679: min	( n1 n2 -- n )	core
  680: if (n1<n2)
  681:   n = n1;
  682: else
  683:   n = n2;
  684: :
  685:  2dup > IF swap THEN drop ;
  686: 
  687: abs	( n -- u )	core
  688: if (n<0)
  689:   u = -n;
  690: else
  691:   u = n;
  692: :
  693:  dup 0< IF negate THEN ;
  694: 
  695: *	( n1 n2 -- n )		core	star
  696: n = n1*n2;
  697: :
  698:  um* drop ;
  699: 
  700: /	( n1 n2 -- n )		core	slash
  701: n = n1/n2;
  702: :
  703:  /mod nip ;
  704: 
  705: mod	( n1 n2 -- n )		core
  706: n = n1%n2;
  707: :
  708:  /mod drop ;
  709: 
  710: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  711: n4 = n1/n2;
  712: n3 = n1%n2; /* !! is this correct? look into C standard! */
  713: :
  714:  >r s>d r> fm/mod ;
  715: 
  716: 2*	( n1 -- n2 )		core		two_star
  717: ""Shift left by 1; also works on unsigned numbers""
  718: n2 = 2*n1;
  719: :
  720:  dup + ;
  721: 
  722: 2/	( n1 -- n2 )		core		two_slash
  723: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  724: division by 2 (note that @code{/} not necessarily floors).""
  725: n2 = n1>>1;
  726: :
  727:  dup MINI and IF 1 ELSE 0 THEN
  728:  [ bits/byte cell * 1- ] literal 
  729:  0 DO 2* swap dup 2* >r MINI and 
  730:      IF 1 ELSE 0 THEN or r> swap
  731:  LOOP nip ;
  732: 
  733: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  734: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  735: #ifdef BUGGY_LONG_LONG
  736: DCell r = fmdiv(d1,n1);
  737: n2=r.hi;
  738: n3=r.lo;
  739: #else
  740: /* assumes that the processor uses either floored or symmetric division */
  741: n3 = d1/n1;
  742: n2 = d1%n1;
  743: /* note that this 1%-3>0 is optimized by the compiler */
  744: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  745:   n3--;
  746:   n2+=n1;
  747: }
  748: #endif
  749: :
  750:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  751:  over       0< IF  tuck + swap  THEN
  752:  um/mod
  753:  r> 0< IF  swap negate swap  THEN ;
  754: 
  755: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  756: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  757: #ifdef BUGGY_LONG_LONG
  758: DCell r = smdiv(d1,n1);
  759: n2=r.hi;
  760: n3=r.lo;
  761: #else
  762: /* assumes that the processor uses either floored or symmetric division */
  763: n3 = d1/n1;
  764: n2 = d1%n1;
  765: /* note that this 1%-3<0 is optimized by the compiler */
  766: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  767:   n3++;
  768:   n2-=n1;
  769: }
  770: #endif
  771: :
  772:  over >r dup >r abs -rot
  773:  dabs rot um/mod
  774:  r> r@ xor 0< IF       negate       THEN
  775:  r>        0< IF  swap negate swap  THEN ;
  776: 
  777: m*	( n1 n2 -- d )		core	m_star
  778: #ifdef BUGGY_LONG_LONG
  779: d = mmul(n1,n2);
  780: #else
  781: d = (DCell)n1 * (DCell)n2;
  782: #endif
  783: :
  784:  2dup      0< and >r
  785:  2dup swap 0< and >r
  786:  um* r> - r> - ;
  787: 
  788: um*	( u1 u2 -- ud )		core	u_m_star
  789: /* use u* as alias */
  790: #ifdef BUGGY_LONG_LONG
  791: ud = ummul(u1,u2);
  792: #else
  793: ud = (UDCell)u1 * (UDCell)u2;
  794: #endif
  795: :
  796:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  797:    DO
  798:        over >r dup >r 0< and d2*+ drop
  799:        r> 2* r> swap
  800:    LOOP 2drop ;
  801: : d2*+ ( ud n -- ud+n c )
  802:    over MINI
  803:    and >r >r 2dup d+ swap r> + swap r> ;
  804: 
  805: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  806: ""ud=u3*u1+u2, u1>u2>=0""
  807: #ifdef BUGGY_LONG_LONG
  808: UDCell r = umdiv(ud,u1);
  809: u2=r.hi;
  810: u3=r.lo;
  811: #else
  812: u3 = ud/u1;
  813: u2 = ud%u1;
  814: #endif
  815: :
  816:    0 swap [ 8 cells 1 + ] literal 0
  817:    ?DO /modstep
  818:    LOOP drop swap 1 rshift or swap ;
  819: : /modstep ( ud c R: u -- ud-?u c R: u )
  820:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  821: : d2*+ ( ud n -- ud+n c )
  822:    over MINI
  823:    and >r >r 2dup d+ swap r> + swap r> ;
  824: 
  825: m+	( d1 n -- d2 )		double		m_plus
  826: #ifdef BUGGY_LONG_LONG
  827: d2.lo = d1.lo+n;
  828: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  829: #else
  830: d2 = d1+n;
  831: #endif
  832: :
  833:  s>d d+ ;
  834: 
  835: d+	( d1 d2 -- d )		double	d_plus
  836: #ifdef BUGGY_LONG_LONG
  837: d.lo = d1.lo+d2.lo;
  838: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  839: #else
  840: d = d1+d2;
  841: #endif
  842: :
  843:  rot + >r tuck + swap over u> r> swap - ;
  844: 
  845: d-	( d1 d2 -- d )		double		d_minus
  846: #ifdef BUGGY_LONG_LONG
  847: d.lo = d1.lo - d2.lo;
  848: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  849: #else
  850: d = d1-d2;
  851: #endif
  852: :
  853:  dnegate d+ ;
  854: 
  855: dnegate	( d1 -- d2 )		double	d_negate
  856: /* use dminus as alias */
  857: #ifdef BUGGY_LONG_LONG
  858: d2 = dnegate(d1);
  859: #else
  860: d2 = -d1;
  861: #endif
  862: :
  863:  invert swap negate tuck 0= - ;
  864: 
  865: d2*	( d1 -- d2 )		double		d_two_star
  866: ""Shift left by 1; also works on unsigned numbers""
  867: #ifdef BUGGY_LONG_LONG
  868: d2.lo = d1.lo<<1;
  869: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  870: #else
  871: d2 = 2*d1;
  872: #endif
  873: :
  874:  2dup d+ ;
  875: 
  876: d2/	( d1 -- d2 )		double		d_two_slash
  877: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  878: division by 2.""
  879: #ifdef BUGGY_LONG_LONG
  880: d2.hi = d1.hi>>1;
  881: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  882: #else
  883: d2 = d1>>1;
  884: #endif
  885: :
  886:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  887:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  888: 
  889: and	( w1 w2 -- w )		core
  890: w = w1&w2;
  891: 
  892: or	( w1 w2 -- w )		core
  893: w = w1|w2;
  894: :
  895:  invert swap invert and invert ;
  896: 
  897: xor	( w1 w2 -- w )		core	x_or
  898: w = w1^w2;
  899: 
  900: invert	( w1 -- w2 )		core
  901: w2 = ~w1;
  902: :
  903:  MAXU xor ;
  904: 
  905: rshift	( u1 n -- u2 )		core	r_shift
  906: ""Logical shift right by @i{n} bits.""
  907:   u2 = u1>>n;
  908: :
  909:     0 ?DO 2/ MAXI and LOOP ;
  910: 
  911: lshift	( u1 n -- u2 )		core	l_shift
  912:   u2 = u1<<n;
  913: :
  914:     0 ?DO 2* LOOP ;
  915: 
  916: \g compare
  917: 
  918: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  919: define(comparisons,
  920: $1=	( $2 -- f )		$6	$3equals
  921: f = FLAG($4==$5);
  922: :
  923:     [ char $1x char 0 = [IF]
  924: 	] IF false ELSE true THEN [
  925:     [ELSE]
  926: 	] xor 0= [
  927:     [THEN] ] ;
  928: 
  929: $1<>	( $2 -- f )		$7	$3not_equals
  930: f = FLAG($4!=$5);
  931: :
  932:     [ char $1x char 0 = [IF]
  933: 	] IF true ELSE false THEN [
  934:     [ELSE]
  935: 	] xor 0<> [
  936:     [THEN] ] ;
  937: 
  938: $1<	( $2 -- f )		$8	$3less_than
  939: f = FLAG($4<$5);
  940: :
  941:     [ char $1x char 0 = [IF]
  942: 	] MINI and 0<> [
  943:     [ELSE] char $1x char u = [IF]
  944: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  945: 	[ELSE]
  946: 	    ] MINI xor >r MINI xor r> u< [
  947: 	[THEN]
  948:     [THEN] ] ;
  949: 
  950: $1>	( $2 -- f )		$9	$3greater_than
  951: f = FLAG($4>$5);
  952: :
  953:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  954:     $1< ;
  955: 
  956: $1<=	( $2 -- f )		gforth	$3less_or_equal
  957: f = FLAG($4<=$5);
  958: :
  959:     $1> 0= ;
  960: 
  961: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  962: f = FLAG($4>=$5);
  963: :
  964:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  965:     $1<= ;
  966: 
  967: )
  968: 
  969: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  970: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  971: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  972: 
  973: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  974: define(dcomparisons,
  975: $1=	( $2 -- f )		$6	$3equals
  976: #ifdef BUGGY_LONG_LONG
  977: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  978: #else
  979: f = FLAG($4==$5);
  980: #endif
  981: 
  982: $1<>	( $2 -- f )		$7	$3not_equals
  983: #ifdef BUGGY_LONG_LONG
  984: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  985: #else
  986: f = FLAG($4!=$5);
  987: #endif
  988: 
  989: $1<	( $2 -- f )		$8	$3less_than
  990: #ifdef BUGGY_LONG_LONG
  991: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  992: #else
  993: f = FLAG($4<$5);
  994: #endif
  995: 
  996: $1>	( $2 -- f )		$9	$3greater_than
  997: #ifdef BUGGY_LONG_LONG
  998: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  999: #else
 1000: f = FLAG($4>$5);
 1001: #endif
 1002: 
 1003: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1004: #ifdef BUGGY_LONG_LONG
 1005: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1006: #else
 1007: f = FLAG($4<=$5);
 1008: #endif
 1009: 
 1010: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1011: #ifdef BUGGY_LONG_LONG
 1012: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1013: #else
 1014: f = FLAG($4>=$5);
 1015: #endif
 1016: 
 1017: )
 1018: 
 1019: \+dcomps
 1020: 
 1021: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1022: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1023: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1024: 
 1025: \+
 1026: 
 1027: within	( u1 u2 u3 -- f )		core-ext
 1028: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1029: unsigned and signed numbers (but not a mixture).  Another way to think
 1030: about this word is to consider the numbers as a circle (wrapping
 1031: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1032: min-n for signed numbers); now consider the range from u2 towards
 1033: increasing numbers up to and excluding u3 (giving an empty range if
 1034: u2=u3); if u1 is in this range, @code{within} returns true.""
 1035: f = FLAG(u1-u2 < u3-u2);
 1036: :
 1037:  over - >r - r> u< ;
 1038: 
 1039: \g stack
 1040: 
 1041: useraddr	( #u -- a_addr )	new
 1042: a_addr = (Cell *)(up+u);
 1043: 
 1044: up!	( a_addr -- )	gforth	up_store
 1045: UP=up=(char *)a_addr;
 1046: :
 1047:  up ! ;
 1048: Variable UP
 1049: 
 1050: sp@	( -- a_addr )		gforth		sp_fetch
 1051: a_addr = sp+1;
 1052: 
 1053: sp!	( a_addr -- )		gforth		sp_store
 1054: sp = a_addr;
 1055: /* works with and without spTOS caching */
 1056: 
 1057: rp@	( -- a_addr )		gforth		rp_fetch
 1058: a_addr = rp;
 1059: 
 1060: rp!	( a_addr -- )		gforth		rp_store
 1061: rp = a_addr;
 1062: 
 1063: \+floating
 1064: 
 1065: fp@	( -- f_addr )	gforth	fp_fetch
 1066: f_addr = fp;
 1067: 
 1068: fp!	( f_addr -- )	gforth	fp_store
 1069: fp = f_addr;
 1070: 
 1071: \+
 1072: 
 1073: >r	( w -- R:w )		core	to_r
 1074: :
 1075:  (>r) ;
 1076: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1077: 
 1078: r>	( R:w -- w )		core	r_from
 1079: :
 1080:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1081: Create (rdrop) ' ;s A,
 1082: 
 1083: rdrop	( R:w -- )		gforth
 1084: :
 1085:  r> r> drop >r ;
 1086: 
 1087: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
 1088: :
 1089:  swap r> swap >r swap >r >r ;
 1090: 
 1091: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
 1092: :
 1093:  r> r> swap r> swap >r swap ;
 1094: 
 1095: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
 1096: :
 1097:  i' j ;
 1098: 
 1099: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
 1100: :
 1101:  r> r> drop r> drop >r ;
 1102: 
 1103: over	( w1 w2 -- w1 w2 w1 )		core
 1104: :
 1105:  sp@ cell+ @ ;
 1106: 
 1107: drop	( w -- )		core
 1108: :
 1109:  IF THEN ;
 1110: 
 1111: swap	( w1 w2 -- w2 w1 )		core
 1112: :
 1113:  >r (swap) ! r> (swap) @ ;
 1114: Variable (swap)
 1115: 
 1116: dup	( w -- w w )		core	dupe
 1117: :
 1118:  sp@ @ ;
 1119: 
 1120: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1121: :
 1122: [ defined? (swap) [IF] ]
 1123:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1124: Variable (rot)
 1125: [ELSE] ]
 1126:     >r swap r> swap ;
 1127: [THEN]
 1128: 
 1129: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1130: :
 1131:  rot rot ;
 1132: 
 1133: nip	( w1 w2 -- w2 )		core-ext
 1134: :
 1135:  swap drop ;
 1136: 
 1137: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1138: :
 1139:  swap over ;
 1140: 
 1141: ?dup	( w -- w )			core	question_dupe
 1142: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1143: @code{dup} if w is nonzero.""
 1144: if (w!=0) {
 1145:   IF_spTOS(*sp-- = w;)
 1146: #ifndef USE_TOS
 1147:   *--sp = w;
 1148: #endif
 1149: }
 1150: :
 1151:  dup IF dup THEN ;
 1152: 
 1153: pick	( u -- w )			core-ext
 1154: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1155: w = sp[u+1];
 1156: :
 1157:  1+ cells sp@ + @ ;
 1158: 
 1159: 2drop	( w1 w2 -- )		core	two_drop
 1160: :
 1161:  drop drop ;
 1162: 
 1163: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1164: :
 1165:  over over ;
 1166: 
 1167: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1168: :
 1169:  3 pick 3 pick ;
 1170: 
 1171: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1172: :
 1173:  rot >r rot r> ;
 1174: 
 1175: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1176: :
 1177:  >r >r 2swap r> r> 2swap ;
 1178: 
 1179: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1180: :
 1181:  2swap 2drop ;
 1182: 
 1183: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1184: :
 1185:  2swap 2over ;
 1186: 
 1187: \ toggle is high-level: 0.11/0.42%
 1188: 
 1189: \g memory
 1190: 
 1191: @	( a_addr -- w )		core	fetch
 1192: ""@i{w} is the cell stored at @i{a_addr}.""
 1193: w = *a_addr;
 1194: 
 1195: \ lit@ / lit_fetch = lit @
 1196: 
 1197: lit@		( #a_addr -- w ) new	lit_fetch
 1198: w = *a_addr;
 1199: 
 1200: !	( w a_addr -- )		core	store
 1201: ""Store @i{w} into the cell at @i{a-addr}.""
 1202: *a_addr = w;
 1203: 
 1204: +!	( n a_addr -- )		core	plus_store
 1205: ""Add @i{n} to the cell at @i{a-addr}.""
 1206: *a_addr += n;
 1207: :
 1208:  tuck @ + swap ! ;
 1209: 
 1210: c@	( c_addr -- c )		core	c_fetch
 1211: ""@i{c} is the char stored at @i{c_addr}.""
 1212: c = *c_addr;
 1213: :
 1214: [ bigendian [IF] ]
 1215:     [ cell>bit 4 = [IF] ]
 1216: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1217: 	IF  $FF and  ELSE  8>>  THEN  ;
 1218:     [ [ELSE] ]
 1219: 	dup [ cell 1- ] literal and
 1220: 	tuck - @ swap [ cell 1- ] literal xor
 1221:  	0 ?DO 8>> LOOP $FF and
 1222:     [ [THEN] ]
 1223: [ [ELSE] ]
 1224:     [ cell>bit 4 = [IF] ]
 1225: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1226: 	IF  8>>  ELSE  $FF and  THEN
 1227:     [ [ELSE] ]
 1228: 	dup [ cell  1- ] literal and 
 1229: 	tuck - @ swap
 1230: 	0 ?DO 8>> LOOP 255 and
 1231:     [ [THEN] ]
 1232: [ [THEN] ]
 1233: ;
 1234: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1235: 
 1236: c!	( c c_addr -- )		core	c_store
 1237: ""Store @i{c} into the char at @i{c-addr}.""
 1238: *c_addr = c;
 1239: :
 1240: [ bigendian [IF] ]
 1241:     [ cell>bit 4 = [IF] ]
 1242: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1243: 	dup -2 and @ over 1 and cells masks + @ and
 1244: 	r> or swap -2 and ! ;
 1245: 	Create masks $00FF , $FF00 ,
 1246:     [ELSE] ]
 1247: 	dup [ cell 1- ] literal and dup 
 1248: 	[ cell 1- ] literal xor >r
 1249: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1250: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1251:     [THEN]
 1252: [ELSE] ]
 1253:     [ cell>bit 4 = [IF] ]
 1254: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1255: 	dup -2 and @ over 1 and cells masks + @ and
 1256: 	r> or swap -2 and ! ;
 1257: 	Create masks $FF00 , $00FF ,
 1258:     [ELSE] ]
 1259: 	dup [ cell 1- ] literal and dup >r
 1260: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1261: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1262:     [THEN]
 1263: [THEN]
 1264: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1265: 
 1266: 2!	( w1 w2 a_addr -- )		core	two_store
 1267: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1268: a_addr[0] = w2;
 1269: a_addr[1] = w1;
 1270: :
 1271:  tuck ! cell+ ! ;
 1272: 
 1273: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1274: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1275: the content of the next cell.""
 1276: w2 = a_addr[0];
 1277: w1 = a_addr[1];
 1278: :
 1279:  dup cell+ @ swap @ ;
 1280: 
 1281: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1282: ""@code{1 cells +}""
 1283: a_addr2 = a_addr1+1;
 1284: :
 1285:  cell + ;
 1286: 
 1287: cells	( n1 -- n2 )		core
 1288: "" @i{n2} is the number of address units of @i{n1} cells.""
 1289: n2 = n1 * sizeof(Cell);
 1290: :
 1291:  [ cell
 1292:  2/ dup [IF] ] 2* [ [THEN]
 1293:  2/ dup [IF] ] 2* [ [THEN]
 1294:  2/ dup [IF] ] 2* [ [THEN]
 1295:  2/ dup [IF] ] 2* [ [THEN]
 1296:  drop ] ;
 1297: 
 1298: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1299: ""@code{1 chars +}.""
 1300: c_addr2 = c_addr1 + 1;
 1301: :
 1302:  1+ ;
 1303: 
 1304: (chars)	( n1 -- n2 )	gforth	paren_chars
 1305: n2 = n1 * sizeof(Char);
 1306: :
 1307:  ;
 1308: 
 1309: count	( c_addr1 -- c_addr2 u )	core
 1310: ""@i{c-addr2} is the first character and @i{u} the length of the
 1311: counted string at @i{c-addr1}.""
 1312: u = *c_addr1;
 1313: c_addr2 = c_addr1+1;
 1314: :
 1315:  dup 1+ swap c@ ;
 1316: 
 1317: \g compiler
 1318: 
 1319: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1320: longname2=listlfind(c_addr, u, longname1);
 1321: :
 1322:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1323: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1324: 	IF  2drop r>  EXIT  THEN
 1325: 	r> @
 1326:     REPEAT  THEN  nip nip ;
 1327: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1328:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1329: 
 1330: \+hash
 1331: 
 1332: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1333: longname2 = hashlfind(c_addr, u, a_addr);
 1334: :
 1335:  BEGIN  dup  WHILE
 1336:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1337:         IF  2dup r@ cell+ cell+ capscomp 0=
 1338: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1339: 	rdrop r>
 1340:  REPEAT nip nip ;
 1341: 
 1342: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1343: ""A case-sensitive variant of @code{(hashfind)}""
 1344: longname2 = tablelfind(c_addr, u, a_addr);
 1345: :
 1346:  BEGIN  dup  WHILE
 1347:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1348:         IF  2dup r@ cell+ cell+ -text 0=
 1349: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1350: 	rdrop r>
 1351:  REPEAT nip nip ;
 1352: 
 1353: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1354: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1355: ukey = hashkey1(c_addr, u, ubits);
 1356: :
 1357:  dup rot-values + c@ over 1 swap lshift 1- >r
 1358:  tuck - 2swap r> 0 2swap bounds
 1359:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1360:       I c@ toupper xor
 1361:       over and  LOOP
 1362:  nip nip nip ;
 1363: Create rot-values
 1364:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1365:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1366:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1367:   7 c, 5 c, 5 c,
 1368: 
 1369: \+
 1370: 
 1371: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1372: struct Cellpair r=parse_white(c_addr1, u1);
 1373: c_addr2 = (Char *)(r.n1);
 1374: u2 = r.n2;
 1375: :
 1376:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1377:  REPEAT  THEN  2dup
 1378:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1379:  REPEAT  THEN  nip - ;
 1380: 
 1381: aligned	( c_addr -- a_addr )	core
 1382: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1383: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1384: :
 1385:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1386: 
 1387: faligned	( c_addr -- f_addr )	float	f_aligned
 1388: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1389: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1390: :
 1391:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1392: 
 1393: \ threading stuff is currently only interesting if we have a compiler
 1394: \fhas? standardthreading has? compiler and [IF]
 1395: threading-method	( -- n )	gforth	threading_method
 1396: ""0 if the engine is direct threaded. Note that this may change during
 1397: the lifetime of an image.""
 1398: #if defined(DOUBLY_INDIRECT)
 1399: n=2;
 1400: #else
 1401: # if defined(DIRECT_THREADED)
 1402: n=0;
 1403: # else
 1404: n=1;
 1405: # endif
 1406: #endif
 1407: :
 1408:  1 ;
 1409: 
 1410: \f[THEN]
 1411: 
 1412: \g hostos
 1413: 
 1414: key-file	( wfileid -- n )		gforth	paren_key_file
 1415: #ifdef HAS_FILE
 1416: fflush(stdout);
 1417: n = key((FILE*)wfileid);
 1418: #else
 1419: n = key(stdin);
 1420: #endif
 1421: 
 1422: key?-file	( wfileid -- n )		facility	key_q_file
 1423: #ifdef HAS_FILE
 1424: fflush(stdout);
 1425: n = key_query((FILE*)wfileid);
 1426: #else
 1427: n = key_query(stdin);
 1428: #endif
 1429: 
 1430: \+os
 1431: 
 1432: stdin	( -- wfileid )	gforth
 1433: wfileid = (Cell)stdin;
 1434: 
 1435: stdout	( -- wfileid )	gforth
 1436: wfileid = (Cell)stdout;
 1437: 
 1438: stderr	( -- wfileid )	gforth
 1439: wfileid = (Cell)stderr;
 1440: 
 1441: form	( -- urows ucols )	gforth
 1442: ""The number of lines and columns in the terminal. These numbers may change
 1443: with the window size.""
 1444: /* we could block SIGWINCH here to get a consistent size, but I don't
 1445:  think this is necessary or always beneficial */
 1446: urows=rows;
 1447: ucols=cols;
 1448: 
 1449: flush-icache	( c_addr u -- )	gforth	flush_icache
 1450: ""Make sure that the instruction cache of the processor (if there is
 1451: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1452: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1453: automatically. Caveat: @code{flush-icache} might not work on your
 1454: installation; this is usually the case if direct threading is not
 1455: supported on your machine (take a look at your @file{machine.h}) and
 1456: your machine has a separate instruction cache. In such cases,
 1457: @code{flush-icache} does nothing instead of flushing the instruction
 1458: cache.""
 1459: FLUSH_ICACHE(c_addr,u);
 1460: 
 1461: (bye)	( n -- )	gforth	paren_bye
 1462: SUPER_END;
 1463: return (Label *)n;
 1464: 
 1465: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1466: #ifndef MSDOS
 1467: int old_tp=terminal_prepped;
 1468: deprep_terminal();
 1469: #endif
 1470: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1471: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1472: #ifndef MSDOS
 1473: if (old_tp)
 1474:   prep_terminal();
 1475: #endif
 1476: 
 1477: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1478: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1479: is the host operating system's expansion of that environment variable. If the
 1480: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1481: in length.""
 1482: /* close ' to keep fontify happy */
 1483: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1484: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1485: 
 1486: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1487: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1488: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1489: 
 1490: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1491: wretval = pclose((FILE *)wfileid);
 1492: wior = IOR(wretval==-1);
 1493: 
 1494: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1495: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1496: Months are numbered from 1.""
 1497: #if 1
 1498: time_t now;
 1499: struct tm *ltime;
 1500: time(&now);
 1501: ltime=localtime(&now);
 1502: #else
 1503: struct timeval time1;
 1504: struct timezone zone1;
 1505: struct tm *ltime;
 1506: gettimeofday(&time1,&zone1);
 1507: /* !! Single Unix specification: 
 1508:    If tzp is not a null pointer, the behaviour is unspecified. */
 1509: ltime=localtime((time_t *)&time1.tv_sec);
 1510: #endif
 1511: nyear =ltime->tm_year+1900;
 1512: nmonth=ltime->tm_mon+1;
 1513: nday  =ltime->tm_mday;
 1514: nhour =ltime->tm_hour;
 1515: nmin  =ltime->tm_min;
 1516: nsec  =ltime->tm_sec;
 1517: 
 1518: ms	( n -- )	facility-ext
 1519: ""Wait at least @i{n} milli-second.""
 1520: struct timeval timeout;
 1521: timeout.tv_sec=n/1000;
 1522: timeout.tv_usec=1000*(n%1000);
 1523: (void)select(0,0,0,0,&timeout);
 1524: 
 1525: allocate	( u -- a_addr wior )	memory
 1526: ""Allocate @i{u} address units of contiguous data space. The initial
 1527: contents of the data space is undefined. If the allocation is successful,
 1528: @i{a-addr} is the start address of the allocated region and @i{wior}
 1529: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1530: is a non-zero I/O result code.""
 1531: a_addr = (Cell *)malloc(u?u:1);
 1532: wior = IOR(a_addr==NULL);
 1533: 
 1534: free	( a_addr -- wior )		memory
 1535: ""Return the region of data space starting at @i{a-addr} to the system.
 1536: The region must originally have been obtained using @code{allocate} or
 1537: @code{resize}. If the operational is successful, @i{wior} is 0.
 1538: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1539: free(a_addr);
 1540: wior = 0;
 1541: 
 1542: resize	( a_addr1 u -- a_addr2 wior )	memory
 1543: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1544: address units, possibly moving the contents to a different
 1545: area. @i{a-addr2} is the address of the resulting area.
 1546: If the operation is successful, @i{wior} is 0.
 1547: If the operation fails, @i{wior} is a non-zero
 1548: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1549: @code{resize} @code{allocate}s @i{u} address units.""
 1550: /* the following check is not necessary on most OSs, but it is needed
 1551:    on SunOS 4.1.2. */
 1552: /* close ' to keep fontify happy */
 1553: if (a_addr1==NULL)
 1554:   a_addr2 = (Cell *)malloc(u);
 1555: else
 1556:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1557: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1558: 
 1559: strerror	( n -- c_addr u )	gforth
 1560: c_addr = strerror(n);
 1561: u = strlen(c_addr);
 1562: 
 1563: strsignal	( n -- c_addr u )	gforth
 1564: c_addr = (Address)strsignal(n);
 1565: u = strlen(c_addr);
 1566: 
 1567: call-c	( w -- )	gforth	call_c
 1568: ""Call the C function pointed to by @i{w}. The C function has to
 1569: access the stack itself. The stack pointers are exported in the global
 1570: variables @code{SP} and @code{FP}.""
 1571: /* This is a first attempt at support for calls to C. This may change in
 1572:    the future */
 1573: IF_fpTOS(fp[0]=fpTOS);
 1574: FP=fp;
 1575: SP=sp;
 1576: ((void (*)())w)();
 1577: sp=SP;
 1578: fp=FP;
 1579: IF_spTOS(spTOS=sp[0]);
 1580: IF_fpTOS(fpTOS=fp[0]);
 1581: 
 1582: \+
 1583: \+file
 1584: 
 1585: close-file	( wfileid -- wior )		file	close_file
 1586: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1587: 
 1588: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1589: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1590: wior =  IOR(wfileid == 0);
 1591: 
 1592: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1593: Cell	fd;
 1594: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1595: if (fd != -1) {
 1596:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1597:   wior = IOR(wfileid == 0);
 1598: } else {
 1599:   wfileid = 0;
 1600:   wior = IOR(1);
 1601: }
 1602: 
 1603: delete-file	( c_addr u -- wior )		file	delete_file
 1604: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1605: 
 1606: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1607: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1608: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1609: 
 1610: file-position	( wfileid -- ud wior )	file	file_position
 1611: /* !! use tell and lseek? */
 1612: ud = OFF2UD(ftello((FILE *)wfileid));
 1613: wior = IOR(UD2OFF(ud)==-1);
 1614: 
 1615: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1616: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1617: 
 1618: file-size	( wfileid -- ud wior )	file	file_size
 1619: struct stat buf;
 1620: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1621: ud = OFF2UD(buf.st_size);
 1622: 
 1623: resize-file	( ud wfileid -- wior )	file	resize_file
 1624: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1625: 
 1626: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1627: /* !! fread does not guarantee enough */
 1628: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1629: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1630: /* !! is the value of ferror errno-compatible? */
 1631: if (wior)
 1632:   clearerr((FILE *)wfileid);
 1633: 
 1634: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1635: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1636: u2   = r.n1;
 1637: flag = r.n2;
 1638: u3   = r.n3;
 1639: wior = r.n4;
 1640: 
 1641: \+
 1642: 
 1643: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1644: /* !! fwrite does not guarantee enough */
 1645: #ifdef HAS_FILE
 1646: {
 1647:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1648:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1649:   if (wior)
 1650:     clearerr((FILE *)wfileid);
 1651: }
 1652: #else
 1653: TYPE(c_addr, u1);
 1654: #endif
 1655: 
 1656: emit-file	( c wfileid -- wior )	gforth	emit_file
 1657: #ifdef HAS_FILE
 1658: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1659: if (wior)
 1660:   clearerr((FILE *)wfileid);
 1661: #else
 1662: PUTC(c);
 1663: #endif
 1664: 
 1665: \+file
 1666: 
 1667: flush-file	( wfileid -- wior )		file-ext	flush_file
 1668: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1669: 
 1670: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1671: struct Cellpair r = file_status(c_addr, u);
 1672: wfam = r.n1;
 1673: wior = r.n2;
 1674: 
 1675: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1676: flag = FLAG(feof((FILE *) wfileid));
 1677: 
 1678: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1679: ""Open the directory specified by @i{c-addr, u}
 1680: and return @i{dir-id} for futher access to it.""
 1681: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1682: wior =  IOR(wdirid == 0);
 1683: 
 1684: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1685: ""Attempt to read the next entry from the directory specified
 1686: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1687: If the attempt fails because there is no more entries,
 1688: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1689: If the attempt to read the next entry fails because of any other reason, 
 1690: return @i{ior}<>0.
 1691: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1692: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1693: If the length of the file name is greater than @i{u1}, 
 1694: store first @i{u1} characters from file name into the buffer and
 1695: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1696: struct dirent * dent;
 1697: dent = readdir((DIR *)wdirid);
 1698: wior = 0;
 1699: flag = -1;
 1700: if(dent == NULL) {
 1701:   u2 = 0;
 1702:   flag = 0;
 1703: } else {
 1704:   u2 = strlen(dent->d_name);
 1705:   if(u2 > u1) {
 1706:     u2 = u1;
 1707:     wior = -512-ENAMETOOLONG;
 1708:   }
 1709:   memmove(c_addr, dent->d_name, u2);
 1710: }
 1711: 
 1712: close-dir	( wdirid -- wior )	gforth	close_dir
 1713: ""Close the directory specified by @i{dir-id}.""
 1714: wior = IOR(closedir((DIR *)wdirid));
 1715: 
 1716: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1717: char * string = cstr(c_addr1, u1, 1);
 1718: char * pattern = cstr(c_addr2, u2, 0);
 1719: flag = FLAG(!fnmatch(pattern, string, 0));
 1720: 
 1721: \+
 1722: 
 1723: newline	( -- c_addr u )	gforth
 1724: ""String containing the newline sequence of the host OS""
 1725: char newline[] = {
 1726: #if DIRSEP=='/'
 1727: /* Unix */
 1728: '\n'
 1729: #else
 1730: /* DOS, Win, OS/2 */
 1731: '\r','\n'
 1732: #endif
 1733: };
 1734: c_addr=newline;
 1735: u=sizeof(newline);
 1736: :
 1737:  "newline count ;
 1738: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1739: 
 1740: \+os
 1741: 
 1742: utime	( -- dtime )	gforth
 1743: ""Report the current time in microseconds since some epoch.""
 1744: struct timeval time1;
 1745: gettimeofday(&time1,NULL);
 1746: dtime = timeval2us(&time1);
 1747: 
 1748: cputime ( -- duser dsystem ) gforth
 1749: ""duser and dsystem are the respective user- and system-level CPU
 1750: times used since the start of the Forth system (excluding child
 1751: processes), in microseconds (the granularity may be much larger,
 1752: however).  On platforms without the getrusage call, it reports elapsed
 1753: time (since some epoch) for duser and 0 for dsystem.""
 1754: #ifdef HAVE_GETRUSAGE
 1755: struct rusage usage;
 1756: getrusage(RUSAGE_SELF, &usage);
 1757: duser = timeval2us(&usage.ru_utime);
 1758: dsystem = timeval2us(&usage.ru_stime);
 1759: #else
 1760: struct timeval time1;
 1761: gettimeofday(&time1,NULL);
 1762: duser = timeval2us(&time1);
 1763: #ifndef BUGGY_LONG_LONG
 1764: dsystem = (DCell)0;
 1765: #else
 1766: dsystem=(DCell){0,0};
 1767: #endif
 1768: #endif
 1769: 
 1770: \+
 1771: 
 1772: \+floating
 1773: 
 1774: \g floating
 1775: 
 1776: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1777: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1778: 
 1779: d>f	( d -- r )		float	d_to_f
 1780: #ifdef BUGGY_LONG_LONG
 1781: extern double ldexp(double x, int exp);
 1782: if (d.hi<0) {
 1783:   DCell d2=dnegate(d);
 1784:   r = -(ldexp((Float)d2.hi,CELL_BITS) + (Float)d2.lo);
 1785: } else
 1786:   r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1787: #else
 1788: r = d;
 1789: #endif
 1790: 
 1791: f>d	( r -- d )		float	f_to_d
 1792: extern DCell double2ll(Float r);
 1793: d = double2ll(r);
 1794: 
 1795: f!	( r f_addr -- )	float	f_store
 1796: ""Store @i{r} into the float at address @i{f-addr}.""
 1797: *f_addr = r;
 1798: 
 1799: f@	( f_addr -- r )	float	f_fetch
 1800: ""@i{r} is the float at address @i{f-addr}.""
 1801: r = *f_addr;
 1802: 
 1803: df@	( df_addr -- r )	float-ext	d_f_fetch
 1804: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1805: #ifdef IEEE_FP
 1806: r = *df_addr;
 1807: #else
 1808: !! df@
 1809: #endif
 1810: 
 1811: df!	( r df_addr -- )	float-ext	d_f_store
 1812: ""Store @i{r} as double-precision IEEE floating-point value to the
 1813: address @i{df-addr}.""
 1814: #ifdef IEEE_FP
 1815: *df_addr = r;
 1816: #else
 1817: !! df!
 1818: #endif
 1819: 
 1820: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1821: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1822: #ifdef IEEE_FP
 1823: r = *sf_addr;
 1824: #else
 1825: !! sf@
 1826: #endif
 1827: 
 1828: sf!	( r sf_addr -- )	float-ext	s_f_store
 1829: ""Store @i{r} as single-precision IEEE floating-point value to the
 1830: address @i{sf-addr}.""
 1831: #ifdef IEEE_FP
 1832: *sf_addr = r;
 1833: #else
 1834: !! sf!
 1835: #endif
 1836: 
 1837: f+	( r1 r2 -- r3 )	float	f_plus
 1838: r3 = r1+r2;
 1839: 
 1840: f-	( r1 r2 -- r3 )	float	f_minus
 1841: r3 = r1-r2;
 1842: 
 1843: f*	( r1 r2 -- r3 )	float	f_star
 1844: r3 = r1*r2;
 1845: 
 1846: f/	( r1 r2 -- r3 )	float	f_slash
 1847: r3 = r1/r2;
 1848: 
 1849: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1850: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1851: r3 = pow(r1,r2);
 1852: 
 1853: fnegate	( r1 -- r2 )	float	f_negate
 1854: r2 = - r1;
 1855: 
 1856: fdrop	( r -- )		float	f_drop
 1857: 
 1858: fdup	( r -- r r )	float	f_dupe
 1859: 
 1860: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1861: 
 1862: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1863: 
 1864: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1865: 
 1866: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1867: 
 1868: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1869: 
 1870: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1871: ""@code{1 floats +}.""
 1872: f_addr2 = f_addr1+1;
 1873: 
 1874: floats	( n1 -- n2 )	float
 1875: ""@i{n2} is the number of address units of @i{n1} floats.""
 1876: n2 = n1*sizeof(Float);
 1877: 
 1878: floor	( r1 -- r2 )	float
 1879: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1880: /* !! unclear wording */
 1881: r2 = floor(r1);
 1882: 
 1883: fround	( r1 -- r2 )	gforth	f_round
 1884: ""Round to the nearest integral value.""
 1885: r2 = rint(r1);
 1886: 
 1887: fmax	( r1 r2 -- r3 )	float	f_max
 1888: if (r1<r2)
 1889:   r3 = r2;
 1890: else
 1891:   r3 = r1;
 1892: 
 1893: fmin	( r1 r2 -- r3 )	float	f_min
 1894: if (r1<r2)
 1895:   r3 = r1;
 1896: else
 1897:   r3 = r2;
 1898: 
 1899: represent	( r c_addr u -- n f1 f2 )	float
 1900: char *sig;
 1901: size_t siglen;
 1902: int flag;
 1903: int decpt;
 1904: sig=ecvt(r, u, &decpt, &flag);
 1905: n=(r==0. ? 1 : decpt);
 1906: f1=FLAG(flag!=0);
 1907: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1908: siglen=strlen(sig);
 1909: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 1910:   siglen=u;
 1911: memcpy(c_addr,sig,siglen);
 1912: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 1913: 
 1914: >float	( c_addr u -- flag )	float	to_float
 1915: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1916: character string @i{c-addr u} to internal floating-point
 1917: representation. If the string represents a valid floating-point number
 1918: @i{r} is placed on the floating-point stack and @i{flag} is
 1919: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1920: case and represents the floating-point number 0.""
 1921: Float r;
 1922: flag = to_float(c_addr, u, &r);
 1923: if (flag) {
 1924:   IF_fpTOS(fp[0] = fpTOS);
 1925:   fp += -1;
 1926:   fpTOS = r;
 1927: }
 1928: 
 1929: fabs	( r1 -- r2 )	float-ext	f_abs
 1930: r2 = fabs(r1);
 1931: 
 1932: facos	( r1 -- r2 )	float-ext	f_a_cos
 1933: r2 = acos(r1);
 1934: 
 1935: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1936: r2 = asin(r1);
 1937: 
 1938: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1939: r2 = atan(r1);
 1940: 
 1941: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1942: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1943: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1944: r3 = atan2(r1,r2);
 1945: 
 1946: fcos	( r1 -- r2 )	float-ext	f_cos
 1947: r2 = cos(r1);
 1948: 
 1949: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1950: r2 = exp(r1);
 1951: 
 1952: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1953: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1954: #ifdef HAVE_EXPM1
 1955: extern double
 1956: #ifdef NeXT
 1957:               const
 1958: #endif
 1959:                     expm1(double);
 1960: r2 = expm1(r1);
 1961: #else
 1962: r2 = exp(r1)-1.;
 1963: #endif
 1964: 
 1965: fln	( r1 -- r2 )	float-ext	f_l_n
 1966: r2 = log(r1);
 1967: 
 1968: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1969: ""@i{r2}=ln(@i{r1}+1)""
 1970: #ifdef HAVE_LOG1P
 1971: extern double
 1972: #ifdef NeXT
 1973:               const
 1974: #endif
 1975:                     log1p(double);
 1976: r2 = log1p(r1);
 1977: #else
 1978: r2 = log(r1+1.);
 1979: #endif
 1980: 
 1981: flog	( r1 -- r2 )	float-ext	f_log
 1982: ""The decimal logarithm.""
 1983: r2 = log10(r1);
 1984: 
 1985: falog	( r1 -- r2 )	float-ext	f_a_log
 1986: ""@i{r2}=10**@i{r1}""
 1987: extern double pow10(double);
 1988: r2 = pow10(r1);
 1989: 
 1990: fsin	( r1 -- r2 )	float-ext	f_sine
 1991: r2 = sin(r1);
 1992: 
 1993: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1994: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1995: r2 = sin(r1);
 1996: r3 = cos(r1);
 1997: 
 1998: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1999: r2 = sqrt(r1);
 2000: 
 2001: ftan	( r1 -- r2 )	float-ext	f_tan
 2002: r2 = tan(r1);
 2003: :
 2004:  fsincos f/ ;
 2005: 
 2006: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2007: r2 = sinh(r1);
 2008: :
 2009:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2010: 
 2011: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2012: r2 = cosh(r1);
 2013: :
 2014:  fexp fdup 1/f f+ f2/ ;
 2015: 
 2016: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2017: r2 = tanh(r1);
 2018: :
 2019:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2020: 
 2021: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2022: r2 = asinh(r1);
 2023: :
 2024:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2025: 
 2026: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2027: r2 = acosh(r1);
 2028: :
 2029:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2030: 
 2031: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2032: r2 = atanh(r1);
 2033: :
 2034:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2035:  r> IF  fnegate  THEN ;
 2036: 
 2037: sfloats	( n1 -- n2 )	float-ext	s_floats
 2038: ""@i{n2} is the number of address units of @i{n1}
 2039: single-precision IEEE floating-point numbers.""
 2040: n2 = n1*sizeof(SFloat);
 2041: 
 2042: dfloats	( n1 -- n2 )	float-ext	d_floats
 2043: ""@i{n2} is the number of address units of @i{n1}
 2044: double-precision IEEE floating-point numbers.""
 2045: n2 = n1*sizeof(DFloat);
 2046: 
 2047: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2048: ""@i{sf-addr} is the first single-float-aligned address greater
 2049: than or equal to @i{c-addr}.""
 2050: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2051: :
 2052:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2053: 
 2054: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2055: ""@i{df-addr} is the first double-float-aligned address greater
 2056: than or equal to @i{c-addr}.""
 2057: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2058: :
 2059:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2060: 
 2061: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2062: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2063: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2064: ucount elements.""
 2065: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2066: :
 2067:  >r swap 2swap swap 0e r> 0 ?DO
 2068:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2069:  LOOP 2drop 2drop ; 
 2070: 
 2071: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2072: ""vy=ra*vx+vy""
 2073: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2074: :
 2075:  >r swap 2swap swap r> 0 ?DO
 2076:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2077:  LOOP 2drop 2drop fdrop ;
 2078: 
 2079: \+
 2080: 
 2081: \ The following words access machine/OS/installation-dependent
 2082: \   Gforth internals
 2083: \ !! how about environmental queries DIRECT-THREADED,
 2084: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2085: 
 2086: \ local variable implementation primitives
 2087: 
 2088: \+glocals
 2089: 
 2090: \g locals
 2091: 
 2092: @local#	( #noffset -- w )	gforth	fetch_local_number
 2093: w = *(Cell *)(lp+noffset);
 2094: 
 2095: @local0	( -- w )	new	fetch_local_zero
 2096: w = ((Cell *)lp)[0];
 2097: 
 2098: @local1	( -- w )	new	fetch_local_four
 2099: w = ((Cell *)lp)[1];
 2100: 
 2101: @local2	( -- w )	new	fetch_local_eight
 2102: w = ((Cell *)lp)[2];
 2103: 
 2104: @local3	( -- w )	new	fetch_local_twelve
 2105: w = ((Cell *)lp)[3];
 2106: 
 2107: \+floating
 2108: 
 2109: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2110: r = *(Float *)(lp+noffset);
 2111: 
 2112: f@local0	( -- r )	new	f_fetch_local_zero
 2113: r = ((Float *)lp)[0];
 2114: 
 2115: f@local1	( -- r )	new	f_fetch_local_eight
 2116: r = ((Float *)lp)[1];
 2117: 
 2118: \+
 2119: 
 2120: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2121: /* this can also be used to implement lp@ */
 2122: c_addr = (Char *)(lp+noffset);
 2123: 
 2124: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2125: ""used with negative immediate values it allocates memory on the
 2126: local stack, a positive immediate argument drops memory from the local
 2127: stack""
 2128: lp += noffset;
 2129: 
 2130: lp-	( -- )	new	minus_four_lp_plus_store
 2131: lp += -sizeof(Cell);
 2132: 
 2133: lp+	( -- )	new	eight_lp_plus_store
 2134: lp += sizeof(Float);
 2135: 
 2136: lp+2	( -- )	new	sixteen_lp_plus_store
 2137: lp += 2*sizeof(Float);
 2138: 
 2139: lp!	( c_addr -- )	gforth	lp_store
 2140: lp = (Address)c_addr;
 2141: 
 2142: >l	( w -- )	gforth	to_l
 2143: lp -= sizeof(Cell);
 2144: *(Cell *)lp = w;
 2145: 
 2146: \+floating
 2147: 
 2148: f>l	( r -- )	gforth	f_to_l
 2149: lp -= sizeof(Float);
 2150: *(Float *)lp = r;
 2151: 
 2152: fpick	( u -- r )		gforth
 2153: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2154: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2155: :
 2156:  floats fp@ + f@ ;
 2157: 
 2158: \+
 2159: \+
 2160: 
 2161: \+OS
 2162: 
 2163: \g syslib
 2164: 
 2165: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2166: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2167: #ifndef RTLD_GLOBAL
 2168: #define RTLD_GLOBAL 0
 2169: #endif
 2170: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2171: #else
 2172: #  ifdef _WIN32
 2173: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2174: #  else
 2175: #warning Define open-lib!
 2176: u2 = 0;
 2177: #  endif
 2178: #endif
 2179: 
 2180: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2181: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2182: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2183: #else
 2184: #  ifdef _WIN32
 2185: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2186: #  else
 2187: #warning Define lib-sym!
 2188: u3 = 0;
 2189: #  endif
 2190: #endif
 2191: 
 2192: \+FFCALL
 2193: 
 2194: av-start-void   ( c_addr -- )    gforth  av_start_void
 2195: av_start_void(alist, c_addr);
 2196: 
 2197: av-start-int    ( c_addr -- )    gforth  av_start_int
 2198: av_start_int(alist, c_addr, &irv);
 2199: 
 2200: av-start-float    ( c_addr -- )    gforth  av_start_float
 2201: av_start_float(alist, c_addr, &frv);
 2202: 
 2203: av-start-double    ( c_addr -- )    gforth  av_start_double
 2204: av_start_double(alist, c_addr, &drv);
 2205: 
 2206: av-start-longlong    ( c_addr -- )    gforth  av_start_longlong
 2207: av_start_longlong(alist, c_addr, &llrv);
 2208: 
 2209: av-start-ptr    ( c_addr -- )    gforth  av_start_ptr
 2210: av_start_ptr(alist, c_addr, void*, &prv);
 2211: 
 2212: av-int  ( w -- )  gforth  av_int
 2213: av_int(alist, w);
 2214: 
 2215: av-float        ( r -- )        gforth  av_float
 2216: av_float(alist, r);
 2217: 
 2218: av-double        ( r -- )        gforth  av_double
 2219: av_double(alist, r);
 2220: 
 2221: av-longlong        ( d -- )        gforth  av_longlong
 2222: av_longlong(alist, d);
 2223: 
 2224: av-ptr        ( c_addr -- )        gforth  av_ptr
 2225: av_ptr(alist, void*, c_addr);
 2226: 
 2227: av-call-void    ( -- )          gforth  av_call_void
 2228: SAVE_REGS
 2229: av_call(alist);
 2230: REST_REGS
 2231: 
 2232: av-call-int    ( -- w )        gforth  av_call_int
 2233: SAVE_REGS
 2234: av_call(alist);
 2235: REST_REGS
 2236: w = irv;
 2237: 
 2238: av-call-float   ( -- r )        gforth  av_call_float
 2239: SAVE_REGS
 2240: av_call(alist);
 2241: REST_REGS
 2242: r = frv;
 2243: 
 2244: av-call-double   ( -- r )        gforth  av_call_double
 2245: SAVE_REGS
 2246: av_call(alist);
 2247: REST_REGS
 2248: r = drv;
 2249: 
 2250: av-call-longlong   ( -- d )        gforth  av_call_longlong
 2251: SAVE_REGS
 2252: av_call(alist);
 2253: REST_REGS
 2254: d = llrv;
 2255: 
 2256: av-call-ptr   ( -- c_addr )        gforth  av_call_ptr
 2257: SAVE_REGS
 2258: av_call(alist);
 2259: REST_REGS
 2260: c_addr = prv;
 2261: 
 2262: alloc-callback	( xt -- c_addr )	gforth	alloc_callback
 2263: c_addr = (char *)alloc_callback(engine_callback, ((Xt *)xt)+2);
 2264: 
 2265: va-start-int	( -- w )	gforth	va_start_int
 2266: w = va_start_int(clist);
 2267: 
 2268: va-start-longlong	( -- d )	gforth	va_start_longlong
 2269: d = va_start_longlong(clist);
 2270: 
 2271: va-start-ptr	( -- c_addr )	gforth	va_start_ptr
 2272: c_addr = (char *)va_start_ptr(clist, (char *));
 2273: 
 2274: va-start-float	( -- r )	gforth	va_start_float
 2275: r = va_start_float(clist);
 2276: 
 2277: va-start-double	( -- r )	gforth	va_start_double
 2278: r = va_start_double(clist);
 2279: 
 2280: va-return-void ( -- )	gforth va_return_void
 2281: va_return_void(clist);
 2282: return 0;
 2283: 
 2284: va-return-int ( w -- )	gforth va_return_int
 2285: va_return_int(clist, w);
 2286: return 0;
 2287: 
 2288: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2289: va_return_ptr(clist, void *, c_addr);
 2290: return 0;
 2291: 
 2292: va-return-longlong ( d -- )	gforth va_return_longlong
 2293: va_return_longlong(clist, d);
 2294: return 0;
 2295: 
 2296: va-return-float ( r -- )	gforth va_return_float
 2297: va_return_float(clist, r);
 2298: return 0;
 2299: 
 2300: va-return-double ( r -- )	gforth va_return_double
 2301: va_return_double(clist, r);
 2302: return 0;
 2303: 
 2304: \-
 2305: 
 2306: define(`uploop',
 2307:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2308: define(`_uploop',
 2309:        `ifelse($1, `$3', `$5',
 2310: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2311: \ argflist(argnum): Forth argument list
 2312: define(argflist,
 2313:        `ifelse($1, 0, `',
 2314:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2315: \ argdlist(argnum): declare C's arguments
 2316: define(argdlist,
 2317:        `ifelse($1, 0, `',
 2318:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2319: \ argclist(argnum): pass C's arguments
 2320: define(argclist,
 2321:        `ifelse($1, 0, `',
 2322:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2323: \ icall(argnum)
 2324: define(icall,
 2325: `icall$1	( argflist($1)u -- uret )	gforth
 2326: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2327: 
 2328: ')
 2329: define(fcall,
 2330: `fcall$1	( argflist($1)u -- rret )	gforth
 2331: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2332: 
 2333: ')
 2334: 
 2335: \ close ' to keep fontify happy
 2336: 
 2337: uploop(i, 0, 7, `icall(i)')
 2338: icall(20)
 2339: uploop(i, 0, 7, `fcall(i)')
 2340: fcall(20)
 2341: 
 2342: \+
 2343: \+
 2344: 
 2345: wcall	( u -- )	gforth
 2346: IF_fpTOS(fp[0]=fpTOS);
 2347: FP=fp;
 2348: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &FP);
 2349: fp=FP;
 2350: IF_spTOS(spTOS=sp[0];)
 2351: IF_fpTOS(fpTOS=fp[0]);
 2352: 
 2353: \+peephole
 2354: 
 2355: \g peephole
 2356: 
 2357: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2358: ""compile prim (incl. immargs) at @var{a_prim}""
 2359: compile_prim1(a_prim);
 2360: 
 2361: finish-code ( -- ) gforth finish_code
 2362: ""Perform delayed steps in code generation (branch resolution, I-cache
 2363: flushing).""
 2364: finish_code();
 2365: 
 2366: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2367: f = forget_dyncode(c_code);
 2368: 
 2369: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2370: ""a_prim is the code address of the primitive that has been
 2371: compile_prim1ed to a_code""
 2372: a_prim = (Cell *)decompile_code((Label)a_code);
 2373: 
 2374: \ set-next-code and call2 do not appear in images and can be
 2375: \ renumbered arbitrarily
 2376: 
 2377: set-next-code ( #w -- ) gforth set_next_code
 2378: #ifdef NO_IP
 2379: next_code = (Label)w;
 2380: #endif
 2381: 
 2382: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2383: /* call with explicit return address */
 2384: #ifdef NO_IP
 2385: INST_TAIL;
 2386: JUMP(a_callee);
 2387: #else
 2388: assert(0);
 2389: #endif
 2390: 
 2391: tag-offsets ( -- a_addr ) gforth tag_offsets
 2392: extern Cell groups[32];
 2393: a_addr = groups;
 2394: 
 2395: \+
 2396: 
 2397: \g static_super
 2398: 
 2399: \C #if !defined(GFORTH_DEBUGGING) && !defined(INDIRECT_THREADED) && !defined(DOUBLY_INDIRECT) && !defined(VM_PROFILING)
 2400: 
 2401: include(peeprules.vmg)
 2402: 
 2403: \C #endif
 2404: 
 2405: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>