File:  [gforth] / gforth / prim
Revision 1.109: download - view: text, annotated - select for diffs
Fri Dec 27 16:22:03 2002 UTC (21 years, 2 months ago) by anton
Branches: MAIN
CVS tags: HEAD
prims2x: INST_TAIL now produces NEXT_P2 again by default

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E return-stack stack-prefix R:
  104: \E inst-stream  stack-prefix #
  105: \E 
  106: \E set-current
  107: \E store-optimization on
  108: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  109: 
  110: \ 
  111: \ 
  112: \ 
  113: \ In addition the following names can be used:
  114: \ ip	the instruction pointer
  115: \ sp	the data stack pointer
  116: \ rp	the parameter stack pointer
  117: \ lp	the locals stack pointer
  118: \ NEXT	executes NEXT
  119: \ cfa	
  120: \ NEXT1	executes NEXT1
  121: \ FLAG(x)	makes a Forth flag from a C flag
  122: \ 
  123: \ 
  124: \ 
  125: \ Percentages in comments are from Koopmans book: average/maximum use
  126: \ (taken from four, not very representative benchmarks)
  127: \ 
  128: \ 
  129: \ 
  130: \ To do:
  131: \ 
  132: \ throw execute, cfa and NEXT1 out?
  133: \ macroize *ip, ip++, *ip++ (pipelining)?
  134: 
  135: \ these m4 macros would collide with identifiers
  136: undefine(`index')
  137: undefine(`shift')
  138: undefine(`symbols')
  139: 
  140: \g control
  141: 
  142: noop	( -- )		gforth
  143: :
  144:  ;
  145: 
  146: lit	( #w -- w )		gforth
  147: :
  148:  r> dup @ swap cell+ >r ;
  149: 
  150: execute	( xt -- )		core
  151: ""Perform the semantics represented by the execution token, @i{xt}.""
  152: #ifndef NO_IP
  153: ip=IP;
  154: #endif
  155: IF_spTOS(spTOS = sp[0]);
  156: SUPER_END;
  157: EXEC(xt);
  158: 
  159: perform	( a_addr -- )	gforth
  160: ""@code{@@ execute}.""
  161: /* and pfe */
  162: #ifndef NO_IP
  163: ip=IP;
  164: #endif
  165: IF_spTOS(spTOS = sp[0]);
  166: SUPER_END;
  167: EXEC(*(Xt *)a_addr);
  168: :
  169:  @ execute ;
  170: 
  171: \fhas? skipbranchprims 0= [IF]
  172: \+glocals
  173: 
  174: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  175: /* this will probably not be used */
  176: lp += nlocals;
  177: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  178: 
  179: \+
  180: 
  181: branch	( #ndisp -- )		gforth
  182: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  183: :
  184:  r> dup @ + >r ;
  185: 
  186: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  187: \ this is non-syntactical: code must open a brace that is closed by the macro
  188: define(condbranch,
  189: $1 ( `#'ndisp $2 ) $3
  190: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  191: INST_TAIL;
  192: }
  193: SUPER_CONTINUE;
  194: $5
  195: 
  196: \+glocals
  197: 
  198: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  199: $4    lp += nlocals;
  200: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  201: INST_TAIL;
  202: }
  203: SUPER_CONTINUE;
  204: 
  205: \+
  206: )
  207: 
  208: condbranch(?branch,f --,f83	question_branch,
  209: if (f==0) {
  210: ,:
  211:  0= dup     \ !f !f
  212:  r> dup @   \ !f !f IP branchoffset
  213:  rot and +  \ !f IP|IP+branchoffset
  214:  swap 0= cell and + \ IP''
  215:  >r ;)
  216: 
  217: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  218: \ is only used in if's (yet)
  219: 
  220: \+xconds
  221: 
  222: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  223: ""The run-time procedure compiled by @code{?DUP-IF}.""
  224: if (f==0) {
  225:   sp++;
  226:   IF_spTOS(spTOS = sp[0]);
  227:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  228:   INST_TAIL;
  229: }
  230: SUPER_CONTINUE;
  231: 
  232: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  233: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  234: /* the approach taken here of declaring the word as having the stack
  235: effect ( f -- ) and correcting for it in the branch-taken case costs a
  236: few cycles in that case, but is easy to convert to a CONDBRANCH
  237: invocation */
  238: if (f!=0) {
  239:   sp--;
  240:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  241:   NEXT;
  242: }
  243: SUPER_CONTINUE;
  244: 
  245: \+
  246: \f[THEN]
  247: \fhas? skiploopprims 0= [IF]
  248: 
  249: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  250: n2=n1-1;
  251: if (n1) {
  252: ,:
  253:  r> r> dup 1- >r
  254:  IF dup @ + >r ELSE cell+ >r THEN ;)
  255: 
  256: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  257: n2=n1+1;
  258: if (n2 != nlimit) {
  259: ,:
  260:  r> r> 1+ r> 2dup =
  261:  IF >r 1- >r cell+ >r
  262:  ELSE >r >r dup @ + >r THEN ;)
  263: 
  264: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  265: /* !! check this thoroughly */
  266: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  267: /* dependent upon two's complement arithmetic */
  268: Cell olddiff = n1-nlimit;
  269: n2=n1+n;	
  270: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  271:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  272: ,:
  273:  r> swap
  274:  r> r> 2dup - >r
  275:  2 pick r@ + r@ xor 0< 0=
  276:  3 pick r> xor 0< 0= or
  277:  IF    >r + >r dup @ + >r
  278:  ELSE  >r >r drop cell+ >r THEN ;)
  279: 
  280: \+xconds
  281: 
  282: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  283: UCell olddiff = n1-nlimit;
  284: n2=n1-u;
  285: if (olddiff>u) {
  286: ,)
  287: 
  288: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  289: ""The run-time procedure compiled by S+LOOP. It loops until the index
  290: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  291: version of (+LOOP).""
  292: /* !! check this thoroughly */
  293: Cell diff = n1-nlimit;
  294: Cell newdiff = diff+n;
  295: if (n<0) {
  296:     diff = -diff;
  297:     newdiff = -newdiff;
  298: }
  299: n2=n1+n;
  300: if (diff>=0 || newdiff<0) {
  301: ,)
  302: 
  303: \+
  304: 
  305: unloop	( R:w1 R:w2 -- )	core
  306: /* !! alias for 2rdrop */
  307: :
  308:  r> rdrop rdrop >r ;
  309: 
  310: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  311: /* or (for) = >r -- collides with unloop! */
  312: nlimit=0;
  313: :
  314:  r> swap 0 >r >r >r ;
  315: 
  316: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  317: :
  318:  r> swap rot >r >r >r ;
  319: 
  320: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  321: if (nstart == nlimit) {
  322:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  323:     INST_TAIL;
  324: }
  325: SUPER_CONTINUE;
  326: :
  327:   2dup =
  328:   IF   r> swap rot >r >r
  329:        dup @ + >r
  330:   ELSE r> swap rot >r >r
  331:        cell+ >r
  332:   THEN ;				\ --> CORE-EXT
  333: 
  334: \+xconds
  335: 
  336: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  337: if (nstart >= nlimit) {
  338:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  339:     INST_TAIL;
  340: }
  341: SUPER_CONTINUE;
  342: :
  343:  swap 2dup
  344:  r> swap >r swap >r
  345:  >=
  346:  IF
  347:      dup @ +
  348:  ELSE
  349:      cell+
  350:  THEN  >r ;
  351: 
  352: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  353: if (ustart >= ulimit) {
  354:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  355:     INST_TAIL;
  356: }
  357: SUPER_CONTINUE;
  358: :
  359:  swap 2dup
  360:  r> swap >r swap >r
  361:  u>=
  362:  IF
  363:      dup @ +
  364:  ELSE
  365:      cell+
  366:  THEN  >r ;
  367: 
  368: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  369: if (nstart <= nlimit) {
  370:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  371:     INST_TAIL;
  372: }
  373: SUPER_CONTINUE;
  374: :
  375:  swap 2dup
  376:  r> swap >r swap >r
  377:  <=
  378:  IF
  379:      dup @ +
  380:  ELSE
  381:      cell+
  382:  THEN  >r ;
  383: 
  384: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  385: if (ustart <= ulimit) {
  386:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  387:     INST_TAIL;
  388: }
  389: SUPER_CONTINUE;
  390: :
  391:  swap 2dup
  392:  r> swap >r swap >r
  393:  u<=
  394:  IF
  395:      dup @ +
  396:  ELSE
  397:      cell+
  398:  THEN  >r ;
  399: 
  400: \+
  401: 
  402: \ don't make any assumptions where the return stack is!!
  403: \ implement this in machine code if it should run quickly!
  404: 
  405: i	( R:n -- R:n n )		core
  406: :
  407: \ rp@ cell+ @ ;
  408:   r> r> tuck >r >r ;
  409: 
  410: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  411: :
  412: \ rp@ cell+ cell+ @ ;
  413:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  414: variable itmp
  415: 
  416: j	( R:n R:d1 -- n R:n R:d1 )		core
  417: :
  418: \ rp@ cell+ cell+ cell+ @ ;
  419:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  420: [IFUNDEF] itmp variable itmp [THEN]
  421: 
  422: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  423: :
  424: \ rp@ [ 5 cells ] Literal + @ ;
  425:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  426: [IFUNDEF] itmp variable itmp [THEN]
  427: 
  428: \f[THEN]
  429: 
  430: \ digit is high-level: 0/0%
  431: 
  432: \g strings
  433: 
  434: move	( c_from c_to ucount -- )		core
  435: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  436: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  437: /* !! note that the standard specifies addr, not c-addr */
  438: memmove(c_to,c_from,ucount);
  439: /* make an Ifdef for bsd and others? */
  440: :
  441:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  442: 
  443: cmove	( c_from c_to u -- )	string	c_move
  444: ""Copy the contents of @i{ucount} characters from data space at
  445: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  446: from low address to high address; i.e., for overlapping areas it is
  447: safe if @i{c-to}=<@i{c-from}.""
  448: while (u-- > 0)
  449:   *c_to++ = *c_from++;
  450: :
  451:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  452: 
  453: cmove>	( c_from c_to u -- )	string	c_move_up
  454: ""Copy the contents of @i{ucount} characters from data space at
  455: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  456: from high address to low address; i.e., for overlapping areas it is
  457: safe if @i{c-to}>=@i{c-from}.""
  458: while (u-- > 0)
  459:   c_to[u] = c_from[u];
  460: :
  461:  dup 0= IF  drop 2drop exit  THEN
  462:  rot over + -rot bounds swap 1-
  463:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  464: 
  465: fill	( c_addr u c -- )	core
  466: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  467: memset(c_addr,c,u);
  468: :
  469:  -rot bounds
  470:  ?DO  dup I c!  LOOP  drop ;
  471: 
  472: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  473: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  474: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  475: is 1. Currently this is based on the machine's character
  476: comparison. In the future, this may change to consider the current
  477: locale and its collation order.""
  478: /* close ' to keep fontify happy */ 
  479: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  480: if (n==0)
  481:   n = u1-u2;
  482: if (n<0)
  483:   n = -1;
  484: else if (n>0)
  485:   n = 1;
  486: :
  487:  rot 2dup swap - >r min swap -text dup
  488:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  489: : sgn ( n -- -1/0/1 )
  490:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  491: 
  492: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  493: n = memcmp(c_addr1, c_addr2, u);
  494: if (n<0)
  495:   n = -1;
  496: else if (n>0)
  497:   n = 1;
  498: :
  499:  swap bounds
  500:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  501:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  502: : sgn ( n -- -1/0/1 )
  503:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  504: 
  505: toupper	( c1 -- c2 )	gforth
  506: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  507: is the equivalent upper-case character. All other characters are unchanged.""
  508: c2 = toupper(c1);
  509: :
  510:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  511: 
  512: capscomp	( c_addr1 u c_addr2 -- n )	new
  513: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  514: if (n<0)
  515:   n = -1;
  516: else if (n>0)
  517:   n = 1;
  518: :
  519:  swap bounds
  520:  ?DO  dup c@ I c@ <>
  521:      IF  dup c@ toupper I c@ toupper =
  522:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  523:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  524: 
  525: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  526: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  527: spaces. @i{u2} is the length of the modified string.""
  528: u2 = u1;
  529: while (u2>0 && c_addr[u2-1] == ' ')
  530:   u2--;
  531: :
  532:  BEGIN  1- 2dup + c@ bl =  WHILE
  533:         dup  0= UNTIL  ELSE  1+  THEN ;
  534: 
  535: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  536: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  537: characters from the start of the string.""
  538: c_addr2 = c_addr1+n;
  539: u2 = u1-n;
  540: :
  541:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  542: 
  543: \g arith
  544: 
  545: +	( n1 n2 -- n )		core	plus
  546: n = n1+n2;
  547: 
  548: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  549: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  550: ""add @i{n3} to @i{n1} (giving @i{n})""
  551: n = n1+n3;
  552: :
  553:  rot + swap ;
  554: 
  555: -	( n1 n2 -- n )		core	minus
  556: n = n1-n2;
  557: :
  558:  negate + ;
  559: 
  560: negate	( n1 -- n2 )		core
  561: /* use minus as alias */
  562: n2 = -n1;
  563: :
  564:  invert 1+ ;
  565: 
  566: 1+	( n1 -- n2 )		core		one_plus
  567: n2 = n1+1;
  568: :
  569:  1 + ;
  570: 
  571: 1-	( n1 -- n2 )		core		one_minus
  572: n2 = n1-1;
  573: :
  574:  1 - ;
  575: 
  576: max	( n1 n2 -- n )	core
  577: if (n1<n2)
  578:   n = n2;
  579: else
  580:   n = n1;
  581: :
  582:  2dup < IF swap THEN drop ;
  583: 
  584: min	( n1 n2 -- n )	core
  585: if (n1<n2)
  586:   n = n1;
  587: else
  588:   n = n2;
  589: :
  590:  2dup > IF swap THEN drop ;
  591: 
  592: abs	( n -- u )	core
  593: if (n<0)
  594:   u = -n;
  595: else
  596:   u = n;
  597: :
  598:  dup 0< IF negate THEN ;
  599: 
  600: *	( n1 n2 -- n )		core	star
  601: n = n1*n2;
  602: :
  603:  um* drop ;
  604: 
  605: /	( n1 n2 -- n )		core	slash
  606: n = n1/n2;
  607: :
  608:  /mod nip ;
  609: 
  610: mod	( n1 n2 -- n )		core
  611: n = n1%n2;
  612: :
  613:  /mod drop ;
  614: 
  615: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  616: n4 = n1/n2;
  617: n3 = n1%n2; /* !! is this correct? look into C standard! */
  618: :
  619:  >r s>d r> fm/mod ;
  620: 
  621: 2*	( n1 -- n2 )		core		two_star
  622: ""Shift left by 1; also works on unsigned numbers""
  623: n2 = 2*n1;
  624: :
  625:  dup + ;
  626: 
  627: 2/	( n1 -- n2 )		core		two_slash
  628: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  629: division by 2 (note that @code{/} not necessarily floors).""
  630: n2 = n1>>1;
  631: :
  632:  dup MINI and IF 1 ELSE 0 THEN
  633:  [ bits/byte cell * 1- ] literal 
  634:  0 DO 2* swap dup 2* >r MINI and 
  635:      IF 1 ELSE 0 THEN or r> swap
  636:  LOOP nip ;
  637: 
  638: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  639: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  640: #ifdef BUGGY_LONG_LONG
  641: DCell r = fmdiv(d1,n1);
  642: n2=r.hi;
  643: n3=r.lo;
  644: #else
  645: /* assumes that the processor uses either floored or symmetric division */
  646: n3 = d1/n1;
  647: n2 = d1%n1;
  648: /* note that this 1%-3>0 is optimized by the compiler */
  649: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  650:   n3--;
  651:   n2+=n1;
  652: }
  653: #endif
  654: :
  655:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  656:  over       0< IF  tuck + swap  THEN
  657:  um/mod
  658:  r> 0< IF  swap negate swap  THEN ;
  659: 
  660: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  661: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  662: #ifdef BUGGY_LONG_LONG
  663: DCell r = smdiv(d1,n1);
  664: n2=r.hi;
  665: n3=r.lo;
  666: #else
  667: /* assumes that the processor uses either floored or symmetric division */
  668: n3 = d1/n1;
  669: n2 = d1%n1;
  670: /* note that this 1%-3<0 is optimized by the compiler */
  671: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  672:   n3++;
  673:   n2-=n1;
  674: }
  675: #endif
  676: :
  677:  over >r dup >r abs -rot
  678:  dabs rot um/mod
  679:  r> r@ xor 0< IF       negate       THEN
  680:  r>        0< IF  swap negate swap  THEN ;
  681: 
  682: m*	( n1 n2 -- d )		core	m_star
  683: #ifdef BUGGY_LONG_LONG
  684: d = mmul(n1,n2);
  685: #else
  686: d = (DCell)n1 * (DCell)n2;
  687: #endif
  688: :
  689:  2dup      0< and >r
  690:  2dup swap 0< and >r
  691:  um* r> - r> - ;
  692: 
  693: um*	( u1 u2 -- ud )		core	u_m_star
  694: /* use u* as alias */
  695: #ifdef BUGGY_LONG_LONG
  696: ud = ummul(u1,u2);
  697: #else
  698: ud = (UDCell)u1 * (UDCell)u2;
  699: #endif
  700: :
  701:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  702:    DO
  703:        over >r dup >r 0< and d2*+ drop
  704:        r> 2* r> swap
  705:    LOOP 2drop ;
  706: : d2*+ ( ud n -- ud+n c )
  707:    over MINI
  708:    and >r >r 2dup d+ swap r> + swap r> ;
  709: 
  710: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  711: ""ud=u3*u1+u2, u1>u2>=0""
  712: #ifdef BUGGY_LONG_LONG
  713: UDCell r = umdiv(ud,u1);
  714: u2=r.hi;
  715: u3=r.lo;
  716: #else
  717: u3 = ud/u1;
  718: u2 = ud%u1;
  719: #endif
  720: :
  721:    0 swap [ 8 cells 1 + ] literal 0
  722:    ?DO /modstep
  723:    LOOP drop swap 1 rshift or swap ;
  724: : /modstep ( ud c R: u -- ud-?u c R: u )
  725:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  726: : d2*+ ( ud n -- ud+n c )
  727:    over MINI
  728:    and >r >r 2dup d+ swap r> + swap r> ;
  729: 
  730: m+	( d1 n -- d2 )		double		m_plus
  731: #ifdef BUGGY_LONG_LONG
  732: d2.lo = d1.lo+n;
  733: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  734: #else
  735: d2 = d1+n;
  736: #endif
  737: :
  738:  s>d d+ ;
  739: 
  740: d+	( d1 d2 -- d )		double	d_plus
  741: #ifdef BUGGY_LONG_LONG
  742: d.lo = d1.lo+d2.lo;
  743: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  744: #else
  745: d = d1+d2;
  746: #endif
  747: :
  748:  rot + >r tuck + swap over u> r> swap - ;
  749: 
  750: d-	( d1 d2 -- d )		double		d_minus
  751: #ifdef BUGGY_LONG_LONG
  752: d.lo = d1.lo - d2.lo;
  753: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  754: #else
  755: d = d1-d2;
  756: #endif
  757: :
  758:  dnegate d+ ;
  759: 
  760: dnegate	( d1 -- d2 )		double	d_negate
  761: /* use dminus as alias */
  762: #ifdef BUGGY_LONG_LONG
  763: d2 = dnegate(d1);
  764: #else
  765: d2 = -d1;
  766: #endif
  767: :
  768:  invert swap negate tuck 0= - ;
  769: 
  770: d2*	( d1 -- d2 )		double		d_two_star
  771: ""Shift left by 1; also works on unsigned numbers""
  772: #ifdef BUGGY_LONG_LONG
  773: d2.lo = d1.lo<<1;
  774: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  775: #else
  776: d2 = 2*d1;
  777: #endif
  778: :
  779:  2dup d+ ;
  780: 
  781: d2/	( d1 -- d2 )		double		d_two_slash
  782: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  783: division by 2.""
  784: #ifdef BUGGY_LONG_LONG
  785: d2.hi = d1.hi>>1;
  786: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  787: #else
  788: d2 = d1>>1;
  789: #endif
  790: :
  791:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  792:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  793: 
  794: and	( w1 w2 -- w )		core
  795: w = w1&w2;
  796: 
  797: or	( w1 w2 -- w )		core
  798: w = w1|w2;
  799: :
  800:  invert swap invert and invert ;
  801: 
  802: xor	( w1 w2 -- w )		core	x_or
  803: w = w1^w2;
  804: 
  805: invert	( w1 -- w2 )		core
  806: w2 = ~w1;
  807: :
  808:  MAXU xor ;
  809: 
  810: rshift	( u1 n -- u2 )		core	r_shift
  811: ""Logical shift right by @i{n} bits.""
  812:   u2 = u1>>n;
  813: :
  814:     0 ?DO 2/ MAXI and LOOP ;
  815: 
  816: lshift	( u1 n -- u2 )		core	l_shift
  817:   u2 = u1<<n;
  818: :
  819:     0 ?DO 2* LOOP ;
  820: 
  821: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  822: define(comparisons,
  823: $1=	( $2 -- f )		$6	$3equals
  824: f = FLAG($4==$5);
  825: :
  826:     [ char $1x char 0 = [IF]
  827: 	] IF false ELSE true THEN [
  828:     [ELSE]
  829: 	] xor 0= [
  830:     [THEN] ] ;
  831: 
  832: $1<>	( $2 -- f )		$7	$3not_equals
  833: f = FLAG($4!=$5);
  834: :
  835:     [ char $1x char 0 = [IF]
  836: 	] IF true ELSE false THEN [
  837:     [ELSE]
  838: 	] xor 0<> [
  839:     [THEN] ] ;
  840: 
  841: $1<	( $2 -- f )		$8	$3less_than
  842: f = FLAG($4<$5);
  843: :
  844:     [ char $1x char 0 = [IF]
  845: 	] MINI and 0<> [
  846:     [ELSE] char $1x char u = [IF]
  847: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  848: 	[ELSE]
  849: 	    ] MINI xor >r MINI xor r> u< [
  850: 	[THEN]
  851:     [THEN] ] ;
  852: 
  853: $1>	( $2 -- f )		$9	$3greater_than
  854: f = FLAG($4>$5);
  855: :
  856:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  857:     $1< ;
  858: 
  859: $1<=	( $2 -- f )		gforth	$3less_or_equal
  860: f = FLAG($4<=$5);
  861: :
  862:     $1> 0= ;
  863: 
  864: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  865: f = FLAG($4>=$5);
  866: :
  867:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  868:     $1<= ;
  869: 
  870: )
  871: 
  872: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  873: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  874: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  875: 
  876: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  877: define(dcomparisons,
  878: $1=	( $2 -- f )		$6	$3equals
  879: #ifdef BUGGY_LONG_LONG
  880: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  881: #else
  882: f = FLAG($4==$5);
  883: #endif
  884: 
  885: $1<>	( $2 -- f )		$7	$3not_equals
  886: #ifdef BUGGY_LONG_LONG
  887: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  888: #else
  889: f = FLAG($4!=$5);
  890: #endif
  891: 
  892: $1<	( $2 -- f )		$8	$3less_than
  893: #ifdef BUGGY_LONG_LONG
  894: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  895: #else
  896: f = FLAG($4<$5);
  897: #endif
  898: 
  899: $1>	( $2 -- f )		$9	$3greater_than
  900: #ifdef BUGGY_LONG_LONG
  901: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  902: #else
  903: f = FLAG($4>$5);
  904: #endif
  905: 
  906: $1<=	( $2 -- f )		gforth	$3less_or_equal
  907: #ifdef BUGGY_LONG_LONG
  908: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  909: #else
  910: f = FLAG($4<=$5);
  911: #endif
  912: 
  913: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  914: #ifdef BUGGY_LONG_LONG
  915: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  916: #else
  917: f = FLAG($4>=$5);
  918: #endif
  919: 
  920: )
  921: 
  922: \+dcomps
  923: 
  924: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  925: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  926: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  927: 
  928: \+
  929: 
  930: within	( u1 u2 u3 -- f )		core-ext
  931: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  932: unsigned and signed numbers (but not a mixture).  Another way to think
  933: about this word is to consider the numbers as a circle (wrapping
  934: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  935: min-n for signed numbers); now consider the range from u2 towards
  936: increasing numbers up to and excluding u3 (giving an empty range if
  937: u2=u3); if u1 is in this range, @code{within} returns true.""
  938: f = FLAG(u1-u2 < u3-u2);
  939: :
  940:  over - >r - r> u< ;
  941: 
  942: \g internal
  943: 
  944: sp@	( -- a_addr )		gforth		sp_fetch
  945: a_addr = sp+1;
  946: 
  947: sp!	( a_addr -- )		gforth		sp_store
  948: sp = a_addr;
  949: /* works with and without spTOS caching */
  950: 
  951: rp@	( -- a_addr )		gforth		rp_fetch
  952: a_addr = rp;
  953: 
  954: rp!	( a_addr -- )		gforth		rp_store
  955: rp = a_addr;
  956: 
  957: \+floating
  958: 
  959: fp@	( -- f_addr )	gforth	fp_fetch
  960: f_addr = fp;
  961: 
  962: fp!	( f_addr -- )	gforth	fp_store
  963: fp = f_addr;
  964: 
  965: \+
  966: 
  967: ;s	( R:w -- )		gforth	semis
  968: ""The primitive compiled by @code{EXIT}.""
  969: #ifdef NO_IP
  970: INST_TAIL;
  971: goto *(void *)w;
  972: #else
  973: SET_IP((Xt *)w);
  974: #endif
  975: 
  976: \g stack
  977: 
  978: >r	( w -- R:w )		core	to_r
  979: :
  980:  (>r) ;
  981: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  982: 
  983: r>	( R:w -- w )		core	r_from
  984: :
  985:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  986: Create (rdrop) ' ;s A,
  987: 
  988: rdrop	( R:w -- )		gforth
  989: :
  990:  r> r> drop >r ;
  991: 
  992: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  993: :
  994:  swap r> swap >r swap >r >r ;
  995: 
  996: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  997: :
  998:  r> r> swap r> swap >r swap ;
  999: 
 1000: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
 1001: :
 1002:  i' j ;
 1003: 
 1004: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
 1005: :
 1006:  r> r> drop r> drop >r ;
 1007: 
 1008: over	( w1 w2 -- w1 w2 w1 )		core
 1009: :
 1010:  sp@ cell+ @ ;
 1011: 
 1012: drop	( w -- )		core
 1013: :
 1014:  IF THEN ;
 1015: 
 1016: swap	( w1 w2 -- w2 w1 )		core
 1017: :
 1018:  >r (swap) ! r> (swap) @ ;
 1019: Variable (swap)
 1020: 
 1021: dup	( w -- w w )		core	dupe
 1022: :
 1023:  sp@ @ ;
 1024: 
 1025: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1026: :
 1027: [ defined? (swap) [IF] ]
 1028:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1029: Variable (rot)
 1030: [ELSE] ]
 1031:     >r swap r> swap ;
 1032: [THEN]
 1033: 
 1034: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1035: :
 1036:  rot rot ;
 1037: 
 1038: nip	( w1 w2 -- w2 )		core-ext
 1039: :
 1040:  swap drop ;
 1041: 
 1042: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1043: :
 1044:  swap over ;
 1045: 
 1046: ?dup	( w -- w )			core	question_dupe
 1047: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1048: @code{dup} if w is nonzero.""
 1049: if (w!=0) {
 1050:   IF_spTOS(*sp-- = w;)
 1051: #ifndef USE_TOS
 1052:   *--sp = w;
 1053: #endif
 1054: }
 1055: :
 1056:  dup IF dup THEN ;
 1057: 
 1058: pick	( u -- w )			core-ext
 1059: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1060: w = sp[u+1];
 1061: :
 1062:  1+ cells sp@ + @ ;
 1063: 
 1064: 2drop	( w1 w2 -- )		core	two_drop
 1065: :
 1066:  drop drop ;
 1067: 
 1068: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1069: :
 1070:  over over ;
 1071: 
 1072: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1073: :
 1074:  3 pick 3 pick ;
 1075: 
 1076: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1077: :
 1078:  rot >r rot r> ;
 1079: 
 1080: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1081: :
 1082:  >r >r 2swap r> r> 2swap ;
 1083: 
 1084: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1085: :
 1086:  2swap 2drop ;
 1087: 
 1088: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1089: :
 1090:  2swap 2over ;
 1091: 
 1092: \ toggle is high-level: 0.11/0.42%
 1093: 
 1094: @	( a_addr -- w )		core	fetch
 1095: ""@i{w} is the cell stored at @i{a_addr}.""
 1096: w = *a_addr;
 1097: 
 1098: !	( w a_addr -- )		core	store
 1099: ""Store @i{w} into the cell at @i{a-addr}.""
 1100: *a_addr = w;
 1101: 
 1102: +!	( n a_addr -- )		core	plus_store
 1103: ""Add @i{n} to the cell at @i{a-addr}.""
 1104: *a_addr += n;
 1105: :
 1106:  tuck @ + swap ! ;
 1107: 
 1108: c@	( c_addr -- c )		core	c_fetch
 1109: ""@i{c} is the char stored at @i{c_addr}.""
 1110: c = *c_addr;
 1111: :
 1112: [ bigendian [IF] ]
 1113:     [ cell>bit 4 = [IF] ]
 1114: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1115: 	IF  $FF and  ELSE  8>>  THEN  ;
 1116:     [ [ELSE] ]
 1117: 	dup [ cell 1- ] literal and
 1118: 	tuck - @ swap [ cell 1- ] literal xor
 1119:  	0 ?DO 8>> LOOP $FF and
 1120:     [ [THEN] ]
 1121: [ [ELSE] ]
 1122:     [ cell>bit 4 = [IF] ]
 1123: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1124: 	IF  8>>  ELSE  $FF and  THEN
 1125:     [ [ELSE] ]
 1126: 	dup [ cell  1- ] literal and 
 1127: 	tuck - @ swap
 1128: 	0 ?DO 8>> LOOP 255 and
 1129:     [ [THEN] ]
 1130: [ [THEN] ]
 1131: ;
 1132: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1133: 
 1134: c!	( c c_addr -- )		core	c_store
 1135: ""Store @i{c} into the char at @i{c-addr}.""
 1136: *c_addr = c;
 1137: :
 1138: [ bigendian [IF] ]
 1139:     [ cell>bit 4 = [IF] ]
 1140: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1141: 	dup -2 and @ over 1 and cells masks + @ and
 1142: 	r> or swap -2 and ! ;
 1143: 	Create masks $00FF , $FF00 ,
 1144:     [ELSE] ]
 1145: 	dup [ cell 1- ] literal and dup 
 1146: 	[ cell 1- ] literal xor >r
 1147: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1148: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1149:     [THEN]
 1150: [ELSE] ]
 1151:     [ cell>bit 4 = [IF] ]
 1152: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1153: 	dup -2 and @ over 1 and cells masks + @ and
 1154: 	r> or swap -2 and ! ;
 1155: 	Create masks $FF00 , $00FF ,
 1156:     [ELSE] ]
 1157: 	dup [ cell 1- ] literal and dup >r
 1158: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1159: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1160:     [THEN]
 1161: [THEN]
 1162: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1163: 
 1164: 2!	( w1 w2 a_addr -- )		core	two_store
 1165: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1166: a_addr[0] = w2;
 1167: a_addr[1] = w1;
 1168: :
 1169:  tuck ! cell+ ! ;
 1170: 
 1171: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1172: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1173: the content of the next cell.""
 1174: w2 = a_addr[0];
 1175: w1 = a_addr[1];
 1176: :
 1177:  dup cell+ @ swap @ ;
 1178: 
 1179: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1180: ""@code{1 cells +}""
 1181: a_addr2 = a_addr1+1;
 1182: :
 1183:  cell + ;
 1184: 
 1185: cells	( n1 -- n2 )		core
 1186: "" @i{n2} is the number of address units of @i{n1} cells.""
 1187: n2 = n1 * sizeof(Cell);
 1188: :
 1189:  [ cell
 1190:  2/ dup [IF] ] 2* [ [THEN]
 1191:  2/ dup [IF] ] 2* [ [THEN]
 1192:  2/ dup [IF] ] 2* [ [THEN]
 1193:  2/ dup [IF] ] 2* [ [THEN]
 1194:  drop ] ;
 1195: 
 1196: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1197: ""@code{1 chars +}.""
 1198: c_addr2 = c_addr1 + 1;
 1199: :
 1200:  1+ ;
 1201: 
 1202: (chars)	( n1 -- n2 )	gforth	paren_chars
 1203: n2 = n1 * sizeof(Char);
 1204: :
 1205:  ;
 1206: 
 1207: count	( c_addr1 -- c_addr2 u )	core
 1208: ""@i{c-addr2} is the first character and @i{u} the length of the
 1209: counted string at @i{c-addr1}.""
 1210: u = *c_addr1;
 1211: c_addr2 = c_addr1+1;
 1212: :
 1213:  dup 1+ swap c@ ;
 1214: 
 1215: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1216: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1217:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1218:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1219:     break;
 1220: f83name2=f83name1;
 1221: :
 1222:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1223: 	>r 2dup r@ cell+ char+ capscomp  0=
 1224: 	IF  2drop r>  EXIT  THEN
 1225: 	r> @
 1226:     REPEAT  THEN  nip nip ;
 1227: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1228:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL THEN ;
 1229: 
 1230: \+hash
 1231: 
 1232: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1233: struct F83Name *f83name1;
 1234: f83name2=NULL;
 1235: while(a_addr != NULL)
 1236: {
 1237:    f83name1=(struct F83Name *)(a_addr[1]);
 1238:    a_addr=(Cell *)(a_addr[0]);
 1239:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1240:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1241:      {
 1242: 	f83name2=f83name1;
 1243: 	break;
 1244:      }
 1245: }
 1246: :
 1247:  BEGIN  dup  WHILE
 1248:         2@ >r >r dup r@ cell+ c@ $1F and =
 1249:         IF  2dup r@ cell+ char+ capscomp 0=
 1250: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1251: 	rdrop r>
 1252:  REPEAT nip nip ;
 1253: 
 1254: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1255: ""A case-sensitive variant of @code{(hashfind)}""
 1256: struct F83Name *f83name1;
 1257: f83name2=NULL;
 1258: while(a_addr != NULL)
 1259: {
 1260:    f83name1=(struct F83Name *)(a_addr[1]);
 1261:    a_addr=(Cell *)(a_addr[0]);
 1262:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1263:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1264:      {
 1265: 	f83name2=f83name1;
 1266: 	break;
 1267:      }
 1268: }
 1269: :
 1270:  BEGIN  dup  WHILE
 1271:         2@ >r >r dup r@ cell+ c@ $1F and =
 1272:         IF  2dup r@ cell+ char+ -text 0=
 1273: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1274: 	rdrop r>
 1275:  REPEAT nip nip ;
 1276: 
 1277: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1278: u2=0;
 1279: while(u1--)
 1280:    u2+=(Cell)toupper(*c_addr++);
 1281: :
 1282:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1283: 
 1284: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1285: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1286: /* this hash function rotates the key at every step by rot bits within
 1287:    ubits bits and xors it with the character. This function does ok in
 1288:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1289:    ASCII strings (larger if ubits is large), and should share no
 1290:    divisors with ubits.
 1291: */
 1292: static char rot_values[] = {5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5};
 1293: unsigned rot = rot_values[ubits];
 1294: Char *cp = c_addr;
 1295: for (ukey=0; cp<c_addr+u; cp++)
 1296:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1297: 	     ^ toupper(*cp))
 1298: 	    & ((1<<ubits)-1));
 1299: :
 1300:  dup rot-values + c@ over 1 swap lshift 1- >r
 1301:  tuck - 2swap r> 0 2swap bounds
 1302:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1303:       I c@ toupper xor
 1304:       over and  LOOP
 1305:  nip nip nip ;
 1306: Create rot-values
 1307:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1308:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1309:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1310:   7 c, 5 c, 5 c,
 1311: 
 1312: \+
 1313: 
 1314: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1315: /* use !isgraph instead of isspace? */
 1316: Char *endp = c_addr1+u1;
 1317: while (c_addr1<endp && isspace(*c_addr1))
 1318:   c_addr1++;
 1319: if (c_addr1<endp) {
 1320:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1321:     ;
 1322:   u2 = c_addr1-c_addr2;
 1323: }
 1324: else {
 1325:   c_addr2 = c_addr1;
 1326:   u2 = 0;
 1327: }
 1328: :
 1329:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1330:  REPEAT  THEN  2dup
 1331:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1332:  REPEAT  THEN  nip - ;
 1333: 
 1334: aligned	( c_addr -- a_addr )	core
 1335: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1336: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1337: :
 1338:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1339: 
 1340: faligned	( c_addr -- f_addr )	float	f_aligned
 1341: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1342: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1343: :
 1344:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1345: 
 1346: >body	( xt -- a_addr )	core	to_body
 1347: "" Get the address of the body of the word represented by @i{xt} (the address
 1348: of the word's data field).""
 1349: a_addr = PFA(xt);
 1350: :
 1351:     2 cells + ;
 1352: 
 1353: \ threading stuff is currently only interesting if we have a compiler
 1354: \fhas? standardthreading has? compiler and [IF]
 1355: 
 1356: >code-address	( xt -- c_addr )		gforth	to_code_address
 1357: ""@i{c-addr} is the code address of the word @i{xt}.""
 1358: /* !! This behaves installation-dependently for DOES-words */
 1359: c_addr = (Address)CODE_ADDRESS(xt);
 1360: :
 1361:     @ ;
 1362: 
 1363: >does-code	( xt -- a_addr )		gforth	to_does_code
 1364: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1365: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1366: Otherwise @i{a-addr} is 0.""
 1367: a_addr = (Cell *)DOES_CODE(xt);
 1368: :
 1369:     cell+ @ ;
 1370: 
 1371: code-address!	( c_addr xt -- )		gforth	code_address_store
 1372: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1373: MAKE_CF(xt, c_addr);
 1374: :
 1375:     ! ;
 1376: 
 1377: does-code!	( a_addr xt -- )		gforth	does_code_store
 1378: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1379: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1380: MAKE_DOES_CF(xt, a_addr);
 1381: :
 1382:     dodoes: over ! cell+ ! ;
 1383: 
 1384: does-handler!	( a_addr -- )	gforth	does_handler_store
 1385: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1386: @i{a-addr} points just behind a @code{DOES>}.""
 1387: MAKE_DOES_HANDLER(a_addr);
 1388: :
 1389:     drop ;
 1390: 
 1391: /does-handler	( -- n )	gforth	slash_does_handler
 1392: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1393: /* !! a constant or environmental query might be better */
 1394: n = DOES_HANDLER_SIZE;
 1395: :
 1396:     2 cells ;
 1397: 
 1398: threading-method	( -- n )	gforth	threading_method
 1399: ""0 if the engine is direct threaded. Note that this may change during
 1400: the lifetime of an image.""
 1401: #if defined(DOUBLY_INDIRECT)
 1402: n=2;
 1403: #else
 1404: # if defined(DIRECT_THREADED)
 1405: n=0;
 1406: # else
 1407: n=1;
 1408: # endif
 1409: #endif
 1410: :
 1411:  1 ;
 1412: 
 1413: \f[THEN]
 1414: 
 1415: \g hostos
 1416: 
 1417: key-file	( wfileid -- n )		gforth	paren_key_file
 1418: #ifdef HAS_FILE
 1419: fflush(stdout);
 1420: n = key((FILE*)wfileid);
 1421: #else
 1422: n = key(stdin);
 1423: #endif
 1424: 
 1425: key?-file	( wfileid -- n )		facility	key_q_file
 1426: #ifdef HAS_FILE
 1427: fflush(stdout);
 1428: n = key_query((FILE*)wfileid);
 1429: #else
 1430: n = key_query(stdin);
 1431: #endif
 1432: 
 1433: \+os
 1434: 
 1435: stdin	( -- wfileid )	gforth
 1436: wfileid = (Cell)stdin;
 1437: 
 1438: stdout	( -- wfileid )	gforth
 1439: wfileid = (Cell)stdout;
 1440: 
 1441: stderr	( -- wfileid )	gforth
 1442: wfileid = (Cell)stderr;
 1443: 
 1444: form	( -- urows ucols )	gforth
 1445: ""The number of lines and columns in the terminal. These numbers may change
 1446: with the window size.""
 1447: /* we could block SIGWINCH here to get a consistent size, but I don't
 1448:  think this is necessary or always beneficial */
 1449: urows=rows;
 1450: ucols=cols;
 1451: 
 1452: flush-icache	( c_addr u -- )	gforth	flush_icache
 1453: ""Make sure that the instruction cache of the processor (if there is
 1454: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1455: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1456: automatically. Caveat: @code{flush-icache} might not work on your
 1457: installation; this is usually the case if direct threading is not
 1458: supported on your machine (take a look at your @file{machine.h}) and
 1459: your machine has a separate instruction cache. In such cases,
 1460: @code{flush-icache} does nothing instead of flushing the instruction
 1461: cache.""
 1462: FLUSH_ICACHE(c_addr,u);
 1463: 
 1464: (bye)	( n -- )	gforth	paren_bye
 1465: SUPER_END;
 1466: return (Label *)n;
 1467: 
 1468: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1469: #ifndef MSDOS
 1470: int old_tp=terminal_prepped;
 1471: deprep_terminal();
 1472: #endif
 1473: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1474: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1475: #ifndef MSDOS
 1476: if (old_tp)
 1477:   prep_terminal();
 1478: #endif
 1479: 
 1480: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1481: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1482: is the host operating system's expansion of that environment variable. If the
 1483: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1484: in length.""
 1485: /* close ' to keep fontify happy */
 1486: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1487: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1488: 
 1489: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1490: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1491: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1492: 
 1493: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1494: wretval = pclose((FILE *)wfileid);
 1495: wior = IOR(wretval==-1);
 1496: 
 1497: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1498: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1499: Months are numbered from 1.""
 1500: struct timeval time1;
 1501: struct timezone zone1;
 1502: struct tm *ltime;
 1503: gettimeofday(&time1,&zone1);
 1504: /* !! Single Unix specification: 
 1505:    If tzp is not a null pointer, the behaviour is unspecified. */
 1506: ltime=localtime((time_t *)&time1.tv_sec);
 1507: nyear =ltime->tm_year+1900;
 1508: nmonth=ltime->tm_mon+1;
 1509: nday  =ltime->tm_mday;
 1510: nhour =ltime->tm_hour;
 1511: nmin  =ltime->tm_min;
 1512: nsec  =ltime->tm_sec;
 1513: 
 1514: ms	( n -- )	facility-ext
 1515: ""Wait at least @i{n} milli-second.""
 1516: struct timeval timeout;
 1517: timeout.tv_sec=n/1000;
 1518: timeout.tv_usec=1000*(n%1000);
 1519: (void)select(0,0,0,0,&timeout);
 1520: 
 1521: allocate	( u -- a_addr wior )	memory
 1522: ""Allocate @i{u} address units of contiguous data space. The initial
 1523: contents of the data space is undefined. If the allocation is successful,
 1524: @i{a-addr} is the start address of the allocated region and @i{wior}
 1525: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1526: is a non-zero I/O result code.""
 1527: a_addr = (Cell *)malloc(u?u:1);
 1528: wior = IOR(a_addr==NULL);
 1529: 
 1530: free	( a_addr -- wior )		memory
 1531: ""Return the region of data space starting at @i{a-addr} to the system.
 1532: The region must originally have been obtained using @code{allocate} or
 1533: @code{resize}. If the operational is successful, @i{wior} is 0.
 1534: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1535: free(a_addr);
 1536: wior = 0;
 1537: 
 1538: resize	( a_addr1 u -- a_addr2 wior )	memory
 1539: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1540: address units, possibly moving the contents to a different
 1541: area. @i{a-addr2} is the address of the resulting area.
 1542: If the operation is successful, @i{wior} is 0.
 1543: If the operation fails, @i{wior} is a non-zero
 1544: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1545: @code{resize} @code{allocate}s @i{u} address units.""
 1546: /* the following check is not necessary on most OSs, but it is needed
 1547:    on SunOS 4.1.2. */
 1548: /* close ' to keep fontify happy */
 1549: if (a_addr1==NULL)
 1550:   a_addr2 = (Cell *)malloc(u);
 1551: else
 1552:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1553: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1554: 
 1555: strerror	( n -- c_addr u )	gforth
 1556: c_addr = strerror(n);
 1557: u = strlen(c_addr);
 1558: 
 1559: strsignal	( n -- c_addr u )	gforth
 1560: c_addr = strsignal(n);
 1561: u = strlen(c_addr);
 1562: 
 1563: call-c	( w -- )	gforth	call_c
 1564: ""Call the C function pointed to by @i{w}. The C function has to
 1565: access the stack itself. The stack pointers are exported in the global
 1566: variables @code{SP} and @code{FP}.""
 1567: /* This is a first attempt at support for calls to C. This may change in
 1568:    the future */
 1569: IF_fpTOS(fp[0]=fpTOS);
 1570: FP=fp;
 1571: SP=sp;
 1572: ((void (*)())w)();
 1573: sp=SP;
 1574: fp=FP;
 1575: IF_spTOS(spTOS=sp[0]);
 1576: IF_fpTOS(fpTOS=fp[0]);
 1577: 
 1578: \+
 1579: \+file
 1580: 
 1581: close-file	( wfileid -- wior )		file	close_file
 1582: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1583: 
 1584: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1585: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1586: wior =  IOR(wfileid == 0);
 1587: 
 1588: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1589: Cell	fd;
 1590: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1591: if (fd != -1) {
 1592:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1593:   wior = IOR(wfileid == 0);
 1594: } else {
 1595:   wfileid = 0;
 1596:   wior = IOR(1);
 1597: }
 1598: 
 1599: delete-file	( c_addr u -- wior )		file	delete_file
 1600: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1601: 
 1602: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1603: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1604: char *s1=tilde_cstr(c_addr2, u2, 1);
 1605: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1606: 
 1607: file-position	( wfileid -- ud wior )	file	file_position
 1608: /* !! use tell and lseek? */
 1609: ud = OFF2UD(ftello((FILE *)wfileid));
 1610: wior = IOR(UD2OFF(ud)==-1);
 1611: 
 1612: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1613: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1614: 
 1615: file-size	( wfileid -- ud wior )	file	file_size
 1616: struct stat buf;
 1617: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1618: ud = OFF2UD(buf.st_size);
 1619: 
 1620: resize-file	( ud wfileid -- wior )	file	resize_file
 1621: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1622: 
 1623: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1624: /* !! fread does not guarantee enough */
 1625: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1626: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1627: /* !! is the value of ferror errno-compatible? */
 1628: if (wior)
 1629:   clearerr((FILE *)wfileid);
 1630: 
 1631: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1632: /* this may one day be replaced with : read-line (read-line) nip ; */
 1633: Cell c;
 1634: flag=-1;
 1635: for(u2=0; u2<u1; u2++)
 1636: {
 1637:    c = getc((FILE *)wfileid);
 1638:    if (c=='\n') break;
 1639:    if (c=='\r') {
 1640:      if ((c = getc((FILE *)wfileid))!='\n')
 1641:        ungetc(c,(FILE *)wfileid);
 1642:      break;
 1643:    }
 1644:    if (c==EOF) {
 1645: 	flag=FLAG(u2!=0);
 1646: 	break;
 1647:      }
 1648:    c_addr[u2] = (Char)c;
 1649: }
 1650: wior=FILEIO(ferror((FILE *)wfileid));
 1651: 
 1652: \+
 1653: 
 1654: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1655: /* !! fwrite does not guarantee enough */
 1656: #ifdef HAS_FILE
 1657: {
 1658:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1659:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1660:   if (wior)
 1661:     clearerr((FILE *)wfileid);
 1662: }
 1663: #else
 1664: TYPE(c_addr, u1);
 1665: #endif
 1666: 
 1667: emit-file	( c wfileid -- wior )	gforth	emit_file
 1668: #ifdef HAS_FILE
 1669: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1670: if (wior)
 1671:   clearerr((FILE *)wfileid);
 1672: #else
 1673: PUTC(c);
 1674: #endif
 1675: 
 1676: \+file
 1677: 
 1678: flush-file	( wfileid -- wior )		file-ext	flush_file
 1679: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1680: 
 1681: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1682: char *filename=tilde_cstr(c_addr, u, 1);
 1683: if (access (filename, F_OK) != 0) {
 1684:   wfam=0;
 1685:   wior=IOR(1);
 1686: }
 1687: else if (access (filename, R_OK | W_OK) == 0) {
 1688:   wfam=2; /* r/w */
 1689:   wior=0;
 1690: }
 1691: else if (access (filename, R_OK) == 0) {
 1692:   wfam=0; /* r/o */
 1693:   wior=0;
 1694: }
 1695: else if (access (filename, W_OK) == 0) {
 1696:   wfam=4; /* w/o */
 1697:   wior=0;
 1698: }
 1699: else {
 1700:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1701: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1702:   wior=0;
 1703: }
 1704: 
 1705: \+
 1706: \+floating
 1707: 
 1708: \g floating
 1709: 
 1710: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1711: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1712: 
 1713: d>f	( d -- r )		float	d_to_f
 1714: #ifdef BUGGY_LONG_LONG
 1715: extern double ldexp(double x, int exp);
 1716: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1717: #else
 1718: r = d;
 1719: #endif
 1720: 
 1721: f>d	( r -- d )		float	f_to_d
 1722: extern DCell double2ll(Float r);
 1723: d = double2ll(r);
 1724: 
 1725: f!	( r f_addr -- )	float	f_store
 1726: ""Store @i{r} into the float at address @i{f-addr}.""
 1727: *f_addr = r;
 1728: 
 1729: f@	( f_addr -- r )	float	f_fetch
 1730: ""@i{r} is the float at address @i{f-addr}.""
 1731: r = *f_addr;
 1732: 
 1733: df@	( df_addr -- r )	float-ext	d_f_fetch
 1734: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1735: #ifdef IEEE_FP
 1736: r = *df_addr;
 1737: #else
 1738: !! df@
 1739: #endif
 1740: 
 1741: df!	( r df_addr -- )	float-ext	d_f_store
 1742: ""Store @i{r} as double-precision IEEE floating-point value to the
 1743: address @i{df-addr}.""
 1744: #ifdef IEEE_FP
 1745: *df_addr = r;
 1746: #else
 1747: !! df!
 1748: #endif
 1749: 
 1750: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1751: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1752: #ifdef IEEE_FP
 1753: r = *sf_addr;
 1754: #else
 1755: !! sf@
 1756: #endif
 1757: 
 1758: sf!	( r sf_addr -- )	float-ext	s_f_store
 1759: ""Store @i{r} as single-precision IEEE floating-point value to the
 1760: address @i{sf-addr}.""
 1761: #ifdef IEEE_FP
 1762: *sf_addr = r;
 1763: #else
 1764: !! sf!
 1765: #endif
 1766: 
 1767: f+	( r1 r2 -- r3 )	float	f_plus
 1768: r3 = r1+r2;
 1769: 
 1770: f-	( r1 r2 -- r3 )	float	f_minus
 1771: r3 = r1-r2;
 1772: 
 1773: f*	( r1 r2 -- r3 )	float	f_star
 1774: r3 = r1*r2;
 1775: 
 1776: f/	( r1 r2 -- r3 )	float	f_slash
 1777: r3 = r1/r2;
 1778: 
 1779: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1780: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1781: r3 = pow(r1,r2);
 1782: 
 1783: fnegate	( r1 -- r2 )	float	f_negate
 1784: r2 = - r1;
 1785: 
 1786: fdrop	( r -- )		float	f_drop
 1787: 
 1788: fdup	( r -- r r )	float	f_dupe
 1789: 
 1790: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1791: 
 1792: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1793: 
 1794: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1795: 
 1796: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1797: 
 1798: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1799: 
 1800: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1801: ""@code{1 floats +}.""
 1802: f_addr2 = f_addr1+1;
 1803: 
 1804: floats	( n1 -- n2 )	float
 1805: ""@i{n2} is the number of address units of @i{n1} floats.""
 1806: n2 = n1*sizeof(Float);
 1807: 
 1808: floor	( r1 -- r2 )	float
 1809: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1810: /* !! unclear wording */
 1811: r2 = floor(r1);
 1812: 
 1813: fround	( r1 -- r2 )	gforth	f_round
 1814: ""Round to the nearest integral value.""
 1815: r2 = rint(r1);
 1816: 
 1817: fmax	( r1 r2 -- r3 )	float	f_max
 1818: if (r1<r2)
 1819:   r3 = r2;
 1820: else
 1821:   r3 = r1;
 1822: 
 1823: fmin	( r1 r2 -- r3 )	float	f_min
 1824: if (r1<r2)
 1825:   r3 = r1;
 1826: else
 1827:   r3 = r2;
 1828: 
 1829: represent	( r c_addr u -- n f1 f2 )	float
 1830: char *sig;
 1831: int flag;
 1832: int decpt;
 1833: sig=ecvt(r, u, &decpt, &flag);
 1834: n=(r==0 ? 1 : decpt);
 1835: f1=FLAG(flag!=0);
 1836: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1837: memmove(c_addr,sig,u);
 1838: 
 1839: >float	( c_addr u -- flag )	float	to_float
 1840: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1841: character string @i{c-addr u} to internal floating-point
 1842: representation. If the string represents a valid floating-point number
 1843: @i{r} is placed on the floating-point stack and @i{flag} is
 1844: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1845: case and represents the floating-point number 0.""
 1846: /* real signature: c_addr u -- r t / f */
 1847: Float r;
 1848: char *number=cstr(c_addr, u, 1);
 1849: char *endconv;
 1850: int sign = 0;
 1851: if(number[0]=='-') {
 1852:    sign = 1;
 1853:    number++;
 1854:    u--;
 1855: }
 1856: while(isspace((unsigned)(number[--u])) && u>0);
 1857: switch(number[u])
 1858: {
 1859:    case 'd':
 1860:    case 'D':
 1861:    case 'e':
 1862:    case 'E':  break;
 1863:    default :  u++; break;
 1864: }
 1865: number[u]='\0';
 1866: r=strtod(number,&endconv);
 1867: if((flag=FLAG(!(Cell)*endconv)))
 1868: {
 1869:    IF_fpTOS(fp[0] = fpTOS);
 1870:    fp += -1;
 1871:    fpTOS = sign ? -r : r;
 1872: }
 1873: else if(*endconv=='d' || *endconv=='D')
 1874: {
 1875:    *endconv='E';
 1876:    r=strtod(number,&endconv);
 1877:    if((flag=FLAG(!(Cell)*endconv)))
 1878:      {
 1879: 	IF_fpTOS(fp[0] = fpTOS);
 1880: 	fp += -1;
 1881: 	fpTOS = sign ? -r : r;
 1882:      }
 1883: }
 1884: 
 1885: fabs	( r1 -- r2 )	float-ext	f_abs
 1886: r2 = fabs(r1);
 1887: 
 1888: facos	( r1 -- r2 )	float-ext	f_a_cos
 1889: r2 = acos(r1);
 1890: 
 1891: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1892: r2 = asin(r1);
 1893: 
 1894: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1895: r2 = atan(r1);
 1896: 
 1897: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1898: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1899: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1900: r3 = atan2(r1,r2);
 1901: 
 1902: fcos	( r1 -- r2 )	float-ext	f_cos
 1903: r2 = cos(r1);
 1904: 
 1905: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1906: r2 = exp(r1);
 1907: 
 1908: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1909: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1910: #ifdef HAVE_EXPM1
 1911: extern double
 1912: #ifdef NeXT
 1913:               const
 1914: #endif
 1915:                     expm1(double);
 1916: r2 = expm1(r1);
 1917: #else
 1918: r2 = exp(r1)-1.;
 1919: #endif
 1920: 
 1921: fln	( r1 -- r2 )	float-ext	f_l_n
 1922: r2 = log(r1);
 1923: 
 1924: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1925: ""@i{r2}=ln(@i{r1}+1)""
 1926: #ifdef HAVE_LOG1P
 1927: extern double
 1928: #ifdef NeXT
 1929:               const
 1930: #endif
 1931:                     log1p(double);
 1932: r2 = log1p(r1);
 1933: #else
 1934: r2 = log(r1+1.);
 1935: #endif
 1936: 
 1937: flog	( r1 -- r2 )	float-ext	f_log
 1938: ""The decimal logarithm.""
 1939: r2 = log10(r1);
 1940: 
 1941: falog	( r1 -- r2 )	float-ext	f_a_log
 1942: ""@i{r2}=10**@i{r1}""
 1943: extern double pow10(double);
 1944: r2 = pow10(r1);
 1945: 
 1946: fsin	( r1 -- r2 )	float-ext	f_sine
 1947: r2 = sin(r1);
 1948: 
 1949: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1950: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1951: r2 = sin(r1);
 1952: r3 = cos(r1);
 1953: 
 1954: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1955: r2 = sqrt(r1);
 1956: 
 1957: ftan	( r1 -- r2 )	float-ext	f_tan
 1958: r2 = tan(r1);
 1959: :
 1960:  fsincos f/ ;
 1961: 
 1962: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1963: r2 = sinh(r1);
 1964: :
 1965:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1966: 
 1967: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1968: r2 = cosh(r1);
 1969: :
 1970:  fexp fdup 1/f f+ f2/ ;
 1971: 
 1972: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1973: r2 = tanh(r1);
 1974: :
 1975:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1976: 
 1977: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1978: r2 = asinh(r1);
 1979: :
 1980:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1981: 
 1982: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1983: r2 = acosh(r1);
 1984: :
 1985:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1986: 
 1987: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1988: r2 = atanh(r1);
 1989: :
 1990:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1991:  r> IF  fnegate  THEN ;
 1992: 
 1993: sfloats	( n1 -- n2 )	float-ext	s_floats
 1994: ""@i{n2} is the number of address units of @i{n1}
 1995: single-precision IEEE floating-point numbers.""
 1996: n2 = n1*sizeof(SFloat);
 1997: 
 1998: dfloats	( n1 -- n2 )	float-ext	d_floats
 1999: ""@i{n2} is the number of address units of @i{n1}
 2000: double-precision IEEE floating-point numbers.""
 2001: n2 = n1*sizeof(DFloat);
 2002: 
 2003: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2004: ""@i{sf-addr} is the first single-float-aligned address greater
 2005: than or equal to @i{c-addr}.""
 2006: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2007: :
 2008:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2009: 
 2010: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2011: ""@i{df-addr} is the first double-float-aligned address greater
 2012: than or equal to @i{c-addr}.""
 2013: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2014: :
 2015:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2016: 
 2017: \ The following words access machine/OS/installation-dependent
 2018: \   Gforth internals
 2019: \ !! how about environmental queries DIRECT-THREADED,
 2020: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2021: 
 2022: \ local variable implementation primitives
 2023: \+
 2024: \+glocals
 2025: 
 2026: @local#	( #noffset -- w )	gforth	fetch_local_number
 2027: w = *(Cell *)(lp+noffset);
 2028: 
 2029: @local0	( -- w )	new	fetch_local_zero
 2030: w = *(Cell *)(lp+0*sizeof(Cell));
 2031: 
 2032: @local1	( -- w )	new	fetch_local_four
 2033: w = *(Cell *)(lp+1*sizeof(Cell));
 2034: 
 2035: @local2	( -- w )	new	fetch_local_eight
 2036: w = *(Cell *)(lp+2*sizeof(Cell));
 2037: 
 2038: @local3	( -- w )	new	fetch_local_twelve
 2039: w = *(Cell *)(lp+3*sizeof(Cell));
 2040: 
 2041: \+floating
 2042: 
 2043: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2044: r = *(Float *)(lp+noffset);
 2045: 
 2046: f@local0	( -- r )	new	f_fetch_local_zero
 2047: r = *(Float *)(lp+0*sizeof(Float));
 2048: 
 2049: f@local1	( -- r )	new	f_fetch_local_eight
 2050: r = *(Float *)(lp+1*sizeof(Float));
 2051: 
 2052: \+
 2053: 
 2054: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2055: /* this can also be used to implement lp@ */
 2056: c_addr = (Char *)(lp+noffset);
 2057: 
 2058: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2059: ""used with negative immediate values it allocates memory on the
 2060: local stack, a positive immediate argument drops memory from the local
 2061: stack""
 2062: lp += noffset;
 2063: 
 2064: lp-	( -- )	new	minus_four_lp_plus_store
 2065: lp += -sizeof(Cell);
 2066: 
 2067: lp+	( -- )	new	eight_lp_plus_store
 2068: lp += sizeof(Float);
 2069: 
 2070: lp+2	( -- )	new	sixteen_lp_plus_store
 2071: lp += 2*sizeof(Float);
 2072: 
 2073: lp!	( c_addr -- )	gforth	lp_store
 2074: lp = (Address)c_addr;
 2075: 
 2076: >l	( w -- )	gforth	to_l
 2077: lp -= sizeof(Cell);
 2078: *(Cell *)lp = w;
 2079: 
 2080: \+floating
 2081: 
 2082: f>l	( r -- )	gforth	f_to_l
 2083: lp -= sizeof(Float);
 2084: *(Float *)lp = r;
 2085: 
 2086: fpick	( u -- r )		gforth
 2087: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2088: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2089: :
 2090:  floats fp@ + f@ ;
 2091: 
 2092: \+
 2093: \+
 2094: 
 2095: \+OS
 2096: 
 2097: define(`uploop',
 2098:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2099: define(`_uploop',
 2100:        `ifelse($1, `$3', `$5',
 2101: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2102: \ argflist(argnum): Forth argument list
 2103: define(argflist,
 2104:        `ifelse($1, 0, `',
 2105:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2106: \ argdlist(argnum): declare C's arguments
 2107: define(argdlist,
 2108:        `ifelse($1, 0, `',
 2109:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2110: \ argclist(argnum): pass C's arguments
 2111: define(argclist,
 2112:        `ifelse($1, 0, `',
 2113:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2114: \ icall(argnum)
 2115: define(icall,
 2116: `icall$1	( argflist($1)u -- uret )	gforth
 2117: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2118: 
 2119: ')
 2120: define(fcall,
 2121: `fcall$1	( argflist($1)u -- rret )	gforth
 2122: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2123: 
 2124: ')
 2125: 
 2126: \ close ' to keep fontify happy
 2127: 
 2128: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2129: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2130: #ifndef RTLD_GLOBAL
 2131: #define RTLD_GLOBAL 0
 2132: #endif
 2133: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2134: #else
 2135: #  ifdef _WIN32
 2136: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2137: #  else
 2138: #warning Define open-lib!
 2139: u2 = 0;
 2140: #  endif
 2141: #endif
 2142: 
 2143: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2144: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2145: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2146: #else
 2147: #  ifdef _WIN32
 2148: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2149: #  else
 2150: #warning Define lib-sym!
 2151: u3 = 0;
 2152: #  endif
 2153: #endif
 2154: 
 2155: uploop(i, 0, 7, `icall(i)')
 2156: icall(20)
 2157: uploop(i, 0, 7, `fcall(i)')
 2158: fcall(20)
 2159: 
 2160: \+
 2161: 
 2162: up!	( a_addr -- )	gforth	up_store
 2163: UP=up=(char *)a_addr;
 2164: :
 2165:  up ! ;
 2166: Variable UP
 2167: 
 2168: wcall	( u -- )	gforth
 2169: IF_fpTOS(fp[0]=fpTOS);
 2170: FP=fp;
 2171: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &FP);
 2172: fp=FP;
 2173: IF_spTOS(spTOS=sp[0];)
 2174: IF_fpTOS(fpTOS=fp[0]);
 2175: 
 2176: \+file
 2177: 
 2178: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2179: ""Open the directory specified by @i{c-addr, u}
 2180: and return @i{dir-id} for futher access to it.""
 2181: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2182: wior =  IOR(wdirid == 0);
 2183: 
 2184: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2185: ""Attempt to read the next entry from the directory specified
 2186: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 2187: If the attempt fails because there is no more entries,
 2188: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 2189: If the attempt to read the next entry fails because of any other reason, 
 2190: return @i{ior}<>0.
 2191: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 2192: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 2193: If the length of the file name is greater than @i{u1}, 
 2194: store first @i{u1} characters from file name into the buffer and
 2195: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 2196: struct dirent * dent;
 2197: dent = readdir((DIR *)wdirid);
 2198: wior = 0;
 2199: flag = -1;
 2200: if(dent == NULL) {
 2201:   u2 = 0;
 2202:   flag = 0;
 2203: } else {
 2204:   u2 = strlen(dent->d_name);
 2205:   if(u2 > u1) {
 2206:     u2 = u1;
 2207:     wior = -512-ENAMETOOLONG;
 2208:   }
 2209:   memmove(c_addr, dent->d_name, u2);
 2210: }
 2211: 
 2212: close-dir	( wdirid -- wior )	gforth	close_dir
 2213: ""Close the directory specified by @i{dir-id}.""
 2214: wior = IOR(closedir((DIR *)wdirid));
 2215: 
 2216: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2217: char * string = cstr(c_addr1, u1, 1);
 2218: char * pattern = cstr(c_addr2, u2, 0);
 2219: flag = FLAG(!fnmatch(pattern, string, 0));
 2220: 
 2221: \+
 2222: 
 2223: newline	( -- c_addr u )	gforth
 2224: ""String containing the newline sequence of the host OS""
 2225: char newline[] = {
 2226: #if defined(unix) || defined(__MACH__)
 2227: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2228: '\n'
 2229: #else
 2230: '\r','\n'
 2231: #endif
 2232: };
 2233: c_addr=newline;
 2234: u=sizeof(newline);
 2235: :
 2236:  "newline count ;
 2237: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2238: 
 2239: \+os
 2240: 
 2241: utime	( -- dtime )	gforth
 2242: ""Report the current time in microseconds since some epoch.""
 2243: struct timeval time1;
 2244: gettimeofday(&time1,NULL);
 2245: dtime = timeval2us(&time1);
 2246: 
 2247: cputime ( -- duser dsystem ) gforth
 2248: ""duser and dsystem are the respective user- and system-level CPU
 2249: times used since the start of the Forth system (excluding child
 2250: processes), in microseconds (the granularity may be much larger,
 2251: however).  On platforms without the getrusage call, it reports elapsed
 2252: time (since some epoch) for duser and 0 for dsystem.""
 2253: #ifdef HAVE_GETRUSAGE
 2254: struct rusage usage;
 2255: getrusage(RUSAGE_SELF, &usage);
 2256: duser = timeval2us(&usage.ru_utime);
 2257: dsystem = timeval2us(&usage.ru_stime);
 2258: #else
 2259: struct timeval time1;
 2260: gettimeofday(&time1,NULL);
 2261: duser = timeval2us(&time1);
 2262: #ifndef BUGGY_LONG_LONG
 2263: dsystem = (DCell)0;
 2264: #else
 2265: dsystem=(DCell){0,0};
 2266: #endif
 2267: #endif
 2268: 
 2269: \+
 2270: 
 2271: \+floating
 2272: 
 2273: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2274: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2275: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2276: ucount elements.""
 2277: for (r=0.; ucount>0; ucount--) {
 2278:   r += *f_addr1 * *f_addr2;
 2279:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2280:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2281: }
 2282: :
 2283:  >r swap 2swap swap 0e r> 0 ?DO
 2284:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2285:  LOOP 2drop 2drop ; 
 2286: 
 2287: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2288: ""vy=ra*vx+vy""
 2289: for (; ucount>0; ucount--) {
 2290:   *f_y += ra * *f_x;
 2291:   f_x = (Float *)(((Address)f_x)+nstridex);
 2292:   f_y = (Float *)(((Address)f_y)+nstridey);
 2293: }
 2294: :
 2295:  >r swap 2swap swap r> 0 ?DO
 2296:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2297:  LOOP 2drop 2drop fdrop ;
 2298: 
 2299: \+
 2300: 
 2301: \+file
 2302: 
 2303: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2304: Cell c;
 2305: flag=-1;
 2306: u3=0;
 2307: for(u2=0; u2<u1; u2++)
 2308: {
 2309:    c = getc((FILE *)wfileid);
 2310:    u3++;
 2311:    if (c=='\n') break;
 2312:    if (c=='\r') {
 2313:      if ((c = getc((FILE *)wfileid))!='\n')
 2314:        ungetc(c,(FILE *)wfileid);
 2315:      else
 2316:        u3++;
 2317:      break;
 2318:    }
 2319:    if (c==EOF) {
 2320: 	flag=FLAG(u2!=0);
 2321: 	break;
 2322:      }
 2323:    c_addr[u2] = (Char)c;
 2324: }
 2325: wior=FILEIO(ferror((FILE *)wfileid));
 2326: 
 2327: \+
 2328: 
 2329: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 2330: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 2331:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2332:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2333:     break;
 2334: longname2=longname1;
 2335: :
 2336:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 2337: 	>r 2dup r@ cell+ cell+ capscomp  0=
 2338: 	IF  2drop r>  EXIT  THEN
 2339: 	r> @
 2340:     REPEAT  THEN  nip nip ;
 2341: : (findl-samelen) ( u longname1 -- u longname2/0 )
 2342:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 2343: 
 2344: \+hash
 2345: 
 2346: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 2347: struct Longname *longname1;
 2348: longname2=NULL;
 2349: while(a_addr != NULL)
 2350: {
 2351:    longname1=(struct Longname *)(a_addr[1]);
 2352:    a_addr=(Cell *)(a_addr[0]);
 2353:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2354:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2355:      {
 2356: 	longname2=longname1;
 2357: 	break;
 2358:      }
 2359: }
 2360: :
 2361:  BEGIN  dup  WHILE
 2362:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2363:         IF  2dup r@ cell+ cell+ capscomp 0=
 2364: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2365: 	rdrop r>
 2366:  REPEAT nip nip ;
 2367: 
 2368: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 2369: ""A case-sensitive variant of @code{(hashfind)}""
 2370: struct Longname *longname1;
 2371: longname2=NULL;
 2372: while(a_addr != NULL)
 2373: {
 2374:    longname1=(struct Longname *)(a_addr[1]);
 2375:    a_addr=(Cell *)(a_addr[0]);
 2376:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2377:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2378:      {
 2379: 	longname2=longname1;
 2380: 	break;
 2381:      }
 2382: }
 2383: :
 2384:  BEGIN  dup  WHILE
 2385:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2386:         IF  2dup r@ cell+ cell+ -text 0=
 2387: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2388: 	rdrop r>
 2389:  REPEAT nip nip ;
 2390: 
 2391: \+
 2392: 
 2393: \+peephole
 2394: 
 2395: \g peephole
 2396: 
 2397: primtable	( -- wprimtable )	new
 2398: ""wprimtable is a table containing the xts of the primitives indexed
 2399: by sequence-number in prim (for use in prepare-peephole-table).""
 2400: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2401: 
 2402: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2403: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2404: constructed by combining a primitives table with a simple peephole
 2405: optimization table.""
 2406: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2407: 
 2408: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2409: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2410: they cannot be combined, xt is 0.""
 2411: xt = peephole_opt(xt1, xt2, wpeeptable);
 2412: 
 2413: call	( #a_callee -- R:a_retaddr )	new
 2414: ""Call callee (a variant of docol with inline argument).""
 2415: #ifdef NO_IP
 2416: INST_TAIL;
 2417: JUMP(a_callee);
 2418: #else
 2419: #ifdef DEBUG
 2420:     {
 2421:       CFA_TO_NAME((((Cell *)a_callee)-2));
 2422:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
 2423: 	      len,name);
 2424:     }
 2425: #endif
 2426: a_retaddr = (Cell *)IP;
 2427: SET_IP((Xt *)a_callee);
 2428: #endif
 2429: 
 2430: useraddr	( #u -- a_addr )	new
 2431: a_addr = (Cell *)(up+u);
 2432: 
 2433: compile-prim ( xt1 -- xt2 )	obsolete	compile_prim
 2434: xt2 = (Xt)compile_prim((Label)xt1);
 2435: 
 2436: \ lit@ / lit_fetch = lit @
 2437: 
 2438: lit@		( #a_addr -- w ) new	lit_fetch
 2439: w = *a_addr;
 2440: 
 2441: lit-perform	( #a_addr -- )	new	lit_perform
 2442: #ifndef NO_IP
 2443: ip=IP;
 2444: #endif
 2445: SUPER_END;
 2446: EXEC(*(Xt *)a_addr);
 2447: 
 2448: \ lit+ / lit_plus = lit +
 2449: 
 2450: lit+	( n1 #n2 -- n )		new	lit_plus
 2451: n=n1+n2;
 2452: 
 2453: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
 2454: #ifdef NO_IP
 2455: /* compiled to LIT CALL by compile_prim */
 2456: assert(0);
 2457: #else
 2458: a_pfa = PFA(a_cfa);
 2459: nest = (Cell)IP;
 2460: IF_spTOS(spTOS = sp[0]);
 2461: #ifdef DEBUG
 2462:     {
 2463:       CFA_TO_NAME(a_cfa);
 2464:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
 2465: 	      (Cell)ip,(Cell)a_cfa,len,name);
 2466:     }
 2467: #endif
 2468: SET_IP(DOES_CODE1(a_cfa));
 2469: #endif
 2470: 
 2471: abranch-lp+!# ( #a_target #nlocals -- )	gforth	abranch_lp_plus_store_number
 2472: /* this will probably not be used */
 2473: lp += nlocals;
 2474: #ifdef NO_IP
 2475: INST_TAIL;
 2476: JUMP(a_target);
 2477: #else
 2478: SET_IP((Xt *)a_target);
 2479: #endif
 2480: 
 2481: \+
 2482: 
 2483: abranch	( #a_target -- )	gforth
 2484: #ifdef NO_IP
 2485: INST_TAIL;
 2486: JUMP(a_target);
 2487: #else
 2488: SET_IP((Xt *)a_target);
 2489: #endif
 2490: :
 2491:  r> @ >r ;
 2492: 
 2493: \ acondbranch(forthname,stackeffect,restline,code1,code2,forthcode)
 2494: \ this is non-syntactical: code must open a brace that is closed by the macro
 2495: define(acondbranch,
 2496: $1 ( `#'a_target $2 ) $3
 2497: $4	#ifdef NO_IP
 2498: INST_TAIL;
 2499: #endif
 2500: $5	#ifdef NO_IP
 2501: JUMP(a_target);
 2502: #else
 2503: SET_IP((Xt *)a_target);
 2504: INST_TAIL; NEXT_P2;
 2505: #endif
 2506: }
 2507: SUPER_CONTINUE;
 2508: $6
 2509: 
 2510: \+glocals
 2511: 
 2512: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
 2513: $4	#ifdef NO_IP
 2514: INST_TAIL;
 2515: #endif
 2516: $5	lp += nlocals;
 2517: #ifdef NO_IP
 2518: JUMP(a_target);
 2519: #else
 2520: SET_IP((Xt *)a_target);
 2521: INST_TAIL; NEXT_P2;
 2522: #endif
 2523: }
 2524: SUPER_CONTINUE;
 2525: 
 2526: \+
 2527: )
 2528: 
 2529: acondbranch(a?branch,f --,f83	aquestion_branch,
 2530: ,if (f==0) {
 2531: ,:
 2532:  0= dup     \ !f !f \ !! still uses relative addresses
 2533:  r> dup @   \ !f !f IP branchoffset
 2534:  rot and +  \ !f IP|IP+branchoffset
 2535:  swap 0= cell and + \ IP''
 2536:  >r ;)
 2537: 
 2538: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
 2539: \ is only used in if's (yet)
 2540: 
 2541: \+xconds
 2542: 
 2543: a?dup-?branch	( #a_target f -- f )	new	aquestion_dupe_question_branch
 2544: ""The run-time procedure compiled by @code{?DUP-IF}.""
 2545: if (f==0) {
 2546:   sp++;
 2547:   IF_spTOS(spTOS = sp[0]);
 2548: #ifdef NO_IP
 2549: INST_TAIL;
 2550: JUMP(a_target);
 2551: #else
 2552: SET_IP((Xt *)a_target);
 2553:   INST_TAIL; NEXT_P2;
 2554: #endif
 2555: }
 2556: SUPER_CONTINUE;
 2557: 
 2558: a?dup-0=-?branch ( #a_target f -- ) new	aquestion_dupe_zero_equals_question_branch
 2559: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
 2560: /* the approach taken here of declaring the word as having the stack
 2561: effect ( f -- ) and correcting for it in the branch-taken case costs a
 2562: few cycles in that case, but is easy to convert to a CONDBRANCH
 2563: invocation */
 2564: if (f!=0) {
 2565:   sp--;
 2566: #ifdef NO_IP
 2567:   JUMP(a_target);
 2568: #else
 2569:   SET_IP((Xt *)a_target);
 2570:   NEXT;
 2571: #endif
 2572: }
 2573: SUPER_CONTINUE;
 2574: 
 2575: \+
 2576: \f[THEN]
 2577: \fhas? skiploopprims 0= [IF]
 2578: 
 2579: acondbranch(a(next),R:n1 -- R:n2,cmFORTH	aparen_next,
 2580: n2=n1-1;
 2581: ,if (n1) {
 2582: ,:
 2583:  r> r> dup 1- >r
 2584:  IF @ >r ELSE cell+ >r THEN ;)
 2585: 
 2586: acondbranch(a(loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	aparen_loop,
 2587: n2=n1+1;
 2588: ,if (n2 != nlimit) {
 2589: ,:
 2590:  r> r> 1+ r> 2dup =
 2591:  IF >r 1- >r cell+ >r
 2592:  ELSE >r >r @ >r THEN ;)
 2593: 
 2594: acondbranch(a(+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth aparen_plus_loop,
 2595: /* !! check this thoroughly */
 2596: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
 2597: /* dependent upon two's complement arithmetic */
 2598: Cell olddiff = n1-nlimit;
 2599: n2=n1+n;	
 2600: ,if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
 2601:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
 2602: ,:
 2603:  r> swap
 2604:  r> r> 2dup - >r
 2605:  2 pick r@ + r@ xor 0< 0=
 2606:  3 pick r> xor 0< 0= or
 2607:  IF    >r + >r @ >r
 2608:  ELSE  >r >r drop cell+ >r THEN ;)
 2609: 
 2610: \+xconds
 2611: 
 2612: acondbranch(a(-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth aparen_minus_loop,
 2613: UCell olddiff = n1-nlimit;
 2614: n2=n1-u;
 2615: ,if (olddiff>u) {
 2616: ,)
 2617: 
 2618: acondbranch(a(s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	aparen_symmetric_plus_loop,
 2619: ""The run-time procedure compiled by S+LOOP. It loops until the index
 2620: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
 2621: version of (+LOOP).""
 2622: /* !! check this thoroughly */
 2623: Cell diff = n1-nlimit;
 2624: Cell newdiff = diff+n;
 2625: if (n<0) {
 2626:     diff = -diff;
 2627:     newdiff = -newdiff;
 2628: }
 2629: n2=n1+n;
 2630: ,if (diff>=0 || newdiff<0) {
 2631: ,)
 2632: 
 2633: a(?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	aparen_question_do
 2634: #ifdef NO_IP
 2635:     INST_TAIL;
 2636: #endif
 2637: if (nstart == nlimit) {
 2638: #ifdef NO_IP
 2639:     JUMP(a_target);
 2640: #else
 2641:     SET_IP((Xt *)a_target);
 2642:     INST_TAIL; NEXT_P2;
 2643: #endif
 2644: }
 2645: SUPER_CONTINUE;
 2646: :
 2647:   2dup =
 2648:   IF   r> swap rot >r >r
 2649:        @ >r
 2650:   ELSE r> swap rot >r >r
 2651:        cell+ >r
 2652:   THEN ;				\ --> CORE-EXT
 2653: 
 2654: \+xconds
 2655: 
 2656: a(+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	aparen_plus_do
 2657: #ifdef NO_IP
 2658:     INST_TAIL;
 2659: #endif
 2660: if (nstart >= nlimit) {
 2661: #ifdef NO_IP
 2662:     JUMP(a_target);
 2663: #else
 2664:     SET_IP((Xt *)a_target);
 2665:     INST_TAIL; NEXT_P2;
 2666: #endif
 2667: }
 2668: SUPER_CONTINUE;
 2669: :
 2670:  swap 2dup
 2671:  r> swap >r swap >r
 2672:  >=
 2673:  IF
 2674:      @
 2675:  ELSE
 2676:      cell+
 2677:  THEN  >r ;
 2678: 
 2679: a(u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	aparen_u_plus_do
 2680: #ifdef NO_IP
 2681:     INST_TAIL;
 2682: #endif
 2683: if (ustart >= ulimit) {
 2684: #ifdef NO_IP
 2685: JUMP(a_target);
 2686: #else
 2687: SET_IP((Xt *)a_target);
 2688: INST_TAIL; NEXT_P2;
 2689: #endif
 2690: }
 2691: SUPER_CONTINUE;
 2692: :
 2693:  swap 2dup
 2694:  r> swap >r swap >r
 2695:  u>=
 2696:  IF
 2697:      @
 2698:  ELSE
 2699:      cell+
 2700:  THEN  >r ;
 2701: 
 2702: a(-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	aparen_minus_do
 2703: #ifdef NO_IP
 2704:     INST_TAIL;
 2705: #endif
 2706: if (nstart <= nlimit) {
 2707: #ifdef NO_IP
 2708: JUMP(a_target);
 2709: #else
 2710: SET_IP((Xt *)a_target);
 2711: INST_TAIL; NEXT_P2;
 2712: #endif
 2713: }
 2714: SUPER_CONTINUE;
 2715: :
 2716:  swap 2dup
 2717:  r> swap >r swap >r
 2718:  <=
 2719:  IF
 2720:      @
 2721:  ELSE
 2722:      cell+
 2723:  THEN  >r ;
 2724: 
 2725: a(u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	aparen_u_minus_do
 2726: #ifdef NO_IP
 2727:     INST_TAIL;
 2728: #endif
 2729: if (ustart <= ulimit) {
 2730: #ifdef NO_IP
 2731: JUMP(a_target);
 2732: #else
 2733: SET_IP((Xt *)a_target);
 2734: INST_TAIL; NEXT_P2;
 2735: #endif
 2736: }
 2737: SUPER_CONTINUE;
 2738: :
 2739:  swap 2dup
 2740:  r> swap >r swap >r
 2741:  u<=
 2742:  IF
 2743:      @
 2744:  ELSE
 2745:      cell+
 2746:  THEN  >r ;
 2747: 
 2748: \ set-next-code and call2 do not appear in images and can be
 2749: \ renumbered arbitrarily
 2750: 
 2751: set-next-code ( #w -- ) gforth set_next_code
 2752: #ifdef NO_IP
 2753: next_code = (Label)w;
 2754: #endif
 2755: 
 2756: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2757: /* call with explicit return address */
 2758: #ifdef NO_IP
 2759: INST_TAIL;
 2760: JUMP(a_callee);
 2761: #else
 2762: assert(0);
 2763: #endif
 2764: 
 2765: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2766: ""compile prim (incl. immargs) at @var{a_prim}""
 2767: compile_prim1(a_prim);
 2768: 
 2769: finish-code ( -- ) gforth finish_code
 2770: ""Perform delayed steps in code generation (branch resolution, I-cache
 2771: flushing).""
 2772: finish_code();
 2773: 
 2774: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2775: f = forget_dyncode(c_code);
 2776: 
 2777: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2778: ""a_prim is the code address of the primitive that has been
 2779: compile_prim1ed to a_code""
 2780: a_prim = decompile_code(a_code);
 2781: 
 2782: \+
 2783: 
 2784: include(peeprules.vmg)
 2785: 
 2786: \+

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>