File:  [gforth] / gforth / prim
Revision 1.78: download - view: text, annotated - select for diffs
Sun Mar 11 21:47:27 2001 UTC (18 years, 8 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
First steps to get peephole optimizing into cross

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ f83name.*	F83Name *
   76: 
   77: \E get-current prefixes set-current
   78: \E 
   79: \E s" Bool"		single data-stack type-prefix f
   80: \E s" Char"		single data-stack type-prefix c
   81: \E s" Cell"		single data-stack type-prefix n
   82: \E s" Cell"		single data-stack type-prefix w
   83: \E s" UCell"		single data-stack type-prefix u
   84: \E s" DCell"		double data-stack type-prefix d
   85: \E s" UDCell"		double data-stack type-prefix ud
   86: \E s" Float"		single fp-stack   type-prefix r
   87: \E s" Cell *"		single data-stack type-prefix a_
   88: \E s" Char *"		single data-stack type-prefix c_
   89: \E s" Float *"		single data-stack type-prefix f_
   90: \E s" DFloat *"		single data-stack type-prefix df_
   91: \E s" SFloat *"		single data-stack type-prefix sf_
   92: \E s" Xt"		single data-stack type-prefix xt
   93: \E s" struct F83Name *"	single data-stack type-prefix f83name
   94: \E s" struct Longname *" single data-stack type-prefix longname
   95: \E 
   96: \E return-stack stack-prefix R:
   97: \E inst-stream  stack-prefix #
   98: \E 
   99: \E set-current
  100: 
  101: \ 
  102: \ 
  103: \ 
  104: \ In addition the following names can be used:
  105: \ ip	the instruction pointer
  106: \ sp	the data stack pointer
  107: \ rp	the parameter stack pointer
  108: \ lp	the locals stack pointer
  109: \ NEXT	executes NEXT
  110: \ cfa	
  111: \ NEXT1	executes NEXT1
  112: \ FLAG(x)	makes a Forth flag from a C flag
  113: \ 
  114: \ 
  115: \ 
  116: \ Percentages in comments are from Koopmans book: average/maximum use
  117: \ (taken from four, not very representative benchmarks)
  118: \ 
  119: \ 
  120: \ 
  121: \ To do:
  122: \ 
  123: \ throw execute, cfa and NEXT1 out?
  124: \ macroize *ip, ip++, *ip++ (pipelining)?
  125: 
  126: \ these m4 macros would collide with identifiers
  127: undefine(`index')
  128: undefine(`shift')
  129: undefine(`symbols')
  130: 
  131: noop	( -- )		gforth
  132: :
  133:  ;
  134: 
  135: lit	( #w -- w )		gforth
  136: :
  137:  r> dup @ swap cell+ >r ;
  138: 
  139: execute	( xt -- )		core
  140: ""Perform the semantics represented by the execution token, @i{xt}.""
  141: ip=IP;
  142: IF_spTOS(spTOS = sp[0]);
  143: SUPER_END;
  144: EXEC(xt);
  145: 
  146: perform	( a_addr -- )	gforth
  147: ""@code{@@ execute}.""
  148: /* and pfe */
  149: ip=IP;
  150: IF_spTOS(spTOS = sp[0]);
  151: SUPER_END;
  152: EXEC(*(Xt *)a_addr);
  153: :
  154:  @ execute ;
  155: 
  156: \fhas? skipbranchprims 0= [IF]
  157: \+glocals
  158: 
  159: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  160: /* this will probably not be used */
  161: lp += nlocals;
  162: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  163: 
  164: \+
  165: 
  166: branch	( #ndisp -- )		gforth
  167: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  168: :
  169:  r> dup @ + >r ;
  170: 
  171: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  172: \ this is non-syntactical: code must open a brace that is closed by the macro
  173: define(condbranch,
  174: $1 ( `#'ndisp $2 ) $3
  175: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  176: TAIL;
  177: }
  178: $5
  179: 
  180: \+glocals
  181: 
  182: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  183: $4    lp += nlocals;
  184: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  185: TAIL;
  186: }
  187: 
  188: \+
  189: )
  190: 
  191: condbranch(?branch,f --,f83	question_branch,
  192: if (f==0) {
  193: ,:
  194:  0= dup     \ !f !f
  195:  r> dup @   \ !f !f IP branchoffset
  196:  rot and +  \ !f IP|IP+branchoffset
  197:  swap 0= cell and + \ IP''
  198:  >r ;)
  199: 
  200: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  201: \ is only used in if's (yet)
  202: 
  203: \+xconds
  204: 
  205: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  206: ""The run-time procedure compiled by @code{?DUP-IF}.""
  207: if (f==0) {
  208:   sp++;
  209:   IF_spTOS(spTOS = sp[0]);
  210:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  211:   TAIL;
  212: }
  213: 
  214: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  215: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  216: /* the approach taken here of declaring the word as having the stack
  217: effect ( f -- ) and correcting for it in the branch-taken case costs a
  218: few cycles in that case, but is easy to convert to a CONDBRANCH
  219: invocation */
  220: if (f!=0) {
  221:   sp--;
  222:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  223:   NEXT;
  224: }
  225: 
  226: \+
  227: \f[THEN]
  228: \fhas? skiploopprims 0= [IF]
  229: 
  230: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  231: n2=n1-1;
  232: if (n1) {
  233: ,:
  234:  r> r> dup 1- >r
  235:  IF dup @ + >r ELSE cell+ >r THEN ;)
  236: 
  237: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  238: n2=n1+1;
  239: if (n2 != nlimit) {
  240: ,:
  241:  r> r> 1+ r> 2dup =
  242:  IF >r 1- >r cell+ >r
  243:  ELSE >r >r dup @ + >r THEN ;)
  244: 
  245: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  246: /* !! check this thoroughly */
  247: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  248: /* dependent upon two's complement arithmetic */
  249: Cell olddiff = n1-nlimit;
  250: n2=n1+n;	
  251: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  252:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  253: ,:
  254:  r> swap
  255:  r> r> 2dup - >r
  256:  2 pick r@ + r@ xor 0< 0=
  257:  3 pick r> xor 0< 0= or
  258:  IF    >r + >r dup @ + >r
  259:  ELSE  >r >r drop cell+ >r THEN ;)
  260: 
  261: \+xconds
  262: 
  263: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  264: UCell olddiff = n1-nlimit;
  265: n2=n1-u;
  266: if (olddiff>u) {
  267: ,)
  268: 
  269: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  270: ""The run-time procedure compiled by S+LOOP. It loops until the index
  271: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  272: version of (+LOOP).""
  273: /* !! check this thoroughly */
  274: Cell diff = n1-nlimit;
  275: Cell newdiff = diff+n;
  276: if (n<0) {
  277:     diff = -diff;
  278:     newdiff = -newdiff;
  279: }
  280: n2=n1+n;
  281: if (diff>=0 || newdiff<0) {
  282: ,)
  283: 
  284: \+
  285: 
  286: unloop	( R:w1 R:w2 -- )	core
  287: /* !! alias for 2rdrop */
  288: :
  289:  r> rdrop rdrop >r ;
  290: 
  291: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  292: /* or (for) = >r -- collides with unloop! */
  293: nlimit=0;
  294: :
  295:  r> swap 0 >r >r >r ;
  296: 
  297: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  298: :
  299:  r> swap rot >r >r >r ;
  300: 
  301: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  302: if (nstart == nlimit) {
  303:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  304:     TAIL;
  305: }
  306: :
  307:   2dup =
  308:   IF   r> swap rot >r >r
  309:        dup @ + >r
  310:   ELSE r> swap rot >r >r
  311:        cell+ >r
  312:   THEN ;				\ --> CORE-EXT
  313: 
  314: \+xconds
  315: 
  316: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  317: if (nstart >= nlimit) {
  318:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  319:     TAIL;
  320: }
  321: :
  322:  swap 2dup
  323:  r> swap >r swap >r
  324:  >=
  325:  IF
  326:      dup @ +
  327:  ELSE
  328:      cell+
  329:  THEN  >r ;
  330: 
  331: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  332: if (ustart >= ulimit) {
  333:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  334:     TAIL;
  335: }
  336: :
  337:  swap 2dup
  338:  r> swap >r swap >r
  339:  u>=
  340:  IF
  341:      dup @ +
  342:  ELSE
  343:      cell+
  344:  THEN  >r ;
  345: 
  346: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  347: if (nstart <= nlimit) {
  348:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  349:     TAIL;
  350: }
  351: :
  352:  swap 2dup
  353:  r> swap >r swap >r
  354:  <=
  355:  IF
  356:      dup @ +
  357:  ELSE
  358:      cell+
  359:  THEN  >r ;
  360: 
  361: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  362: if (ustart <= ulimit) {
  363:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  364:     TAIL;
  365: }
  366: :
  367:  swap 2dup
  368:  r> swap >r swap >r
  369:  u<=
  370:  IF
  371:      dup @ +
  372:  ELSE
  373:      cell+
  374:  THEN  >r ;
  375: 
  376: \+
  377: 
  378: \ don't make any assumptions where the return stack is!!
  379: \ implement this in machine code if it should run quickly!
  380: 
  381: i	( R:n -- R:n n )		core
  382: :
  383: \ rp@ cell+ @ ;
  384:   r> r> tuck >r >r ;
  385: 
  386: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  387: :
  388: \ rp@ cell+ cell+ @ ;
  389:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  390: variable itmp
  391: 
  392: j	( R:n R:d1 -- n R:n R:d1 )		core
  393: :
  394: \ rp@ cell+ cell+ cell+ @ ;
  395:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  396: [IFUNDEF] itmp variable itmp [THEN]
  397: 
  398: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  399: :
  400: \ rp@ [ 5 cells ] Literal + @ ;
  401:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  402: [IFUNDEF] itmp variable itmp [THEN]
  403: 
  404: \f[THEN]
  405: 
  406: \ digit is high-level: 0/0%
  407: 
  408: move	( c_from c_to ucount -- )		core
  409: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  410: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  411: /* !! note that the standard specifies addr, not c-addr */
  412: memmove(c_to,c_from,ucount);
  413: /* make an Ifdef for bsd and others? */
  414: :
  415:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  416: 
  417: cmove	( c_from c_to u -- )	string	c_move
  418: ""Copy the contents of @i{ucount} characters from data space at
  419: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  420: from low address to high address; i.e., for overlapping areas it is
  421: safe if @i{c-to}=<@i{c-from}.""
  422: while (u-- > 0)
  423:   *c_to++ = *c_from++;
  424: :
  425:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  426: 
  427: cmove>	( c_from c_to u -- )	string	c_move_up
  428: ""Copy the contents of @i{ucount} characters from data space at
  429: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  430: from high address to low address; i.e., for overlapping areas it is
  431: safe if @i{c-to}>=@i{c-from}.""
  432: while (u-- > 0)
  433:   c_to[u] = c_from[u];
  434: :
  435:  dup 0= IF  drop 2drop exit  THEN
  436:  rot over + -rot bounds swap 1-
  437:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  438: 
  439: fill	( c_addr u c -- )	core
  440: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  441: memset(c_addr,c,u);
  442: :
  443:  -rot bounds
  444:  ?DO  dup I c!  LOOP  drop ;
  445: 
  446: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  447: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  448: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  449: is 1. Currently this is based on the machine's character
  450: comparison. In the future, this may change to consider the current
  451: locale and its collation order.""
  452: /* close ' to keep fontify happy */ 
  453: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  454: if (n==0)
  455:   n = u1-u2;
  456: if (n<0)
  457:   n = -1;
  458: else if (n>0)
  459:   n = 1;
  460: :
  461:  rot 2dup swap - >r min swap -text dup
  462:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  463: : sgn ( n -- -1/0/1 )
  464:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  465: 
  466: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  467: n = memcmp(c_addr1, c_addr2, u);
  468: if (n<0)
  469:   n = -1;
  470: else if (n>0)
  471:   n = 1;
  472: :
  473:  swap bounds
  474:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  475:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  476: : sgn ( n -- -1/0/1 )
  477:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  478: 
  479: toupper	( c1 -- c2 )	gforth
  480: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  481: is the equivalent upper-case character. All other characters are unchanged.""
  482: c2 = toupper(c1);
  483: :
  484:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  485: 
  486: capscomp	( c_addr1 u c_addr2 -- n )	new
  487: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  488: if (n<0)
  489:   n = -1;
  490: else if (n>0)
  491:   n = 1;
  492: :
  493:  swap bounds
  494:  ?DO  dup c@ I c@ <>
  495:      IF  dup c@ toupper I c@ toupper =
  496:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  497:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  498: 
  499: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  500: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  501: spaces. @i{u2} is the length of the modified string.""
  502: u2 = u1;
  503: while (u2>0 && c_addr[u2-1] == ' ')
  504:   u2--;
  505: :
  506:  BEGIN  1- 2dup + c@ bl =  WHILE
  507:         dup  0= UNTIL  ELSE  1+  THEN ;
  508: 
  509: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  510: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  511: characters from the start of the string.""
  512: c_addr2 = c_addr1+n;
  513: u2 = u1-n;
  514: :
  515:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  516: 
  517: +	( n1 n2 -- n )		core	plus
  518: n = n1+n2;
  519: 
  520: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  521: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  522: ""add @i{n3} to @i{n1} (giving @i{n})""
  523: n = n1+n3;
  524: :
  525:  rot + swap ;
  526: 
  527: -	( n1 n2 -- n )		core	minus
  528: n = n1-n2;
  529: :
  530:  negate + ;
  531: 
  532: negate	( n1 -- n2 )		core
  533: /* use minus as alias */
  534: n2 = -n1;
  535: :
  536:  invert 1+ ;
  537: 
  538: 1+	( n1 -- n2 )		core		one_plus
  539: n2 = n1+1;
  540: :
  541:  1 + ;
  542: 
  543: 1-	( n1 -- n2 )		core		one_minus
  544: n2 = n1-1;
  545: :
  546:  1 - ;
  547: 
  548: max	( n1 n2 -- n )	core
  549: if (n1<n2)
  550:   n = n2;
  551: else
  552:   n = n1;
  553: :
  554:  2dup < IF swap THEN drop ;
  555: 
  556: min	( n1 n2 -- n )	core
  557: if (n1<n2)
  558:   n = n1;
  559: else
  560:   n = n2;
  561: :
  562:  2dup > IF swap THEN drop ;
  563: 
  564: abs	( n -- u )	core
  565: if (n<0)
  566:   u = -n;
  567: else
  568:   u = n;
  569: :
  570:  dup 0< IF negate THEN ;
  571: 
  572: *	( n1 n2 -- n )		core	star
  573: n = n1*n2;
  574: :
  575:  um* drop ;
  576: 
  577: /	( n1 n2 -- n )		core	slash
  578: n = n1/n2;
  579: :
  580:  /mod nip ;
  581: 
  582: mod	( n1 n2 -- n )		core
  583: n = n1%n2;
  584: :
  585:  /mod drop ;
  586: 
  587: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  588: n4 = n1/n2;
  589: n3 = n1%n2; /* !! is this correct? look into C standard! */
  590: :
  591:  >r s>d r> fm/mod ;
  592: 
  593: 2*	( n1 -- n2 )		core		two_star
  594: ""Shift left by 1; also works on unsigned numbers""
  595: n2 = 2*n1;
  596: :
  597:  dup + ;
  598: 
  599: 2/	( n1 -- n2 )		core		two_slash
  600: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  601: division by 2 (note that @code{/} not necessarily floors).""
  602: n2 = n1>>1;
  603: :
  604:  dup MINI and IF 1 ELSE 0 THEN
  605:  [ bits/byte cell * 1- ] literal 
  606:  0 DO 2* swap dup 2* >r MINI and 
  607:      IF 1 ELSE 0 THEN or r> swap
  608:  LOOP nip ;
  609: 
  610: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  611: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  612: #ifdef BUGGY_LONG_LONG
  613: DCell r = fmdiv(d1,n1);
  614: n2=r.hi;
  615: n3=r.lo;
  616: #else
  617: /* assumes that the processor uses either floored or symmetric division */
  618: n3 = d1/n1;
  619: n2 = d1%n1;
  620: /* note that this 1%-3>0 is optimized by the compiler */
  621: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  622:   n3--;
  623:   n2+=n1;
  624: }
  625: #endif
  626: :
  627:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  628:  over       0< IF  tuck + swap  THEN
  629:  um/mod
  630:  r> 0< IF  swap negate swap  THEN ;
  631: 
  632: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  633: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  634: #ifdef BUGGY_LONG_LONG
  635: DCell r = smdiv(d1,n1);
  636: n2=r.hi;
  637: n3=r.lo;
  638: #else
  639: /* assumes that the processor uses either floored or symmetric division */
  640: n3 = d1/n1;
  641: n2 = d1%n1;
  642: /* note that this 1%-3<0 is optimized by the compiler */
  643: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  644:   n3++;
  645:   n2-=n1;
  646: }
  647: #endif
  648: :
  649:  over >r dup >r abs -rot
  650:  dabs rot um/mod
  651:  r> r@ xor 0< IF       negate       THEN
  652:  r>        0< IF  swap negate swap  THEN ;
  653: 
  654: m*	( n1 n2 -- d )		core	m_star
  655: #ifdef BUGGY_LONG_LONG
  656: d = mmul(n1,n2);
  657: #else
  658: d = (DCell)n1 * (DCell)n2;
  659: #endif
  660: :
  661:  2dup      0< and >r
  662:  2dup swap 0< and >r
  663:  um* r> - r> - ;
  664: 
  665: um*	( u1 u2 -- ud )		core	u_m_star
  666: /* use u* as alias */
  667: #ifdef BUGGY_LONG_LONG
  668: ud = ummul(u1,u2);
  669: #else
  670: ud = (UDCell)u1 * (UDCell)u2;
  671: #endif
  672: :
  673:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  674:    DO
  675:        over >r dup >r 0< and d2*+ drop
  676:        r> 2* r> swap
  677:    LOOP 2drop ;
  678: : d2*+ ( ud n -- ud+n c )
  679:    over MINI
  680:    and >r >r 2dup d+ swap r> + swap r> ;
  681: 
  682: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  683: ""ud=u3*u1+u2, u1>u2>=0""
  684: #ifdef BUGGY_LONG_LONG
  685: UDCell r = umdiv(ud,u1);
  686: u2=r.hi;
  687: u3=r.lo;
  688: #else
  689: u3 = ud/u1;
  690: u2 = ud%u1;
  691: #endif
  692: :
  693:    0 swap [ 8 cells 1 + ] literal 0
  694:    ?DO /modstep
  695:    LOOP drop swap 1 rshift or swap ;
  696: : /modstep ( ud c R: u -- ud-?u c R: u )
  697:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  698: : d2*+ ( ud n -- ud+n c )
  699:    over MINI
  700:    and >r >r 2dup d+ swap r> + swap r> ;
  701: 
  702: m+	( d1 n -- d2 )		double		m_plus
  703: #ifdef BUGGY_LONG_LONG
  704: d2.lo = d1.lo+n;
  705: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  706: #else
  707: d2 = d1+n;
  708: #endif
  709: :
  710:  s>d d+ ;
  711: 
  712: d+	( d1 d2 -- d )		double	d_plus
  713: #ifdef BUGGY_LONG_LONG
  714: d.lo = d1.lo+d2.lo;
  715: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  716: #else
  717: d = d1+d2;
  718: #endif
  719: :
  720:  rot + >r tuck + swap over u> r> swap - ;
  721: 
  722: d-	( d1 d2 -- d )		double		d_minus
  723: #ifdef BUGGY_LONG_LONG
  724: d.lo = d1.lo - d2.lo;
  725: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  726: #else
  727: d = d1-d2;
  728: #endif
  729: :
  730:  dnegate d+ ;
  731: 
  732: dnegate	( d1 -- d2 )		double	d_negate
  733: /* use dminus as alias */
  734: #ifdef BUGGY_LONG_LONG
  735: d2 = dnegate(d1);
  736: #else
  737: d2 = -d1;
  738: #endif
  739: :
  740:  invert swap negate tuck 0= - ;
  741: 
  742: d2*	( d1 -- d2 )		double		d_two_star
  743: ""Shift left by 1; also works on unsigned numbers""
  744: #ifdef BUGGY_LONG_LONG
  745: d2.lo = d1.lo<<1;
  746: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  747: #else
  748: d2 = 2*d1;
  749: #endif
  750: :
  751:  2dup d+ ;
  752: 
  753: d2/	( d1 -- d2 )		double		d_two_slash
  754: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  755: division by 2.""
  756: #ifdef BUGGY_LONG_LONG
  757: d2.hi = d1.hi>>1;
  758: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  759: #else
  760: d2 = d1>>1;
  761: #endif
  762: :
  763:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  764:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  765: 
  766: and	( w1 w2 -- w )		core
  767: w = w1&w2;
  768: 
  769: or	( w1 w2 -- w )		core
  770: w = w1|w2;
  771: :
  772:  invert swap invert and invert ;
  773: 
  774: xor	( w1 w2 -- w )		core	x_or
  775: w = w1^w2;
  776: 
  777: invert	( w1 -- w2 )		core
  778: w2 = ~w1;
  779: :
  780:  MAXU xor ;
  781: 
  782: rshift	( u1 n -- u2 )		core	r_shift
  783: ""Logical shift right by @i{n} bits.""
  784:   u2 = u1>>n;
  785: :
  786:     0 ?DO 2/ MAXI and LOOP ;
  787: 
  788: lshift	( u1 n -- u2 )		core	l_shift
  789:   u2 = u1<<n;
  790: :
  791:     0 ?DO 2* LOOP ;
  792: 
  793: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  794: define(comparisons,
  795: $1=	( $2 -- f )		$6	$3equals
  796: f = FLAG($4==$5);
  797: :
  798:     [ char $1x char 0 = [IF]
  799: 	] IF false ELSE true THEN [
  800:     [ELSE]
  801: 	] xor 0= [
  802:     [THEN] ] ;
  803: 
  804: $1<>	( $2 -- f )		$7	$3not_equals
  805: f = FLAG($4!=$5);
  806: :
  807:     [ char $1x char 0 = [IF]
  808: 	] IF true ELSE false THEN [
  809:     [ELSE]
  810: 	] xor 0<> [
  811:     [THEN] ] ;
  812: 
  813: $1<	( $2 -- f )		$8	$3less_than
  814: f = FLAG($4<$5);
  815: :
  816:     [ char $1x char 0 = [IF]
  817: 	] MINI and 0<> [
  818:     [ELSE] char $1x char u = [IF]
  819: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  820: 	[ELSE]
  821: 	    ] MINI xor >r MINI xor r> u< [
  822: 	[THEN]
  823:     [THEN] ] ;
  824: 
  825: $1>	( $2 -- f )		$9	$3greater_than
  826: f = FLAG($4>$5);
  827: :
  828:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  829:     $1< ;
  830: 
  831: $1<=	( $2 -- f )		gforth	$3less_or_equal
  832: f = FLAG($4<=$5);
  833: :
  834:     $1> 0= ;
  835: 
  836: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  837: f = FLAG($4>=$5);
  838: :
  839:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  840:     $1<= ;
  841: 
  842: )
  843: 
  844: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  845: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  846: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  847: 
  848: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  849: define(dcomparisons,
  850: $1=	( $2 -- f )		$6	$3equals
  851: #ifdef BUGGY_LONG_LONG
  852: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  853: #else
  854: f = FLAG($4==$5);
  855: #endif
  856: 
  857: $1<>	( $2 -- f )		$7	$3not_equals
  858: #ifdef BUGGY_LONG_LONG
  859: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  860: #else
  861: f = FLAG($4!=$5);
  862: #endif
  863: 
  864: $1<	( $2 -- f )		$8	$3less_than
  865: #ifdef BUGGY_LONG_LONG
  866: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  867: #else
  868: f = FLAG($4<$5);
  869: #endif
  870: 
  871: $1>	( $2 -- f )		$9	$3greater_than
  872: #ifdef BUGGY_LONG_LONG
  873: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  874: #else
  875: f = FLAG($4>$5);
  876: #endif
  877: 
  878: $1<=	( $2 -- f )		gforth	$3less_or_equal
  879: #ifdef BUGGY_LONG_LONG
  880: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  881: #else
  882: f = FLAG($4<=$5);
  883: #endif
  884: 
  885: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  886: #ifdef BUGGY_LONG_LONG
  887: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  888: #else
  889: f = FLAG($4>=$5);
  890: #endif
  891: 
  892: )
  893: 
  894: \+dcomps
  895: 
  896: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  897: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  898: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  899: 
  900: \+
  901: 
  902: within	( u1 u2 u3 -- f )		core-ext
  903: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  904: unsigned and signed numbers (but not a mixture).  Another way to think
  905: about this word is to consider the numbers as a circle (wrapping
  906: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  907: min-n for signed numbers); now consider the range from u2 towards
  908: increasing numbers up to and excluding u3 (giving an empty range if
  909: u2=u3); if u1 is in this range, @code{within} returns true.""
  910: f = FLAG(u1-u2 < u3-u2);
  911: :
  912:  over - >r - r> u< ;
  913: 
  914: sp@	( -- a_addr )		gforth		sp_fetch
  915: a_addr = sp+1;
  916: 
  917: sp!	( a_addr -- )		gforth		sp_store
  918: sp = a_addr;
  919: /* works with and without spTOS caching */
  920: 
  921: rp@	( -- a_addr )		gforth		rp_fetch
  922: a_addr = rp;
  923: 
  924: rp!	( a_addr -- )		gforth		rp_store
  925: rp = a_addr;
  926: 
  927: \+floating
  928: 
  929: fp@	( -- f_addr )	gforth	fp_fetch
  930: f_addr = fp;
  931: 
  932: fp!	( f_addr -- )	gforth	fp_store
  933: fp = f_addr;
  934: 
  935: \+
  936: 
  937: ;s	( R:w -- )		gforth	semis
  938: ""The primitive compiled by @code{EXIT}.""
  939: SET_IP((Xt *)w);
  940: 
  941: >r	( w -- R:w )		core	to_r
  942: :
  943:  (>r) ;
  944: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  945: 
  946: r>	( R:w -- w )		core	r_from
  947: :
  948:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  949: Create (rdrop) ' ;s A,
  950: 
  951: rdrop	( R:w -- )		gforth
  952: :
  953:  r> r> drop >r ;
  954: 
  955: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  956: :
  957:  swap r> swap >r swap >r >r ;
  958: 
  959: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  960: :
  961:  r> r> swap r> swap >r swap ;
  962: 
  963: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  964: :
  965:  i' j ;
  966: 
  967: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  968: :
  969:  r> r> drop r> drop >r ;
  970: 
  971: over	( w1 w2 -- w1 w2 w1 )		core
  972: :
  973:  sp@ cell+ @ ;
  974: 
  975: drop	( w -- )		core
  976: :
  977:  IF THEN ;
  978: 
  979: swap	( w1 w2 -- w2 w1 )		core
  980: :
  981:  >r (swap) ! r> (swap) @ ;
  982: Variable (swap)
  983: 
  984: dup	( w -- w w )		core	dupe
  985: :
  986:  sp@ @ ;
  987: 
  988: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
  989: :
  990: [ defined? (swap) [IF] ]
  991:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
  992: Variable (rot)
  993: [ELSE] ]
  994:     >r swap r> swap ;
  995: [THEN]
  996: 
  997: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
  998: :
  999:  rot rot ;
 1000: 
 1001: nip	( w1 w2 -- w2 )		core-ext
 1002: :
 1003:  swap drop ;
 1004: 
 1005: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1006: :
 1007:  swap over ;
 1008: 
 1009: ?dup	( w -- w )			core	question_dupe
 1010: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1011: @code{dup} if w is nonzero.""
 1012: if (w!=0) {
 1013:   IF_spTOS(*sp-- = w;)
 1014: #ifndef USE_TOS
 1015:   *--sp = w;
 1016: #endif
 1017: }
 1018: :
 1019:  dup IF dup THEN ;
 1020: 
 1021: pick	( u -- w )			core-ext
 1022: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1023: w = sp[u+1];
 1024: :
 1025:  1+ cells sp@ + @ ;
 1026: 
 1027: 2drop	( w1 w2 -- )		core	two_drop
 1028: :
 1029:  drop drop ;
 1030: 
 1031: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1032: :
 1033:  over over ;
 1034: 
 1035: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1036: :
 1037:  3 pick 3 pick ;
 1038: 
 1039: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1040: :
 1041:  rot >r rot r> ;
 1042: 
 1043: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1044: :
 1045:  >r >r 2swap r> r> 2swap ;
 1046: 
 1047: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1048: :
 1049:  2swap 2drop ;
 1050: 
 1051: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1052: :
 1053:  2swap 2over ;
 1054: 
 1055: \ toggle is high-level: 0.11/0.42%
 1056: 
 1057: @	( a_addr -- w )		core	fetch
 1058: ""@i{w} is the cell stored at @i{a_addr}.""
 1059: w = *a_addr;
 1060: 
 1061: !	( w a_addr -- )		core	store
 1062: ""Store @i{w} into the cell at @i{a-addr}.""
 1063: *a_addr = w;
 1064: 
 1065: +!	( n a_addr -- )		core	plus_store
 1066: ""Add @i{n} to the cell at @i{a-addr}.""
 1067: *a_addr += n;
 1068: :
 1069:  tuck @ + swap ! ;
 1070: 
 1071: c@	( c_addr -- c )		core	c_fetch
 1072: ""@i{c} is the char stored at @i{c_addr}.""
 1073: c = *c_addr;
 1074: :
 1075: [ bigendian [IF] ]
 1076:     [ cell>bit 4 = [IF] ]
 1077: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1078: 	IF  $FF and  ELSE  8>>  THEN  ;
 1079:     [ [ELSE] ]
 1080: 	dup [ cell 1- ] literal and
 1081: 	tuck - @ swap [ cell 1- ] literal xor
 1082:  	0 ?DO 8>> LOOP $FF and
 1083:     [ [THEN] ]
 1084: [ [ELSE] ]
 1085:     [ cell>bit 4 = [IF] ]
 1086: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1087: 	IF  8>>  ELSE  $FF and  THEN
 1088:     [ [ELSE] ]
 1089: 	dup [ cell  1- ] literal and 
 1090: 	tuck - @ swap
 1091: 	0 ?DO 8>> LOOP 255 and
 1092:     [ [THEN] ]
 1093: [ [THEN] ]
 1094: ;
 1095: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1096: 
 1097: c!	( c c_addr -- )		core	c_store
 1098: ""Store @i{c} into the char at @i{c-addr}.""
 1099: *c_addr = c;
 1100: :
 1101: [ bigendian [IF] ]
 1102:     [ cell>bit 4 = [IF] ]
 1103: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1104: 	dup -2 and @ over 1 and cells masks + @ and
 1105: 	r> or swap -2 and ! ;
 1106: 	Create masks $00FF , $FF00 ,
 1107:     [ELSE] ]
 1108: 	dup [ cell 1- ] literal and dup 
 1109: 	[ cell 1- ] literal xor >r
 1110: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1111: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1112:     [THEN]
 1113: [ELSE] ]
 1114:     [ cell>bit 4 = [IF] ]
 1115: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1116: 	dup -2 and @ over 1 and cells masks + @ and
 1117: 	r> or swap -2 and ! ;
 1118: 	Create masks $FF00 , $00FF ,
 1119:     [ELSE] ]
 1120: 	dup [ cell 1- ] literal and dup >r
 1121: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1122: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1123:     [THEN]
 1124: [THEN]
 1125: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1126: 
 1127: 2!	( w1 w2 a_addr -- )		core	two_store
 1128: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1129: a_addr[0] = w2;
 1130: a_addr[1] = w1;
 1131: :
 1132:  tuck ! cell+ ! ;
 1133: 
 1134: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1135: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1136: the content of the next cell.""
 1137: w2 = a_addr[0];
 1138: w1 = a_addr[1];
 1139: :
 1140:  dup cell+ @ swap @ ;
 1141: 
 1142: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1143: ""@code{1 cells +}""
 1144: a_addr2 = a_addr1+1;
 1145: :
 1146:  cell + ;
 1147: 
 1148: cells	( n1 -- n2 )		core
 1149: "" @i{n2} is the number of address units of @i{n1} cells.""
 1150: n2 = n1 * sizeof(Cell);
 1151: :
 1152:  [ cell
 1153:  2/ dup [IF] ] 2* [ [THEN]
 1154:  2/ dup [IF] ] 2* [ [THEN]
 1155:  2/ dup [IF] ] 2* [ [THEN]
 1156:  2/ dup [IF] ] 2* [ [THEN]
 1157:  drop ] ;
 1158: 
 1159: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1160: ""@code{1 chars +}.""
 1161: c_addr2 = c_addr1 + 1;
 1162: :
 1163:  1+ ;
 1164: 
 1165: (chars)	( n1 -- n2 )	gforth	paren_chars
 1166: n2 = n1 * sizeof(Char);
 1167: :
 1168:  ;
 1169: 
 1170: count	( c_addr1 -- c_addr2 u )	core
 1171: ""@i{c-addr2} is the first character and @i{u} the length of the
 1172: counted string at @i{c-addr1}.""
 1173: u = *c_addr1;
 1174: c_addr2 = c_addr1+1;
 1175: :
 1176:  dup 1+ swap c@ ;
 1177: 
 1178: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1179: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1180:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1181:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1182:     break;
 1183: f83name2=f83name1;
 1184: :
 1185:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1186: 	>r 2dup r@ cell+ char+ capscomp  0=
 1187: 	IF  2drop r>  EXIT  THEN
 1188: 	r> @
 1189:     REPEAT  THEN  nip nip ;
 1190: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1191:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL THEN ;
 1192: 
 1193: \+hash
 1194: 
 1195: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1196: struct F83Name *f83name1;
 1197: f83name2=NULL;
 1198: while(a_addr != NULL)
 1199: {
 1200:    f83name1=(struct F83Name *)(a_addr[1]);
 1201:    a_addr=(Cell *)(a_addr[0]);
 1202:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1203:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1204:      {
 1205: 	f83name2=f83name1;
 1206: 	break;
 1207:      }
 1208: }
 1209: :
 1210:  BEGIN  dup  WHILE
 1211:         2@ >r >r dup r@ cell+ c@ $1F and =
 1212:         IF  2dup r@ cell+ char+ capscomp 0=
 1213: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1214: 	rdrop r>
 1215:  REPEAT nip nip ;
 1216: 
 1217: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1218: ""A case-sensitive variant of @code{(hashfind)}""
 1219: struct F83Name *f83name1;
 1220: f83name2=NULL;
 1221: while(a_addr != NULL)
 1222: {
 1223:    f83name1=(struct F83Name *)(a_addr[1]);
 1224:    a_addr=(Cell *)(a_addr[0]);
 1225:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1226:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1227:      {
 1228: 	f83name2=f83name1;
 1229: 	break;
 1230:      }
 1231: }
 1232: :
 1233:  BEGIN  dup  WHILE
 1234:         2@ >r >r dup r@ cell+ c@ $1F and =
 1235:         IF  2dup r@ cell+ char+ -text 0=
 1236: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1237: 	rdrop r>
 1238:  REPEAT nip nip ;
 1239: 
 1240: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1241: u2=0;
 1242: while(u1--)
 1243:    u2+=(Cell)toupper(*c_addr++);
 1244: :
 1245:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1246: 
 1247: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1248: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1249: /* this hash function rotates the key at every step by rot bits within
 1250:    ubits bits and xors it with the character. This function does ok in
 1251:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1252:    ASCII strings (larger if ubits is large), and should share no
 1253:    divisors with ubits.
 1254: */
 1255: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1256: Char *cp = c_addr;
 1257: for (ukey=0; cp<c_addr+u; cp++)
 1258:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1259: 	     ^ toupper(*cp))
 1260: 	    & ((1<<ubits)-1));
 1261: :
 1262:  dup rot-values + c@ over 1 swap lshift 1- >r
 1263:  tuck - 2swap r> 0 2swap bounds
 1264:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1265:       I c@ toupper xor
 1266:       over and  LOOP
 1267:  nip nip nip ;
 1268: Create rot-values
 1269:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1270:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1271:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1272:   7 c, 5 c, 5 c,
 1273: 
 1274: \+
 1275: 
 1276: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1277: /* use !isgraph instead of isspace? */
 1278: Char *endp = c_addr1+u1;
 1279: while (c_addr1<endp && isspace(*c_addr1))
 1280:   c_addr1++;
 1281: if (c_addr1<endp) {
 1282:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1283:     ;
 1284:   u2 = c_addr1-c_addr2;
 1285: }
 1286: else {
 1287:   c_addr2 = c_addr1;
 1288:   u2 = 0;
 1289: }
 1290: :
 1291:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1292:  REPEAT  THEN  2dup
 1293:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1294:  REPEAT  THEN  nip - ;
 1295: 
 1296: aligned	( c_addr -- a_addr )	core
 1297: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1298: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1299: :
 1300:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1301: 
 1302: faligned	( c_addr -- f_addr )	float	f_aligned
 1303: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1304: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1305: :
 1306:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1307: 
 1308: >body	( xt -- a_addr )	core	to_body
 1309: "" Get the address of the body of the word represented by @i{xt} (the address
 1310: of the word's data field).""
 1311: a_addr = PFA(xt);
 1312: :
 1313:     2 cells + ;
 1314: 
 1315: \ threading stuff is currently only interesting if we have a compiler
 1316: \fhas? standardthreading has? compiler and [IF]
 1317: 
 1318: >code-address	( xt -- c_addr )		gforth	to_code_address
 1319: ""@i{c-addr} is the code address of the word @i{xt}.""
 1320: /* !! This behaves installation-dependently for DOES-words */
 1321: c_addr = (Address)CODE_ADDRESS(xt);
 1322: :
 1323:     @ ;
 1324: 
 1325: >does-code	( xt -- a_addr )		gforth	to_does_code
 1326: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1327: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1328: Otherwise @i{a-addr} is 0.""
 1329: a_addr = (Cell *)DOES_CODE(xt);
 1330: :
 1331:     cell+ @ ;
 1332: 
 1333: code-address!	( c_addr xt -- )		gforth	code_address_store
 1334: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1335: MAKE_CF(xt, c_addr);
 1336: CACHE_FLUSH(xt,(size_t)PFA(0));
 1337: :
 1338:     ! ;
 1339: 
 1340: does-code!	( a_addr xt -- )		gforth	does_code_store
 1341: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1342: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1343: MAKE_DOES_CF(xt, a_addr);
 1344: CACHE_FLUSH(xt,(size_t)PFA(0));
 1345: :
 1346:     dodoes: over ! cell+ ! ;
 1347: 
 1348: does-handler!	( a_addr -- )	gforth	does_handler_store
 1349: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1350: @i{a-addr} points just behind a @code{DOES>}.""
 1351: MAKE_DOES_HANDLER(a_addr);
 1352: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1353: :
 1354:     drop ;
 1355: 
 1356: /does-handler	( -- n )	gforth	slash_does_handler
 1357: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1358: /* !! a constant or environmental query might be better */
 1359: n = DOES_HANDLER_SIZE;
 1360: :
 1361:     2 cells ;
 1362: 
 1363: threading-method	( -- n )	gforth	threading_method
 1364: ""0 if the engine is direct threaded. Note that this may change during
 1365: the lifetime of an image.""
 1366: #if defined(DOUBLY_INDIRECT)
 1367: n=2;
 1368: #else
 1369: # if defined(DIRECT_THREADED)
 1370: n=0;
 1371: # else
 1372: n=1;
 1373: # endif
 1374: #endif
 1375: :
 1376:  1 ;
 1377: 
 1378: \f[THEN]
 1379: 
 1380: key-file	( wfileid -- n )		gforth	paren_key_file
 1381: #ifdef HAS_FILE
 1382: fflush(stdout);
 1383: n = key((FILE*)wfileid);
 1384: #else
 1385: n = key(stdin);
 1386: #endif
 1387: 
 1388: key?-file	( wfileid -- n )		facility	key_q_file
 1389: #ifdef HAS_FILE
 1390: fflush(stdout);
 1391: n = key_query((FILE*)wfileid);
 1392: #else
 1393: n = key_query(stdin);
 1394: #endif
 1395: 
 1396: \+os
 1397: 
 1398: stdin	( -- wfileid )	gforth
 1399: wfileid = (Cell)stdin;
 1400: 
 1401: stdout	( -- wfileid )	gforth
 1402: wfileid = (Cell)stdout;
 1403: 
 1404: stderr	( -- wfileid )	gforth
 1405: wfileid = (Cell)stderr;
 1406: 
 1407: form	( -- urows ucols )	gforth
 1408: ""The number of lines and columns in the terminal. These numbers may change
 1409: with the window size.""
 1410: /* we could block SIGWINCH here to get a consistent size, but I don't
 1411:  think this is necessary or always beneficial */
 1412: urows=rows;
 1413: ucols=cols;
 1414: 
 1415: flush-icache	( c_addr u -- )	gforth	flush_icache
 1416: ""Make sure that the instruction cache of the processor (if there is
 1417: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1418: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1419: automatically. Caveat: @code{flush-icache} might not work on your
 1420: installation; this is usually the case if direct threading is not
 1421: supported on your machine (take a look at your @file{machine.h}) and
 1422: your machine has a separate instruction cache. In such cases,
 1423: @code{flush-icache} does nothing instead of flushing the instruction
 1424: cache.""
 1425: FLUSH_ICACHE(c_addr,u);
 1426: 
 1427: (bye)	( n -- )	gforth	paren_bye
 1428: SUPER_END;
 1429: return (Label *)n;
 1430: 
 1431: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1432: #ifndef MSDOS
 1433: int old_tp=terminal_prepped;
 1434: deprep_terminal();
 1435: #endif
 1436: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1437: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1438: #ifndef MSDOS
 1439: if (old_tp)
 1440:   prep_terminal();
 1441: #endif
 1442: 
 1443: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1444: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1445: is the host operating system's expansion of that environment variable. If the
 1446: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1447: in length.""
 1448: /* close ' to keep fontify happy */
 1449: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1450: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1451: 
 1452: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1453: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 1454: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1455: 
 1456: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1457: wretval = pclose((FILE *)wfileid);
 1458: wior = IOR(wretval==-1);
 1459: 
 1460: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1461: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1462: Months are numbered from 1.""
 1463: struct timeval time1;
 1464: struct timezone zone1;
 1465: struct tm *ltime;
 1466: gettimeofday(&time1,&zone1);
 1467: /* !! Single Unix specification: 
 1468:    If tzp is not a null pointer, the behaviour is unspecified. */
 1469: ltime=localtime((time_t *)&time1.tv_sec);
 1470: nyear =ltime->tm_year+1900;
 1471: nmonth=ltime->tm_mon+1;
 1472: nday  =ltime->tm_mday;
 1473: nhour =ltime->tm_hour;
 1474: nmin  =ltime->tm_min;
 1475: nsec  =ltime->tm_sec;
 1476: 
 1477: ms	( n -- )	facility-ext
 1478: ""Wait at least @i{n} milli-second.""
 1479: struct timeval timeout;
 1480: timeout.tv_sec=n/1000;
 1481: timeout.tv_usec=1000*(n%1000);
 1482: (void)select(0,0,0,0,&timeout);
 1483: 
 1484: allocate	( u -- a_addr wior )	memory
 1485: ""Allocate @i{u} address units of contiguous data space. The initial
 1486: contents of the data space is undefined. If the allocation is successful,
 1487: @i{a-addr} is the start address of the allocated region and @i{wior}
 1488: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1489: is a non-zero I/O result code.""
 1490: a_addr = (Cell *)malloc(u?u:1);
 1491: wior = IOR(a_addr==NULL);
 1492: 
 1493: free	( a_addr -- wior )		memory
 1494: ""Return the region of data space starting at @i{a-addr} to the system.
 1495: The region must originally have been obtained using @code{allocate} or
 1496: @code{resize}. If the operational is successful, @i{wior} is 0.
 1497: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1498: free(a_addr);
 1499: wior = 0;
 1500: 
 1501: resize	( a_addr1 u -- a_addr2 wior )	memory
 1502: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1503: address units, possibly moving the contents to a different
 1504: area. @i{a-addr2} is the address of the resulting area.
 1505: If the operation is successful, @i{wior} is 0.
 1506: If the operation fails, @i{wior} is a non-zero
 1507: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1508: @code{resize} @code{allocate}s @i{u} address units.""
 1509: /* the following check is not necessary on most OSs, but it is needed
 1510:    on SunOS 4.1.2. */
 1511: /* close ' to keep fontify happy */
 1512: if (a_addr1==NULL)
 1513:   a_addr2 = (Cell *)malloc(u);
 1514: else
 1515:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1516: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1517: 
 1518: strerror	( n -- c_addr u )	gforth
 1519: c_addr = strerror(n);
 1520: u = strlen(c_addr);
 1521: 
 1522: strsignal	( n -- c_addr u )	gforth
 1523: c_addr = strsignal(n);
 1524: u = strlen(c_addr);
 1525: 
 1526: call-c	( w -- )	gforth	call_c
 1527: ""Call the C function pointed to by @i{w}. The C function has to
 1528: access the stack itself. The stack pointers are exported in the global
 1529: variables @code{SP} and @code{FP}.""
 1530: /* This is a first attempt at support for calls to C. This may change in
 1531:    the future */
 1532: IF_fpTOS(fp[0]=fpTOS);
 1533: FP=fp;
 1534: SP=sp;
 1535: ((void (*)())w)();
 1536: sp=SP;
 1537: fp=FP;
 1538: IF_spTOS(spTOS=sp[0]);
 1539: IF_fpTOS(fpTOS=fp[0]);
 1540: 
 1541: \+
 1542: \+file
 1543: 
 1544: close-file	( wfileid -- wior )		file	close_file
 1545: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1546: 
 1547: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1548: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1549: wior =  IOR(wfileid == 0);
 1550: 
 1551: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1552: Cell	fd;
 1553: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1554: if (fd != -1) {
 1555:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1556:   wior = IOR(wfileid == 0);
 1557: } else {
 1558:   wfileid = 0;
 1559:   wior = IOR(1);
 1560: }
 1561: 
 1562: delete-file	( c_addr u -- wior )		file	delete_file
 1563: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1564: 
 1565: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1566: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1567: char *s1=tilde_cstr(c_addr2, u2, 1);
 1568: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1569: 
 1570: file-position	( wfileid -- ud wior )	file	file_position
 1571: /* !! use tell and lseek? */
 1572: ud = LONG2UD(ftell((FILE *)wfileid));
 1573: wior = IOR(UD2LONG(ud)==-1);
 1574: 
 1575: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1576: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1577: 
 1578: file-size	( wfileid -- ud wior )	file	file_size
 1579: struct stat buf;
 1580: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1581: ud = LONG2UD(buf.st_size);
 1582: 
 1583: resize-file	( ud wfileid -- wior )	file	resize_file
 1584: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1585: 
 1586: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1587: /* !! fread does not guarantee enough */
 1588: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1589: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1590: /* !! is the value of ferror errno-compatible? */
 1591: if (wior)
 1592:   clearerr((FILE *)wfileid);
 1593: 
 1594: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1595: ""this is only for backward compatibility""
 1596: Cell c;
 1597: flag=-1;
 1598: for(u2=0; u2<u1; u2++)
 1599: {
 1600:    c = getc((FILE *)wfileid);
 1601:    if (c=='\n') break;
 1602:    if (c=='\r') {
 1603:      if ((c = getc((FILE *)wfileid))!='\n')
 1604:        ungetc(c,(FILE *)wfileid);
 1605:      break;
 1606:    }
 1607:    if (c==EOF) {
 1608: 	flag=FLAG(u2!=0);
 1609: 	break;
 1610:      }
 1611:    c_addr[u2] = (Char)c;
 1612: }
 1613: wior=FILEIO(ferror((FILE *)wfileid));
 1614: 
 1615: \+
 1616: 
 1617: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1618: /* !! fwrite does not guarantee enough */
 1619: #ifdef HAS_FILE
 1620: {
 1621:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1622:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1623:   if (wior)
 1624:     clearerr((FILE *)wfileid);
 1625: }
 1626: #else
 1627: TYPE(c_addr, u1);
 1628: #endif
 1629: 
 1630: emit-file	( c wfileid -- wior )	gforth	emit_file
 1631: #ifdef HAS_FILE
 1632: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1633: if (wior)
 1634:   clearerr((FILE *)wfileid);
 1635: #else
 1636: PUTC(c);
 1637: #endif
 1638: 
 1639: \+file
 1640: 
 1641: flush-file	( wfileid -- wior )		file-ext	flush_file
 1642: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1643: 
 1644: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1645: char *filename=tilde_cstr(c_addr, u, 1);
 1646: if (access (filename, F_OK) != 0) {
 1647:   wfam=0;
 1648:   wior=IOR(1);
 1649: }
 1650: else if (access (filename, R_OK | W_OK) == 0) {
 1651:   wfam=2; /* r/w */
 1652:   wior=0;
 1653: }
 1654: else if (access (filename, R_OK) == 0) {
 1655:   wfam=0; /* r/o */
 1656:   wior=0;
 1657: }
 1658: else if (access (filename, W_OK) == 0) {
 1659:   wfam=4; /* w/o */
 1660:   wior=0;
 1661: }
 1662: else {
 1663:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1664: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1665:   wior=0;
 1666: }
 1667: 
 1668: \+
 1669: \+floating
 1670: 
 1671: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1672: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1673: 
 1674: d>f	( d -- r )		float	d_to_f
 1675: #ifdef BUGGY_LONG_LONG
 1676: extern double ldexp(double x, int exp);
 1677: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1678: #else
 1679: r = d;
 1680: #endif
 1681: 
 1682: f>d	( r -- d )		float	f_to_d
 1683: #ifdef BUGGY_LONG_LONG
 1684: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1685: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1686: #else
 1687: d = r;
 1688: #endif
 1689: 
 1690: f!	( r f_addr -- )	float	f_store
 1691: ""Store @i{r} into the float at address @i{f-addr}.""
 1692: *f_addr = r;
 1693: 
 1694: f@	( f_addr -- r )	float	f_fetch
 1695: ""@i{r} is the float at address @i{f-addr}.""
 1696: r = *f_addr;
 1697: 
 1698: df@	( df_addr -- r )	float-ext	d_f_fetch
 1699: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1700: #ifdef IEEE_FP
 1701: r = *df_addr;
 1702: #else
 1703: !! df@
 1704: #endif
 1705: 
 1706: df!	( r df_addr -- )	float-ext	d_f_store
 1707: ""Store @i{r} as double-precision IEEE floating-point value to the
 1708: address @i{df-addr}.""
 1709: #ifdef IEEE_FP
 1710: *df_addr = r;
 1711: #else
 1712: !! df!
 1713: #endif
 1714: 
 1715: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1716: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1717: #ifdef IEEE_FP
 1718: r = *sf_addr;
 1719: #else
 1720: !! sf@
 1721: #endif
 1722: 
 1723: sf!	( r sf_addr -- )	float-ext	s_f_store
 1724: ""Store @i{r} as single-precision IEEE floating-point value to the
 1725: address @i{sf-addr}.""
 1726: #ifdef IEEE_FP
 1727: *sf_addr = r;
 1728: #else
 1729: !! sf!
 1730: #endif
 1731: 
 1732: f+	( r1 r2 -- r3 )	float	f_plus
 1733: r3 = r1+r2;
 1734: 
 1735: f-	( r1 r2 -- r3 )	float	f_minus
 1736: r3 = r1-r2;
 1737: 
 1738: f*	( r1 r2 -- r3 )	float	f_star
 1739: r3 = r1*r2;
 1740: 
 1741: f/	( r1 r2 -- r3 )	float	f_slash
 1742: r3 = r1/r2;
 1743: 
 1744: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1745: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1746: r3 = pow(r1,r2);
 1747: 
 1748: fnegate	( r1 -- r2 )	float	f_negate
 1749: r2 = - r1;
 1750: 
 1751: fdrop	( r -- )		float	f_drop
 1752: 
 1753: fdup	( r -- r r )	float	f_dupe
 1754: 
 1755: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1756: 
 1757: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1758: 
 1759: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1760: 
 1761: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1762: 
 1763: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1764: 
 1765: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1766: ""@code{1 floats +}.""
 1767: f_addr2 = f_addr1+1;
 1768: 
 1769: floats	( n1 -- n2 )	float
 1770: ""@i{n2} is the number of address units of @i{n1} floats.""
 1771: n2 = n1*sizeof(Float);
 1772: 
 1773: floor	( r1 -- r2 )	float
 1774: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1775: /* !! unclear wording */
 1776: r2 = floor(r1);
 1777: 
 1778: fround	( r1 -- r2 )	float	f_round
 1779: ""Round to the nearest integral value.""
 1780: /* !! unclear wording */
 1781: #ifdef HAVE_RINT
 1782: r2 = rint(r1);
 1783: #else
 1784: r2 = floor(r1+0.5);
 1785: /* !! This is not quite true to the rounding rules given in the standard */
 1786: #endif
 1787: 
 1788: fmax	( r1 r2 -- r3 )	float	f_max
 1789: if (r1<r2)
 1790:   r3 = r2;
 1791: else
 1792:   r3 = r1;
 1793: 
 1794: fmin	( r1 r2 -- r3 )	float	f_min
 1795: if (r1<r2)
 1796:   r3 = r1;
 1797: else
 1798:   r3 = r2;
 1799: 
 1800: represent	( r c_addr u -- n f1 f2 )	float
 1801: char *sig;
 1802: int flag;
 1803: int decpt;
 1804: sig=ecvt(r, u, &decpt, &flag);
 1805: n=(r==0 ? 1 : decpt);
 1806: f1=FLAG(flag!=0);
 1807: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1808: memmove(c_addr,sig,u);
 1809: 
 1810: >float	( c_addr u -- flag )	float	to_float
 1811: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1812: character string @i{c-addr u} to internal floating-point
 1813: representation. If the string represents a valid floating-point number
 1814: @i{r} is placed on the floating-point stack and @i{flag} is
 1815: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1816: case and represents the floating-point number 0.""
 1817: /* real signature: c_addr u -- r t / f */
 1818: Float r;
 1819: char *number=cstr(c_addr, u, 1);
 1820: char *endconv;
 1821: int sign = 0;
 1822: if(number[0]=='-') {
 1823:    sign = 1;
 1824:    number++;
 1825:    u--;
 1826: }
 1827: while(isspace((unsigned)(number[--u])) && u>0);
 1828: switch(number[u])
 1829: {
 1830:    case 'd':
 1831:    case 'D':
 1832:    case 'e':
 1833:    case 'E':  break;
 1834:    default :  u++; break;
 1835: }
 1836: number[u]='\0';
 1837: r=strtod(number,&endconv);
 1838: if((flag=FLAG(!(Cell)*endconv)))
 1839: {
 1840:    IF_fpTOS(fp[0] = fpTOS);
 1841:    fp += -1;
 1842:    fpTOS = sign ? -r : r;
 1843: }
 1844: else if(*endconv=='d' || *endconv=='D')
 1845: {
 1846:    *endconv='E';
 1847:    r=strtod(number,&endconv);
 1848:    if((flag=FLAG(!(Cell)*endconv)))
 1849:      {
 1850: 	IF_fpTOS(fp[0] = fpTOS);
 1851: 	fp += -1;
 1852: 	fpTOS = sign ? -r : r;
 1853:      }
 1854: }
 1855: 
 1856: fabs	( r1 -- r2 )	float-ext	f_abs
 1857: r2 = fabs(r1);
 1858: 
 1859: facos	( r1 -- r2 )	float-ext	f_a_cos
 1860: r2 = acos(r1);
 1861: 
 1862: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1863: r2 = asin(r1);
 1864: 
 1865: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1866: r2 = atan(r1);
 1867: 
 1868: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1869: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1870: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1871: r3 = atan2(r1,r2);
 1872: 
 1873: fcos	( r1 -- r2 )	float-ext	f_cos
 1874: r2 = cos(r1);
 1875: 
 1876: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1877: r2 = exp(r1);
 1878: 
 1879: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1880: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1881: #ifdef HAVE_EXPM1
 1882: extern double
 1883: #ifdef NeXT
 1884:               const
 1885: #endif
 1886:                     expm1(double);
 1887: r2 = expm1(r1);
 1888: #else
 1889: r2 = exp(r1)-1.;
 1890: #endif
 1891: 
 1892: fln	( r1 -- r2 )	float-ext	f_l_n
 1893: r2 = log(r1);
 1894: 
 1895: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1896: ""@i{r2}=ln(@i{r1}+1)""
 1897: #ifdef HAVE_LOG1P
 1898: extern double
 1899: #ifdef NeXT
 1900:               const
 1901: #endif
 1902:                     log1p(double);
 1903: r2 = log1p(r1);
 1904: #else
 1905: r2 = log(r1+1.);
 1906: #endif
 1907: 
 1908: flog	( r1 -- r2 )	float-ext	f_log
 1909: ""The decimal logarithm.""
 1910: r2 = log10(r1);
 1911: 
 1912: falog	( r1 -- r2 )	float-ext	f_a_log
 1913: ""@i{r2}=10**@i{r1}""
 1914: extern double pow10(double);
 1915: r2 = pow10(r1);
 1916: 
 1917: fsin	( r1 -- r2 )	float-ext	f_sine
 1918: r2 = sin(r1);
 1919: 
 1920: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1921: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1922: r2 = sin(r1);
 1923: r3 = cos(r1);
 1924: 
 1925: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1926: r2 = sqrt(r1);
 1927: 
 1928: ftan	( r1 -- r2 )	float-ext	f_tan
 1929: r2 = tan(r1);
 1930: :
 1931:  fsincos f/ ;
 1932: 
 1933: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1934: r2 = sinh(r1);
 1935: :
 1936:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1937: 
 1938: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1939: r2 = cosh(r1);
 1940: :
 1941:  fexp fdup 1/f f+ f2/ ;
 1942: 
 1943: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1944: r2 = tanh(r1);
 1945: :
 1946:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1947: 
 1948: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1949: r2 = asinh(r1);
 1950: :
 1951:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1952: 
 1953: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1954: r2 = acosh(r1);
 1955: :
 1956:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1957: 
 1958: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1959: r2 = atanh(r1);
 1960: :
 1961:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1962:  r> IF  fnegate  THEN ;
 1963: 
 1964: sfloats	( n1 -- n2 )	float-ext	s_floats
 1965: ""@i{n2} is the number of address units of @i{n1}
 1966: single-precision IEEE floating-point numbers.""
 1967: n2 = n1*sizeof(SFloat);
 1968: 
 1969: dfloats	( n1 -- n2 )	float-ext	d_floats
 1970: ""@i{n2} is the number of address units of @i{n1}
 1971: double-precision IEEE floating-point numbers.""
 1972: n2 = n1*sizeof(DFloat);
 1973: 
 1974: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1975: ""@i{sf-addr} is the first single-float-aligned address greater
 1976: than or equal to @i{c-addr}.""
 1977: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1978: :
 1979:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1980: 
 1981: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 1982: ""@i{df-addr} is the first double-float-aligned address greater
 1983: than or equal to @i{c-addr}.""
 1984: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 1985: :
 1986:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 1987: 
 1988: \ The following words access machine/OS/installation-dependent
 1989: \   Gforth internals
 1990: \ !! how about environmental queries DIRECT-THREADED,
 1991: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1992: 
 1993: \ local variable implementation primitives
 1994: \+
 1995: \+glocals
 1996: 
 1997: @local#	( #noffset -- w )	gforth	fetch_local_number
 1998: w = *(Cell *)(lp+noffset);
 1999: 
 2000: @local0	( -- w )	new	fetch_local_zero
 2001: w = *(Cell *)(lp+0*sizeof(Cell));
 2002: 
 2003: @local1	( -- w )	new	fetch_local_four
 2004: w = *(Cell *)(lp+1*sizeof(Cell));
 2005: 
 2006: @local2	( -- w )	new	fetch_local_eight
 2007: w = *(Cell *)(lp+2*sizeof(Cell));
 2008: 
 2009: @local3	( -- w )	new	fetch_local_twelve
 2010: w = *(Cell *)(lp+3*sizeof(Cell));
 2011: 
 2012: \+floating
 2013: 
 2014: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2015: r = *(Float *)(lp+noffset);
 2016: 
 2017: f@local0	( -- r )	new	f_fetch_local_zero
 2018: r = *(Float *)(lp+0*sizeof(Float));
 2019: 
 2020: f@local1	( -- r )	new	f_fetch_local_eight
 2021: r = *(Float *)(lp+1*sizeof(Float));
 2022: 
 2023: \+
 2024: 
 2025: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2026: /* this can also be used to implement lp@ */
 2027: c_addr = (Char *)(lp+noffset);
 2028: 
 2029: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2030: ""used with negative immediate values it allocates memory on the
 2031: local stack, a positive immediate argument drops memory from the local
 2032: stack""
 2033: lp += noffset;
 2034: 
 2035: lp-	( -- )	new	minus_four_lp_plus_store
 2036: lp += -sizeof(Cell);
 2037: 
 2038: lp+	( -- )	new	eight_lp_plus_store
 2039: lp += sizeof(Float);
 2040: 
 2041: lp+2	( -- )	new	sixteen_lp_plus_store
 2042: lp += 2*sizeof(Float);
 2043: 
 2044: lp!	( c_addr -- )	gforth	lp_store
 2045: lp = (Address)c_addr;
 2046: 
 2047: >l	( w -- )	gforth	to_l
 2048: lp -= sizeof(Cell);
 2049: *(Cell *)lp = w;
 2050: 
 2051: \+floating
 2052: 
 2053: f>l	( r -- )	gforth	f_to_l
 2054: lp -= sizeof(Float);
 2055: *(Float *)lp = r;
 2056: 
 2057: fpick	( u -- r )		gforth
 2058: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2059: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2060: :
 2061:  floats fp@ + f@ ;
 2062: 
 2063: \+
 2064: \+
 2065: 
 2066: \+OS
 2067: 
 2068: define(`uploop',
 2069:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2070: define(`_uploop',
 2071:        `ifelse($1, `$3', `$5',
 2072: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2073: \ argflist(argnum): Forth argument list
 2074: define(argflist,
 2075:        `ifelse($1, 0, `',
 2076:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2077: \ argdlist(argnum): declare C's arguments
 2078: define(argdlist,
 2079:        `ifelse($1, 0, `',
 2080:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2081: \ argclist(argnum): pass C's arguments
 2082: define(argclist,
 2083:        `ifelse($1, 0, `',
 2084:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2085: \ icall(argnum)
 2086: define(icall,
 2087: `icall$1	( argflist($1)u -- uret )	gforth
 2088: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2089: 
 2090: ')
 2091: define(fcall,
 2092: `fcall$1	( argflist($1)u -- rret )	gforth
 2093: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2094: 
 2095: ')
 2096: 
 2097: \ close ' to keep fontify happy
 2098: 
 2099: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2100: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2101: #ifndef RTLD_GLOBAL
 2102: #define RTLD_GLOBAL 0
 2103: #endif
 2104: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2105: #else
 2106: #  ifdef _WIN32
 2107: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2108: #  else
 2109: #warning Define open-lib!
 2110: u2 = 0;
 2111: #  endif
 2112: #endif
 2113: 
 2114: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2115: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2116: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2117: #else
 2118: #  ifdef _WIN32
 2119: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2120: #  else
 2121: #warning Define lib-sym!
 2122: u3 = 0;
 2123: #  endif
 2124: #endif
 2125: 
 2126: uploop(i, 0, 7, `icall(i)')
 2127: icall(20)
 2128: uploop(i, 0, 7, `fcall(i)')
 2129: fcall(20)
 2130: 
 2131: \+
 2132: 
 2133: up!	( a_addr -- )	gforth	up_store
 2134: UP=up=(char *)a_addr;
 2135: :
 2136:  up ! ;
 2137: Variable UP
 2138: 
 2139: wcall	( u -- )	gforth
 2140: IF_fpTOS(fp[0]=fpTOS);
 2141: FP=fp;
 2142: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2143: fp=FP;
 2144: IF_spTOS(spTOS=sp[0];)
 2145: IF_fpTOS(fpTOS=fp[0]);
 2146: 
 2147: \+file
 2148: 
 2149: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2150: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2151: wior =  IOR(wdirid == 0);
 2152: 
 2153: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2154: struct dirent * dent;
 2155: dent = readdir((DIR *)wdirid);
 2156: wior = 0;
 2157: flag = -1;
 2158: if(dent == NULL) {
 2159:   u2 = 0;
 2160:   flag = 0;
 2161: } else {
 2162:   u2 = strlen(dent->d_name);
 2163:   if(u2 > u1) {
 2164:     u2 = u1;
 2165:     wior = -512-ENAMETOOLONG;
 2166:   }
 2167:   memmove(c_addr, dent->d_name, u2);
 2168: }
 2169: 
 2170: close-dir	( wdirid -- wior )	gforth	close_dir
 2171: wior = IOR(closedir((DIR *)wdirid));
 2172: 
 2173: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2174: char * string = cstr(c_addr1, u1, 1);
 2175: char * pattern = cstr(c_addr2, u2, 0);
 2176: flag = FLAG(!fnmatch(pattern, string, 0));
 2177: 
 2178: \+
 2179: 
 2180: newline	( -- c_addr u )	gforth
 2181: ""String containing the newline sequence of the host OS""
 2182: char newline[] = {
 2183: #if defined(unix) || defined(__MACH__)
 2184: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2185: '\n'
 2186: #else
 2187: '\r','\n'
 2188: #endif
 2189: };
 2190: c_addr=newline;
 2191: u=sizeof(newline);
 2192: :
 2193:  "newline count ;
 2194: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2195: 
 2196: \+os
 2197: 
 2198: utime	( -- dtime )	gforth
 2199: ""Report the current time in microseconds since some epoch.""
 2200: struct timeval time1;
 2201: gettimeofday(&time1,NULL);
 2202: dtime = timeval2us(&time1);
 2203: 
 2204: cputime ( -- duser dsystem ) gforth
 2205: ""duser and dsystem are the respective user- and system-level CPU
 2206: times used since the start of the Forth system (excluding child
 2207: processes), in microseconds (the granularity may be much larger,
 2208: however).  On platforms without the getrusage call, it reports elapsed
 2209: time (since some epoch) for duser and 0 for dsystem.""
 2210: #ifdef HAVE_GETRUSAGE
 2211: struct rusage usage;
 2212: getrusage(RUSAGE_SELF, &usage);
 2213: duser = timeval2us(&usage.ru_utime);
 2214: dsystem = timeval2us(&usage.ru_stime);
 2215: #else
 2216: struct timeval time1;
 2217: gettimeofday(&time1,NULL);
 2218: duser = timeval2us(&time1);
 2219: #ifndef BUGGY_LONG_LONG
 2220: dsystem = (DCell)0;
 2221: #else
 2222: dsystem=(DCell){0,0};
 2223: #endif
 2224: #endif
 2225: 
 2226: \+
 2227: 
 2228: \+floating
 2229: 
 2230: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2231: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2232: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2233: ucount elements.""
 2234: for (r=0.; ucount>0; ucount--) {
 2235:   r += *f_addr1 * *f_addr2;
 2236:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2237:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2238: }
 2239: :
 2240:  >r swap 2swap swap 0e r> 0 ?DO
 2241:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2242:  LOOP 2drop 2drop ; 
 2243: 
 2244: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2245: ""vy=ra*vx+vy""
 2246: for (; ucount>0; ucount--) {
 2247:   *f_y += ra * *f_x;
 2248:   f_x = (Float *)(((Address)f_x)+nstridex);
 2249:   f_y = (Float *)(((Address)f_y)+nstridey);
 2250: }
 2251: :
 2252:  >r swap 2swap swap r> 0 ?DO
 2253:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2254:  LOOP 2drop 2drop fdrop ;
 2255: 
 2256: \+
 2257: 
 2258: \+file
 2259: 
 2260: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2261: Cell c;
 2262: flag=-1;
 2263: u3=0;
 2264: for(u2=0; u2<u1; u2++)
 2265: {
 2266:    c = getc((FILE *)wfileid);
 2267:    u3++;
 2268:    if (c=='\n') break;
 2269:    if (c=='\r') {
 2270:      if ((c = getc((FILE *)wfileid))!='\n')
 2271:        ungetc(c,(FILE *)wfileid);
 2272:      else
 2273:        u3++;
 2274:      break;
 2275:    }
 2276:    if (c==EOF) {
 2277: 	flag=FLAG(u2!=0);
 2278: 	break;
 2279:      }
 2280:    c_addr[u2] = (Char)c;
 2281: }
 2282: wior=FILEIO(ferror((FILE *)wfileid));
 2283: 
 2284: \+
 2285: 
 2286: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 2287: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 2288:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2289:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2290:     break;
 2291: longname2=longname1;
 2292: :
 2293:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 2294: 	>r 2dup r@ cell+ cell+ capscomp  0=
 2295: 	IF  2drop r>  EXIT  THEN
 2296: 	r> @
 2297:     REPEAT  THEN  nip nip ;
 2298: : (findl-samelen) ( u longname1 -- u longname2/0 )
 2299:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 2300: 
 2301: \+hash
 2302: 
 2303: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 2304: struct Longname *longname1;
 2305: longname2=NULL;
 2306: while(a_addr != NULL)
 2307: {
 2308:    longname1=(struct Longname *)(a_addr[1]);
 2309:    a_addr=(Cell *)(a_addr[0]);
 2310:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2311:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2312:      {
 2313: 	longname2=longname1;
 2314: 	break;
 2315:      }
 2316: }
 2317: :
 2318:  BEGIN  dup  WHILE
 2319:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2320:         IF  2dup r@ cell+ cell+ capscomp 0=
 2321: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2322: 	rdrop r>
 2323:  REPEAT nip nip ;
 2324: 
 2325: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 2326: ""A case-sensitive variant of @code{(hashfind)}""
 2327: struct Longname *longname1;
 2328: longname2=NULL;
 2329: while(a_addr != NULL)
 2330: {
 2331:    longname1=(struct Longname *)(a_addr[1]);
 2332:    a_addr=(Cell *)(a_addr[0]);
 2333:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 2334:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 2335:      {
 2336: 	longname2=longname1;
 2337: 	break;
 2338:      }
 2339: }
 2340: :
 2341:  BEGIN  dup  WHILE
 2342:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 2343:         IF  2dup r@ cell+ cell+ -text 0=
 2344: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 2345: 	rdrop r>
 2346:  REPEAT nip nip ;
 2347: 
 2348: \+
 2349: 
 2350: primtable	( -- wprimtable )	new
 2351: ""wprimtable is a table containing the xts of the primitives indexed
 2352: by sequence-number in prim (for use in prepare-peephole-table).""
 2353: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2354: 
 2355: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2356: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2357: constructed by combining a primitives table with a simple peephole
 2358: optimization table.""
 2359: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2360: 
 2361: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2362: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2363: they cannot be combined, xt is 0.""
 2364: xt = peephole_opt(xt1, xt2, wpeeptable);
 2365: 
 2366: lit_plus = lit +
 2367: 
 2368: call	( #a_callee -- R:a_retaddr )
 2369: ""Call callee (a variant of docol with inline argument).""
 2370: a_retaddr = (Cell *)IP;
 2371: SET_IP((Xt *)a_callee);
 2372: 
 2373: useraddr	( #u -- a_addr )
 2374: a_addr = (Cell *)(up+u);
 2375: 
 2376: 
 2377: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>