File:  [gforth] / gforth / prim
Revision 1.69: download - view: text, annotated - select for diffs
Tue Jan 9 16:11:35 2001 UTC (18 years, 10 months ago) by anton
Branches: MAIN
CVS tags: HEAD
changes for better debugging output
made a ChangeLog for real
NEWLINE for Darwin (should be LF, but if does not define unix)

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ wid.*		WID
   76: \ f83name.*	F83Name *
   77: 
   78: \E get-current prefixes set-current
   79: \E 
   80: \E s" Bool"		single data-stack type-prefix f
   81: \E s" Char"		single data-stack type-prefix c
   82: \E s" Cell"		single data-stack type-prefix n
   83: \E s" Cell"		single data-stack type-prefix w
   84: \E s" UCell"		single data-stack type-prefix u
   85: \E s" DCell"		double data-stack type-prefix d
   86: \E s" UDCell"		double data-stack type-prefix ud
   87: \E s" Float"		single fp-stack   type-prefix r
   88: \E s" Cell *"		single data-stack type-prefix a_
   89: \E s" Char *"		single data-stack type-prefix c_
   90: \E s" Float *"		single data-stack type-prefix f_
   91: \E s" DFloat *"		single data-stack type-prefix df_
   92: \E s" SFloat *"		single data-stack type-prefix sf_
   93: \E s" Xt"		single data-stack type-prefix xt
   94: \E s" WID"		single data-stack type-prefix wid
   95: \E s" struct F83Name *"	single data-stack type-prefix f83name
   96: \E 
   97: \E return-stack stack-prefix R:
   98: \E inst-stream  stack-prefix #
   99: \E 
  100: \E set-current
  101: 
  102: \ 
  103: \ 
  104: \ 
  105: \ In addition the following names can be used:
  106: \ ip	the instruction pointer
  107: \ sp	the data stack pointer
  108: \ rp	the parameter stack pointer
  109: \ lp	the locals stack pointer
  110: \ NEXT	executes NEXT
  111: \ cfa	
  112: \ NEXT1	executes NEXT1
  113: \ FLAG(x)	makes a Forth flag from a C flag
  114: \ 
  115: \ 
  116: \ 
  117: \ Percentages in comments are from Koopmans book: average/maximum use
  118: \ (taken from four, not very representative benchmarks)
  119: \ 
  120: \ 
  121: \ 
  122: \ To do:
  123: \ 
  124: \ throw execute, cfa and NEXT1 out?
  125: \ macroize *ip, ip++, *ip++ (pipelining)?
  126: 
  127: \ these m4 macros would collide with identifiers
  128: undefine(`index')
  129: undefine(`shift')
  130: 
  131: noop	( -- )		gforth
  132: :
  133:  ;
  134: 
  135: lit	( #w -- w )		gforth
  136: :
  137:  r> dup @ swap cell+ >r ;
  138: 
  139: execute	( xt -- )		core
  140: ""Perform the semantics represented by the execution token, @i{xt}.""
  141: ip=IP;
  142: IF_spTOS(spTOS = sp[0]);
  143: EXEC(xt);
  144: 
  145: perform	( a_addr -- )	gforth
  146: ""@code{@@ execute}.""
  147: /* and pfe */
  148: ip=IP;
  149: IF_spTOS(spTOS = sp[0]);
  150: EXEC(*(Xt *)a_addr);
  151: :
  152:  @ execute ;
  153: 
  154: \fhas? skipbranchprims 0= [IF]
  155: \+glocals
  156: 
  157: branch-lp+!#	( #ndisp #nlocals -- )	gforth	branch_lp_plus_store_number
  158: /* this will probably not be used */
  159: lp += nlocals;
  160: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  161: 
  162: \+
  163: 
  164: branch	( #ndisp -- )		gforth
  165: SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  166: :
  167:  r> dup @ + >r ;
  168: 
  169: \ condbranch(forthname,stackeffect,restline,code,forthcode)
  170: \ this is non-syntactical: code must open a brace that is closed by the macro
  171: define(condbranch,
  172: $1 ( `#'ndisp $2 ) $3
  173: $4	SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  174: TAIL;
  175: }
  176: $5
  177: 
  178: \+glocals
  179: 
  180: $1-lp+!`#' ( `#'ndisp `#'nlocals $2 ) $3_lp_plus_store_number
  181: $4    lp += nlocals;
  182: SET_IP((Xt *)(((Cell)(IP-2))+ndisp));
  183: TAIL;
  184: }
  185: 
  186: \+
  187: )
  188: 
  189: condbranch(?branch,f --,f83	question_branch,
  190: if (f==0) {
  191: ,:
  192:  0= dup     \ !f !f
  193:  r> dup @   \ !f !f IP branchoffset
  194:  rot and +  \ !f IP|IP+branchoffset
  195:  swap 0= cell and + \ IP''
  196:  >r ;)
  197: 
  198: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  199: \ is only used in if's (yet)
  200: 
  201: \+xconds
  202: 
  203: ?dup-?branch	( #ndisp f -- f )	new	question_dupe_question_branch
  204: ""The run-time procedure compiled by @code{?DUP-IF}.""
  205: if (f==0) {
  206:   sp++;
  207:   IF_spTOS(spTOS = sp[0]);
  208:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  209:   TAIL;
  210: }
  211: 
  212: ?dup-0=-?branch	( #ndisp f -- )	new	question_dupe_zero_equals_question_branch
  213: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  214: /* the approach taken here of declaring the word as having the stack
  215: effect ( f -- ) and correcting for it in the branch-taken case costs a
  216: few cycles in that case, but is easy to convert to a CONDBRANCH
  217: invocation */
  218: if (f!=0) {
  219:   sp--;
  220:   SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  221:   NEXT;
  222: }
  223: 
  224: \+
  225: \f[THEN]
  226: \fhas? skiploopprims 0= [IF]
  227: 
  228: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  229: n2=n1-1;
  230: if (n1) {
  231: ,:
  232:  r> r> dup 1- >r
  233:  IF dup @ + >r ELSE cell+ >r THEN ;)
  234: 
  235: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  236: n2=n1+1;
  237: if (n2 != nlimit) {
  238: ,:
  239:  r> r> 1+ r> 2dup =
  240:  IF >r 1- >r cell+ >r
  241:  ELSE >r >r dup @ + >r THEN ;)
  242: 
  243: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  244: /* !! check this thoroughly */
  245: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  246: /* dependent upon two's complement arithmetic */
  247: Cell olddiff = n1-nlimit;
  248: n2=n1+n;	
  249: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  250:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  251: ,:
  252:  r> swap
  253:  r> r> 2dup - >r
  254:  2 pick r@ + r@ xor 0< 0=
  255:  3 pick r> xor 0< 0= or
  256:  IF    >r + >r dup @ + >r
  257:  ELSE  >r >r drop cell+ >r THEN ;)
  258: 
  259: \+xconds
  260: 
  261: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  262: UCell olddiff = n1-nlimit;
  263: n2=n1-u;
  264: if (olddiff>u) {
  265: ,)
  266: 
  267: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  268: ""The run-time procedure compiled by S+LOOP. It loops until the index
  269: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  270: version of (+LOOP).""
  271: /* !! check this thoroughly */
  272: Cell diff = n1-nlimit;
  273: Cell newdiff = diff+n;
  274: if (n<0) {
  275:     diff = -diff;
  276:     newdiff = -newdiff;
  277: }
  278: n2=n1+n;
  279: if (diff>=0 || newdiff<0) {
  280: ,)
  281: 
  282: \+
  283: 
  284: unloop	( R:w1 R:w2 -- )	core
  285: /* !! alias for 2rdrop */
  286: :
  287:  r> rdrop rdrop >r ;
  288: 
  289: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  290: /* or (for) = >r -- collides with unloop! */
  291: nlimit=0;
  292: :
  293:  r> swap 0 >r >r >r ;
  294: 
  295: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  296: :
  297:  r> swap rot >r >r >r ;
  298: 
  299: (?do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  300: if (nstart == nlimit) {
  301:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  302:     TAIL;
  303: }
  304: :
  305:   2dup =
  306:   IF   r> swap rot >r >r
  307:        dup @ + >r
  308:   ELSE r> swap rot >r >r
  309:        cell+ >r
  310:   THEN ;				\ --> CORE-EXT
  311: 
  312: \+xconds
  313: 
  314: (+do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  315: if (nstart >= nlimit) {
  316:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  317:     TAIL;
  318: }
  319: :
  320:  swap 2dup
  321:  r> swap >r swap >r
  322:  >=
  323:  IF
  324:      dup @ +
  325:  ELSE
  326:      cell+
  327:  THEN  >r ;
  328: 
  329: (u+do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  330: if (ustart >= ulimit) {
  331:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  332:     TAIL;
  333: }
  334: :
  335:  swap 2dup
  336:  r> swap >r swap >r
  337:  u>=
  338:  IF
  339:      dup @ +
  340:  ELSE
  341:      cell+
  342:  THEN  >r ;
  343: 
  344: (-do)	( #ndisp nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  345: if (nstart <= nlimit) {
  346:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  347:     TAIL;
  348: }
  349: :
  350:  swap 2dup
  351:  r> swap >r swap >r
  352:  <=
  353:  IF
  354:      dup @ +
  355:  ELSE
  356:      cell+
  357:  THEN  >r ;
  358: 
  359: (u-do)	( #ndisp ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  360: if (ustart <= ulimit) {
  361:     SET_IP((Xt *)(((Cell)(IP-1))+ndisp));
  362:     TAIL;
  363: }
  364: :
  365:  swap 2dup
  366:  r> swap >r swap >r
  367:  u<=
  368:  IF
  369:      dup @ +
  370:  ELSE
  371:      cell+
  372:  THEN  >r ;
  373: 
  374: \+
  375: 
  376: \ don't make any assumptions where the return stack is!!
  377: \ implement this in machine code if it should run quickly!
  378: 
  379: i	( R:n -- R:n n )		core
  380: :
  381: \ rp@ cell+ @ ;
  382:   r> r> tuck >r >r ;
  383: 
  384: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  385: :
  386: \ rp@ cell+ cell+ @ ;
  387:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  388: variable itmp
  389: 
  390: j	( R:n R:d1 -- n R:n R:d1 )		core
  391: :
  392: \ rp@ cell+ cell+ cell+ @ ;
  393:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  394: [IFUNDEF] itmp variable itmp [THEN]
  395: 
  396: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  397: :
  398: \ rp@ [ 5 cells ] Literal + @ ;
  399:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  400: [IFUNDEF] itmp variable itmp [THEN]
  401: 
  402: \f[THEN]
  403: 
  404: \ digit is high-level: 0/0%
  405: 
  406: move	( c_from c_to ucount -- )		core
  407: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  408: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  409: /* !! note that the standard specifies addr, not c-addr */
  410: memmove(c_to,c_from,ucount);
  411: /* make an Ifdef for bsd and others? */
  412: :
  413:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  414: 
  415: cmove	( c_from c_to u -- )	string	c_move
  416: ""Copy the contents of @i{ucount} characters from data space at
  417: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  418: from low address to high address; i.e., for overlapping areas it is
  419: safe if @i{c-to}=<@i{c-from}.""
  420: while (u-- > 0)
  421:   *c_to++ = *c_from++;
  422: :
  423:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  424: 
  425: cmove>	( c_from c_to u -- )	string	c_move_up
  426: ""Copy the contents of @i{ucount} characters from data space at
  427: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  428: from high address to low address; i.e., for overlapping areas it is
  429: safe if @i{c-to}>=@i{c-from}.""
  430: while (u-- > 0)
  431:   c_to[u] = c_from[u];
  432: :
  433:  dup 0= IF  drop 2drop exit  THEN
  434:  rot over + -rot bounds swap 1-
  435:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  436: 
  437: fill	( c_addr u c -- )	core
  438: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  439: memset(c_addr,c,u);
  440: :
  441:  -rot bounds
  442:  ?DO  dup I c!  LOOP  drop ;
  443: 
  444: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  445: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  446: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  447: is 1. Currently this is based on the machine's character
  448: comparison. In the future, this may change to consider the current
  449: locale and its collation order.""
  450: /* close ' to keep fontify happy */ 
  451: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  452: if (n==0)
  453:   n = u1-u2;
  454: if (n<0)
  455:   n = -1;
  456: else if (n>0)
  457:   n = 1;
  458: :
  459:  rot 2dup swap - >r min swap -text dup
  460:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  461: : sgn ( n -- -1/0/1 )
  462:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  463: 
  464: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  465: n = memcmp(c_addr1, c_addr2, u);
  466: if (n<0)
  467:   n = -1;
  468: else if (n>0)
  469:   n = 1;
  470: :
  471:  swap bounds
  472:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  473:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  474: : sgn ( n -- -1/0/1 )
  475:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  476: 
  477: toupper	( c1 -- c2 )	gforth
  478: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  479: is the equivalent upper-case character. All other characters are unchanged.""
  480: c2 = toupper(c1);
  481: :
  482:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  483: 
  484: capscomp	( c_addr1 u c_addr2 -- n )	new
  485: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  486: if (n<0)
  487:   n = -1;
  488: else if (n>0)
  489:   n = 1;
  490: :
  491:  swap bounds
  492:  ?DO  dup c@ I c@ <>
  493:      IF  dup c@ toupper I c@ toupper =
  494:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  495:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  496: 
  497: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  498: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  499: spaces. @i{u2} is the length of the modified string.""
  500: u2 = u1;
  501: while (u2>0 && c_addr[u2-1] == ' ')
  502:   u2--;
  503: :
  504:  BEGIN  1- 2dup + c@ bl =  WHILE
  505:         dup  0= UNTIL  ELSE  1+  THEN ;
  506: 
  507: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  508: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  509: characters from the start of the string.""
  510: c_addr2 = c_addr1+n;
  511: u2 = u1-n;
  512: :
  513:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  514: 
  515: +	( n1 n2 -- n )		core	plus
  516: n = n1+n2;
  517: 
  518: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  519: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  520: ""add @i{n3} to @i{n1} (giving @i{n})""
  521: n = n1+n3;
  522: :
  523:  rot + swap ;
  524: 
  525: -	( n1 n2 -- n )		core	minus
  526: n = n1-n2;
  527: :
  528:  negate + ;
  529: 
  530: negate	( n1 -- n2 )		core
  531: /* use minus as alias */
  532: n2 = -n1;
  533: :
  534:  invert 1+ ;
  535: 
  536: 1+	( n1 -- n2 )		core		one_plus
  537: n2 = n1+1;
  538: :
  539:  1 + ;
  540: 
  541: 1-	( n1 -- n2 )		core		one_minus
  542: n2 = n1-1;
  543: :
  544:  1 - ;
  545: 
  546: max	( n1 n2 -- n )	core
  547: if (n1<n2)
  548:   n = n2;
  549: else
  550:   n = n1;
  551: :
  552:  2dup < IF swap THEN drop ;
  553: 
  554: min	( n1 n2 -- n )	core
  555: if (n1<n2)
  556:   n = n1;
  557: else
  558:   n = n2;
  559: :
  560:  2dup > IF swap THEN drop ;
  561: 
  562: abs	( n -- u )	core
  563: if (n<0)
  564:   u = -n;
  565: else
  566:   u = n;
  567: :
  568:  dup 0< IF negate THEN ;
  569: 
  570: *	( n1 n2 -- n )		core	star
  571: n = n1*n2;
  572: :
  573:  um* drop ;
  574: 
  575: /	( n1 n2 -- n )		core	slash
  576: n = n1/n2;
  577: :
  578:  /mod nip ;
  579: 
  580: mod	( n1 n2 -- n )		core
  581: n = n1%n2;
  582: :
  583:  /mod drop ;
  584: 
  585: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  586: n4 = n1/n2;
  587: n3 = n1%n2; /* !! is this correct? look into C standard! */
  588: :
  589:  >r s>d r> fm/mod ;
  590: 
  591: 2*	( n1 -- n2 )		core		two_star
  592: ""Shift left by 1; also works on unsigned numbers""
  593: n2 = 2*n1;
  594: :
  595:  dup + ;
  596: 
  597: 2/	( n1 -- n2 )		core		two_slash
  598: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  599: division by 2 (note that @code{/} not necessarily floors).""
  600: n2 = n1>>1;
  601: :
  602:  dup MINI and IF 1 ELSE 0 THEN
  603:  [ bits/byte cell * 1- ] literal 
  604:  0 DO 2* swap dup 2* >r MINI and 
  605:      IF 1 ELSE 0 THEN or r> swap
  606:  LOOP nip ;
  607: 
  608: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  609: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  610: #ifdef BUGGY_LONG_LONG
  611: DCell r = fmdiv(d1,n1);
  612: n2=r.hi;
  613: n3=r.lo;
  614: #else
  615: /* assumes that the processor uses either floored or symmetric division */
  616: n3 = d1/n1;
  617: n2 = d1%n1;
  618: /* note that this 1%-3>0 is optimized by the compiler */
  619: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  620:   n3--;
  621:   n2+=n1;
  622: }
  623: #endif
  624: :
  625:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  626:  over       0< IF  tuck + swap  THEN
  627:  um/mod
  628:  r> 0< IF  swap negate swap  THEN ;
  629: 
  630: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  631: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  632: #ifdef BUGGY_LONG_LONG
  633: DCell r = smdiv(d1,n1);
  634: n2=r.hi;
  635: n3=r.lo;
  636: #else
  637: /* assumes that the processor uses either floored or symmetric division */
  638: n3 = d1/n1;
  639: n2 = d1%n1;
  640: /* note that this 1%-3<0 is optimized by the compiler */
  641: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  642:   n3++;
  643:   n2-=n1;
  644: }
  645: #endif
  646: :
  647:  over >r dup >r abs -rot
  648:  dabs rot um/mod
  649:  r> r@ xor 0< IF       negate       THEN
  650:  r>        0< IF  swap negate swap  THEN ;
  651: 
  652: m*	( n1 n2 -- d )		core	m_star
  653: #ifdef BUGGY_LONG_LONG
  654: d = mmul(n1,n2);
  655: #else
  656: d = (DCell)n1 * (DCell)n2;
  657: #endif
  658: :
  659:  2dup      0< and >r
  660:  2dup swap 0< and >r
  661:  um* r> - r> - ;
  662: 
  663: um*	( u1 u2 -- ud )		core	u_m_star
  664: /* use u* as alias */
  665: #ifdef BUGGY_LONG_LONG
  666: ud = ummul(u1,u2);
  667: #else
  668: ud = (UDCell)u1 * (UDCell)u2;
  669: #endif
  670: :
  671:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  672:    DO
  673:        over >r dup >r 0< and d2*+ drop
  674:        r> 2* r> swap
  675:    LOOP 2drop ;
  676: : d2*+ ( ud n -- ud+n c )
  677:    over MINI
  678:    and >r >r 2dup d+ swap r> + swap r> ;
  679: 
  680: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  681: ""ud=u3*u1+u2, u1>u2>=0""
  682: #ifdef BUGGY_LONG_LONG
  683: UDCell r = umdiv(ud,u1);
  684: u2=r.hi;
  685: u3=r.lo;
  686: #else
  687: u3 = ud/u1;
  688: u2 = ud%u1;
  689: #endif
  690: :
  691:    0 swap [ 8 cells 1 + ] literal 0
  692:    ?DO /modstep
  693:    LOOP drop swap 1 rshift or swap ;
  694: : /modstep ( ud c R: u -- ud-?u c R: u )
  695:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  696: : d2*+ ( ud n -- ud+n c )
  697:    over MINI
  698:    and >r >r 2dup d+ swap r> + swap r> ;
  699: 
  700: m+	( d1 n -- d2 )		double		m_plus
  701: #ifdef BUGGY_LONG_LONG
  702: d2.lo = d1.lo+n;
  703: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  704: #else
  705: d2 = d1+n;
  706: #endif
  707: :
  708:  s>d d+ ;
  709: 
  710: d+	( d1 d2 -- d )		double	d_plus
  711: #ifdef BUGGY_LONG_LONG
  712: d.lo = d1.lo+d2.lo;
  713: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  714: #else
  715: d = d1+d2;
  716: #endif
  717: :
  718:  rot + >r tuck + swap over u> r> swap - ;
  719: 
  720: d-	( d1 d2 -- d )		double		d_minus
  721: #ifdef BUGGY_LONG_LONG
  722: d.lo = d1.lo - d2.lo;
  723: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  724: #else
  725: d = d1-d2;
  726: #endif
  727: :
  728:  dnegate d+ ;
  729: 
  730: dnegate	( d1 -- d2 )		double	d_negate
  731: /* use dminus as alias */
  732: #ifdef BUGGY_LONG_LONG
  733: d2 = dnegate(d1);
  734: #else
  735: d2 = -d1;
  736: #endif
  737: :
  738:  invert swap negate tuck 0= - ;
  739: 
  740: d2*	( d1 -- d2 )		double		d_two_star
  741: ""Shift left by 1; also works on unsigned numbers""
  742: #ifdef BUGGY_LONG_LONG
  743: d2.lo = d1.lo<<1;
  744: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  745: #else
  746: d2 = 2*d1;
  747: #endif
  748: :
  749:  2dup d+ ;
  750: 
  751: d2/	( d1 -- d2 )		double		d_two_slash
  752: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  753: division by 2.""
  754: #ifdef BUGGY_LONG_LONG
  755: d2.hi = d1.hi>>1;
  756: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  757: #else
  758: d2 = d1>>1;
  759: #endif
  760: :
  761:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  762:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  763: 
  764: and	( w1 w2 -- w )		core
  765: w = w1&w2;
  766: 
  767: or	( w1 w2 -- w )		core
  768: w = w1|w2;
  769: :
  770:  invert swap invert and invert ;
  771: 
  772: xor	( w1 w2 -- w )		core	x_or
  773: w = w1^w2;
  774: 
  775: invert	( w1 -- w2 )		core
  776: w2 = ~w1;
  777: :
  778:  MAXU xor ;
  779: 
  780: rshift	( u1 n -- u2 )		core	r_shift
  781: ""Logical shift right by @i{n} bits.""
  782:   u2 = u1>>n;
  783: :
  784:     0 ?DO 2/ MAXI and LOOP ;
  785: 
  786: lshift	( u1 n -- u2 )		core	l_shift
  787:   u2 = u1<<n;
  788: :
  789:     0 ?DO 2* LOOP ;
  790: 
  791: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  792: define(comparisons,
  793: $1=	( $2 -- f )		$6	$3equals
  794: f = FLAG($4==$5);
  795: :
  796:     [ char $1x char 0 = [IF]
  797: 	] IF false ELSE true THEN [
  798:     [ELSE]
  799: 	] xor 0= [
  800:     [THEN] ] ;
  801: 
  802: $1<>	( $2 -- f )		$7	$3not_equals
  803: f = FLAG($4!=$5);
  804: :
  805:     [ char $1x char 0 = [IF]
  806: 	] IF true ELSE false THEN [
  807:     [ELSE]
  808: 	] xor 0<> [
  809:     [THEN] ] ;
  810: 
  811: $1<	( $2 -- f )		$8	$3less_than
  812: f = FLAG($4<$5);
  813: :
  814:     [ char $1x char 0 = [IF]
  815: 	] MINI and 0<> [
  816:     [ELSE] char $1x char u = [IF]
  817: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  818: 	[ELSE]
  819: 	    ] MINI xor >r MINI xor r> u< [
  820: 	[THEN]
  821:     [THEN] ] ;
  822: 
  823: $1>	( $2 -- f )		$9	$3greater_than
  824: f = FLAG($4>$5);
  825: :
  826:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  827:     $1< ;
  828: 
  829: $1<=	( $2 -- f )		gforth	$3less_or_equal
  830: f = FLAG($4<=$5);
  831: :
  832:     $1> 0= ;
  833: 
  834: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  835: f = FLAG($4>=$5);
  836: :
  837:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  838:     $1<= ;
  839: 
  840: )
  841: 
  842: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  843: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  844: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  845: 
  846: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  847: define(dcomparisons,
  848: $1=	( $2 -- f )		$6	$3equals
  849: #ifdef BUGGY_LONG_LONG
  850: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  851: #else
  852: f = FLAG($4==$5);
  853: #endif
  854: 
  855: $1<>	( $2 -- f )		$7	$3not_equals
  856: #ifdef BUGGY_LONG_LONG
  857: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  858: #else
  859: f = FLAG($4!=$5);
  860: #endif
  861: 
  862: $1<	( $2 -- f )		$8	$3less_than
  863: #ifdef BUGGY_LONG_LONG
  864: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  865: #else
  866: f = FLAG($4<$5);
  867: #endif
  868: 
  869: $1>	( $2 -- f )		$9	$3greater_than
  870: #ifdef BUGGY_LONG_LONG
  871: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  872: #else
  873: f = FLAG($4>$5);
  874: #endif
  875: 
  876: $1<=	( $2 -- f )		gforth	$3less_or_equal
  877: #ifdef BUGGY_LONG_LONG
  878: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  879: #else
  880: f = FLAG($4<=$5);
  881: #endif
  882: 
  883: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  884: #ifdef BUGGY_LONG_LONG
  885: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  886: #else
  887: f = FLAG($4>=$5);
  888: #endif
  889: 
  890: )
  891: 
  892: \+dcomps
  893: 
  894: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  895: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  896: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  897: 
  898: \+
  899: 
  900: within	( u1 u2 u3 -- f )		core-ext
  901: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  902: unsigned and signed numbers (but not a mixture).  Another way to think
  903: about this word is to consider the numbers as a circle (wrapping
  904: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  905: min-n for signed numbers); now consider the range from u2 towards
  906: increasing numbers up to and excluding u3 (giving an empty range if
  907: u2=u3); if u1 is in this range, @code{within} returns true.""
  908: f = FLAG(u1-u2 < u3-u2);
  909: :
  910:  over - >r - r> u< ;
  911: 
  912: sp@	( -- a_addr )		gforth		sp_fetch
  913: a_addr = sp+1;
  914: 
  915: sp!	( a_addr -- )		gforth		sp_store
  916: sp = a_addr;
  917: /* works with and without spTOS caching */
  918: 
  919: rp@	( -- a_addr )		gforth		rp_fetch
  920: a_addr = rp;
  921: 
  922: rp!	( a_addr -- )		gforth		rp_store
  923: rp = a_addr;
  924: 
  925: \+floating
  926: 
  927: fp@	( -- f_addr )	gforth	fp_fetch
  928: f_addr = fp;
  929: 
  930: fp!	( f_addr -- )	gforth	fp_store
  931: fp = f_addr;
  932: 
  933: \+
  934: 
  935: ;s	( R:w -- )		gforth	semis
  936: ""The primitive compiled by @code{EXIT}.""
  937: SET_IP((Xt *)w);
  938: 
  939: >r	( w -- R:w )		core	to_r
  940: :
  941:  (>r) ;
  942: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  943: 
  944: r>	( R:w -- w )		core	r_from
  945: :
  946:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  947: Create (rdrop) ' ;s A,
  948: 
  949: rdrop	( R:w -- )		gforth
  950: :
  951:  r> r> drop >r ;
  952: 
  953: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  954: :
  955:  swap r> swap >r swap >r >r ;
  956: 
  957: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  958: :
  959:  r> r> swap r> swap >r swap ;
  960: 
  961: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  962: :
  963:  i' j ;
  964: 
  965: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  966: :
  967:  r> r> drop r> drop >r ;
  968: 
  969: over	( w1 w2 -- w1 w2 w1 )		core
  970: :
  971:  sp@ cell+ @ ;
  972: 
  973: drop	( w -- )		core
  974: :
  975:  IF THEN ;
  976: 
  977: swap	( w1 w2 -- w2 w1 )		core
  978: :
  979:  >r (swap) ! r> (swap) @ ;
  980: Variable (swap)
  981: 
  982: dup	( w -- w w )		core	dupe
  983: :
  984:  sp@ @ ;
  985: 
  986: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
  987: :
  988: [ defined? (swap) [IF] ]
  989:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
  990: Variable (rot)
  991: [ELSE] ]
  992:     >r swap r> swap ;
  993: [THEN]
  994: 
  995: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
  996: :
  997:  rot rot ;
  998: 
  999: nip	( w1 w2 -- w2 )		core-ext
 1000: :
 1001:  swap drop ;
 1002: 
 1003: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1004: :
 1005:  swap over ;
 1006: 
 1007: ?dup	( w -- w )			core	question_dupe
 1008: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1009: @code{dup} if w is nonzero.""
 1010: if (w!=0) {
 1011:   IF_spTOS(*sp-- = w;)
 1012: #ifndef USE_TOS
 1013:   *--sp = w;
 1014: #endif
 1015: }
 1016: :
 1017:  dup IF dup THEN ;
 1018: 
 1019: pick	( u -- w )			core-ext
 1020: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1021: w = sp[u+1];
 1022: :
 1023:  1+ cells sp@ + @ ;
 1024: 
 1025: 2drop	( w1 w2 -- )		core	two_drop
 1026: :
 1027:  drop drop ;
 1028: 
 1029: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1030: :
 1031:  over over ;
 1032: 
 1033: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1034: :
 1035:  3 pick 3 pick ;
 1036: 
 1037: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1038: :
 1039:  rot >r rot r> ;
 1040: 
 1041: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1042: :
 1043:  >r >r 2swap r> r> 2swap ;
 1044: 
 1045: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1046: :
 1047:  2swap 2drop ;
 1048: 
 1049: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1050: :
 1051:  2swap 2over ;
 1052: 
 1053: \ toggle is high-level: 0.11/0.42%
 1054: 
 1055: @	( a_addr -- w )		core	fetch
 1056: ""@i{w} is the cell stored at @i{a_addr}.""
 1057: w = *a_addr;
 1058: 
 1059: !	( w a_addr -- )		core	store
 1060: ""Store @i{w} into the cell at @i{a-addr}.""
 1061: *a_addr = w;
 1062: 
 1063: +!	( n a_addr -- )		core	plus_store
 1064: ""Add @i{n} to the cell at @i{a-addr}.""
 1065: *a_addr += n;
 1066: :
 1067:  tuck @ + swap ! ;
 1068: 
 1069: c@	( c_addr -- c )		core	c_fetch
 1070: ""@i{c} is the char stored at @i{c_addr}.""
 1071: c = *c_addr;
 1072: :
 1073: [ bigendian [IF] ]
 1074:     [ cell>bit 4 = [IF] ]
 1075: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1076: 	IF  $FF and  ELSE  8>>  THEN  ;
 1077:     [ [ELSE] ]
 1078: 	dup [ cell 1- ] literal and
 1079: 	tuck - @ swap [ cell 1- ] literal xor
 1080:  	0 ?DO 8>> LOOP $FF and
 1081:     [ [THEN] ]
 1082: [ [ELSE] ]
 1083:     [ cell>bit 4 = [IF] ]
 1084: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1085: 	IF  8>>  ELSE  $FF and  THEN
 1086:     [ [ELSE] ]
 1087: 	dup [ cell  1- ] literal and 
 1088: 	tuck - @ swap
 1089: 	0 ?DO 8>> LOOP 255 and
 1090:     [ [THEN] ]
 1091: [ [THEN] ]
 1092: ;
 1093: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1094: 
 1095: c!	( c c_addr -- )		core	c_store
 1096: ""Store @i{c} into the char at @i{c-addr}.""
 1097: *c_addr = c;
 1098: :
 1099: [ bigendian [IF] ]
 1100:     [ cell>bit 4 = [IF] ]
 1101: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1102: 	dup -2 and @ over 1 and cells masks + @ and
 1103: 	r> or swap -2 and ! ;
 1104: 	Create masks $00FF , $FF00 ,
 1105:     [ELSE] ]
 1106: 	dup [ cell 1- ] literal and dup 
 1107: 	[ cell 1- ] literal xor >r
 1108: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1109: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1110:     [THEN]
 1111: [ELSE] ]
 1112:     [ cell>bit 4 = [IF] ]
 1113: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1114: 	dup -2 and @ over 1 and cells masks + @ and
 1115: 	r> or swap -2 and ! ;
 1116: 	Create masks $FF00 , $00FF ,
 1117:     [ELSE] ]
 1118: 	dup [ cell 1- ] literal and dup >r
 1119: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1120: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1121:     [THEN]
 1122: [THEN]
 1123: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1124: 
 1125: 2!	( w1 w2 a_addr -- )		core	two_store
 1126: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1127: a_addr[0] = w2;
 1128: a_addr[1] = w1;
 1129: :
 1130:  tuck ! cell+ ! ;
 1131: 
 1132: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1133: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1134: the content of the next cell.""
 1135: w2 = a_addr[0];
 1136: w1 = a_addr[1];
 1137: :
 1138:  dup cell+ @ swap @ ;
 1139: 
 1140: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1141: ""@code{1 cells +}""
 1142: a_addr2 = a_addr1+1;
 1143: :
 1144:  cell + ;
 1145: 
 1146: cells	( n1 -- n2 )		core
 1147: "" @i{n2} is the number of address units of @i{n1} cells.""
 1148: n2 = n1 * sizeof(Cell);
 1149: :
 1150:  [ cell
 1151:  2/ dup [IF] ] 2* [ [THEN]
 1152:  2/ dup [IF] ] 2* [ [THEN]
 1153:  2/ dup [IF] ] 2* [ [THEN]
 1154:  2/ dup [IF] ] 2* [ [THEN]
 1155:  drop ] ;
 1156: 
 1157: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1158: ""@code{1 chars +}.""
 1159: c_addr2 = c_addr1 + 1;
 1160: :
 1161:  1+ ;
 1162: 
 1163: (chars)	( n1 -- n2 )	gforth	paren_chars
 1164: n2 = n1 * sizeof(Char);
 1165: :
 1166:  ;
 1167: 
 1168: count	( c_addr1 -- c_addr2 u )	core
 1169: ""@i{c-addr2} is the first character and @i{u} the length of the
 1170: counted string at @i{c-addr1}.""
 1171: u = *c_addr1;
 1172: c_addr2 = c_addr1+1;
 1173: :
 1174:  dup 1+ swap c@ ;
 1175: 
 1176: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1177: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1178:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1179:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1180:     break;
 1181: f83name2=f83name1;
 1182: :
 1183:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1184: 	>r 2dup r@ cell+ char+ capscomp  0=
 1185: 	IF  2drop r>  EXIT  THEN
 1186: 	r> @
 1187:     REPEAT  THEN  nip nip ;
 1188: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1189:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1190: 
 1191: \+hash
 1192: 
 1193: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1194: struct F83Name *f83name1;
 1195: f83name2=NULL;
 1196: while(a_addr != NULL)
 1197: {
 1198:    f83name1=(struct F83Name *)(a_addr[1]);
 1199:    a_addr=(Cell *)(a_addr[0]);
 1200:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1201:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1202:      {
 1203: 	f83name2=f83name1;
 1204: 	break;
 1205:      }
 1206: }
 1207: :
 1208:  BEGIN  dup  WHILE
 1209:         2@ >r >r dup r@ cell+ c@ $1F and =
 1210:         IF  2dup r@ cell+ char+ capscomp 0=
 1211: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1212: 	rdrop r>
 1213:  REPEAT nip nip ;
 1214: 
 1215: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1216: ""A case-sensitive variant of @code{(hashfind)}""
 1217: struct F83Name *f83name1;
 1218: f83name2=NULL;
 1219: while(a_addr != NULL)
 1220: {
 1221:    f83name1=(struct F83Name *)(a_addr[1]);
 1222:    a_addr=(Cell *)(a_addr[0]);
 1223:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1224:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1225:      {
 1226: 	f83name2=f83name1;
 1227: 	break;
 1228:      }
 1229: }
 1230: :
 1231:  BEGIN  dup  WHILE
 1232:         2@ >r >r dup r@ cell+ c@ $1F and =
 1233:         IF  2dup r@ cell+ char+ -text 0=
 1234: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1235: 	rdrop r>
 1236:  REPEAT nip nip ;
 1237: 
 1238: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1239: u2=0;
 1240: while(u1--)
 1241:    u2+=(Cell)toupper(*c_addr++);
 1242: :
 1243:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1244: 
 1245: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1246: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1247: /* this hash function rotates the key at every step by rot bits within
 1248:    ubits bits and xors it with the character. This function does ok in
 1249:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1250:    ASCII strings (larger if ubits is large), and should share no
 1251:    divisors with ubits.
 1252: */
 1253: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1254: Char *cp = c_addr;
 1255: for (ukey=0; cp<c_addr+u; cp++)
 1256:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1257: 	     ^ toupper(*cp))
 1258: 	    & ((1<<ubits)-1));
 1259: :
 1260:  dup rot-values + c@ over 1 swap lshift 1- >r
 1261:  tuck - 2swap r> 0 2swap bounds
 1262:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1263:       I c@ toupper xor
 1264:       over and  LOOP
 1265:  nip nip nip ;
 1266: Create rot-values
 1267:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1268:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1269:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1270:   7 c, 5 c, 5 c,
 1271: 
 1272: \+
 1273: 
 1274: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1275: /* use !isgraph instead of isspace? */
 1276: Char *endp = c_addr1+u1;
 1277: while (c_addr1<endp && isspace(*c_addr1))
 1278:   c_addr1++;
 1279: if (c_addr1<endp) {
 1280:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1281:     ;
 1282:   u2 = c_addr1-c_addr2;
 1283: }
 1284: else {
 1285:   c_addr2 = c_addr1;
 1286:   u2 = 0;
 1287: }
 1288: :
 1289:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1290:  REPEAT  THEN  2dup
 1291:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1292:  REPEAT  THEN  nip - ;
 1293: 
 1294: aligned	( c_addr -- a_addr )	core
 1295: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1296: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1297: :
 1298:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1299: 
 1300: faligned	( c_addr -- f_addr )	float	f_aligned
 1301: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1302: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1303: :
 1304:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1305: 
 1306: >body	( xt -- a_addr )	core	to_body
 1307: "" Get the address of the body of the word represented by @i{xt} (the address
 1308: of the word's data field).""
 1309: a_addr = PFA(xt);
 1310: :
 1311:     2 cells + ;
 1312: 
 1313: \ threading stuff is currently only interesting if we have a compiler
 1314: \fhas? standardthreading has? compiler and [IF]
 1315: 
 1316: >code-address	( xt -- c_addr )		gforth	to_code_address
 1317: ""@i{c-addr} is the code address of the word @i{xt}.""
 1318: /* !! This behaves installation-dependently for DOES-words */
 1319: c_addr = (Address)CODE_ADDRESS(xt);
 1320: :
 1321:     @ ;
 1322: 
 1323: >does-code	( xt -- a_addr )		gforth	to_does_code
 1324: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1325: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1326: Otherwise @i{a-addr} is 0.""
 1327: a_addr = (Cell *)DOES_CODE(xt);
 1328: :
 1329:     cell+ @ ;
 1330: 
 1331: code-address!	( c_addr xt -- )		gforth	code_address_store
 1332: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1333: MAKE_CF(xt, c_addr);
 1334: CACHE_FLUSH(xt,(size_t)PFA(0));
 1335: :
 1336:     ! ;
 1337: 
 1338: does-code!	( a_addr xt -- )		gforth	does_code_store
 1339: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1340: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1341: MAKE_DOES_CF(xt, a_addr);
 1342: CACHE_FLUSH(xt,(size_t)PFA(0));
 1343: :
 1344:     dodoes: over ! cell+ ! ;
 1345: 
 1346: does-handler!	( a_addr -- )	gforth	does_handler_store
 1347: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1348: @i{a-addr} points just behind a @code{DOES>}.""
 1349: MAKE_DOES_HANDLER(a_addr);
 1350: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1351: :
 1352:     drop ;
 1353: 
 1354: /does-handler	( -- n )	gforth	slash_does_handler
 1355: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1356: /* !! a constant or environmental query might be better */
 1357: n = DOES_HANDLER_SIZE;
 1358: :
 1359:     2 cells ;
 1360: 
 1361: threading-method	( -- n )	gforth	threading_method
 1362: ""0 if the engine is direct threaded. Note that this may change during
 1363: the lifetime of an image.""
 1364: #if defined(DOUBLY_INDIRECT)
 1365: n=2;
 1366: #else
 1367: # if defined(DIRECT_THREADED)
 1368: n=0;
 1369: # else
 1370: n=1;
 1371: # endif
 1372: #endif
 1373: :
 1374:  1 ;
 1375: 
 1376: \f[THEN]
 1377: 
 1378: key-file	( wfileid -- n )		gforth	paren_key_file
 1379: #ifdef HAS_FILE
 1380: fflush(stdout);
 1381: n = key((FILE*)wfileid);
 1382: #else
 1383: n = key(stdin);
 1384: #endif
 1385: 
 1386: key?-file	( wfileid -- n )		facility	key_q_file
 1387: #ifdef HAS_FILE
 1388: fflush(stdout);
 1389: n = key_query((FILE*)wfileid);
 1390: #else
 1391: n = key_query(stdin);
 1392: #endif
 1393: 
 1394: \+os
 1395: 
 1396: stdin	( -- wfileid )	gforth
 1397: wfileid = (Cell)stdin;
 1398: 
 1399: stdout	( -- wfileid )	gforth
 1400: wfileid = (Cell)stdout;
 1401: 
 1402: stderr	( -- wfileid )	gforth
 1403: wfileid = (Cell)stderr;
 1404: 
 1405: form	( -- urows ucols )	gforth
 1406: ""The number of lines and columns in the terminal. These numbers may change
 1407: with the window size.""
 1408: /* we could block SIGWINCH here to get a consistent size, but I don't
 1409:  think this is necessary or always beneficial */
 1410: urows=rows;
 1411: ucols=cols;
 1412: 
 1413: flush-icache	( c_addr u -- )	gforth	flush_icache
 1414: ""Make sure that the instruction cache of the processor (if there is
 1415: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1416: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1417: automatically. Caveat: @code{flush-icache} might not work on your
 1418: installation; this is usually the case if direct threading is not
 1419: supported on your machine (take a look at your @file{machine.h}) and
 1420: your machine has a separate instruction cache. In such cases,
 1421: @code{flush-icache} does nothing instead of flushing the instruction
 1422: cache.""
 1423: FLUSH_ICACHE(c_addr,u);
 1424: 
 1425: (bye)	( n -- )	gforth	paren_bye
 1426: return (Label *)n;
 1427: 
 1428: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1429: #ifndef MSDOS
 1430: int old_tp=terminal_prepped;
 1431: deprep_terminal();
 1432: #endif
 1433: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1434: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1435: #ifndef MSDOS
 1436: if (old_tp)
 1437:   prep_terminal();
 1438: #endif
 1439: 
 1440: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1441: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1442: is the host operating system's expansion of that environment variable. If the
 1443: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1444: in length.""
 1445: /* close ' to keep fontify happy */
 1446: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1447: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1448: 
 1449: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1450: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 1451: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1452: 
 1453: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1454: wretval = pclose((FILE *)wfileid);
 1455: wior = IOR(wretval==-1);
 1456: 
 1457: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1458: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1459: Months are numbered from 1.""
 1460: struct timeval time1;
 1461: struct timezone zone1;
 1462: struct tm *ltime;
 1463: gettimeofday(&time1,&zone1);
 1464: /* !! Single Unix specification: 
 1465:    If tzp is not a null pointer, the behaviour is unspecified. */
 1466: ltime=localtime((time_t *)&time1.tv_sec);
 1467: nyear =ltime->tm_year+1900;
 1468: nmonth=ltime->tm_mon+1;
 1469: nday  =ltime->tm_mday;
 1470: nhour =ltime->tm_hour;
 1471: nmin  =ltime->tm_min;
 1472: nsec  =ltime->tm_sec;
 1473: 
 1474: ms	( n -- )	facility-ext
 1475: ""Wait at least @i{n} milli-second.""
 1476: struct timeval timeout;
 1477: timeout.tv_sec=n/1000;
 1478: timeout.tv_usec=1000*(n%1000);
 1479: (void)select(0,0,0,0,&timeout);
 1480: 
 1481: allocate	( u -- a_addr wior )	memory
 1482: ""Allocate @i{u} address units of contiguous data space. The initial
 1483: contents of the data space is undefined. If the allocation is successful,
 1484: @i{a-addr} is the start address of the allocated region and @i{wior}
 1485: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1486: is a non-zero I/O result code.""
 1487: a_addr = (Cell *)malloc(u?u:1);
 1488: wior = IOR(a_addr==NULL);
 1489: 
 1490: free	( a_addr -- wior )		memory
 1491: ""Return the region of data space starting at @i{a-addr} to the system.
 1492: The region must originally have been obtained using @code{allocate} or
 1493: @code{resize}. If the operational is successful, @i{wior} is 0.
 1494: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1495: free(a_addr);
 1496: wior = 0;
 1497: 
 1498: resize	( a_addr1 u -- a_addr2 wior )	memory
 1499: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1500: address units, possibly moving the contents to a different
 1501: area. @i{a-addr2} is the address of the resulting area.
 1502: If the operation is successful, @i{wior} is 0.
 1503: If the operation fails, @i{wior} is a non-zero
 1504: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1505: @code{resize} @code{allocate}s @i{u} address units.""
 1506: /* the following check is not necessary on most OSs, but it is needed
 1507:    on SunOS 4.1.2. */
 1508: /* close ' to keep fontify happy */
 1509: if (a_addr1==NULL)
 1510:   a_addr2 = (Cell *)malloc(u);
 1511: else
 1512:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1513: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1514: 
 1515: strerror	( n -- c_addr u )	gforth
 1516: c_addr = strerror(n);
 1517: u = strlen(c_addr);
 1518: 
 1519: strsignal	( n -- c_addr u )	gforth
 1520: c_addr = strsignal(n);
 1521: u = strlen(c_addr);
 1522: 
 1523: call-c	( w -- )	gforth	call_c
 1524: ""Call the C function pointed to by @i{w}. The C function has to
 1525: access the stack itself. The stack pointers are exported in the global
 1526: variables @code{SP} and @code{FP}.""
 1527: /* This is a first attempt at support for calls to C. This may change in
 1528:    the future */
 1529: IF_fpTOS(fp[0]=fpTOS);
 1530: FP=fp;
 1531: SP=sp;
 1532: ((void (*)())w)();
 1533: sp=SP;
 1534: fp=FP;
 1535: IF_spTOS(spTOS=sp[0]);
 1536: IF_fpTOS(fpTOS=fp[0]);
 1537: 
 1538: \+
 1539: \+file
 1540: 
 1541: close-file	( wfileid -- wior )		file	close_file
 1542: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1543: 
 1544: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1545: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1546: wior =  IOR(wfileid == 0);
 1547: 
 1548: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1549: Cell	fd;
 1550: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1551: if (fd != -1) {
 1552:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1553:   wior = IOR(wfileid == 0);
 1554: } else {
 1555:   wfileid = 0;
 1556:   wior = IOR(1);
 1557: }
 1558: 
 1559: delete-file	( c_addr u -- wior )		file	delete_file
 1560: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1561: 
 1562: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1563: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1564: char *s1=tilde_cstr(c_addr2, u2, 1);
 1565: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1566: 
 1567: file-position	( wfileid -- ud wior )	file	file_position
 1568: /* !! use tell and lseek? */
 1569: ud = LONG2UD(ftell((FILE *)wfileid));
 1570: wior = IOR(UD2LONG(ud)==-1);
 1571: 
 1572: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1573: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1574: 
 1575: file-size	( wfileid -- ud wior )	file	file_size
 1576: struct stat buf;
 1577: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1578: ud = LONG2UD(buf.st_size);
 1579: 
 1580: resize-file	( ud wfileid -- wior )	file	resize_file
 1581: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1582: 
 1583: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1584: /* !! fread does not guarantee enough */
 1585: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1586: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1587: /* !! is the value of ferror errno-compatible? */
 1588: if (wior)
 1589:   clearerr((FILE *)wfileid);
 1590: 
 1591: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1592: ""this is only for backward compatibility""
 1593: Cell c;
 1594: flag=-1;
 1595: for(u2=0; u2<u1; u2++)
 1596: {
 1597:    c = getc((FILE *)wfileid);
 1598:    if (c=='\n') break;
 1599:    if (c=='\r') {
 1600:      if ((c = getc((FILE *)wfileid))!='\n')
 1601:        ungetc(c,(FILE *)wfileid);
 1602:      break;
 1603:    }
 1604:    if (c==EOF) {
 1605: 	flag=FLAG(u2!=0);
 1606: 	break;
 1607:      }
 1608:    c_addr[u2] = (Char)c;
 1609: }
 1610: wior=FILEIO(ferror((FILE *)wfileid));
 1611: 
 1612: \+
 1613: 
 1614: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1615: /* !! fwrite does not guarantee enough */
 1616: #ifdef HAS_FILE
 1617: {
 1618:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1619:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1620:   if (wior)
 1621:     clearerr((FILE *)wfileid);
 1622: }
 1623: #else
 1624: TYPE(c_addr, u1);
 1625: #endif
 1626: 
 1627: emit-file	( c wfileid -- wior )	gforth	emit_file
 1628: #ifdef HAS_FILE
 1629: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1630: if (wior)
 1631:   clearerr((FILE *)wfileid);
 1632: #else
 1633: PUTC(c);
 1634: #endif
 1635: 
 1636: \+file
 1637: 
 1638: flush-file	( wfileid -- wior )		file-ext	flush_file
 1639: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1640: 
 1641: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1642: char *filename=tilde_cstr(c_addr, u, 1);
 1643: if (access (filename, F_OK) != 0) {
 1644:   wfam=0;
 1645:   wior=IOR(1);
 1646: }
 1647: else if (access (filename, R_OK | W_OK) == 0) {
 1648:   wfam=2; /* r/w */
 1649:   wior=0;
 1650: }
 1651: else if (access (filename, R_OK) == 0) {
 1652:   wfam=0; /* r/o */
 1653:   wior=0;
 1654: }
 1655: else if (access (filename, W_OK) == 0) {
 1656:   wfam=4; /* w/o */
 1657:   wior=0;
 1658: }
 1659: else {
 1660:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1661: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1662:   wior=0;
 1663: }
 1664: 
 1665: \+
 1666: \+floating
 1667: 
 1668: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1669: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1670: 
 1671: d>f	( d -- r )		float	d_to_f
 1672: #ifdef BUGGY_LONG_LONG
 1673: extern double ldexp(double x, int exp);
 1674: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1675: #else
 1676: r = d;
 1677: #endif
 1678: 
 1679: f>d	( r -- d )		float	f_to_d
 1680: #ifdef BUGGY_LONG_LONG
 1681: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1682: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1683: #else
 1684: d = r;
 1685: #endif
 1686: 
 1687: f!	( r f_addr -- )	float	f_store
 1688: ""Store @i{r} into the float at address @i{f-addr}.""
 1689: *f_addr = r;
 1690: 
 1691: f@	( f_addr -- r )	float	f_fetch
 1692: ""@i{r} is the float at address @i{f-addr}.""
 1693: r = *f_addr;
 1694: 
 1695: df@	( df_addr -- r )	float-ext	d_f_fetch
 1696: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1697: #ifdef IEEE_FP
 1698: r = *df_addr;
 1699: #else
 1700: !! df@
 1701: #endif
 1702: 
 1703: df!	( r df_addr -- )	float-ext	d_f_store
 1704: ""Store @i{r} as double-precision IEEE floating-point value to the
 1705: address @i{df-addr}.""
 1706: #ifdef IEEE_FP
 1707: *df_addr = r;
 1708: #else
 1709: !! df!
 1710: #endif
 1711: 
 1712: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1713: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1714: #ifdef IEEE_FP
 1715: r = *sf_addr;
 1716: #else
 1717: !! sf@
 1718: #endif
 1719: 
 1720: sf!	( r sf_addr -- )	float-ext	s_f_store
 1721: ""Store @i{r} as single-precision IEEE floating-point value to the
 1722: address @i{sf-addr}.""
 1723: #ifdef IEEE_FP
 1724: *sf_addr = r;
 1725: #else
 1726: !! sf!
 1727: #endif
 1728: 
 1729: f+	( r1 r2 -- r3 )	float	f_plus
 1730: r3 = r1+r2;
 1731: 
 1732: f-	( r1 r2 -- r3 )	float	f_minus
 1733: r3 = r1-r2;
 1734: 
 1735: f*	( r1 r2 -- r3 )	float	f_star
 1736: r3 = r1*r2;
 1737: 
 1738: f/	( r1 r2 -- r3 )	float	f_slash
 1739: r3 = r1/r2;
 1740: 
 1741: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1742: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1743: r3 = pow(r1,r2);
 1744: 
 1745: fnegate	( r1 -- r2 )	float	f_negate
 1746: r2 = - r1;
 1747: 
 1748: fdrop	( r -- )		float	f_drop
 1749: 
 1750: fdup	( r -- r r )	float	f_dupe
 1751: 
 1752: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1753: 
 1754: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1755: 
 1756: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1757: 
 1758: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1759: 
 1760: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1761: 
 1762: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1763: ""@code{1 floats +}.""
 1764: f_addr2 = f_addr1+1;
 1765: 
 1766: floats	( n1 -- n2 )	float
 1767: ""@i{n2} is the number of address units of @i{n1} floats.""
 1768: n2 = n1*sizeof(Float);
 1769: 
 1770: floor	( r1 -- r2 )	float
 1771: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1772: /* !! unclear wording */
 1773: r2 = floor(r1);
 1774: 
 1775: fround	( r1 -- r2 )	float	f_round
 1776: ""Round to the nearest integral value.""
 1777: /* !! unclear wording */
 1778: #ifdef HAVE_RINT
 1779: r2 = rint(r1);
 1780: #else
 1781: r2 = floor(r1+0.5);
 1782: /* !! This is not quite true to the rounding rules given in the standard */
 1783: #endif
 1784: 
 1785: fmax	( r1 r2 -- r3 )	float	f_max
 1786: if (r1<r2)
 1787:   r3 = r2;
 1788: else
 1789:   r3 = r1;
 1790: 
 1791: fmin	( r1 r2 -- r3 )	float	f_min
 1792: if (r1<r2)
 1793:   r3 = r1;
 1794: else
 1795:   r3 = r2;
 1796: 
 1797: represent	( r c_addr u -- n f1 f2 )	float
 1798: char *sig;
 1799: int flag;
 1800: int decpt;
 1801: sig=ecvt(r, u, &decpt, &flag);
 1802: n=(r==0 ? 1 : decpt);
 1803: f1=FLAG(flag!=0);
 1804: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1805: memmove(c_addr,sig,u);
 1806: 
 1807: >float	( c_addr u -- flag )	float	to_float
 1808: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1809: character string @i{c-addr u} to internal floating-point
 1810: representation. If the string represents a valid floating-point number
 1811: @i{r} is placed on the floating-point stack and @i{flag} is
 1812: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1813: case and represents the floating-point number 0.""
 1814: /* real signature: c_addr u -- r t / f */
 1815: Float r;
 1816: char *number=cstr(c_addr, u, 1);
 1817: char *endconv;
 1818: int sign = 0;
 1819: if(number[0]=='-') {
 1820:    sign = 1;
 1821:    number++;
 1822:    u--;
 1823: }
 1824: while(isspace((unsigned)(number[--u])) && u>0);
 1825: switch(number[u])
 1826: {
 1827:    case 'd':
 1828:    case 'D':
 1829:    case 'e':
 1830:    case 'E':  break;
 1831:    default :  u++; break;
 1832: }
 1833: number[u]='\0';
 1834: r=strtod(number,&endconv);
 1835: if((flag=FLAG(!(Cell)*endconv)))
 1836: {
 1837:    IF_fpTOS(fp[0] = fpTOS);
 1838:    fp += -1;
 1839:    fpTOS = sign ? -r : r;
 1840: }
 1841: else if(*endconv=='d' || *endconv=='D')
 1842: {
 1843:    *endconv='E';
 1844:    r=strtod(number,&endconv);
 1845:    if((flag=FLAG(!(Cell)*endconv)))
 1846:      {
 1847: 	IF_fpTOS(fp[0] = fpTOS);
 1848: 	fp += -1;
 1849: 	fpTOS = sign ? -r : r;
 1850:      }
 1851: }
 1852: 
 1853: fabs	( r1 -- r2 )	float-ext	f_abs
 1854: r2 = fabs(r1);
 1855: 
 1856: facos	( r1 -- r2 )	float-ext	f_a_cos
 1857: r2 = acos(r1);
 1858: 
 1859: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1860: r2 = asin(r1);
 1861: 
 1862: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1863: r2 = atan(r1);
 1864: 
 1865: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1866: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1867: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1868: r3 = atan2(r1,r2);
 1869: 
 1870: fcos	( r1 -- r2 )	float-ext	f_cos
 1871: r2 = cos(r1);
 1872: 
 1873: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1874: r2 = exp(r1);
 1875: 
 1876: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1877: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1878: #ifdef HAVE_EXPM1
 1879: extern double
 1880: #ifdef NeXT
 1881:               const
 1882: #endif
 1883:                     expm1(double);
 1884: r2 = expm1(r1);
 1885: #else
 1886: r2 = exp(r1)-1.;
 1887: #endif
 1888: 
 1889: fln	( r1 -- r2 )	float-ext	f_l_n
 1890: r2 = log(r1);
 1891: 
 1892: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1893: ""@i{r2}=ln(@i{r1}+1)""
 1894: #ifdef HAVE_LOG1P
 1895: extern double
 1896: #ifdef NeXT
 1897:               const
 1898: #endif
 1899:                     log1p(double);
 1900: r2 = log1p(r1);
 1901: #else
 1902: r2 = log(r1+1.);
 1903: #endif
 1904: 
 1905: flog	( r1 -- r2 )	float-ext	f_log
 1906: ""The decimal logarithm.""
 1907: r2 = log10(r1);
 1908: 
 1909: falog	( r1 -- r2 )	float-ext	f_a_log
 1910: ""@i{r2}=10**@i{r1}""
 1911: extern double pow10(double);
 1912: r2 = pow10(r1);
 1913: 
 1914: fsin	( r1 -- r2 )	float-ext	f_sine
 1915: r2 = sin(r1);
 1916: 
 1917: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1918: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1919: r2 = sin(r1);
 1920: r3 = cos(r1);
 1921: 
 1922: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1923: r2 = sqrt(r1);
 1924: 
 1925: ftan	( r1 -- r2 )	float-ext	f_tan
 1926: r2 = tan(r1);
 1927: :
 1928:  fsincos f/ ;
 1929: 
 1930: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1931: r2 = sinh(r1);
 1932: :
 1933:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1934: 
 1935: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1936: r2 = cosh(r1);
 1937: :
 1938:  fexp fdup 1/f f+ f2/ ;
 1939: 
 1940: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1941: r2 = tanh(r1);
 1942: :
 1943:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1944: 
 1945: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1946: r2 = asinh(r1);
 1947: :
 1948:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1949: 
 1950: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1951: r2 = acosh(r1);
 1952: :
 1953:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1954: 
 1955: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1956: r2 = atanh(r1);
 1957: :
 1958:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1959:  r> IF  fnegate  THEN ;
 1960: 
 1961: sfloats	( n1 -- n2 )	float-ext	s_floats
 1962: ""@i{n2} is the number of address units of @i{n1}
 1963: single-precision IEEE floating-point numbers.""
 1964: n2 = n1*sizeof(SFloat);
 1965: 
 1966: dfloats	( n1 -- n2 )	float-ext	d_floats
 1967: ""@i{n2} is the number of address units of @i{n1}
 1968: double-precision IEEE floating-point numbers.""
 1969: n2 = n1*sizeof(DFloat);
 1970: 
 1971: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1972: ""@i{sf-addr} is the first single-float-aligned address greater
 1973: than or equal to @i{c-addr}.""
 1974: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1975: :
 1976:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1977: 
 1978: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 1979: ""@i{df-addr} is the first double-float-aligned address greater
 1980: than or equal to @i{c-addr}.""
 1981: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 1982: :
 1983:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 1984: 
 1985: \ The following words access machine/OS/installation-dependent
 1986: \   Gforth internals
 1987: \ !! how about environmental queries DIRECT-THREADED,
 1988: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1989: 
 1990: \ local variable implementation primitives
 1991: \+
 1992: \+glocals
 1993: 
 1994: @local#	( #noffset -- w )	gforth	fetch_local_number
 1995: w = *(Cell *)(lp+noffset);
 1996: 
 1997: @local0	( -- w )	new	fetch_local_zero
 1998: w = *(Cell *)(lp+0*sizeof(Cell));
 1999: 
 2000: @local1	( -- w )	new	fetch_local_four
 2001: w = *(Cell *)(lp+1*sizeof(Cell));
 2002: 
 2003: @local2	( -- w )	new	fetch_local_eight
 2004: w = *(Cell *)(lp+2*sizeof(Cell));
 2005: 
 2006: @local3	( -- w )	new	fetch_local_twelve
 2007: w = *(Cell *)(lp+3*sizeof(Cell));
 2008: 
 2009: \+floating
 2010: 
 2011: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2012: r = *(Float *)(lp+noffset);
 2013: 
 2014: f@local0	( -- r )	new	f_fetch_local_zero
 2015: r = *(Float *)(lp+0*sizeof(Float));
 2016: 
 2017: f@local1	( -- r )	new	f_fetch_local_eight
 2018: r = *(Float *)(lp+1*sizeof(Float));
 2019: 
 2020: \+
 2021: 
 2022: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2023: /* this can also be used to implement lp@ */
 2024: c_addr = (Char *)(lp+noffset);
 2025: 
 2026: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2027: ""used with negative immediate values it allocates memory on the
 2028: local stack, a positive immediate argument drops memory from the local
 2029: stack""
 2030: lp += noffset;
 2031: 
 2032: lp-	( -- )	new	minus_four_lp_plus_store
 2033: lp += -sizeof(Cell);
 2034: 
 2035: lp+	( -- )	new	eight_lp_plus_store
 2036: lp += sizeof(Float);
 2037: 
 2038: lp+2	( -- )	new	sixteen_lp_plus_store
 2039: lp += 2*sizeof(Float);
 2040: 
 2041: lp!	( c_addr -- )	gforth	lp_store
 2042: lp = (Address)c_addr;
 2043: 
 2044: >l	( w -- )	gforth	to_l
 2045: lp -= sizeof(Cell);
 2046: *(Cell *)lp = w;
 2047: 
 2048: \+floating
 2049: 
 2050: f>l	( r -- )	gforth	f_to_l
 2051: lp -= sizeof(Float);
 2052: *(Float *)lp = r;
 2053: 
 2054: fpick	( u -- r )		gforth
 2055: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2056: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2057: :
 2058:  floats fp@ + f@ ;
 2059: 
 2060: \+
 2061: \+
 2062: 
 2063: \+OS
 2064: 
 2065: define(`uploop',
 2066:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2067: define(`_uploop',
 2068:        `ifelse($1, `$3', `$5',
 2069: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2070: \ argflist(argnum): Forth argument list
 2071: define(argflist,
 2072:        `ifelse($1, 0, `',
 2073:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2074: \ argdlist(argnum): declare C's arguments
 2075: define(argdlist,
 2076:        `ifelse($1, 0, `',
 2077:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2078: \ argclist(argnum): pass C's arguments
 2079: define(argclist,
 2080:        `ifelse($1, 0, `',
 2081:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2082: \ icall(argnum)
 2083: define(icall,
 2084: `icall$1	( argflist($1)u -- uret )	gforth
 2085: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2086: 
 2087: ')
 2088: define(fcall,
 2089: `fcall$1	( argflist($1)u -- rret )	gforth
 2090: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2091: 
 2092: ')
 2093: 
 2094: \ close ' to keep fontify happy
 2095: 
 2096: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2097: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2098: #ifndef RTLD_GLOBAL
 2099: #define RTLD_GLOBAL 0
 2100: #endif
 2101: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2102: #else
 2103: #  ifdef _WIN32
 2104: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2105: #  else
 2106: #warning Define open-lib!
 2107: u2 = 0;
 2108: #  endif
 2109: #endif
 2110: 
 2111: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2112: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2113: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2114: #else
 2115: #  ifdef _WIN32
 2116: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2117: #  else
 2118: #warning Define lib-sym!
 2119: u3 = 0;
 2120: #  endif
 2121: #endif
 2122: 
 2123: uploop(i, 0, 7, `icall(i)')
 2124: icall(20)
 2125: uploop(i, 0, 7, `fcall(i)')
 2126: fcall(20)
 2127: 
 2128: \+
 2129: 
 2130: up!	( a_addr -- )	gforth	up_store
 2131: UP=up=(char *)a_addr;
 2132: :
 2133:  up ! ;
 2134: Variable UP
 2135: 
 2136: wcall	( u -- )	gforth
 2137: IF_fpTOS(fp[0]=fpTOS);
 2138: FP=fp;
 2139: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2140: fp=FP;
 2141: IF_spTOS(spTOS=sp[0];)
 2142: IF_fpTOS(fpTOS=fp[0]);
 2143: 
 2144: \+file
 2145: 
 2146: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2147: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2148: wior =  IOR(wdirid == 0);
 2149: 
 2150: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2151: struct dirent * dent;
 2152: dent = readdir((DIR *)wdirid);
 2153: wior = 0;
 2154: flag = -1;
 2155: if(dent == NULL) {
 2156:   u2 = 0;
 2157:   flag = 0;
 2158: } else {
 2159:   u2 = strlen(dent->d_name);
 2160:   if(u2 > u1)
 2161:     u2 = u1;
 2162:   memmove(c_addr, dent->d_name, u2);
 2163: }
 2164: 
 2165: close-dir	( wdirid -- wior )	gforth	close_dir
 2166: wior = IOR(closedir((DIR *)wdirid));
 2167: 
 2168: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2169: char * string = cstr(c_addr1, u1, 1);
 2170: char * pattern = cstr(c_addr2, u2, 0);
 2171: flag = FLAG(!fnmatch(pattern, string, 0));
 2172: 
 2173: \+
 2174: 
 2175: newline	( -- c_addr u )	gforth
 2176: ""String containing the newline sequence of the host OS""
 2177: char newline[] = {
 2178: #if defined(unix) || defined(__MACH__)
 2179: /* Darwin/MacOS X sets __MACH__, but not unix. */
 2180: '\n'
 2181: #else
 2182: '\r','\n'
 2183: #endif
 2184: };
 2185: c_addr=newline;
 2186: u=sizeof(newline);
 2187: :
 2188:  "newline count ;
 2189: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2190: 
 2191: \+os
 2192: 
 2193: utime	( -- dtime )	gforth
 2194: ""Report the current time in microseconds since some epoch.""
 2195: struct timeval time1;
 2196: gettimeofday(&time1,NULL);
 2197: dtime = timeval2us(&time1);
 2198: 
 2199: cputime ( -- duser dsystem ) gforth
 2200: ""duser and dsystem are the respective user- and system-level CPU
 2201: times used since the start of the Forth system (excluding child
 2202: processes), in microseconds (the granularity may be much larger,
 2203: however).  On platforms without the getrusage call, it reports elapsed
 2204: time (since some epoch) for duser and 0 for dsystem.""
 2205: #ifdef HAVE_GETRUSAGE
 2206: struct rusage usage;
 2207: getrusage(RUSAGE_SELF, &usage);
 2208: duser = timeval2us(&usage.ru_utime);
 2209: dsystem = timeval2us(&usage.ru_stime);
 2210: #else
 2211: struct timeval time1;
 2212: gettimeofday(&time1,NULL);
 2213: duser = timeval2us(&time1);
 2214: #ifndef BUGGY_LONG_LONG
 2215: dsystem = (DCell)0;
 2216: #else
 2217: dsystem=(DCell){0,0};
 2218: #endif
 2219: #endif
 2220: 
 2221: \+
 2222: 
 2223: \+floating
 2224: 
 2225: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2226: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2227: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2228: ucount elements.""
 2229: for (r=0.; ucount>0; ucount--) {
 2230:   r += *f_addr1 * *f_addr2;
 2231:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2232:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2233: }
 2234: :
 2235:  >r swap 2swap swap 0e r> 0 ?DO
 2236:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2237:  LOOP 2drop 2drop ; 
 2238: 
 2239: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2240: ""vy=ra*vx+vy""
 2241: for (; ucount>0; ucount--) {
 2242:   *f_y += ra * *f_x;
 2243:   f_x = (Float *)(((Address)f_x)+nstridex);
 2244:   f_y = (Float *)(((Address)f_y)+nstridey);
 2245: }
 2246: :
 2247:  >r swap 2swap swap r> 0 ?DO
 2248:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2249:  LOOP 2drop 2drop fdrop ;
 2250: 
 2251: \+
 2252: 
 2253: \+file
 2254: 
 2255: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2256: Cell c;
 2257: flag=-1;
 2258: u3=0;
 2259: for(u2=0; u2<u1; u2++)
 2260: {
 2261:    c = getc((FILE *)wfileid);
 2262:    u3++;
 2263:    if (c=='\n') break;
 2264:    if (c=='\r') {
 2265:      if ((c = getc((FILE *)wfileid))!='\n')
 2266:        ungetc(c,(FILE *)wfileid);
 2267:      else
 2268:        u3++;
 2269:      break;
 2270:    }
 2271:    if (c==EOF) {
 2272: 	flag=FLAG(u2!=0);
 2273: 	break;
 2274:      }
 2275:    c_addr[u2] = (Char)c;
 2276: }
 2277: wior=FILEIO(ferror((FILE *)wfileid));
 2278: 
 2279: \+

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>