File:  [gforth] / gforth / prim
Revision 1.246: download - view: text, annotated - select for diffs
Mon Apr 5 22:17:56 2010 UTC (9 years, 7 months ago) by dvdkhlng
Branches: MAIN
CVS tags: HEAD
support for assembler definitions with host platform's ABI calling conventions
('ABI-CODE')

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005,2006,2007,2008,2009 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation, either version 3
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program. If not, see http://www.gnu.org/licenses/.
   19: 
   20: 
   21: \ WARNING: This file is processed by m4. Make sure your identifiers
   22: \ don't collide with m4's (e.g. by undefining them).
   23: \ 
   24: \ 
   25: \ 
   26: \ This file contains primitive specifications in the following format:
   27: \ 
   28: \ forth name	( stack effect )	category	[pronunciation]
   29: \ [""glossary entry""]
   30: \ C code
   31: \ [:
   32: \ Forth code]
   33: \ 
   34: \ Note: Fields in brackets are optional.  Word specifications have to
   35: \ be separated by at least one empty line
   36: \
   37: \ Both pronounciation and stack items (in the stack effect) must
   38: \ conform to the C identifier syntax or the C compiler will complain.
   39: \ If you don't have a pronounciation field, the Forth name is used,
   40: \ and has to conform to the C identifier syntax.
   41: \ 
   42: \ These specifications are automatically translated into C-code for the
   43: \ interpreter and into some other files. I hope that your C compiler has
   44: \ decent optimization, otherwise the automatically generated code will
   45: \ be somewhat slow. The Forth version of the code is included for manual
   46: \ compilers, so they will need to compile only the important words.
   47: \ 
   48: \ Note that stack pointer adjustment is performed according to stack
   49: \ effect by automatically generated code and NEXT is automatically
   50: \ appended to the C code. Also, you can use the names in the stack
   51: \ effect in the C code. Stack access is automatic. One exception: if
   52: \ your code does not fall through, the results are not stored into the
   53: \ stack. Use different names on both sides of the '--', if you change a
   54: \ value (some stores to the stack are optimized away).
   55: \
   56: \ For superinstructions the syntax is:
   57: \
   58: \ forth-name [/ c-name] = forth-name forth-name ...
   59: \
   60: \ 
   61: \ The stack variables have the following types:
   62: \ 
   63: \ name matches	type
   64: \ f.*		Bool
   65: \ c.*		Char
   66: \ [nw].*	Cell
   67: \ u.*		UCell
   68: \ d.*		DCell
   69: \ ud.*		UDCell
   70: \ r.*		Float
   71: \ a_.*		Cell *
   72: \ c_.*		Char *
   73: \ f_.*		Float *
   74: \ df_.*		DFloat *
   75: \ sf_.*		SFloat *
   76: \ xt.*		XT
   77: \ f83name.*	F83Name *
   78: 
   79: \E stack data-stack   sp Cell
   80: \E stack fp-stack     fp Float
   81: \E stack return-stack rp Cell
   82: \E
   83: \E get-current prefixes set-current
   84: \E 
   85: \E s" Bool"		single data-stack type-prefix f
   86: \E s" Char"		single data-stack type-prefix c
   87: \E s" Cell"		single data-stack type-prefix n
   88: \E s" Cell"		single data-stack type-prefix w
   89: \E s" UCell"		single data-stack type-prefix u
   90: \E s" DCell"		double data-stack type-prefix d
   91: \E s" UDCell"		double data-stack type-prefix ud
   92: \E s" Float"		single fp-stack   type-prefix r
   93: \E s" Cell *"		single data-stack type-prefix a_
   94: \E s" Char *"		single data-stack type-prefix c_
   95: \E s" Float *"		single data-stack type-prefix f_
   96: \E s" DFloat *"		single data-stack type-prefix df_
   97: \E s" SFloat *"		single data-stack type-prefix sf_
   98: \E s" Xt"		single data-stack type-prefix xt
   99: \E s" struct F83Name *"	single data-stack type-prefix f83name
  100: \E s" struct Longname *" single data-stack type-prefix longname
  101: \E 
  102: \E data-stack   stack-prefix S:
  103: \E fp-stack     stack-prefix F:
  104: \E return-stack stack-prefix R:
  105: \E inst-stream  stack-prefix #
  106: \E 
  107: \E set-current
  108: \E store-optimization on
  109: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  110: \E
  111: \E `include-skipped-insts' on \ static superinsts include cells for components
  112: \E                            \ useful for dynamic programming and
  113: \E                            \ superinsts across entry points
  114: 
  115: \ 
  116: \ 
  117: \ 
  118: \ In addition the following names can be used:
  119: \ ip	the instruction pointer
  120: \ sp	the data stack pointer
  121: \ rp	the parameter stack pointer
  122: \ lp	the locals stack pointer
  123: \ NEXT	executes NEXT
  124: \ cfa	
  125: \ NEXT1	executes NEXT1
  126: \ FLAG(x)	makes a Forth flag from a C flag
  127: \ 
  128: \ 
  129: \ 
  130: \ Percentages in comments are from Koopmans book: average/maximum use
  131: \ (taken from four, not very representative benchmarks)
  132: \ 
  133: \ 
  134: \ 
  135: \ To do:
  136: \ 
  137: \ throw execute, cfa and NEXT1 out?
  138: \ macroize *ip, ip++, *ip++ (pipelining)?
  139: 
  140: \ Stack caching setup
  141: 
  142: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  143: 
  144: \ these m4 macros would collide with identifiers
  145: undefine(`index')
  146: undefine(`shift')
  147: undefine(`symbols')
  148: 
  149: \F 0 [if]
  150: 
  151: \ run-time routines for non-primitives.  They are defined as
  152: \ primitives, because that simplifies things.
  153: 
  154: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  155: ""run-time routine for colon definitions""
  156: #ifdef NO_IP
  157: a_retaddr = next_code;
  158: INST_TAIL;
  159: goto **(Label *)PFA(CFA);
  160: #else /* !defined(NO_IP) */
  161: a_retaddr = (Cell *)IP;
  162: SET_IP((Xt *)PFA(CFA));
  163: #endif /* !defined(NO_IP) */
  164: 
  165: (docon) ( -- w )	gforth-internal	paren_docon
  166: ""run-time routine for constants""
  167: w = *(Cell *)PFA(CFA);
  168: #ifdef NO_IP
  169: INST_TAIL;
  170: goto *next_code;
  171: #endif /* defined(NO_IP) */
  172: 
  173: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  174: ""run-time routine for variables and CREATEd words""
  175: a_body = PFA(CFA);
  176: #ifdef NO_IP
  177: INST_TAIL;
  178: goto *next_code;
  179: #endif /* defined(NO_IP) */
  180: 
  181: (douser) ( -- a_user )	gforth-internal	paren_douser
  182: ""run-time routine for constants""
  183: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  184: #ifdef NO_IP
  185: INST_TAIL;
  186: goto *next_code;
  187: #endif /* defined(NO_IP) */
  188: 
  189: (dodefer) ( -- )	gforth-internal	paren_dodefer
  190: ""run-time routine for deferred words""
  191: #ifndef NO_IP
  192: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  193: #endif /* !defined(NO_IP) */
  194: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  195: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  196: 
  197: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  198: ""run-time routine for fields""
  199: n2 = n1 + *(Cell *)PFA(CFA);
  200: #ifdef NO_IP
  201: INST_TAIL;
  202: goto *next_code;
  203: #endif /* defined(NO_IP) */
  204: 
  205: (dovalue) ( -- w )	gforth-internal	paren_doval
  206: ""run-time routine for constants""
  207: w = *(Cell *)PFA(CFA);
  208: #ifdef NO_IP
  209: INST_TAIL;
  210: goto *next_code;
  211: #endif /* defined(NO_IP) */
  212: 
  213: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  214: ""run-time routine for @code{does>}-defined words""
  215: #ifdef NO_IP
  216: a_retaddr = next_code;
  217: a_body = PFA(CFA);
  218: INST_TAIL;
  219: #ifdef DEBUG
  220: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  221: #endif
  222: goto **(Label *)DOES_CODE1(CFA);
  223: #else /* !defined(NO_IP) */
  224: a_retaddr = (Cell *)IP;
  225: a_body = PFA(CFA);
  226: #ifdef DEBUG
  227: fprintf(stderr, "dodoes to %x, push %x\n", a_retaddr, a_body);
  228: #endif
  229: SET_IP(DOES_CODE1(CFA));
  230: #endif /* !defined(NO_IP) */
  231: 
  232: (does-handler) ( -- )	gforth-internal	paren_does_handler
  233: ""just a slot to have an encoding for the DOESJUMP, 
  234: which is no longer used anyway (!! eliminate this)""
  235: 
  236: (doabicode) ( s:... f:... -- s:... f:...)	gforth-internal	paren_doabicode
  237: ""run-time routine for ABI-CODE definitions""
  238: struct abi_code_ret_t {  
  239:     Cell *sp; 
  240:     double * fp; 
  241: } ret = ((struct abi_code_ret_t(*)(Cell *, double *))(PFA(CFA)))(sp, fp);
  242: sp = ret.sp;
  243: fp = ret.fp;
  244: #ifdef NO_IP
  245: INST_TAIL;
  246: goto *next_code;
  247: #endif /* defined(NO_IP) */
  248: 
  249: \F [endif]
  250: 
  251: \g control
  252: 
  253: noop	( -- )		gforth
  254: :
  255:  ;
  256: 
  257: call	( #a_callee -- R:a_retaddr )	new
  258: ""Call callee (a variant of docol with inline argument).""
  259: #ifdef NO_IP
  260: assert(0);
  261: INST_TAIL;
  262: JUMP(a_callee);
  263: #else
  264: #ifdef DEBUG
  265:     {
  266:       CFA_TO_NAME((((Cell *)a_callee)-2));
  267:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  268: 	      len,name);
  269:     }
  270: #endif
  271: a_retaddr = (Cell *)IP;
  272: SET_IP((Xt *)a_callee);
  273: #endif
  274: 
  275: execute	( xt -- )		core
  276: ""Perform the semantics represented by the execution token, @i{xt}.""
  277: #ifdef DEBUG
  278: fprintf(stderr, "execute %08x\n", xt);
  279: #endif
  280: #ifndef NO_IP
  281: ip=IP;
  282: #endif
  283: SUPER_END;
  284: VM_JUMP(EXEC1(xt));
  285: 
  286: perform	( a_addr -- )	gforth
  287: ""@code{@@ execute}.""
  288: /* and pfe */
  289: #ifndef NO_IP
  290: ip=IP;
  291: #endif
  292: SUPER_END;
  293: VM_JUMP(EXEC1(*(Xt *)a_addr));
  294: :
  295:  @ execute ;
  296: 
  297: ;s	( R:w -- )		gforth	semis
  298: ""The primitive compiled by @code{EXIT}.""
  299: #ifdef NO_IP
  300: INST_TAIL;
  301: goto *(void *)w;
  302: #else
  303: SET_IP((Xt *)w);
  304: #endif
  305: 
  306: unloop	( R:w1 R:w2 -- )	core
  307: /* !! alias for 2rdrop */
  308: :
  309:  r> rdrop rdrop >r ;
  310: 
  311: lit-perform	( #a_addr -- )	new	lit_perform
  312: #ifndef NO_IP
  313: ip=IP;
  314: #endif
  315: SUPER_END;
  316: VM_JUMP(EXEC1(*(Xt *)a_addr));
  317: 
  318: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  319: #ifdef NO_IP
  320: /* compiled to LIT CALL by compile_prim */
  321: assert(0);
  322: #else
  323: a_pfa = PFA(a_cfa);
  324: nest = (Cell)IP;
  325: #ifdef DEBUG
  326:     {
  327:       CFA_TO_NAME(a_cfa);
  328:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  329: 	      (Cell)ip,(Cell)a_cfa,len,name);
  330:     }
  331: #endif
  332: SET_IP(DOES_CODE1(a_cfa));
  333: #endif
  334: 
  335: \+glocals
  336: 
  337: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  338: /* this will probably not be used */
  339: lp += nlocals;
  340: #ifdef NO_IP
  341: INST_TAIL;
  342: JUMP(a_target);
  343: #else
  344: SET_IP((Xt *)a_target);
  345: #endif
  346: 
  347: \+
  348: 
  349: branch	( #a_target -- )	gforth
  350: #ifdef NO_IP
  351: INST_TAIL;
  352: JUMP(a_target);
  353: #else
  354: SET_IP((Xt *)a_target);
  355: #endif
  356: :
  357:  r> @ >r ;
  358: 
  359: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  360: \ this is non-syntactical: code must open a brace that is closed by the macro
  361: define(condbranch,
  362: $1 ( `#'a_target $2 ) $3
  363: $4	#ifdef NO_IP
  364: INST_TAIL;
  365: #endif
  366: $5	#ifdef NO_IP
  367: JUMP(a_target);
  368: #else
  369: SET_IP((Xt *)a_target);
  370: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  371: #endif
  372: }
  373: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  374: $6
  375: 
  376: \+glocals
  377: 
  378: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  379: $4	#ifdef NO_IP
  380: INST_TAIL;
  381: #endif
  382: $5	lp += nlocals;
  383: #ifdef NO_IP
  384: JUMP(a_target);
  385: #else
  386: SET_IP((Xt *)a_target);
  387: ifelse(condbranch_opt,`1',`INST_TAIL; NEXT_P2;',`/* condbranch_opt=0 */')
  388: #endif
  389: }
  390: ifelse(condbranch_opt,`1',`SUPER_CONTINUE;',`/* condbranch_opt=0 */')
  391: 
  392: \+
  393: )
  394: 
  395: condbranch(?branch,f --,f83	question_branch,
  396: ,if (f==0) {
  397: ,:
  398:  0= dup 0=          \ !f f
  399:  r> tuck cell+      \ !f branchoffset f IP+
  400:  and -rot @ and or  \ f&IP+|!f&branch
  401:  >r ;)
  402: 
  403: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  404: \ is only used in if's (yet)
  405: 
  406: \+xconds
  407: 
  408: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  409: ""The run-time procedure compiled by @code{?DUP-IF}.""
  410: if (f==0) {
  411: #ifdef NO_IP
  412: INST_TAIL;
  413: JUMP(a_target);
  414: #else
  415: SET_IP((Xt *)a_target);
  416: #endif
  417: } else {
  418: sp--;
  419: sp[0]=f;
  420: }
  421: 
  422: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  423: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  424: if (f!=0) {
  425:   sp--;
  426:   sp[0]=f;
  427: #ifdef NO_IP
  428:   JUMP(a_target);
  429: #else
  430:   SET_IP((Xt *)a_target);
  431: #endif
  432: }
  433: 
  434: \+
  435: \fhas? skiploopprims 0= [IF]
  436: 
  437: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  438: n2=n1-1;
  439: ,if (n1) {
  440: ,:
  441:  r> r> dup 1- >r
  442:  IF @ >r ELSE cell+ >r THEN ;)
  443: 
  444: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  445: n2=n1+1;
  446: ,if (n2 != nlimit) {
  447: ,:
  448:  r> r> 1+ r> 2dup =
  449:  IF >r 1- >r cell+ >r
  450:  ELSE >r >r @ >r THEN ;)
  451: 
  452: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  453: /* !! check this thoroughly */
  454: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  455: /* dependent upon two's complement arithmetic */
  456: Cell olddiff = n1-nlimit;
  457: n2=n1+n;	
  458: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  459:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  460:     >=0) { /* & is used to avoid having two branches for gforth-native */
  461: ,:
  462:  r> swap
  463:  r> r> 2dup - >r
  464:  2 pick r@ + r@ xor 0< 0=
  465:  3 pick r> xor 0< 0= or
  466:  IF    >r + >r @ >r
  467:  ELSE  >r >r drop cell+ >r THEN ;)
  468: 
  469: \+xconds
  470: 
  471: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  472: UCell olddiff = n1-nlimit;
  473: n2=n1-u;
  474: ,if (olddiff>u) {
  475: ,)
  476: 
  477: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  478: ""The run-time procedure compiled by S+LOOP. It loops until the index
  479: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  480: version of (+LOOP).""
  481: /* !! check this thoroughly */
  482: Cell diff = n1-nlimit;
  483: Cell newdiff = diff+n;
  484: if (n<0) {
  485:     diff = -diff;
  486:     newdiff = -newdiff;
  487: }
  488: n2=n1+n;
  489: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  490: ,)
  491: 
  492: \+
  493: 
  494: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  495: /* or (for) = >r -- collides with unloop! */
  496: nlimit=0;
  497: :
  498:  r> swap 0 >r >r >r ;
  499: 
  500: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  501: :
  502:  r> swap rot >r >r >r ;
  503: 
  504: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  505: #ifdef NO_IP
  506:     INST_TAIL;
  507: #endif
  508: if (nstart == nlimit) {
  509: #ifdef NO_IP
  510:     JUMP(a_target);
  511: #else
  512:     SET_IP((Xt *)a_target);
  513: #endif
  514: }
  515: :
  516:   2dup =
  517:   IF   r> swap rot >r >r
  518:        @ >r
  519:   ELSE r> swap rot >r >r
  520:        cell+ >r
  521:   THEN ;				\ --> CORE-EXT
  522: 
  523: \+xconds
  524: 
  525: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  526: #ifdef NO_IP
  527:     INST_TAIL;
  528: #endif
  529: if (nstart >= nlimit) {
  530: #ifdef NO_IP
  531:     JUMP(a_target);
  532: #else
  533:     SET_IP((Xt *)a_target);
  534: #endif
  535: }
  536: :
  537:  swap 2dup
  538:  r> swap >r swap >r
  539:  >=
  540:  IF
  541:      @
  542:  ELSE
  543:      cell+
  544:  THEN  >r ;
  545: 
  546: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  547: #ifdef NO_IP
  548:     INST_TAIL;
  549: #endif
  550: if (ustart >= ulimit) {
  551: #ifdef NO_IP
  552: JUMP(a_target);
  553: #else
  554: SET_IP((Xt *)a_target);
  555: #endif
  556: }
  557: :
  558:  swap 2dup
  559:  r> swap >r swap >r
  560:  u>=
  561:  IF
  562:      @
  563:  ELSE
  564:      cell+
  565:  THEN  >r ;
  566: 
  567: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  568: #ifdef NO_IP
  569:     INST_TAIL;
  570: #endif
  571: if (nstart <= nlimit) {
  572: #ifdef NO_IP
  573: JUMP(a_target);
  574: #else
  575: SET_IP((Xt *)a_target);
  576: #endif
  577: }
  578: :
  579:  swap 2dup
  580:  r> swap >r swap >r
  581:  <=
  582:  IF
  583:      @
  584:  ELSE
  585:      cell+
  586:  THEN  >r ;
  587: 
  588: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  589: #ifdef NO_IP
  590:     INST_TAIL;
  591: #endif
  592: if (ustart <= ulimit) {
  593: #ifdef NO_IP
  594: JUMP(a_target);
  595: #else
  596: SET_IP((Xt *)a_target);
  597: #endif
  598: }
  599: :
  600:  swap 2dup
  601:  r> swap >r swap >r
  602:  u<=
  603:  IF
  604:      @
  605:  ELSE
  606:      cell+
  607:  THEN  >r ;
  608: 
  609: \+
  610: 
  611: \ don't make any assumptions where the return stack is!!
  612: \ implement this in machine code if it should run quickly!
  613: 
  614: i	( R:n -- R:n n )		core
  615: :
  616: \ rp@ cell+ @ ;
  617:   r> r> tuck >r >r ;
  618: 
  619: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  620: :
  621: \ rp@ cell+ cell+ @ ;
  622:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  623: variable itmp
  624: 
  625: j	( R:w R:w1 R:w2 -- w R:w R:w1 R:w2 )	core
  626: :
  627: \ rp@ cell+ cell+ cell+ @ ;
  628:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  629: [IFUNDEF] itmp variable itmp [THEN]
  630: 
  631: k	( R:w R:w1 R:w2 R:w3 R:w4 -- w R:w R:w1 R:w2 R:w3 R:w4 )	gforth
  632: :
  633: \ rp@ [ 5 cells ] Literal + @ ;
  634:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  635: [IFUNDEF] itmp variable itmp [THEN]
  636: 
  637: \f[THEN]
  638: 
  639: \ digit is high-level: 0/0%
  640: 
  641: abi-call	( #a_callee s:... f:... -- s:... f:... )	gforth	abi_call
  642: struct abi_code_ret_t {  
  643:     Cell *sp; 
  644:     double * fp; 
  645: } ret = ((struct abi_code_ret_t(*)(Cell *, double *))(a_callee))(sp, fp);
  646: sp = ret.sp;
  647: fp = ret.fp;
  648: 
  649: \g strings
  650: 
  651: move	( c_from c_to ucount -- )		core
  652: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  653: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  654: /* !! note that the standard specifies addr, not c-addr */
  655: memmove(c_to,c_from,ucount);
  656: /* make an Ifdef for bsd and others? */
  657: :
  658:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  659: 
  660: cmove	( c_from c_to u -- )	string	c_move
  661: ""Copy the contents of @i{ucount} characters from data space at
  662: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  663: from low address to high address; i.e., for overlapping areas it is
  664: safe if @i{c-to}=<@i{c-from}.""
  665: cmove(c_from,c_to,u);
  666: :
  667:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  668: 
  669: cmove>	( c_from c_to u -- )	string	c_move_up
  670: ""Copy the contents of @i{ucount} characters from data space at
  671: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  672: from high address to low address; i.e., for overlapping areas it is
  673: safe if @i{c-to}>=@i{c-from}.""
  674: cmove_up(c_from,c_to,u);
  675: :
  676:  dup 0= IF  drop 2drop exit  THEN
  677:  rot over + -rot bounds swap 1-
  678:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  679: 
  680: fill	( c_addr u c -- )	core
  681: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  682: memset(c_addr,c,u);
  683: :
  684:  -rot bounds
  685:  ?DO  dup I c!  LOOP  drop ;
  686: 
  687: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  688: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  689: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  690: is 1. Currently this is based on the machine's character
  691: comparison. In the future, this may change to consider the current
  692: locale and its collation order.""
  693: /* close ' to keep fontify happy */ 
  694: n = compare(c_addr1, u1, c_addr2, u2);
  695: :
  696:  rot 2dup swap - >r min swap -text dup
  697:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  698: : -text ( c_addr1 u c_addr2 -- n )
  699:  swap bounds
  700:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  701:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  702: : sgn ( n -- -1/0/1 )
  703:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  704: 
  705: \ -text is only used by replaced primitives now; move it elsewhere
  706: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  707: \ n = memcmp(c_addr1, c_addr2, u);
  708: \ if (n<0)
  709: \   n = -1;
  710: \ else if (n>0)
  711: \   n = 1;
  712: \ :
  713: \  swap bounds
  714: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  715: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  716: \ : sgn ( n -- -1/0/1 )
  717: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  718: 
  719: toupper	( c1 -- c2 )	gforth
  720: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  721: is the equivalent upper-case character. All other characters are unchanged.""
  722: c2 = toupper(c1);
  723: :
  724:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  725: 
  726: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	gforth
  727: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  728: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  729: is 1. Currently this is based on the machine's character
  730: comparison. In the future, this may change to consider the current
  731: locale and its collation order.""
  732: /* close ' to keep fontify happy */ 
  733: n = capscompare(c_addr1, u1, c_addr2, u2);
  734: 
  735: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  736: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  737: characters from the start of the string.""
  738: c_addr2 = c_addr1+n;
  739: u2 = u1-n;
  740: :
  741:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  742: 
  743: \g arith
  744: 
  745: lit	( #w -- w )		gforth
  746: :
  747:  r> dup @ swap cell+ >r ;
  748: 
  749: +	( n1 n2 -- n )		core	plus
  750: n = n1+n2;
  751: 
  752: \ lit+ / lit_plus = lit +
  753: 
  754: lit+	( n1 #n2 -- n )		new	lit_plus
  755: #ifdef DEBUG
  756: fprintf(stderr, "lit+ %08x\n", n2);
  757: #endif
  758: n=n1+n2;
  759: 
  760: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  761: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  762: ""add @i{n3} to @i{n1} (giving @i{n})""
  763: n = n1+n3;
  764: :
  765:  rot + swap ;
  766: 
  767: -	( n1 n2 -- n )		core	minus
  768: n = n1-n2;
  769: :
  770:  negate + ;
  771: 
  772: negate	( n1 -- n2 )		core
  773: /* use minus as alias */
  774: n2 = -n1;
  775: :
  776:  invert 1+ ;
  777: 
  778: 1+	( n1 -- n2 )		core		one_plus
  779: n2 = n1+1;
  780: :
  781:  1 + ;
  782: 
  783: 1-	( n1 -- n2 )		core		one_minus
  784: n2 = n1-1;
  785: :
  786:  1 - ;
  787: 
  788: max	( n1 n2 -- n )	core
  789: if (n1<n2)
  790:   n = n2;
  791: else
  792:   n = n1;
  793: :
  794:  2dup < IF swap THEN drop ;
  795: 
  796: min	( n1 n2 -- n )	core
  797: if (n1<n2)
  798:   n = n1;
  799: else
  800:   n = n2;
  801: :
  802:  2dup > IF swap THEN drop ;
  803: 
  804: abs	( n -- u )	core
  805: if (n<0)
  806:   u = -n;
  807: else
  808:   u = n;
  809: :
  810:  dup 0< IF negate THEN ;
  811: 
  812: *	( n1 n2 -- n )		core	star
  813: n = n1*n2;
  814: :
  815:  um* drop ;
  816: 
  817: /	( n1 n2 -- n )		core	slash
  818: n = n1/n2;
  819: if (CHECK_DIVISION_SW && n2 == 0)
  820:   throw(BALL_DIVZERO);
  821: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  822:   throw(BALL_RESULTRANGE);
  823: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  824:   n--;
  825: :
  826:  /mod nip ;
  827: 
  828: mod	( n1 n2 -- n )		core
  829: n = n1%n2;
  830: if (CHECK_DIVISION_SW && n2 == 0)
  831:   throw(BALL_DIVZERO);
  832: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  833:   throw(BALL_RESULTRANGE);
  834: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  835: :
  836:  /mod drop ;
  837: 
  838: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  839: n4 = n1/n2;
  840: n3 = n1%n2; /* !! is this correct? look into C standard! */
  841: if (CHECK_DIVISION_SW && n2 == 0)
  842:   throw(BALL_DIVZERO);
  843: if (CHECK_DIVISION_SW && n2 == -1 && n1 == CELL_MIN)
  844:   throw(BALL_RESULTRANGE);
  845: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  846:   n4--;
  847:   n3+=n2;
  848: }
  849: :
  850:  >r s>d r> fm/mod ;
  851: 
  852: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  853: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  854: #ifdef BUGGY_LL_MUL
  855: DCell d = mmul(n1,n2);
  856: #else
  857: DCell d = (DCell)n1 * (DCell)n2;
  858: #endif
  859: #ifdef ASM_SM_SLASH_REM
  860: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, n4, n5);
  861: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  862:   if (CHECK_DIVISION && n5 == CELL_MIN)
  863:     throw(BALL_RESULTRANGE);
  864:   n5--;
  865:   n4+=n3;
  866: }
  867: #else
  868: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  869: n4=DHI(r);
  870: n5=DLO(r);
  871: #endif
  872: :
  873:  >r m* r> fm/mod ;
  874: 
  875: */	( n1 n2 n3 -- n4 )	core	star_slash
  876: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  877: #ifdef BUGGY_LL_MUL
  878: DCell d = mmul(n1,n2);
  879: #else
  880: DCell d = (DCell)n1 * (DCell)n2;
  881: #endif
  882: #ifdef ASM_SM_SLASH_REM
  883: Cell remainder;
  884: ASM_SM_SLASH_REM(DLO(d), DHI(d), n3, remainder, n4);
  885: if (FLOORED_DIV && ((DHI(d)^n3)<0) && remainder!=0) {
  886:   if (CHECK_DIVISION && n4 == CELL_MIN)
  887:     throw(BALL_RESULTRANGE);
  888:   n4--;
  889: }
  890: #else
  891: DCell r = FLOORED_DIV ? fmdiv(d,n3) : smdiv(d,n3);
  892: n4=DLO(r);
  893: #endif
  894: :
  895:  */mod nip ;
  896: 
  897: 2*	( n1 -- n2 )		core		two_star
  898: ""Shift left by 1; also works on unsigned numbers""
  899: n2 = 2*n1;
  900: :
  901:  dup + ;
  902: 
  903: 2/	( n1 -- n2 )		core		two_slash
  904: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  905: division by 2 (note that @code{/} not necessarily floors).""
  906: n2 = n1>>1;
  907: :
  908:  dup MINI and IF 1 ELSE 0 THEN
  909:  [ bits/char cell * 1- ] literal 
  910:  0 DO 2* swap dup 2* >r MINI and 
  911:      IF 1 ELSE 0 THEN or r> swap
  912:  LOOP nip ;
  913: 
  914: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  915: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  916: #ifdef ASM_SM_SLASH_REM
  917: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  918: if (((DHI(d1)^n1)<0) && n2!=0) {
  919:   if (CHECK_DIVISION && n3 == CELL_MIN)
  920:     throw(BALL_RESULTRANGE);
  921:   n3--;
  922:   n2+=n1;
  923: }
  924: #else /* !defined(ASM_SM_SLASH_REM) */
  925: DCell r = fmdiv(d1,n1);
  926: n2=DHI(r);
  927: n3=DLO(r);
  928: #endif /* !defined(ASM_SM_SLASH_REM) */
  929: :
  930:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  931:  over       0< IF  tuck + swap  THEN
  932:  um/mod
  933:  r> 0< IF  swap negate swap  THEN ;
  934: 
  935: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  936: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  937: #ifdef ASM_SM_SLASH_REM
  938: ASM_SM_SLASH_REM(DLO(d1), DHI(d1), n1, n2, n3);
  939: #else /* !defined(ASM_SM_SLASH_REM) */
  940: DCell r = smdiv(d1,n1);
  941: n2=DHI(r);
  942: n3=DLO(r);
  943: #endif /* !defined(ASM_SM_SLASH_REM) */
  944: :
  945:  over >r dup >r abs -rot
  946:  dabs rot um/mod
  947:  r> r@ xor 0< IF       negate       THEN
  948:  r>        0< IF  swap negate swap  THEN ;
  949: 
  950: m*	( n1 n2 -- d )		core	m_star
  951: #ifdef BUGGY_LL_MUL
  952: d = mmul(n1,n2);
  953: #else
  954: d = (DCell)n1 * (DCell)n2;
  955: #endif
  956: :
  957:  2dup      0< and >r
  958:  2dup swap 0< and >r
  959:  um* r> - r> - ;
  960: 
  961: um*	( u1 u2 -- ud )		core	u_m_star
  962: /* use u* as alias */
  963: #ifdef BUGGY_LL_MUL
  964: ud = ummul(u1,u2);
  965: #else
  966: ud = (UDCell)u1 * (UDCell)u2;
  967: #endif
  968: :
  969:    0 -rot dup [ 8 cells ] literal -
  970:    DO
  971: 	dup 0< I' and d2*+ drop
  972:    LOOP ;
  973: : d2*+ ( ud n -- ud+n c )
  974:    over MINI
  975:    and >r >r 2dup d+ swap r> + swap r> ;
  976: 
  977: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  978: ""ud=u3*u1+u2, u1>u2>=0""
  979: #ifdef ASM_UM_SLASH_MOD
  980: ASM_UM_SLASH_MOD(DLO(ud), DHI(ud), u1, u2, u3);
  981: #else /* !defined(ASM_UM_SLASH_MOD) */
  982: UDCell r = umdiv(ud,u1);
  983: u2=DHI(r);
  984: u3=DLO(r);
  985: #endif /* !defined(ASM_UM_SLASH_MOD) */
  986: :
  987:    0 swap [ 8 cells 1 + ] literal 0
  988:    ?DO /modstep
  989:    LOOP drop swap 1 rshift or swap ;
  990: : /modstep ( ud c R: u -- ud-?u c R: u )
  991:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  992: : d2*+ ( ud n -- ud+n c )
  993:    over MINI
  994:    and >r >r 2dup d+ swap r> + swap r> ;
  995: 
  996: m+	( d1 n -- d2 )		double		m_plus
  997: #ifdef BUGGY_LL_ADD
  998: DLO_IS(d2, DLO(d1)+n);
  999: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1000: #else
 1001: d2 = d1+n;
 1002: #endif
 1003: :
 1004:  s>d d+ ;
 1005: 
 1006: d+	( d1 d2 -- d )		double	d_plus
 1007: #ifdef BUGGY_LL_ADD
 1008: DLO_IS(d, DLO(d1) + DLO(d2));
 1009: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1010: #else
 1011: d = d1+d2;
 1012: #endif
 1013: :
 1014:  rot + >r tuck + swap over u> r> swap - ;
 1015: 
 1016: d-	( d1 d2 -- d )		double		d_minus
 1017: #ifdef BUGGY_LL_ADD
 1018: DLO_IS(d, DLO(d1) - DLO(d2));
 1019: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1020: #else
 1021: d = d1-d2;
 1022: #endif
 1023: :
 1024:  dnegate d+ ;
 1025: 
 1026: dnegate	( d1 -- d2 )		double	d_negate
 1027: /* use dminus as alias */
 1028: #ifdef BUGGY_LL_ADD
 1029: d2 = dnegate(d1);
 1030: #else
 1031: d2 = -d1;
 1032: #endif
 1033: :
 1034:  invert swap negate tuck 0= - ;
 1035: 
 1036: d2*	( d1 -- d2 )		double		d_two_star
 1037: ""Shift left by 1; also works on unsigned numbers""
 1038: d2 = DLSHIFT(d1,1);
 1039: :
 1040:  2dup d+ ;
 1041: 
 1042: d2/	( d1 -- d2 )		double		d_two_slash
 1043: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1044: division by 2.""
 1045: #ifdef BUGGY_LL_SHIFT
 1046: DHI_IS(d2, DHI(d1)>>1);
 1047: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1048: #else
 1049: d2 = d1>>1;
 1050: #endif
 1051: :
 1052:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1053:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1054: 
 1055: and	( w1 w2 -- w )		core
 1056: w = w1&w2;
 1057: 
 1058: or	( w1 w2 -- w )		core
 1059: w = w1|w2;
 1060: :
 1061:  invert swap invert and invert ;
 1062: 
 1063: xor	( w1 w2 -- w )		core	x_or
 1064: w = w1^w2;
 1065: 
 1066: invert	( w1 -- w2 )		core
 1067: w2 = ~w1;
 1068: :
 1069:  MAXU xor ;
 1070: 
 1071: rshift	( u1 n -- u2 )		core	r_shift
 1072: ""Logical shift right by @i{n} bits.""
 1073: #ifdef BROKEN_SHIFT
 1074:   u2 = rshift(u1, n);
 1075: #else
 1076:   u2 = u1 >> n;
 1077: #endif
 1078: :
 1079:     0 ?DO 2/ MAXI and LOOP ;
 1080: 
 1081: lshift	( u1 n -- u2 )		core	l_shift
 1082: #ifdef BROKEN_SHIFT
 1083:   u2 = lshift(u1, n);
 1084: #else
 1085:   u2 = u1 << n;
 1086: #endif
 1087: :
 1088:     0 ?DO 2* LOOP ;
 1089: 
 1090: \g compare
 1091: 
 1092: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1093: define(comparisons,
 1094: $1=	( $2 -- f )		$6	$3equals
 1095: f = FLAG($4==$5);
 1096: :
 1097:     [ char $1x char 0 = [IF]
 1098: 	] IF false ELSE true THEN [
 1099:     [ELSE]
 1100: 	] xor 0= [
 1101:     [THEN] ] ;
 1102: 
 1103: $1<>	( $2 -- f )		$7	$3not_equals
 1104: f = FLAG($4!=$5);
 1105: :
 1106:     [ char $1x char 0 = [IF]
 1107: 	] IF true ELSE false THEN [
 1108:     [ELSE]
 1109: 	] xor 0<> [
 1110:     [THEN] ] ;
 1111: 
 1112: $1<	( $2 -- f )		$8	$3less_than
 1113: f = FLAG($4<$5);
 1114: :
 1115:     [ char $1x char 0 = [IF]
 1116: 	] MINI and 0<> [
 1117:     [ELSE] char $1x char u = [IF]
 1118: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1119: 	[ELSE]
 1120: 	    ] MINI xor >r MINI xor r> u< [
 1121: 	[THEN]
 1122:     [THEN] ] ;
 1123: 
 1124: $1>	( $2 -- f )		$9	$3greater_than
 1125: f = FLAG($4>$5);
 1126: :
 1127:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1128:     $1< ;
 1129: 
 1130: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1131: f = FLAG($4<=$5);
 1132: :
 1133:     $1> 0= ;
 1134: 
 1135: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1136: f = FLAG($4>=$5);
 1137: :
 1138:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1139:     $1<= ;
 1140: 
 1141: )
 1142: 
 1143: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1144: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1145: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1146: 
 1147: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1148: define(dcomparisons,
 1149: $1=	( $2 -- f )		$6	$3equals
 1150: #ifdef BUGGY_LL_CMP
 1151: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1152: #else
 1153: f = FLAG($4==$5);
 1154: #endif
 1155: 
 1156: $1<>	( $2 -- f )		$7	$3not_equals
 1157: #ifdef BUGGY_LL_CMP
 1158: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1159: #else
 1160: f = FLAG($4!=$5);
 1161: #endif
 1162: 
 1163: $1<	( $2 -- f )		$8	$3less_than
 1164: #ifdef BUGGY_LL_CMP
 1165: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1166: #else
 1167: f = FLAG($4<$5);
 1168: #endif
 1169: 
 1170: $1>	( $2 -- f )		$9	$3greater_than
 1171: #ifdef BUGGY_LL_CMP
 1172: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1173: #else
 1174: f = FLAG($4>$5);
 1175: #endif
 1176: 
 1177: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1178: #ifdef BUGGY_LL_CMP
 1179: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1180: #else
 1181: f = FLAG($4<=$5);
 1182: #endif
 1183: 
 1184: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1185: #ifdef BUGGY_LL_CMP
 1186: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1187: #else
 1188: f = FLAG($4>=$5);
 1189: #endif
 1190: 
 1191: )
 1192: 
 1193: \+dcomps
 1194: 
 1195: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1196: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1197: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1198: 
 1199: \+
 1200: 
 1201: within	( u1 u2 u3 -- f )		core-ext
 1202: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1203: unsigned and signed numbers (but not a mixture).  Another way to think
 1204: about this word is to consider the numbers as a circle (wrapping
 1205: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1206: min-n for signed numbers); now consider the range from u2 towards
 1207: increasing numbers up to and excluding u3 (giving an empty range if
 1208: u2=u3); if u1 is in this range, @code{within} returns true.""
 1209: f = FLAG(u1-u2 < u3-u2);
 1210: :
 1211:  over - >r - r> u< ;
 1212: 
 1213: \g stack
 1214: 
 1215: useraddr	( #u -- a_addr )	new
 1216: a_addr = (Cell *)(up+u);
 1217: 
 1218: up!	( a_addr -- )	gforth	up_store
 1219: gforth_UP=up=(Address)a_addr;
 1220: :
 1221:  up ! ;
 1222: Variable UP
 1223: 
 1224: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1225: a_addr = sp;
 1226: 
 1227: sp!	( a_addr -- S:... )		gforth		sp_store
 1228: sp = a_addr;
 1229: 
 1230: rp@	( -- a_addr )		gforth		rp_fetch
 1231: a_addr = rp;
 1232: 
 1233: rp!	( a_addr -- )		gforth		rp_store
 1234: rp = a_addr;
 1235: 
 1236: \+floating
 1237: 
 1238: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1239: f_addr = fp;
 1240: 
 1241: fp!	( f_addr -- f:... )	gforth	fp_store
 1242: fp = f_addr;
 1243: 
 1244: \+
 1245: 
 1246: >r	( w -- R:w )		core	to_r
 1247: :
 1248:  (>r) ;
 1249: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1250: 
 1251: r>	( R:w -- w )		core	r_from
 1252: :
 1253:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1254: Create (rdrop) ' ;s A,
 1255: 
 1256: rdrop	( R:w -- )		gforth
 1257: :
 1258:  r> r> drop >r ;
 1259: 
 1260: 2>r	( d -- R:d )	core-ext	two_to_r
 1261: :
 1262:  swap r> swap >r swap >r >r ;
 1263: 
 1264: 2r>	( R:d -- d )	core-ext	two_r_from
 1265: :
 1266:  r> r> swap r> swap >r swap ;
 1267: 
 1268: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1269: :
 1270:  i' j ;
 1271: 
 1272: 2rdrop	( R:d -- )		gforth	two_r_drop
 1273: :
 1274:  r> r> drop r> drop >r ;
 1275: 
 1276: over	( w1 w2 -- w1 w2 w1 )		core
 1277: :
 1278:  sp@ cell+ @ ;
 1279: 
 1280: drop	( w -- )		core
 1281: :
 1282:  IF THEN ;
 1283: 
 1284: swap	( w1 w2 -- w2 w1 )		core
 1285: :
 1286:  >r (swap) ! r> (swap) @ ;
 1287: Variable (swap)
 1288: 
 1289: dup	( w -- w w )		core	dupe
 1290: :
 1291:  sp@ @ ;
 1292: 
 1293: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1294: :
 1295: [ defined? (swap) [IF] ]
 1296:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1297: Variable (rot)
 1298: [ELSE] ]
 1299:     >r swap r> swap ;
 1300: [THEN]
 1301: 
 1302: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1303: :
 1304:  rot rot ;
 1305: 
 1306: nip	( w1 w2 -- w2 )		core-ext
 1307: :
 1308:  swap drop ;
 1309: 
 1310: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1311: :
 1312:  swap over ;
 1313: 
 1314: ?dup	( w -- S:... w )	core	question_dupe
 1315: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1316: @code{dup} if w is nonzero.""
 1317: if (w!=0) {
 1318:   *--sp = w;
 1319: }
 1320: :
 1321:  dup IF dup THEN ;
 1322: 
 1323: pick	( S:... u -- S:... w )		core-ext
 1324: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1325: w = sp[u];
 1326: :
 1327:  1+ cells sp@ + @ ;
 1328: 
 1329: 2drop	( w1 w2 -- )		core	two_drop
 1330: :
 1331:  drop drop ;
 1332: 
 1333: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1334: :
 1335:  over over ;
 1336: 
 1337: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1338: :
 1339:  3 pick 3 pick ;
 1340: 
 1341: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1342: :
 1343:  rot >r rot r> ;
 1344: 
 1345: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1346: :
 1347:  >r >r 2swap r> r> 2swap ;
 1348: 
 1349: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1350: :
 1351:  2swap 2drop ;
 1352: 
 1353: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1354: :
 1355:  2swap 2over ;
 1356: 
 1357: \ toggle is high-level: 0.11/0.42%
 1358: 
 1359: \g memory
 1360: 
 1361: @	( a_addr -- w )		core	fetch
 1362: ""@i{w} is the cell stored at @i{a_addr}.""
 1363: w = *a_addr;
 1364: 
 1365: \ lit@ / lit_fetch = lit @
 1366: 
 1367: lit@		( #a_addr -- w ) new	lit_fetch
 1368: w = *a_addr;
 1369: 
 1370: !	( w a_addr -- )		core	store
 1371: ""Store @i{w} into the cell at @i{a-addr}.""
 1372: *a_addr = w;
 1373: 
 1374: +!	( n a_addr -- )		core	plus_store
 1375: ""Add @i{n} to the cell at @i{a-addr}.""
 1376: *a_addr += n;
 1377: :
 1378:  tuck @ + swap ! ;
 1379: 
 1380: c@	( c_addr -- c )		core	c_fetch
 1381: ""@i{c} is the char stored at @i{c_addr}.""
 1382: c = *c_addr;
 1383: :
 1384: [ bigendian [IF] ]
 1385:     [ cell>bit 4 = [IF] ]
 1386: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1387: 	IF  $FF and  ELSE  8>>  THEN  ;
 1388:     [ [ELSE] ]
 1389: 	dup [ cell 1- ] literal and
 1390: 	tuck - @ swap [ cell 1- ] literal xor
 1391:  	0 ?DO 8>> LOOP $FF and
 1392:     [ [THEN] ]
 1393: [ [ELSE] ]
 1394:     [ cell>bit 4 = [IF] ]
 1395: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1396: 	IF  8>>  ELSE  $FF and  THEN
 1397:     [ [ELSE] ]
 1398: 	dup [ cell  1- ] literal and 
 1399: 	tuck - @ swap
 1400: 	0 ?DO 8>> LOOP 255 and
 1401:     [ [THEN] ]
 1402: [ [THEN] ]
 1403: ;
 1404: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1405: 
 1406: c!	( c c_addr -- )		core	c_store
 1407: ""Store @i{c} into the char at @i{c-addr}.""
 1408: *c_addr = c;
 1409: :
 1410: [ bigendian [IF] ]
 1411:     [ cell>bit 4 = [IF] ]
 1412: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1413: 	dup -2 and @ over 1 and cells masks + @ and
 1414: 	r> or swap -2 and ! ;
 1415: 	Create masks $00FF , $FF00 ,
 1416:     [ELSE] ]
 1417: 	dup [ cell 1- ] literal and dup 
 1418: 	[ cell 1- ] literal xor >r
 1419: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1420: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1421:     [THEN]
 1422: [ELSE] ]
 1423:     [ cell>bit 4 = [IF] ]
 1424: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1425: 	dup -2 and @ over 1 and cells masks + @ and
 1426: 	r> or swap -2 and ! ;
 1427: 	Create masks $FF00 , $00FF ,
 1428:     [ELSE] ]
 1429: 	dup [ cell 1- ] literal and dup >r
 1430: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1431: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1432:     [THEN]
 1433: [THEN]
 1434: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1435: 
 1436: 2!	( w1 w2 a_addr -- )		core	two_store
 1437: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1438: a_addr[0] = w2;
 1439: a_addr[1] = w1;
 1440: :
 1441:  tuck ! cell+ ! ;
 1442: 
 1443: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1444: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1445: the content of the next cell.""
 1446: w2 = a_addr[0];
 1447: w1 = a_addr[1];
 1448: :
 1449:  dup cell+ @ swap @ ;
 1450: 
 1451: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1452: ""@code{1 cells +}""
 1453: a_addr2 = a_addr1+1;
 1454: :
 1455:  cell + ;
 1456: 
 1457: cells	( n1 -- n2 )		core
 1458: "" @i{n2} is the number of address units of @i{n1} cells.""
 1459: n2 = n1 * sizeof(Cell);
 1460: :
 1461:  [ cell
 1462:  2/ dup [IF] ] 2* [ [THEN]
 1463:  2/ dup [IF] ] 2* [ [THEN]
 1464:  2/ dup [IF] ] 2* [ [THEN]
 1465:  2/ dup [IF] ] 2* [ [THEN]
 1466:  drop ] ;
 1467: 
 1468: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1469: ""@code{1 chars +}.""
 1470: c_addr2 = c_addr1 + 1;
 1471: :
 1472:  1+ ;
 1473: 
 1474: (chars)	( n1 -- n2 )	gforth	paren_chars
 1475: n2 = n1 * sizeof(Char);
 1476: :
 1477:  ;
 1478: 
 1479: count	( c_addr1 -- c_addr2 u )	core
 1480: ""@i{c-addr2} is the first character and @i{u} the length of the
 1481: counted string at @i{c-addr1}.""
 1482: u = *c_addr1;
 1483: c_addr2 = c_addr1+1;
 1484: :
 1485:  dup 1+ swap c@ ;
 1486: 
 1487: \g compiler
 1488: 
 1489: \+f83headerstring
 1490: 
 1491: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1492: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1493:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1494:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1495:     break;
 1496: f83name2=f83name1;
 1497: #ifdef DEBUG
 1498: fprintf(stderr, "F83find ");
 1499: fwrite(c_addr, u, 1, stderr);
 1500: fprintf(stderr, " found %08x\n", f83name2); 
 1501: #endif
 1502: :
 1503:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1504: 	>r 2dup r@ cell+ char+ capscomp  0=
 1505: 	IF  2drop r>  EXIT  THEN
 1506: 	r> @
 1507:     REPEAT  THEN  nip nip ;
 1508: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1509:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1510: : capscomp ( c_addr1 u c_addr2 -- n )
 1511:  swap bounds
 1512:  ?DO  dup c@ I c@ <>
 1513:      IF  dup c@ toupper I c@ toupper =
 1514:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1515:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1516: : sgn ( n -- -1/0/1 )
 1517:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1518: 
 1519: \-
 1520: 
 1521: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1522: longname2=listlfind(c_addr, u, longname1);
 1523: :
 1524:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1525: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1526: 	IF  2drop r>  EXIT  THEN
 1527: 	r> @
 1528:     REPEAT  THEN  nip nip ;
 1529: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1530:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1531: : capscomp ( c_addr1 u c_addr2 -- n )
 1532:  swap bounds
 1533:  ?DO  dup c@ I c@ <>
 1534:      IF  dup c@ toupper I c@ toupper =
 1535:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1536:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1537: : sgn ( n -- -1/0/1 )
 1538:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1539: 
 1540: \+hash
 1541: 
 1542: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1543: longname2 = hashlfind(c_addr, u, a_addr);
 1544: :
 1545:  BEGIN  dup  WHILE
 1546:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1547:         IF  2dup r@ cell+ cell+ capscomp 0=
 1548: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1549: 	rdrop r>
 1550:  REPEAT nip nip ;
 1551: 
 1552: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1553: ""A case-sensitive variant of @code{(hashfind)}""
 1554: longname2 = tablelfind(c_addr, u, a_addr);
 1555: :
 1556:  BEGIN  dup  WHILE
 1557:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1558:         IF  2dup r@ cell+ cell+ -text 0=
 1559: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1560: 	rdrop r>
 1561:  REPEAT nip nip ;
 1562: : -text ( c_addr1 u c_addr2 -- n )
 1563:  swap bounds
 1564:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1565:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1566: : sgn ( n -- -1/0/1 )
 1567:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1568: 
 1569: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1570: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1571: ukey = hashkey1(c_addr, u, ubits);
 1572: :
 1573:  dup rot-values + c@ over 1 swap lshift 1- >r
 1574:  tuck - 2swap r> 0 2swap bounds
 1575:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1576:       I c@ toupper xor
 1577:       over and  LOOP
 1578:  nip nip nip ;
 1579: Create rot-values
 1580:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1581:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1582:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1583:   7 c, 5 c, 5 c,
 1584: 
 1585: \+
 1586: 
 1587: \+
 1588: 
 1589: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1590: struct Cellpair r=parse_white(c_addr1, u1);
 1591: c_addr2 = (Char *)(r.n1);
 1592: u2 = r.n2;
 1593: :
 1594:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1595:  REPEAT  THEN  2dup
 1596:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1597:  REPEAT  THEN  nip - ;
 1598: 
 1599: aligned	( c_addr -- a_addr )	core
 1600: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1601: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1602: :
 1603:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1604: 
 1605: faligned	( c_addr -- f_addr )	float	f_aligned
 1606: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1607: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1608: :
 1609:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1610: 
 1611: \ threading stuff is currently only interesting if we have a compiler
 1612: \fhas? standardthreading has? compiler and [IF]
 1613: threading-method	( -- n )	gforth	threading_method
 1614: ""0 if the engine is direct threaded. Note that this may change during
 1615: the lifetime of an image.""
 1616: #if defined(DOUBLY_INDIRECT)
 1617: n=2;
 1618: #else
 1619: # if defined(DIRECT_THREADED)
 1620: n=0;
 1621: # else
 1622: n=1;
 1623: # endif
 1624: #endif
 1625: :
 1626:  1 ;
 1627: 
 1628: \f[THEN]
 1629: 
 1630: \g hostos
 1631: 
 1632: key-file	( wfileid -- c )		gforth	paren_key_file
 1633: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1634: buffering for @i{wfileid}.  If you want to read characters from a
 1635: terminal in non-canonical (raw) mode, you have to put the terminal in
 1636: non-canonical mode yourself (using the C interface); the exception is
 1637: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1638: #ifdef HAS_FILE
 1639: fflush(stdout);
 1640: c = key((FILE*)wfileid);
 1641: #else
 1642: c = key(stdin);
 1643: #endif
 1644: 
 1645: key?-file	( wfileid -- f )	        gforth	key_q_file
 1646: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1647: without blocking.  If you also want to use @code{read-file} or
 1648: @code{read-line} on the file, you have to call @code{key?-file} or
 1649: @code{key-file} first (these two words disable buffering).""
 1650: #ifdef HAS_FILE
 1651: fflush(stdout);
 1652: f = key_query((FILE*)wfileid);
 1653: #else
 1654: f = key_query(stdin);
 1655: #endif
 1656: 
 1657: stdin	( -- wfileid )	gforth
 1658: ""The standard input file of the Gforth process.""
 1659: wfileid = (Cell)stdin;
 1660: 
 1661: stdout	( -- wfileid )	gforth
 1662: ""The standard output file of the Gforth process.""
 1663: wfileid = (Cell)stdout;
 1664: 
 1665: stderr	( -- wfileid )	gforth
 1666: ""The standard error output file of the Gforth process.""
 1667: wfileid = (Cell)stderr;
 1668: 
 1669: \+os
 1670: 
 1671: form	( -- urows ucols )	gforth
 1672: ""The number of lines and columns in the terminal. These numbers may
 1673: change with the window size.  Note that it depends on the OS whether
 1674: this reflects the actual size and changes with the window size
 1675: (currently only on Unix-like OSs).  On other OSs you just get a
 1676: default, and can tell Gforth the terminal size by setting the
 1677: environment variables @code{COLUMNS} and @code{LINES} before starting
 1678: Gforth.""
 1679: /* we could block SIGWINCH here to get a consistent size, but I don't
 1680:  think this is necessary or always beneficial */
 1681: urows=rows;
 1682: ucols=cols;
 1683: 
 1684: wcwidth	( u -- n )	gforth
 1685: ""The number of fixed-width characters per unicode character u""
 1686: #ifdef HAVE_WCWIDTH
 1687: n = wcwidth(u);
 1688: #else
 1689: n = 1;
 1690: #endif
 1691: 
 1692: flush-icache	( c_addr u -- )	gforth	flush_icache
 1693: ""Make sure that the instruction cache of the processor (if there is
 1694: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1695: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1696: automatically. Caveat: @code{flush-icache} might not work on your
 1697: installation; this is usually the case if direct threading is not
 1698: supported on your machine (take a look at your @file{machine.h}) and
 1699: your machine has a separate instruction cache. In such cases,
 1700: @code{flush-icache} does nothing instead of flushing the instruction
 1701: cache.""
 1702: FLUSH_ICACHE((caddr_t)c_addr,u);
 1703: 
 1704: (bye)	( n -- )	gforth	paren_bye
 1705: SUPER_END;
 1706: return (Label *)n;
 1707: 
 1708: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1709: wretval = gforth_system(c_addr, u);  
 1710: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1711: 
 1712: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1713: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1714: is the host operating system's expansion of that environment variable. If the
 1715: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1716: in length.""
 1717: /* close ' to keep fontify happy */
 1718: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1719: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1720: 
 1721: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1722: fflush(stdout);
 1723: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1724: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1725: 
 1726: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1727: wretval = pclose((FILE *)wfileid);
 1728: wior = IOR(wretval==-1);
 1729: 
 1730: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1731: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1732: Months are numbered from 1.""
 1733: #if 1
 1734: time_t now;
 1735: struct tm *ltime;
 1736: time(&now);
 1737: ltime=localtime(&now);
 1738: #else
 1739: struct timeval time1;
 1740: struct timezone zone1;
 1741: struct tm *ltime;
 1742: gettimeofday(&time1,&zone1);
 1743: /* !! Single Unix specification: 
 1744:    If tzp is not a null pointer, the behaviour is unspecified. */
 1745: ltime=localtime((time_t *)&time1.tv_sec);
 1746: #endif
 1747: nyear =ltime->tm_year+1900;
 1748: nmonth=ltime->tm_mon+1;
 1749: nday  =ltime->tm_mday;
 1750: nhour =ltime->tm_hour;
 1751: nmin  =ltime->tm_min;
 1752: nsec  =ltime->tm_sec;
 1753: 
 1754: ms	( u -- )	facility-ext
 1755: ""Wait at least @i{n} milli-second.""
 1756: gforth_ms(u);
 1757: 
 1758: allocate	( u -- a_addr wior )	memory
 1759: ""Allocate @i{u} address units of contiguous data space. The initial
 1760: contents of the data space is undefined. If the allocation is successful,
 1761: @i{a-addr} is the start address of the allocated region and @i{wior}
 1762: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1763: is a non-zero I/O result code.""
 1764: a_addr = (Cell *)malloc(u?u:1);
 1765: wior = IOR(a_addr==NULL);
 1766: 
 1767: free	( a_addr -- wior )		memory
 1768: ""Return the region of data space starting at @i{a-addr} to the system.
 1769: The region must originally have been obtained using @code{allocate} or
 1770: @code{resize}. If the operational is successful, @i{wior} is 0.
 1771: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1772: free(a_addr);
 1773: wior = 0;
 1774: 
 1775: resize	( a_addr1 u -- a_addr2 wior )	memory
 1776: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1777: address units, possibly moving the contents to a different
 1778: area. @i{a-addr2} is the address of the resulting area.
 1779: If the operation is successful, @i{wior} is 0.
 1780: If the operation fails, @i{wior} is a non-zero
 1781: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1782: @code{resize} @code{allocate}s @i{u} address units.""
 1783: /* the following check is not necessary on most OSs, but it is needed
 1784:    on SunOS 4.1.2. */
 1785: /* close ' to keep fontify happy */
 1786: if (a_addr1==NULL)
 1787:   a_addr2 = (Cell *)malloc(u);
 1788: else
 1789:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1790: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1791: 
 1792: strerror	( n -- c_addr u )	gforth
 1793: c_addr = (Char *)strerror(n);
 1794: u = strlen((char *)c_addr);
 1795: 
 1796: strsignal	( n -- c_addr u )	gforth
 1797: c_addr = (Char *)strsignal(n);
 1798: u = strlen((char *)c_addr);
 1799: 
 1800: call-c	( ... w -- ... )	gforth	call_c
 1801: ""Call the C function pointed to by @i{w}. The C function has to
 1802: access the stack itself. The stack pointers are exported in the global
 1803: variables @code{gforth_SP} and @code{gforth_FP}.""
 1804: /* This is a first attempt at support for calls to C. This may change in
 1805:    the future */
 1806: IF_fpTOS(fp[0]=fpTOS);
 1807: gforth_FP=fp;
 1808: gforth_SP=sp;
 1809: gforth_RP=rp;
 1810: gforth_LP=lp;
 1811: #ifdef HAS_LINKBACK
 1812: ((void (*)())w)();
 1813: #else
 1814: ((void (*)(void *))w)(gforth_pointers);
 1815: #endif
 1816: sp=gforth_SP;
 1817: fp=gforth_FP;
 1818: rp=gforth_RP;
 1819: lp=gforth_LP;
 1820: IF_fpTOS(fpTOS=fp[0]);
 1821: 
 1822: \+
 1823: \+file
 1824: 
 1825: close-file	( wfileid -- wior )		file	close_file
 1826: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1827: 
 1828: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1829: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, 0, &wior);
 1830: 
 1831: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1832: wfileid = opencreate_file(tilde_cstr(c_addr,u,1), wfam, O_CREAT|O_TRUNC, &wior);
 1833: 
 1834: delete-file	( c_addr u -- wior )		file	delete_file
 1835: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1836: 
 1837: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1838: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1839: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1840: 
 1841: file-position	( wfileid -- ud wior )	file	file_position
 1842: /* !! use tell and lseek? */
 1843: ud = OFF2UD(ftello((FILE *)wfileid));
 1844: wior = IOR(UD2OFF(ud)==-1);
 1845: 
 1846: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1847: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1848: 
 1849: file-size	( wfileid -- ud wior )	file	file_size
 1850: struct stat buf;
 1851: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1852: ud = OFF2UD(buf.st_size);
 1853: 
 1854: resize-file	( ud wfileid -- wior )	file	resize_file
 1855: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1856: 
 1857: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1858: /* !! fread does not guarantee enough */
 1859: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1860: if (u2>0)
 1861:    gf_regetc((FILE *)wfileid);
 1862: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1863: /* !! is the value of ferror errno-compatible? */
 1864: if (wior)
 1865:   clearerr((FILE *)wfileid);
 1866: 
 1867: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1868: struct Cellquad r = read_line(c_addr, u1, (FILE *)wfileid);
 1869: u2   = r.n1;
 1870: flag = r.n2;
 1871: u3   = r.n3;
 1872: wior = r.n4;
 1873: 
 1874: \+
 1875: 
 1876: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1877: /* !! fwrite does not guarantee enough */
 1878: #ifdef HAS_FILE
 1879: {
 1880:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1881:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1882:   if (wior)
 1883:     clearerr((FILE *)wfileid);
 1884: }
 1885: #else
 1886: TYPE(c_addr, u1);
 1887: #endif
 1888: 
 1889: emit-file	( c wfileid -- wior )	gforth	emit_file
 1890: #ifdef HAS_FILE
 1891: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1892: if (wior)
 1893:   clearerr((FILE *)wfileid);
 1894: #else
 1895: PUTC(c);
 1896: #endif
 1897: 
 1898: \+file
 1899: 
 1900: flush-file	( wfileid -- wior )		file-ext	flush_file
 1901: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1902: 
 1903: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1904: struct Cellpair r = file_status(c_addr, u);
 1905: wfam = r.n1;
 1906: wior = r.n2;
 1907: 
 1908: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1909: flag = FLAG(feof((FILE *) wfileid));
 1910: 
 1911: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1912: ""Open the directory specified by @i{c-addr, u}
 1913: and return @i{dir-id} for futher access to it.""
 1914: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1915: wior =  IOR(wdirid == 0);
 1916: 
 1917: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1918: ""Attempt to read the next entry from the directory specified
 1919: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1920: If the attempt fails because there is no more entries,
 1921: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1922: If the attempt to read the next entry fails because of any other reason, 
 1923: return @i{ior}<>0.
 1924: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1925: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1926: If the length of the file name is greater than @i{u1}, 
 1927: store first @i{u1} characters from file name into the buffer and
 1928: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1929: struct dirent * dent;
 1930: dent = readdir((DIR *)wdirid);
 1931: wior = 0;
 1932: flag = -1;
 1933: if(dent == NULL) {
 1934:   u2 = 0;
 1935:   flag = 0;
 1936: } else {
 1937:   u2 = strlen((char *)dent->d_name);
 1938:   if(u2 > u1) {
 1939:     u2 = u1;
 1940:     wior = -512-ENAMETOOLONG;
 1941:   }
 1942:   memmove(c_addr, dent->d_name, u2);
 1943: }
 1944: 
 1945: close-dir	( wdirid -- wior )	gforth	close_dir
 1946: ""Close the directory specified by @i{dir-id}.""
 1947: wior = IOR(closedir((DIR *)wdirid));
 1948: 
 1949: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1950: char * string = cstr(c_addr1, u1, 1);
 1951: char * pattern = cstr(c_addr2, u2, 0);
 1952: flag = FLAG(!fnmatch(pattern, string, 0));
 1953: 
 1954: set-dir	( c_addr u -- wior )	gforth set_dir
 1955: ""Change the current directory to @i{c-addr, u}.
 1956: Return an error if this is not possible""
 1957: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1958: 
 1959: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1960: ""Store the current directory in the buffer specified by @i{c-addr1, u1}.
 1961: If the buffer size is not sufficient, return 0 0""
 1962: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 1963: if(c_addr2 != NULL) {
 1964:   u2 = strlen((char *)c_addr2);
 1965: } else {
 1966:   u2 = 0;
 1967: }
 1968: 
 1969: =mkdir ( c_addr u wmode -- wior )        gforth equals_mkdir
 1970: ""Create directory @i{c-addr u} with mode @i{wmode}.""
 1971: wior = IOR(mkdir(tilde_cstr(c_addr,u,1),wmode));
 1972: 
 1973: \+
 1974: 
 1975: newline	( -- c_addr u )	gforth
 1976: ""String containing the newline sequence of the host OS""
 1977: char newline[] = {
 1978: #if DIRSEP=='/'
 1979: /* Unix */
 1980: '\n'
 1981: #else
 1982: /* DOS, Win, OS/2 */
 1983: '\r','\n'
 1984: #endif
 1985: };
 1986: c_addr=(Char *)newline;
 1987: u=sizeof(newline);
 1988: :
 1989:  "newline count ;
 1990: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1991: 
 1992: \+os
 1993: 
 1994: utime	( -- dtime )	gforth
 1995: ""Report the current time in microseconds since some epoch.""
 1996: struct timeval time1;
 1997: gettimeofday(&time1,NULL);
 1998: dtime = timeval2us(&time1);
 1999: 
 2000: cputime ( -- duser dsystem ) gforth
 2001: ""duser and dsystem are the respective user- and system-level CPU
 2002: times used since the start of the Forth system (excluding child
 2003: processes), in microseconds (the granularity may be much larger,
 2004: however).  On platforms without the getrusage call, it reports elapsed
 2005: time (since some epoch) for duser and 0 for dsystem.""
 2006: #ifdef HAVE_GETRUSAGE
 2007: struct rusage usage;
 2008: getrusage(RUSAGE_SELF, &usage);
 2009: duser = timeval2us(&usage.ru_utime);
 2010: dsystem = timeval2us(&usage.ru_stime);
 2011: #else
 2012: struct timeval time1;
 2013: gettimeofday(&time1,NULL);
 2014: duser = timeval2us(&time1);
 2015: dsystem = DZERO;
 2016: #endif
 2017: 
 2018: \+
 2019: 
 2020: \+floating
 2021: 
 2022: \g floating
 2023: 
 2024: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2025: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2026: 
 2027: s>f	( n -- r )		float	s_to_f
 2028: r = n;
 2029: 
 2030: d>f	( d -- r )		float	d_to_f
 2031: #ifdef BUGGY_LL_D2F
 2032: extern double ldexp(double x, int exp);
 2033: if (DHI(d)<0) {
 2034: #ifdef BUGGY_LL_ADD
 2035:   DCell d2=dnegate(d);
 2036: #else
 2037:   DCell d2=-d;
 2038: #endif
 2039:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2040: } else
 2041:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2042: #else
 2043: r = d;
 2044: #endif
 2045: 
 2046: f>d	( r -- d )		float	f_to_d
 2047: extern DCell double2ll(Float r);
 2048: d = double2ll(r);
 2049: 
 2050: f>s	( r -- n )		float	f_to_s
 2051: n = (Cell)r;
 2052: 
 2053: f!	( r f_addr -- )	float	f_store
 2054: ""Store @i{r} into the float at address @i{f-addr}.""
 2055: *f_addr = r;
 2056: 
 2057: f@	( f_addr -- r )	float	f_fetch
 2058: ""@i{r} is the float at address @i{f-addr}.""
 2059: r = *f_addr;
 2060: 
 2061: df@	( df_addr -- r )	float-ext	d_f_fetch
 2062: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2063: #ifdef IEEE_FP
 2064: r = *df_addr;
 2065: #else
 2066: !! df@
 2067: #endif
 2068: 
 2069: df!	( r df_addr -- )	float-ext	d_f_store
 2070: ""Store @i{r} as double-precision IEEE floating-point value to the
 2071: address @i{df-addr}.""
 2072: #ifdef IEEE_FP
 2073: *df_addr = r;
 2074: #else
 2075: !! df!
 2076: #endif
 2077: 
 2078: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2079: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2080: #ifdef IEEE_FP
 2081: r = *sf_addr;
 2082: #else
 2083: !! sf@
 2084: #endif
 2085: 
 2086: sf!	( r sf_addr -- )	float-ext	s_f_store
 2087: ""Store @i{r} as single-precision IEEE floating-point value to the
 2088: address @i{sf-addr}.""
 2089: #ifdef IEEE_FP
 2090: *sf_addr = r;
 2091: #else
 2092: !! sf!
 2093: #endif
 2094: 
 2095: f+	( r1 r2 -- r3 )	float	f_plus
 2096: r3 = r1+r2;
 2097: 
 2098: f-	( r1 r2 -- r3 )	float	f_minus
 2099: r3 = r1-r2;
 2100: 
 2101: f*	( r1 r2 -- r3 )	float	f_star
 2102: r3 = r1*r2;
 2103: 
 2104: f/	( r1 r2 -- r3 )	float	f_slash
 2105: r3 = r1/r2;
 2106: 
 2107: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2108: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2109: r3 = pow(r1,r2);
 2110: 
 2111: fm*	( r1 n -- r2 )	gforth	fm_star
 2112: r2 = r1*n;
 2113: 
 2114: fm/	( r1 n -- r2 )	gforth	fm_slash
 2115: r2 = r1/n;
 2116: 
 2117: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2118: r2 = (r1*n1)/n2;
 2119: 
 2120: f**2	( r1 -- r2 )	gforth	fm_square
 2121: r2 = r1*r1;
 2122: 
 2123: fnegate	( r1 -- r2 )	float	f_negate
 2124: r2 = - r1;
 2125: 
 2126: fdrop	( r -- )		float	f_drop
 2127: 
 2128: fdup	( r -- r r )	float	f_dupe
 2129: 
 2130: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2131: 
 2132: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2133: 
 2134: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2135: 
 2136: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2137: 
 2138: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2139: 
 2140: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2141: ""@code{1 floats +}.""
 2142: f_addr2 = f_addr1+1;
 2143: 
 2144: floats	( n1 -- n2 )	float
 2145: ""@i{n2} is the number of address units of @i{n1} floats.""
 2146: n2 = n1*sizeof(Float);
 2147: 
 2148: floor	( r1 -- r2 )	float
 2149: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2150: /* !! unclear wording */
 2151: r2 = floor(r1);
 2152: 
 2153: fround	( r1 -- r2 )	float	f_round
 2154: ""Round to the nearest integral value.""
 2155: r2 = rint(r1);
 2156: 
 2157: fmax	( r1 r2 -- r3 )	float	f_max
 2158: if (r1<r2)
 2159:   r3 = r2;
 2160: else
 2161:   r3 = r1;
 2162: 
 2163: fmin	( r1 r2 -- r3 )	float	f_min
 2164: if (r1<r2)
 2165:   r3 = r1;
 2166: else
 2167:   r3 = r2;
 2168: 
 2169: represent	( r c_addr u -- n f1 f2 )	float
 2170: char *sig;
 2171: size_t siglen;
 2172: int flag;
 2173: int decpt;
 2174: sig=ecvt(r, u, &decpt, &flag);
 2175: n=(r==0. ? 1 : decpt);
 2176: flag=signbit(r); /* not all ecvt()s do this as desired */
 2177: f1=FLAG(flag!=0);
 2178: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2179: siglen=strlen((char *)sig);
 2180: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2181:   siglen=u;
 2182: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2183:   for (; sig[siglen-1]=='0'; siglen--);
 2184:     ;
 2185: memcpy(c_addr,sig,siglen);
 2186: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2187: 
 2188: >float	( c_addr u -- f:... flag )	float	to_float
 2189: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2190: character string @i{c-addr u} to internal floating-point
 2191: representation. If the string represents a valid floating-point number
 2192: @i{r} is placed on the floating-point stack and @i{flag} is
 2193: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2194: case and represents the floating-point number 0.""
 2195: Float r;
 2196: flag = to_float(c_addr, u, &r);
 2197: if (flag) {
 2198:   fp--;
 2199:   fp[0]=r;
 2200: }
 2201: 
 2202: fabs	( r1 -- r2 )	float-ext	f_abs
 2203: r2 = fabs(r1);
 2204: 
 2205: facos	( r1 -- r2 )	float-ext	f_a_cos
 2206: r2 = acos(r1);
 2207: 
 2208: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2209: r2 = asin(r1);
 2210: 
 2211: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2212: r2 = atan(r1);
 2213: 
 2214: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2215: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2216: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2217: r3 = atan2(r1,r2);
 2218: 
 2219: fcos	( r1 -- r2 )	float-ext	f_cos
 2220: r2 = cos(r1);
 2221: 
 2222: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2223: r2 = exp(r1);
 2224: 
 2225: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2226: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2227: #ifdef HAVE_EXPM1
 2228: extern double
 2229: #ifdef NeXT
 2230:               const
 2231: #endif
 2232:                     expm1(double);
 2233: r2 = expm1(r1);
 2234: #else
 2235: r2 = exp(r1)-1.;
 2236: #endif
 2237: 
 2238: fln	( r1 -- r2 )	float-ext	f_l_n
 2239: r2 = log(r1);
 2240: 
 2241: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2242: ""@i{r2}=ln(@i{r1}+1)""
 2243: #ifdef HAVE_LOG1P
 2244: extern double
 2245: #ifdef NeXT
 2246:               const
 2247: #endif
 2248:                     log1p(double);
 2249: r2 = log1p(r1);
 2250: #else
 2251: r2 = log(r1+1.);
 2252: #endif
 2253: 
 2254: flog	( r1 -- r2 )	float-ext	f_log
 2255: ""The decimal logarithm.""
 2256: r2 = log10(r1);
 2257: 
 2258: falog	( r1 -- r2 )	float-ext	f_a_log
 2259: ""@i{r2}=10**@i{r1}""
 2260: extern double pow10(double);
 2261: r2 = pow10(r1);
 2262: 
 2263: fsin	( r1 -- r2 )	float-ext	f_sine
 2264: r2 = sin(r1);
 2265: 
 2266: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2267: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2268: r2 = sin(r1);
 2269: r3 = cos(r1);
 2270: 
 2271: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2272: r2 = sqrt(r1);
 2273: 
 2274: ftan	( r1 -- r2 )	float-ext	f_tan
 2275: r2 = tan(r1);
 2276: :
 2277:  fsincos f/ ;
 2278: 
 2279: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2280: r2 = sinh(r1);
 2281: :
 2282:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2283: 
 2284: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2285: r2 = cosh(r1);
 2286: :
 2287:  fexp fdup 1/f f+ f2/ ;
 2288: 
 2289: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2290: r2 = tanh(r1);
 2291: :
 2292:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2293: 
 2294: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2295: r2 = asinh(r1);
 2296: :
 2297:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2298: 
 2299: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2300: r2 = acosh(r1);
 2301: :
 2302:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2303: 
 2304: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2305: r2 = atanh(r1);
 2306: :
 2307:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2308:  r> IF  fnegate  THEN ;
 2309: 
 2310: sfloats	( n1 -- n2 )	float-ext	s_floats
 2311: ""@i{n2} is the number of address units of @i{n1}
 2312: single-precision IEEE floating-point numbers.""
 2313: n2 = n1*sizeof(SFloat);
 2314: 
 2315: dfloats	( n1 -- n2 )	float-ext	d_floats
 2316: ""@i{n2} is the number of address units of @i{n1}
 2317: double-precision IEEE floating-point numbers.""
 2318: n2 = n1*sizeof(DFloat);
 2319: 
 2320: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2321: ""@i{sf-addr} is the first single-float-aligned address greater
 2322: than or equal to @i{c-addr}.""
 2323: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2324: :
 2325:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2326: 
 2327: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2328: ""@i{df-addr} is the first double-float-aligned address greater
 2329: than or equal to @i{c-addr}.""
 2330: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2331: :
 2332:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2333: 
 2334: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2335: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2336: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2337: ucount elements.""
 2338: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2339: :
 2340:  >r swap 2swap swap 0e r> 0 ?DO
 2341:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2342:  LOOP 2drop 2drop ; 
 2343: 
 2344: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2345: ""vy=ra*vx+vy""
 2346: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2347: :
 2348:  >r swap 2swap swap r> 0 ?DO
 2349:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2350:  LOOP 2drop 2drop fdrop ;
 2351: 
 2352: \+
 2353: 
 2354: \ The following words access machine/OS/installation-dependent
 2355: \   Gforth internals
 2356: \ !! how about environmental queries DIRECT-THREADED,
 2357: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2358: 
 2359: \ local variable implementation primitives
 2360: 
 2361: \+glocals
 2362: 
 2363: \g locals
 2364: 
 2365: @local#	( #noffset -- w )	gforth	fetch_local_number
 2366: w = *(Cell *)(lp+noffset);
 2367: 
 2368: @local0	( -- w )	new	fetch_local_zero
 2369: w = ((Cell *)lp)[0];
 2370: 
 2371: @local1	( -- w )	new	fetch_local_four
 2372: w = ((Cell *)lp)[1];
 2373: 
 2374: @local2	( -- w )	new	fetch_local_eight
 2375: w = ((Cell *)lp)[2];
 2376: 
 2377: @local3	( -- w )	new	fetch_local_twelve
 2378: w = ((Cell *)lp)[3];
 2379: 
 2380: \+floating
 2381: 
 2382: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2383: r = *(Float *)(lp+noffset);
 2384: 
 2385: f@local0	( -- r )	new	f_fetch_local_zero
 2386: r = ((Float *)lp)[0];
 2387: 
 2388: f@local1	( -- r )	new	f_fetch_local_eight
 2389: r = ((Float *)lp)[1];
 2390: 
 2391: \+
 2392: 
 2393: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2394: /* this can also be used to implement lp@ */
 2395: c_addr = (Char *)(lp+noffset);
 2396: 
 2397: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2398: ""used with negative immediate values it allocates memory on the
 2399: local stack, a positive immediate argument drops memory from the local
 2400: stack""
 2401: lp += noffset;
 2402: 
 2403: lp-	( -- )	new	minus_four_lp_plus_store
 2404: lp += -sizeof(Cell);
 2405: 
 2406: lp+	( -- )	new	eight_lp_plus_store
 2407: lp += sizeof(Float);
 2408: 
 2409: lp+2	( -- )	new	sixteen_lp_plus_store
 2410: lp += 2*sizeof(Float);
 2411: 
 2412: lp!	( c_addr -- )	gforth	lp_store
 2413: lp = (Address)c_addr;
 2414: 
 2415: >l	( w -- )	gforth	to_l
 2416: lp -= sizeof(Cell);
 2417: *(Cell *)lp = w;
 2418: 
 2419: \+floating
 2420: 
 2421: f>l	( r -- )	gforth	f_to_l
 2422: lp -= sizeof(Float);
 2423: *(Float *)lp = r;
 2424: 
 2425: fpick	( f:... u -- f:... r )		gforth
 2426: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2427: r = fp[u];
 2428: :
 2429:  floats fp@ + f@ ;
 2430: 
 2431: \+
 2432: \+
 2433: 
 2434: \+OS
 2435: 
 2436: \g syslib
 2437: 
 2438: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2439: u2 = gforth_dlopen(c_addr1, u1);
 2440: 
 2441: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2442: #ifdef HAVE_LIBLTDL
 2443: u3 = (UCell) lt_dlsym((lt_dlhandle)u2, cstr(c_addr1, u1, 1));
 2444: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2445: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2446: #else
 2447: #  ifdef _WIN32
 2448: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2449: #  else
 2450: #warning Define lib-sym!
 2451: u3 = 0;
 2452: #  endif
 2453: #endif
 2454: 
 2455: wcall	( ... u -- ... )	gforth
 2456: gforth_FP=fp;
 2457: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2458: fp=gforth_FP;
 2459: 
 2460: uw@ ( c_addr -- u )	gforth u_w_fetch
 2461: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2462: u = *(UWyde*)(c_addr);
 2463: 
 2464: sw@ ( c_addr -- n )	gforth s_w_fetch
 2465: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2466: n = *(Wyde*)(c_addr);
 2467: 
 2468: w! ( w c_addr -- )	gforth w_store
 2469: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2470: *(Wyde*)(c_addr) = w;
 2471: 
 2472: ul@ ( c_addr -- u )	gforth u_l_fetch
 2473: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2474: u = *(UTetrabyte*)(c_addr);
 2475: 
 2476: sl@ ( c_addr -- n )	gforth s_l_fetch
 2477: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2478: n = *(Tetrabyte*)(c_addr);
 2479: 
 2480: l! ( w c_addr -- )	gforth l_store
 2481: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2482: *(Tetrabyte*)(c_addr) = w;
 2483: 
 2484: lib-error ( -- c_addr u )       gforth  lib_error
 2485: ""Error message for last failed @code{open-lib} or @code{lib-sym}.""
 2486: #ifdef HAVE_LIBLTDL
 2487: c_addr = (Char *)lt_dlerror();
 2488: u = (c_addr == NULL) ? 0 : strlen((char *)c_addr);
 2489: #elif defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2490: c_addr = dlerror();
 2491: u = strlen(c_addr);
 2492: #else
 2493: c_addr = "libltdl is not configured";
 2494: u = strlen(c_addr);
 2495: #endif
 2496: 
 2497: \+
 2498: \g peephole
 2499: 
 2500: \+peephole
 2501: 
 2502: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2503: ""compile prim (incl. immargs) at @var{a_prim}""
 2504: compile_prim1(a_prim);
 2505: 
 2506: finish-code ( ... -- ... ) gforth finish_code
 2507: ""Perform delayed steps in code generation (branch resolution, I-cache
 2508: flushing).""
 2509: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2510:    to save spTOS (gforth-fast --enable-force-reg) */
 2511: finish_code();
 2512: 
 2513: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2514: f = forget_dyncode(c_code);
 2515: 
 2516: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2517: ""a_prim is the code address of the primitive that has been
 2518: compile_prim1ed to a_code""
 2519: a_prim = (Cell *)decompile_code((Label)a_code);
 2520: 
 2521: \ set-next-code and call2 do not appear in images and can be
 2522: \ renumbered arbitrarily
 2523: 
 2524: set-next-code ( #w -- ) gforth set_next_code
 2525: #ifdef NO_IP
 2526: next_code = (Label)w;
 2527: #endif
 2528: 
 2529: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2530: /* call with explicit return address */
 2531: #ifdef NO_IP
 2532: INST_TAIL;
 2533: JUMP(a_callee);
 2534: #else
 2535: assert(0);
 2536: #endif
 2537: 
 2538: tag-offsets ( -- a_addr ) gforth tag_offsets
 2539: extern Cell groups[32];
 2540: a_addr = groups;
 2541: 
 2542: \+
 2543: 
 2544: \g static_super
 2545: 
 2546: ifdef(`STACK_CACHE_FILE',
 2547: `include(peeprules.vmg)')
 2548: 
 2549: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>