File:  [gforth] / gforth / prim
Revision 1.118: download - view: text, annotated - select for diffs
Wed Jan 8 10:45:39 2003 UTC (16 years, 9 months ago) by anton
Branches: MAIN
CVS tags: HEAD
moved CODE-ADDRESS! DOES-CODE! /DOES-HANDLER from prim to kernel/int.fs

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E return-stack stack-prefix R:
  104: \E inst-stream  stack-prefix #
  105: \E 
  106: \E set-current
  107: \E store-optimization on
  108: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  109: 
  110: \ 
  111: \ 
  112: \ 
  113: \ In addition the following names can be used:
  114: \ ip	the instruction pointer
  115: \ sp	the data stack pointer
  116: \ rp	the parameter stack pointer
  117: \ lp	the locals stack pointer
  118: \ NEXT	executes NEXT
  119: \ cfa	
  120: \ NEXT1	executes NEXT1
  121: \ FLAG(x)	makes a Forth flag from a C flag
  122: \ 
  123: \ 
  124: \ 
  125: \ Percentages in comments are from Koopmans book: average/maximum use
  126: \ (taken from four, not very representative benchmarks)
  127: \ 
  128: \ 
  129: \ 
  130: \ To do:
  131: \ 
  132: \ throw execute, cfa and NEXT1 out?
  133: \ macroize *ip, ip++, *ip++ (pipelining)?
  134: 
  135: \ these m4 macros would collide with identifiers
  136: undefine(`index')
  137: undefine(`shift')
  138: undefine(`symbols')
  139: 
  140: \g control
  141: 
  142: noop	( -- )		gforth
  143: :
  144:  ;
  145: 
  146: call	( #a_callee -- R:a_retaddr )	new
  147: ""Call callee (a variant of docol with inline argument).""
  148: #ifdef NO_IP
  149: INST_TAIL;
  150: JUMP(a_callee);
  151: #else
  152: #ifdef DEBUG
  153:     {
  154:       CFA_TO_NAME((((Cell *)a_callee)-2));
  155:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  156: 	      len,name);
  157:     }
  158: #endif
  159: a_retaddr = (Cell *)IP;
  160: SET_IP((Xt *)a_callee);
  161: #endif
  162: 
  163: execute	( xt -- )		core
  164: ""Perform the semantics represented by the execution token, @i{xt}.""
  165: #ifndef NO_IP
  166: ip=IP;
  167: #endif
  168: IF_spTOS(spTOS = sp[0]);
  169: SUPER_END;
  170: EXEC(xt);
  171: 
  172: perform	( a_addr -- )	gforth
  173: ""@code{@@ execute}.""
  174: /* and pfe */
  175: #ifndef NO_IP
  176: ip=IP;
  177: #endif
  178: IF_spTOS(spTOS = sp[0]);
  179: SUPER_END;
  180: EXEC(*(Xt *)a_addr);
  181: :
  182:  @ execute ;
  183: 
  184: ;s	( R:w -- )		gforth	semis
  185: ""The primitive compiled by @code{EXIT}.""
  186: #ifdef NO_IP
  187: INST_TAIL;
  188: goto *(void *)w;
  189: #else
  190: SET_IP((Xt *)w);
  191: #endif
  192: 
  193: unloop	( R:w1 R:w2 -- )	core
  194: /* !! alias for 2rdrop */
  195: :
  196:  r> rdrop rdrop >r ;
  197: 
  198: lit-perform	( #a_addr -- )	new	lit_perform
  199: #ifndef NO_IP
  200: ip=IP;
  201: #endif
  202: SUPER_END;
  203: EXEC(*(Xt *)a_addr);
  204: 
  205: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  206: #ifdef NO_IP
  207: /* compiled to LIT CALL by compile_prim */
  208: assert(0);
  209: #else
  210: a_pfa = PFA(a_cfa);
  211: nest = (Cell)IP;
  212: IF_spTOS(spTOS = sp[0]);
  213: #ifdef DEBUG
  214:     {
  215:       CFA_TO_NAME(a_cfa);
  216:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  217: 	      (Cell)ip,(Cell)a_cfa,len,name);
  218:     }
  219: #endif
  220: SET_IP(DOES_CODE1(a_cfa));
  221: #endif
  222: 
  223: \+glocals
  224: 
  225: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  226: /* this will probably not be used */
  227: lp += nlocals;
  228: #ifdef NO_IP
  229: INST_TAIL;
  230: JUMP(a_target);
  231: #else
  232: SET_IP((Xt *)a_target);
  233: #endif
  234: 
  235: \+
  236: 
  237: branch	( #a_target -- )	gforth
  238: #ifdef NO_IP
  239: INST_TAIL;
  240: JUMP(a_target);
  241: #else
  242: SET_IP((Xt *)a_target);
  243: #endif
  244: :
  245:  r> @ >r ;
  246: 
  247: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  248: \ this is non-syntactical: code must open a brace that is closed by the macro
  249: define(condbranch,
  250: $1 ( `#'a_target $2 ) $3
  251: $4	#ifdef NO_IP
  252: INST_TAIL;
  253: #endif
  254: $5	#ifdef NO_IP
  255: JUMP(a_target);
  256: #else
  257: SET_IP((Xt *)a_target);
  258: INST_TAIL; NEXT_P2;
  259: #endif
  260: }
  261: SUPER_CONTINUE;
  262: $6
  263: 
  264: \+glocals
  265: 
  266: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  267: $4	#ifdef NO_IP
  268: INST_TAIL;
  269: #endif
  270: $5	lp += nlocals;
  271: #ifdef NO_IP
  272: JUMP(a_target);
  273: #else
  274: SET_IP((Xt *)a_target);
  275: INST_TAIL; NEXT_P2;
  276: #endif
  277: }
  278: SUPER_CONTINUE;
  279: 
  280: \+
  281: )
  282: 
  283: condbranch(?branch,f --,f83	question_branch,
  284: ,if (f==0) {
  285: ,:
  286:  0= dup 0=          \ !f f
  287:  r> tuck cell+      \ !f branchoffset f IP+
  288:  and -rot @ and or  \ f&IP+|!f&branch
  289:  >r ;)
  290: 
  291: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  292: \ is only used in if's (yet)
  293: 
  294: \+xconds
  295: 
  296: ?dup-?branch	( #a_target f -- f )	new	question_dupe_question_branch
  297: ""The run-time procedure compiled by @code{?DUP-IF}.""
  298: if (f==0) {
  299:   sp++;
  300:   IF_spTOS(spTOS = sp[0]);
  301: #ifdef NO_IP
  302: INST_TAIL;
  303: JUMP(a_target);
  304: #else
  305: SET_IP((Xt *)a_target);
  306:   INST_TAIL; NEXT_P2;
  307: #endif
  308: }
  309: SUPER_CONTINUE;
  310: 
  311: ?dup-0=-?branch ( #a_target f -- ) new	question_dupe_zero_equals_question_branch
  312: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  313: /* the approach taken here of declaring the word as having the stack
  314: effect ( f -- ) and correcting for it in the branch-taken case costs a
  315: few cycles in that case, but is easy to convert to a CONDBRANCH
  316: invocation */
  317: if (f!=0) {
  318:   sp--;
  319: #ifdef NO_IP
  320:   JUMP(a_target);
  321: #else
  322:   SET_IP((Xt *)a_target);
  323:   NEXT;
  324: #endif
  325: }
  326: SUPER_CONTINUE;
  327: 
  328: \+
  329: \fhas? skiploopprims 0= [IF]
  330: 
  331: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  332: n2=n1-1;
  333: ,if (n1) {
  334: ,:
  335:  r> r> dup 1- >r
  336:  IF @ >r ELSE cell+ >r THEN ;)
  337: 
  338: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  339: n2=n1+1;
  340: ,if (n2 != nlimit) {
  341: ,:
  342:  r> r> 1+ r> 2dup =
  343:  IF >r 1- >r cell+ >r
  344:  ELSE >r >r @ >r THEN ;)
  345: 
  346: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  347: /* !! check this thoroughly */
  348: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  349: /* dependent upon two's complement arithmetic */
  350: Cell olddiff = n1-nlimit;
  351: n2=n1+n;	
  352: ,if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  353:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  354: ,:
  355:  r> swap
  356:  r> r> 2dup - >r
  357:  2 pick r@ + r@ xor 0< 0=
  358:  3 pick r> xor 0< 0= or
  359:  IF    >r + >r @ >r
  360:  ELSE  >r >r drop cell+ >r THEN ;)
  361: 
  362: \+xconds
  363: 
  364: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  365: UCell olddiff = n1-nlimit;
  366: n2=n1-u;
  367: ,if (olddiff>u) {
  368: ,)
  369: 
  370: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  371: ""The run-time procedure compiled by S+LOOP. It loops until the index
  372: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  373: version of (+LOOP).""
  374: /* !! check this thoroughly */
  375: Cell diff = n1-nlimit;
  376: Cell newdiff = diff+n;
  377: if (n<0) {
  378:     diff = -diff;
  379:     newdiff = -newdiff;
  380: }
  381: n2=n1+n;
  382: ,if (diff>=0 || newdiff<0) {
  383: ,)
  384: 
  385: \+
  386: 
  387: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  388: /* or (for) = >r -- collides with unloop! */
  389: nlimit=0;
  390: :
  391:  r> swap 0 >r >r >r ;
  392: 
  393: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  394: :
  395:  r> swap rot >r >r >r ;
  396: 
  397: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  398: #ifdef NO_IP
  399:     INST_TAIL;
  400: #endif
  401: if (nstart == nlimit) {
  402: #ifdef NO_IP
  403:     JUMP(a_target);
  404: #else
  405:     SET_IP((Xt *)a_target);
  406:     INST_TAIL; NEXT_P2;
  407: #endif
  408: }
  409: SUPER_CONTINUE;
  410: :
  411:   2dup =
  412:   IF   r> swap rot >r >r
  413:        @ >r
  414:   ELSE r> swap rot >r >r
  415:        cell+ >r
  416:   THEN ;				\ --> CORE-EXT
  417: 
  418: \+xconds
  419: 
  420: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  421: #ifdef NO_IP
  422:     INST_TAIL;
  423: #endif
  424: if (nstart >= nlimit) {
  425: #ifdef NO_IP
  426:     JUMP(a_target);
  427: #else
  428:     SET_IP((Xt *)a_target);
  429:     INST_TAIL; NEXT_P2;
  430: #endif
  431: }
  432: SUPER_CONTINUE;
  433: :
  434:  swap 2dup
  435:  r> swap >r swap >r
  436:  >=
  437:  IF
  438:      @
  439:  ELSE
  440:      cell+
  441:  THEN  >r ;
  442: 
  443: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  444: #ifdef NO_IP
  445:     INST_TAIL;
  446: #endif
  447: if (ustart >= ulimit) {
  448: #ifdef NO_IP
  449: JUMP(a_target);
  450: #else
  451: SET_IP((Xt *)a_target);
  452: INST_TAIL; NEXT_P2;
  453: #endif
  454: }
  455: SUPER_CONTINUE;
  456: :
  457:  swap 2dup
  458:  r> swap >r swap >r
  459:  u>=
  460:  IF
  461:      @
  462:  ELSE
  463:      cell+
  464:  THEN  >r ;
  465: 
  466: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  467: #ifdef NO_IP
  468:     INST_TAIL;
  469: #endif
  470: if (nstart <= nlimit) {
  471: #ifdef NO_IP
  472: JUMP(a_target);
  473: #else
  474: SET_IP((Xt *)a_target);
  475: INST_TAIL; NEXT_P2;
  476: #endif
  477: }
  478: SUPER_CONTINUE;
  479: :
  480:  swap 2dup
  481:  r> swap >r swap >r
  482:  <=
  483:  IF
  484:      @
  485:  ELSE
  486:      cell+
  487:  THEN  >r ;
  488: 
  489: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  490: #ifdef NO_IP
  491:     INST_TAIL;
  492: #endif
  493: if (ustart <= ulimit) {
  494: #ifdef NO_IP
  495: JUMP(a_target);
  496: #else
  497: SET_IP((Xt *)a_target);
  498: INST_TAIL; NEXT_P2;
  499: #endif
  500: }
  501: SUPER_CONTINUE;
  502: :
  503:  swap 2dup
  504:  r> swap >r swap >r
  505:  u<=
  506:  IF
  507:      @
  508:  ELSE
  509:      cell+
  510:  THEN  >r ;
  511: 
  512: \+
  513: 
  514: \ don't make any assumptions where the return stack is!!
  515: \ implement this in machine code if it should run quickly!
  516: 
  517: i	( R:n -- R:n n )		core
  518: :
  519: \ rp@ cell+ @ ;
  520:   r> r> tuck >r >r ;
  521: 
  522: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  523: :
  524: \ rp@ cell+ cell+ @ ;
  525:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  526: variable itmp
  527: 
  528: j	( R:n R:d1 -- n R:n R:d1 )		core
  529: :
  530: \ rp@ cell+ cell+ cell+ @ ;
  531:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  532: [IFUNDEF] itmp variable itmp [THEN]
  533: 
  534: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  535: :
  536: \ rp@ [ 5 cells ] Literal + @ ;
  537:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  538: [IFUNDEF] itmp variable itmp [THEN]
  539: 
  540: \f[THEN]
  541: 
  542: \ digit is high-level: 0/0%
  543: 
  544: \g strings
  545: 
  546: move	( c_from c_to ucount -- )		core
  547: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  548: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  549: /* !! note that the standard specifies addr, not c-addr */
  550: memmove(c_to,c_from,ucount);
  551: /* make an Ifdef for bsd and others? */
  552: :
  553:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  554: 
  555: cmove	( c_from c_to u -- )	string	c_move
  556: ""Copy the contents of @i{ucount} characters from data space at
  557: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  558: from low address to high address; i.e., for overlapping areas it is
  559: safe if @i{c-to}=<@i{c-from}.""
  560: while (u-- > 0)
  561:   *c_to++ = *c_from++;
  562: :
  563:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  564: 
  565: cmove>	( c_from c_to u -- )	string	c_move_up
  566: ""Copy the contents of @i{ucount} characters from data space at
  567: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  568: from high address to low address; i.e., for overlapping areas it is
  569: safe if @i{c-to}>=@i{c-from}.""
  570: while (u-- > 0)
  571:   c_to[u] = c_from[u];
  572: :
  573:  dup 0= IF  drop 2drop exit  THEN
  574:  rot over + -rot bounds swap 1-
  575:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  576: 
  577: fill	( c_addr u c -- )	core
  578: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  579: memset(c_addr,c,u);
  580: :
  581:  -rot bounds
  582:  ?DO  dup I c!  LOOP  drop ;
  583: 
  584: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  585: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  586: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  587: is 1. Currently this is based on the machine's character
  588: comparison. In the future, this may change to consider the current
  589: locale and its collation order.""
  590: /* close ' to keep fontify happy */ 
  591: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  592: if (n==0)
  593:   n = u1-u2;
  594: if (n<0)
  595:   n = -1;
  596: else if (n>0)
  597:   n = 1;
  598: :
  599:  rot 2dup swap - >r min swap -text dup
  600:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  601: : sgn ( n -- -1/0/1 )
  602:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  603: 
  604: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  605: n = memcmp(c_addr1, c_addr2, u);
  606: if (n<0)
  607:   n = -1;
  608: else if (n>0)
  609:   n = 1;
  610: :
  611:  swap bounds
  612:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  613:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  614: : sgn ( n -- -1/0/1 )
  615:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  616: 
  617: toupper	( c1 -- c2 )	gforth
  618: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  619: is the equivalent upper-case character. All other characters are unchanged.""
  620: c2 = toupper(c1);
  621: :
  622:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  623: 
  624: capscomp	( c_addr1 u c_addr2 -- n )	new
  625: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  626: if (n<0)
  627:   n = -1;
  628: else if (n>0)
  629:   n = 1;
  630: :
  631:  swap bounds
  632:  ?DO  dup c@ I c@ <>
  633:      IF  dup c@ toupper I c@ toupper =
  634:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  635:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  636: 
  637: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  638: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  639: spaces. @i{u2} is the length of the modified string.""
  640: u2 = u1;
  641: while (u2>0 && c_addr[u2-1] == ' ')
  642:   u2--;
  643: :
  644:  BEGIN  1- 2dup + c@ bl =  WHILE
  645:         dup  0= UNTIL  ELSE  1+  THEN ;
  646: 
  647: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  648: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  649: characters from the start of the string.""
  650: c_addr2 = c_addr1+n;
  651: u2 = u1-n;
  652: :
  653:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  654: 
  655: \g arith
  656: 
  657: lit	( #w -- w )		gforth
  658: :
  659:  r> dup @ swap cell+ >r ;
  660: 
  661: +	( n1 n2 -- n )		core	plus
  662: n = n1+n2;
  663: 
  664: \ lit+ / lit_plus = lit +
  665: 
  666: lit+	( n1 #n2 -- n )		new	lit_plus
  667: n=n1+n2;
  668: 
  669: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  670: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  671: ""add @i{n3} to @i{n1} (giving @i{n})""
  672: n = n1+n3;
  673: :
  674:  rot + swap ;
  675: 
  676: -	( n1 n2 -- n )		core	minus
  677: n = n1-n2;
  678: :
  679:  negate + ;
  680: 
  681: negate	( n1 -- n2 )		core
  682: /* use minus as alias */
  683: n2 = -n1;
  684: :
  685:  invert 1+ ;
  686: 
  687: 1+	( n1 -- n2 )		core		one_plus
  688: n2 = n1+1;
  689: :
  690:  1 + ;
  691: 
  692: 1-	( n1 -- n2 )		core		one_minus
  693: n2 = n1-1;
  694: :
  695:  1 - ;
  696: 
  697: max	( n1 n2 -- n )	core
  698: if (n1<n2)
  699:   n = n2;
  700: else
  701:   n = n1;
  702: :
  703:  2dup < IF swap THEN drop ;
  704: 
  705: min	( n1 n2 -- n )	core
  706: if (n1<n2)
  707:   n = n1;
  708: else
  709:   n = n2;
  710: :
  711:  2dup > IF swap THEN drop ;
  712: 
  713: abs	( n -- u )	core
  714: if (n<0)
  715:   u = -n;
  716: else
  717:   u = n;
  718: :
  719:  dup 0< IF negate THEN ;
  720: 
  721: *	( n1 n2 -- n )		core	star
  722: n = n1*n2;
  723: :
  724:  um* drop ;
  725: 
  726: /	( n1 n2 -- n )		core	slash
  727: n = n1/n2;
  728: :
  729:  /mod nip ;
  730: 
  731: mod	( n1 n2 -- n )		core
  732: n = n1%n2;
  733: :
  734:  /mod drop ;
  735: 
  736: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  737: n4 = n1/n2;
  738: n3 = n1%n2; /* !! is this correct? look into C standard! */
  739: :
  740:  >r s>d r> fm/mod ;
  741: 
  742: 2*	( n1 -- n2 )		core		two_star
  743: ""Shift left by 1; also works on unsigned numbers""
  744: n2 = 2*n1;
  745: :
  746:  dup + ;
  747: 
  748: 2/	( n1 -- n2 )		core		two_slash
  749: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  750: division by 2 (note that @code{/} not necessarily floors).""
  751: n2 = n1>>1;
  752: :
  753:  dup MINI and IF 1 ELSE 0 THEN
  754:  [ bits/byte cell * 1- ] literal 
  755:  0 DO 2* swap dup 2* >r MINI and 
  756:      IF 1 ELSE 0 THEN or r> swap
  757:  LOOP nip ;
  758: 
  759: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  760: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  761: #ifdef BUGGY_LONG_LONG
  762: DCell r = fmdiv(d1,n1);
  763: n2=r.hi;
  764: n3=r.lo;
  765: #else
  766: /* assumes that the processor uses either floored or symmetric division */
  767: n3 = d1/n1;
  768: n2 = d1%n1;
  769: /* note that this 1%-3>0 is optimized by the compiler */
  770: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  771:   n3--;
  772:   n2+=n1;
  773: }
  774: #endif
  775: :
  776:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  777:  over       0< IF  tuck + swap  THEN
  778:  um/mod
  779:  r> 0< IF  swap negate swap  THEN ;
  780: 
  781: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  782: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  783: #ifdef BUGGY_LONG_LONG
  784: DCell r = smdiv(d1,n1);
  785: n2=r.hi;
  786: n3=r.lo;
  787: #else
  788: /* assumes that the processor uses either floored or symmetric division */
  789: n3 = d1/n1;
  790: n2 = d1%n1;
  791: /* note that this 1%-3<0 is optimized by the compiler */
  792: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  793:   n3++;
  794:   n2-=n1;
  795: }
  796: #endif
  797: :
  798:  over >r dup >r abs -rot
  799:  dabs rot um/mod
  800:  r> r@ xor 0< IF       negate       THEN
  801:  r>        0< IF  swap negate swap  THEN ;
  802: 
  803: m*	( n1 n2 -- d )		core	m_star
  804: #ifdef BUGGY_LONG_LONG
  805: d = mmul(n1,n2);
  806: #else
  807: d = (DCell)n1 * (DCell)n2;
  808: #endif
  809: :
  810:  2dup      0< and >r
  811:  2dup swap 0< and >r
  812:  um* r> - r> - ;
  813: 
  814: um*	( u1 u2 -- ud )		core	u_m_star
  815: /* use u* as alias */
  816: #ifdef BUGGY_LONG_LONG
  817: ud = ummul(u1,u2);
  818: #else
  819: ud = (UDCell)u1 * (UDCell)u2;
  820: #endif
  821: :
  822:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  823:    DO
  824:        over >r dup >r 0< and d2*+ drop
  825:        r> 2* r> swap
  826:    LOOP 2drop ;
  827: : d2*+ ( ud n -- ud+n c )
  828:    over MINI
  829:    and >r >r 2dup d+ swap r> + swap r> ;
  830: 
  831: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  832: ""ud=u3*u1+u2, u1>u2>=0""
  833: #ifdef BUGGY_LONG_LONG
  834: UDCell r = umdiv(ud,u1);
  835: u2=r.hi;
  836: u3=r.lo;
  837: #else
  838: u3 = ud/u1;
  839: u2 = ud%u1;
  840: #endif
  841: :
  842:    0 swap [ 8 cells 1 + ] literal 0
  843:    ?DO /modstep
  844:    LOOP drop swap 1 rshift or swap ;
  845: : /modstep ( ud c R: u -- ud-?u c R: u )
  846:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  847: : d2*+ ( ud n -- ud+n c )
  848:    over MINI
  849:    and >r >r 2dup d+ swap r> + swap r> ;
  850: 
  851: m+	( d1 n -- d2 )		double		m_plus
  852: #ifdef BUGGY_LONG_LONG
  853: d2.lo = d1.lo+n;
  854: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  855: #else
  856: d2 = d1+n;
  857: #endif
  858: :
  859:  s>d d+ ;
  860: 
  861: d+	( d1 d2 -- d )		double	d_plus
  862: #ifdef BUGGY_LONG_LONG
  863: d.lo = d1.lo+d2.lo;
  864: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  865: #else
  866: d = d1+d2;
  867: #endif
  868: :
  869:  rot + >r tuck + swap over u> r> swap - ;
  870: 
  871: d-	( d1 d2 -- d )		double		d_minus
  872: #ifdef BUGGY_LONG_LONG
  873: d.lo = d1.lo - d2.lo;
  874: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  875: #else
  876: d = d1-d2;
  877: #endif
  878: :
  879:  dnegate d+ ;
  880: 
  881: dnegate	( d1 -- d2 )		double	d_negate
  882: /* use dminus as alias */
  883: #ifdef BUGGY_LONG_LONG
  884: d2 = dnegate(d1);
  885: #else
  886: d2 = -d1;
  887: #endif
  888: :
  889:  invert swap negate tuck 0= - ;
  890: 
  891: d2*	( d1 -- d2 )		double		d_two_star
  892: ""Shift left by 1; also works on unsigned numbers""
  893: #ifdef BUGGY_LONG_LONG
  894: d2.lo = d1.lo<<1;
  895: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  896: #else
  897: d2 = 2*d1;
  898: #endif
  899: :
  900:  2dup d+ ;
  901: 
  902: d2/	( d1 -- d2 )		double		d_two_slash
  903: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  904: division by 2.""
  905: #ifdef BUGGY_LONG_LONG
  906: d2.hi = d1.hi>>1;
  907: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  908: #else
  909: d2 = d1>>1;
  910: #endif
  911: :
  912:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  913:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  914: 
  915: and	( w1 w2 -- w )		core
  916: w = w1&w2;
  917: 
  918: or	( w1 w2 -- w )		core
  919: w = w1|w2;
  920: :
  921:  invert swap invert and invert ;
  922: 
  923: xor	( w1 w2 -- w )		core	x_or
  924: w = w1^w2;
  925: 
  926: invert	( w1 -- w2 )		core
  927: w2 = ~w1;
  928: :
  929:  MAXU xor ;
  930: 
  931: rshift	( u1 n -- u2 )		core	r_shift
  932: ""Logical shift right by @i{n} bits.""
  933:   u2 = u1>>n;
  934: :
  935:     0 ?DO 2/ MAXI and LOOP ;
  936: 
  937: lshift	( u1 n -- u2 )		core	l_shift
  938:   u2 = u1<<n;
  939: :
  940:     0 ?DO 2* LOOP ;
  941: 
  942: \g compare
  943: 
  944: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  945: define(comparisons,
  946: $1=	( $2 -- f )		$6	$3equals
  947: f = FLAG($4==$5);
  948: :
  949:     [ char $1x char 0 = [IF]
  950: 	] IF false ELSE true THEN [
  951:     [ELSE]
  952: 	] xor 0= [
  953:     [THEN] ] ;
  954: 
  955: $1<>	( $2 -- f )		$7	$3not_equals
  956: f = FLAG($4!=$5);
  957: :
  958:     [ char $1x char 0 = [IF]
  959: 	] IF true ELSE false THEN [
  960:     [ELSE]
  961: 	] xor 0<> [
  962:     [THEN] ] ;
  963: 
  964: $1<	( $2 -- f )		$8	$3less_than
  965: f = FLAG($4<$5);
  966: :
  967:     [ char $1x char 0 = [IF]
  968: 	] MINI and 0<> [
  969:     [ELSE] char $1x char u = [IF]
  970: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  971: 	[ELSE]
  972: 	    ] MINI xor >r MINI xor r> u< [
  973: 	[THEN]
  974:     [THEN] ] ;
  975: 
  976: $1>	( $2 -- f )		$9	$3greater_than
  977: f = FLAG($4>$5);
  978: :
  979:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  980:     $1< ;
  981: 
  982: $1<=	( $2 -- f )		gforth	$3less_or_equal
  983: f = FLAG($4<=$5);
  984: :
  985:     $1> 0= ;
  986: 
  987: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  988: f = FLAG($4>=$5);
  989: :
  990:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  991:     $1<= ;
  992: 
  993: )
  994: 
  995: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  996: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  997: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  998: 
  999: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1000: define(dcomparisons,
 1001: $1=	( $2 -- f )		$6	$3equals
 1002: #ifdef BUGGY_LONG_LONG
 1003: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1004: #else
 1005: f = FLAG($4==$5);
 1006: #endif
 1007: 
 1008: $1<>	( $2 -- f )		$7	$3not_equals
 1009: #ifdef BUGGY_LONG_LONG
 1010: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1011: #else
 1012: f = FLAG($4!=$5);
 1013: #endif
 1014: 
 1015: $1<	( $2 -- f )		$8	$3less_than
 1016: #ifdef BUGGY_LONG_LONG
 1017: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1018: #else
 1019: f = FLAG($4<$5);
 1020: #endif
 1021: 
 1022: $1>	( $2 -- f )		$9	$3greater_than
 1023: #ifdef BUGGY_LONG_LONG
 1024: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1025: #else
 1026: f = FLAG($4>$5);
 1027: #endif
 1028: 
 1029: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1030: #ifdef BUGGY_LONG_LONG
 1031: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1032: #else
 1033: f = FLAG($4<=$5);
 1034: #endif
 1035: 
 1036: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1037: #ifdef BUGGY_LONG_LONG
 1038: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1039: #else
 1040: f = FLAG($4>=$5);
 1041: #endif
 1042: 
 1043: )
 1044: 
 1045: \+dcomps
 1046: 
 1047: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1048: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1049: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1050: 
 1051: \+
 1052: 
 1053: within	( u1 u2 u3 -- f )		core-ext
 1054: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1055: unsigned and signed numbers (but not a mixture).  Another way to think
 1056: about this word is to consider the numbers as a circle (wrapping
 1057: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1058: min-n for signed numbers); now consider the range from u2 towards
 1059: increasing numbers up to and excluding u3 (giving an empty range if
 1060: u2=u3); if u1 is in this range, @code{within} returns true.""
 1061: f = FLAG(u1-u2 < u3-u2);
 1062: :
 1063:  over - >r - r> u< ;
 1064: 
 1065: \g stack
 1066: 
 1067: useraddr	( #u -- a_addr )	new
 1068: a_addr = (Cell *)(up+u);
 1069: 
 1070: up!	( a_addr -- )	gforth	up_store
 1071: UP=up=(char *)a_addr;
 1072: :
 1073:  up ! ;
 1074: Variable UP
 1075: 
 1076: sp@	( -- a_addr )		gforth		sp_fetch
 1077: a_addr = sp+1;
 1078: 
 1079: sp!	( a_addr -- )		gforth		sp_store
 1080: sp = a_addr;
 1081: /* works with and without spTOS caching */
 1082: 
 1083: rp@	( -- a_addr )		gforth		rp_fetch
 1084: a_addr = rp;
 1085: 
 1086: rp!	( a_addr -- )		gforth		rp_store
 1087: rp = a_addr;
 1088: 
 1089: \+floating
 1090: 
 1091: fp@	( -- f_addr )	gforth	fp_fetch
 1092: f_addr = fp;
 1093: 
 1094: fp!	( f_addr -- )	gforth	fp_store
 1095: fp = f_addr;
 1096: 
 1097: \+
 1098: 
 1099: >r	( w -- R:w )		core	to_r
 1100: :
 1101:  (>r) ;
 1102: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1103: 
 1104: r>	( R:w -- w )		core	r_from
 1105: :
 1106:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1107: Create (rdrop) ' ;s A,
 1108: 
 1109: rdrop	( R:w -- )		gforth
 1110: :
 1111:  r> r> drop >r ;
 1112: 
 1113: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
 1114: :
 1115:  swap r> swap >r swap >r >r ;
 1116: 
 1117: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
 1118: :
 1119:  r> r> swap r> swap >r swap ;
 1120: 
 1121: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
 1122: :
 1123:  i' j ;
 1124: 
 1125: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
 1126: :
 1127:  r> r> drop r> drop >r ;
 1128: 
 1129: over	( w1 w2 -- w1 w2 w1 )		core
 1130: :
 1131:  sp@ cell+ @ ;
 1132: 
 1133: drop	( w -- )		core
 1134: :
 1135:  IF THEN ;
 1136: 
 1137: swap	( w1 w2 -- w2 w1 )		core
 1138: :
 1139:  >r (swap) ! r> (swap) @ ;
 1140: Variable (swap)
 1141: 
 1142: dup	( w -- w w )		core	dupe
 1143: :
 1144:  sp@ @ ;
 1145: 
 1146: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1147: :
 1148: [ defined? (swap) [IF] ]
 1149:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1150: Variable (rot)
 1151: [ELSE] ]
 1152:     >r swap r> swap ;
 1153: [THEN]
 1154: 
 1155: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1156: :
 1157:  rot rot ;
 1158: 
 1159: nip	( w1 w2 -- w2 )		core-ext
 1160: :
 1161:  swap drop ;
 1162: 
 1163: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1164: :
 1165:  swap over ;
 1166: 
 1167: ?dup	( w -- w )			core	question_dupe
 1168: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1169: @code{dup} if w is nonzero.""
 1170: if (w!=0) {
 1171:   IF_spTOS(*sp-- = w;)
 1172: #ifndef USE_TOS
 1173:   *--sp = w;
 1174: #endif
 1175: }
 1176: :
 1177:  dup IF dup THEN ;
 1178: 
 1179: pick	( u -- w )			core-ext
 1180: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1181: w = sp[u+1];
 1182: :
 1183:  1+ cells sp@ + @ ;
 1184: 
 1185: 2drop	( w1 w2 -- )		core	two_drop
 1186: :
 1187:  drop drop ;
 1188: 
 1189: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1190: :
 1191:  over over ;
 1192: 
 1193: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1194: :
 1195:  3 pick 3 pick ;
 1196: 
 1197: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1198: :
 1199:  rot >r rot r> ;
 1200: 
 1201: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1202: :
 1203:  >r >r 2swap r> r> 2swap ;
 1204: 
 1205: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1206: :
 1207:  2swap 2drop ;
 1208: 
 1209: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1210: :
 1211:  2swap 2over ;
 1212: 
 1213: \ toggle is high-level: 0.11/0.42%
 1214: 
 1215: \g memory
 1216: 
 1217: @	( a_addr -- w )		core	fetch
 1218: ""@i{w} is the cell stored at @i{a_addr}.""
 1219: w = *a_addr;
 1220: 
 1221: \ lit@ / lit_fetch = lit @
 1222: 
 1223: lit@		( #a_addr -- w ) new	lit_fetch
 1224: w = *a_addr;
 1225: 
 1226: !	( w a_addr -- )		core	store
 1227: ""Store @i{w} into the cell at @i{a-addr}.""
 1228: *a_addr = w;
 1229: 
 1230: +!	( n a_addr -- )		core	plus_store
 1231: ""Add @i{n} to the cell at @i{a-addr}.""
 1232: *a_addr += n;
 1233: :
 1234:  tuck @ + swap ! ;
 1235: 
 1236: c@	( c_addr -- c )		core	c_fetch
 1237: ""@i{c} is the char stored at @i{c_addr}.""
 1238: c = *c_addr;
 1239: :
 1240: [ bigendian [IF] ]
 1241:     [ cell>bit 4 = [IF] ]
 1242: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1243: 	IF  $FF and  ELSE  8>>  THEN  ;
 1244:     [ [ELSE] ]
 1245: 	dup [ cell 1- ] literal and
 1246: 	tuck - @ swap [ cell 1- ] literal xor
 1247:  	0 ?DO 8>> LOOP $FF and
 1248:     [ [THEN] ]
 1249: [ [ELSE] ]
 1250:     [ cell>bit 4 = [IF] ]
 1251: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1252: 	IF  8>>  ELSE  $FF and  THEN
 1253:     [ [ELSE] ]
 1254: 	dup [ cell  1- ] literal and 
 1255: 	tuck - @ swap
 1256: 	0 ?DO 8>> LOOP 255 and
 1257:     [ [THEN] ]
 1258: [ [THEN] ]
 1259: ;
 1260: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1261: 
 1262: c!	( c c_addr -- )		core	c_store
 1263: ""Store @i{c} into the char at @i{c-addr}.""
 1264: *c_addr = c;
 1265: :
 1266: [ bigendian [IF] ]
 1267:     [ cell>bit 4 = [IF] ]
 1268: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1269: 	dup -2 and @ over 1 and cells masks + @ and
 1270: 	r> or swap -2 and ! ;
 1271: 	Create masks $00FF , $FF00 ,
 1272:     [ELSE] ]
 1273: 	dup [ cell 1- ] literal and dup 
 1274: 	[ cell 1- ] literal xor >r
 1275: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1276: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1277:     [THEN]
 1278: [ELSE] ]
 1279:     [ cell>bit 4 = [IF] ]
 1280: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1281: 	dup -2 and @ over 1 and cells masks + @ and
 1282: 	r> or swap -2 and ! ;
 1283: 	Create masks $FF00 , $00FF ,
 1284:     [ELSE] ]
 1285: 	dup [ cell 1- ] literal and dup >r
 1286: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1287: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1288:     [THEN]
 1289: [THEN]
 1290: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1291: 
 1292: 2!	( w1 w2 a_addr -- )		core	two_store
 1293: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1294: a_addr[0] = w2;
 1295: a_addr[1] = w1;
 1296: :
 1297:  tuck ! cell+ ! ;
 1298: 
 1299: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1300: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1301: the content of the next cell.""
 1302: w2 = a_addr[0];
 1303: w1 = a_addr[1];
 1304: :
 1305:  dup cell+ @ swap @ ;
 1306: 
 1307: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1308: ""@code{1 cells +}""
 1309: a_addr2 = a_addr1+1;
 1310: :
 1311:  cell + ;
 1312: 
 1313: cells	( n1 -- n2 )		core
 1314: "" @i{n2} is the number of address units of @i{n1} cells.""
 1315: n2 = n1 * sizeof(Cell);
 1316: :
 1317:  [ cell
 1318:  2/ dup [IF] ] 2* [ [THEN]
 1319:  2/ dup [IF] ] 2* [ [THEN]
 1320:  2/ dup [IF] ] 2* [ [THEN]
 1321:  2/ dup [IF] ] 2* [ [THEN]
 1322:  drop ] ;
 1323: 
 1324: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1325: ""@code{1 chars +}.""
 1326: c_addr2 = c_addr1 + 1;
 1327: :
 1328:  1+ ;
 1329: 
 1330: (chars)	( n1 -- n2 )	gforth	paren_chars
 1331: n2 = n1 * sizeof(Char);
 1332: :
 1333:  ;
 1334: 
 1335: count	( c_addr1 -- c_addr2 u )	core
 1336: ""@i{c-addr2} is the first character and @i{u} the length of the
 1337: counted string at @i{c-addr1}.""
 1338: u = *c_addr1;
 1339: c_addr2 = c_addr1+1;
 1340: :
 1341:  dup 1+ swap c@ ;
 1342: 
 1343: \g compiler
 1344: 
 1345: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1346: for (; longname1 != NULL; longname1 = (struct Longname *)(longname1->next))
 1347:   if ((UCell)LONGNAME_COUNT(longname1)==u &&
 1348:       memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 1349:     break;
 1350: longname2=longname1;
 1351: :
 1352:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1353: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1354: 	IF  2drop r>  EXIT  THEN
 1355: 	r> @
 1356:     REPEAT  THEN  nip nip ;
 1357: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1358:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1359: 
 1360: \+hash
 1361: 
 1362: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1363: struct Longname *longname1;
 1364: longname2=NULL;
 1365: while(a_addr != NULL)
 1366: {
 1367:    longname1=(struct Longname *)(a_addr[1]);
 1368:    a_addr=(Cell *)(a_addr[0]);
 1369:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 1370:        memcasecmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 1371:      {
 1372: 	longname2=longname1;
 1373: 	break;
 1374:      }
 1375: }
 1376: :
 1377:  BEGIN  dup  WHILE
 1378:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1379:         IF  2dup r@ cell+ cell+ capscomp 0=
 1380: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1381: 	rdrop r>
 1382:  REPEAT nip nip ;
 1383: 
 1384: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1385: ""A case-sensitive variant of @code{(hashfind)}""
 1386: struct Longname *longname1;
 1387: longname2=NULL;
 1388: while(a_addr != NULL)
 1389: {
 1390:    longname1=(struct Longname *)(a_addr[1]);
 1391:    a_addr=(Cell *)(a_addr[0]);
 1392:    if ((UCell)LONGNAME_COUNT(longname1)==u &&
 1393:        memcmp(c_addr, longname1->name, u)== 0 /* or inline? */)
 1394:      {
 1395: 	longname2=longname1;
 1396: 	break;
 1397:      }
 1398: }
 1399: :
 1400:  BEGIN  dup  WHILE
 1401:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1402:         IF  2dup r@ cell+ cell+ -text 0=
 1403: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1404: 	rdrop r>
 1405:  REPEAT nip nip ;
 1406: 
 1407: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1408: u2=0;
 1409: while(u1--)
 1410:    u2+=(Cell)toupper(*c_addr++);
 1411: :
 1412:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1413: 
 1414: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1415: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1416: /* this hash function rotates the key at every step by rot bits within
 1417:    ubits bits and xors it with the character. This function does ok in
 1418:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1419:    ASCII strings (larger if ubits is large), and should share no
 1420:    divisors with ubits.
 1421: */
 1422: static char rot_values[] = {5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5};
 1423: unsigned rot = rot_values[ubits];
 1424: Char *cp = c_addr;
 1425: for (ukey=0; cp<c_addr+u; cp++)
 1426:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1427: 	     ^ toupper(*cp))
 1428: 	    & ((1<<ubits)-1));
 1429: :
 1430:  dup rot-values + c@ over 1 swap lshift 1- >r
 1431:  tuck - 2swap r> 0 2swap bounds
 1432:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1433:       I c@ toupper xor
 1434:       over and  LOOP
 1435:  nip nip nip ;
 1436: Create rot-values
 1437:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1438:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1439:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1440:   7 c, 5 c, 5 c,
 1441: 
 1442: \+
 1443: 
 1444: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1445: /* use !isgraph instead of isspace? */
 1446: Char *endp = c_addr1+u1;
 1447: while (c_addr1<endp && isspace(*c_addr1))
 1448:   c_addr1++;
 1449: if (c_addr1<endp) {
 1450:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1451:     ;
 1452:   u2 = c_addr1-c_addr2;
 1453: }
 1454: else {
 1455:   c_addr2 = c_addr1;
 1456:   u2 = 0;
 1457: }
 1458: :
 1459:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1460:  REPEAT  THEN  2dup
 1461:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1462:  REPEAT  THEN  nip - ;
 1463: 
 1464: aligned	( c_addr -- a_addr )	core
 1465: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1466: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1467: :
 1468:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1469: 
 1470: faligned	( c_addr -- f_addr )	float	f_aligned
 1471: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1472: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1473: :
 1474:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1475: 
 1476: \ threading stuff is currently only interesting if we have a compiler
 1477: \fhas? standardthreading has? compiler and [IF]
 1478: does-handler!	( a_addr -- )	gforth	does_handler_store
 1479: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1480: @i{a-addr} points just behind a @code{DOES>}.""
 1481: MAKE_DOES_HANDLER(a_addr);
 1482: :
 1483:     drop ;
 1484: 
 1485: threading-method	( -- n )	gforth	threading_method
 1486: ""0 if the engine is direct threaded. Note that this may change during
 1487: the lifetime of an image.""
 1488: #if defined(DOUBLY_INDIRECT)
 1489: n=2;
 1490: #else
 1491: # if defined(DIRECT_THREADED)
 1492: n=0;
 1493: # else
 1494: n=1;
 1495: # endif
 1496: #endif
 1497: :
 1498:  1 ;
 1499: 
 1500: \f[THEN]
 1501: 
 1502: \g hostos
 1503: 
 1504: key-file	( wfileid -- n )		gforth	paren_key_file
 1505: #ifdef HAS_FILE
 1506: fflush(stdout);
 1507: n = key((FILE*)wfileid);
 1508: #else
 1509: n = key(stdin);
 1510: #endif
 1511: 
 1512: key?-file	( wfileid -- n )		facility	key_q_file
 1513: #ifdef HAS_FILE
 1514: fflush(stdout);
 1515: n = key_query((FILE*)wfileid);
 1516: #else
 1517: n = key_query(stdin);
 1518: #endif
 1519: 
 1520: \+os
 1521: 
 1522: stdin	( -- wfileid )	gforth
 1523: wfileid = (Cell)stdin;
 1524: 
 1525: stdout	( -- wfileid )	gforth
 1526: wfileid = (Cell)stdout;
 1527: 
 1528: stderr	( -- wfileid )	gforth
 1529: wfileid = (Cell)stderr;
 1530: 
 1531: form	( -- urows ucols )	gforth
 1532: ""The number of lines and columns in the terminal. These numbers may change
 1533: with the window size.""
 1534: /* we could block SIGWINCH here to get a consistent size, but I don't
 1535:  think this is necessary or always beneficial */
 1536: urows=rows;
 1537: ucols=cols;
 1538: 
 1539: flush-icache	( c_addr u -- )	gforth	flush_icache
 1540: ""Make sure that the instruction cache of the processor (if there is
 1541: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1542: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1543: automatically. Caveat: @code{flush-icache} might not work on your
 1544: installation; this is usually the case if direct threading is not
 1545: supported on your machine (take a look at your @file{machine.h}) and
 1546: your machine has a separate instruction cache. In such cases,
 1547: @code{flush-icache} does nothing instead of flushing the instruction
 1548: cache.""
 1549: FLUSH_ICACHE(c_addr,u);
 1550: 
 1551: (bye)	( n -- )	gforth	paren_bye
 1552: SUPER_END;
 1553: return (Label *)n;
 1554: 
 1555: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1556: #ifndef MSDOS
 1557: int old_tp=terminal_prepped;
 1558: deprep_terminal();
 1559: #endif
 1560: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1561: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1562: #ifndef MSDOS
 1563: if (old_tp)
 1564:   prep_terminal();
 1565: #endif
 1566: 
 1567: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1568: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1569: is the host operating system's expansion of that environment variable. If the
 1570: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1571: in length.""
 1572: /* close ' to keep fontify happy */
 1573: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1574: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1575: 
 1576: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1577: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1578: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1579: 
 1580: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1581: wretval = pclose((FILE *)wfileid);
 1582: wior = IOR(wretval==-1);
 1583: 
 1584: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1585: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1586: Months are numbered from 1.""
 1587: struct timeval time1;
 1588: struct timezone zone1;
 1589: struct tm *ltime;
 1590: gettimeofday(&time1,&zone1);
 1591: /* !! Single Unix specification: 
 1592:    If tzp is not a null pointer, the behaviour is unspecified. */
 1593: ltime=localtime((time_t *)&time1.tv_sec);
 1594: nyear =ltime->tm_year+1900;
 1595: nmonth=ltime->tm_mon+1;
 1596: nday  =ltime->tm_mday;
 1597: nhour =ltime->tm_hour;
 1598: nmin  =ltime->tm_min;
 1599: nsec  =ltime->tm_sec;
 1600: 
 1601: ms	( n -- )	facility-ext
 1602: ""Wait at least @i{n} milli-second.""
 1603: struct timeval timeout;
 1604: timeout.tv_sec=n/1000;
 1605: timeout.tv_usec=1000*(n%1000);
 1606: (void)select(0,0,0,0,&timeout);
 1607: 
 1608: allocate	( u -- a_addr wior )	memory
 1609: ""Allocate @i{u} address units of contiguous data space. The initial
 1610: contents of the data space is undefined. If the allocation is successful,
 1611: @i{a-addr} is the start address of the allocated region and @i{wior}
 1612: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1613: is a non-zero I/O result code.""
 1614: a_addr = (Cell *)malloc(u?u:1);
 1615: wior = IOR(a_addr==NULL);
 1616: 
 1617: free	( a_addr -- wior )		memory
 1618: ""Return the region of data space starting at @i{a-addr} to the system.
 1619: The region must originally have been obtained using @code{allocate} or
 1620: @code{resize}. If the operational is successful, @i{wior} is 0.
 1621: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1622: free(a_addr);
 1623: wior = 0;
 1624: 
 1625: resize	( a_addr1 u -- a_addr2 wior )	memory
 1626: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1627: address units, possibly moving the contents to a different
 1628: area. @i{a-addr2} is the address of the resulting area.
 1629: If the operation is successful, @i{wior} is 0.
 1630: If the operation fails, @i{wior} is a non-zero
 1631: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1632: @code{resize} @code{allocate}s @i{u} address units.""
 1633: /* the following check is not necessary on most OSs, but it is needed
 1634:    on SunOS 4.1.2. */
 1635: /* close ' to keep fontify happy */
 1636: if (a_addr1==NULL)
 1637:   a_addr2 = (Cell *)malloc(u);
 1638: else
 1639:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1640: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1641: 
 1642: strerror	( n -- c_addr u )	gforth
 1643: c_addr = strerror(n);
 1644: u = strlen(c_addr);
 1645: 
 1646: strsignal	( n -- c_addr u )	gforth
 1647: c_addr = strsignal(n);
 1648: u = strlen(c_addr);
 1649: 
 1650: call-c	( w -- )	gforth	call_c
 1651: ""Call the C function pointed to by @i{w}. The C function has to
 1652: access the stack itself. The stack pointers are exported in the global
 1653: variables @code{SP} and @code{FP}.""
 1654: /* This is a first attempt at support for calls to C. This may change in
 1655:    the future */
 1656: IF_fpTOS(fp[0]=fpTOS);
 1657: FP=fp;
 1658: SP=sp;
 1659: ((void (*)())w)();
 1660: sp=SP;
 1661: fp=FP;
 1662: IF_spTOS(spTOS=sp[0]);
 1663: IF_fpTOS(fpTOS=fp[0]);
 1664: 
 1665: \+
 1666: \+file
 1667: 
 1668: close-file	( wfileid -- wior )		file	close_file
 1669: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1670: 
 1671: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1672: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1673: wior =  IOR(wfileid == 0);
 1674: 
 1675: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1676: Cell	fd;
 1677: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1678: if (fd != -1) {
 1679:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1680:   wior = IOR(wfileid == 0);
 1681: } else {
 1682:   wfileid = 0;
 1683:   wior = IOR(1);
 1684: }
 1685: 
 1686: delete-file	( c_addr u -- wior )		file	delete_file
 1687: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1688: 
 1689: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1690: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1691: char *s1=tilde_cstr(c_addr2, u2, 1);
 1692: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1693: 
 1694: file-position	( wfileid -- ud wior )	file	file_position
 1695: /* !! use tell and lseek? */
 1696: ud = OFF2UD(ftello((FILE *)wfileid));
 1697: wior = IOR(UD2OFF(ud)==-1);
 1698: 
 1699: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1700: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1701: 
 1702: file-size	( wfileid -- ud wior )	file	file_size
 1703: struct stat buf;
 1704: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1705: ud = OFF2UD(buf.st_size);
 1706: 
 1707: resize-file	( ud wfileid -- wior )	file	resize_file
 1708: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1709: 
 1710: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1711: /* !! fread does not guarantee enough */
 1712: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1713: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1714: /* !! is the value of ferror errno-compatible? */
 1715: if (wior)
 1716:   clearerr((FILE *)wfileid);
 1717: 
 1718: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 1719: Cell c;
 1720: flag=-1;
 1721: u3=0;
 1722: for(u2=0; u2<u1; u2++)
 1723: {
 1724:    c = getc((FILE *)wfileid);
 1725:    u3++;
 1726:    if (c=='\n') break;
 1727:    if (c=='\r') {
 1728:      if ((c = getc((FILE *)wfileid))!='\n')
 1729:        ungetc(c,(FILE *)wfileid);
 1730:      else
 1731:        u3++;
 1732:      break;
 1733:    }
 1734:    if (c==EOF) {
 1735: 	flag=FLAG(u2!=0);
 1736: 	break;
 1737:      }
 1738:    c_addr[u2] = (Char)c;
 1739: }
 1740: wior=FILEIO(ferror((FILE *)wfileid));
 1741: 
 1742: \+
 1743: 
 1744: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1745: /* !! fwrite does not guarantee enough */
 1746: #ifdef HAS_FILE
 1747: {
 1748:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1749:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1750:   if (wior)
 1751:     clearerr((FILE *)wfileid);
 1752: }
 1753: #else
 1754: TYPE(c_addr, u1);
 1755: #endif
 1756: 
 1757: emit-file	( c wfileid -- wior )	gforth	emit_file
 1758: #ifdef HAS_FILE
 1759: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1760: if (wior)
 1761:   clearerr((FILE *)wfileid);
 1762: #else
 1763: PUTC(c);
 1764: #endif
 1765: 
 1766: \+file
 1767: 
 1768: flush-file	( wfileid -- wior )		file-ext	flush_file
 1769: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1770: 
 1771: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1772: char *filename=tilde_cstr(c_addr, u, 1);
 1773: if (access (filename, F_OK) != 0) {
 1774:   wfam=0;
 1775:   wior=IOR(1);
 1776: }
 1777: else if (access (filename, R_OK | W_OK) == 0) {
 1778:   wfam=2; /* r/w */
 1779:   wior=0;
 1780: }
 1781: else if (access (filename, R_OK) == 0) {
 1782:   wfam=0; /* r/o */
 1783:   wior=0;
 1784: }
 1785: else if (access (filename, W_OK) == 0) {
 1786:   wfam=4; /* w/o */
 1787:   wior=0;
 1788: }
 1789: else {
 1790:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1791: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1792:   wior=0;
 1793: }
 1794: 
 1795: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1796: flag = FLAG(feof((FILE *) wfileid));
 1797: 
 1798: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1799: ""Open the directory specified by @i{c-addr, u}
 1800: and return @i{dir-id} for futher access to it.""
 1801: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1802: wior =  IOR(wdirid == 0);
 1803: 
 1804: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1805: ""Attempt to read the next entry from the directory specified
 1806: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1807: If the attempt fails because there is no more entries,
 1808: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1809: If the attempt to read the next entry fails because of any other reason, 
 1810: return @i{ior}<>0.
 1811: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1812: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1813: If the length of the file name is greater than @i{u1}, 
 1814: store first @i{u1} characters from file name into the buffer and
 1815: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1816: struct dirent * dent;
 1817: dent = readdir((DIR *)wdirid);
 1818: wior = 0;
 1819: flag = -1;
 1820: if(dent == NULL) {
 1821:   u2 = 0;
 1822:   flag = 0;
 1823: } else {
 1824:   u2 = strlen(dent->d_name);
 1825:   if(u2 > u1) {
 1826:     u2 = u1;
 1827:     wior = -512-ENAMETOOLONG;
 1828:   }
 1829:   memmove(c_addr, dent->d_name, u2);
 1830: }
 1831: 
 1832: close-dir	( wdirid -- wior )	gforth	close_dir
 1833: ""Close the directory specified by @i{dir-id}.""
 1834: wior = IOR(closedir((DIR *)wdirid));
 1835: 
 1836: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1837: char * string = cstr(c_addr1, u1, 1);
 1838: char * pattern = cstr(c_addr2, u2, 0);
 1839: flag = FLAG(!fnmatch(pattern, string, 0));
 1840: 
 1841: \+
 1842: 
 1843: newline	( -- c_addr u )	gforth
 1844: ""String containing the newline sequence of the host OS""
 1845: char newline[] = {
 1846: #if DIRSEP=='/'
 1847: /* Unix */
 1848: '\n'
 1849: #else
 1850: /* DOS, Win, OS/2 */
 1851: '\r','\n'
 1852: #endif
 1853: };
 1854: c_addr=newline;
 1855: u=sizeof(newline);
 1856: :
 1857:  "newline count ;
 1858: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1859: 
 1860: \+os
 1861: 
 1862: utime	( -- dtime )	gforth
 1863: ""Report the current time in microseconds since some epoch.""
 1864: struct timeval time1;
 1865: gettimeofday(&time1,NULL);
 1866: dtime = timeval2us(&time1);
 1867: 
 1868: cputime ( -- duser dsystem ) gforth
 1869: ""duser and dsystem are the respective user- and system-level CPU
 1870: times used since the start of the Forth system (excluding child
 1871: processes), in microseconds (the granularity may be much larger,
 1872: however).  On platforms without the getrusage call, it reports elapsed
 1873: time (since some epoch) for duser and 0 for dsystem.""
 1874: #ifdef HAVE_GETRUSAGE
 1875: struct rusage usage;
 1876: getrusage(RUSAGE_SELF, &usage);
 1877: duser = timeval2us(&usage.ru_utime);
 1878: dsystem = timeval2us(&usage.ru_stime);
 1879: #else
 1880: struct timeval time1;
 1881: gettimeofday(&time1,NULL);
 1882: duser = timeval2us(&time1);
 1883: #ifndef BUGGY_LONG_LONG
 1884: dsystem = (DCell)0;
 1885: #else
 1886: dsystem=(DCell){0,0};
 1887: #endif
 1888: #endif
 1889: 
 1890: \+
 1891: 
 1892: \+floating
 1893: 
 1894: \g floating
 1895: 
 1896: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1897: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1898: 
 1899: d>f	( d -- r )		float	d_to_f
 1900: #ifdef BUGGY_LONG_LONG
 1901: extern double ldexp(double x, int exp);
 1902: if (d.hi<0) {
 1903:   DCell d2=dnegate(d);
 1904:   r = -(ldexp((Float)d2.hi,CELL_BITS) + (Float)d2.lo);
 1905: } else
 1906:   r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1907: #else
 1908: r = d;
 1909: #endif
 1910: 
 1911: f>d	( r -- d )		float	f_to_d
 1912: extern DCell double2ll(Float r);
 1913: d = double2ll(r);
 1914: 
 1915: f!	( r f_addr -- )	float	f_store
 1916: ""Store @i{r} into the float at address @i{f-addr}.""
 1917: *f_addr = r;
 1918: 
 1919: f@	( f_addr -- r )	float	f_fetch
 1920: ""@i{r} is the float at address @i{f-addr}.""
 1921: r = *f_addr;
 1922: 
 1923: df@	( df_addr -- r )	float-ext	d_f_fetch
 1924: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1925: #ifdef IEEE_FP
 1926: r = *df_addr;
 1927: #else
 1928: !! df@
 1929: #endif
 1930: 
 1931: df!	( r df_addr -- )	float-ext	d_f_store
 1932: ""Store @i{r} as double-precision IEEE floating-point value to the
 1933: address @i{df-addr}.""
 1934: #ifdef IEEE_FP
 1935: *df_addr = r;
 1936: #else
 1937: !! df!
 1938: #endif
 1939: 
 1940: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1941: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1942: #ifdef IEEE_FP
 1943: r = *sf_addr;
 1944: #else
 1945: !! sf@
 1946: #endif
 1947: 
 1948: sf!	( r sf_addr -- )	float-ext	s_f_store
 1949: ""Store @i{r} as single-precision IEEE floating-point value to the
 1950: address @i{sf-addr}.""
 1951: #ifdef IEEE_FP
 1952: *sf_addr = r;
 1953: #else
 1954: !! sf!
 1955: #endif
 1956: 
 1957: f+	( r1 r2 -- r3 )	float	f_plus
 1958: r3 = r1+r2;
 1959: 
 1960: f-	( r1 r2 -- r3 )	float	f_minus
 1961: r3 = r1-r2;
 1962: 
 1963: f*	( r1 r2 -- r3 )	float	f_star
 1964: r3 = r1*r2;
 1965: 
 1966: f/	( r1 r2 -- r3 )	float	f_slash
 1967: r3 = r1/r2;
 1968: 
 1969: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1970: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1971: r3 = pow(r1,r2);
 1972: 
 1973: fnegate	( r1 -- r2 )	float	f_negate
 1974: r2 = - r1;
 1975: 
 1976: fdrop	( r -- )		float	f_drop
 1977: 
 1978: fdup	( r -- r r )	float	f_dupe
 1979: 
 1980: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1981: 
 1982: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1983: 
 1984: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1985: 
 1986: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1987: 
 1988: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1989: 
 1990: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1991: ""@code{1 floats +}.""
 1992: f_addr2 = f_addr1+1;
 1993: 
 1994: floats	( n1 -- n2 )	float
 1995: ""@i{n2} is the number of address units of @i{n1} floats.""
 1996: n2 = n1*sizeof(Float);
 1997: 
 1998: floor	( r1 -- r2 )	float
 1999: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2000: /* !! unclear wording */
 2001: r2 = floor(r1);
 2002: 
 2003: fround	( r1 -- r2 )	gforth	f_round
 2004: ""Round to the nearest integral value.""
 2005: r2 = rint(r1);
 2006: 
 2007: fmax	( r1 r2 -- r3 )	float	f_max
 2008: if (r1<r2)
 2009:   r3 = r2;
 2010: else
 2011:   r3 = r1;
 2012: 
 2013: fmin	( r1 r2 -- r3 )	float	f_min
 2014: if (r1<r2)
 2015:   r3 = r1;
 2016: else
 2017:   r3 = r2;
 2018: 
 2019: represent	( r c_addr u -- n f1 f2 )	float
 2020: char *sig;
 2021: int flag;
 2022: int decpt;
 2023: sig=ecvt(r, u, &decpt, &flag);
 2024: n=(r==0 ? 1 : decpt);
 2025: f1=FLAG(flag!=0);
 2026: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2027: memmove(c_addr,sig,u);
 2028: 
 2029: >float	( c_addr u -- flag )	float	to_float
 2030: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2031: character string @i{c-addr u} to internal floating-point
 2032: representation. If the string represents a valid floating-point number
 2033: @i{r} is placed on the floating-point stack and @i{flag} is
 2034: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2035: case and represents the floating-point number 0.""
 2036: /* real signature: c_addr u -- r t / f */
 2037: Float r;
 2038: char *number=cstr(c_addr, u, 1);
 2039: char *endconv;
 2040: int sign = 0;
 2041: if(number[0]=='-') {
 2042:    sign = 1;
 2043:    number++;
 2044:    u--;
 2045: }
 2046: while(isspace((unsigned)(number[--u])) && u>0);
 2047: switch(number[u])
 2048: {
 2049:    case 'd':
 2050:    case 'D':
 2051:    case 'e':
 2052:    case 'E':  break;
 2053:    default :  u++; break;
 2054: }
 2055: number[u]='\0';
 2056: r=strtod(number,&endconv);
 2057: if((flag=FLAG(!(Cell)*endconv)))
 2058: {
 2059:    IF_fpTOS(fp[0] = fpTOS);
 2060:    fp += -1;
 2061:    fpTOS = sign ? -r : r;
 2062: }
 2063: else if(*endconv=='d' || *endconv=='D')
 2064: {
 2065:    *endconv='E';
 2066:    r=strtod(number,&endconv);
 2067:    if((flag=FLAG(!(Cell)*endconv)))
 2068:      {
 2069: 	IF_fpTOS(fp[0] = fpTOS);
 2070: 	fp += -1;
 2071: 	fpTOS = sign ? -r : r;
 2072:      }
 2073: }
 2074: 
 2075: fabs	( r1 -- r2 )	float-ext	f_abs
 2076: r2 = fabs(r1);
 2077: 
 2078: facos	( r1 -- r2 )	float-ext	f_a_cos
 2079: r2 = acos(r1);
 2080: 
 2081: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2082: r2 = asin(r1);
 2083: 
 2084: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2085: r2 = atan(r1);
 2086: 
 2087: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2088: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2089: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2090: r3 = atan2(r1,r2);
 2091: 
 2092: fcos	( r1 -- r2 )	float-ext	f_cos
 2093: r2 = cos(r1);
 2094: 
 2095: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2096: r2 = exp(r1);
 2097: 
 2098: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2099: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2100: #ifdef HAVE_EXPM1
 2101: extern double
 2102: #ifdef NeXT
 2103:               const
 2104: #endif
 2105:                     expm1(double);
 2106: r2 = expm1(r1);
 2107: #else
 2108: r2 = exp(r1)-1.;
 2109: #endif
 2110: 
 2111: fln	( r1 -- r2 )	float-ext	f_l_n
 2112: r2 = log(r1);
 2113: 
 2114: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2115: ""@i{r2}=ln(@i{r1}+1)""
 2116: #ifdef HAVE_LOG1P
 2117: extern double
 2118: #ifdef NeXT
 2119:               const
 2120: #endif
 2121:                     log1p(double);
 2122: r2 = log1p(r1);
 2123: #else
 2124: r2 = log(r1+1.);
 2125: #endif
 2126: 
 2127: flog	( r1 -- r2 )	float-ext	f_log
 2128: ""The decimal logarithm.""
 2129: r2 = log10(r1);
 2130: 
 2131: falog	( r1 -- r2 )	float-ext	f_a_log
 2132: ""@i{r2}=10**@i{r1}""
 2133: extern double pow10(double);
 2134: r2 = pow10(r1);
 2135: 
 2136: fsin	( r1 -- r2 )	float-ext	f_sine
 2137: r2 = sin(r1);
 2138: 
 2139: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2140: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2141: r2 = sin(r1);
 2142: r3 = cos(r1);
 2143: 
 2144: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2145: r2 = sqrt(r1);
 2146: 
 2147: ftan	( r1 -- r2 )	float-ext	f_tan
 2148: r2 = tan(r1);
 2149: :
 2150:  fsincos f/ ;
 2151: 
 2152: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2153: r2 = sinh(r1);
 2154: :
 2155:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2156: 
 2157: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2158: r2 = cosh(r1);
 2159: :
 2160:  fexp fdup 1/f f+ f2/ ;
 2161: 
 2162: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2163: r2 = tanh(r1);
 2164: :
 2165:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2166: 
 2167: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2168: r2 = asinh(r1);
 2169: :
 2170:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2171: 
 2172: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2173: r2 = acosh(r1);
 2174: :
 2175:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2176: 
 2177: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2178: r2 = atanh(r1);
 2179: :
 2180:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2181:  r> IF  fnegate  THEN ;
 2182: 
 2183: sfloats	( n1 -- n2 )	float-ext	s_floats
 2184: ""@i{n2} is the number of address units of @i{n1}
 2185: single-precision IEEE floating-point numbers.""
 2186: n2 = n1*sizeof(SFloat);
 2187: 
 2188: dfloats	( n1 -- n2 )	float-ext	d_floats
 2189: ""@i{n2} is the number of address units of @i{n1}
 2190: double-precision IEEE floating-point numbers.""
 2191: n2 = n1*sizeof(DFloat);
 2192: 
 2193: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2194: ""@i{sf-addr} is the first single-float-aligned address greater
 2195: than or equal to @i{c-addr}.""
 2196: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2197: :
 2198:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2199: 
 2200: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2201: ""@i{df-addr} is the first double-float-aligned address greater
 2202: than or equal to @i{c-addr}.""
 2203: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2204: :
 2205:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2206: 
 2207: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2208: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2209: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2210: ucount elements.""
 2211: for (r=0.; ucount>0; ucount--) {
 2212:   r += *f_addr1 * *f_addr2;
 2213:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2214:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2215: }
 2216: :
 2217:  >r swap 2swap swap 0e r> 0 ?DO
 2218:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2219:  LOOP 2drop 2drop ; 
 2220: 
 2221: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2222: ""vy=ra*vx+vy""
 2223: for (; ucount>0; ucount--) {
 2224:   *f_y += ra * *f_x;
 2225:   f_x = (Float *)(((Address)f_x)+nstridex);
 2226:   f_y = (Float *)(((Address)f_y)+nstridey);
 2227: }
 2228: :
 2229:  >r swap 2swap swap r> 0 ?DO
 2230:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2231:  LOOP 2drop 2drop fdrop ;
 2232: 
 2233: \+
 2234: 
 2235: \ The following words access machine/OS/installation-dependent
 2236: \   Gforth internals
 2237: \ !! how about environmental queries DIRECT-THREADED,
 2238: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2239: 
 2240: \ local variable implementation primitives
 2241: 
 2242: \+glocals
 2243: 
 2244: \g locals
 2245: 
 2246: @local#	( #noffset -- w )	gforth	fetch_local_number
 2247: w = *(Cell *)(lp+noffset);
 2248: 
 2249: @local0	( -- w )	new	fetch_local_zero
 2250: w = ((Cell *)lp)[0];
 2251: 
 2252: @local1	( -- w )	new	fetch_local_four
 2253: w = ((Cell *)lp)[1];
 2254: 
 2255: @local2	( -- w )	new	fetch_local_eight
 2256: w = ((Cell *)lp)[2];
 2257: 
 2258: @local3	( -- w )	new	fetch_local_twelve
 2259: w = ((Cell *)lp)[3];
 2260: 
 2261: \+floating
 2262: 
 2263: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2264: r = *(Float *)(lp+noffset);
 2265: 
 2266: f@local0	( -- r )	new	f_fetch_local_zero
 2267: r = ((Float *)lp)[0];
 2268: 
 2269: f@local1	( -- r )	new	f_fetch_local_eight
 2270: r = ((Float *)lp)[1];
 2271: 
 2272: \+
 2273: 
 2274: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2275: /* this can also be used to implement lp@ */
 2276: c_addr = (Char *)(lp+noffset);
 2277: 
 2278: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2279: ""used with negative immediate values it allocates memory on the
 2280: local stack, a positive immediate argument drops memory from the local
 2281: stack""
 2282: lp += noffset;
 2283: 
 2284: lp-	( -- )	new	minus_four_lp_plus_store
 2285: lp += -sizeof(Cell);
 2286: 
 2287: lp+	( -- )	new	eight_lp_plus_store
 2288: lp += sizeof(Float);
 2289: 
 2290: lp+2	( -- )	new	sixteen_lp_plus_store
 2291: lp += 2*sizeof(Float);
 2292: 
 2293: lp!	( c_addr -- )	gforth	lp_store
 2294: lp = (Address)c_addr;
 2295: 
 2296: >l	( w -- )	gforth	to_l
 2297: lp -= sizeof(Cell);
 2298: *(Cell *)lp = w;
 2299: 
 2300: \+floating
 2301: 
 2302: f>l	( r -- )	gforth	f_to_l
 2303: lp -= sizeof(Float);
 2304: *(Float *)lp = r;
 2305: 
 2306: fpick	( u -- r )		gforth
 2307: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2308: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2309: :
 2310:  floats fp@ + f@ ;
 2311: 
 2312: \+
 2313: \+
 2314: 
 2315: \+OS
 2316: 
 2317: \g syslib
 2318: 
 2319: define(`uploop',
 2320:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2321: define(`_uploop',
 2322:        `ifelse($1, `$3', `$5',
 2323: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2324: \ argflist(argnum): Forth argument list
 2325: define(argflist,
 2326:        `ifelse($1, 0, `',
 2327:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2328: \ argdlist(argnum): declare C's arguments
 2329: define(argdlist,
 2330:        `ifelse($1, 0, `',
 2331:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2332: \ argclist(argnum): pass C's arguments
 2333: define(argclist,
 2334:        `ifelse($1, 0, `',
 2335:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2336: \ icall(argnum)
 2337: define(icall,
 2338: `icall$1	( argflist($1)u -- uret )	gforth
 2339: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2340: 
 2341: ')
 2342: define(fcall,
 2343: `fcall$1	( argflist($1)u -- rret )	gforth
 2344: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2345: 
 2346: ')
 2347: 
 2348: \ close ' to keep fontify happy
 2349: 
 2350: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2351: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2352: #ifndef RTLD_GLOBAL
 2353: #define RTLD_GLOBAL 0
 2354: #endif
 2355: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2356: #else
 2357: #  ifdef _WIN32
 2358: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2359: #  else
 2360: #warning Define open-lib!
 2361: u2 = 0;
 2362: #  endif
 2363: #endif
 2364: 
 2365: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2366: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2367: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2368: #else
 2369: #  ifdef _WIN32
 2370: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2371: #  else
 2372: #warning Define lib-sym!
 2373: u3 = 0;
 2374: #  endif
 2375: #endif
 2376: 
 2377: uploop(i, 0, 7, `icall(i)')
 2378: icall(20)
 2379: uploop(i, 0, 7, `fcall(i)')
 2380: fcall(20)
 2381: 
 2382: \+
 2383: 
 2384: wcall	( u -- )	gforth
 2385: IF_fpTOS(fp[0]=fpTOS);
 2386: FP=fp;
 2387: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &FP);
 2388: fp=FP;
 2389: IF_spTOS(spTOS=sp[0];)
 2390: IF_fpTOS(fpTOS=fp[0]);
 2391: 
 2392: \+peephole
 2393: 
 2394: \g peephole
 2395: 
 2396: primtable	( -- wprimtable )	new
 2397: ""wprimtable is a table containing the xts of the primitives indexed
 2398: by sequence-number in prim (for use in prepare-peephole-table).""
 2399: wprimtable = (Cell)primtable(symbols+DOESJUMP+1,MAX_SYMBOLS-DOESJUMP-1);
 2400: 
 2401: prepare-peephole-table	( wprimtable -- wpeeptable ) new prepare_peephole_opt
 2402: ""wpeeptable is a data structure used by @code{peephole-opt}; it is
 2403: constructed by combining a primitives table with a simple peephole
 2404: optimization table.""
 2405: wpeeptable = prepare_peephole_table((Xt *)wprimtable);
 2406: 
 2407: peephole-opt	( xt1 xt2 wpeeptable -- xt )	new	peephole_opt
 2408: ""xt is the combination of xt1 and xt2 (according to wpeeptable); if
 2409: they cannot be combined, xt is 0.""
 2410: xt = peephole_opt(xt1, xt2, wpeeptable);
 2411: 
 2412: compile-prim ( xt1 -- xt2 )	obsolete	compile_prim
 2413: xt2 = (Xt)compile_prim((Label)xt1);
 2414: 
 2415: \ set-next-code and call2 do not appear in images and can be
 2416: \ renumbered arbitrarily
 2417: 
 2418: set-next-code ( #w -- ) gforth set_next_code
 2419: #ifdef NO_IP
 2420: next_code = (Label)w;
 2421: #endif
 2422: 
 2423: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2424: /* call with explicit return address */
 2425: #ifdef NO_IP
 2426: INST_TAIL;
 2427: JUMP(a_callee);
 2428: #else
 2429: assert(0);
 2430: #endif
 2431: 
 2432: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2433: ""compile prim (incl. immargs) at @var{a_prim}""
 2434: compile_prim1(a_prim);
 2435: 
 2436: finish-code ( -- ) gforth finish_code
 2437: ""Perform delayed steps in code generation (branch resolution, I-cache
 2438: flushing).""
 2439: finish_code();
 2440: 
 2441: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2442: f = forget_dyncode(c_code);
 2443: 
 2444: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2445: ""a_prim is the code address of the primitive that has been
 2446: compile_prim1ed to a_code""
 2447: a_prim = (Label)decompile_code((Label)a_code);
 2448: 
 2449: \+
 2450: 
 2451: include(peeprules.vmg)
 2452: 
 2453: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>