File:  [gforth] / gforth / prim
Revision 1.198: download - view: text, annotated - select for diffs
Sun Oct 22 16:54:00 2006 UTC (12 years, 11 months ago) by anton
Branches: MAIN
CVS tags: HEAD
added checking for division by zero and division overflow to
  mixed-size division words (*/ */mod fm/mod sm/rem um/mod).
these exceptions are now tested in our test suite
fixed bug in testing

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004,2005 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E data-stack   stack-prefix S:
  104: \E fp-stack     stack-prefix F:
  105: \E return-stack stack-prefix R:
  106: \E inst-stream  stack-prefix #
  107: \E 
  108: \E set-current
  109: \E store-optimization on
  110: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  111: \E
  112: \E include-skipped-insts on \ static superinsts include cells for components
  113: \E                          \ useful for dynamic programming and
  114: \E                          \ superinsts across entry points
  115: 
  116: \ 
  117: \ 
  118: \ 
  119: \ In addition the following names can be used:
  120: \ ip	the instruction pointer
  121: \ sp	the data stack pointer
  122: \ rp	the parameter stack pointer
  123: \ lp	the locals stack pointer
  124: \ NEXT	executes NEXT
  125: \ cfa	
  126: \ NEXT1	executes NEXT1
  127: \ FLAG(x)	makes a Forth flag from a C flag
  128: \ 
  129: \ 
  130: \ 
  131: \ Percentages in comments are from Koopmans book: average/maximum use
  132: \ (taken from four, not very representative benchmarks)
  133: \ 
  134: \ 
  135: \ 
  136: \ To do:
  137: \ 
  138: \ throw execute, cfa and NEXT1 out?
  139: \ macroize *ip, ip++, *ip++ (pipelining)?
  140: 
  141: \ Stack caching setup
  142: 
  143: ifdef(`STACK_CACHE_FILE', `include(STACK_CACHE_FILE)', `include(cache0.vmg)')
  144: 
  145: \ these m4 macros would collide with identifiers
  146: undefine(`index')
  147: undefine(`shift')
  148: undefine(`symbols')
  149: 
  150: \F 0 [if]
  151: 
  152: \ run-time routines for non-primitives.  They are defined as
  153: \ primitives, because that simplifies things.
  154: 
  155: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  156: ""run-time routine for colon definitions""
  157: #ifdef NO_IP
  158: a_retaddr = next_code;
  159: INST_TAIL;
  160: goto **(Label *)PFA(CFA);
  161: #else /* !defined(NO_IP) */
  162: a_retaddr = (Cell *)IP;
  163: SET_IP((Xt *)PFA(CFA));
  164: #endif /* !defined(NO_IP) */
  165: 
  166: (docon) ( -- w )	gforth-internal	paren_docon
  167: ""run-time routine for constants""
  168: w = *(Cell *)PFA(CFA);
  169: #ifdef NO_IP
  170: INST_TAIL;
  171: goto *next_code;
  172: #endif /* defined(NO_IP) */
  173: 
  174: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  175: ""run-time routine for variables and CREATEd words""
  176: a_body = PFA(CFA);
  177: #ifdef NO_IP
  178: INST_TAIL;
  179: goto *next_code;
  180: #endif /* defined(NO_IP) */
  181: 
  182: (douser) ( -- a_user )	gforth-internal	paren_douser
  183: ""run-time routine for constants""
  184: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  185: #ifdef NO_IP
  186: INST_TAIL;
  187: goto *next_code;
  188: #endif /* defined(NO_IP) */
  189: 
  190: (dodefer) ( -- )	gforth-internal	paren_dodefer
  191: ""run-time routine for deferred words""
  192: #ifndef NO_IP
  193: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  194: #endif /* !defined(NO_IP) */
  195: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  196: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  197: 
  198: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  199: ""run-time routine for fields""
  200: n2 = n1 + *(Cell *)PFA(CFA);
  201: #ifdef NO_IP
  202: INST_TAIL;
  203: goto *next_code;
  204: #endif /* defined(NO_IP) */
  205: 
  206: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  207: ""run-time routine for @code{does>}-defined words""
  208: #ifdef NO_IP
  209: a_retaddr = next_code;
  210: a_body = PFA(CFA);
  211: INST_TAIL;
  212: goto **(Label *)DOES_CODE1(CFA);
  213: #else /* !defined(NO_IP) */
  214: a_retaddr = (Cell *)IP;
  215: a_body = PFA(CFA);
  216: SET_IP(DOES_CODE1(CFA));
  217: #endif /* !defined(NO_IP) */
  218: 
  219: (does-handler) ( -- )	gforth-internal	paren_does_handler
  220: ""just a slot to have an encoding for the DOESJUMP, 
  221: which is no longer used anyway (!! eliminate this)""
  222: 
  223: \F [endif]
  224: 
  225: \g control
  226: 
  227: noop	( -- )		gforth
  228: :
  229:  ;
  230: 
  231: call	( #a_callee -- R:a_retaddr )	new
  232: ""Call callee (a variant of docol with inline argument).""
  233: #ifdef NO_IP
  234: assert(0);
  235: INST_TAIL;
  236: JUMP(a_callee);
  237: #else
  238: #ifdef DEBUG
  239:     {
  240:       CFA_TO_NAME((((Cell *)a_callee)-2));
  241:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  242: 	      len,name);
  243:     }
  244: #endif
  245: a_retaddr = (Cell *)IP;
  246: SET_IP((Xt *)a_callee);
  247: #endif
  248: 
  249: execute	( xt -- )		core
  250: ""Perform the semantics represented by the execution token, @i{xt}.""
  251: #ifndef NO_IP
  252: ip=IP;
  253: #endif
  254: SUPER_END;
  255: VM_JUMP(EXEC1(xt));
  256: 
  257: perform	( a_addr -- )	gforth
  258: ""@code{@@ execute}.""
  259: /* and pfe */
  260: #ifndef NO_IP
  261: ip=IP;
  262: #endif
  263: SUPER_END;
  264: VM_JUMP(EXEC1(*(Xt *)a_addr));
  265: :
  266:  @ execute ;
  267: 
  268: ;s	( R:w -- )		gforth	semis
  269: ""The primitive compiled by @code{EXIT}.""
  270: #ifdef NO_IP
  271: INST_TAIL;
  272: goto *(void *)w;
  273: #else
  274: SET_IP((Xt *)w);
  275: #endif
  276: 
  277: unloop	( R:w1 R:w2 -- )	core
  278: /* !! alias for 2rdrop */
  279: :
  280:  r> rdrop rdrop >r ;
  281: 
  282: lit-perform	( #a_addr -- )	new	lit_perform
  283: #ifndef NO_IP
  284: ip=IP;
  285: #endif
  286: SUPER_END;
  287: VM_JUMP(EXEC1(*(Xt *)a_addr));
  288: 
  289: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  290: #ifdef NO_IP
  291: /* compiled to LIT CALL by compile_prim */
  292: assert(0);
  293: #else
  294: a_pfa = PFA(a_cfa);
  295: nest = (Cell)IP;
  296: #ifdef DEBUG
  297:     {
  298:       CFA_TO_NAME(a_cfa);
  299:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  300: 	      (Cell)ip,(Cell)a_cfa,len,name);
  301:     }
  302: #endif
  303: SET_IP(DOES_CODE1(a_cfa));
  304: #endif
  305: 
  306: \+glocals
  307: 
  308: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  309: /* this will probably not be used */
  310: lp += nlocals;
  311: #ifdef NO_IP
  312: INST_TAIL;
  313: JUMP(a_target);
  314: #else
  315: SET_IP((Xt *)a_target);
  316: #endif
  317: 
  318: \+
  319: 
  320: branch	( #a_target -- )	gforth
  321: #ifdef NO_IP
  322: INST_TAIL;
  323: JUMP(a_target);
  324: #else
  325: SET_IP((Xt *)a_target);
  326: #endif
  327: :
  328:  r> @ >r ;
  329: 
  330: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  331: \ this is non-syntactical: code must open a brace that is closed by the macro
  332: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  333: \ this is non-syntactical: code must open a brace that is closed by the macro
  334: define(condbranch,
  335: $1 ( `#'a_target $2 ) $3
  336: $4	#ifdef NO_IP
  337: INST_TAIL;
  338: #endif
  339: $5	#ifdef NO_IP
  340: JUMP(a_target);
  341: #else
  342: SET_IP((Xt *)a_target);
  343: #endif
  344: }
  345: $6
  346: 
  347: \+glocals
  348: 
  349: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  350: $4	#ifdef NO_IP
  351: INST_TAIL;
  352: #endif
  353: $5	lp += nlocals;
  354: #ifdef NO_IP
  355: JUMP(a_target);
  356: #else
  357: SET_IP((Xt *)a_target);
  358: #endif
  359: }
  360: 
  361: \+
  362: )
  363: 
  364: \ version that generates two jumps (not good for PR 15242 workaround)
  365: define(condbranch_twojump,
  366: $1 ( `#'a_target $2 ) $3
  367: $4	#ifdef NO_IP
  368: INST_TAIL;
  369: #endif
  370: $5	#ifdef NO_IP
  371: JUMP(a_target);
  372: #else
  373: SET_IP((Xt *)a_target);
  374: INST_TAIL; NEXT_P2;
  375: #endif
  376: }
  377: SUPER_CONTINUE;
  378: $6
  379: 
  380: \+glocals
  381: 
  382: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  383: $4	#ifdef NO_IP
  384: INST_TAIL;
  385: #endif
  386: $5	lp += nlocals;
  387: #ifdef NO_IP
  388: JUMP(a_target);
  389: #else
  390: SET_IP((Xt *)a_target);
  391: INST_TAIL; NEXT_P2;
  392: #endif
  393: }
  394: SUPER_CONTINUE;
  395: 
  396: \+
  397: )
  398: 
  399: condbranch(?branch,f --,f83	question_branch,
  400: ,if (f==0) {
  401: ,:
  402:  0= dup 0=          \ !f f
  403:  r> tuck cell+      \ !f branchoffset f IP+
  404:  and -rot @ and or  \ f&IP+|!f&branch
  405:  >r ;)
  406: 
  407: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  408: \ is only used in if's (yet)
  409: 
  410: \+xconds
  411: 
  412: ?dup-?branch	( #a_target f -- S:... )	new	question_dupe_question_branch
  413: ""The run-time procedure compiled by @code{?DUP-IF}.""
  414: if (f==0) {
  415: #ifdef NO_IP
  416: INST_TAIL;
  417: JUMP(a_target);
  418: #else
  419: SET_IP((Xt *)a_target);
  420: #endif
  421: } else {
  422: sp--;
  423: sp[0]=f;
  424: }
  425: 
  426: ?dup-0=-?branch ( #a_target f -- S:... ) new	question_dupe_zero_equals_question_branch
  427: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  428: if (f!=0) {
  429:   sp--;
  430:   sp[0]=f;
  431: #ifdef NO_IP
  432:   JUMP(a_target);
  433: #else
  434:   SET_IP((Xt *)a_target);
  435: #endif
  436: }
  437: 
  438: \+
  439: \fhas? skiploopprims 0= [IF]
  440: 
  441: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  442: n2=n1-1;
  443: ,if (n1) {
  444: ,:
  445:  r> r> dup 1- >r
  446:  IF @ >r ELSE cell+ >r THEN ;)
  447: 
  448: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  449: n2=n1+1;
  450: ,if (n2 != nlimit) {
  451: ,:
  452:  r> r> 1+ r> 2dup =
  453:  IF >r 1- >r cell+ >r
  454:  ELSE >r >r @ >r THEN ;)
  455: 
  456: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  457: /* !! check this thoroughly */
  458: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  459: /* dependent upon two's complement arithmetic */
  460: Cell olddiff = n1-nlimit;
  461: n2=n1+n;	
  462: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  463:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  464:     >=0) { /* & is used to avoid having two branches for gforth-native */
  465: ,:
  466:  r> swap
  467:  r> r> 2dup - >r
  468:  2 pick r@ + r@ xor 0< 0=
  469:  3 pick r> xor 0< 0= or
  470:  IF    >r + >r @ >r
  471:  ELSE  >r >r drop cell+ >r THEN ;)
  472: 
  473: \+xconds
  474: 
  475: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  476: UCell olddiff = n1-nlimit;
  477: n2=n1-u;
  478: ,if (olddiff>u) {
  479: ,)
  480: 
  481: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  482: ""The run-time procedure compiled by S+LOOP. It loops until the index
  483: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  484: version of (+LOOP).""
  485: /* !! check this thoroughly */
  486: Cell diff = n1-nlimit;
  487: Cell newdiff = diff+n;
  488: if (n<0) {
  489:     diff = -diff;
  490:     newdiff = -newdiff;
  491: }
  492: n2=n1+n;
  493: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  494: ,)
  495: 
  496: \+
  497: 
  498: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  499: /* or (for) = >r -- collides with unloop! */
  500: nlimit=0;
  501: :
  502:  r> swap 0 >r >r >r ;
  503: 
  504: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  505: :
  506:  r> swap rot >r >r >r ;
  507: 
  508: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  509: #ifdef NO_IP
  510:     INST_TAIL;
  511: #endif
  512: if (nstart == nlimit) {
  513: #ifdef NO_IP
  514:     JUMP(a_target);
  515: #else
  516:     SET_IP((Xt *)a_target);
  517: #endif
  518: }
  519: :
  520:   2dup =
  521:   IF   r> swap rot >r >r
  522:        @ >r
  523:   ELSE r> swap rot >r >r
  524:        cell+ >r
  525:   THEN ;				\ --> CORE-EXT
  526: 
  527: \+xconds
  528: 
  529: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  530: #ifdef NO_IP
  531:     INST_TAIL;
  532: #endif
  533: if (nstart >= nlimit) {
  534: #ifdef NO_IP
  535:     JUMP(a_target);
  536: #else
  537:     SET_IP((Xt *)a_target);
  538: #endif
  539: }
  540: :
  541:  swap 2dup
  542:  r> swap >r swap >r
  543:  >=
  544:  IF
  545:      @
  546:  ELSE
  547:      cell+
  548:  THEN  >r ;
  549: 
  550: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  551: #ifdef NO_IP
  552:     INST_TAIL;
  553: #endif
  554: if (ustart >= ulimit) {
  555: #ifdef NO_IP
  556: JUMP(a_target);
  557: #else
  558: SET_IP((Xt *)a_target);
  559: #endif
  560: }
  561: :
  562:  swap 2dup
  563:  r> swap >r swap >r
  564:  u>=
  565:  IF
  566:      @
  567:  ELSE
  568:      cell+
  569:  THEN  >r ;
  570: 
  571: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  572: #ifdef NO_IP
  573:     INST_TAIL;
  574: #endif
  575: if (nstart <= nlimit) {
  576: #ifdef NO_IP
  577: JUMP(a_target);
  578: #else
  579: SET_IP((Xt *)a_target);
  580: #endif
  581: }
  582: :
  583:  swap 2dup
  584:  r> swap >r swap >r
  585:  <=
  586:  IF
  587:      @
  588:  ELSE
  589:      cell+
  590:  THEN  >r ;
  591: 
  592: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  593: #ifdef NO_IP
  594:     INST_TAIL;
  595: #endif
  596: if (ustart <= ulimit) {
  597: #ifdef NO_IP
  598: JUMP(a_target);
  599: #else
  600: SET_IP((Xt *)a_target);
  601: #endif
  602: }
  603: :
  604:  swap 2dup
  605:  r> swap >r swap >r
  606:  u<=
  607:  IF
  608:      @
  609:  ELSE
  610:      cell+
  611:  THEN  >r ;
  612: 
  613: \+
  614: 
  615: \ don't make any assumptions where the return stack is!!
  616: \ implement this in machine code if it should run quickly!
  617: 
  618: i	( R:n -- R:n n )		core
  619: :
  620: \ rp@ cell+ @ ;
  621:   r> r> tuck >r >r ;
  622: 
  623: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  624: :
  625: \ rp@ cell+ cell+ @ ;
  626:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  627: variable itmp
  628: 
  629: j	( R:n R:d1 -- n R:n R:d1 )		core
  630: :
  631: \ rp@ cell+ cell+ cell+ @ ;
  632:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  633: [IFUNDEF] itmp variable itmp [THEN]
  634: 
  635: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  636: :
  637: \ rp@ [ 5 cells ] Literal + @ ;
  638:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  639: [IFUNDEF] itmp variable itmp [THEN]
  640: 
  641: \f[THEN]
  642: 
  643: \ digit is high-level: 0/0%
  644: 
  645: \g strings
  646: 
  647: move	( c_from c_to ucount -- )		core
  648: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  649: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  650: /* !! note that the standard specifies addr, not c-addr */
  651: memmove(c_to,c_from,ucount);
  652: /* make an Ifdef for bsd and others? */
  653: :
  654:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  655: 
  656: cmove	( c_from c_to u -- )	string	c_move
  657: ""Copy the contents of @i{ucount} characters from data space at
  658: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  659: from low address to high address; i.e., for overlapping areas it is
  660: safe if @i{c-to}=<@i{c-from}.""
  661: cmove(c_from,c_to,u);
  662: :
  663:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  664: 
  665: cmove>	( c_from c_to u -- )	string	c_move_up
  666: ""Copy the contents of @i{ucount} characters from data space at
  667: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  668: from high address to low address; i.e., for overlapping areas it is
  669: safe if @i{c-to}>=@i{c-from}.""
  670: cmove_up(c_from,c_to,u);
  671: :
  672:  dup 0= IF  drop 2drop exit  THEN
  673:  rot over + -rot bounds swap 1-
  674:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  675: 
  676: fill	( c_addr u c -- )	core
  677: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  678: memset(c_addr,c,u);
  679: :
  680:  -rot bounds
  681:  ?DO  dup I c!  LOOP  drop ;
  682: 
  683: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  684: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  685: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  686: is 1. Currently this is based on the machine's character
  687: comparison. In the future, this may change to consider the current
  688: locale and its collation order.""
  689: /* close ' to keep fontify happy */ 
  690: n = compare(c_addr1, u1, c_addr2, u2);
  691: :
  692:  rot 2dup swap - >r min swap -text dup
  693:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  694: : -text ( c_addr1 u c_addr2 -- n )
  695:  swap bounds
  696:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  697:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  698: : sgn ( n -- -1/0/1 )
  699:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  700: 
  701: \ -text is only used by replaced primitives now; move it elsewhere
  702: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  703: \ n = memcmp(c_addr1, c_addr2, u);
  704: \ if (n<0)
  705: \   n = -1;
  706: \ else if (n>0)
  707: \   n = 1;
  708: \ :
  709: \  swap bounds
  710: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  711: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  712: \ : sgn ( n -- -1/0/1 )
  713: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  714: 
  715: toupper	( c1 -- c2 )	gforth
  716: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  717: is the equivalent upper-case character. All other characters are unchanged.""
  718: c2 = toupper(c1);
  719: :
  720:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  721: 
  722: capscompare	( c_addr1 u1 c_addr2 u2 -- n )	string
  723: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  724: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  725: is 1. Currently this is based on the machine's character
  726: comparison. In the future, this may change to consider the current
  727: locale and its collation order.""
  728: /* close ' to keep fontify happy */ 
  729: n = capscompare(c_addr1, u1, c_addr2, u2);
  730: 
  731: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  732: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  733: characters from the start of the string.""
  734: c_addr2 = c_addr1+n;
  735: u2 = u1-n;
  736: :
  737:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  738: 
  739: \g arith
  740: 
  741: lit	( #w -- w )		gforth
  742: :
  743:  r> dup @ swap cell+ >r ;
  744: 
  745: +	( n1 n2 -- n )		core	plus
  746: n = n1+n2;
  747: 
  748: \ lit+ / lit_plus = lit +
  749: 
  750: lit+	( n1 #n2 -- n )		new	lit_plus
  751: n=n1+n2;
  752: 
  753: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  754: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  755: ""add @i{n3} to @i{n1} (giving @i{n})""
  756: n = n1+n3;
  757: :
  758:  rot + swap ;
  759: 
  760: -	( n1 n2 -- n )		core	minus
  761: n = n1-n2;
  762: :
  763:  negate + ;
  764: 
  765: negate	( n1 -- n2 )		core
  766: /* use minus as alias */
  767: n2 = -n1;
  768: :
  769:  invert 1+ ;
  770: 
  771: 1+	( n1 -- n2 )		core		one_plus
  772: n2 = n1+1;
  773: :
  774:  1 + ;
  775: 
  776: 1-	( n1 -- n2 )		core		one_minus
  777: n2 = n1-1;
  778: :
  779:  1 - ;
  780: 
  781: max	( n1 n2 -- n )	core
  782: if (n1<n2)
  783:   n = n2;
  784: else
  785:   n = n1;
  786: :
  787:  2dup < IF swap THEN drop ;
  788: 
  789: min	( n1 n2 -- n )	core
  790: if (n1<n2)
  791:   n = n1;
  792: else
  793:   n = n2;
  794: :
  795:  2dup > IF swap THEN drop ;
  796: 
  797: abs	( n -- u )	core
  798: if (n<0)
  799:   u = -n;
  800: else
  801:   u = n;
  802: :
  803:  dup 0< IF negate THEN ;
  804: 
  805: *	( n1 n2 -- n )		core	star
  806: n = n1*n2;
  807: :
  808:  um* drop ;
  809: 
  810: /	( n1 n2 -- n )		core	slash
  811: n = n1/n2;
  812: if (CHECK_DIVISION && n2 == 0)
  813:   throw(BALL_DIVZERO);
  814: if (CHECK_DIVISION && n2 == -1 && n1 == CELL_MIN)
  815:   throw(BALL_RESULTRANGE);
  816: if (FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0))
  817:   n--;
  818: :
  819:  /mod nip ;
  820: 
  821: mod	( n1 n2 -- n )		core
  822: n = n1%n2;
  823: if (CHECK_DIVISION && n2 == 0)
  824:   throw(BALL_DIVZERO);
  825: if (CHECK_DIVISION && n2 == -1 && n1 == CELL_MIN)
  826:   throw(BALL_RESULTRANGE);
  827: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  828: :
  829:  /mod drop ;
  830: 
  831: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  832: n4 = n1/n2;
  833: n3 = n1%n2; /* !! is this correct? look into C standard! */
  834: if (CHECK_DIVISION && n2 == 0)
  835:   throw(BALL_DIVZERO);
  836: if (CHECK_DIVISION && n2 == -1 && n1 == CELL_MIN)
  837:   throw(BALL_RESULTRANGE);
  838: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  839:   n4--;
  840:   n3+=n2;
  841: }
  842: :
  843:  >r s>d r> fm/mod ;
  844: 
  845: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  846: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  847: DCell d5;
  848: #ifdef BUGGY_LL_MUL
  849: DCell d = mmul(n1,n2);
  850: #else
  851: DCell d = (DCell)n1 * (DCell)n2;
  852: #endif
  853: #ifdef BUGGY_LL_DIV
  854: DCell r = fmdiv(d,n3);
  855: n4=DHI(r);
  856: n5=DLO(r);
  857: #else
  858: /* assumes that the processor uses either floored or symmetric division */
  859: d5 = d/n3;
  860: n4 = d%n3;
  861: if (CHECK_DIVISION && n3 == 0)
  862:   throw(BALL_DIVZERO);
  863: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  864:   d5--;
  865:   n4+=n3;
  866: }
  867: n5 = d5;
  868: if (d5 != n5)
  869:   throw(BALL_RESULTRANGE);
  870: #endif
  871: :
  872:  >r m* r> fm/mod ;
  873: 
  874: */	( n1 n2 n3 -- n4 )	core	star_slash
  875: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  876: DCell d4;
  877: #ifdef BUGGY_LL_MUL
  878: DCell d = mmul(n1,n2);
  879: #else
  880: DCell d = (DCell)n1 * (DCell)n2;
  881: #endif
  882: #ifdef BUGGY_LL_DIV
  883: DCell r = fmdiv(d,n3);
  884: n4=DLO(r);
  885: #else
  886: /* assumes that the processor uses either floored or symmetric division */
  887: d4 = d/n3;
  888: if (CHECK_DIVISION && n3 == 0)
  889:   throw(BALL_DIVZERO);
  890: if (FLOORED_DIV && ((DHI(d)^n3)<0) && (d%n3)!=0)
  891:   d4--;
  892: n4 = d4;
  893: if (d4 != n4)
  894:   throw(BALL_RESULTRANGE);
  895: #endif
  896: :
  897:  */mod nip ;
  898: 
  899: 2*	( n1 -- n2 )		core		two_star
  900: ""Shift left by 1; also works on unsigned numbers""
  901: n2 = 2*n1;
  902: :
  903:  dup + ;
  904: 
  905: 2/	( n1 -- n2 )		core		two_slash
  906: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  907: division by 2 (note that @code{/} not necessarily floors).""
  908: n2 = n1>>1;
  909: :
  910:  dup MINI and IF 1 ELSE 0 THEN
  911:  [ bits/char cell * 1- ] literal 
  912:  0 DO 2* swap dup 2* >r MINI and 
  913:      IF 1 ELSE 0 THEN or r> swap
  914:  LOOP nip ;
  915: 
  916: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  917: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  918: #ifdef BUGGY_LL_DIV
  919: #ifdef ASM_SM_SLASH_REM
  920: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  921: if (((DHI(d1)^n1)<0) && n2!=0) {
  922:   if (n3 == CELL_MIN)
  923:     throw(BALL_RESULTRANGE);
  924:   n3--;
  925:   n2+=n1;
  926: }
  927: #else /* !defined(ASM_SM_SLASH_REM) */
  928: DCell r = fmdiv(d1,n1);
  929: n2=DHI(r);
  930: n3=DLO(r);
  931: #endif /* !defined(ASM_SM_SLASH_REM) */
  932: #else
  933: #ifdef ASM_SM_SLASH_REM4
  934: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  935: if (((DHI(d1)^n1)<0) && n2!=0) {
  936:   if (n3 == CELL_MIN)
  937:     throw(BALL_RESULTRANGE);
  938:   n3--;
  939:   n2+=n1;
  940: }
  941: #else /* !defined(ASM_SM_SLASH_REM4) */
  942: /* assumes that the processor uses either floored or symmetric division */
  943: DCell d3 = d1/n1;
  944: n2 = d1%n1;
  945: if (CHECK_DIVISION && n1 == 0)
  946:   throw(BALL_DIVZERO);
  947: /* note that this 1%-3>0 is optimized by the compiler */
  948: if (1%-3>0 && ((DHI(d1)^n1)<0) && n2!=0) {
  949:   d3--;
  950:   n2+=n1;
  951: }
  952: n3 = d3;
  953: if (d3 != n3)
  954:   throw(BALL_RESULTRANGE);
  955: #endif /* !defined(ASM_SM_SLASH_REM4) */
  956: #endif
  957: :
  958:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  959:  over       0< IF  tuck + swap  THEN
  960:  um/mod
  961:  r> 0< IF  swap negate swap  THEN ;
  962: 
  963: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  964: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  965: #ifdef BUGGY_LL_DIV
  966: #ifdef ASM_SM_SLASH_REM
  967: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  968: #else /* !defined(ASM_SM_SLASH_REM) */
  969: DCell r = smdiv(d1,n1);
  970: n2=DHI(r);
  971: n3=DLO(r);
  972: #endif /* !defined(ASM_SM_SLASH_REM) */
  973: #else
  974: #ifdef ASM_SM_SLASH_REM4
  975: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  976: #else /* !defined(ASM_SM_SLASH_REM4) */
  977: /* assumes that the processor uses either floored or symmetric division */
  978: DCell d3 = d1/n1;
  979: n2 = d1%n1;
  980: if (CHECK_DIVISION && n1 == 0)
  981:   throw(BALL_DIVZERO);
  982: /* note that this 1%-3<0 is optimized by the compiler */
  983: if (1%-3<0 && ((DHI(d1)^n1)<0) && n2!=0) {
  984:   d3++;
  985:   n2-=n1;
  986: }
  987: n3 = d3;
  988: if (d3 != n3)
  989:   throw(BALL_RESULTRANGE);
  990: #endif /* !defined(ASM_SM_SLASH_REM4) */
  991: #endif
  992: :
  993:  over >r dup >r abs -rot
  994:  dabs rot um/mod
  995:  r> r@ xor 0< IF       negate       THEN
  996:  r>        0< IF  swap negate swap  THEN ;
  997: 
  998: m*	( n1 n2 -- d )		core	m_star
  999: #ifdef BUGGY_LL_MUL
 1000: d = mmul(n1,n2);
 1001: #else
 1002: d = (DCell)n1 * (DCell)n2;
 1003: #endif
 1004: :
 1005:  2dup      0< and >r
 1006:  2dup swap 0< and >r
 1007:  um* r> - r> - ;
 1008: 
 1009: um*	( u1 u2 -- ud )		core	u_m_star
 1010: /* use u* as alias */
 1011: #ifdef BUGGY_LL_MUL
 1012: ud = ummul(u1,u2);
 1013: #else
 1014: ud = (UDCell)u1 * (UDCell)u2;
 1015: #endif
 1016: :
 1017:    0 -rot dup [ 8 cells ] literal -
 1018:    DO
 1019: 	dup 0< I' and d2*+ drop
 1020:    LOOP ;
 1021: : d2*+ ( ud n -- ud+n c )
 1022:    over MINI
 1023:    and >r >r 2dup d+ swap r> + swap r> ;
 1024: 
 1025: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
 1026: ""ud=u3*u1+u2, u1>u2>=0""
 1027: #ifdef BUGGY_LL_DIV
 1028: #ifdef ASM_UM_SLASH_MOD
 1029: ASM_UM_SLASH_MOD(ud.lo, ud.hi, u1, u2, u3);
 1030: #else /* !defined(ASM_UM_SLASH_MOD) */
 1031: UDCell r = umdiv(ud,u1);
 1032: u2=DHI(r);
 1033: u3=DLO(r);
 1034: #endif /* !defined(ASM_UM_SLASH_MOD) */
 1035: #else
 1036: #ifdef ASM_UM_SLASH_MOD4
 1037: ASM_UM_SLASH_MOD4(ud, u1, u2, u3);
 1038: #else /* !defined(ASM_UM_SLASH_MOD4) */
 1039: UDCell ud3 = ud/u1;
 1040: u2 = ud%u1;
 1041: if (CHECK_DIVISION && u1 == 0)
 1042:   throw(BALL_DIVZERO);
 1043: u3 = ud3;
 1044: if (ud3 != u3)
 1045:   throw(BALL_RESULTRANGE);
 1046: #endif /* !defined(ASM_UM_SLASH_MOD4) */
 1047: #endif
 1048: :
 1049:    0 swap [ 8 cells 1 + ] literal 0
 1050:    ?DO /modstep
 1051:    LOOP drop swap 1 rshift or swap ;
 1052: : /modstep ( ud c R: u -- ud-?u c R: u )
 1053:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
 1054: : d2*+ ( ud n -- ud+n c )
 1055:    over MINI
 1056:    and >r >r 2dup d+ swap r> + swap r> ;
 1057: 
 1058: m+	( d1 n -- d2 )		double		m_plus
 1059: #ifdef BUGGY_LL_ADD
 1060: DLO_IS(d2, DLO(d1)+n);
 1061: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1062: #else
 1063: d2 = d1+n;
 1064: #endif
 1065: :
 1066:  s>d d+ ;
 1067: 
 1068: d+	( d1 d2 -- d )		double	d_plus
 1069: #ifdef BUGGY_LL_ADD
 1070: DLO_IS(d, DLO(d1) + DLO(d2));
 1071: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1072: #else
 1073: d = d1+d2;
 1074: #endif
 1075: :
 1076:  rot + >r tuck + swap over u> r> swap - ;
 1077: 
 1078: d-	( d1 d2 -- d )		double		d_minus
 1079: #ifdef BUGGY_LL_ADD
 1080: DLO_IS(d, DLO(d1) - DLO(d2));
 1081: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1082: #else
 1083: d = d1-d2;
 1084: #endif
 1085: :
 1086:  dnegate d+ ;
 1087: 
 1088: dnegate	( d1 -- d2 )		double	d_negate
 1089: /* use dminus as alias */
 1090: #ifdef BUGGY_LL_ADD
 1091: d2 = dnegate(d1);
 1092: #else
 1093: d2 = -d1;
 1094: #endif
 1095: :
 1096:  invert swap negate tuck 0= - ;
 1097: 
 1098: d2*	( d1 -- d2 )		double		d_two_star
 1099: ""Shift left by 1; also works on unsigned numbers""
 1100: #ifdef BUGGY_LL_SHIFT
 1101: DLO_IS(d2, DLO(d1)<<1);
 1102: DHI_IS(d2, (DHI(d1)<<1) | (DLO(d1)>>(CELL_BITS-1)));
 1103: #else
 1104: d2 = 2*d1;
 1105: #endif
 1106: :
 1107:  2dup d+ ;
 1108: 
 1109: d2/	( d1 -- d2 )		double		d_two_slash
 1110: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1111: division by 2.""
 1112: #ifdef BUGGY_LL_SHIFT
 1113: DHI_IS(d2, DHI(d1)>>1);
 1114: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1115: #else
 1116: d2 = d1>>1;
 1117: #endif
 1118: :
 1119:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1120:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1121: 
 1122: and	( w1 w2 -- w )		core
 1123: w = w1&w2;
 1124: 
 1125: or	( w1 w2 -- w )		core
 1126: w = w1|w2;
 1127: :
 1128:  invert swap invert and invert ;
 1129: 
 1130: xor	( w1 w2 -- w )		core	x_or
 1131: w = w1^w2;
 1132: 
 1133: invert	( w1 -- w2 )		core
 1134: w2 = ~w1;
 1135: :
 1136:  MAXU xor ;
 1137: 
 1138: rshift	( u1 n -- u2 )		core	r_shift
 1139: ""Logical shift right by @i{n} bits.""
 1140: #ifdef BROKEN_SHIFT
 1141:   u2 = rshift(u1, n);
 1142: #else
 1143:   u2 = u1 >> n;
 1144: #endif
 1145: :
 1146:     0 ?DO 2/ MAXI and LOOP ;
 1147: 
 1148: lshift	( u1 n -- u2 )		core	l_shift
 1149: #ifdef BROKEN_SHIFT
 1150:   u2 = lshift(u1, n);
 1151: #else
 1152:   u2 = u1 << n;
 1153: #endif
 1154: :
 1155:     0 ?DO 2* LOOP ;
 1156: 
 1157: \g compare
 1158: 
 1159: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1160: define(comparisons,
 1161: $1=	( $2 -- f )		$6	$3equals
 1162: f = FLAG($4==$5);
 1163: :
 1164:     [ char $1x char 0 = [IF]
 1165: 	] IF false ELSE true THEN [
 1166:     [ELSE]
 1167: 	] xor 0= [
 1168:     [THEN] ] ;
 1169: 
 1170: $1<>	( $2 -- f )		$7	$3not_equals
 1171: f = FLAG($4!=$5);
 1172: :
 1173:     [ char $1x char 0 = [IF]
 1174: 	] IF true ELSE false THEN [
 1175:     [ELSE]
 1176: 	] xor 0<> [
 1177:     [THEN] ] ;
 1178: 
 1179: $1<	( $2 -- f )		$8	$3less_than
 1180: f = FLAG($4<$5);
 1181: :
 1182:     [ char $1x char 0 = [IF]
 1183: 	] MINI and 0<> [
 1184:     [ELSE] char $1x char u = [IF]
 1185: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1186: 	[ELSE]
 1187: 	    ] MINI xor >r MINI xor r> u< [
 1188: 	[THEN]
 1189:     [THEN] ] ;
 1190: 
 1191: $1>	( $2 -- f )		$9	$3greater_than
 1192: f = FLAG($4>$5);
 1193: :
 1194:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1195:     $1< ;
 1196: 
 1197: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1198: f = FLAG($4<=$5);
 1199: :
 1200:     $1> 0= ;
 1201: 
 1202: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1203: f = FLAG($4>=$5);
 1204: :
 1205:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1206:     $1<= ;
 1207: 
 1208: )
 1209: 
 1210: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1211: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1212: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1213: 
 1214: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1215: define(dcomparisons,
 1216: $1=	( $2 -- f )		$6	$3equals
 1217: #ifdef BUGGY_LL_CMP
 1218: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1219: #else
 1220: f = FLAG($4==$5);
 1221: #endif
 1222: 
 1223: $1<>	( $2 -- f )		$7	$3not_equals
 1224: #ifdef BUGGY_LL_CMP
 1225: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1226: #else
 1227: f = FLAG($4!=$5);
 1228: #endif
 1229: 
 1230: $1<	( $2 -- f )		$8	$3less_than
 1231: #ifdef BUGGY_LL_CMP
 1232: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1233: #else
 1234: f = FLAG($4<$5);
 1235: #endif
 1236: 
 1237: $1>	( $2 -- f )		$9	$3greater_than
 1238: #ifdef BUGGY_LL_CMP
 1239: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1240: #else
 1241: f = FLAG($4>$5);
 1242: #endif
 1243: 
 1244: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1245: #ifdef BUGGY_LL_CMP
 1246: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1247: #else
 1248: f = FLAG($4<=$5);
 1249: #endif
 1250: 
 1251: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1252: #ifdef BUGGY_LL_CMP
 1253: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1254: #else
 1255: f = FLAG($4>=$5);
 1256: #endif
 1257: 
 1258: )
 1259: 
 1260: \+dcomps
 1261: 
 1262: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1263: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1264: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1265: 
 1266: \+
 1267: 
 1268: within	( u1 u2 u3 -- f )		core-ext
 1269: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1270: unsigned and signed numbers (but not a mixture).  Another way to think
 1271: about this word is to consider the numbers as a circle (wrapping
 1272: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1273: min-n for signed numbers); now consider the range from u2 towards
 1274: increasing numbers up to and excluding u3 (giving an empty range if
 1275: u2=u3); if u1 is in this range, @code{within} returns true.""
 1276: f = FLAG(u1-u2 < u3-u2);
 1277: :
 1278:  over - >r - r> u< ;
 1279: 
 1280: \g stack
 1281: 
 1282: useraddr	( #u -- a_addr )	new
 1283: a_addr = (Cell *)(up+u);
 1284: 
 1285: up!	( a_addr -- )	gforth	up_store
 1286: gforth_UP=up=(Address)a_addr;
 1287: :
 1288:  up ! ;
 1289: Variable UP
 1290: 
 1291: sp@	( S:... -- a_addr )		gforth		sp_fetch
 1292: a_addr = sp;
 1293: 
 1294: sp!	( a_addr -- S:... )		gforth		sp_store
 1295: sp = a_addr;
 1296: 
 1297: rp@	( -- a_addr )		gforth		rp_fetch
 1298: a_addr = rp;
 1299: 
 1300: rp!	( a_addr -- )		gforth		rp_store
 1301: rp = a_addr;
 1302: 
 1303: \+floating
 1304: 
 1305: fp@	( f:... -- f_addr )	gforth	fp_fetch
 1306: f_addr = fp;
 1307: 
 1308: fp!	( f_addr -- f:... )	gforth	fp_store
 1309: fp = f_addr;
 1310: 
 1311: \+
 1312: 
 1313: >r	( w -- R:w )		core	to_r
 1314: :
 1315:  (>r) ;
 1316: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1317: 
 1318: r>	( R:w -- w )		core	r_from
 1319: :
 1320:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1321: Create (rdrop) ' ;s A,
 1322: 
 1323: rdrop	( R:w -- )		gforth
 1324: :
 1325:  r> r> drop >r ;
 1326: 
 1327: 2>r	( d -- R:d )	core-ext	two_to_r
 1328: :
 1329:  swap r> swap >r swap >r >r ;
 1330: 
 1331: 2r>	( R:d -- d )	core-ext	two_r_from
 1332: :
 1333:  r> r> swap r> swap >r swap ;
 1334: 
 1335: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1336: :
 1337:  i' j ;
 1338: 
 1339: 2rdrop	( R:d -- )		gforth	two_r_drop
 1340: :
 1341:  r> r> drop r> drop >r ;
 1342: 
 1343: over	( w1 w2 -- w1 w2 w1 )		core
 1344: :
 1345:  sp@ cell+ @ ;
 1346: 
 1347: drop	( w -- )		core
 1348: :
 1349:  IF THEN ;
 1350: 
 1351: swap	( w1 w2 -- w2 w1 )		core
 1352: :
 1353:  >r (swap) ! r> (swap) @ ;
 1354: Variable (swap)
 1355: 
 1356: dup	( w -- w w )		core	dupe
 1357: :
 1358:  sp@ @ ;
 1359: 
 1360: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1361: :
 1362: [ defined? (swap) [IF] ]
 1363:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1364: Variable (rot)
 1365: [ELSE] ]
 1366:     >r swap r> swap ;
 1367: [THEN]
 1368: 
 1369: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1370: :
 1371:  rot rot ;
 1372: 
 1373: nip	( w1 w2 -- w2 )		core-ext
 1374: :
 1375:  swap drop ;
 1376: 
 1377: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1378: :
 1379:  swap over ;
 1380: 
 1381: ?dup	( w -- S:... w )	core	question_dupe
 1382: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1383: @code{dup} if w is nonzero.""
 1384: if (w!=0) {
 1385:   *--sp = w;
 1386: }
 1387: :
 1388:  dup IF dup THEN ;
 1389: 
 1390: pick	( S:... u -- S:... w )		core-ext
 1391: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1392: w = sp[u];
 1393: :
 1394:  1+ cells sp@ + @ ;
 1395: 
 1396: 2drop	( w1 w2 -- )		core	two_drop
 1397: :
 1398:  drop drop ;
 1399: 
 1400: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1401: :
 1402:  over over ;
 1403: 
 1404: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1405: :
 1406:  3 pick 3 pick ;
 1407: 
 1408: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1409: :
 1410:  rot >r rot r> ;
 1411: 
 1412: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1413: :
 1414:  >r >r 2swap r> r> 2swap ;
 1415: 
 1416: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1417: :
 1418:  2swap 2drop ;
 1419: 
 1420: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1421: :
 1422:  2swap 2over ;
 1423: 
 1424: \ toggle is high-level: 0.11/0.42%
 1425: 
 1426: \g memory
 1427: 
 1428: @	( a_addr -- w )		core	fetch
 1429: ""@i{w} is the cell stored at @i{a_addr}.""
 1430: w = *a_addr;
 1431: 
 1432: \ lit@ / lit_fetch = lit @
 1433: 
 1434: lit@		( #a_addr -- w ) new	lit_fetch
 1435: w = *a_addr;
 1436: 
 1437: !	( w a_addr -- )		core	store
 1438: ""Store @i{w} into the cell at @i{a-addr}.""
 1439: *a_addr = w;
 1440: 
 1441: +!	( n a_addr -- )		core	plus_store
 1442: ""Add @i{n} to the cell at @i{a-addr}.""
 1443: *a_addr += n;
 1444: :
 1445:  tuck @ + swap ! ;
 1446: 
 1447: c@	( c_addr -- c )		core	c_fetch
 1448: ""@i{c} is the char stored at @i{c_addr}.""
 1449: c = *c_addr;
 1450: :
 1451: [ bigendian [IF] ]
 1452:     [ cell>bit 4 = [IF] ]
 1453: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1454: 	IF  $FF and  ELSE  8>>  THEN  ;
 1455:     [ [ELSE] ]
 1456: 	dup [ cell 1- ] literal and
 1457: 	tuck - @ swap [ cell 1- ] literal xor
 1458:  	0 ?DO 8>> LOOP $FF and
 1459:     [ [THEN] ]
 1460: [ [ELSE] ]
 1461:     [ cell>bit 4 = [IF] ]
 1462: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1463: 	IF  8>>  ELSE  $FF and  THEN
 1464:     [ [ELSE] ]
 1465: 	dup [ cell  1- ] literal and 
 1466: 	tuck - @ swap
 1467: 	0 ?DO 8>> LOOP 255 and
 1468:     [ [THEN] ]
 1469: [ [THEN] ]
 1470: ;
 1471: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1472: 
 1473: c!	( c c_addr -- )		core	c_store
 1474: ""Store @i{c} into the char at @i{c-addr}.""
 1475: *c_addr = c;
 1476: :
 1477: [ bigendian [IF] ]
 1478:     [ cell>bit 4 = [IF] ]
 1479: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1480: 	dup -2 and @ over 1 and cells masks + @ and
 1481: 	r> or swap -2 and ! ;
 1482: 	Create masks $00FF , $FF00 ,
 1483:     [ELSE] ]
 1484: 	dup [ cell 1- ] literal and dup 
 1485: 	[ cell 1- ] literal xor >r
 1486: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1487: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1488:     [THEN]
 1489: [ELSE] ]
 1490:     [ cell>bit 4 = [IF] ]
 1491: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1492: 	dup -2 and @ over 1 and cells masks + @ and
 1493: 	r> or swap -2 and ! ;
 1494: 	Create masks $FF00 , $00FF ,
 1495:     [ELSE] ]
 1496: 	dup [ cell 1- ] literal and dup >r
 1497: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1498: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1499:     [THEN]
 1500: [THEN]
 1501: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1502: 
 1503: 2!	( w1 w2 a_addr -- )		core	two_store
 1504: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1505: a_addr[0] = w2;
 1506: a_addr[1] = w1;
 1507: :
 1508:  tuck ! cell+ ! ;
 1509: 
 1510: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1511: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1512: the content of the next cell.""
 1513: w2 = a_addr[0];
 1514: w1 = a_addr[1];
 1515: :
 1516:  dup cell+ @ swap @ ;
 1517: 
 1518: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1519: ""@code{1 cells +}""
 1520: a_addr2 = a_addr1+1;
 1521: :
 1522:  cell + ;
 1523: 
 1524: cells	( n1 -- n2 )		core
 1525: "" @i{n2} is the number of address units of @i{n1} cells.""
 1526: n2 = n1 * sizeof(Cell);
 1527: :
 1528:  [ cell
 1529:  2/ dup [IF] ] 2* [ [THEN]
 1530:  2/ dup [IF] ] 2* [ [THEN]
 1531:  2/ dup [IF] ] 2* [ [THEN]
 1532:  2/ dup [IF] ] 2* [ [THEN]
 1533:  drop ] ;
 1534: 
 1535: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1536: ""@code{1 chars +}.""
 1537: c_addr2 = c_addr1 + 1;
 1538: :
 1539:  1+ ;
 1540: 
 1541: (chars)	( n1 -- n2 )	gforth	paren_chars
 1542: n2 = n1 * sizeof(Char);
 1543: :
 1544:  ;
 1545: 
 1546: count	( c_addr1 -- c_addr2 u )	core
 1547: ""@i{c-addr2} is the first character and @i{u} the length of the
 1548: counted string at @i{c-addr1}.""
 1549: u = *c_addr1;
 1550: c_addr2 = c_addr1+1;
 1551: :
 1552:  dup 1+ swap c@ ;
 1553: 
 1554: \g compiler
 1555: 
 1556: \+f83headerstring
 1557: 
 1558: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1559: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1560:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1561:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1562:     break;
 1563: f83name2=f83name1;
 1564: :
 1565:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1566: 	>r 2dup r@ cell+ char+ capscomp  0=
 1567: 	IF  2drop r>  EXIT  THEN
 1568: 	r> @
 1569:     REPEAT  THEN  nip nip ;
 1570: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1571:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1572: : capscomp ( c_addr1 u c_addr2 -- n )
 1573:  swap bounds
 1574:  ?DO  dup c@ I c@ <>
 1575:      IF  dup c@ toupper I c@ toupper =
 1576:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1577:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1578: : sgn ( n -- -1/0/1 )
 1579:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1580: 
 1581: \-
 1582: 
 1583: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1584: longname2=listlfind(c_addr, u, longname1);
 1585: :
 1586:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1587: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1588: 	IF  2drop r>  EXIT  THEN
 1589: 	r> @
 1590:     REPEAT  THEN  nip nip ;
 1591: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1592:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1593: : capscomp ( c_addr1 u c_addr2 -- n )
 1594:  swap bounds
 1595:  ?DO  dup c@ I c@ <>
 1596:      IF  dup c@ toupper I c@ toupper =
 1597:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1598:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1599: : sgn ( n -- -1/0/1 )
 1600:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1601: 
 1602: \+hash
 1603: 
 1604: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1605: longname2 = hashlfind(c_addr, u, a_addr);
 1606: :
 1607:  BEGIN  dup  WHILE
 1608:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1609:         IF  2dup r@ cell+ cell+ capscomp 0=
 1610: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1611: 	rdrop r>
 1612:  REPEAT nip nip ;
 1613: 
 1614: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1615: ""A case-sensitive variant of @code{(hashfind)}""
 1616: longname2 = tablelfind(c_addr, u, a_addr);
 1617: :
 1618:  BEGIN  dup  WHILE
 1619:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1620:         IF  2dup r@ cell+ cell+ -text 0=
 1621: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1622: 	rdrop r>
 1623:  REPEAT nip nip ;
 1624: : -text ( c_addr1 u c_addr2 -- n )
 1625:  swap bounds
 1626:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1627:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1628: : sgn ( n -- -1/0/1 )
 1629:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1630: 
 1631: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1632: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1633: ukey = hashkey1(c_addr, u, ubits);
 1634: :
 1635:  dup rot-values + c@ over 1 swap lshift 1- >r
 1636:  tuck - 2swap r> 0 2swap bounds
 1637:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1638:       I c@ toupper xor
 1639:       over and  LOOP
 1640:  nip nip nip ;
 1641: Create rot-values
 1642:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1643:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1644:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1645:   7 c, 5 c, 5 c,
 1646: 
 1647: \+
 1648: 
 1649: \+
 1650: 
 1651: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1652: struct Cellpair r=parse_white(c_addr1, u1);
 1653: c_addr2 = (Char *)(r.n1);
 1654: u2 = r.n2;
 1655: :
 1656:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1657:  REPEAT  THEN  2dup
 1658:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1659:  REPEAT  THEN  nip - ;
 1660: 
 1661: aligned	( c_addr -- a_addr )	core
 1662: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1663: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1664: :
 1665:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1666: 
 1667: faligned	( c_addr -- f_addr )	float	f_aligned
 1668: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1669: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1670: :
 1671:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1672: 
 1673: \ threading stuff is currently only interesting if we have a compiler
 1674: \fhas? standardthreading has? compiler and [IF]
 1675: threading-method	( -- n )	gforth	threading_method
 1676: ""0 if the engine is direct threaded. Note that this may change during
 1677: the lifetime of an image.""
 1678: #if defined(DOUBLY_INDIRECT)
 1679: n=2;
 1680: #else
 1681: # if defined(DIRECT_THREADED)
 1682: n=0;
 1683: # else
 1684: n=1;
 1685: # endif
 1686: #endif
 1687: :
 1688:  1 ;
 1689: 
 1690: \f[THEN]
 1691: 
 1692: \g hostos
 1693: 
 1694: key-file	( wfileid -- c )		gforth	paren_key_file
 1695: ""Read one character @i{c} from @i{wfileid}.  This word disables
 1696: buffering for @i{wfileid}.  If you want to read characters from a
 1697: terminal in non-canonical (raw) mode, you have to put the terminal in
 1698: non-canonical mode yourself (using the C interface); the exception is
 1699: @code{stdin}: Gforth automatically puts it into non-canonical mode.""
 1700: #ifdef HAS_FILE
 1701: fflush(stdout);
 1702: c = key((FILE*)wfileid);
 1703: #else
 1704: c = key(stdin);
 1705: #endif
 1706: 
 1707: key?-file	( wfileid -- f )	        gforth	key_q_file
 1708: ""@i{f} is true if at least one character can be read from @i{wfileid}
 1709: without blocking.  If you also want to use @code{read-file} or
 1710: @code{read-line} on the file, you have to call @code{key?-file} or
 1711: @code{key-file} first (these two words disable buffering).""
 1712: #ifdef HAS_FILE
 1713: fflush(stdout);
 1714: f = key_query((FILE*)wfileid);
 1715: #else
 1716: f = key_query(stdin);
 1717: #endif
 1718: 
 1719: \+os
 1720: 
 1721: stdin	( -- wfileid )	gforth
 1722: ""The standard input file of the Gforth process.""
 1723: wfileid = (Cell)stdin;
 1724: 
 1725: stdout	( -- wfileid )	gforth
 1726: ""The standard output file of the Gforth process.""
 1727: wfileid = (Cell)stdout;
 1728: 
 1729: stderr	( -- wfileid )	gforth
 1730: ""The standard error output file of the Gforth process.""
 1731: wfileid = (Cell)stderr;
 1732: 
 1733: form	( -- urows ucols )	gforth
 1734: ""The number of lines and columns in the terminal. These numbers may change
 1735: with the window size.""
 1736: /* we could block SIGWINCH here to get a consistent size, but I don't
 1737:  think this is necessary or always beneficial */
 1738: urows=rows;
 1739: ucols=cols;
 1740: 
 1741: wcwidth	( u -- n )	gforth
 1742: ""The number of fixed-width characters per unicode character u""
 1743: n = wcwidth(u);
 1744: 
 1745: flush-icache	( c_addr u -- )	gforth	flush_icache
 1746: ""Make sure that the instruction cache of the processor (if there is
 1747: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1748: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1749: automatically. Caveat: @code{flush-icache} might not work on your
 1750: installation; this is usually the case if direct threading is not
 1751: supported on your machine (take a look at your @file{machine.h}) and
 1752: your machine has a separate instruction cache. In such cases,
 1753: @code{flush-icache} does nothing instead of flushing the instruction
 1754: cache.""
 1755: FLUSH_ICACHE(c_addr,u);
 1756: 
 1757: (bye)	( n -- )	gforth	paren_bye
 1758: SUPER_END;
 1759: return (Label *)n;
 1760: 
 1761: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1762: wretval = gforth_system(c_addr, u);  
 1763: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1764: 
 1765: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1766: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1767: is the host operating system's expansion of that environment variable. If the
 1768: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1769: in length.""
 1770: /* close ' to keep fontify happy */
 1771: c_addr2 = (Char *)getenv(cstr(c_addr1,u1,1));
 1772: u2 = (c_addr2 == NULL ? 0 : strlen((char *)c_addr2));
 1773: 
 1774: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1775: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1776: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1777: 
 1778: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1779: wretval = pclose((FILE *)wfileid);
 1780: wior = IOR(wretval==-1);
 1781: 
 1782: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1783: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1784: Months are numbered from 1.""
 1785: #if 1
 1786: time_t now;
 1787: struct tm *ltime;
 1788: time(&now);
 1789: ltime=localtime(&now);
 1790: #else
 1791: struct timeval time1;
 1792: struct timezone zone1;
 1793: struct tm *ltime;
 1794: gettimeofday(&time1,&zone1);
 1795: /* !! Single Unix specification: 
 1796:    If tzp is not a null pointer, the behaviour is unspecified. */
 1797: ltime=localtime((time_t *)&time1.tv_sec);
 1798: #endif
 1799: nyear =ltime->tm_year+1900;
 1800: nmonth=ltime->tm_mon+1;
 1801: nday  =ltime->tm_mday;
 1802: nhour =ltime->tm_hour;
 1803: nmin  =ltime->tm_min;
 1804: nsec  =ltime->tm_sec;
 1805: 
 1806: ms	( n -- )	facility-ext
 1807: ""Wait at least @i{n} milli-second.""
 1808: struct timeval timeout;
 1809: timeout.tv_sec=n/1000;
 1810: timeout.tv_usec=1000*(n%1000);
 1811: (void)select(0,0,0,0,&timeout);
 1812: 
 1813: allocate	( u -- a_addr wior )	memory
 1814: ""Allocate @i{u} address units of contiguous data space. The initial
 1815: contents of the data space is undefined. If the allocation is successful,
 1816: @i{a-addr} is the start address of the allocated region and @i{wior}
 1817: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1818: is a non-zero I/O result code.""
 1819: a_addr = (Cell *)malloc(u?u:1);
 1820: wior = IOR(a_addr==NULL);
 1821: 
 1822: free	( a_addr -- wior )		memory
 1823: ""Return the region of data space starting at @i{a-addr} to the system.
 1824: The region must originally have been obtained using @code{allocate} or
 1825: @code{resize}. If the operational is successful, @i{wior} is 0.
 1826: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1827: free(a_addr);
 1828: wior = 0;
 1829: 
 1830: resize	( a_addr1 u -- a_addr2 wior )	memory
 1831: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1832: address units, possibly moving the contents to a different
 1833: area. @i{a-addr2} is the address of the resulting area.
 1834: If the operation is successful, @i{wior} is 0.
 1835: If the operation fails, @i{wior} is a non-zero
 1836: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1837: @code{resize} @code{allocate}s @i{u} address units.""
 1838: /* the following check is not necessary on most OSs, but it is needed
 1839:    on SunOS 4.1.2. */
 1840: /* close ' to keep fontify happy */
 1841: if (a_addr1==NULL)
 1842:   a_addr2 = (Cell *)malloc(u);
 1843: else
 1844:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1845: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1846: 
 1847: strerror	( n -- c_addr u )	gforth
 1848: c_addr = (Char *)strerror(n);
 1849: u = strlen((char *)c_addr);
 1850: 
 1851: strsignal	( n -- c_addr u )	gforth
 1852: c_addr = (Char *)strsignal(n);
 1853: u = strlen((char *)c_addr);
 1854: 
 1855: call-c	( ... w -- ... )	gforth	call_c
 1856: ""Call the C function pointed to by @i{w}. The C function has to
 1857: access the stack itself. The stack pointers are exported in the global
 1858: variables @code{SP} and @code{FP}.""
 1859: /* This is a first attempt at support for calls to C. This may change in
 1860:    the future */
 1861: gforth_FP=fp;
 1862: gforth_SP=sp;
 1863: ((void (*)())w)();
 1864: sp=gforth_SP;
 1865: fp=gforth_FP;
 1866: 
 1867: \+
 1868: \+file
 1869: 
 1870: close-file	( wfileid -- wior )		file	close_file
 1871: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1872: 
 1873: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1874: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1875: wior =  IOR(wfileid == 0);
 1876: 
 1877: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1878: Cell	fd;
 1879: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1880: if (fd != -1) {
 1881:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1882:   wior = IOR(wfileid == 0);
 1883: } else {
 1884:   wfileid = 0;
 1885:   wior = IOR(1);
 1886: }
 1887: 
 1888: delete-file	( c_addr u -- wior )		file	delete_file
 1889: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1890: 
 1891: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1892: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1893: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1894: 
 1895: file-position	( wfileid -- ud wior )	file	file_position
 1896: /* !! use tell and lseek? */
 1897: ud = OFF2UD(ftello((FILE *)wfileid));
 1898: wior = IOR(UD2OFF(ud)==-1);
 1899: 
 1900: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1901: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1902: 
 1903: file-size	( wfileid -- ud wior )	file	file_size
 1904: struct stat buf;
 1905: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1906: ud = OFF2UD(buf.st_size);
 1907: 
 1908: resize-file	( ud wfileid -- wior )	file	resize_file
 1909: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1910: 
 1911: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1912: /* !! fread does not guarantee enough */
 1913: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1914: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1915: /* !! is the value of ferror errno-compatible? */
 1916: if (wior)
 1917:   clearerr((FILE *)wfileid);
 1918: 
 1919: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1920: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1921: u2   = r.n1;
 1922: flag = r.n2;
 1923: u3   = r.n3;
 1924: wior = r.n4;
 1925: 
 1926: \+
 1927: 
 1928: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1929: /* !! fwrite does not guarantee enough */
 1930: #ifdef HAS_FILE
 1931: {
 1932:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1933:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1934:   if (wior)
 1935:     clearerr((FILE *)wfileid);
 1936: }
 1937: #else
 1938: TYPE(c_addr, u1);
 1939: #endif
 1940: 
 1941: emit-file	( c wfileid -- wior )	gforth	emit_file
 1942: #ifdef HAS_FILE
 1943: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1944: if (wior)
 1945:   clearerr((FILE *)wfileid);
 1946: #else
 1947: PUTC(c);
 1948: #endif
 1949: 
 1950: \+file
 1951: 
 1952: flush-file	( wfileid -- wior )		file-ext	flush_file
 1953: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1954: 
 1955: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1956: struct Cellpair r = file_status(c_addr, u);
 1957: wfam = r.n1;
 1958: wior = r.n2;
 1959: 
 1960: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1961: flag = FLAG(feof((FILE *) wfileid));
 1962: 
 1963: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1964: ""Open the directory specified by @i{c-addr, u}
 1965: and return @i{dir-id} for futher access to it.""
 1966: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1967: wior =  IOR(wdirid == 0);
 1968: 
 1969: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1970: ""Attempt to read the next entry from the directory specified
 1971: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1972: If the attempt fails because there is no more entries,
 1973: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1974: If the attempt to read the next entry fails because of any other reason, 
 1975: return @i{ior}<>0.
 1976: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1977: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1978: If the length of the file name is greater than @i{u1}, 
 1979: store first @i{u1} characters from file name into the buffer and
 1980: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1981: struct dirent * dent;
 1982: dent = readdir((DIR *)wdirid);
 1983: wior = 0;
 1984: flag = -1;
 1985: if(dent == NULL) {
 1986:   u2 = 0;
 1987:   flag = 0;
 1988: } else {
 1989:   u2 = strlen((char *)dent->d_name);
 1990:   if(u2 > u1) {
 1991:     u2 = u1;
 1992:     wior = -512-ENAMETOOLONG;
 1993:   }
 1994:   memmove(c_addr, dent->d_name, u2);
 1995: }
 1996: 
 1997: close-dir	( wdirid -- wior )	gforth	close_dir
 1998: ""Close the directory specified by @i{dir-id}.""
 1999: wior = IOR(closedir((DIR *)wdirid));
 2000: 
 2001: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2002: char * string = cstr(c_addr1, u1, 1);
 2003: char * pattern = cstr(c_addr2, u2, 0);
 2004: flag = FLAG(!fnmatch(pattern, string, 0));
 2005: 
 2006: set-dir	( c_addr u -- wior )	gforth set_dir
 2007: ""Change the current directory to @i{c-addr, u}.
 2008: Return an error if this is not possible""
 2009: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 2010: 
 2011: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 2012: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 2013: If the buffer size is not sufficient, return 0 0""
 2014: c_addr2 = (Char *)getcwd((char *)c_addr1, u1);
 2015: if(c_addr2 != NULL) {
 2016:   u2 = strlen((char *)c_addr2);
 2017: } else {
 2018:   u2 = 0;
 2019: }
 2020: 
 2021: \+
 2022: 
 2023: newline	( -- c_addr u )	gforth
 2024: ""String containing the newline sequence of the host OS""
 2025: char newline[] = {
 2026: #if DIRSEP=='/'
 2027: /* Unix */
 2028: '\n'
 2029: #else
 2030: /* DOS, Win, OS/2 */
 2031: '\r','\n'
 2032: #endif
 2033: };
 2034: c_addr=(Char *)newline;
 2035: u=sizeof(newline);
 2036: :
 2037:  "newline count ;
 2038: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2039: 
 2040: \+os
 2041: 
 2042: utime	( -- dtime )	gforth
 2043: ""Report the current time in microseconds since some epoch.""
 2044: struct timeval time1;
 2045: gettimeofday(&time1,NULL);
 2046: dtime = timeval2us(&time1);
 2047: 
 2048: cputime ( -- duser dsystem ) gforth
 2049: ""duser and dsystem are the respective user- and system-level CPU
 2050: times used since the start of the Forth system (excluding child
 2051: processes), in microseconds (the granularity may be much larger,
 2052: however).  On platforms without the getrusage call, it reports elapsed
 2053: time (since some epoch) for duser and 0 for dsystem.""
 2054: #ifdef HAVE_GETRUSAGE
 2055: struct rusage usage;
 2056: getrusage(RUSAGE_SELF, &usage);
 2057: duser = timeval2us(&usage.ru_utime);
 2058: dsystem = timeval2us(&usage.ru_stime);
 2059: #else
 2060: struct timeval time1;
 2061: gettimeofday(&time1,NULL);
 2062: duser = timeval2us(&time1);
 2063: dsystem = DZERO;
 2064: #endif
 2065: 
 2066: \+
 2067: 
 2068: \+floating
 2069: 
 2070: \g floating
 2071: 
 2072: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2073: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2074: 
 2075: s>f	( n -- r )		float	s_to_f
 2076: r = n;
 2077: 
 2078: d>f	( d -- r )		float	d_to_f
 2079: #ifdef BUGGY_LL_D2F
 2080: extern double ldexp(double x, int exp);
 2081: if (DHI(d)<0) {
 2082: #ifdef BUGGY_LL_ADD
 2083:   DCell d2=dnegate(d);
 2084: #else
 2085:   DCell d2=-d;
 2086: #endif
 2087:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2088: } else
 2089:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2090: #else
 2091: r = d;
 2092: #endif
 2093: 
 2094: f>d	( r -- d )		float	f_to_d
 2095: extern DCell double2ll(Float r);
 2096: d = double2ll(r);
 2097: 
 2098: f>s	( r -- n )		float	f_to_s
 2099: n = (Cell)r;
 2100: 
 2101: f!	( r f_addr -- )	float	f_store
 2102: ""Store @i{r} into the float at address @i{f-addr}.""
 2103: *f_addr = r;
 2104: 
 2105: f@	( f_addr -- r )	float	f_fetch
 2106: ""@i{r} is the float at address @i{f-addr}.""
 2107: r = *f_addr;
 2108: 
 2109: df@	( df_addr -- r )	float-ext	d_f_fetch
 2110: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2111: #ifdef IEEE_FP
 2112: r = *df_addr;
 2113: #else
 2114: !! df@
 2115: #endif
 2116: 
 2117: df!	( r df_addr -- )	float-ext	d_f_store
 2118: ""Store @i{r} as double-precision IEEE floating-point value to the
 2119: address @i{df-addr}.""
 2120: #ifdef IEEE_FP
 2121: *df_addr = r;
 2122: #else
 2123: !! df!
 2124: #endif
 2125: 
 2126: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2127: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2128: #ifdef IEEE_FP
 2129: r = *sf_addr;
 2130: #else
 2131: !! sf@
 2132: #endif
 2133: 
 2134: sf!	( r sf_addr -- )	float-ext	s_f_store
 2135: ""Store @i{r} as single-precision IEEE floating-point value to the
 2136: address @i{sf-addr}.""
 2137: #ifdef IEEE_FP
 2138: *sf_addr = r;
 2139: #else
 2140: !! sf!
 2141: #endif
 2142: 
 2143: f+	( r1 r2 -- r3 )	float	f_plus
 2144: r3 = r1+r2;
 2145: 
 2146: f-	( r1 r2 -- r3 )	float	f_minus
 2147: r3 = r1-r2;
 2148: 
 2149: f*	( r1 r2 -- r3 )	float	f_star
 2150: r3 = r1*r2;
 2151: 
 2152: f/	( r1 r2 -- r3 )	float	f_slash
 2153: r3 = r1/r2;
 2154: 
 2155: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2156: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2157: r3 = pow(r1,r2);
 2158: 
 2159: fm*	( r1 n -- r2 )	gforth	fm_star
 2160: r2 = r1*n;
 2161: 
 2162: fm/	( r1 n -- r2 )	gforth	fm_slash
 2163: r2 = r1/n;
 2164: 
 2165: fm*/	( r1 n1 n2 -- r2 )	gforth	fm_star_slash
 2166: r2 = (r1*n1)/n2;
 2167: 
 2168: f**2	( r1 -- r2 )	gforth	fm_square
 2169: r2 = r1*r1;
 2170: 
 2171: fnegate	( r1 -- r2 )	float	f_negate
 2172: r2 = - r1;
 2173: 
 2174: fdrop	( r -- )		float	f_drop
 2175: 
 2176: fdup	( r -- r r )	float	f_dupe
 2177: 
 2178: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2179: 
 2180: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2181: 
 2182: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2183: 
 2184: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2185: 
 2186: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2187: 
 2188: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2189: ""@code{1 floats +}.""
 2190: f_addr2 = f_addr1+1;
 2191: 
 2192: floats	( n1 -- n2 )	float
 2193: ""@i{n2} is the number of address units of @i{n1} floats.""
 2194: n2 = n1*sizeof(Float);
 2195: 
 2196: floor	( r1 -- r2 )	float
 2197: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2198: /* !! unclear wording */
 2199: r2 = floor(r1);
 2200: 
 2201: fround	( r1 -- r2 )	gforth	f_round
 2202: ""Round to the nearest integral value.""
 2203: r2 = rint(r1);
 2204: 
 2205: fmax	( r1 r2 -- r3 )	float	f_max
 2206: if (r1<r2)
 2207:   r3 = r2;
 2208: else
 2209:   r3 = r1;
 2210: 
 2211: fmin	( r1 r2 -- r3 )	float	f_min
 2212: if (r1<r2)
 2213:   r3 = r1;
 2214: else
 2215:   r3 = r2;
 2216: 
 2217: represent	( r c_addr u -- n f1 f2 )	float
 2218: char *sig;
 2219: size_t siglen;
 2220: int flag;
 2221: int decpt;
 2222: sig=ecvt(r, u, &decpt, &flag);
 2223: n=(r==0. ? 1 : decpt);
 2224: f1=FLAG(flag!=0);
 2225: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2226: siglen=strlen((char *)sig);
 2227: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2228:   siglen=u;
 2229: if (!f2) /* workaround Cygwin trailing 0s for Inf and Nan */
 2230:   for (; sig[siglen-1]=='0'; siglen--);
 2231:     ;
 2232: memcpy(c_addr,sig,siglen);
 2233: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2234: 
 2235: >float	( c_addr u -- f:... flag )	float	to_float
 2236: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2237: character string @i{c-addr u} to internal floating-point
 2238: representation. If the string represents a valid floating-point number
 2239: @i{r} is placed on the floating-point stack and @i{flag} is
 2240: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2241: case and represents the floating-point number 0.""
 2242: Float r;
 2243: flag = to_float(c_addr, u, &r);
 2244: if (flag) {
 2245:   fp--;
 2246:   fp[0]=r;
 2247: }
 2248: 
 2249: fabs	( r1 -- r2 )	float-ext	f_abs
 2250: r2 = fabs(r1);
 2251: 
 2252: facos	( r1 -- r2 )	float-ext	f_a_cos
 2253: r2 = acos(r1);
 2254: 
 2255: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2256: r2 = asin(r1);
 2257: 
 2258: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2259: r2 = atan(r1);
 2260: 
 2261: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2262: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2263: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2264: r3 = atan2(r1,r2);
 2265: 
 2266: fcos	( r1 -- r2 )	float-ext	f_cos
 2267: r2 = cos(r1);
 2268: 
 2269: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2270: r2 = exp(r1);
 2271: 
 2272: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2273: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2274: #ifdef HAVE_EXPM1
 2275: extern double
 2276: #ifdef NeXT
 2277:               const
 2278: #endif
 2279:                     expm1(double);
 2280: r2 = expm1(r1);
 2281: #else
 2282: r2 = exp(r1)-1.;
 2283: #endif
 2284: 
 2285: fln	( r1 -- r2 )	float-ext	f_l_n
 2286: r2 = log(r1);
 2287: 
 2288: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2289: ""@i{r2}=ln(@i{r1}+1)""
 2290: #ifdef HAVE_LOG1P
 2291: extern double
 2292: #ifdef NeXT
 2293:               const
 2294: #endif
 2295:                     log1p(double);
 2296: r2 = log1p(r1);
 2297: #else
 2298: r2 = log(r1+1.);
 2299: #endif
 2300: 
 2301: flog	( r1 -- r2 )	float-ext	f_log
 2302: ""The decimal logarithm.""
 2303: r2 = log10(r1);
 2304: 
 2305: falog	( r1 -- r2 )	float-ext	f_a_log
 2306: ""@i{r2}=10**@i{r1}""
 2307: extern double pow10(double);
 2308: r2 = pow10(r1);
 2309: 
 2310: fsin	( r1 -- r2 )	float-ext	f_sine
 2311: r2 = sin(r1);
 2312: 
 2313: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2314: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2315: r2 = sin(r1);
 2316: r3 = cos(r1);
 2317: 
 2318: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2319: r2 = sqrt(r1);
 2320: 
 2321: ftan	( r1 -- r2 )	float-ext	f_tan
 2322: r2 = tan(r1);
 2323: :
 2324:  fsincos f/ ;
 2325: 
 2326: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2327: r2 = sinh(r1);
 2328: :
 2329:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2330: 
 2331: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2332: r2 = cosh(r1);
 2333: :
 2334:  fexp fdup 1/f f+ f2/ ;
 2335: 
 2336: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2337: r2 = tanh(r1);
 2338: :
 2339:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2340: 
 2341: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2342: r2 = asinh(r1);
 2343: :
 2344:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2345: 
 2346: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2347: r2 = acosh(r1);
 2348: :
 2349:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2350: 
 2351: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2352: r2 = atanh(r1);
 2353: :
 2354:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2355:  r> IF  fnegate  THEN ;
 2356: 
 2357: sfloats	( n1 -- n2 )	float-ext	s_floats
 2358: ""@i{n2} is the number of address units of @i{n1}
 2359: single-precision IEEE floating-point numbers.""
 2360: n2 = n1*sizeof(SFloat);
 2361: 
 2362: dfloats	( n1 -- n2 )	float-ext	d_floats
 2363: ""@i{n2} is the number of address units of @i{n1}
 2364: double-precision IEEE floating-point numbers.""
 2365: n2 = n1*sizeof(DFloat);
 2366: 
 2367: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2368: ""@i{sf-addr} is the first single-float-aligned address greater
 2369: than or equal to @i{c-addr}.""
 2370: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2371: :
 2372:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2373: 
 2374: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2375: ""@i{df-addr} is the first double-float-aligned address greater
 2376: than or equal to @i{c-addr}.""
 2377: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2378: :
 2379:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2380: 
 2381: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2382: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2383: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2384: ucount elements.""
 2385: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2386: :
 2387:  >r swap 2swap swap 0e r> 0 ?DO
 2388:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2389:  LOOP 2drop 2drop ; 
 2390: 
 2391: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2392: ""vy=ra*vx+vy""
 2393: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2394: :
 2395:  >r swap 2swap swap r> 0 ?DO
 2396:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2397:  LOOP 2drop 2drop fdrop ;
 2398: 
 2399: \+
 2400: 
 2401: \ The following words access machine/OS/installation-dependent
 2402: \   Gforth internals
 2403: \ !! how about environmental queries DIRECT-THREADED,
 2404: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2405: 
 2406: \ local variable implementation primitives
 2407: 
 2408: \+glocals
 2409: 
 2410: \g locals
 2411: 
 2412: @local#	( #noffset -- w )	gforth	fetch_local_number
 2413: w = *(Cell *)(lp+noffset);
 2414: 
 2415: @local0	( -- w )	new	fetch_local_zero
 2416: w = ((Cell *)lp)[0];
 2417: 
 2418: @local1	( -- w )	new	fetch_local_four
 2419: w = ((Cell *)lp)[1];
 2420: 
 2421: @local2	( -- w )	new	fetch_local_eight
 2422: w = ((Cell *)lp)[2];
 2423: 
 2424: @local3	( -- w )	new	fetch_local_twelve
 2425: w = ((Cell *)lp)[3];
 2426: 
 2427: \+floating
 2428: 
 2429: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2430: r = *(Float *)(lp+noffset);
 2431: 
 2432: f@local0	( -- r )	new	f_fetch_local_zero
 2433: r = ((Float *)lp)[0];
 2434: 
 2435: f@local1	( -- r )	new	f_fetch_local_eight
 2436: r = ((Float *)lp)[1];
 2437: 
 2438: \+
 2439: 
 2440: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2441: /* this can also be used to implement lp@ */
 2442: c_addr = (Char *)(lp+noffset);
 2443: 
 2444: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2445: ""used with negative immediate values it allocates memory on the
 2446: local stack, a positive immediate argument drops memory from the local
 2447: stack""
 2448: lp += noffset;
 2449: 
 2450: lp-	( -- )	new	minus_four_lp_plus_store
 2451: lp += -sizeof(Cell);
 2452: 
 2453: lp+	( -- )	new	eight_lp_plus_store
 2454: lp += sizeof(Float);
 2455: 
 2456: lp+2	( -- )	new	sixteen_lp_plus_store
 2457: lp += 2*sizeof(Float);
 2458: 
 2459: lp!	( c_addr -- )	gforth	lp_store
 2460: lp = (Address)c_addr;
 2461: 
 2462: >l	( w -- )	gforth	to_l
 2463: lp -= sizeof(Cell);
 2464: *(Cell *)lp = w;
 2465: 
 2466: \+floating
 2467: 
 2468: f>l	( r -- )	gforth	f_to_l
 2469: lp -= sizeof(Float);
 2470: *(Float *)lp = r;
 2471: 
 2472: fpick	( f:... u -- f:... r )		gforth
 2473: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2474: r = fp[u];
 2475: :
 2476:  floats fp@ + f@ ;
 2477: 
 2478: \+
 2479: \+
 2480: 
 2481: \+OS
 2482: 
 2483: \g syslib
 2484: 
 2485: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2486: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2487: #ifndef RTLD_GLOBAL
 2488: #define RTLD_GLOBAL 0
 2489: #endif
 2490: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2491: #else
 2492: #  ifdef _WIN32
 2493: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2494: #  else
 2495: #warning Define open-lib!
 2496: u2 = 0;
 2497: #  endif
 2498: #endif
 2499: 
 2500: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2501: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2502: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2503: #else
 2504: #  ifdef _WIN32
 2505: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2506: #  else
 2507: #warning Define lib-sym!
 2508: u3 = 0;
 2509: #  endif
 2510: #endif
 2511: 
 2512: wcall	( ... u -- ... )	gforth
 2513: gforth_FP=fp;
 2514: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &gforth_FP);
 2515: fp=gforth_FP;
 2516: 
 2517: uw@ ( c_addr -- u )	gforth u_w_fetch
 2518: ""@i{u} is the zero-extended 16-bit value stored at @i{c_addr}.""
 2519: u = *(UWyde*)(c_addr);
 2520: 
 2521: sw@ ( c_addr -- n )	gforth s_w_fetch
 2522: ""@i{n} is the sign-extended 16-bit value stored at @i{c_addr}.""
 2523: n = *(Wyde*)(c_addr);
 2524: 
 2525: w! ( w c_addr -- )	gforth w_store
 2526: ""Store the bottom 16 bits of @i{w} at @i{c_addr}.""
 2527: *(Wyde*)(c_addr) = w;
 2528: 
 2529: ul@ ( c_addr -- u )	gforth u_l_fetch
 2530: ""@i{u} is the zero-extended 32-bit value stored at @i{c_addr}.""
 2531: u = *(UTetrabyte*)(c_addr);
 2532: 
 2533: sl@ ( c_addr -- n )	gforth s_l_fetch
 2534: ""@i{n} is the sign-extended 32-bit value stored at @i{c_addr}.""
 2535: n = *(Tetrabyte*)(c_addr);
 2536: 
 2537: l! ( w c_addr -- )	gforth l_store
 2538: ""Store the bottom 32 bits of @i{w} at @i{c_addr}.""
 2539: *(Tetrabyte*)(c_addr) = w;
 2540: 
 2541: \+FFCALL
 2542: 
 2543: av-start-void	( c_addr -- )	gforth  av_start_void
 2544: av_start_void(alist, c_addr);
 2545: 
 2546: av-start-int	( c_addr -- )	gforth  av_start_int
 2547: av_start_int(alist, c_addr, &irv);
 2548: 
 2549: av-start-float	( c_addr -- )	gforth  av_start_float
 2550: av_start_float(alist, c_addr, &frv);
 2551: 
 2552: av-start-double	( c_addr -- )	gforth  av_start_double
 2553: av_start_double(alist, c_addr, &drv);
 2554: 
 2555: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2556: av_start_longlong(alist, c_addr, &llrv);
 2557: 
 2558: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2559: av_start_ptr(alist, c_addr, void*, &prv);
 2560: 
 2561: av-int  ( w -- )  gforth  av_int
 2562: av_int(alist, w);
 2563: 
 2564: av-float	( r -- )	gforth  av_float
 2565: av_float(alist, r);
 2566: 
 2567: av-double	( r -- )	gforth  av_double
 2568: av_double(alist, r);
 2569: 
 2570: av-longlong	( d -- )	gforth  av_longlong
 2571: #ifdef BUGGY_LL_SIZE
 2572: av_longlong(alist, DLO(d));
 2573: #else
 2574: av_longlong(alist, d);
 2575: #endif
 2576: 
 2577: av-ptr	( c_addr -- )	gforth  av_ptr
 2578: av_ptr(alist, void*, c_addr);
 2579: 
 2580: av-int-r  ( R:w -- )  gforth  av_int_r
 2581: av_int(alist, w);
 2582: 
 2583: av-float-r	( -- )	gforth  av_float_r
 2584: float r = *(Float*)lp;
 2585: lp += sizeof(Float);
 2586: av_float(alist, r);
 2587: 
 2588: av-double-r	( -- )	gforth  av_double_r
 2589: double r = *(Float*)lp;
 2590: lp += sizeof(Float);
 2591: av_double(alist, r);
 2592: 
 2593: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2594: #ifdef BUGGY_LL_SIZE
 2595: av_longlong(alist, DLO(d));
 2596: #else
 2597: av_longlong(alist, d);
 2598: #endif
 2599: 
 2600: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2601: av_ptr(alist, void*, c_addr);
 2602: 
 2603: av-call-void	( ... -- ... )	gforth  av_call_void
 2604: SAVE_REGS
 2605: av_call(alist);
 2606: REST_REGS
 2607: 
 2608: av-call-int	( ... -- ... w )	gforth  av_call_int
 2609: SAVE_REGS
 2610: av_call(alist);
 2611: REST_REGS
 2612: w = irv;
 2613: 
 2614: av-call-float	( ... -- ... r )	gforth  av_call_float
 2615: SAVE_REGS
 2616: av_call(alist);
 2617: REST_REGS
 2618: r = frv;
 2619: 
 2620: av-call-double	( ... -- ... r )	gforth  av_call_double
 2621: SAVE_REGS
 2622: av_call(alist);
 2623: REST_REGS
 2624: r = drv;
 2625: 
 2626: av-call-longlong	( ... -- ... d )	gforth  av_call_longlong
 2627: SAVE_REGS
 2628: av_call(alist);
 2629: REST_REGS
 2630: #ifdef BUGGY_LONG_LONG
 2631: DLO_IS(d, llrv);
 2632: DHI_IS(d, 0);
 2633: #else
 2634: d = llrv;
 2635: #endif
 2636: 
 2637: av-call-ptr	( ... -- ... c_addr )	gforth  av_call_ptr
 2638: SAVE_REGS
 2639: av_call(alist);
 2640: REST_REGS
 2641: c_addr = prv;
 2642: 
 2643: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2644: c_addr = (char *)alloc_callback(gforth_callback, (Xt *)a_ip);
 2645: 
 2646: va-start-void	( -- )	gforth	va_start_void
 2647: va_start_void(gforth_clist);
 2648: 
 2649: va-start-int	( -- )	gforth	va_start_int
 2650: va_start_int(gforth_clist);
 2651: 
 2652: va-start-longlong	( -- )	gforth	va_start_longlong
 2653: va_start_longlong(gforth_clist);
 2654: 
 2655: va-start-ptr	( -- )	gforth	va_start_ptr
 2656: va_start_ptr(gforth_clist, (char *));
 2657: 
 2658: va-start-float	( -- )	gforth	va_start_float
 2659: va_start_float(gforth_clist);
 2660: 
 2661: va-start-double	( -- )	gforth	va_start_double
 2662: va_start_double(gforth_clist);
 2663: 
 2664: va-arg-int	( -- w )	gforth	va_arg_int
 2665: w = va_arg_int(gforth_clist);
 2666: 
 2667: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2668: #ifdef BUGGY_LONG_LONG
 2669: DLO_IS(d, va_arg_longlong(gforth_clist));
 2670: DHI_IS(d, 0);
 2671: #else
 2672: d = va_arg_longlong(gforth_clist);
 2673: #endif
 2674: 
 2675: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2676: c_addr = (char *)va_arg_ptr(gforth_clist,char*);
 2677: 
 2678: va-arg-float	( -- r )	gforth	va_arg_float
 2679: r = va_arg_float(gforth_clist);
 2680: 
 2681: va-arg-double	( -- r )	gforth	va_arg_double
 2682: r = va_arg_double(gforth_clist);
 2683: 
 2684: va-return-void ( -- )	gforth va_return_void
 2685: va_return_void(gforth_clist);
 2686: return 0;
 2687: 
 2688: va-return-int ( w -- )	gforth va_return_int
 2689: va_return_int(gforth_clist, w);
 2690: return 0;
 2691: 
 2692: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2693: va_return_ptr(gforth_clist, void *, c_addr);
 2694: return 0;
 2695: 
 2696: va-return-longlong ( d -- )	gforth va_return_longlong
 2697: #ifdef BUGGY_LONG_LONG
 2698: va_return_longlong(gforth_clist, d.lo);
 2699: #else
 2700: va_return_longlong(gforth_clist, d);
 2701: #endif
 2702: return 0;
 2703: 
 2704: va-return-float ( r -- )	gforth va_return_float
 2705: va_return_float(gforth_clist, r);
 2706: return 0;
 2707: 
 2708: va-return-double ( r -- )	gforth va_return_double
 2709: va_return_double(gforth_clist, r);
 2710: return 0;
 2711: 
 2712: \+
 2713: 
 2714: \+LIBFFI
 2715: 
 2716: ffi-type ( n -- a_type )	gforth ffi_type
 2717: static void* ffi_types[] =
 2718:     { &ffi_type_void,
 2719:       &ffi_type_uint8, &ffi_type_sint8,
 2720:       &ffi_type_uint16, &ffi_type_sint16,
 2721:       &ffi_type_uint32, &ffi_type_sint32,
 2722:       &ffi_type_uint64, &ffi_type_sint64,
 2723:       &ffi_type_float, &ffi_type_double, &ffi_type_longdouble,
 2724:       &ffi_type_pointer };
 2725: a_type = ffi_types[n];
 2726: 
 2727: ffi-size ( n1 -- n2 )	gforth ffi_size
 2728: static int ffi_sizes[] =
 2729:     { sizeof(ffi_cif), sizeof(ffi_closure) };
 2730: n2 = ffi_sizes[n1];
 2731: 
 2732: ffi-prep-cif ( a_atypes n a_rtype a_cif -- w )	gforth ffi_prep_cif
 2733: w = ffi_prep_cif((ffi_cif *)a_cif, FFI_DEFAULT_ABI, n,
 2734: 	 (ffi_type *)a_rtype, (ffi_type **)a_atypes);
 2735: 
 2736: ffi-call ( a_avalues a_rvalue a_ip a_cif -- )	gforth ffi_call
 2737: SAVE_REGS
 2738: ffi_call((ffi_cif *)a_cif, (void(*)())a_ip, (void *)a_rvalue, (void **)a_avalues);
 2739: REST_REGS
 2740: 
 2741: ffi-prep-closure ( a_ip a_cif a_closure -- w )	gforth ffi_prep_closure
 2742: w = ffi_prep_closure((ffi_closure *)a_closure, (ffi_cif *)a_cif, gforth_callback, (void *)a_ip);
 2743: 
 2744: ffi-2@ ( a_addr -- d )	gforth ffi_2fetch
 2745: #ifdef BUGGY_LONG_LONG
 2746: DLO_IS(d, *(Cell*)(*a_addr));
 2747: DHI_IS(d, 0);
 2748: #else
 2749: d = *(DCell*)(a_addr);
 2750: #endif
 2751: 
 2752: ffi-2! ( d a_addr -- )	gforth ffi_2store
 2753: #ifdef BUGGY_LONG_LONG
 2754: *(Cell*)(a_addr) = DLO(d);
 2755: #else
 2756: *(DCell*)(a_addr) = d;
 2757: #endif
 2758: 
 2759: ffi-arg-int ( -- w )	gforth ffi_arg_int
 2760: w = *(int *)(*gforth_clist++);
 2761: 
 2762: ffi-arg-long ( -- w )	gforth ffi_arg_long
 2763: w = *(long *)(*gforth_clist++);
 2764: 
 2765: ffi-arg-longlong ( -- d )	gforth ffi_arg_longlong
 2766: #ifdef BUGGY_LONG_LONG
 2767: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2768: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2769: #else
 2770: d = *(DCell*)(*gforth_clist++);
 2771: #endif
 2772: 
 2773: ffi-arg-dlong ( -- d )	gforth ffi_arg_dlong
 2774: #ifdef BUGGY_LONG_LONG
 2775: DLO_IS(d, *(Cell*)(*gforth_clist++));
 2776: DHI_IS(d, -(*(Cell*)(*gforth_clist++)<0));
 2777: #else
 2778: d = *(Cell*)(*gforth_clist++);
 2779: #endif
 2780: 
 2781: ffi-arg-ptr ( -- c_addr )	gforth ffi_arg_ptr
 2782: c_addr = *(Char **)(*gforth_clist++);
 2783: 
 2784: ffi-arg-float ( -- r )	gforth ffi_arg_float
 2785: r = *(float*)(*gforth_clist++);
 2786: 
 2787: ffi-arg-double ( -- r )	gforth ffi_arg_double
 2788: r = *(double*)(*gforth_clist++);
 2789: 
 2790: ffi-ret-void ( -- )	gforth ffi_ret_void
 2791: return 0;
 2792: 
 2793: ffi-ret-int ( w -- )	gforth ffi_ret_int
 2794: *(int*)(gforth_ritem) = w;
 2795: return 0;
 2796: 
 2797: ffi-ret-longlong ( d -- )	gforth ffi_ret_longlong
 2798: #ifdef BUGGY_LONG_LONG
 2799: *(Cell*)(gforth_ritem) = DLO(d);
 2800: #else
 2801: *(DCell*)(gforth_ritem) = d;
 2802: #endif
 2803: return 0;
 2804: 
 2805: ffi-ret-dlong ( d -- )	gforth ffi_ret_dlong
 2806: #ifdef BUGGY_LONG_LONG
 2807: *(Cell*)(gforth_ritem) = DLO(d);
 2808: #else
 2809: *(Cell*)(gforth_ritem) = d;
 2810: #endif
 2811: return 0;
 2812: 
 2813: ffi-ret-long ( n -- )	gforth ffi_ret_long
 2814: *(Cell*)(gforth_ritem) = n;
 2815: return 0;
 2816: 
 2817: ffi-ret-ptr ( c_addr -- )	gforth ffi_ret_ptr
 2818: *(Char **)(gforth_ritem) = c_addr;
 2819: return 0;
 2820: 
 2821: ffi-ret-float ( r -- )	gforth ffi_ret_float
 2822: *(float*)(gforth_ritem) = r;
 2823: return 0;
 2824: 
 2825: ffi-ret-double ( r -- )	gforth ffi_ret_double
 2826: *(double*)(gforth_ritem) = r;
 2827: return 0;
 2828: 
 2829: \+
 2830: 
 2831: \+OLDCALL
 2832: 
 2833: define(`uploop',
 2834:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2835: define(`_uploop',
 2836:        `ifelse($1, `$3', `$5',
 2837: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2838: \ argflist(argnum): Forth argument list
 2839: define(argflist,
 2840:        `ifelse($1, 0, `',
 2841:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2842: \ argdlist(argnum): declare C's arguments
 2843: define(argdlist,
 2844:        `ifelse($1, 0, `',
 2845:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2846: \ argclist(argnum): pass C's arguments
 2847: define(argclist,
 2848:        `ifelse($1, 0, `',
 2849:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2850: \ icall(argnum)
 2851: define(icall,
 2852: `icall$1	( argflist($1)u -- uret )	gforth
 2853: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2854: 
 2855: ')
 2856: define(fcall,
 2857: `fcall$1	( argflist($1)u -- rret )	gforth
 2858: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2859: 
 2860: ')
 2861: 
 2862: \ close ' to keep fontify happy
 2863: 
 2864: uploop(i, 0, 7, `icall(i)')
 2865: icall(20)
 2866: uploop(i, 0, 7, `fcall(i)')
 2867: fcall(20)
 2868: 
 2869: \+
 2870: \+
 2871: 
 2872: \g peephole
 2873: 
 2874: \+peephole
 2875: 
 2876: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2877: ""compile prim (incl. immargs) at @var{a_prim}""
 2878: compile_prim1(a_prim);
 2879: 
 2880: finish-code ( ... -- ... ) gforth finish_code
 2881: ""Perform delayed steps in code generation (branch resolution, I-cache
 2882: flushing).""
 2883: /* The ... above are a workaround for a bug in gcc-2.95, which fails
 2884:    to save spTOS (gforth-fast --enable-force-reg) */
 2885: finish_code();
 2886: 
 2887: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2888: f = forget_dyncode(c_code);
 2889: 
 2890: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2891: ""a_prim is the code address of the primitive that has been
 2892: compile_prim1ed to a_code""
 2893: a_prim = (Cell *)decompile_code((Label)a_code);
 2894: 
 2895: \ set-next-code and call2 do not appear in images and can be
 2896: \ renumbered arbitrarily
 2897: 
 2898: set-next-code ( #w -- ) gforth set_next_code
 2899: #ifdef NO_IP
 2900: next_code = (Label)w;
 2901: #endif
 2902: 
 2903: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2904: /* call with explicit return address */
 2905: #ifdef NO_IP
 2906: INST_TAIL;
 2907: JUMP(a_callee);
 2908: #else
 2909: assert(0);
 2910: #endif
 2911: 
 2912: tag-offsets ( -- a_addr ) gforth tag_offsets
 2913: extern Cell groups[32];
 2914: a_addr = groups;
 2915: 
 2916: \+
 2917: 
 2918: \g static_super
 2919: 
 2920: ifdef(`STACK_CACHE_FILE',
 2921: `include(peeprules.vmg)')
 2922: 
 2923: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>