File:  [gforth] / gforth / prim
Revision 1.169: download - view: text, annotated - select for diffs
Tue Feb 1 10:29:00 2005 UTC (14 years, 7 months ago) by pazsan
Branches: MAIN
CVS tags: HEAD
Optimized test for floored correction

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000,2003,2004 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \
   57: \ For superinstructions the syntax is:
   58: \
   59: \ forth-name [/ c-name] = forth-name forth-name ...
   60: \
   61: \ 
   62: \ The stack variables have the following types:
   63: \ 
   64: \ name matches	type
   65: \ f.*		Bool
   66: \ c.*		Char
   67: \ [nw].*	Cell
   68: \ u.*		UCell
   69: \ d.*		DCell
   70: \ ud.*		UDCell
   71: \ r.*		Float
   72: \ a_.*		Cell *
   73: \ c_.*		Char *
   74: \ f_.*		Float *
   75: \ df_.*		DFloat *
   76: \ sf_.*		SFloat *
   77: \ xt.*		XT
   78: \ f83name.*	F83Name *
   79: 
   80: \E stack data-stack   sp Cell
   81: \E stack fp-stack     fp Float
   82: \E stack return-stack rp Cell
   83: \E
   84: \E get-current prefixes set-current
   85: \E 
   86: \E s" Bool"		single data-stack type-prefix f
   87: \E s" Char"		single data-stack type-prefix c
   88: \E s" Cell"		single data-stack type-prefix n
   89: \E s" Cell"		single data-stack type-prefix w
   90: \E s" UCell"		single data-stack type-prefix u
   91: \E s" DCell"		double data-stack type-prefix d
   92: \E s" UDCell"		double data-stack type-prefix ud
   93: \E s" Float"		single fp-stack   type-prefix r
   94: \E s" Cell *"		single data-stack type-prefix a_
   95: \E s" Char *"		single data-stack type-prefix c_
   96: \E s" Float *"		single data-stack type-prefix f_
   97: \E s" DFloat *"		single data-stack type-prefix df_
   98: \E s" SFloat *"		single data-stack type-prefix sf_
   99: \E s" Xt"		single data-stack type-prefix xt
  100: \E s" struct F83Name *"	single data-stack type-prefix f83name
  101: \E s" struct Longname *" single data-stack type-prefix longname
  102: \E 
  103: \E return-stack stack-prefix R:
  104: \E inst-stream  stack-prefix #
  105: \E 
  106: \E set-current
  107: \E store-optimization on
  108: \E ' noop tail-nextp2 ! \ now INST_TAIL just stores, but does not jump
  109: \E
  110: \E include-skipped-insts on \ static superinsts include cells for components
  111: \E                          \ useful for dynamic programming and
  112: \E                          \ superinsts across entry points
  113: 
  114: \ 
  115: \ 
  116: \ 
  117: \ In addition the following names can be used:
  118: \ ip	the instruction pointer
  119: \ sp	the data stack pointer
  120: \ rp	the parameter stack pointer
  121: \ lp	the locals stack pointer
  122: \ NEXT	executes NEXT
  123: \ cfa	
  124: \ NEXT1	executes NEXT1
  125: \ FLAG(x)	makes a Forth flag from a C flag
  126: \ 
  127: \ 
  128: \ 
  129: \ Percentages in comments are from Koopmans book: average/maximum use
  130: \ (taken from four, not very representative benchmarks)
  131: \ 
  132: \ 
  133: \ 
  134: \ To do:
  135: \ 
  136: \ throw execute, cfa and NEXT1 out?
  137: \ macroize *ip, ip++, *ip++ (pipelining)?
  138: 
  139: \ Stack caching setup
  140: 
  141: ifdef(`M4_ENGINE_FAST', `include(cache1.vmg)', `include(cache0.vmg)')
  142: 
  143: \ these m4 macros would collide with identifiers
  144: undefine(`index')
  145: undefine(`shift')
  146: undefine(`symbols')
  147: 
  148: \F 0 [if]
  149: 
  150: \ run-time routines for non-primitives.  They are defined as
  151: \ primitives, because that simplifies things.
  152: 
  153: (docol)	( -- R:a_retaddr )	gforth-internal	paren_docol
  154: ""run-time routine for colon definitions""
  155: #ifdef NO_IP
  156: a_retaddr = next_code;
  157: INST_TAIL;
  158: goto **(Label *)PFA(CFA);
  159: #else /* !defined(NO_IP) */
  160: a_retaddr = (Cell *)IP;
  161: SET_IP((Xt *)PFA(CFA));
  162: #endif /* !defined(NO_IP) */
  163: 
  164: (docon) ( -- w )	gforth-internal	paren_docon
  165: ""run-time routine for constants""
  166: w = *(Cell *)PFA(CFA);
  167: #ifdef NO_IP
  168: INST_TAIL;
  169: goto *next_code;
  170: #endif /* defined(NO_IP) */
  171: 
  172: (dovar) ( -- a_body )	gforth-internal	paren_dovar
  173: ""run-time routine for variables and CREATEd words""
  174: a_body = PFA(CFA);
  175: #ifdef NO_IP
  176: INST_TAIL;
  177: goto *next_code;
  178: #endif /* defined(NO_IP) */
  179: 
  180: (douser) ( -- a_user )	gforth-internal	paren_douser
  181: ""run-time routine for constants""
  182: a_user = (Cell *)(up+*(Cell *)PFA(CFA));
  183: #ifdef NO_IP
  184: INST_TAIL;
  185: goto *next_code;
  186: #endif /* defined(NO_IP) */
  187: 
  188: (dodefer) ( -- )	gforth-internal	paren_dodefer
  189: ""run-time routine for deferred words""
  190: #ifndef NO_IP
  191: ip=IP; /* undo any ip updating that may have been performed by NEXT_P0 */
  192: #endif /* !defined(NO_IP) */
  193: SUPER_END; /* !! probably unnecessary and may lead to measurement errors */
  194: VM_JUMP(EXEC1(*(Xt *)PFA(CFA)));
  195: 
  196: (dofield) ( n1 -- n2 )	gforth-internal	paren_field
  197: ""run-time routine for fields""
  198: n2 = n1 + *(Cell *)PFA(CFA);
  199: #ifdef NO_IP
  200: INST_TAIL;
  201: goto *next_code;
  202: #endif /* defined(NO_IP) */
  203: 
  204: (dodoes) ( -- a_body R:a_retaddr )	gforth-internal	paren_dodoes
  205: ""run-time routine for @code{does>}-defined words""
  206: #ifdef NO_IP
  207: a_retaddr = next_code;
  208: a_body = PFA(CFA);
  209: INST_TAIL;
  210: goto **(Label *)DOES_CODE1(CFA);
  211: #else /* !defined(NO_IP) */
  212: a_retaddr = (Cell *)IP;
  213: a_body = PFA(CFA);
  214: SET_IP(DOES_CODE1(CFA));
  215: #endif /* !defined(NO_IP) */
  216: 
  217: (does-handler) ( -- )	gforth-internal	paren_does_handler
  218: ""just a slot to have an encoding for the DOESJUMP, 
  219: which is no longer used anyway (!! eliminate this)""
  220: 
  221: \F [endif]
  222: 
  223: \g control
  224: 
  225: noop	( -- )		gforth
  226: :
  227:  ;
  228: 
  229: call	( #a_callee -- R:a_retaddr )	new
  230: ""Call callee (a variant of docol with inline argument).""
  231: #ifdef NO_IP
  232: assert(0);
  233: INST_TAIL;
  234: JUMP(a_callee);
  235: #else
  236: #ifdef DEBUG
  237:     {
  238:       CFA_TO_NAME((((Cell *)a_callee)-2));
  239:       fprintf(stderr,"%08lx: call %08lx %.*s\n",(Cell)ip,(Cell)a_callee,
  240: 	      len,name);
  241:     }
  242: #endif
  243: a_retaddr = (Cell *)IP;
  244: SET_IP((Xt *)a_callee);
  245: #endif
  246: 
  247: execute	( xt -- )		core
  248: ""Perform the semantics represented by the execution token, @i{xt}.""
  249: #ifndef NO_IP
  250: ip=IP;
  251: #endif
  252: SUPER_END;
  253: VM_JUMP(EXEC1(xt));
  254: 
  255: perform	( a_addr -- )	gforth
  256: ""@code{@@ execute}.""
  257: /* and pfe */
  258: #ifndef NO_IP
  259: ip=IP;
  260: #endif
  261: SUPER_END;
  262: VM_JUMP(EXEC1(*(Xt *)a_addr));
  263: :
  264:  @ execute ;
  265: 
  266: ;s	( R:w -- )		gforth	semis
  267: ""The primitive compiled by @code{EXIT}.""
  268: #ifdef NO_IP
  269: INST_TAIL;
  270: goto *(void *)w;
  271: #else
  272: SET_IP((Xt *)w);
  273: #endif
  274: 
  275: unloop	( R:w1 R:w2 -- )	core
  276: /* !! alias for 2rdrop */
  277: :
  278:  r> rdrop rdrop >r ;
  279: 
  280: lit-perform	( #a_addr -- )	new	lit_perform
  281: #ifndef NO_IP
  282: ip=IP;
  283: #endif
  284: SUPER_END;
  285: VM_JUMP(EXEC1(*(Xt *)a_addr));
  286: 
  287: does-exec ( #a_cfa -- R:nest a_pfa )	new	does_exec
  288: #ifdef NO_IP
  289: /* compiled to LIT CALL by compile_prim */
  290: assert(0);
  291: #else
  292: a_pfa = PFA(a_cfa);
  293: nest = (Cell)IP;
  294: IF_spTOS(spTOS = sp[0]);
  295: #ifdef DEBUG
  296:     {
  297:       CFA_TO_NAME(a_cfa);
  298:       fprintf(stderr,"%08lx: does %08lx %.*s\n",
  299: 	      (Cell)ip,(Cell)a_cfa,len,name);
  300:     }
  301: #endif
  302: SET_IP(DOES_CODE1(a_cfa));
  303: #endif
  304: 
  305: \+glocals
  306: 
  307: branch-lp+!# ( #a_target #nlocals -- )	gforth	branch_lp_plus_store_number
  308: /* this will probably not be used */
  309: lp += nlocals;
  310: #ifdef NO_IP
  311: INST_TAIL;
  312: JUMP(a_target);
  313: #else
  314: SET_IP((Xt *)a_target);
  315: #endif
  316: 
  317: \+
  318: 
  319: branch	( #a_target -- )	gforth
  320: #ifdef NO_IP
  321: INST_TAIL;
  322: JUMP(a_target);
  323: #else
  324: SET_IP((Xt *)a_target);
  325: #endif
  326: :
  327:  r> @ >r ;
  328: 
  329: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  330: \ this is non-syntactical: code must open a brace that is closed by the macro
  331: \ condbranch(forthname,stackeffect,restline,code1,code2,forthcode)
  332: \ this is non-syntactical: code must open a brace that is closed by the macro
  333: define(condbranch,
  334: $1 ( `#'a_target $2 ) $3
  335: $4	#ifdef NO_IP
  336: INST_TAIL;
  337: #endif
  338: $5	#ifdef NO_IP
  339: JUMP(a_target);
  340: #else
  341: SET_IP((Xt *)a_target);
  342: #endif
  343: }
  344: $6
  345: 
  346: \+glocals
  347: 
  348: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  349: $4	#ifdef NO_IP
  350: INST_TAIL;
  351: #endif
  352: $5	lp += nlocals;
  353: #ifdef NO_IP
  354: JUMP(a_target);
  355: #else
  356: SET_IP((Xt *)a_target);
  357: #endif
  358: }
  359: 
  360: \+
  361: )
  362: 
  363: \ version that generates two jumps (not good for PR 15242 workaround)
  364: define(condbranch_twojump,
  365: $1 ( `#'a_target $2 ) $3
  366: $4	#ifdef NO_IP
  367: INST_TAIL;
  368: #endif
  369: $5	#ifdef NO_IP
  370: JUMP(a_target);
  371: #else
  372: SET_IP((Xt *)a_target);
  373: INST_TAIL; NEXT_P2;
  374: #endif
  375: }
  376: SUPER_CONTINUE;
  377: $6
  378: 
  379: \+glocals
  380: 
  381: $1-lp+!`#' ( `#'a_target `#'nlocals $2 ) $3_lp_plus_store_number
  382: $4	#ifdef NO_IP
  383: INST_TAIL;
  384: #endif
  385: $5	lp += nlocals;
  386: #ifdef NO_IP
  387: JUMP(a_target);
  388: #else
  389: SET_IP((Xt *)a_target);
  390: INST_TAIL; NEXT_P2;
  391: #endif
  392: }
  393: SUPER_CONTINUE;
  394: 
  395: \+
  396: )
  397: 
  398: condbranch(?branch,f --,f83	question_branch,
  399: ,if (f==0) {
  400: ,:
  401:  0= dup 0=          \ !f f
  402:  r> tuck cell+      \ !f branchoffset f IP+
  403:  and -rot @ and or  \ f&IP+|!f&branch
  404:  >r ;)
  405: 
  406: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  407: \ is only used in if's (yet)
  408: 
  409: \+xconds
  410: 
  411: ?dup-?branch	( #a_target f -- f )	new	question_dupe_question_branch
  412: ""The run-time procedure compiled by @code{?DUP-IF}.""
  413: if (f==0) {
  414:   sp++;
  415:   IF_spTOS(spTOS = sp[0]);
  416: #ifdef NO_IP
  417: INST_TAIL;
  418: JUMP(a_target);
  419: #else
  420: SET_IP((Xt *)a_target);
  421:   INST_TAIL; NEXT_P2;
  422: #endif
  423: }
  424: SUPER_CONTINUE;
  425: 
  426: ?dup-0=-?branch ( #a_target f -- ) new	question_dupe_zero_equals_question_branch
  427: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  428: /* the approach taken here of declaring the word as having the stack
  429: effect ( f -- ) and correcting for it in the branch-taken case costs a
  430: few cycles in that case, but is easy to convert to a CONDBRANCH
  431: invocation */
  432: if (f!=0) {
  433:   sp--;
  434: #ifdef NO_IP
  435:   JUMP(a_target);
  436: #else
  437:   SET_IP((Xt *)a_target);
  438:   NEXT;
  439: #endif
  440: }
  441: SUPER_CONTINUE;
  442: 
  443: \+
  444: \fhas? skiploopprims 0= [IF]
  445: 
  446: condbranch((next),R:n1 -- R:n2,cmFORTH	paren_next,
  447: n2=n1-1;
  448: ,if (n1) {
  449: ,:
  450:  r> r> dup 1- >r
  451:  IF @ >r ELSE cell+ >r THEN ;)
  452: 
  453: condbranch((loop),R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_loop,
  454: n2=n1+1;
  455: ,if (n2 != nlimit) {
  456: ,:
  457:  r> r> 1+ r> 2dup =
  458:  IF >r 1- >r cell+ >r
  459:  ELSE >r >r @ >r THEN ;)
  460: 
  461: condbranch((+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_plus_loop,
  462: /* !! check this thoroughly */
  463: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  464: /* dependent upon two's complement arithmetic */
  465: Cell olddiff = n1-nlimit;
  466: n2=n1+n;	
  467: ,if (((olddiff^(olddiff+n))    /* the limit is not crossed */
  468:      &(olddiff^n))	       /* OR it is a wrap-around effect */
  469:     >=0) { /* & is used to avoid having two branches for gforth-native */
  470: ,:
  471:  r> swap
  472:  r> r> 2dup - >r
  473:  2 pick r@ + r@ xor 0< 0=
  474:  3 pick r> xor 0< 0= or
  475:  IF    >r + >r @ >r
  476:  ELSE  >r >r drop cell+ >r THEN ;)
  477: 
  478: \+xconds
  479: 
  480: condbranch((-loop),u R:nlimit R:n1 -- R:nlimit R:n2,gforth paren_minus_loop,
  481: UCell olddiff = n1-nlimit;
  482: n2=n1-u;
  483: ,if (olddiff>u) {
  484: ,)
  485: 
  486: condbranch((s+loop),n R:nlimit R:n1 -- R:nlimit R:n2,gforth	paren_symmetric_plus_loop,
  487: ""The run-time procedure compiled by S+LOOP. It loops until the index
  488: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  489: version of (+LOOP).""
  490: /* !! check this thoroughly */
  491: Cell diff = n1-nlimit;
  492: Cell newdiff = diff+n;
  493: if (n<0) {
  494:     diff = -diff;
  495:     newdiff = -newdiff;
  496: }
  497: n2=n1+n;
  498: ,if (((~diff)|newdiff)<0) { /* use | to avoid two branches for gforth-native */
  499: ,)
  500: 
  501: \+
  502: 
  503: (for)   ( ncount -- R:nlimit R:ncount )         cmFORTH         paren_for
  504: /* or (for) = >r -- collides with unloop! */
  505: nlimit=0;
  506: :
  507:  r> swap 0 >r >r >r ;
  508: 
  509: (do)    ( nlimit nstart -- R:nlimit R:nstart )  gforth          paren_do
  510: :
  511:  r> swap rot >r >r >r ;
  512: 
  513: (?do) ( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_question_do
  514: #ifdef NO_IP
  515:     INST_TAIL;
  516: #endif
  517: if (nstart == nlimit) {
  518: #ifdef NO_IP
  519:     JUMP(a_target);
  520: #else
  521:     SET_IP((Xt *)a_target);
  522: #endif
  523: }
  524: :
  525:   2dup =
  526:   IF   r> swap rot >r >r
  527:        @ >r
  528:   ELSE r> swap rot >r >r
  529:        cell+ >r
  530:   THEN ;				\ --> CORE-EXT
  531: 
  532: \+xconds
  533: 
  534: (+do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_plus_do
  535: #ifdef NO_IP
  536:     INST_TAIL;
  537: #endif
  538: if (nstart >= nlimit) {
  539: #ifdef NO_IP
  540:     JUMP(a_target);
  541: #else
  542:     SET_IP((Xt *)a_target);
  543: #endif
  544: }
  545: :
  546:  swap 2dup
  547:  r> swap >r swap >r
  548:  >=
  549:  IF
  550:      @
  551:  ELSE
  552:      cell+
  553:  THEN  >r ;
  554: 
  555: (u+do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_plus_do
  556: #ifdef NO_IP
  557:     INST_TAIL;
  558: #endif
  559: if (ustart >= ulimit) {
  560: #ifdef NO_IP
  561: JUMP(a_target);
  562: #else
  563: SET_IP((Xt *)a_target);
  564: #endif
  565: }
  566: :
  567:  swap 2dup
  568:  r> swap >r swap >r
  569:  u>=
  570:  IF
  571:      @
  572:  ELSE
  573:      cell+
  574:  THEN  >r ;
  575: 
  576: (-do)	( #a_target nlimit nstart -- R:nlimit R:nstart ) gforth	paren_minus_do
  577: #ifdef NO_IP
  578:     INST_TAIL;
  579: #endif
  580: if (nstart <= nlimit) {
  581: #ifdef NO_IP
  582: JUMP(a_target);
  583: #else
  584: SET_IP((Xt *)a_target);
  585: #endif
  586: }
  587: :
  588:  swap 2dup
  589:  r> swap >r swap >r
  590:  <=
  591:  IF
  592:      @
  593:  ELSE
  594:      cell+
  595:  THEN  >r ;
  596: 
  597: (u-do)	( #a_target ulimit ustart -- R:ulimit R:ustart ) gforth	paren_u_minus_do
  598: #ifdef NO_IP
  599:     INST_TAIL;
  600: #endif
  601: if (ustart <= ulimit) {
  602: #ifdef NO_IP
  603: JUMP(a_target);
  604: #else
  605: SET_IP((Xt *)a_target);
  606: #endif
  607: }
  608: :
  609:  swap 2dup
  610:  r> swap >r swap >r
  611:  u<=
  612:  IF
  613:      @
  614:  ELSE
  615:      cell+
  616:  THEN  >r ;
  617: 
  618: \+
  619: 
  620: \ don't make any assumptions where the return stack is!!
  621: \ implement this in machine code if it should run quickly!
  622: 
  623: i	( R:n -- R:n n )		core
  624: :
  625: \ rp@ cell+ @ ;
  626:   r> r> tuck >r >r ;
  627: 
  628: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  629: :
  630: \ rp@ cell+ cell+ @ ;
  631:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  632: variable itmp
  633: 
  634: j	( R:n R:d1 -- n R:n R:d1 )		core
  635: :
  636: \ rp@ cell+ cell+ cell+ @ ;
  637:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  638: [IFUNDEF] itmp variable itmp [THEN]
  639: 
  640: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  641: :
  642: \ rp@ [ 5 cells ] Literal + @ ;
  643:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  644: [IFUNDEF] itmp variable itmp [THEN]
  645: 
  646: \f[THEN]
  647: 
  648: \ digit is high-level: 0/0%
  649: 
  650: \g strings
  651: 
  652: move	( c_from c_to ucount -- )		core
  653: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  654: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  655: /* !! note that the standard specifies addr, not c-addr */
  656: memmove(c_to,c_from,ucount);
  657: /* make an Ifdef for bsd and others? */
  658: :
  659:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  660: 
  661: cmove	( c_from c_to u -- )	string	c_move
  662: ""Copy the contents of @i{ucount} characters from data space at
  663: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  664: from low address to high address; i.e., for overlapping areas it is
  665: safe if @i{c-to}=<@i{c-from}.""
  666: cmove(c_from,c_to,u);
  667: :
  668:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  669: 
  670: cmove>	( c_from c_to u -- )	string	c_move_up
  671: ""Copy the contents of @i{ucount} characters from data space at
  672: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  673: from high address to low address; i.e., for overlapping areas it is
  674: safe if @i{c-to}>=@i{c-from}.""
  675: cmove_up(c_from,c_to,u);
  676: :
  677:  dup 0= IF  drop 2drop exit  THEN
  678:  rot over + -rot bounds swap 1-
  679:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  680: 
  681: fill	( c_addr u c -- )	core
  682: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  683: memset(c_addr,c,u);
  684: :
  685:  -rot bounds
  686:  ?DO  dup I c!  LOOP  drop ;
  687: 
  688: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  689: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  690: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  691: is 1. Currently this is based on the machine's character
  692: comparison. In the future, this may change to consider the current
  693: locale and its collation order.""
  694: /* close ' to keep fontify happy */ 
  695: n = compare(c_addr1, u1, c_addr2, u2);
  696: :
  697:  rot 2dup swap - >r min swap -text dup
  698:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  699: : -text ( c_addr1 u c_addr2 -- n )
  700:  swap bounds
  701:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  702:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  703: : sgn ( n -- -1/0/1 )
  704:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  705: 
  706: \ -text is only used by replaced primitives now; move it elsewhere
  707: \ -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  708: \ n = memcmp(c_addr1, c_addr2, u);
  709: \ if (n<0)
  710: \   n = -1;
  711: \ else if (n>0)
  712: \   n = 1;
  713: \ :
  714: \  swap bounds
  715: \  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  716: \  ELSE  c@ I c@ - unloop  THEN  sgn ;
  717: \ : sgn ( n -- -1/0/1 )
  718: \  dup 0= IF EXIT THEN  0< 2* 1+ ;
  719: 
  720: toupper	( c1 -- c2 )	gforth
  721: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  722: is the equivalent upper-case character. All other characters are unchanged.""
  723: c2 = toupper(c1);
  724: :
  725:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  726: 
  727: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  728: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  729: characters from the start of the string.""
  730: c_addr2 = c_addr1+n;
  731: u2 = u1-n;
  732: :
  733:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  734: 
  735: \g arith
  736: 
  737: lit	( #w -- w )		gforth
  738: :
  739:  r> dup @ swap cell+ >r ;
  740: 
  741: +	( n1 n2 -- n )		core	plus
  742: n = n1+n2;
  743: 
  744: \ lit+ / lit_plus = lit +
  745: 
  746: lit+	( n1 #n2 -- n )		new	lit_plus
  747: n=n1+n2;
  748: 
  749: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  750: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  751: ""add @i{n3} to @i{n1} (giving @i{n})""
  752: n = n1+n3;
  753: :
  754:  rot + swap ;
  755: 
  756: -	( n1 n2 -- n )		core	minus
  757: n = n1-n2;
  758: :
  759:  negate + ;
  760: 
  761: negate	( n1 -- n2 )		core
  762: /* use minus as alias */
  763: n2 = -n1;
  764: :
  765:  invert 1+ ;
  766: 
  767: 1+	( n1 -- n2 )		core		one_plus
  768: n2 = n1+1;
  769: :
  770:  1 + ;
  771: 
  772: 1-	( n1 -- n2 )		core		one_minus
  773: n2 = n1-1;
  774: :
  775:  1 - ;
  776: 
  777: max	( n1 n2 -- n )	core
  778: if (n1<n2)
  779:   n = n2;
  780: else
  781:   n = n1;
  782: :
  783:  2dup < IF swap THEN drop ;
  784: 
  785: min	( n1 n2 -- n )	core
  786: if (n1<n2)
  787:   n = n1;
  788: else
  789:   n = n2;
  790: :
  791:  2dup > IF swap THEN drop ;
  792: 
  793: abs	( n -- u )	core
  794: if (n<0)
  795:   u = -n;
  796: else
  797:   u = n;
  798: :
  799:  dup 0< IF negate THEN ;
  800: 
  801: *	( n1 n2 -- n )		core	star
  802: n = n1*n2;
  803: :
  804:  um* drop ;
  805: 
  806: /	( n1 n2 -- n )		core	slash
  807: n = n1/n2;
  808: if(FLOORED_DIV && ((n1^n2) < 0) && (n1%n2 != 0)) n--;
  809: :
  810:  /mod nip ;
  811: 
  812: mod	( n1 n2 -- n )		core
  813: n = n1%n2;
  814: if(FLOORED_DIV && ((n1^n2) < 0) && n!=0) n += n2;
  815: :
  816:  /mod drop ;
  817: 
  818: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  819: n4 = n1/n2;
  820: n3 = n1%n2; /* !! is this correct? look into C standard! */
  821: if (FLOORED_DIV && ((n1^n2) < 0) && n3!=0) {
  822:   n4--;
  823:   n3+=n2;
  824: }
  825: :
  826:  >r s>d r> fm/mod ;
  827: 
  828: */mod	( n1 n2 n3 -- n4 n5 )	core	star_slash_mod
  829: ""n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.""
  830: #ifdef BUGGY_LL_MUL
  831: DCell d = mmul(n1,n2);
  832: #else
  833: DCell d = (DCell)n1 * (DCell)n2;
  834: #endif
  835: #ifdef BUGGY_LL_DIV
  836: DCell r = fmdiv(d,n3);
  837: n4=DHI(r);
  838: n5=DLO(r);
  839: #else
  840: /* assumes that the processor uses either floored or symmetric division */
  841: n5 = d/n3;
  842: n4 = d%n3;
  843: if (FLOORED_DIV && ((DHI(d)^n3)<0) && n4!=0) {
  844:   n5--;
  845:   n4+=n3;
  846: }
  847: #endif
  848: :
  849:  >r m* r> fm/mod ;
  850: 
  851: */	( n1 n2 n3 -- n4 )	core	star_slash
  852: ""n4=(n1*n2)/n3, with the intermediate result being double.""
  853: #ifdef BUGGY_LL_MUL
  854: DCell d = mmul(n1,n2);
  855: #else
  856: DCell d = (DCell)n1 * (DCell)n2;
  857: #endif
  858: #ifdef BUGGY_LL_DIV
  859: DCell r = fmdiv(d,n3);
  860: n4=DLO(r);
  861: #else
  862: /* assumes that the processor uses either floored or symmetric division */
  863: n4 = d/n3;
  864: if (FLOORED_DIV && ((DHI(d)^n3)<0) && (d%n3)!=0) n4--;
  865: #endif
  866: :
  867:  */mod nip ;
  868: 
  869: 2*	( n1 -- n2 )		core		two_star
  870: ""Shift left by 1; also works on unsigned numbers""
  871: n2 = 2*n1;
  872: :
  873:  dup + ;
  874: 
  875: 2/	( n1 -- n2 )		core		two_slash
  876: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  877: division by 2 (note that @code{/} not necessarily floors).""
  878: n2 = n1>>1;
  879: :
  880:  dup MINI and IF 1 ELSE 0 THEN
  881:  [ bits/byte cell * 1- ] literal 
  882:  0 DO 2* swap dup 2* >r MINI and 
  883:      IF 1 ELSE 0 THEN or r> swap
  884:  LOOP nip ;
  885: 
  886: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  887: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  888: #ifdef BUGGY_LL_DIV
  889: #ifdef ASM_SM_SLASH_REM
  890: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  891: if (((DHI(d1)^n1)<0) && n2!=0) {
  892:   n3--;
  893:   n2+=n1;
  894: }
  895: #else /* !defined(ASM_SM_SLASH_REM) */
  896: DCell r = fmdiv(d1,n1);
  897: n2=DHI(r);
  898: n3=DLO(r);
  899: #endif /* !defined(ASM_SM_SLASH_REM) */
  900: #else
  901: #ifdef ASM_SM_SLASH_REM4
  902: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  903: if (((DHI(d1)^n1)<0) && n2!=0) {
  904:   n3--;
  905:   n2+=n1;
  906: }
  907: #else /* !defined(ASM_SM_SLASH_REM4) */
  908: /* assumes that the processor uses either floored or symmetric division */
  909: n3 = d1/n1;
  910: n2 = d1%n1;
  911: /* note that this 1%-3>0 is optimized by the compiler */
  912: if (1%-3>0 && ((DHI(d1)^n1)<0) && n2!=0) {
  913:   n3--;
  914:   n2+=n1;
  915: }
  916: #endif /* !defined(ASM_SM_SLASH_REM4) */
  917: #endif
  918: :
  919:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  920:  over       0< IF  tuck + swap  THEN
  921:  um/mod
  922:  r> 0< IF  swap negate swap  THEN ;
  923: 
  924: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  925: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  926: #ifdef BUGGY_LL_DIV
  927: #ifdef ASM_SM_SLASH_REM
  928: ASM_SM_SLASH_REM(d1.lo, d1.hi, n1, n2, n3);
  929: #else /* !defined(ASM_SM_SLASH_REM) */
  930: DCell r = smdiv(d1,n1);
  931: n2=DHI(r);
  932: n3=DLO(r);
  933: #endif /* !defined(ASM_SM_SLASH_REM) */
  934: #else
  935: #ifdef ASM_SM_SLASH_REM4
  936: ASM_SM_SLASH_REM4(d1, n1, n2, n3);
  937: #else /* !defined(ASM_SM_SLASH_REM4) */
  938: /* assumes that the processor uses either floored or symmetric division */
  939: n3 = d1/n1;
  940: n2 = d1%n1;
  941: /* note that this 1%-3<0 is optimized by the compiler */
  942: if (1%-3<0 && ((DHI(d1)^n1)<0) && n2!=0) {
  943:   n3++;
  944:   n2-=n1;
  945: }
  946: #endif /* !defined(ASM_SM_SLASH_REM4) */
  947: #endif
  948: :
  949:  over >r dup >r abs -rot
  950:  dabs rot um/mod
  951:  r> r@ xor 0< IF       negate       THEN
  952:  r>        0< IF  swap negate swap  THEN ;
  953: 
  954: m*	( n1 n2 -- d )		core	m_star
  955: #ifdef BUGGY_LL_MUL
  956: d = mmul(n1,n2);
  957: #else
  958: d = (DCell)n1 * (DCell)n2;
  959: #endif
  960: :
  961:  2dup      0< and >r
  962:  2dup swap 0< and >r
  963:  um* r> - r> - ;
  964: 
  965: um*	( u1 u2 -- ud )		core	u_m_star
  966: /* use u* as alias */
  967: #ifdef BUGGY_LL_MUL
  968: ud = ummul(u1,u2);
  969: #else
  970: ud = (UDCell)u1 * (UDCell)u2;
  971: #endif
  972: :
  973:    0 -rot dup [ 8 cells ] literal -
  974:    DO
  975: 	dup 0< I' and d2*+ drop
  976:    LOOP ;
  977: : d2*+ ( ud n -- ud+n c )
  978:    over MINI
  979:    and >r >r 2dup d+ swap r> + swap r> ;
  980: 
  981: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  982: ""ud=u3*u1+u2, u1>u2>=0""
  983: #ifdef BUGGY_LL_DIV
  984: #ifdef ASM_UM_SLASH_MOD
  985: ASM_UM_SLASH_MOD(ud.lo, ud.hi, u1, u2, u3);
  986: #else /* !defined(ASM_UM_SLASH_MOD) */
  987: UDCell r = umdiv(ud,u1);
  988: u2=DHI(r);
  989: u3=DLO(r);
  990: #endif /* !defined(ASM_UM_SLASH_MOD) */
  991: #else
  992: #ifdef ASM_UM_SLASH_MOD4
  993: ASM_UM_SLASH_MOD4(ud, u1, u2, u3);
  994: #else /* !defined(ASM_UM_SLASH_MOD4) */
  995: u3 = ud/u1;
  996: u2 = ud%u1;
  997: #endif /* !defined(ASM_UM_SLASH_MOD4) */
  998: #endif
  999: :
 1000:    0 swap [ 8 cells 1 + ] literal 0
 1001:    ?DO /modstep
 1002:    LOOP drop swap 1 rshift or swap ;
 1003: : /modstep ( ud c R: u -- ud-?u c R: u )
 1004:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
 1005: : d2*+ ( ud n -- ud+n c )
 1006:    over MINI
 1007:    and >r >r 2dup d+ swap r> + swap r> ;
 1008: 
 1009: m+	( d1 n -- d2 )		double		m_plus
 1010: #ifdef BUGGY_LL_ADD
 1011: DLO_IS(d2, DLO(d1)+n);
 1012: DHI_IS(d2, DHI(d1) - (n<0) + (DLO(d2)<DLO(d1)));
 1013: #else
 1014: d2 = d1+n;
 1015: #endif
 1016: :
 1017:  s>d d+ ;
 1018: 
 1019: d+	( d1 d2 -- d )		double	d_plus
 1020: #ifdef BUGGY_LL_ADD
 1021: DLO_IS(d, DLO(d1) + DLO(d2));
 1022: DHI_IS(d, DHI(d1) + DHI(d2) + (d.lo<DLO(d1)));
 1023: #else
 1024: d = d1+d2;
 1025: #endif
 1026: :
 1027:  rot + >r tuck + swap over u> r> swap - ;
 1028: 
 1029: d-	( d1 d2 -- d )		double		d_minus
 1030: #ifdef BUGGY_LL_ADD
 1031: DLO_IS(d, DLO(d1) - DLO(d2));
 1032: DHI_IS(d, DHI(d1)-DHI(d2)-(DLO(d1)<DLO(d2)));
 1033: #else
 1034: d = d1-d2;
 1035: #endif
 1036: :
 1037:  dnegate d+ ;
 1038: 
 1039: dnegate	( d1 -- d2 )		double	d_negate
 1040: /* use dminus as alias */
 1041: #ifdef BUGGY_LL_ADD
 1042: d2 = dnegate(d1);
 1043: #else
 1044: d2 = -d1;
 1045: #endif
 1046: :
 1047:  invert swap negate tuck 0= - ;
 1048: 
 1049: d2*	( d1 -- d2 )		double		d_two_star
 1050: ""Shift left by 1; also works on unsigned numbers""
 1051: #ifdef BUGGY_LL_SHIFT
 1052: DLO_IS(d2, DLO(d1)<<1);
 1053: DHI_IS(d2, (DHI(d1)<<1) | (DLO(d1)>>(CELL_BITS-1)));
 1054: #else
 1055: d2 = 2*d1;
 1056: #endif
 1057: :
 1058:  2dup d+ ;
 1059: 
 1060: d2/	( d1 -- d2 )		double		d_two_slash
 1061: ""Arithmetic shift right by 1.  For signed numbers this is a floored
 1062: division by 2.""
 1063: #ifdef BUGGY_LL_SHIFT
 1064: DHI_IS(d2, DHI(d1)>>1);
 1065: DLO_IS(d2, (DLO(d1)>>1) | (DHI(d1)<<(CELL_BITS-1)));
 1066: #else
 1067: d2 = d1>>1;
 1068: #endif
 1069: :
 1070:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
 1071:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
 1072: 
 1073: and	( w1 w2 -- w )		core
 1074: w = w1&w2;
 1075: 
 1076: or	( w1 w2 -- w )		core
 1077: w = w1|w2;
 1078: :
 1079:  invert swap invert and invert ;
 1080: 
 1081: xor	( w1 w2 -- w )		core	x_or
 1082: w = w1^w2;
 1083: 
 1084: invert	( w1 -- w2 )		core
 1085: w2 = ~w1;
 1086: :
 1087:  MAXU xor ;
 1088: 
 1089: rshift	( u1 n -- u2 )		core	r_shift
 1090: ""Logical shift right by @i{n} bits.""
 1091: #ifdef BROKEN_SHIFT
 1092:   u2 = rshift(u1, n);
 1093: #else
 1094:   u2 = u1 >> n;
 1095: #endif
 1096: :
 1097:     0 ?DO 2/ MAXI and LOOP ;
 1098: 
 1099: lshift	( u1 n -- u2 )		core	l_shift
 1100: #ifdef BROKEN_SHIFT
 1101:   u2 = lshift(u1, n);
 1102: #else
 1103:   u2 = u1 << n;
 1104: #endif
 1105: :
 1106:     0 ?DO 2* LOOP ;
 1107: 
 1108: \g compare
 1109: 
 1110: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1111: define(comparisons,
 1112: $1=	( $2 -- f )		$6	$3equals
 1113: f = FLAG($4==$5);
 1114: :
 1115:     [ char $1x char 0 = [IF]
 1116: 	] IF false ELSE true THEN [
 1117:     [ELSE]
 1118: 	] xor 0= [
 1119:     [THEN] ] ;
 1120: 
 1121: $1<>	( $2 -- f )		$7	$3not_equals
 1122: f = FLAG($4!=$5);
 1123: :
 1124:     [ char $1x char 0 = [IF]
 1125: 	] IF true ELSE false THEN [
 1126:     [ELSE]
 1127: 	] xor 0<> [
 1128:     [THEN] ] ;
 1129: 
 1130: $1<	( $2 -- f )		$8	$3less_than
 1131: f = FLAG($4<$5);
 1132: :
 1133:     [ char $1x char 0 = [IF]
 1134: 	] MINI and 0<> [
 1135:     [ELSE] char $1x char u = [IF]
 1136: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
 1137: 	[ELSE]
 1138: 	    ] MINI xor >r MINI xor r> u< [
 1139: 	[THEN]
 1140:     [THEN] ] ;
 1141: 
 1142: $1>	( $2 -- f )		$9	$3greater_than
 1143: f = FLAG($4>$5);
 1144: :
 1145:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1146:     $1< ;
 1147: 
 1148: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1149: f = FLAG($4<=$5);
 1150: :
 1151:     $1> 0= ;
 1152: 
 1153: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1154: f = FLAG($4>=$5);
 1155: :
 1156:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
 1157:     $1<= ;
 1158: 
 1159: )
 1160: 
 1161: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
 1162: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
 1163: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
 1164: 
 1165: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
 1166: define(dcomparisons,
 1167: $1=	( $2 -- f )		$6	$3equals
 1168: #ifdef BUGGY_LL_CMP
 1169: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
 1170: #else
 1171: f = FLAG($4==$5);
 1172: #endif
 1173: 
 1174: $1<>	( $2 -- f )		$7	$3not_equals
 1175: #ifdef BUGGY_LL_CMP
 1176: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
 1177: #else
 1178: f = FLAG($4!=$5);
 1179: #endif
 1180: 
 1181: $1<	( $2 -- f )		$8	$3less_than
 1182: #ifdef BUGGY_LL_CMP
 1183: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
 1184: #else
 1185: f = FLAG($4<$5);
 1186: #endif
 1187: 
 1188: $1>	( $2 -- f )		$9	$3greater_than
 1189: #ifdef BUGGY_LL_CMP
 1190: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
 1191: #else
 1192: f = FLAG($4>$5);
 1193: #endif
 1194: 
 1195: $1<=	( $2 -- f )		gforth	$3less_or_equal
 1196: #ifdef BUGGY_LL_CMP
 1197: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
 1198: #else
 1199: f = FLAG($4<=$5);
 1200: #endif
 1201: 
 1202: $1>=	( $2 -- f )		gforth	$3greater_or_equal
 1203: #ifdef BUGGY_LL_CMP
 1204: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
 1205: #else
 1206: f = FLAG($4>=$5);
 1207: #endif
 1208: 
 1209: )
 1210: 
 1211: \+dcomps
 1212: 
 1213: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
 1214: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
 1215: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
 1216: 
 1217: \+
 1218: 
 1219: within	( u1 u2 u3 -- f )		core-ext
 1220: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
 1221: unsigned and signed numbers (but not a mixture).  Another way to think
 1222: about this word is to consider the numbers as a circle (wrapping
 1223: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 1224: min-n for signed numbers); now consider the range from u2 towards
 1225: increasing numbers up to and excluding u3 (giving an empty range if
 1226: u2=u3); if u1 is in this range, @code{within} returns true.""
 1227: f = FLAG(u1-u2 < u3-u2);
 1228: :
 1229:  over - >r - r> u< ;
 1230: 
 1231: \g stack
 1232: 
 1233: useraddr	( #u -- a_addr )	new
 1234: a_addr = (Cell *)(up+u);
 1235: 
 1236: up!	( a_addr -- )	gforth	up_store
 1237: UP=up=(char *)a_addr;
 1238: :
 1239:  up ! ;
 1240: Variable UP
 1241: 
 1242: sp@	( -- a_addr )		gforth		sp_fetch
 1243: a_addr = sp+1;
 1244: 
 1245: sp!	( a_addr -- )		gforth		sp_store
 1246: sp = a_addr;
 1247: /* works with and without spTOS caching */
 1248: 
 1249: rp@	( -- a_addr )		gforth		rp_fetch
 1250: a_addr = rp;
 1251: 
 1252: rp!	( a_addr -- )		gforth		rp_store
 1253: rp = a_addr;
 1254: 
 1255: \+floating
 1256: 
 1257: fp@	( -- f_addr )	gforth	fp_fetch
 1258: f_addr = fp;
 1259: 
 1260: fp!	( f_addr -- )	gforth	fp_store
 1261: fp = f_addr;
 1262: 
 1263: \+
 1264: 
 1265: >r	( w -- R:w )		core	to_r
 1266: :
 1267:  (>r) ;
 1268: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
 1269: 
 1270: r>	( R:w -- w )		core	r_from
 1271: :
 1272:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 1273: Create (rdrop) ' ;s A,
 1274: 
 1275: rdrop	( R:w -- )		gforth
 1276: :
 1277:  r> r> drop >r ;
 1278: 
 1279: 2>r	( d -- R:d )	core-ext	two_to_r
 1280: :
 1281:  swap r> swap >r swap >r >r ;
 1282: 
 1283: 2r>	( R:d -- d )	core-ext	two_r_from
 1284: :
 1285:  r> r> swap r> swap >r swap ;
 1286: 
 1287: 2r@	( R:d -- R:d d )	core-ext	two_r_fetch
 1288: :
 1289:  i' j ;
 1290: 
 1291: 2rdrop	( R:d -- )		gforth	two_r_drop
 1292: :
 1293:  r> r> drop r> drop >r ;
 1294: 
 1295: over	( w1 w2 -- w1 w2 w1 )		core
 1296: :
 1297:  sp@ cell+ @ ;
 1298: 
 1299: drop	( w -- )		core
 1300: :
 1301:  IF THEN ;
 1302: 
 1303: swap	( w1 w2 -- w2 w1 )		core
 1304: :
 1305:  >r (swap) ! r> (swap) @ ;
 1306: Variable (swap)
 1307: 
 1308: dup	( w -- w w )		core	dupe
 1309: :
 1310:  sp@ @ ;
 1311: 
 1312: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1313: :
 1314: [ defined? (swap) [IF] ]
 1315:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1316: Variable (rot)
 1317: [ELSE] ]
 1318:     >r swap r> swap ;
 1319: [THEN]
 1320: 
 1321: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1322: :
 1323:  rot rot ;
 1324: 
 1325: nip	( w1 w2 -- w2 )		core-ext
 1326: :
 1327:  swap drop ;
 1328: 
 1329: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1330: :
 1331:  swap over ;
 1332: 
 1333: ?dup	( w -- w )			core	question_dupe
 1334: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1335: @code{dup} if w is nonzero.""
 1336: if (w!=0) {
 1337:   IF_spTOS(*sp-- = w;)
 1338: #ifndef USE_TOS
 1339:   *--sp = w;
 1340: #endif
 1341: }
 1342: :
 1343:  dup IF dup THEN ;
 1344: 
 1345: pick	( u -- w )			core-ext
 1346: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1347: w = sp[u+1];
 1348: :
 1349:  1+ cells sp@ + @ ;
 1350: 
 1351: 2drop	( w1 w2 -- )		core	two_drop
 1352: :
 1353:  drop drop ;
 1354: 
 1355: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1356: :
 1357:  over over ;
 1358: 
 1359: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1360: :
 1361:  3 pick 3 pick ;
 1362: 
 1363: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1364: :
 1365:  rot >r rot r> ;
 1366: 
 1367: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1368: :
 1369:  >r >r 2swap r> r> 2swap ;
 1370: 
 1371: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1372: :
 1373:  2swap 2drop ;
 1374: 
 1375: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1376: :
 1377:  2swap 2over ;
 1378: 
 1379: \ toggle is high-level: 0.11/0.42%
 1380: 
 1381: \g memory
 1382: 
 1383: @	( a_addr -- w )		core	fetch
 1384: ""@i{w} is the cell stored at @i{a_addr}.""
 1385: w = *a_addr;
 1386: 
 1387: \ lit@ / lit_fetch = lit @
 1388: 
 1389: lit@		( #a_addr -- w ) new	lit_fetch
 1390: w = *a_addr;
 1391: 
 1392: !	( w a_addr -- )		core	store
 1393: ""Store @i{w} into the cell at @i{a-addr}.""
 1394: *a_addr = w;
 1395: 
 1396: +!	( n a_addr -- )		core	plus_store
 1397: ""Add @i{n} to the cell at @i{a-addr}.""
 1398: *a_addr += n;
 1399: :
 1400:  tuck @ + swap ! ;
 1401: 
 1402: c@	( c_addr -- c )		core	c_fetch
 1403: ""@i{c} is the char stored at @i{c_addr}.""
 1404: c = *c_addr;
 1405: :
 1406: [ bigendian [IF] ]
 1407:     [ cell>bit 4 = [IF] ]
 1408: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1409: 	IF  $FF and  ELSE  8>>  THEN  ;
 1410:     [ [ELSE] ]
 1411: 	dup [ cell 1- ] literal and
 1412: 	tuck - @ swap [ cell 1- ] literal xor
 1413:  	0 ?DO 8>> LOOP $FF and
 1414:     [ [THEN] ]
 1415: [ [ELSE] ]
 1416:     [ cell>bit 4 = [IF] ]
 1417: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1418: 	IF  8>>  ELSE  $FF and  THEN
 1419:     [ [ELSE] ]
 1420: 	dup [ cell  1- ] literal and 
 1421: 	tuck - @ swap
 1422: 	0 ?DO 8>> LOOP 255 and
 1423:     [ [THEN] ]
 1424: [ [THEN] ]
 1425: ;
 1426: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1427: 
 1428: c!	( c c_addr -- )		core	c_store
 1429: ""Store @i{c} into the char at @i{c-addr}.""
 1430: *c_addr = c;
 1431: :
 1432: [ bigendian [IF] ]
 1433:     [ cell>bit 4 = [IF] ]
 1434: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1435: 	dup -2 and @ over 1 and cells masks + @ and
 1436: 	r> or swap -2 and ! ;
 1437: 	Create masks $00FF , $FF00 ,
 1438:     [ELSE] ]
 1439: 	dup [ cell 1- ] literal and dup 
 1440: 	[ cell 1- ] literal xor >r
 1441: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1442: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1443:     [THEN]
 1444: [ELSE] ]
 1445:     [ cell>bit 4 = [IF] ]
 1446: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1447: 	dup -2 and @ over 1 and cells masks + @ and
 1448: 	r> or swap -2 and ! ;
 1449: 	Create masks $FF00 , $00FF ,
 1450:     [ELSE] ]
 1451: 	dup [ cell 1- ] literal and dup >r
 1452: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1453: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1454:     [THEN]
 1455: [THEN]
 1456: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1457: 
 1458: 2!	( w1 w2 a_addr -- )		core	two_store
 1459: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1460: a_addr[0] = w2;
 1461: a_addr[1] = w1;
 1462: :
 1463:  tuck ! cell+ ! ;
 1464: 
 1465: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1466: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1467: the content of the next cell.""
 1468: w2 = a_addr[0];
 1469: w1 = a_addr[1];
 1470: :
 1471:  dup cell+ @ swap @ ;
 1472: 
 1473: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1474: ""@code{1 cells +}""
 1475: a_addr2 = a_addr1+1;
 1476: :
 1477:  cell + ;
 1478: 
 1479: cells	( n1 -- n2 )		core
 1480: "" @i{n2} is the number of address units of @i{n1} cells.""
 1481: n2 = n1 * sizeof(Cell);
 1482: :
 1483:  [ cell
 1484:  2/ dup [IF] ] 2* [ [THEN]
 1485:  2/ dup [IF] ] 2* [ [THEN]
 1486:  2/ dup [IF] ] 2* [ [THEN]
 1487:  2/ dup [IF] ] 2* [ [THEN]
 1488:  drop ] ;
 1489: 
 1490: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1491: ""@code{1 chars +}.""
 1492: c_addr2 = c_addr1 + 1;
 1493: :
 1494:  1+ ;
 1495: 
 1496: (chars)	( n1 -- n2 )	gforth	paren_chars
 1497: n2 = n1 * sizeof(Char);
 1498: :
 1499:  ;
 1500: 
 1501: count	( c_addr1 -- c_addr2 u )	core
 1502: ""@i{c-addr2} is the first character and @i{u} the length of the
 1503: counted string at @i{c-addr1}.""
 1504: u = *c_addr1;
 1505: c_addr2 = c_addr1+1;
 1506: :
 1507:  dup 1+ swap c@ ;
 1508: 
 1509: \g compiler
 1510: 
 1511: \+f83headerstring
 1512: 
 1513: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1514: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1515:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1516:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1517:     break;
 1518: f83name2=f83name1;
 1519: :
 1520:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1521: 	>r 2dup r@ cell+ char+ capscomp  0=
 1522: 	IF  2drop r>  EXIT  THEN
 1523: 	r> @
 1524:     REPEAT  THEN  nip nip ;
 1525: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1526:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1527: : capscomp ( c_addr1 u c_addr2 -- n )
 1528:  swap bounds
 1529:  ?DO  dup c@ I c@ <>
 1530:      IF  dup c@ toupper I c@ toupper =
 1531:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1532:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1533: : sgn ( n -- -1/0/1 )
 1534:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1535: 
 1536: \-
 1537: 
 1538: (listlfind)	( c_addr u longname1 -- longname2 )	new	paren_listlfind
 1539: longname2=listlfind(c_addr, u, longname1);
 1540: :
 1541:     BEGIN  dup WHILE  (findl-samelen)  dup  WHILE
 1542: 	>r 2dup r@ cell+ cell+ capscomp  0=
 1543: 	IF  2drop r>  EXIT  THEN
 1544: 	r> @
 1545:     REPEAT  THEN  nip nip ;
 1546: : (findl-samelen) ( u longname1 -- u longname2/0 )
 1547:     BEGIN  2dup cell+ @ lcount-mask and <> WHILE  @  dup 0= UNTIL  THEN ;
 1548: : capscomp ( c_addr1 u c_addr2 -- n )
 1549:  swap bounds
 1550:  ?DO  dup c@ I c@ <>
 1551:      IF  dup c@ toupper I c@ toupper =
 1552:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
 1553:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
 1554: : sgn ( n -- -1/0/1 )
 1555:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1556: 
 1557: \+hash
 1558: 
 1559: (hashlfind)	( c_addr u a_addr -- longname2 )	new	paren_hashlfind
 1560: longname2 = hashlfind(c_addr, u, a_addr);
 1561: :
 1562:  BEGIN  dup  WHILE
 1563:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1564:         IF  2dup r@ cell+ cell+ capscomp 0=
 1565: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1566: 	rdrop r>
 1567:  REPEAT nip nip ;
 1568: 
 1569: (tablelfind)	( c_addr u a_addr -- longname2 )	new	paren_tablelfind
 1570: ""A case-sensitive variant of @code{(hashfind)}""
 1571: longname2 = tablelfind(c_addr, u, a_addr);
 1572: :
 1573:  BEGIN  dup  WHILE
 1574:         2@ >r >r dup r@ cell+ @ lcount-mask and =
 1575:         IF  2dup r@ cell+ cell+ -text 0=
 1576: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1577: 	rdrop r>
 1578:  REPEAT nip nip ;
 1579: : -text ( c_addr1 u c_addr2 -- n )
 1580:  swap bounds
 1581:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
 1582:  ELSE  c@ I c@ - unloop  THEN  sgn ;
 1583: : sgn ( n -- -1/0/1 )
 1584:  dup 0= IF EXIT THEN  0< 2* 1+ ;
 1585: 
 1586: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1587: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1588: ukey = hashkey1(c_addr, u, ubits);
 1589: :
 1590:  dup rot-values + c@ over 1 swap lshift 1- >r
 1591:  tuck - 2swap r> 0 2swap bounds
 1592:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1593:       I c@ toupper xor
 1594:       over and  LOOP
 1595:  nip nip nip ;
 1596: Create rot-values
 1597:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1598:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1599:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1600:   7 c, 5 c, 5 c,
 1601: 
 1602: \+
 1603: 
 1604: \+
 1605: 
 1606: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1607: struct Cellpair r=parse_white(c_addr1, u1);
 1608: c_addr2 = (Char *)(r.n1);
 1609: u2 = r.n2;
 1610: :
 1611:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1612:  REPEAT  THEN  2dup
 1613:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1614:  REPEAT  THEN  nip - ;
 1615: 
 1616: aligned	( c_addr -- a_addr )	core
 1617: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1618: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1619: :
 1620:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1621: 
 1622: faligned	( c_addr -- f_addr )	float	f_aligned
 1623: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1624: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1625: :
 1626:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1627: 
 1628: \ threading stuff is currently only interesting if we have a compiler
 1629: \fhas? standardthreading has? compiler and [IF]
 1630: threading-method	( -- n )	gforth	threading_method
 1631: ""0 if the engine is direct threaded. Note that this may change during
 1632: the lifetime of an image.""
 1633: #if defined(DOUBLY_INDIRECT)
 1634: n=2;
 1635: #else
 1636: # if defined(DIRECT_THREADED)
 1637: n=0;
 1638: # else
 1639: n=1;
 1640: # endif
 1641: #endif
 1642: :
 1643:  1 ;
 1644: 
 1645: \f[THEN]
 1646: 
 1647: \g hostos
 1648: 
 1649: key-file	( wfileid -- n )		gforth	paren_key_file
 1650: #ifdef HAS_FILE
 1651: fflush(stdout);
 1652: n = key((FILE*)wfileid);
 1653: #else
 1654: n = key(stdin);
 1655: #endif
 1656: 
 1657: key?-file	( wfileid -- n )		facility	key_q_file
 1658: #ifdef HAS_FILE
 1659: fflush(stdout);
 1660: n = key_query((FILE*)wfileid);
 1661: #else
 1662: n = key_query(stdin);
 1663: #endif
 1664: 
 1665: \+os
 1666: 
 1667: stdin	( -- wfileid )	gforth
 1668: wfileid = (Cell)stdin;
 1669: 
 1670: stdout	( -- wfileid )	gforth
 1671: wfileid = (Cell)stdout;
 1672: 
 1673: stderr	( -- wfileid )	gforth
 1674: wfileid = (Cell)stderr;
 1675: 
 1676: form	( -- urows ucols )	gforth
 1677: ""The number of lines and columns in the terminal. These numbers may change
 1678: with the window size.""
 1679: /* we could block SIGWINCH here to get a consistent size, but I don't
 1680:  think this is necessary or always beneficial */
 1681: urows=rows;
 1682: ucols=cols;
 1683: 
 1684: flush-icache	( c_addr u -- )	gforth	flush_icache
 1685: ""Make sure that the instruction cache of the processor (if there is
 1686: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1687: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1688: automatically. Caveat: @code{flush-icache} might not work on your
 1689: installation; this is usually the case if direct threading is not
 1690: supported on your machine (take a look at your @file{machine.h}) and
 1691: your machine has a separate instruction cache. In such cases,
 1692: @code{flush-icache} does nothing instead of flushing the instruction
 1693: cache.""
 1694: FLUSH_ICACHE(c_addr,u);
 1695: 
 1696: (bye)	( n -- )	gforth	paren_bye
 1697: SUPER_END;
 1698: return (Label *)n;
 1699: 
 1700: (system)	( c_addr u -- wretval wior )	gforth	paren_system
 1701: wretval = gforth_system(c_addr, u);  
 1702: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1703: 
 1704: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1705: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1706: is the host operating system's expansion of that environment variable. If the
 1707: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1708: in length.""
 1709: /* close ' to keep fontify happy */
 1710: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1711: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1712: 
 1713: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1714: wfileid=(Cell)popen(cstr(c_addr,u,1),pfileattr[wfam]); /* ~ expansion of 1st arg? */
 1715: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1716: 
 1717: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1718: wretval = pclose((FILE *)wfileid);
 1719: wior = IOR(wretval==-1);
 1720: 
 1721: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1722: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1723: Months are numbered from 1.""
 1724: #if 1
 1725: time_t now;
 1726: struct tm *ltime;
 1727: time(&now);
 1728: ltime=localtime(&now);
 1729: #else
 1730: struct timeval time1;
 1731: struct timezone zone1;
 1732: struct tm *ltime;
 1733: gettimeofday(&time1,&zone1);
 1734: /* !! Single Unix specification: 
 1735:    If tzp is not a null pointer, the behaviour is unspecified. */
 1736: ltime=localtime((time_t *)&time1.tv_sec);
 1737: #endif
 1738: nyear =ltime->tm_year+1900;
 1739: nmonth=ltime->tm_mon+1;
 1740: nday  =ltime->tm_mday;
 1741: nhour =ltime->tm_hour;
 1742: nmin  =ltime->tm_min;
 1743: nsec  =ltime->tm_sec;
 1744: 
 1745: ms	( n -- )	facility-ext
 1746: ""Wait at least @i{n} milli-second.""
 1747: struct timeval timeout;
 1748: timeout.tv_sec=n/1000;
 1749: timeout.tv_usec=1000*(n%1000);
 1750: (void)select(0,0,0,0,&timeout);
 1751: 
 1752: allocate	( u -- a_addr wior )	memory
 1753: ""Allocate @i{u} address units of contiguous data space. The initial
 1754: contents of the data space is undefined. If the allocation is successful,
 1755: @i{a-addr} is the start address of the allocated region and @i{wior}
 1756: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1757: is a non-zero I/O result code.""
 1758: a_addr = (Cell *)malloc(u?u:1);
 1759: wior = IOR(a_addr==NULL);
 1760: 
 1761: free	( a_addr -- wior )		memory
 1762: ""Return the region of data space starting at @i{a-addr} to the system.
 1763: The region must originally have been obtained using @code{allocate} or
 1764: @code{resize}. If the operational is successful, @i{wior} is 0.
 1765: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1766: free(a_addr);
 1767: wior = 0;
 1768: 
 1769: resize	( a_addr1 u -- a_addr2 wior )	memory
 1770: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1771: address units, possibly moving the contents to a different
 1772: area. @i{a-addr2} is the address of the resulting area.
 1773: If the operation is successful, @i{wior} is 0.
 1774: If the operation fails, @i{wior} is a non-zero
 1775: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1776: @code{resize} @code{allocate}s @i{u} address units.""
 1777: /* the following check is not necessary on most OSs, but it is needed
 1778:    on SunOS 4.1.2. */
 1779: /* close ' to keep fontify happy */
 1780: if (a_addr1==NULL)
 1781:   a_addr2 = (Cell *)malloc(u);
 1782: else
 1783:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1784: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1785: 
 1786: strerror	( n -- c_addr u )	gforth
 1787: c_addr = strerror(n);
 1788: u = strlen(c_addr);
 1789: 
 1790: strsignal	( n -- c_addr u )	gforth
 1791: c_addr = (Address)strsignal(n);
 1792: u = strlen(c_addr);
 1793: 
 1794: call-c	( w -- )	gforth	call_c
 1795: ""Call the C function pointed to by @i{w}. The C function has to
 1796: access the stack itself. The stack pointers are exported in the global
 1797: variables @code{SP} and @code{FP}.""
 1798: /* This is a first attempt at support for calls to C. This may change in
 1799:    the future */
 1800: IF_fpTOS(fp[0]=fpTOS);
 1801: FP=fp;
 1802: SP=sp;
 1803: ((void (*)())w)();
 1804: sp=SP;
 1805: fp=FP;
 1806: IF_spTOS(spTOS=sp[0]);
 1807: IF_fpTOS(fpTOS=fp[0]);
 1808: 
 1809: \+
 1810: \+file
 1811: 
 1812: close-file	( wfileid -- wior )		file	close_file
 1813: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1814: 
 1815: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1816: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1817: wior =  IOR(wfileid == 0);
 1818: 
 1819: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1820: Cell	fd;
 1821: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1822: if (fd != -1) {
 1823:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1824:   wior = IOR(wfileid == 0);
 1825: } else {
 1826:   wfileid = 0;
 1827:   wior = IOR(1);
 1828: }
 1829: 
 1830: delete-file	( c_addr u -- wior )		file	delete_file
 1831: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1832: 
 1833: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1834: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1835: wior = rename_file(c_addr1, u1, c_addr2, u2);
 1836: 
 1837: file-position	( wfileid -- ud wior )	file	file_position
 1838: /* !! use tell and lseek? */
 1839: ud = OFF2UD(ftello((FILE *)wfileid));
 1840: wior = IOR(UD2OFF(ud)==-1);
 1841: 
 1842: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1843: wior = IOR(fseeko((FILE *)wfileid, UD2OFF(ud), SEEK_SET)==-1);
 1844: 
 1845: file-size	( wfileid -- ud wior )	file	file_size
 1846: struct stat buf;
 1847: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1848: ud = OFF2UD(buf.st_size);
 1849: 
 1850: resize-file	( ud wfileid -- wior )	file	resize_file
 1851: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2OFF(ud))==-1);
 1852: 
 1853: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1854: /* !! fread does not guarantee enough */
 1855: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1856: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1857: /* !! is the value of ferror errno-compatible? */
 1858: if (wior)
 1859:   clearerr((FILE *)wfileid);
 1860: 
 1861: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior ) file	paren_read_line
 1862: struct Cellquad r = read_line(c_addr, u1, wfileid);
 1863: u2   = r.n1;
 1864: flag = r.n2;
 1865: u3   = r.n3;
 1866: wior = r.n4;
 1867: 
 1868: \+
 1869: 
 1870: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1871: /* !! fwrite does not guarantee enough */
 1872: #ifdef HAS_FILE
 1873: {
 1874:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1875:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1876:   if (wior)
 1877:     clearerr((FILE *)wfileid);
 1878: }
 1879: #else
 1880: TYPE(c_addr, u1);
 1881: #endif
 1882: 
 1883: emit-file	( c wfileid -- wior )	gforth	emit_file
 1884: #ifdef HAS_FILE
 1885: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1886: if (wior)
 1887:   clearerr((FILE *)wfileid);
 1888: #else
 1889: PUTC(c);
 1890: #endif
 1891: 
 1892: \+file
 1893: 
 1894: flush-file	( wfileid -- wior )		file-ext	flush_file
 1895: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1896: 
 1897: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1898: struct Cellpair r = file_status(c_addr, u);
 1899: wfam = r.n1;
 1900: wior = r.n2;
 1901: 
 1902: file-eof?	( wfileid -- flag )	gforth	file_eof_query
 1903: flag = FLAG(feof((FILE *) wfileid));
 1904: 
 1905: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 1906: ""Open the directory specified by @i{c-addr, u}
 1907: and return @i{dir-id} for futher access to it.""
 1908: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 1909: wior =  IOR(wdirid == 0);
 1910: 
 1911: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 1912: ""Attempt to read the next entry from the directory specified
 1913: by @i{dir-id} to the buffer of length @i{u1} at address @i{c-addr}. 
 1914: If the attempt fails because there is no more entries,
 1915: @i{ior}=0, @i{flag}=0, @i{u2}=0, and the buffer is unmodified.
 1916: If the attempt to read the next entry fails because of any other reason, 
 1917: return @i{ior}<>0.
 1918: If the attempt succeeds, store file name to the buffer at @i{c-addr}
 1919: and return @i{ior}=0, @i{flag}=true and @i{u2} equal to the size of the file name.
 1920: If the length of the file name is greater than @i{u1}, 
 1921: store first @i{u1} characters from file name into the buffer and
 1922: indicate "name too long" with @i{ior}, @i{flag}=true, and @i{u2}=@i{u1}.""
 1923: struct dirent * dent;
 1924: dent = readdir((DIR *)wdirid);
 1925: wior = 0;
 1926: flag = -1;
 1927: if(dent == NULL) {
 1928:   u2 = 0;
 1929:   flag = 0;
 1930: } else {
 1931:   u2 = strlen(dent->d_name);
 1932:   if(u2 > u1) {
 1933:     u2 = u1;
 1934:     wior = -512-ENAMETOOLONG;
 1935:   }
 1936:   memmove(c_addr, dent->d_name, u2);
 1937: }
 1938: 
 1939: close-dir	( wdirid -- wior )	gforth	close_dir
 1940: ""Close the directory specified by @i{dir-id}.""
 1941: wior = IOR(closedir((DIR *)wdirid));
 1942: 
 1943: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 1944: char * string = cstr(c_addr1, u1, 1);
 1945: char * pattern = cstr(c_addr2, u2, 0);
 1946: flag = FLAG(!fnmatch(pattern, string, 0));
 1947: 
 1948: set-dir	( c_addr u -- wior )	gforth set_dir
 1949: ""Change the current directory to @i{c-addr, u}.
 1950: Return an error if this is not possible""
 1951: wior = IOR(chdir(tilde_cstr(c_addr, u, 1)));
 1952: 
 1953: get-dir	( c_addr1 u1 -- c_addr2 u2 )	gforth get_dir
 1954: ""Store the current directory in the buffer specified by @{c-addr1, u1}.
 1955: If the buffer size is not sufficient, return 0 0""
 1956: c_addr2 = getcwd(c_addr1, u1);
 1957: if(c_addr2 != NULL) {
 1958:   u2 = strlen(c_addr2);
 1959: } else {
 1960:   u2 = 0;
 1961: }
 1962: 
 1963: \+
 1964: 
 1965: newline	( -- c_addr u )	gforth
 1966: ""String containing the newline sequence of the host OS""
 1967: char newline[] = {
 1968: #if DIRSEP=='/'
 1969: /* Unix */
 1970: '\n'
 1971: #else
 1972: /* DOS, Win, OS/2 */
 1973: '\r','\n'
 1974: #endif
 1975: };
 1976: c_addr=newline;
 1977: u=sizeof(newline);
 1978: :
 1979:  "newline count ;
 1980: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 1981: 
 1982: \+os
 1983: 
 1984: utime	( -- dtime )	gforth
 1985: ""Report the current time in microseconds since some epoch.""
 1986: struct timeval time1;
 1987: gettimeofday(&time1,NULL);
 1988: dtime = timeval2us(&time1);
 1989: 
 1990: cputime ( -- duser dsystem ) gforth
 1991: ""duser and dsystem are the respective user- and system-level CPU
 1992: times used since the start of the Forth system (excluding child
 1993: processes), in microseconds (the granularity may be much larger,
 1994: however).  On platforms without the getrusage call, it reports elapsed
 1995: time (since some epoch) for duser and 0 for dsystem.""
 1996: #ifdef HAVE_GETRUSAGE
 1997: struct rusage usage;
 1998: getrusage(RUSAGE_SELF, &usage);
 1999: duser = timeval2us(&usage.ru_utime);
 2000: dsystem = timeval2us(&usage.ru_stime);
 2001: #else
 2002: struct timeval time1;
 2003: gettimeofday(&time1,NULL);
 2004: duser = timeval2us(&time1);
 2005: dsystem = DZERO;
 2006: #endif
 2007: 
 2008: \+
 2009: 
 2010: \+floating
 2011: 
 2012: \g floating
 2013: 
 2014: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 2015: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 2016: 
 2017: d>f	( d -- r )		float	d_to_f
 2018: #ifdef BUGGY_LL_D2F
 2019: extern double ldexp(double x, int exp);
 2020: if (DHI(d)<0) {
 2021: #ifdef BUGGY_LL_ADD
 2022:   DCell d2=dnegate(d);
 2023: #else
 2024:   DCell d2=-d;
 2025: #endif
 2026:   r = -(ldexp((Float)DHI(d2),CELL_BITS) + (Float)DLO(d2));
 2027: } else
 2028:   r = ldexp((Float)DHI(d),CELL_BITS) + (Float)DLO(d);
 2029: #else
 2030: r = d;
 2031: #endif
 2032: 
 2033: f>d	( r -- d )		float	f_to_d
 2034: extern DCell double2ll(Float r);
 2035: d = double2ll(r);
 2036: 
 2037: f!	( r f_addr -- )	float	f_store
 2038: ""Store @i{r} into the float at address @i{f-addr}.""
 2039: *f_addr = r;
 2040: 
 2041: f@	( f_addr -- r )	float	f_fetch
 2042: ""@i{r} is the float at address @i{f-addr}.""
 2043: r = *f_addr;
 2044: 
 2045: df@	( df_addr -- r )	float-ext	d_f_fetch
 2046: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 2047: #ifdef IEEE_FP
 2048: r = *df_addr;
 2049: #else
 2050: !! df@
 2051: #endif
 2052: 
 2053: df!	( r df_addr -- )	float-ext	d_f_store
 2054: ""Store @i{r} as double-precision IEEE floating-point value to the
 2055: address @i{df-addr}.""
 2056: #ifdef IEEE_FP
 2057: *df_addr = r;
 2058: #else
 2059: !! df!
 2060: #endif
 2061: 
 2062: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 2063: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 2064: #ifdef IEEE_FP
 2065: r = *sf_addr;
 2066: #else
 2067: !! sf@
 2068: #endif
 2069: 
 2070: sf!	( r sf_addr -- )	float-ext	s_f_store
 2071: ""Store @i{r} as single-precision IEEE floating-point value to the
 2072: address @i{sf-addr}.""
 2073: #ifdef IEEE_FP
 2074: *sf_addr = r;
 2075: #else
 2076: !! sf!
 2077: #endif
 2078: 
 2079: f+	( r1 r2 -- r3 )	float	f_plus
 2080: r3 = r1+r2;
 2081: 
 2082: f-	( r1 r2 -- r3 )	float	f_minus
 2083: r3 = r1-r2;
 2084: 
 2085: f*	( r1 r2 -- r3 )	float	f_star
 2086: r3 = r1*r2;
 2087: 
 2088: f/	( r1 r2 -- r3 )	float	f_slash
 2089: r3 = r1/r2;
 2090: 
 2091: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 2092: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 2093: r3 = pow(r1,r2);
 2094: 
 2095: fnegate	( r1 -- r2 )	float	f_negate
 2096: r2 = - r1;
 2097: 
 2098: fdrop	( r -- )		float	f_drop
 2099: 
 2100: fdup	( r -- r r )	float	f_dupe
 2101: 
 2102: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 2103: 
 2104: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 2105: 
 2106: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 2107: 
 2108: fnip	( r1 r2 -- r2 )	gforth	f_nip
 2109: 
 2110: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 2111: 
 2112: float+	( f_addr1 -- f_addr2 )	float	float_plus
 2113: ""@code{1 floats +}.""
 2114: f_addr2 = f_addr1+1;
 2115: 
 2116: floats	( n1 -- n2 )	float
 2117: ""@i{n2} is the number of address units of @i{n1} floats.""
 2118: n2 = n1*sizeof(Float);
 2119: 
 2120: floor	( r1 -- r2 )	float
 2121: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 2122: /* !! unclear wording */
 2123: r2 = floor(r1);
 2124: 
 2125: fround	( r1 -- r2 )	gforth	f_round
 2126: ""Round to the nearest integral value.""
 2127: r2 = rint(r1);
 2128: 
 2129: fmax	( r1 r2 -- r3 )	float	f_max
 2130: if (r1<r2)
 2131:   r3 = r2;
 2132: else
 2133:   r3 = r1;
 2134: 
 2135: fmin	( r1 r2 -- r3 )	float	f_min
 2136: if (r1<r2)
 2137:   r3 = r1;
 2138: else
 2139:   r3 = r2;
 2140: 
 2141: represent	( r c_addr u -- n f1 f2 )	float
 2142: char *sig;
 2143: size_t siglen;
 2144: int flag;
 2145: int decpt;
 2146: sig=ecvt(r, u, &decpt, &flag);
 2147: n=(r==0. ? 1 : decpt);
 2148: f1=FLAG(flag!=0);
 2149: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 2150: siglen=strlen(sig);
 2151: if (siglen>u) /* happens in glibc-2.1.3 if 999.. is rounded up */
 2152:   siglen=u;
 2153: memcpy(c_addr,sig,siglen);
 2154: memset(c_addr+siglen,f2?'0':' ',u-siglen);
 2155: 
 2156: >float	( c_addr u -- flag )	float	to_float
 2157: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 2158: character string @i{c-addr u} to internal floating-point
 2159: representation. If the string represents a valid floating-point number
 2160: @i{r} is placed on the floating-point stack and @i{flag} is
 2161: true. Otherwise, @i{flag} is false. A string of blanks is a special
 2162: case and represents the floating-point number 0.""
 2163: Float r;
 2164: flag = to_float(c_addr, u, &r);
 2165: if (flag) {
 2166:   IF_fpTOS(fp[0] = fpTOS);
 2167:   fp += -1;
 2168:   fpTOS = r;
 2169: }
 2170: 
 2171: fabs	( r1 -- r2 )	float-ext	f_abs
 2172: r2 = fabs(r1);
 2173: 
 2174: facos	( r1 -- r2 )	float-ext	f_a_cos
 2175: r2 = acos(r1);
 2176: 
 2177: fasin	( r1 -- r2 )	float-ext	f_a_sine
 2178: r2 = asin(r1);
 2179: 
 2180: fatan	( r1 -- r2 )	float-ext	f_a_tan
 2181: r2 = atan(r1);
 2182: 
 2183: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 2184: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 2185: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 2186: r3 = atan2(r1,r2);
 2187: 
 2188: fcos	( r1 -- r2 )	float-ext	f_cos
 2189: r2 = cos(r1);
 2190: 
 2191: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 2192: r2 = exp(r1);
 2193: 
 2194: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 2195: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 2196: #ifdef HAVE_EXPM1
 2197: extern double
 2198: #ifdef NeXT
 2199:               const
 2200: #endif
 2201:                     expm1(double);
 2202: r2 = expm1(r1);
 2203: #else
 2204: r2 = exp(r1)-1.;
 2205: #endif
 2206: 
 2207: fln	( r1 -- r2 )	float-ext	f_l_n
 2208: r2 = log(r1);
 2209: 
 2210: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 2211: ""@i{r2}=ln(@i{r1}+1)""
 2212: #ifdef HAVE_LOG1P
 2213: extern double
 2214: #ifdef NeXT
 2215:               const
 2216: #endif
 2217:                     log1p(double);
 2218: r2 = log1p(r1);
 2219: #else
 2220: r2 = log(r1+1.);
 2221: #endif
 2222: 
 2223: flog	( r1 -- r2 )	float-ext	f_log
 2224: ""The decimal logarithm.""
 2225: r2 = log10(r1);
 2226: 
 2227: falog	( r1 -- r2 )	float-ext	f_a_log
 2228: ""@i{r2}=10**@i{r1}""
 2229: extern double pow10(double);
 2230: r2 = pow10(r1);
 2231: 
 2232: fsin	( r1 -- r2 )	float-ext	f_sine
 2233: r2 = sin(r1);
 2234: 
 2235: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 2236: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 2237: r2 = sin(r1);
 2238: r3 = cos(r1);
 2239: 
 2240: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 2241: r2 = sqrt(r1);
 2242: 
 2243: ftan	( r1 -- r2 )	float-ext	f_tan
 2244: r2 = tan(r1);
 2245: :
 2246:  fsincos f/ ;
 2247: 
 2248: fsinh	( r1 -- r2 )	float-ext	f_cinch
 2249: r2 = sinh(r1);
 2250: :
 2251:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 2252: 
 2253: fcosh	( r1 -- r2 )	float-ext	f_cosh
 2254: r2 = cosh(r1);
 2255: :
 2256:  fexp fdup 1/f f+ f2/ ;
 2257: 
 2258: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 2259: r2 = tanh(r1);
 2260: :
 2261:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 2262: 
 2263: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 2264: r2 = asinh(r1);
 2265: :
 2266:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 2267: 
 2268: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 2269: r2 = acosh(r1);
 2270: :
 2271:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 2272: 
 2273: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 2274: r2 = atanh(r1);
 2275: :
 2276:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 2277:  r> IF  fnegate  THEN ;
 2278: 
 2279: sfloats	( n1 -- n2 )	float-ext	s_floats
 2280: ""@i{n2} is the number of address units of @i{n1}
 2281: single-precision IEEE floating-point numbers.""
 2282: n2 = n1*sizeof(SFloat);
 2283: 
 2284: dfloats	( n1 -- n2 )	float-ext	d_floats
 2285: ""@i{n2} is the number of address units of @i{n1}
 2286: double-precision IEEE floating-point numbers.""
 2287: n2 = n1*sizeof(DFloat);
 2288: 
 2289: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 2290: ""@i{sf-addr} is the first single-float-aligned address greater
 2291: than or equal to @i{c-addr}.""
 2292: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2293: :
 2294:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2295: 
 2296: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2297: ""@i{df-addr} is the first double-float-aligned address greater
 2298: than or equal to @i{c-addr}.""
 2299: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2300: :
 2301:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2302: 
 2303: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2304: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2305: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2306: ucount elements.""
 2307: r = v_star(f_addr1, nstride1, f_addr2, nstride2, ucount);
 2308: :
 2309:  >r swap 2swap swap 0e r> 0 ?DO
 2310:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2311:  LOOP 2drop 2drop ; 
 2312: 
 2313: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2314: ""vy=ra*vx+vy""
 2315: faxpy(ra, f_x, nstridex, f_y, nstridey, ucount);
 2316: :
 2317:  >r swap 2swap swap r> 0 ?DO
 2318:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2319:  LOOP 2drop 2drop fdrop ;
 2320: 
 2321: \+
 2322: 
 2323: \ The following words access machine/OS/installation-dependent
 2324: \   Gforth internals
 2325: \ !! how about environmental queries DIRECT-THREADED,
 2326: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2327: 
 2328: \ local variable implementation primitives
 2329: 
 2330: \+glocals
 2331: 
 2332: \g locals
 2333: 
 2334: @local#	( #noffset -- w )	gforth	fetch_local_number
 2335: w = *(Cell *)(lp+noffset);
 2336: 
 2337: @local0	( -- w )	new	fetch_local_zero
 2338: w = ((Cell *)lp)[0];
 2339: 
 2340: @local1	( -- w )	new	fetch_local_four
 2341: w = ((Cell *)lp)[1];
 2342: 
 2343: @local2	( -- w )	new	fetch_local_eight
 2344: w = ((Cell *)lp)[2];
 2345: 
 2346: @local3	( -- w )	new	fetch_local_twelve
 2347: w = ((Cell *)lp)[3];
 2348: 
 2349: \+floating
 2350: 
 2351: f@local#	( #noffset -- r )	gforth	f_fetch_local_number
 2352: r = *(Float *)(lp+noffset);
 2353: 
 2354: f@local0	( -- r )	new	f_fetch_local_zero
 2355: r = ((Float *)lp)[0];
 2356: 
 2357: f@local1	( -- r )	new	f_fetch_local_eight
 2358: r = ((Float *)lp)[1];
 2359: 
 2360: \+
 2361: 
 2362: laddr#	( #noffset -- c_addr )	gforth	laddr_number
 2363: /* this can also be used to implement lp@ */
 2364: c_addr = (Char *)(lp+noffset);
 2365: 
 2366: lp+!#	( #noffset -- )	gforth	lp_plus_store_number
 2367: ""used with negative immediate values it allocates memory on the
 2368: local stack, a positive immediate argument drops memory from the local
 2369: stack""
 2370: lp += noffset;
 2371: 
 2372: lp-	( -- )	new	minus_four_lp_plus_store
 2373: lp += -sizeof(Cell);
 2374: 
 2375: lp+	( -- )	new	eight_lp_plus_store
 2376: lp += sizeof(Float);
 2377: 
 2378: lp+2	( -- )	new	sixteen_lp_plus_store
 2379: lp += 2*sizeof(Float);
 2380: 
 2381: lp!	( c_addr -- )	gforth	lp_store
 2382: lp = (Address)c_addr;
 2383: 
 2384: >l	( w -- )	gforth	to_l
 2385: lp -= sizeof(Cell);
 2386: *(Cell *)lp = w;
 2387: 
 2388: \+floating
 2389: 
 2390: f>l	( r -- )	gforth	f_to_l
 2391: lp -= sizeof(Float);
 2392: *(Float *)lp = r;
 2393: 
 2394: fpick	( u -- r )		gforth
 2395: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2396: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2397: :
 2398:  floats fp@ + f@ ;
 2399: 
 2400: \+
 2401: \+
 2402: 
 2403: \+OS
 2404: 
 2405: \g syslib
 2406: 
 2407: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2408: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2409: #ifndef RTLD_GLOBAL
 2410: #define RTLD_GLOBAL 0
 2411: #endif
 2412: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2413: #else
 2414: #  ifdef _WIN32
 2415: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2416: #  else
 2417: #warning Define open-lib!
 2418: u2 = 0;
 2419: #  endif
 2420: #endif
 2421: 
 2422: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2423: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2424: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2425: #else
 2426: #  ifdef _WIN32
 2427: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2428: #  else
 2429: #warning Define lib-sym!
 2430: u3 = 0;
 2431: #  endif
 2432: #endif
 2433: 
 2434: wcall	( u -- )	gforth
 2435: IF_fpTOS(fp[0]=fpTOS);
 2436: FP=fp;
 2437: sp=(Cell*)(SYSCALL(Cell*(*)(Cell *, void *))u)(sp, &FP);
 2438: fp=FP;
 2439: IF_spTOS(spTOS=sp[0];)
 2440: IF_fpTOS(fpTOS=fp[0]);
 2441: 
 2442: \+FFCALL
 2443: 
 2444: av-start-void	( c_addr -- )	gforth  av_start_void
 2445: av_start_void(alist, c_addr);
 2446: 
 2447: av-start-int	( c_addr -- )	gforth  av_start_int
 2448: av_start_int(alist, c_addr, &irv);
 2449: 
 2450: av-start-float	( c_addr -- )	gforth  av_start_float
 2451: av_start_float(alist, c_addr, &frv);
 2452: 
 2453: av-start-double	( c_addr -- )	gforth  av_start_double
 2454: av_start_double(alist, c_addr, &drv);
 2455: 
 2456: av-start-longlong	( c_addr -- )	gforth  av_start_longlong
 2457: av_start_longlong(alist, c_addr, &llrv);
 2458: 
 2459: av-start-ptr	( c_addr -- )	gforth  av_start_ptr
 2460: av_start_ptr(alist, c_addr, void*, &prv);
 2461: 
 2462: av-int  ( w -- )  gforth  av_int
 2463: av_int(alist, w);
 2464: 
 2465: av-float	( r -- )	gforth  av_float
 2466: av_float(alist, r);
 2467: 
 2468: av-double	( r -- )	gforth  av_double
 2469: av_double(alist, r);
 2470: 
 2471: av-longlong	( d -- )	gforth  av_longlong
 2472: #ifdef BUGGY_LL_SIZE
 2473: av_longlong(alist, DLO(d));
 2474: #else
 2475: av_longlong(alist, d);
 2476: #endif
 2477: 
 2478: av-ptr	( c_addr -- )	gforth  av_ptr
 2479: av_ptr(alist, void*, c_addr);
 2480: 
 2481: av-int-r  ( R:w -- )  gforth  av_int_r
 2482: av_int(alist, w);
 2483: 
 2484: av-float-r	( -- )	gforth  av_float_r
 2485: float r = *(Float*)lp;
 2486: lp += sizeof(Float);
 2487: av_float(alist, r);
 2488: 
 2489: av-double-r	( -- )	gforth  av_double_r
 2490: double r = *(Float*)lp;
 2491: lp += sizeof(Float);
 2492: av_double(alist, r);
 2493: 
 2494: av-longlong-r	( R:d -- )	gforth  av_longlong_r
 2495: #ifdef BUGGY_LL_SIZE
 2496: av_longlong(alist, DLO(d));
 2497: #else
 2498: av_longlong(alist, d);
 2499: #endif
 2500: 
 2501: av-ptr-r	( R:c_addr -- )	gforth  av_ptr_r
 2502: av_ptr(alist, void*, c_addr);
 2503: 
 2504: av-call-void	( -- )	gforth  av_call_void
 2505: SAVE_REGS
 2506: av_call(alist);
 2507: REST_REGS
 2508: 
 2509: av-call-int	( -- w )	gforth  av_call_int
 2510: SAVE_REGS
 2511: av_call(alist);
 2512: REST_REGS
 2513: w = irv;
 2514: 
 2515: av-call-float	( -- r )	gforth  av_call_float
 2516: SAVE_REGS
 2517: av_call(alist);
 2518: REST_REGS
 2519: r = frv;
 2520: 
 2521: av-call-double	( -- r )	gforth  av_call_double
 2522: SAVE_REGS
 2523: av_call(alist);
 2524: REST_REGS
 2525: r = drv;
 2526: 
 2527: av-call-longlong	( -- d )	gforth  av_call_longlong
 2528: SAVE_REGS
 2529: av_call(alist);
 2530: REST_REGS
 2531: #ifdef BUGGY_LONG_LONG
 2532: DLO_IS(d, llrv);
 2533: DHI_IS(d, 0);
 2534: #else
 2535: d = llrv;
 2536: #endif
 2537: 
 2538: av-call-ptr	( -- c_addr )	gforth  av_call_ptr
 2539: SAVE_REGS
 2540: av_call(alist);
 2541: REST_REGS
 2542: c_addr = prv;
 2543: 
 2544: alloc-callback	( a_ip -- c_addr )	gforth	alloc_callback
 2545: c_addr = (char *)alloc_callback(engine_callback, (Xt *)a_ip);
 2546: 
 2547: va-start-void	( -- )	gforth	va_start_void
 2548: va_start_void(clist);
 2549: 
 2550: va-start-int	( -- )	gforth	va_start_int
 2551: va_start_int(clist);
 2552: 
 2553: va-start-longlong	( -- )	gforth	va_start_longlong
 2554: va_start_longlong(clist);
 2555: 
 2556: va-start-ptr	( -- )	gforth	va_start_ptr
 2557: va_start_ptr(clist, (char *));
 2558: 
 2559: va-start-float	( -- )	gforth	va_start_float
 2560: va_start_float(clist);
 2561: 
 2562: va-start-double	( -- )	gforth	va_start_double
 2563: va_start_double(clist);
 2564: 
 2565: va-arg-int	( -- w )	gforth	va_arg_int
 2566: w = va_arg_int(clist);
 2567: 
 2568: va-arg-longlong	( -- d )	gforth	va_arg_longlong
 2569: #ifdef BUGGY_LONG_LONG
 2570: DLO_IS(d, va_arg_longlong(clist));
 2571: DHI_IS(d, 0);
 2572: #else
 2573: d = va_arg_longlong(clist);
 2574: #endif
 2575: 
 2576: va-arg-ptr	( -- c_addr )	gforth	va_arg_ptr
 2577: c_addr = (char *)va_arg_ptr(clist,char*);
 2578: 
 2579: va-arg-float	( -- r )	gforth	va_arg_float
 2580: r = va_arg_float(clist);
 2581: 
 2582: va-arg-double	( -- r )	gforth	va_arg_double
 2583: r = va_arg_double(clist);
 2584: 
 2585: va-return-void ( -- )	gforth va_return_void
 2586: va_return_void(clist);
 2587: return 0;
 2588: 
 2589: va-return-int ( w -- )	gforth va_return_int
 2590: va_return_int(clist, w);
 2591: return 0;
 2592: 
 2593: va-return-ptr ( c_addr -- )	gforth va_return_ptr
 2594: va_return_ptr(clist, void *, c_addr);
 2595: return 0;
 2596: 
 2597: va-return-longlong ( d -- )	gforth va_return_longlong
 2598: #ifdef BUGGY_LONG_LONG
 2599: va_return_longlong(clist, d.lo);
 2600: #else
 2601: va_return_longlong(clist, d);
 2602: #endif
 2603: return 0;
 2604: 
 2605: va-return-float ( r -- )	gforth va_return_float
 2606: va_return_float(clist, r);
 2607: return 0;
 2608: 
 2609: va-return-double ( r -- )	gforth va_return_double
 2610: va_return_double(clist, r);
 2611: return 0;
 2612: 
 2613: \+
 2614: 
 2615: \+OLDCALL
 2616: 
 2617: define(`uploop',
 2618:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2619: define(`_uploop',
 2620:        `ifelse($1, `$3', `$5',
 2621: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2622: \ argflist(argnum): Forth argument list
 2623: define(argflist,
 2624:        `ifelse($1, 0, `',
 2625:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2626: \ argdlist(argnum): declare C's arguments
 2627: define(argdlist,
 2628:        `ifelse($1, 0, `',
 2629:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2630: \ argclist(argnum): pass C's arguments
 2631: define(argclist,
 2632:        `ifelse($1, 0, `',
 2633:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2634: \ icall(argnum)
 2635: define(icall,
 2636: `icall$1	( argflist($1)u -- uret )	gforth
 2637: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2638: 
 2639: ')
 2640: define(fcall,
 2641: `fcall$1	( argflist($1)u -- rret )	gforth
 2642: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2643: 
 2644: ')
 2645: 
 2646: \ close ' to keep fontify happy
 2647: 
 2648: uploop(i, 0, 7, `icall(i)')
 2649: icall(20)
 2650: uploop(i, 0, 7, `fcall(i)')
 2651: fcall(20)
 2652: 
 2653: \+
 2654: \+
 2655: 
 2656: \g peephole
 2657: 
 2658: \+peephole
 2659: 
 2660: compile-prim1 ( a_prim -- ) gforth compile_prim1
 2661: ""compile prim (incl. immargs) at @var{a_prim}""
 2662: compile_prim1(a_prim);
 2663: 
 2664: finish-code ( -- ) gforth finish_code
 2665: ""Perform delayed steps in code generation (branch resolution, I-cache
 2666: flushing).""
 2667: IF_spTOS(sp[0]=spTOS); /* workaround for failing to save spTOS
 2668: 			  (gcc-2.95.1, gforth-fast --enable-force-reg) */
 2669: finish_code();
 2670: IF_spTOS(spTOS=sp[0]);
 2671: 
 2672: forget-dyncode ( c_code -- f ) gforth-internal forget_dyncode
 2673: f = forget_dyncode(c_code);
 2674: 
 2675: decompile-prim ( a_code -- a_prim ) gforth-internal decompile_prim
 2676: ""a_prim is the code address of the primitive that has been
 2677: compile_prim1ed to a_code""
 2678: a_prim = (Cell *)decompile_code((Label)a_code);
 2679: 
 2680: \ set-next-code and call2 do not appear in images and can be
 2681: \ renumbered arbitrarily
 2682: 
 2683: set-next-code ( #w -- ) gforth set_next_code
 2684: #ifdef NO_IP
 2685: next_code = (Label)w;
 2686: #endif
 2687: 
 2688: call2 ( #a_callee #a_ret_addr -- R:a_ret_addr ) gforth
 2689: /* call with explicit return address */
 2690: #ifdef NO_IP
 2691: INST_TAIL;
 2692: JUMP(a_callee);
 2693: #else
 2694: assert(0);
 2695: #endif
 2696: 
 2697: tag-offsets ( -- a_addr ) gforth tag_offsets
 2698: extern Cell groups[32];
 2699: a_addr = groups;
 2700: 
 2701: \+
 2702: 
 2703: \g static_super
 2704: 
 2705: ifdef(`M4_ENGINE_FAST',
 2706: `include(peeprules.vmg)')
 2707: 
 2708: \g end

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>