Diff for /gforth/prim between versions 1.51 and 1.52

version 1.51, 2000/08/08 12:37:05 version 1.52, 2000/08/09 20:04:06
Line 445  n = rp[4]; Line 445  n = rp[4];
 \ digit is high-level: 0/0%  \ digit is high-level: 0/0%
   
 move    ( c_from c_to ucount -- )               core  move    ( c_from c_to ucount -- )               core
 ""Copy the contents of @i{ucount} address units at @i{c-from} to  ""Copy the contents of @i{ucount} aus at @i{c-from} to
 @i{c-to}. @code{move} works correctly even if the two areas overlap.""  @i{c-to}. @code{move} works correctly even if the two areas overlap.""
   /* !! note that the standard specifies addr, not c-addr */
 memmove(c_to,c_from,ucount);  memmove(c_to,c_from,ucount);
 /* make an Ifdef for bsd and others? */  /* make an Ifdef for bsd and others? */
 :  :
Line 475  while (u-- > 0) Line 476  while (u-- > 0)
  DO  1- dup c@ I c!  -1 +LOOP  drop ;   DO  1- dup c@ I c!  -1 +LOOP  drop ;
   
 fill    ( c_addr u c -- )       core  fill    ( c_addr u c -- )       core
 "" If @i{u}>0, store character @i{c} in each of @i{u} consecutive  ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
 @code{char} addresses in memory, starting at address @i{c-addr}.""  
 memset(c_addr,c,u);  memset(c_addr,c,u);
 :  :
  -rot bounds   -rot bounds
Line 600  else Line 600  else
 :  :
  2dup > IF swap THEN drop ;   2dup > IF swap THEN drop ;
   
 abs     ( n1 -- n2 )    core  abs     ( n -- u )      core
 if (n1<0)  if (n<0)
   n2 = -n1;    u = -n;
 else  else
   n2 = n1;    u = n;
 :  :
  dup 0< IF negate THEN ;   dup 0< IF negate THEN ;
   
Line 630  n3 = n1%n2; /* !! is this correct? look Line 630  n3 = n1%n2; /* !! is this correct? look
  >r s>d r> fm/mod ;   >r s>d r> fm/mod ;
   
 2*      ( n1 -- n2 )            core            two_star  2*      ( n1 -- n2 )            core            two_star
   ""Shift left by 1; also works on unsigned numbers""
 n2 = 2*n1;  n2 = 2*n1;
 :  :
  dup + ;   dup + ;
   
 2/      ( n1 -- n2 )            core            two_slash  2/      ( n1 -- n2 )            core            two_slash
 /* !! is this still correct? */  ""Arithmetic shift right by 1.  For signed numbers this is a floored
   division by 2 (note that @code{/} not necessarily floors).""
 n2 = n1>>1;  n2 = n1>>1;
 :  :
  dup MINI and IF 1 ELSE 0 THEN   dup MINI and IF 1 ELSE 0 THEN
Line 777  d2 = -d1; Line 779  d2 = -d1;
  invert swap negate tuck 0= - ;   invert swap negate tuck 0= - ;
   
 d2*     ( d1 -- d2 )            double          d_two_star  d2*     ( d1 -- d2 )            double          d_two_star
   ""Shift left by 1; also works on unsigned numbers""
 #ifdef BUGGY_LONG_LONG  #ifdef BUGGY_LONG_LONG
 d2.lo = d1.lo<<1;  d2.lo = d1.lo<<1;
 d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));  d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
Line 787  d2 = 2*d1; Line 790  d2 = 2*d1;
  2dup d+ ;   2dup d+ ;
   
 d2/     ( d1 -- d2 )            double          d_two_slash  d2/     ( d1 -- d2 )            double          d_two_slash
   ""Arithmetic shift right by 1.  For signed numbers this is a floored
   division by 2.""
 #ifdef BUGGY_LONG_LONG  #ifdef BUGGY_LONG_LONG
 d2.hi = d1.hi>>1;  d2.hi = d1.hi>>1;
 d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));  d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
Line 939  about this word is to consider the numbe Line 944  about this word is to consider the numbe
 around from @code{max-u} to 0 for unsigned, and from @code{max-n} to  around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 min-n for signed numbers); now consider the range from u2 towards  min-n for signed numbers); now consider the range from u2 towards
 increasing numbers up to and excluding u3 (giving an empty range if  increasing numbers up to and excluding u3 (giving an empty range if
 u2=u3; if u1 is in this range, @code{within} returns true.""  u2=u3); if u1 is in this range, @code{within} returns true.""
 f = FLAG(u1-u2 < u3-u2);  f = FLAG(u1-u2 < u3-u2);
 :  :
  over - >r - r> u< ;   over - >r - r> u< ;
Line 972  fp = f_addr; Line 977  fp = f_addr;
 SET_IP((Xt *)(*rp++));  SET_IP((Xt *)(*rp++));
   
 >r      ( w -- )                core    to_r  >r      ( w -- )                core    to_r
   ""@code{( R: -- w )}""
 *--rp = w;  *--rp = w;
 :  :
  (>r) ;   (>r) ;
 : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;  : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
   
 r>      ( -- w )                core    r_from  r>      ( -- w )                core    r_from
   ""@code{( R: w -- )}""
 w = *rp++;  w = *rp++;
 :  :
  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;   rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 Create (rdrop) ' ;s A,  Create (rdrop) ' ;s A,
   
 rdrop   ( -- )          gforth  rdrop   ( -- )          gforth
   ""@code{( R: w -- )}""
 rp++;  rp++;
 :  :
  r> r> drop >r ;   r> r> drop >r ;
   
 2>r     ( w1 w2 -- )    core-ext        two_to_r  2>r     ( w1 w2 -- )    core-ext        two_to_r
   ""@code{( R: -- w1 w2 )}""
 *--rp = w1;  *--rp = w1;
 *--rp = w2;  *--rp = w2;
 :  :
  swap r> swap >r swap >r >r ;   swap r> swap >r swap >r >r ;
   
 2r>     ( -- w1 w2 )    core-ext        two_r_from  2r>     ( -- w1 w2 )    core-ext        two_r_from
   ""@code{( R: w1 w2 -- )}""
 w2 = *rp++;  w2 = *rp++;
 w1 = *rp++;  w1 = *rp++;
 :  :
  r> r> swap r> swap >r swap ;   r> r> swap r> swap >r swap ;
   
 2r@     ( -- w1 w2 )    core-ext        two_r_fetch  2r@     ( -- w1 w2 )    core-ext        two_r_fetch
   ""@code{( R: w1 w2 -- w1 w2 )}""
 w2 = rp[0];  w2 = rp[0];
 w1 = rp[1];  w1 = rp[1];
 :  :
  i' j ;   i' j ;
   
 2rdrop  ( -- )          gforth  two_r_drop  2rdrop  ( -- )          gforth  two_r_drop
   ""@code{( R: w1 w2 -- )}""
 rp+=2;  rp+=2;
 :  :
  r> r> drop r> drop >r ;   r> r> drop r> drop >r ;
Line 1050  tuck ( w1 w2 -- w2 w1 w2 ) core-ext Line 1062  tuck ( w1 w2 -- w2 w1 w2 ) core-ext
  swap over ;   swap over ;
   
 ?dup    ( w -- w )                      core    question_dupe  ?dup    ( w -- w )                      core    question_dupe
   ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
   @code{dup} if w is nonzero.""
 if (w!=0) {  if (w!=0) {
   IF_TOS(*sp-- = w;)    IF_TOS(*sp-- = w;)
 #ifndef USE_TOS  #ifndef USE_TOS
Line 1060  if (w!=0) { Line 1074  if (w!=0) {
  dup IF dup THEN ;   dup IF dup THEN ;
   
 pick    ( u -- w )                      core-ext  pick    ( u -- w )                      core-ext
   ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 w = sp[u+1];  w = sp[u+1];
 :  :
  1+ cells sp@ + @ ;   1+ cells sp@ + @ ;
Line 1095  w = sp[u+1]; Line 1110  w = sp[u+1];
 \ toggle is high-level: 0.11/0.42%  \ toggle is high-level: 0.11/0.42%
   
 @       ( a_addr -- w )         core    fetch  @       ( a_addr -- w )         core    fetch
 "" Read from the cell at address @i{a-addr}, and return its contents, @i{w}.""  ""@i{w} is the cell stored at @i{a_addr}.""
 w = *a_addr;  w = *a_addr;
   
 !       ( w a_addr -- )         core    store  !       ( w a_addr -- )         core    store
 "" Write the value @i{w} to the cell at address @i{a-addr}.""  ""Store @i{w} into the cell at @i{a-addr}.""
 *a_addr = w;  *a_addr = w;
   
 +!      ( n a_addr -- )         core    plus_store  +!      ( n a_addr -- )         core    plus_store
 "" Add @i{n} to the value stored in the cell at address @i{a-addr}.""  ""Add @i{n} to the cell at @i{a-addr}.""
 *a_addr += n;  *a_addr += n;
 :  :
  tuck @ + swap ! ;   tuck @ + swap ! ;
   
 c@      ( c_addr -- c )         core    c_fetch  c@      ( c_addr -- c )         core    c_fetch
 "" Read from the char at address @i{c-addr}, and return its contents, @i{c}.""  ""@i{c} is the char stored at @i{c_addr}.""
 c = *c_addr;  c = *c_addr;
 :  :
 [ bigendian [IF] ]  [ bigendian [IF] ]
Line 1135  c = *c_addr; Line 1150  c = *c_addr;
 : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;  : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
   
 c!      ( c c_addr -- )         core    c_store  c!      ( c c_addr -- )         core    c_store
 "" Write the value @i{c} to the char at address @i{c-addr}.""  ""Store @i{c} into the char at @i{c-addr}.""
 *c_addr = c;  *c_addr = c;
 :  :
 [ bigendian [IF] ]  [ bigendian [IF] ]
Line 1165  c! ( c c_addr -- )  core c_store Line 1180  c! ( c c_addr -- )  core c_store
 : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;  : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
   
 2!      ( w1 w2 a_addr -- )             core    two_store  2!      ( w1 w2 a_addr -- )             core    two_store
 "" Write the value @i{w1, w2} to the double at address @i{a-addr}.""  ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 a_addr[0] = w2;  a_addr[0] = w2;
 a_addr[1] = w1;  a_addr[1] = w1;
 :  :
  tuck ! cell+ ! ;   tuck ! cell+ ! ;
   
 2@      ( a_addr -- w1 w2 )             core    two_fetch  2@      ( a_addr -- w1 w2 )             core    two_fetch
 "" Read from the double at address @i{a-addr}, and return its contents, @i{w1, w2}.""  ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
   the content of the next cell.""
 w2 = a_addr[0];  w2 = a_addr[0];
 w1 = a_addr[1];  w1 = a_addr[1];
 :  :
  dup cell+ @ swap @ ;   dup cell+ @ swap @ ;
   
 cell+   ( a_addr1 -- a_addr2 )  core    cell_plus  cell+   ( a_addr1 -- a_addr2 )  core    cell_plus
 "" Increment @i{a-addr1} by the number of address units corresponding to the size of  ""@code{1 cells +}""
 one cell, to give @i{a-addr2}.""  
 a_addr2 = a_addr1+1;  a_addr2 = a_addr1+1;
 :  :
  cell + ;   cell + ;
   
 cells   ( n1 -- n2 )            core  cells   ( n1 -- n2 )            core
 "" @i{n2} is the number of address units corresponding to @i{n1} cells.""  "" @i{n2} is the number of address units of @i{n1} cells.""
 n2 = n1 * sizeof(Cell);  n2 = n1 * sizeof(Cell);
 :  :
  [ cell   [ cell
Line 1197  n2 = n1 * sizeof(Cell); Line 1212  n2 = n1 * sizeof(Cell);
  drop ] ;   drop ] ;
   
 char+   ( c_addr1 -- c_addr2 )  core    char_plus  char+   ( c_addr1 -- c_addr2 )  core    char_plus
 "" Increment @i{c-addr1} by the number of address units corresponding to the size of  ""@code{1 chars +}.""
 one char, to give @i{c-addr2}.""  
 c_addr2 = c_addr1 + 1;  c_addr2 = c_addr1 + 1;
 :  :
  1+ ;   1+ ;
Line 1526  allocate ( u -- a_addr wior ) memory Line 1540  allocate ( u -- a_addr wior ) memory
 contents of the data space is undefined. If the allocation is successful,  contents of the data space is undefined. If the allocation is successful,
 @i{a-addr} is the start address of the allocated region and @i{wior}  @i{a-addr} is the start address of the allocated region and @i{wior}
 is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}  is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 is an implementation-defined I/O result code.""  is a non-zero I/O result code.""
 a_addr = (Cell *)malloc(u?u:1);  a_addr = (Cell *)malloc(u?u:1);
 wior = IOR(a_addr==NULL);  wior = IOR(a_addr==NULL);
   
 free    ( a_addr -- wior )              memory  free    ( a_addr -- wior )              memory
 ""Return the region of data space starting at @i{a-addr} to the system.  ""Return the region of data space starting at @i{a-addr} to the system.
 The regon must originally have been obtained using @code{allocate} or  The region must originally have been obtained using @code{allocate} or
 @code{resize}. If the operational is successful, @i{wior} is 0.  @code{resize}. If the operational is successful, @i{wior} is 0.
 If the operation fails, @i{wior} is an implementation-defined  If the operation fails, @i{wior} is a non-zero I/O result code.""
 I/O result code.""  
 free(a_addr);  free(a_addr);
 wior = 0;  wior = 0;
   
Line 1543  resize ( a_addr1 u -- a_addr2 wior ) mem Line 1556  resize ( a_addr1 u -- a_addr2 wior ) mem
 ""Change the size of the allocated area at @i{a-addr1} to @i{u}  ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 address units, possibly moving the contents to a different  address units, possibly moving the contents to a different
 area. @i{a-addr2} is the address of the resulting area.  area. @i{a-addr2} is the address of the resulting area.
 If the operational is successful, @i{wior} is 0.  If the operation is successful, @i{wior} is 0.
 If the operation fails, @i{wior} is an implementation-defined  If the operation fails, @i{wior} is a non-zero
 I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)  I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 @code{resize} @code{allocate}s @i{u} address units.""  @code{resize} @code{allocate}s @i{u} address units.""
 /* the following check is not necessary on most OSs, but it is needed  /* the following check is not necessary on most OSs, but it is needed
Line 1743  d = r; Line 1756  d = r;
 #endif  #endif
   
 f!      ( r f_addr -- ) float   f_store  f!      ( r f_addr -- ) float   f_store
 "" Store the floating-point value @i{r} to address @i{f-addr}.""  ""Store @i{r} into the float at address @i{f-addr}.""
 *f_addr = r;  *f_addr = r;
   
 f@      ( f_addr -- r ) float   f_fetch  f@      ( f_addr -- r ) float   f_fetch
 "" Fetch floating-point value @i{r} from address @i{f-addr}.""  ""@i{r} is the float at address @i{f-addr}.""
 r = *f_addr;  r = *f_addr;
   
 df@     ( df_addr -- r )        float-ext       d_f_fetch  df@     ( df_addr -- r )        float-ext       d_f_fetch
 "" Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""  ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 r = *df_addr;  r = *df_addr;
 #else  #else
Line 1759  r = *df_addr; Line 1772  r = *df_addr;
 #endif  #endif
   
 df!     ( r df_addr -- )        float-ext       d_f_store  df!     ( r df_addr -- )        float-ext       d_f_store
 "" Store the double-precision IEEE floating-point value @i{r} to the address @i{df-addr}.""  ""Store @i{r} as double-precision IEEE floating-point value to the
   address @i{df-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 *df_addr = r;  *df_addr = r;
 #else  #else
Line 1767  df! ( r df_addr -- ) float-ext d_f_store Line 1781  df! ( r df_addr -- ) float-ext d_f_store
 #endif  #endif
   
 sf@     ( sf_addr -- r )        float-ext       s_f_fetch  sf@     ( sf_addr -- r )        float-ext       s_f_fetch
 "" Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""  ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 r = *sf_addr;  r = *sf_addr;
 #else  #else
Line 1775  r = *sf_addr; Line 1789  r = *sf_addr;
 #endif  #endif
   
 sf!     ( r sf_addr -- )        float-ext       s_f_store  sf!     ( r sf_addr -- )        float-ext       s_f_store
 "" Store the single-precision IEEE floating-point value @i{r} to the address @i{sf-addr}.""  ""Store @i{r} as single-precision IEEE floating-point value to the
   address @i{sf-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 *sf_addr = r;  *sf_addr = r;
 #else  #else
Line 1816  fnip ( r1 r2 -- r2 ) gforth f_nip Line 1831  fnip ( r1 r2 -- r2 ) gforth f_nip
 ftuck   ( r1 r2 -- r2 r1 r2 )   gforth  f_tuck  ftuck   ( r1 r2 -- r2 r1 r2 )   gforth  f_tuck
   
 float+  ( f_addr1 -- f_addr2 )  float   float_plus  float+  ( f_addr1 -- f_addr2 )  float   float_plus
 "" Increment @i{f-addr1} by the number of address units corresponding to the size of  ""@code{1 floats +}.""
 one floating-point number, to give @i{f-addr2}.""  
 f_addr2 = f_addr1+1;  f_addr2 = f_addr1+1;
   
 floats  ( n1 -- n2 )    float  floats  ( n1 -- n2 )    float
 ""@i{n2} is the number of address units corresponding to @i{n1} floating-point numbers.""  ""@i{n2} is the number of address units of @i{n1} floats.""
 n2 = n1*sizeof(Float);  n2 = n1*sizeof(Float);
   
 floor   ( r1 -- r2 )    float  floor   ( r1 -- r2 )    float
Line 2016  r2 = atanh(r1); Line 2030  r2 = atanh(r1);
  r> IF  fnegate  THEN ;   r> IF  fnegate  THEN ;
   
 sfloats ( n1 -- n2 )    float-ext       s_floats  sfloats ( n1 -- n2 )    float-ext       s_floats
 ""@i{n2} is the number of address units corresponding to @i{n1}  ""@i{n2} is the number of address units of @i{n1}
 single-precision IEEE floating-point numbers.""  single-precision IEEE floating-point numbers.""
 n2 = n1*sizeof(SFloat);  n2 = n1*sizeof(SFloat);
   
 dfloats ( n1 -- n2 )    float-ext       d_floats  dfloats ( n1 -- n2 )    float-ext       d_floats
 ""@i{n2} is the number of address units corresponding to @i{n1}  ""@i{n2} is the number of address units of @i{n1}
 double-precision IEEE floating-point numbers.""  double-precision IEEE floating-point numbers.""
 n2 = n1*sizeof(DFloat);  n2 = n1*sizeof(DFloat);
   
 sfaligned       ( c_addr -- sf_addr )   float-ext       s_f_aligned  sfaligned       ( c_addr -- sf_addr )   float-ext       s_f_aligned
 "" @i{sf-addr} is the first single-float-aligned address greater  ""@i{sf-addr} is the first single-float-aligned address greater
 than or equal to @i{c-addr}.""  than or equal to @i{c-addr}.""
 sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));  sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 :  :
  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;   [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
   
 dfaligned       ( c_addr -- df_addr )   float-ext       d_f_aligned  dfaligned       ( c_addr -- df_addr )   float-ext       d_f_aligned
 "" @i{df-addr} is the first double-float-aligned address greater  ""@i{df-addr} is the first double-float-aligned address greater
 than or equal to @i{c-addr}.""  than or equal to @i{c-addr}.""
 df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));  df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 :  :
Line 2113  lp -= sizeof(Float); Line 2127  lp -= sizeof(Float);
 *(Float *)lp = r;  *(Float *)lp = r;
   
 fpick   ( u -- r )              gforth  fpick   ( u -- r )              gforth
   ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 r = fp[u+1]; /* +1, because update of fp happens before this fragment */  r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 :  :
  floats fp@ + f@ ;   floats fp@ + f@ ;

Removed from v.1.51  
changed lines
  Added in v.1.52


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>