Diff for /gforth/prim between versions 1.47 and 1.62

version 1.47, 2000/07/14 08:55:15 version 1.62, 2000/09/23 15:06:01
Line 1 Line 1
 \ Gforth primitives  \ Gforth primitives
   
 \ Copyright (C) 1995,1996,1997,1998 Free Software Foundation, Inc.  \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
   
 \ This file is part of Gforth.  \ This file is part of Gforth.
   
Line 36 Line 36
 \ be separated by at least one empty line  \ be separated by at least one empty line
 \  \
 \ Both pronounciation and stack items (in the stack effect) must  \ Both pronounciation and stack items (in the stack effect) must
 \ conform to the C name syntax or the C compiler will complain.  \ conform to the C identifier syntax or the C compiler will complain.
 \   \ If you don't have a pronounciation field, the Forth name is used,
   \ and has to conform to the C identifier syntax.
 \   \ 
 \ These specifications are automatically translated into C-code for the  \ These specifications are automatically translated into C-code for the
 \ interpreter and into some other files. I hope that your C compiler has  \ interpreter and into some other files. I hope that your C compiler has
Line 120  IF_TOS(TOS = sp[0]); Line 121  IF_TOS(TOS = sp[0]);
 EXEC(xt);  EXEC(xt);
   
 perform ( a_addr -- )   gforth  perform ( a_addr -- )   gforth
 ""Equivalent to @code{@ execute}.""  ""@code{@@ execute}.""
 /* and pfe */  /* and pfe */
 ip=IP;  ip=IP;
 IF_TOS(TOS = sp[0]);  IF_TOS(TOS = sp[0]);
Line 444  n = rp[4]; Line 445  n = rp[4];
 \ digit is high-level: 0/0%  \ digit is high-level: 0/0%
   
 move    ( c_from c_to ucount -- )               core  move    ( c_from c_to ucount -- )               core
 ""Copy the contents of @i{ucount} address units at @i{c-from} to  ""Copy the contents of @i{ucount} aus at @i{c-from} to
 @i{c-to}. @code{move} works correctly even if the two areas overlap.""  @i{c-to}. @code{move} works correctly even if the two areas overlap.""
   /* !! note that the standard specifies addr, not c-addr */
 memmove(c_to,c_from,ucount);  memmove(c_to,c_from,ucount);
 /* make an Ifdef for bsd and others? */  /* make an Ifdef for bsd and others? */
 :  :
Line 474  while (u-- > 0) Line 476  while (u-- > 0)
  DO  1- dup c@ I c!  -1 +LOOP  drop ;   DO  1- dup c@ I c!  -1 +LOOP  drop ;
   
 fill    ( c_addr u c -- )       core  fill    ( c_addr u c -- )       core
 "" If @i{u}>0, store character @i{c} in each of @i{u} consecutive  ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
 @code{char} addresses in memory, starting at address @i{c-addr}.""  
 memset(c_addr,c,u);  memset(c_addr,c,u);
 :  :
  -rot bounds   -rot bounds
Line 510  else if (n>0) Line 511  else if (n>0)
 :  :
  swap bounds   swap bounds
  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0   ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  ELSE  c@ I c@ - unloop  THEN  -text-flag ;   ELSE  c@ I c@ - unloop  THEN  sgn ;
 : sgn ( n -- -1/0/1 )  : sgn ( n -- -1/0/1 )
  dup 0= IF EXIT THEN  0< 2* 1+ ;   dup 0= IF EXIT THEN  0< 2* 1+ ;
   
Line 532  else if (n>0) Line 533  else if (n>0)
  ?DO  dup c@ I c@ <>   ?DO  dup c@ I c@ <>
      IF  dup c@ toupper I c@ toupper =       IF  dup c@ toupper I c@ toupper =
      ELSE  true  THEN  WHILE  1+  LOOP  drop 0       ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  ELSE  c@ toupper I c@ toupper - unloop  THEN  -text-flag ;   ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
   
 -trailing       ( c_addr u1 -- c_addr u2 )              string  dash_trailing  -trailing       ( c_addr u1 -- c_addr u2 )              string  dash_trailing
 ""Adjust the string specified by @i{c-addr, u1} to remove all trailing  ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
Line 599  else Line 600  else
 :  :
  2dup > IF swap THEN drop ;   2dup > IF swap THEN drop ;
   
 abs     ( n1 -- n2 )    core  abs     ( n -- u )      core
 if (n1<0)  if (n<0)
   n2 = -n1;    u = -n;
 else  else
   n2 = n1;    u = n;
 :  :
  dup 0< IF negate THEN ;   dup 0< IF negate THEN ;
   
Line 629  n3 = n1%n2; /* !! is this correct? look Line 630  n3 = n1%n2; /* !! is this correct? look
  >r s>d r> fm/mod ;   >r s>d r> fm/mod ;
   
 2*      ( n1 -- n2 )            core            two_star  2*      ( n1 -- n2 )            core            two_star
   ""Shift left by 1; also works on unsigned numbers""
 n2 = 2*n1;  n2 = 2*n1;
 :  :
  dup + ;   dup + ;
   
 2/      ( n1 -- n2 )            core            two_slash  2/      ( n1 -- n2 )            core            two_slash
 /* !! is this still correct? */  ""Arithmetic shift right by 1.  For signed numbers this is a floored
   division by 2 (note that @code{/} not necessarily floors).""
 n2 = n1>>1;  n2 = n1>>1;
 :  :
  dup MINI and IF 1 ELSE 0 THEN   dup MINI and IF 1 ELSE 0 THEN
Line 776  d2 = -d1; Line 779  d2 = -d1;
  invert swap negate tuck 0= - ;   invert swap negate tuck 0= - ;
   
 d2*     ( d1 -- d2 )            double          d_two_star  d2*     ( d1 -- d2 )            double          d_two_star
   ""Shift left by 1; also works on unsigned numbers""
 #ifdef BUGGY_LONG_LONG  #ifdef BUGGY_LONG_LONG
 d2.lo = d1.lo<<1;  d2.lo = d1.lo<<1;
 d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));  d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
Line 786  d2 = 2*d1; Line 790  d2 = 2*d1;
  2dup d+ ;   2dup d+ ;
   
 d2/     ( d1 -- d2 )            double          d_two_slash  d2/     ( d1 -- d2 )            double          d_two_slash
   ""Arithmetic shift right by 1.  For signed numbers this is a floored
   division by 2.""
 #ifdef BUGGY_LONG_LONG  #ifdef BUGGY_LONG_LONG
 d2.hi = d1.hi>>1;  d2.hi = d1.hi>>1;
 d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));  d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
Line 813  w2 = ~w1; Line 819  w2 = ~w1;
  MAXU xor ;   MAXU xor ;
   
 rshift  ( u1 n -- u2 )          core    r_shift  rshift  ( u1 n -- u2 )          core    r_shift
   ""Logical shift right by @i{n} bits.""
   u2 = u1>>n;    u2 = u1>>n;
 :  :
     0 ?DO 2/ MAXI and LOOP ;      0 ?DO 2/ MAXI and LOOP ;
Line 938  about this word is to consider the numbe Line 945  about this word is to consider the numbe
 around from @code{max-u} to 0 for unsigned, and from @code{max-n} to  around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
 min-n for signed numbers); now consider the range from u2 towards  min-n for signed numbers); now consider the range from u2 towards
 increasing numbers up to and excluding u3 (giving an empty range if  increasing numbers up to and excluding u3 (giving an empty range if
 u2=u3; if u1 is in this range, @code{within} returns true.""  u2=u3); if u1 is in this range, @code{within} returns true.""
 f = FLAG(u1-u2 < u3-u2);  f = FLAG(u1-u2 < u3-u2);
 :  :
  over - >r - r> u< ;   over - >r - r> u< ;
Line 971  fp = f_addr; Line 978  fp = f_addr;
 SET_IP((Xt *)(*rp++));  SET_IP((Xt *)(*rp++));
   
 >r      ( w -- )                core    to_r  >r      ( w -- )                core    to_r
   ""@code{( R: -- w )}""
 *--rp = w;  *--rp = w;
 :  :
  (>r) ;   (>r) ;
 : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;  : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
   
 r>      ( -- w )                core    r_from  r>      ( -- w )                core    r_from
   ""@code{( R: w -- )}""
 w = *rp++;  w = *rp++;
 :  :
  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;   rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
 Create (rdrop) ' ;s A,  Create (rdrop) ' ;s A,
   
 rdrop   ( -- )          gforth  rdrop   ( -- )          gforth
   ""@code{( R: w -- )}""
 rp++;  rp++;
 :  :
  r> r> drop >r ;   r> r> drop >r ;
   
 2>r     ( w1 w2 -- )    core-ext        two_to_r  2>r     ( w1 w2 -- )    core-ext        two_to_r
   ""@code{( R: -- w1 w2 )}""
 *--rp = w1;  *--rp = w1;
 *--rp = w2;  *--rp = w2;
 :  :
  swap r> swap >r swap >r >r ;   swap r> swap >r swap >r >r ;
   
 2r>     ( -- w1 w2 )    core-ext        two_r_from  2r>     ( -- w1 w2 )    core-ext        two_r_from
   ""@code{( R: w1 w2 -- )}""
 w2 = *rp++;  w2 = *rp++;
 w1 = *rp++;  w1 = *rp++;
 :  :
  r> r> swap r> swap >r swap ;   r> r> swap r> swap >r swap ;
   
 2r@     ( -- w1 w2 )    core-ext        two_r_fetch  2r@     ( -- w1 w2 )    core-ext        two_r_fetch
   ""@code{( R: w1 w2 -- w1 w2 )}""
 w2 = rp[0];  w2 = rp[0];
 w1 = rp[1];  w1 = rp[1];
 :  :
  i' j ;   i' j ;
   
 2rdrop  ( -- )          gforth  two_r_drop  2rdrop  ( -- )          gforth  two_r_drop
   ""@code{( R: w1 w2 -- )}""
 rp+=2;  rp+=2;
 :  :
  r> r> drop r> drop >r ;   r> r> drop r> drop >r ;
Line 1049  tuck ( w1 w2 -- w2 w1 w2 ) core-ext Line 1063  tuck ( w1 w2 -- w2 w1 w2 ) core-ext
  swap over ;   swap over ;
   
 ?dup    ( w -- w )                      core    question_dupe  ?dup    ( w -- w )                      core    question_dupe
   ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
   @code{dup} if w is nonzero.""
 if (w!=0) {  if (w!=0) {
   IF_TOS(*sp-- = w;)    IF_TOS(*sp-- = w;)
 #ifndef USE_TOS  #ifndef USE_TOS
Line 1059  if (w!=0) { Line 1075  if (w!=0) {
  dup IF dup THEN ;   dup IF dup THEN ;
   
 pick    ( u -- w )                      core-ext  pick    ( u -- w )                      core-ext
   ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 w = sp[u+1];  w = sp[u+1];
 :  :
  1+ cells sp@ + @ ;   1+ cells sp@ + @ ;
Line 1094  w = sp[u+1]; Line 1111  w = sp[u+1];
 \ toggle is high-level: 0.11/0.42%  \ toggle is high-level: 0.11/0.42%
   
 @       ( a_addr -- w )         core    fetch  @       ( a_addr -- w )         core    fetch
 "" Read from the cell at address @i{a-addr}, and return its contents, @i{w}.""  ""@i{w} is the cell stored at @i{a_addr}.""
 w = *a_addr;  w = *a_addr;
   
 !       ( w a_addr -- )         core    store  !       ( w a_addr -- )         core    store
 "" Write the value @i{w} to the cell at address @i{a-addr}.""  ""Store @i{w} into the cell at @i{a-addr}.""
 *a_addr = w;  *a_addr = w;
   
 +!      ( n a_addr -- )         core    plus_store  +!      ( n a_addr -- )         core    plus_store
 "" Add @i{n} to the value stored in the cell at address @i{a-addr}.""  ""Add @i{n} to the cell at @i{a-addr}.""
 *a_addr += n;  *a_addr += n;
 :  :
  tuck @ + swap ! ;   tuck @ + swap ! ;
   
 c@      ( c_addr -- c )         core    c_fetch  c@      ( c_addr -- c )         core    c_fetch
 "" Read from the char at address @i{c-addr}, and return its contents, @i{c}.""  ""@i{c} is the char stored at @i{c_addr}.""
 c = *c_addr;  c = *c_addr;
 :  :
 [ bigendian [IF] ]  [ bigendian [IF] ]
Line 1134  c = *c_addr; Line 1151  c = *c_addr;
 : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;  : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
   
 c!      ( c c_addr -- )         core    c_store  c!      ( c c_addr -- )         core    c_store
 "" Write the value @i{c} to the char at address @i{c-addr}.""  ""Store @i{c} into the char at @i{c-addr}.""
 *c_addr = c;  *c_addr = c;
 :  :
 [ bigendian [IF] ]  [ bigendian [IF] ]
Line 1164  c! ( c c_addr -- )  core c_store Line 1181  c! ( c c_addr -- )  core c_store
 : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;  : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
   
 2!      ( w1 w2 a_addr -- )             core    two_store  2!      ( w1 w2 a_addr -- )             core    two_store
 "" Write the value @i{w1, w2} to the double at address @i{a-addr}.""  ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 a_addr[0] = w2;  a_addr[0] = w2;
 a_addr[1] = w1;  a_addr[1] = w1;
 :  :
  tuck ! cell+ ! ;   tuck ! cell+ ! ;
   
 2@      ( a_addr -- w1 w2 )             core    two_fetch  2@      ( a_addr -- w1 w2 )             core    two_fetch
 "" Read from the double at address @i{a-addr}, and return its contents, @i{w1, w2}.""  ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
   the content of the next cell.""
 w2 = a_addr[0];  w2 = a_addr[0];
 w1 = a_addr[1];  w1 = a_addr[1];
 :  :
  dup cell+ @ swap @ ;   dup cell+ @ swap @ ;
   
 cell+   ( a_addr1 -- a_addr2 )  core    cell_plus  cell+   ( a_addr1 -- a_addr2 )  core    cell_plus
 "" Increment @i{a-addr1} by the number of address units corresponding to the size of  ""@code{1 cells +}""
 one cell, to give @i{a-addr2}.""  
 a_addr2 = a_addr1+1;  a_addr2 = a_addr1+1;
 :  :
  cell + ;   cell + ;
   
 cells   ( n1 -- n2 )            core  cells   ( n1 -- n2 )            core
 "" @i{n2} is the number of address units corresponding to @i{n1} cells.""  "" @i{n2} is the number of address units of @i{n1} cells.""
 n2 = n1 * sizeof(Cell);  n2 = n1 * sizeof(Cell);
 :  :
  [ cell   [ cell
Line 1196  n2 = n1 * sizeof(Cell); Line 1213  n2 = n1 * sizeof(Cell);
  drop ] ;   drop ] ;
   
 char+   ( c_addr1 -- c_addr2 )  core    char_plus  char+   ( c_addr1 -- c_addr2 )  core    char_plus
 "" Increment @i{c-addr1} by the number of address units corresponding to the size of  ""@code{1 chars +}.""
 one char, to give @i{c-addr2}.""  
 c_addr2 = c_addr1 + 1;  c_addr2 = c_addr1 + 1;
 :  :
  1+ ;   1+ ;
Line 1208  n2 = n1 * sizeof(Char); Line 1224  n2 = n1 * sizeof(Char);
  ;   ;
   
 count   ( c_addr1 -- c_addr2 u )        core  count   ( c_addr1 -- c_addr2 u )        core
 "" If @i{c-add1} is the address of a counted string return the length of  ""@i{c-addr2} is the first character and @i{u} the length of the
 the string, @i{u}, and the address of its first character, @i{c-addr2}.""  counted string at @i{c-addr1}.""
 u = *c_addr1;  u = *c_addr1;
 c_addr2 = c_addr1+1;  c_addr2 = c_addr1+1;
 :  :
Line 1363  c_addr = (Address)CODE_ADDRESS(xt); Line 1379  c_addr = (Address)CODE_ADDRESS(xt);
     @ ;      @ ;
   
 >does-code      ( xt -- a_addr )                gforth  to_does_code  >does-code      ( xt -- a_addr )                gforth  to_does_code
 ""If @i{xt} is the execution token of a defining-word-defined word,  ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 @i{a-addr} is the start of the Forth code after the @code{DOES>};  @i{a-addr} is the start of the Forth code after the @code{DOES>};
 Otherwise @i{a-addr} is 0.""  Otherwise @i{a-addr} is 0.""
 a_addr = (Cell *)DOES_CODE(xt);  a_addr = (Cell *)DOES_CODE(xt);
Line 1378  CACHE_FLUSH(xt,(size_t)PFA(0)); Line 1394  CACHE_FLUSH(xt,(size_t)PFA(0));
     ! ;      ! ;
   
 does-code!      ( a_addr xt -- )                gforth  does_code_store  does-code!      ( a_addr xt -- )                gforth  does_code_store
 ""Create a code field at @i{xt} for a defining-word-defined word; @i{a-addr}  ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 is the start of the Forth code after @code{DOES>}.""  @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 MAKE_DOES_CF(xt, a_addr);  MAKE_DOES_CF(xt, a_addr);
 CACHE_FLUSH(xt,(size_t)PFA(0));  CACHE_FLUSH(xt,(size_t)PFA(0));
 :  :
     dodoes: over ! cell+ ! ;      dodoes: over ! cell+ ! ;
   
 does-handler!   ( a_addr -- )   gforth  does_handler_store  does-handler!   ( a_addr -- )   gforth  does_handler_store
 ""Create a @code{DOES>}-handler at address @i{a-addr}. Usually, @i{a-addr} points  ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 just behind a @code{DOES>}.""  @i{a-addr} points just behind a @code{DOES>}.""
 MAKE_DOES_HANDLER(a_addr);  MAKE_DOES_HANDLER(a_addr);
 CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);  CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 :  :
Line 1488  in length."" Line 1504  in length.""
 c_addr2 = getenv(cstr(c_addr1,u1,1));  c_addr2 = getenv(cstr(c_addr1,u1,1));
 u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));  u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
   
 open-pipe       ( c_addr u ntype -- wfileid wior )      gforth  open_pipe  open-pipe       ( c_addr u wfam -- wfileid wior )       gforth  open_pipe
 wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[ntype]); /* ~ expansion of 1st arg? */  wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */  wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
   
 close-pipe      ( wfileid -- wretval wior )             gforth  close_pipe  close-pipe      ( wfileid -- wretval wior )             gforth  close_pipe
Line 1503  struct timeval time1; Line 1519  struct timeval time1;
 struct timezone zone1;  struct timezone zone1;
 struct tm *ltime;  struct tm *ltime;
 gettimeofday(&time1,&zone1);  gettimeofday(&time1,&zone1);
   /* !! Single Unix specification: 
      If tzp is not a null pointer, the behaviour is unspecified. */
 ltime=localtime((time_t *)&time1.tv_sec);  ltime=localtime((time_t *)&time1.tv_sec);
 nyear =ltime->tm_year+1900;  nyear =ltime->tm_year+1900;
 nmonth=ltime->tm_mon+1;  nmonth=ltime->tm_mon+1;
Line 1523  allocate ( u -- a_addr wior ) memory Line 1541  allocate ( u -- a_addr wior ) memory
 contents of the data space is undefined. If the allocation is successful,  contents of the data space is undefined. If the allocation is successful,
 @i{a-addr} is the start address of the allocated region and @i{wior}  @i{a-addr} is the start address of the allocated region and @i{wior}
 is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}  is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 is an implementation-defined I/O result code.""  is a non-zero I/O result code.""
 a_addr = (Cell *)malloc(u?u:1);  a_addr = (Cell *)malloc(u?u:1);
 wior = IOR(a_addr==NULL);  wior = IOR(a_addr==NULL);
   
 free    ( a_addr -- wior )              memory  free    ( a_addr -- wior )              memory
 ""Return the region of data space starting at @i{a-addr} to the system.  ""Return the region of data space starting at @i{a-addr} to the system.
 The regon must originally have been obtained using @code{allocate} or  The region must originally have been obtained using @code{allocate} or
 @code{resize}. If the operational is successful, @i{wior} is 0.  @code{resize}. If the operational is successful, @i{wior} is 0.
 If the operation fails, @i{wior} is an implementation-defined  If the operation fails, @i{wior} is a non-zero I/O result code.""
 I/O result code.""  
 free(a_addr);  free(a_addr);
 wior = 0;  wior = 0;
   
Line 1540  resize ( a_addr1 u -- a_addr2 wior ) mem Line 1557  resize ( a_addr1 u -- a_addr2 wior ) mem
 ""Change the size of the allocated area at @i{a-addr1} to @i{u}  ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 address units, possibly moving the contents to a different  address units, possibly moving the contents to a different
 area. @i{a-addr2} is the address of the resulting area.  area. @i{a-addr2} is the address of the resulting area.
 If the operational is successful, @i{wior} is 0.  If the operation is successful, @i{wior} is 0.
 If the operation fails, @i{wior} is an implementation-defined  If the operation fails, @i{wior} is a non-zero
 I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)  I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 @code{resize} @code{allocate}s @i{u} address units.""  @code{resize} @code{allocate}s @i{u} address units.""
 /* the following check is not necessary on most OSs, but it is needed  /* the following check is not necessary on most OSs, but it is needed
Line 1582  IF_FTOS(FTOS=fp[0]); Line 1599  IF_FTOS(FTOS=fp[0]);
 close-file      ( wfileid -- wior )             file    close_file  close-file      ( wfileid -- wior )             file    close_file
 wior = IOR(fclose((FILE *)wfileid)==EOF);  wior = IOR(fclose((FILE *)wfileid)==EOF);
   
 open-file       ( c_addr u ntype -- wfileid wior )      file    open_file  open-file       ( c_addr u wfam -- wfileid wior )       file    open_file
 wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[ntype]);  wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 #if defined(GO32) && defined(MSDOS)  
 if(wfileid && !(ntype & 1))  
   setbuf((FILE*)wfileid, NULL);  
 #endif  
 wior =  IOR(wfileid == 0);  wior =  IOR(wfileid == 0);
   
 create-file     ( c_addr u ntype -- wfileid wior )      file    create_file  create-file     ( c_addr u wfam -- wfileid wior )       file    create_file
 Cell    fd;  Cell    fd;
 fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[ntype], 0666);  fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 if (fd != -1) {  if (fd != -1) {
   wfileid = (Cell)fdopen(fd, fileattr[ntype]);    wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 #if defined(GO32) && defined(MSDOS)  
   if(wfileid && !(ntype & 1))  
     setbuf((FILE*)wfileid, NULL);  
 #endif  
   wior = IOR(wfileid == 0);    wior = IOR(wfileid == 0);
 } else {  } else {
   wfileid = 0;    wfileid = 0;
Line 1638  if (wior) Line 1647  if (wior)
   clearerr((FILE *)wfileid);    clearerr((FILE *)wfileid);
   
 read-line       ( c_addr u1 wfileid -- u2 flag wior )   file    read_line  read-line       ( c_addr u1 wfileid -- u2 flag wior )   file    read_line
 #if 1  ""this is only for backward compatibility""
 Cell c;  Cell c;
 flag=-1;  flag=-1;
 for(u2=0; u2<u1; u2++)  for(u2=0; u2<u1; u2++)
Line 1657  for(u2=0; u2<u1; u2++) Line 1666  for(u2=0; u2<u1; u2++)
    c_addr[u2] = (Char)c;     c_addr[u2] = (Char)c;
 }  }
 wior=FILEIO(ferror((FILE *)wfileid));  wior=FILEIO(ferror((FILE *)wfileid));
 #else  
 if ((flag=FLAG(!feof((FILE *)wfileid) &&  
                fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {  
   wior=FILEIO(ferror((FILE *)wfileid)!=0); /* !! ior? */  
   if (wior)  
     clearerr((FILE *)wfileid);  
   u2 = strlen(c_addr);  
   u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));  
 }  
 else {  
   wior=0;  
   u2=0;  
 }  
 #endif  
   
 \+  \+
   
Line 1701  PUTC(c); Line 1696  PUTC(c);
 flush-file      ( wfileid -- wior )             file-ext        flush_file  flush-file      ( wfileid -- wior )             file-ext        flush_file
 wior = IOR(fflush((FILE *) wfileid)==EOF);  wior = IOR(fflush((FILE *) wfileid)==EOF);
   
 file-status     ( c_addr u -- ntype wior )      file-ext        file_status  file-status     ( c_addr u -- wfam wior )       file-ext        file_status
 char *filename=tilde_cstr(c_addr, u, 1);  char *filename=tilde_cstr(c_addr, u, 1);
 if (access (filename, F_OK) != 0) {  if (access (filename, F_OK) != 0) {
   ntype=0;    wfam=0;
   wior=IOR(1);    wior=IOR(1);
 }  }
 else if (access (filename, R_OK | W_OK) == 0) {  else if (access (filename, R_OK | W_OK) == 0) {
   ntype=2; /* r/w */    wfam=2; /* r/w */
   wior=0;    wior=0;
 }  }
 else if (access (filename, R_OK) == 0) {  else if (access (filename, R_OK) == 0) {
   ntype=0; /* r/o */    wfam=0; /* r/o */
   wior=0;    wior=0;
 }  }
 else if (access (filename, W_OK) == 0) {  else if (access (filename, W_OK) == 0) {
   ntype=4; /* w/o */    wfam=4; /* w/o */
   wior=0;    wior=0;
 }  }
 else {  else {
   ntype=1; /* well, we cannot access the file, but better deliver a legal    wfam=1; /* well, we cannot access the file, but better deliver a legal
             access mode (r/o bin), so we get a decent error later upon open. */              access mode (r/o bin), so we get a decent error later upon open. */
   wior=0;    wior=0;
 }  }
Line 1748  d = r; Line 1743  d = r;
 #endif  #endif
   
 f!      ( r f_addr -- ) float   f_store  f!      ( r f_addr -- ) float   f_store
 "" Store the floating-point value @i{r} to address @i{f-addr}.""  ""Store @i{r} into the float at address @i{f-addr}.""
 *f_addr = r;  *f_addr = r;
   
 f@      ( f_addr -- r ) float   f_fetch  f@      ( f_addr -- r ) float   f_fetch
 "" Fetch floating-point value @i{r} from address @i{f-addr}.""  ""@i{r} is the float at address @i{f-addr}.""
 r = *f_addr;  r = *f_addr;
   
 df@     ( df_addr -- r )        float-ext       d_f_fetch  df@     ( df_addr -- r )        float-ext       d_f_fetch
 "" Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""  ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 r = *df_addr;  r = *df_addr;
 #else  #else
Line 1764  r = *df_addr; Line 1759  r = *df_addr;
 #endif  #endif
   
 df!     ( r df_addr -- )        float-ext       d_f_store  df!     ( r df_addr -- )        float-ext       d_f_store
 "" Store the double-precision IEEE floating-point value @i{r} to the address @i{df-addr}.""  ""Store @i{r} as double-precision IEEE floating-point value to the
   address @i{df-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 *df_addr = r;  *df_addr = r;
 #else  #else
Line 1772  df! ( r df_addr -- ) float-ext d_f_store Line 1768  df! ( r df_addr -- ) float-ext d_f_store
 #endif  #endif
   
 sf@     ( sf_addr -- r )        float-ext       s_f_fetch  sf@     ( sf_addr -- r )        float-ext       s_f_fetch
 "" Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""  ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 r = *sf_addr;  r = *sf_addr;
 #else  #else
Line 1780  r = *sf_addr; Line 1776  r = *sf_addr;
 #endif  #endif
   
 sf!     ( r sf_addr -- )        float-ext       s_f_store  sf!     ( r sf_addr -- )        float-ext       s_f_store
 "" Store the single-precision IEEE floating-point value @i{r} to the address @i{sf-addr}.""  ""Store @i{r} as single-precision IEEE floating-point value to the
   address @i{sf-addr}.""
 #ifdef IEEE_FP  #ifdef IEEE_FP
 *sf_addr = r;  *sf_addr = r;
 #else  #else
Line 1821  fnip ( r1 r2 -- r2 ) gforth f_nip Line 1818  fnip ( r1 r2 -- r2 ) gforth f_nip
 ftuck   ( r1 r2 -- r2 r1 r2 )   gforth  f_tuck  ftuck   ( r1 r2 -- r2 r1 r2 )   gforth  f_tuck
   
 float+  ( f_addr1 -- f_addr2 )  float   float_plus  float+  ( f_addr1 -- f_addr2 )  float   float_plus
 "" Increment @i{f-addr1} by the number of address units corresponding to the size of  ""@code{1 floats +}.""
 one floating-point number, to give @i{f-addr2}.""  
 f_addr2 = f_addr1+1;  f_addr2 = f_addr1+1;
   
 floats  ( n1 -- n2 )    float  floats  ( n1 -- n2 )    float
 ""@i{n2} is the number of address units corresponding to @i{n1} floating-point numbers.""  ""@i{n2} is the number of address units of @i{n1} floats.""
 n2 = n1*sizeof(Float);  n2 = n1*sizeof(Float);
   
 floor   ( r1 -- r2 )    float  floor   ( r1 -- r2 )    float
Line 1867  f2=FLAG(isdigit((unsigned)(sig[0]))!=0); Line 1863  f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 memmove(c_addr,sig,u);  memmove(c_addr,sig,u);
   
 >float  ( c_addr u -- flag )    float   to_float  >float  ( c_addr u -- flag )    float   to_float
 ""Attempt to convert the character string @i{c-addr u} to  ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 internal floating-point representation. If the string  character string @i{c-addr u} to internal floating-point
 represents a valid floating-point number @i{r} is placed  representation. If the string represents a valid floating-point number
 on the floating-point stack and @i{flag} is true. Otherwise,  @i{r} is placed on the floating-point stack and @i{flag} is
 @i{flag} is false. A string of blanks is a special case  true. Otherwise, @i{flag} is false. A string of blanks is a special
 and represents the floating-point number 0.""  case and represents the floating-point number 0.""
 /* real signature: c_addr u -- r t / f */  /* real signature: c_addr u -- r t / f */
 Float r;  Float r;
 char *number=cstr(c_addr, u, 1);  char *number=cstr(c_addr, u, 1);
Line 2021  r2 = atanh(r1); Line 2017  r2 = atanh(r1);
  r> IF  fnegate  THEN ;   r> IF  fnegate  THEN ;
   
 sfloats ( n1 -- n2 )    float-ext       s_floats  sfloats ( n1 -- n2 )    float-ext       s_floats
 ""@i{n2} is the number of address units corresponding to @i{n1}  ""@i{n2} is the number of address units of @i{n1}
 single-precision IEEE floating-point numbers.""  single-precision IEEE floating-point numbers.""
 n2 = n1*sizeof(SFloat);  n2 = n1*sizeof(SFloat);
   
 dfloats ( n1 -- n2 )    float-ext       d_floats  dfloats ( n1 -- n2 )    float-ext       d_floats
 ""@i{n2} is the number of address units corresponding to @i{n1}  ""@i{n2} is the number of address units of @i{n1}
 double-precision IEEE floating-point numbers.""  double-precision IEEE floating-point numbers.""
 n2 = n1*sizeof(DFloat);  n2 = n1*sizeof(DFloat);
   
 sfaligned       ( c_addr -- sf_addr )   float-ext       s_f_aligned  sfaligned       ( c_addr -- sf_addr )   float-ext       s_f_aligned
 "" @i{sf-addr} is the first single-float-aligned address greater  ""@i{sf-addr} is the first single-float-aligned address greater
 than or equal to @i{c-addr}.""  than or equal to @i{c-addr}.""
 sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));  sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 :  :
  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;   [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
   
 dfaligned       ( c_addr -- df_addr )   float-ext       d_f_aligned  dfaligned       ( c_addr -- df_addr )   float-ext       d_f_aligned
 "" @i{df-addr} is the first double-float-aligned address greater  ""@i{df-addr} is the first double-float-aligned address greater
 than or equal to @i{c-addr}.""  than or equal to @i{c-addr}.""
 df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));  df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 :  :
Line 2118  lp -= sizeof(Float); Line 2114  lp -= sizeof(Float);
 *(Float *)lp = r;  *(Float *)lp = r;
   
 fpick   ( u -- r )              gforth  fpick   ( u -- r )              gforth
   ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 r = fp[u+1]; /* +1, because update of fp happens before this fragment */  r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 :  :
  floats fp@ + f@ ;   floats fp@ + f@ ;
Line 2248  char newline[] = { Line 2245  char newline[] = {
 };  };
 c_addr=newline;  c_addr=newline;
 u=sizeof(newline);  u=sizeof(newline);
   :
    "newline count ;
   Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
   
   \+os
   
   utime   ( -- dtime )    gforth
   ""Report the current time in microseconds since some epoch.""
   struct timeval time1;
   gettimeofday(&time1,NULL);
   dtime = timeval2us(&time1);
   
   cputime ( -- duser dsystem ) gforth
   ""duser and dsystem are the respective user- and system-level CPU
   times used since the start of the Forth system (excluding child
   processes), in microseconds (the granularity may be much larger,
   however).  On platforms without the getrusage call, it reports elapsed
   time (since some epoch) for duser and 0 for dsystem.""
   #ifdef HAVE_GETRUSAGE
   struct rusage usage;
   getrusage(RUSAGE_SELF, &usage);
   duser = timeval2us(&usage.ru_utime);
   dsystem = timeval2us(&usage.ru_stime);
   #else
   struct timeval time1;
   gettimeofday(&time1,NULL);
   duser = timeval2us(&time1);
   #ifndef BUGGY_LONG_LONG
   dsystem = (DCell)0;
   #else
   dsystem=(DCell){0,0};
   #endif
   #endif
   
   \+
   
   \+floating
   
   v*      ( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
   ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
   next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
   ucount elements.""
   for (r=0.; ucount>0; ucount--) {
     r += *f_addr1 * *f_addr2;
     f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
     f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
   }
   :
    >r swap 2swap swap 0e r> 0 ?DO
        dup f@ over + 2swap dup f@ f* f+ over + 2swap
    LOOP 2drop 2drop ; 
   
   faxpy   ( ra f_x nstridex f_y nstridey ucount -- )      gforth
   ""vy=ra*vx+vy""
   for (; ucount>0; ucount--) {
     *f_y += ra * *f_x;
     f_x = (Float *)(((Address)f_x)+nstridex);
     f_y = (Float *)(((Address)f_y)+nstridey);
   }
   :
    >r swap 2swap swap r> 0 ?DO
        fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
    LOOP 2drop 2drop fdrop ;
   
   \+
   
   \+file
   
   (read-line)     ( c_addr u1 wfileid -- u2 flag u3 wior )        file    paren_read_line
   Cell c;
   flag=-1;
   u3=0;
   for(u2=0; u2<u1; u2++)
   {
      c = getc((FILE *)wfileid);
      u3++;
      if (c=='\n') break;
      if (c=='\r') {
        if ((c = getc((FILE *)wfileid))!='\n')
          ungetc(c,(FILE *)wfileid);
        else
          u3++;
        break;
      }
      if (c==EOF) {
           flag=FLAG(u2!=0);
           break;
        }
      c_addr[u2] = (Char)c;
   }
   wior=FILEIO(ferror((FILE *)wfileid));
   
   \+

Removed from v.1.47  
changed lines
  Added in v.1.62


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>