Annotation of gforth/doc/vmgen.texi, revision 1.17

1.10      anton       1: \input texinfo    @c -*-texinfo-*-
                      2: @comment %**start of header
                      3: @setfilename vmgen.info
1.1       anton       4: @include version.texi
1.10      anton       5: @settitle Vmgen (Gforth @value{VERSION})
                      6: @c @syncodeindex pg cp
                      7: @comment %**end of header
                      8: @copying
                      9: This manual is for Vmgen
                     10: (version @value{VERSION}, @value{UPDATED}),
                     11: the virtual machine interpreter generator
                     12: 
                     13: Copyright @copyright{} 2002 Free Software Foundation, Inc.
                     14: 
                     15: @quotation
                     16: Permission is granted to copy, distribute and/or modify this document
                     17: under the terms of the GNU Free Documentation License, Version 1.1 or
                     18: any later version published by the Free Software Foundation; with no
                     19: Invariant Sections, with the Front-Cover texts being ``A GNU Manual,''
                     20: and with the Back-Cover Texts as in (a) below.  A copy of the
                     21: license is included in the section entitled ``GNU Free Documentation
                     22: License.''
                     23: 
                     24: (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
                     25: this GNU Manual, like GNU software.  Copies published by the Free
                     26: Software Foundation raise funds for GNU development.''
                     27: @end quotation
                     28: @end copying
                     29: 
                     30: @dircategory GNU programming tools
                     31: @direntry
1.11      anton      32: * Vmgen: (vmgen).               Interpreter generator
1.10      anton      33: @end direntry
                     34: 
                     35: @titlepage
                     36: @title Vmgen
                     37: @subtitle for Gforth version @value{VERSION}, @value{UPDATED}
1.11      anton      38: @author M. Anton Ertl (@email{anton@@mips.complang.tuwien.ac.at})
1.10      anton      39: @page
                     40: @vskip 0pt plus 1filll
                     41: @insertcopying
                     42: @end titlepage
                     43: 
                     44: @contents
                     45: 
                     46: @ifnottex
                     47: @node Top, Introduction, (dir), (dir)
                     48: @top Vmgen
                     49: 
                     50: @insertcopying
                     51: @end ifnottex
                     52: 
                     53: @menu
                     54: * Introduction::                What can Vmgen do for you?
                     55: * Why interpreters?::           Advantages and disadvantages
                     56: * Concepts::                    VM interpreter background
1.11      anton      57: * Invoking Vmgen::              
1.10      anton      58: * Example::                     
                     59: * Input File Format::           
1.13      anton      60: * Error messages::              reported by Vmgen
1.10      anton      61: * Using the generated code::    
1.13      anton      62: * Hints::                       VM archictecture, efficiency
                     63: * The future::                  
1.10      anton      64: * Changes::                     from earlier versions
                     65: * Contact::                     Bug reporting etc.
                     66: * Copying This Manual::         Manual License
                     67: * Index::                       
                     68: 
                     69: @detailmenu
                     70:  --- The Detailed Node Listing ---
                     71: 
                     72: Concepts
                     73: 
                     74: * Front end and VM interpreter::  Modularizing an interpretive system
                     75: * Data handling::               Stacks, registers, immediate arguments
                     76: * Dispatch::                    From one VM instruction to the next
                     77: 
                     78: Example
                     79: 
                     80: * Example overview::            
                     81: * Using profiling to create superinstructions::  
                     82: 
                     83: Input File Format
                     84: 
                     85: * Input File Grammar::          
                     86: * Simple instructions::         
                     87: * Superinstructions::           
1.11      anton      88: * Register Machines::           How to define register VM instructions
1.10      anton      89: 
1.17    ! anton      90: Input File Grammar
        !            91: 
        !            92: * Eval escapes::                what follows \E
        !            93: 
1.10      anton      94: Simple instructions
                     95: 
                     96: * C Code Macros::               Macros recognized by Vmgen
                     97: * C Code restrictions::         Vmgen makes assumptions about C code
                     98: 
                     99: Using the generated code
                    100: 
                    101: * VM engine::                   Executing VM code
                    102: * VM instruction table::        
                    103: * VM code generation::          Creating VM code (in the front-end)
                    104: * Peephole optimization::       Creating VM superinstructions
                    105: * VM disassembler::             for debugging the front end
                    106: * VM profiler::                 for finding worthwhile superinstructions
                    107: 
1.13      anton     108: Hints
                    109: 
                    110: * Floating point::              and stacks
                    111: 
1.10      anton     112: Copying This Manual
                    113: 
                    114: * GNU Free Documentation License::  License for copying this manual.
                    115: 
                    116: @end detailmenu
                    117: @end menu
1.1       anton     118: 
                    119: @c @ifnottex
1.11      anton     120: @c This file documents Vmgen (Gforth @value{VERSION}).
1.1       anton     121: 
1.10      anton     122: @c ************************************************************
                    123: @node Introduction, Why interpreters?, Top, Top
1.2       anton     124: @chapter Introduction
1.1       anton     125: 
                    126: Vmgen is a tool for writing efficient interpreters.  It takes a simple
                    127: virtual machine description and generates efficient C code for dealing
                    128: with the virtual machine code in various ways (in particular, executing
                    129: it).  The run-time efficiency of the resulting interpreters is usually
                    130: within a factor of 10 of machine code produced by an optimizing
                    131: compiler.
                    132: 
1.11      anton     133: The interpreter design strategy supported by Vmgen is to divide the
1.1       anton     134: interpreter into two parts:
                    135: 
                    136: @itemize @bullet
                    137: 
                    138: @item The @emph{front end} takes the source code of the language to be
                    139: implemented, and translates it into virtual machine code.  This is
                    140: similar to an ordinary compiler front end; typically an interpreter
                    141: front-end performs no optimization, so it is relatively simple to
                    142: implement and runs fast.
                    143: 
                    144: @item The @emph{virtual machine interpreter} executes the virtual
                    145: machine code.
                    146: 
                    147: @end itemize
                    148: 
                    149: Such a division is usually used in interpreters, for modularity as well
1.6       anton     150: as for efficiency.  The virtual machine code is typically passed between
                    151: front end and virtual machine interpreter in memory, like in a
1.1       anton     152: load-and-go compiler; this avoids the complexity and time cost of
                    153: writing the code to a file and reading it again.
                    154: 
                    155: A @emph{virtual machine} (VM) represents the program as a sequence of
                    156: @emph{VM instructions}, following each other in memory, similar to real
                    157: machine code.  Control flow occurs through VM branch instructions, like
                    158: in a real machine.
                    159: 
1.12      anton     160: @cindex functionality features overview
1.11      anton     161: In this setup, Vmgen can generate most of the code dealing with virtual
1.1       anton     162: machine instructions from a simple description of the virtual machine
1.11      anton     163: instructions (@pxref{Input File Format}), in particular:
1.1       anton     164: 
1.13      anton     165: @table @strong
1.1       anton     166: 
                    167: @item VM instruction execution
                    168: 
                    169: @item VM code generation
                    170: Useful in the front end.
                    171: 
                    172: @item VM code decompiler
                    173: Useful for debugging the front end.
                    174: 
                    175: @item VM code tracing
                    176: Useful for debugging the front end and the VM interpreter.  You will
                    177: typically provide other means for debugging the user's programs at the
                    178: source level.
                    179: 
                    180: @item VM code profiling
1.12      anton     181: Useful for optimizing the VM interpreter with superinstructions
1.11      anton     182: (@pxref{VM profiler}).
1.1       anton     183: 
                    184: @end table
                    185: 
1.13      anton     186: To create parts of the interpretive system that do not deal with VM
                    187: instructions, you have to use other tools (e.g., @command{bison}) and/or
                    188: hand-code them.
                    189: 
1.12      anton     190: @cindex efficiency features overview
1.11      anton     191: @noindent
                    192: Vmgen supports efficient interpreters though various optimizations, in
1.1       anton     193: particular
                    194: 
1.11      anton     195: @itemize @bullet
1.1       anton     196: 
                    197: @item Threaded code
                    198: 
                    199: @item Caching the top-of-stack in a register
                    200: 
                    201: @item Combining VM instructions into superinstructions
                    202: 
                    203: @item
                    204: Replicating VM (super)instructions for better BTB prediction accuracy
                    205: (not yet in vmgen-ex, but already in Gforth).
                    206: 
                    207: @end itemize
                    208: 
1.12      anton     209: @cindex speed for JVM
1.11      anton     210: As a result, Vmgen-based interpreters are only about an order of
                    211: magnitude slower than native code from an optimizing C compiler on small
1.1       anton     212: benchmarks; on large benchmarks, which spend more time in the run-time
1.2       anton     213: system, the slowdown is often less (e.g., the slowdown of a
                    214: Vmgen-generated JVM interpreter over the best JVM JIT compiler we
                    215: measured is only a factor of 2-3 for large benchmarks; some other JITs
                    216: and all other interpreters we looked at were slower than our
                    217: interpreter).
1.1       anton     218: 
                    219: VMs are usually designed as stack machines (passing data between VM
1.11      anton     220: instructions on a stack), and Vmgen supports such designs especially
1.12      anton     221: well; however, you can also use Vmgen for implementing a register VM
                    222: (@pxref{Register Machines}) and still benefit from most of the advantages
                    223: offered by Vmgen.
1.1       anton     224: 
1.2       anton     225: There are many potential uses of the instruction descriptions that are
                    226: not implemented at the moment, but we are open for feature requests, and
1.13      anton     227: we will consider new features if someone asks for them; so the feature
1.2       anton     228: list above is not exhaustive.
1.1       anton     229: 
1.2       anton     230: @c *********************************************************************
1.10      anton     231: @node Why interpreters?, Concepts, Introduction, Top
1.2       anton     232: @chapter Why interpreters?
1.12      anton     233: @cindex interpreters, advantages
                    234: @cindex advantages of interpreters
                    235: @cindex advantages of vmgen
1.2       anton     236: 
                    237: Interpreters are a popular language implementation technique because
                    238: they combine all three of the following advantages:
                    239: 
1.11      anton     240: @itemize @bullet
1.2       anton     241: 
                    242: @item Ease of implementation
                    243: 
                    244: @item Portability
                    245: 
                    246: @item Fast edit-compile-run cycle
                    247: 
                    248: @end itemize
                    249: 
1.12      anton     250: Vmgen makes it even easier to implement interpreters.
                    251: 
                    252: @cindex speed of interpreters
1.2       anton     253: The main disadvantage of interpreters is their run-time speed.  However,
                    254: there are huge differences between different interpreters in this area:
                    255: the slowdown over optimized C code on programs consisting of simple
                    256: operations is typically a factor of 10 for the more efficient
                    257: interpreters, and a factor of 1000 for the less efficient ones (the
                    258: slowdown for programs executing complex operations is less, because the
                    259: time spent in libraries for executing complex operations is the same in
                    260: all implementation strategies).
                    261: 
1.12      anton     262: Vmgen supports techniques for building efficient interpreters.
1.2       anton     263: 
                    264: @c ********************************************************************
1.11      anton     265: @node Concepts, Invoking Vmgen, Why interpreters?, Top
1.2       anton     266: @chapter Concepts
                    267: 
1.10      anton     268: @menu
                    269: * Front end and VM interpreter::  Modularizing an interpretive system
                    270: * Data handling::               Stacks, registers, immediate arguments
                    271: * Dispatch::                    From one VM instruction to the next
                    272: @end menu
                    273: 
1.2       anton     274: @c --------------------------------------------------------------------
1.10      anton     275: @node Front end and VM interpreter, Data handling, Concepts, Concepts
                    276: @section Front end and VM interpreter
1.12      anton     277: @cindex modularization of interpreters
1.2       anton     278: 
                    279: @cindex front-end
                    280: Interpretive systems are typically divided into a @emph{front end} that
                    281: parses the input language and produces an intermediate representation
                    282: for the program, and an interpreter that executes the intermediate
                    283: representation of the program.
                    284: 
                    285: @cindex virtual machine
                    286: @cindex VM
1.12      anton     287: @cindex VM instruction
1.2       anton     288: @cindex instruction, VM
1.12      anton     289: @cindex VM branch instruction
                    290: @cindex branch instruction, VM
                    291: @cindex VM register
                    292: @cindex register, VM
                    293: @cindex opcode, VM instruction
                    294: @cindex immediate argument, VM instruction
1.2       anton     295: For efficient interpreters the intermediate representation of choice is
                    296: virtual machine code (rather than, e.g., an abstract syntax tree).
                    297: @emph{Virtual machine} (VM) code consists of VM instructions arranged
                    298: sequentially in memory; they are executed in sequence by the VM
1.12      anton     299: interpreter, but VM branch instructions can change the control flow and
                    300: are used for implementing control structures.  The conceptual similarity
                    301: to real machine code results in the name @emph{virtual machine}.
                    302: Various terms similar to terms for real machines are used; e.g., there
                    303: are @emph{VM registers} (like the instruction pointer and stack
                    304: pointer(s)), and the VM instruction consists of an @emph{opcode} and
                    305: @emph{immediate arguments}.
1.2       anton     306: 
1.11      anton     307: In this framework, Vmgen supports building the VM interpreter and any
1.2       anton     308: other component dealing with VM instructions.  It does not have any
                    309: support for the front end, apart from VM code generation support.  The
                    310: front end can be implemented with classical compiler front-end
1.3       anton     311: techniques, supported by tools like @command{flex} and @command{bison}.
1.2       anton     312: 
                    313: The intermediate representation is usually just internal to the
                    314: interpreter, but some systems also support saving it to a file, either
                    315: as an image file, or in a full-blown linkable file format (e.g., JVM).
                    316: Vmgen currently has no special support for such features, but the
                    317: information in the instruction descriptions can be helpful, and we are
1.13      anton     318: open to feature requests and suggestions.
1.3       anton     319: 
1.10      anton     320: @c --------------------------------------------------------------------
                    321: @node Data handling, Dispatch, Front end and VM interpreter, Concepts
1.3       anton     322: @section Data handling
                    323: 
                    324: @cindex stack machine
                    325: @cindex register machine
                    326: Most VMs use one or more stacks for passing temporary data between VM
                    327: instructions.  Another option is to use a register machine architecture
1.13      anton     328: for the virtual machine; we believe that using a stack architecture is
                    329: usually both simpler and faster.
                    330: 
                    331: however, this option is slower or
1.3       anton     332: significantly more complex to implement than a stack machine architecture.
                    333: 
                    334: Vmgen has special support and optimizations for stack VMs, making their
                    335: implementation easy and efficient.
                    336: 
1.11      anton     337: You can also implement a register VM with Vmgen (@pxref{Register
                    338: Machines}), and you will still profit from most Vmgen features.
1.3       anton     339: 
                    340: @cindex stack item size
                    341: @cindex size, stack items
                    342: Stack items all have the same size, so they typically will be as wide as
                    343: an integer, pointer, or floating-point value.  Vmgen supports treating
                    344: two consecutive stack items as a single value, but anything larger is
                    345: best kept in some other memory area (e.g., the heap), with pointers to
                    346: the data on the stack.
                    347: 
                    348: @cindex instruction stream
                    349: @cindex immediate arguments
                    350: Another source of data is immediate arguments VM instructions (in the VM
                    351: instruction stream).  The VM instruction stream is handled similar to a
1.11      anton     352: stack in Vmgen.
1.3       anton     353: 
                    354: @cindex garbage collection
                    355: @cindex reference counting
1.12      anton     356: Vmgen has no built-in support for, nor restrictions against
                    357: @emph{garbage collection}.  If you need garbage collection, you need to
                    358: provide it in your run-time libraries.  Using @emph{reference counting}
                    359: is probably harder, but might be possible (contact us if you are
                    360: interested).
1.3       anton     361: @c reference counting might be possible by including counting code in 
                    362: @c the conversion macros.
                    363: 
1.10      anton     364: @c --------------------------------------------------------------------
                    365: @node Dispatch,  , Data handling, Concepts
1.6       anton     366: @section Dispatch
1.12      anton     367: @cindex Dispatch of VM instructions
                    368: @cindex main interpreter loop
1.6       anton     369: 
1.11      anton     370: Understanding this section is probably not necessary for using Vmgen,
1.6       anton     371: but it may help.  You may want to skip it now, and read it if you find statements about dispatch methods confusing.
                    372: 
                    373: After executing one VM instruction, the VM interpreter has to dispatch
1.11      anton     374: the next VM instruction (Vmgen calls the dispatch routine @samp{NEXT}).
1.6       anton     375: Vmgen supports two methods of dispatch:
                    376: 
1.13      anton     377: @table @strong
1.6       anton     378: 
                    379: @item switch dispatch
1.12      anton     380: @cindex switch dispatch
1.6       anton     381: In this method the VM interpreter contains a giant @code{switch}
                    382: statement, with one @code{case} for each VM instruction.  The VM
1.12      anton     383: instruction opcodes are represented by integers (e.g., produced by an
                    384: @code{enum}) in the VM code, and dispatch occurs by loading the next
                    385: opcode, @code{switch}ing on it, and continuing at the appropriate
                    386: @code{case}; after executing the VM instruction, the VM interpreter
                    387: jumps back to the dispatch code.
1.6       anton     388: 
                    389: @item threaded code
1.12      anton     390: @cindex threaded code
                    391: This method represents a VM instruction opcode by the address of the
                    392: start of the machine code fragment for executing the VM instruction.
1.6       anton     393: Dispatch consists of loading this address, jumping to it, and
                    394: incrementing the VM instruction pointer.  Typically the threaded-code
                    395: dispatch code is appended directly to the code for executing the VM
                    396: instruction.  Threaded code cannot be implemented in ANSI C, but it can
1.11      anton     397: be implemented using GNU C's labels-as-values extension (@pxref{Labels
                    398: as Values, , Labels as Values, gcc.info, GNU C Manual}).
1.6       anton     399: 
1.13      anton     400: @c call threading
1.6       anton     401: @end table
                    402: 
1.12      anton     403: Threaded code can be twice as fast as switch dispatch, depending on the
                    404: interpreter, the benchmark, and the machine.
                    405: 
1.3       anton     406: @c *************************************************************
1.11      anton     407: @node Invoking Vmgen, Example, Concepts, Top
                    408: @chapter Invoking Vmgen
1.12      anton     409: @cindex Invoking Vmgen
1.3       anton     410: 
1.11      anton     411: The usual way to invoke Vmgen is as follows:
1.3       anton     412: 
                    413: @example
1.13      anton     414: vmgen @var{inputfile}
1.3       anton     415: @end example
                    416: 
1.13      anton     417: Here @var{inputfile} is the VM instruction description file, which
                    418: usually ends in @file{.vmg}.  The output filenames are made by taking
                    419: the basename of @file{inputfile} (i.e., the output files will be created
                    420: in the current working directory) and replacing @file{.vmg} with
                    421: @file{-vm.i}, @file{-disasm.i}, @file{-gen.i}, @file{-labels.i},
                    422: @file{-profile.i}, and @file{-peephole.i}.  E.g., @command{vmgen
                    423: hack/foo.vmg} will create @file{foo-vm.i}, @file{foo-disasm.i},
                    424: @file{foo-gen.i}, @file{foo-labels.i}, @file{foo-profile.i} and
                    425: @file{foo-peephole.i}.
1.3       anton     426: 
1.11      anton     427: The command-line options supported by Vmgen are
1.3       anton     428: 
                    429: @table @option
                    430: 
                    431: @cindex -h, command-line option
                    432: @cindex --help, command-line option
                    433: @item --help
                    434: @itemx -h
                    435: Print a message about the command-line options
                    436: 
                    437: @cindex -v, command-line option
                    438: @cindex --version, command-line option
                    439: @item --version
                    440: @itemx -v
                    441: Print version and exit
                    442: @end table
                    443: 
                    444: @c env vars GFORTHDIR GFORTHDATADIR
                    445: 
1.5       anton     446: @c ****************************************************************
1.11      anton     447: @node Example, Input File Format, Invoking Vmgen, Top
1.5       anton     448: @chapter Example
1.12      anton     449: @cindex example of a Vmgen-based interpreter
1.5       anton     450: 
1.10      anton     451: @menu
                    452: * Example overview::            
                    453: * Using profiling to create superinstructions::  
                    454: @end menu
                    455: 
                    456: @c --------------------------------------------------------------------
                    457: @node Example overview, Using profiling to create superinstructions, Example, Example
1.5       anton     458: @section Example overview
1.12      anton     459: @cindex example overview
                    460: @cindex @file{vmgen-ex}
                    461: @cindex @file{vmgen-ex2}
1.5       anton     462: 
1.11      anton     463: There are two versions of the same example for using Vmgen:
1.5       anton     464: @file{vmgen-ex} and @file{vmgen-ex2} (you can also see Gforth as
                    465: example, but it uses additional (undocumented) features, and also
                    466: differs in some other respects).  The example implements @emph{mini}, a
                    467: tiny Modula-2-like language with a small JavaVM-like virtual machine.
1.12      anton     468: 
1.5       anton     469: The difference between the examples is that @file{vmgen-ex} uses many
                    470: casts, and @file{vmgen-ex2} tries to avoids most casts and uses unions
1.12      anton     471: instead.  In the rest of this manual we usually mention just files in
                    472: @file{vmgen-ex}; if you want to use unions, use the equivalent file in
                    473: @file{vmgen-ex2}.
                    474: @cindex unions example
                    475: @cindex casts example
1.5       anton     476: 
                    477: The files provided with each example are:
1.12      anton     478: @cindex example files
1.5       anton     479: 
                    480: @example
                    481: Makefile
                    482: README
                    483: disasm.c           wrapper file
                    484: engine.c           wrapper file
                    485: peephole.c         wrapper file
                    486: profile.c          wrapper file
                    487: mini-inst.vmg      simple VM instructions
                    488: mini-super.vmg     superinstructions (empty at first)
                    489: mini.h             common declarations
                    490: mini.l             scanner
                    491: mini.y             front end (parser, VM code generator)
                    492: support.c          main() and other support functions
                    493: fib.mini           example mini program
                    494: simple.mini        example mini program
                    495: test.mini          example mini program (tests everything)
                    496: test.out           test.mini output
                    497: stat.awk           script for aggregating profile information
                    498: peephole-blacklist list of instructions not allowed in superinstructions
                    499: seq2rule.awk       script for creating superinstructions
                    500: @end example
                    501: 
                    502: For your own interpreter, you would typically copy the following files
                    503: and change little, if anything:
1.12      anton     504: @cindex wrapper files
1.5       anton     505: 
                    506: @example
                    507: disasm.c           wrapper file
                    508: engine.c           wrapper file
                    509: peephole.c         wrapper file
                    510: profile.c          wrapper file
                    511: stat.awk           script for aggregating profile information
                    512: seq2rule.awk       script for creating superinstructions
                    513: @end example
                    514: 
1.11      anton     515: @noindent
1.5       anton     516: You would typically change much in or replace the following files:
                    517: 
                    518: @example
                    519: Makefile
                    520: mini-inst.vmg      simple VM instructions
                    521: mini.h             common declarations
                    522: mini.l             scanner
                    523: mini.y             front end (parser, VM code generator)
                    524: support.c          main() and other support functions
                    525: peephole-blacklist list of instructions not allowed in superinstructions
                    526: @end example
                    527: 
                    528: You can build the example by @code{cd}ing into the example's directory,
1.12      anton     529: and then typing @code{make}; you can check that it works with @code{make
1.5       anton     530: check}.  You can run run mini programs like this:
                    531: 
                    532: @example
                    533: ./mini fib.mini
                    534: @end example
                    535: 
1.12      anton     536: To learn about the options, type @code{./mini -h}.
1.5       anton     537: 
1.10      anton     538: @c --------------------------------------------------------------------
                    539: @node Using profiling to create superinstructions,  , Example overview, Example
1.5       anton     540: @section Using profiling to create superinstructions
1.12      anton     541: @cindex profiling example
                    542: @cindex superinstructions example
1.5       anton     543: 
                    544: I have not added rules for this in the @file{Makefile} (there are many
                    545: options for selecting superinstructions, and I did not want to hardcode
                    546: one into the @file{Makefile}), but there are some supporting scripts, and
                    547: here's an example:
                    548: 
                    549: Suppose you want to use @file{fib.mini} and @file{test.mini} as training
                    550: programs, you get the profiles like this:
                    551: 
                    552: @example
                    553: make fib.prof test.prof #takes a few seconds
                    554: @end example
                    555: 
                    556: You can aggregate these profiles with @file{stat.awk}:
                    557: 
                    558: @example
                    559: awk -f stat.awk fib.prof test.prof
                    560: @end example
                    561: 
                    562: The result contains lines like:
                    563: 
                    564: @example
                    565:       2      16        36910041 loadlocal lit
                    566: @end example
                    567: 
                    568: This means that the sequence @code{loadlocal lit} statically occurs a
                    569: total of 16 times in 2 profiles, with a dynamic execution count of
                    570: 36910041.
                    571: 
                    572: The numbers can be used in various ways to select superinstructions.
                    573: E.g., if you just want to select all sequences with a dynamic
                    574: execution count exceeding 10000, you would use the following pipeline:
                    575: 
                    576: @example
                    577: awk -f stat.awk fib.prof test.prof|
                    578: awk '$3>=10000'|                #select sequences
                    579: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
1.12      anton     580: awk -f seq2rule.awk|  #transform sequences into superinstruction rules
1.5       anton     581: sort -k 3 >mini-super.vmg       #sort sequences
                    582: @end example
                    583: 
                    584: The file @file{peephole-blacklist} contains all instructions that
                    585: directly access a stack or stack pointer (for mini: @code{call},
                    586: @code{return}); the sort step is necessary to ensure that prefixes
1.13      anton     587: precede larger superinstructions.
1.5       anton     588: 
                    589: Now you can create a version of mini with superinstructions by just
                    590: saying @samp{make}
                    591: 
1.10      anton     592: 
1.3       anton     593: @c ***************************************************************
1.13      anton     594: @node Input File Format, Error messages, Example, Top
1.3       anton     595: @chapter Input File Format
1.12      anton     596: @cindex input file format
                    597: @cindex format, input file
1.3       anton     598: 
                    599: Vmgen takes as input a file containing specifications of virtual machine
                    600: instructions.  This file usually has a name ending in @file{.vmg}.
                    601: 
1.5       anton     602: Most examples are taken from the example in @file{vmgen-ex}.
1.3       anton     603: 
1.10      anton     604: @menu
                    605: * Input File Grammar::          
                    606: * Simple instructions::         
                    607: * Superinstructions::           
1.11      anton     608: * Register Machines::           How to define register VM instructions
1.10      anton     609: @end menu
                    610: 
                    611: @c --------------------------------------------------------------------
                    612: @node Input File Grammar, Simple instructions, Input File Format, Input File Format
1.3       anton     613: @section Input File Grammar
1.12      anton     614: @cindex grammar, input file
                    615: @cindex input file grammar
1.3       anton     616: 
                    617: The grammar is in EBNF format, with @code{@var{a}|@var{b}} meaning
                    618: ``@var{a} or @var{b}'', @code{@{@var{c}@}} meaning 0 or more repetitions
                    619: of @var{c} and @code{[@var{d}]} meaning 0 or 1 repetitions of @var{d}.
                    620: 
1.12      anton     621: @cindex free-format, not
1.15      anton     622: @cindex newlines, significance in syntax
1.3       anton     623: Vmgen input is not free-format, so you have to take care where you put
1.15      anton     624: newlines (and, in a few cases, white space).
1.3       anton     625: 
                    626: @example
1.15      anton     627: description: @{instruction|comment|eval-escape|c-escape@}
1.3       anton     628: 
                    629: instruction: simple-inst|superinst
                    630: 
1.15      anton     631: simple-inst: ident '(' stack-effect ')' newline c-code newline newline
1.3       anton     632: 
1.15      anton     633: stack-effect: @{ident@} '--' @{ident@}
1.3       anton     634: 
1.15      anton     635: super-inst: ident '=' ident @{ident@}  
1.3       anton     636: 
1.12      anton     637: comment:      '\ '  text newline
1.3       anton     638: 
1.13      anton     639: eval-escape:  '\E ' text newline
1.15      anton     640: 
                    641: c-escape:     '\C ' text newline
1.3       anton     642: @end example
                    643: @c \+ \- \g \f \c
                    644: 
                    645: Note that the @code{\}s in this grammar are meant literally, not as
1.5       anton     646: C-style encodings for non-printable characters.
1.3       anton     647: 
1.15      anton     648: There are two ways to delimit the C code in @code{simple-inst}:
                    649: 
                    650: @itemize @bullet
                    651: 
                    652: @item
                    653: If you start it with a @samp{@{} at the start of a line (i.e., not even
                    654: white space before it), you have to end it with a @samp{@}} at the start
                    655: of a line (followed by a newline).  In this case you may have empty
                    656: lines within the C code (typically used between variable definitions and
                    657: statements).
                    658: 
                    659: @item
                    660: You do not start it with @samp{@{}.  Then the C code ends at the first
                    661: empty line, so you cannot have empty lines within this code.
                    662: 
                    663: @end itemize
                    664: 
                    665: The text in @code{comment}, @code{eval-escape} and @code{c-escape} must
                    666: not contain a newline.  @code{Ident} must conform to the usual
                    667: conventions of C identifiers (otherwise the C compiler would choke on
                    668: the Vmgen output), except that idents in @code{stack-effect} may have a
                    669: stack prefix (for stack prefix syntax, @pxref{Eval escapes}).
                    670: 
                    671: @cindex C escape
                    672: @cindex @code{\C}
                    673: @cindex conditional compilation of Vmgen output
                    674: The @code{c-escape} passes the text through to each output file (without
                    675: the @samp{\C}).  This is useful mainly for conditional compilation
                    676: (i.e., you write @samp{\C #if ...} etc.).
                    677: 
                    678: @cindex sync lines
                    679: @cindex @code{#line}
                    680: In addition to the syntax given in the grammer, Vmgen also processes
                    681: sync lines (lines starting with @samp{#line}), as produced by @samp{m4
                    682: -s} (@pxref{Invoking m4, , Invoking m4, m4.info, GNU m4}) and similar
                    683: tools.  This allows associating C compiler error messages with the
                    684: original source of the C code.
1.3       anton     685: 
                    686: Vmgen understands a few extensions beyond the grammar given here, but
                    687: these extensions are only useful for building Gforth.  You can find a
                    688: description of the format used for Gforth in @file{prim}.
                    689: 
1.17    ! anton     690: @menu
        !           691: * Eval escapes::                what follows \E
        !           692: @end menu
        !           693: 
        !           694: @node Eval escapes,  , Input File Grammar, Input File Grammar
1.10      anton     695: @subsection Eval escapes
1.12      anton     696: @cindex escape to Forth
                    697: @cindex eval escape
1.15      anton     698: @cindex @code{\E}
1.13      anton     699: 
1.3       anton     700: @c woanders?
                    701: The text in @code{eval-escape} is Forth code that is evaluated when
1.13      anton     702: Vmgen reads the line.  You will normally use this feature to define
                    703: stacks and types.
                    704: 
                    705: If you do not know (and do not want to learn) Forth, you can build the
                    706: text according to the following grammar; these rules are normally all
                    707: Forth you need for using Vmgen:
1.3       anton     708: 
                    709: @example
                    710: text: stack-decl|type-prefix-decl|stack-prefix-decl
                    711: 
1.12      anton     712: stack-decl: 'stack ' ident ident ident
1.3       anton     713: type-prefix-decl: 
1.12      anton     714:     's" ' string '" ' ('single'|'double') ident 'type-prefix' ident
                    715: stack-prefix-decl:  ident 'stack-prefix' string
1.3       anton     716: @end example
                    717: 
                    718: Note that the syntax of this code is not checked thoroughly (there are
1.13      anton     719: many other Forth program fragments that could be written in an
                    720: eval-escape).
1.3       anton     721: 
1.14      anton     722: A stack prefix can contain letters, digits, or @samp{:}, and may start
                    723: with an @samp{#}; e.g., in Gforth the return stack has the stack prefix
                    724: @samp{R:}.  This restriction is not checked during the stack prefix
                    725: definition, but it is enforced by the parsing rules for stack items
                    726: later.
                    727: 
1.3       anton     728: If you know Forth, the stack effects of the non-standard words involved
                    729: are:
1.12      anton     730: @findex stack
                    731: @findex type-prefix
                    732: @findex single
                    733: @findex double
                    734: @findex stack-prefix
1.3       anton     735: @example
                    736: stack        ( "name" "pointer" "type" -- )
                    737:              ( name execution: -- stack )
1.14      anton     738: type-prefix  ( addr u item-size stack "prefix" -- )
                    739: single       ( -- item-size )
                    740: double       ( -- item-size )
1.3       anton     741: stack-prefix ( stack "prefix" -- )
                    742: @end example
                    743: 
1.14      anton     744: An @var{item-size} takes three cells on the stack.
1.5       anton     745: 
1.10      anton     746: @c --------------------------------------------------------------------
                    747: @node Simple instructions, Superinstructions, Input File Grammar, Input File Format
1.3       anton     748: @section Simple instructions
1.12      anton     749: @cindex simple VM instruction
                    750: @cindex instruction, simple VM
1.3       anton     751: 
                    752: We will use the following simple VM instruction description as example:
                    753: 
                    754: @example
                    755: sub ( i1 i2 -- i )
                    756: i = i1-i2;
                    757: @end example
                    758: 
                    759: The first line specifies the name of the VM instruction (@code{sub}) and
                    760: its stack effect (@code{i1 i2 -- i}).  The rest of the description is
                    761: just plain C code.
                    762: 
                    763: @cindex stack effect
1.12      anton     764: @cindex effect, stack
1.3       anton     765: The stack effect specifies that @code{sub} pulls two integers from the
1.12      anton     766: data stack and puts them in the C variables @code{i1} and @code{i2}
                    767: (with the rightmost item (@code{i2}) taken from the top of stack;
                    768: intuition: if you push @code{i1}, then @code{i2} on the stack, the
                    769: resulting stack picture is @code{i1 i2}) and later pushes one integer
                    770: (@code{i}) on the data stack (the rightmost item is on the top
                    771: afterwards).
                    772: 
                    773: @cindex prefix, type
                    774: @cindex type prefix
                    775: @cindex default stack of a type prefix
1.3       anton     776: How do we know the type and stack of the stack items?  Vmgen uses
                    777: prefixes, similar to Fortran; in contrast to Fortran, you have to
                    778: define the prefix first:
                    779: 
                    780: @example
                    781: \E s" Cell"   single data-stack type-prefix i
                    782: @end example
                    783: 
                    784: This defines the prefix @code{i} to refer to the type @code{Cell}
                    785: (defined as @code{long} in @file{mini.h}) and, by default, to the
                    786: @code{data-stack}.  It also specifies that this type takes one stack
                    787: item (@code{single}).  The type prefix is part of the variable name.
                    788: 
1.12      anton     789: @cindex stack definition
                    790: @cindex defining a stack
1.3       anton     791: Before we can use @code{data-stack} in this way, we have to define it:
                    792: 
                    793: @example
                    794: \E stack data-stack sp Cell
                    795: @end example
                    796: @c !! use something other than Cell
                    797: 
1.12      anton     798: @cindex stack basic type
                    799: @cindex basic type of a stack
                    800: @cindex type of a stack, basic
                    801: @cindex stack growth direction
1.3       anton     802: This line defines the stack @code{data-stack}, which uses the stack
                    803: pointer @code{sp}, and each item has the basic type @code{Cell}; other
                    804: types have to fit into one or two @code{Cell}s (depending on whether the
1.12      anton     805: type is @code{single} or @code{double} wide), and are cast from and to
                    806: Cells on accessing the @code{data-stack} with type cast macros
1.11      anton     807: (@pxref{VM engine}).  Stacks grow towards lower addresses in
                    808: Vmgen-erated interpreters.
1.3       anton     809: 
1.12      anton     810: @cindex stack prefix
                    811: @cindex prefix, stack
1.3       anton     812: We can override the default stack of a stack item by using a stack
                    813: prefix.  E.g., consider the following instruction:
                    814: 
                    815: @example
                    816: lit ( #i -- i )
                    817: @end example
                    818: 
                    819: The VM instruction @code{lit} takes the item @code{i} from the
1.5       anton     820: instruction stream (indicated by the prefix @code{#}), and pushes it on
1.3       anton     821: the (default) data stack.  The stack prefix is not part of the variable
                    822: name.  Stack prefixes are defined like this:
                    823: 
                    824: @example
                    825: \E inst-stream stack-prefix #
                    826: @end example
                    827: 
1.5       anton     828: This definition defines that the stack prefix @code{#} specifies the
1.3       anton     829: ``stack'' @code{inst-stream}.  Since the instruction stream behaves a
                    830: little differently than an ordinary stack, it is predefined, and you do
                    831: not need to define it.
                    832: 
1.12      anton     833: @cindex instruction stream
1.3       anton     834: The instruction stream contains instructions and their immediate
                    835: arguments, so specifying that an argument comes from the instruction
                    836: stream indicates an immediate argument.  Of course, instruction stream
                    837: arguments can only appear to the left of @code{--} in the stack effect.
                    838: If there are multiple instruction stream arguments, the leftmost is the
                    839: first one (just as the intuition suggests).
                    840: 
1.10      anton     841: @menu
                    842: * C Code Macros::               Macros recognized by Vmgen
                    843: * C Code restrictions::         Vmgen makes assumptions about C code
                    844: @end menu
                    845: 
                    846: @c --------------------------------------------------------------------
                    847: @node C Code Macros, C Code restrictions, Simple instructions, Simple instructions
                    848: @subsection C Code Macros
1.12      anton     849: @cindex macros recognized by Vmgen
                    850: @cindex basic block, VM level
1.5       anton     851: 
                    852: Vmgen recognizes the following strings in the C code part of simple
                    853: instructions:
                    854: 
1.12      anton     855: @table @code
1.5       anton     856: 
                    857: @item SET_IP
1.12      anton     858: @findex SET_IP
1.11      anton     859: As far as Vmgen is concerned, a VM instruction containing this ends a VM
1.5       anton     860: basic block (used in profiling to delimit profiled sequences).  On the C
                    861: level, this also sets the instruction pointer.
                    862: 
                    863: @item SUPER_END
1.12      anton     864: @findex SUPER_END
                    865: This ends a basic block (for profiling), even if the instruction
                    866: contains no @code{SET_IP}.
1.5       anton     867: 
1.13      anton     868: @item INST_TAIL;
                    869: @findex INST_TAIL;
                    870: Vmgen replaces @samp{INST_TAIL;} with code for ending a VM instruction and
                    871: dispatching the next VM instruction.  Even without a @samp{INST_TAIL;} this
1.12      anton     872: happens automatically when control reaches the end of the C code.  If
                    873: you want to have this in the middle of the C code, you need to use
1.13      anton     874: @samp{INST_TAIL;}.  A typical example is a conditional VM branch:
1.5       anton     875: 
                    876: @example
1.11      anton     877: if (branch_condition) @{
1.13      anton     878:   SET_IP(target); INST_TAIL;
1.11      anton     879: @}
1.5       anton     880: /* implicit tail follows here */
                    881: @end example
                    882: 
1.13      anton     883: In this example, @samp{INST_TAIL;} is not strictly necessary, because there
1.5       anton     884: is another one implicitly after the if-statement, but using it improves
                    885: branch prediction accuracy slightly and allows other optimizations.
                    886: 
                    887: @item SUPER_CONTINUE
1.12      anton     888: @findex SUPER_CONTINUE
1.5       anton     889: This indicates that the implicit tail at the end of the VM instruction
                    890: dispatches the sequentially next VM instruction even if there is a
                    891: @code{SET_IP} in the VM instruction.  This enables an optimization that
                    892: is not yet implemented in the vmgen-ex code (but in Gforth).  The
                    893: typical application is in conditional VM branches:
                    894: 
                    895: @example
1.11      anton     896: if (branch_condition) @{
1.13      anton     897:   SET_IP(target); INST_TAIL; /* now this INST_TAIL is necessary */
1.11      anton     898: @}
1.5       anton     899: SUPER_CONTINUE;
                    900: @end example
                    901: 
                    902: @end table
                    903: 
1.11      anton     904: Note that Vmgen is not smart about C-level tokenization, comments,
1.5       anton     905: strings, or conditional compilation, so it will interpret even a
                    906: commented-out SUPER_END as ending a basic block (or, e.g.,
1.13      anton     907: @samp{RESET_IP;} as @samp{SET_IP;}).  Conversely, Vmgen requires the literal
1.11      anton     908: presence of these strings; Vmgen will not see them if they are hiding in
1.5       anton     909: a C preprocessor macro.
                    910: 
                    911: 
1.10      anton     912: @c --------------------------------------------------------------------
                    913: @node C Code restrictions,  , C Code Macros, Simple instructions
                    914: @subsection C Code restrictions
1.12      anton     915: @cindex C code restrictions
                    916: @cindex restrictions on C code
                    917: @cindex assumptions about C code
                    918: 
                    919: @cindex accessing stack (pointer)
                    920: @cindex stack pointer, access
                    921: @cindex instruction pointer, access
1.5       anton     922: Vmgen generates code and performs some optimizations under the
                    923: assumption that the user-supplied C code does not access the stack
                    924: pointers or stack items, and that accesses to the instruction pointer
                    925: only occur through special macros.  In general you should heed these
                    926: restrictions.  However, if you need to break these restrictions, read
                    927: the following.
                    928: 
                    929: Accessing a stack or stack pointer directly can be a problem for several
                    930: reasons: 
1.12      anton     931: @cindex stack caching, restriction on C code
                    932: @cindex superinstructions, restrictions on components
1.5       anton     933: 
1.11      anton     934: @itemize @bullet
1.5       anton     935: 
                    936: @item
1.12      anton     937: Vmgen optionally supports caching the top-of-stack item in a local
                    938: variable (that is allocated to a register).  This is the most frequent
                    939: source of trouble.  You can deal with it either by not using
                    940: top-of-stack caching (slowdown factor 1-1.4, depending on machine), or
                    941: by inserting flushing code (e.g., @samp{IF_spTOS(sp[...] = spTOS);}) at
                    942: the start and reloading code (e.g., @samp{IF_spTOS(spTOS = sp[0])}) at
                    943: the end of problematic C code.  Vmgen inserts a stack pointer update
                    944: before the start of the user-supplied C code, so the flushing code has
                    945: to use an index that corrects for that.  In the future, this flushing
                    946: may be done automatically by mentioning a special string in the C code.
1.5       anton     947: @c sometimes flushing and/or reloading unnecessary
                    948: 
                    949: @item
1.11      anton     950: The Vmgen-erated code loads the stack items from stack-pointer-indexed
1.5       anton     951: memory into variables before the user-supplied C code, and stores them
                    952: from variables to stack-pointer-indexed memory afterwards.  If you do
                    953: any writes to the stack through its stack pointer in your C code, it
1.13      anton     954: will not affect the variables, and your write may be overwritten by the
1.5       anton     955: stores after the C code.  Similarly, a read from a stack using a stack
                    956: pointer will not reflect computations of stack items in the same VM
                    957: instruction.
                    958: 
                    959: @item
                    960: Superinstructions keep stack items in variables across the whole
                    961: superinstruction.  So you should not include VM instructions, that
1.12      anton     962: access a stack or stack pointer, as components of superinstructions
                    963: (@pxref{VM profiler}).
1.5       anton     964: 
                    965: @end itemize
                    966: 
                    967: You should access the instruction pointer only through its special
                    968: macros (@samp{IP}, @samp{SET_IP}, @samp{IPTOS}); this ensure that these
                    969: macros can be implemented in several ways for best performance.
                    970: @samp{IP} points to the next instruction, and @samp{IPTOS} is its
                    971: contents.
                    972: 
                    973: 
1.10      anton     974: @c --------------------------------------------------------------------
1.11      anton     975: @node Superinstructions, Register Machines, Simple instructions, Input File Format
1.3       anton     976: @section Superinstructions
1.12      anton     977: @cindex superinstructions, defining
                    978: @cindex defining superinstructions
1.5       anton     979: 
1.8       anton     980: Note: don't invest too much work in (static) superinstructions; a future
1.11      anton     981: version of Vmgen will support dynamic superinstructions (see Ian
1.8       anton     982: Piumarta and Fabio Riccardi, @cite{Optimizing Direct Threaded Code by
                    983: Selective Inlining}, PLDI'98), and static superinstructions have much
1.12      anton     984: less benefit in that context (preliminary results indicate only a factor
                    985: 1.1 speedup).
1.8       anton     986: 
1.5       anton     987: Here is an example of a superinstruction definition:
                    988: 
                    989: @example
                    990: lit_sub = lit sub
                    991: @end example
                    992: 
                    993: @code{lit_sub} is the name of the superinstruction, and @code{lit} and
                    994: @code{sub} are its components.  This superinstruction performs the same
                    995: action as the sequence @code{lit} and @code{sub}.  It is generated
                    996: automatically by the VM code generation functions whenever that sequence
1.11      anton     997: occurs, so if you want to use this superinstruction, you just need to
                    998: add this definition (and even that can be partially automatized,
                    999: @pxref{VM profiler}).
1.5       anton    1000: 
1.12      anton    1001: @cindex prefixes of superinstructions
1.5       anton    1002: Vmgen requires that the component instructions are simple instructions
1.11      anton    1003: defined before superinstructions using the components.  Currently, Vmgen
1.5       anton    1004: also requires that all the subsequences at the start of a
                   1005: superinstruction (prefixes) must be defined as superinstruction before
                   1006: the superinstruction.  I.e., if you want to define a superinstruction
                   1007: 
                   1008: @example
1.12      anton    1009: foo4 = load add sub mul
1.5       anton    1010: @end example
                   1011: 
1.12      anton    1012: you first have to define @code{load}, @code{add}, @code{sub} and
                   1013: @code{mul}, plus
1.5       anton    1014: 
                   1015: @example
1.12      anton    1016: foo2 = load add
                   1017: foo3 = load add sub
1.5       anton    1018: @end example
                   1019: 
                   1020: Here, @code{sumof4} is the longest prefix of @code{sumof5}, and @code{sumof3}
                   1021: is the longest prefix of @code{sumof4}.
                   1022: 
1.11      anton    1023: Note that Vmgen assumes that only the code it generates accesses stack
1.5       anton    1024: pointers, the instruction pointer, and various stack items, and it
                   1025: performs optimizations based on this assumption.  Therefore, VM
1.12      anton    1026: instructions where your C code changes the instruction pointer should
                   1027: only be used as last component; a VM instruction where your C code
                   1028: accesses a stack pointer should not be used as component at all.  Vmgen
                   1029: does not check these restrictions, they just result in bugs in your
                   1030: interpreter.
1.5       anton    1031: 
1.12      anton    1032: @c -------------------------------------------------------------------
1.11      anton    1033: @node Register Machines,  , Superinstructions, Input File Format
                   1034: @section Register Machines
1.12      anton    1035: @cindex Register VM
                   1036: @cindex Superinstructions for register VMs
                   1037: @cindex tracing of register VMs
1.11      anton    1038: 
                   1039: If you want to implement a register VM rather than a stack VM with
                   1040: Vmgen, there are two ways to do it: Directly and through
                   1041: superinstructions.
                   1042: 
                   1043: If you use the direct way, you define instructions that take the
                   1044: register numbers as immediate arguments, like this:
                   1045: 
                   1046: @example
                   1047: add3 ( #src1 #src2 #dest -- )
                   1048: reg[dest] = reg[src1]+reg[src2];
                   1049: @end example
                   1050: 
1.12      anton    1051: A disadvantage of this method is that during tracing you only see the
                   1052: register numbers, but not the register contents.  Actually, with an
                   1053: appropriate definition of @code{printarg_src} (@pxref{VM engine}), you
                   1054: can print the values of the source registers on entry, but you cannot
                   1055: print the value of the destination register on exit.
                   1056: 
1.11      anton    1057: If you use superinstructions to define a register VM, you define simple
                   1058: instructions that use a stack, and then define superinstructions that
                   1059: have no overall stack effect, like this:
                   1060: 
                   1061: @example
                   1062: loadreg ( #src -- n )
                   1063: n = reg[src];
                   1064: 
                   1065: storereg ( n #dest -- )
                   1066: reg[dest] = n;
                   1067: 
                   1068: adds ( n1 n2 -- n )
                   1069: n = n1+n2;
                   1070: 
                   1071: add3 = loadreg loadreg adds storereg
                   1072: @end example
                   1073: 
                   1074: An advantage of this method is that you see the values and not just the
1.12      anton    1075: register numbers in tracing.  A disadvantage of this method is that
1.11      anton    1076: currently you cannot generate superinstructions directly, but only
                   1077: through generating a sequence of simple instructions (we might change
                   1078: this in the future if there is demand).
                   1079: 
                   1080: Could the register VM support be improved, apart from the issues
                   1081: mentioned above?  It is hard to see how to do it in a general way,
                   1082: because there are a number of different designs that different people
                   1083: mean when they use the term @emph{register machine} in connection with
                   1084: VM interpreters.  However, if you have ideas or requests in that
                   1085: direction, please let me know (@pxref{Contact}).
                   1086: 
1.5       anton    1087: @c ********************************************************************
1.13      anton    1088: @node Error messages, Using the generated code, Input File Format, Top
                   1089: @chapter Error messages
                   1090: @cindex error messages
                   1091: 
                   1092: These error messages are created by Vmgen:
                   1093: 
                   1094: @table @code
                   1095: 
                   1096: @cindex @code{# can only be on the input side} error
                   1097: @item # can only be on the input side
                   1098: You have used an instruction-stream prefix (usually @samp{#}) after the
                   1099: @samp{--} (the output side); you can only use it before (the input
                   1100: side).
                   1101: 
                   1102: @cindex @code{prefix for this combination must be defined earlier} error
                   1103: @item the prefix for this combination must be defined earlier
                   1104: You have defined a superinstruction (e.g. @code{abc = a b c}) without
                   1105: defining its direct prefix (e.g., @code{ab = a b}),
                   1106: @xref{Superinstructions}.
                   1107: 
                   1108: @cindex @code{sync line syntax} error
                   1109: @item sync line syntax
                   1110: If you are using a preprocessor (e.g., @command{m4}) to generate Vmgen
                   1111: input code, you may want to create @code{#line} directives (aka sync
                   1112: lines).  This error indicates that such a line is not in th syntax
1.16      anton    1113: expected by Vmgen (this should not happen; please report the offending
                   1114: line in a bug report).
1.13      anton    1115: 
                   1116: @cindex @code{syntax error, wrong char} error
                   1117: @cindex syntax error, wrong char
1.16      anton    1118: A syntax error.  If you do not see right away where the error is, it may
                   1119: be helpful to check the following: Did you put an empty line in a VM
                   1120: instruction where the C code is not delimited by braces (then the empty
                   1121: line ends the VM instruction)?  If you used brace-delimited C code, did
                   1122: you put the delimiting braces (and only those) at the start of the line,
                   1123: without preceding white space?  Did you forget a delimiting brace?
1.13      anton    1124: 
                   1125: @cindex @code{too many stacks} error
                   1126: @item too many stacks
1.16      anton    1127: Vmgen currently supports 3 stacks (plus the instruction stream); if you
                   1128: need more, let us know.
1.13      anton    1129: 
                   1130: @cindex @code{unknown prefix} error
                   1131: @item unknown prefix
                   1132: The stack item does not match any defined type prefix (after stripping
                   1133: away any stack prefix).  You should either declare the type prefix you
                   1134: want for that stack item, or use a different type prefix
                   1135: 
                   1136: @item @code{unknown primitive} error
                   1137: @item unknown primitive
                   1138: You have used the name of a simple VM instruction in a superinstruction
                   1139: definition without defining the simple VM instruction first.
                   1140: 
                   1141: @end table
                   1142: 
                   1143: In addition, the C compiler can produce errors due to code produced by
                   1144: Vmgen; e.g., you need to define type cast functions.
                   1145: 
                   1146: @c ********************************************************************
                   1147: @node Using the generated code, Hints, Error messages, Top
1.5       anton    1148: @chapter Using the generated code
1.12      anton    1149: @cindex generated code, usage
                   1150: @cindex Using vmgen-erated code
1.5       anton    1151: 
1.11      anton    1152: The easiest way to create a working VM interpreter with Vmgen is
1.12      anton    1153: probably to start with @file{vmgen-ex}, and modify it for your purposes.
1.13      anton    1154: This chapter explains what the various wrapper and generated files do.
                   1155: It also contains reference-manual style descriptions of the macros,
                   1156: variables etc. used by the generated code, and you can skip that on
                   1157: first reading.
1.5       anton    1158: 
1.10      anton    1159: @menu
                   1160: * VM engine::                   Executing VM code
                   1161: * VM instruction table::        
                   1162: * VM code generation::          Creating VM code (in the front-end)
                   1163: * Peephole optimization::       Creating VM superinstructions
                   1164: * VM disassembler::             for debugging the front end
                   1165: * VM profiler::                 for finding worthwhile superinstructions
                   1166: @end menu
1.6       anton    1167: 
1.10      anton    1168: @c --------------------------------------------------------------------
                   1169: @node VM engine, VM instruction table, Using the generated code, Using the generated code
1.5       anton    1170: @section VM engine
1.12      anton    1171: @cindex VM instruction execution
                   1172: @cindex engine
                   1173: @cindex executing VM code
                   1174: @cindex @file{engine.c}
                   1175: @cindex @file{-vm.i} output file
1.5       anton    1176: 
                   1177: The VM engine is the VM interpreter that executes the VM code.  It is
                   1178: essential for an interpretive system.
                   1179: 
1.6       anton    1180: Vmgen supports two methods of VM instruction dispatch: @emph{threaded
                   1181: code} (fast, but gcc-specific), and @emph{switch dispatch} (slow, but
                   1182: portable across C compilers); you can use conditional compilation
                   1183: (@samp{defined(__GNUC__)}) to choose between these methods, and our
                   1184: example does so.
                   1185: 
                   1186: For both methods, the VM engine is contained in a C-level function.
                   1187: Vmgen generates most of the contents of the function for you
                   1188: (@file{@var{name}-vm.i}), but you have to define this function, and
                   1189: macros and variables used in the engine, and initialize the variables.
                   1190: In our example the engine function also includes
                   1191: @file{@var{name}-labels.i} (@pxref{VM instruction table}).
                   1192: 
1.12      anton    1193: @cindex tracing VM code
1.13      anton    1194: @cindex superinstructions and tracing
1.12      anton    1195: In addition to executing the code, the VM engine can optionally also
                   1196: print out a trace of the executed instructions, their arguments and
                   1197: results.  For superinstructions it prints the trace as if only component
                   1198: instructions were executed; this allows to introduce new
                   1199: superinstructions while keeping the traces comparable to old ones
                   1200: (important for regression tests).
                   1201: 
                   1202: It costs significant performance to check in each instruction whether to
                   1203: print tracing code, so we recommend producing two copies of the engine:
                   1204: one for fast execution, and one for tracing.  See the rules for
                   1205: @file{engine.o} and @file{engine-debug.o} in @file{vmgen-ex/Makefile}
                   1206: for an example.
                   1207: 
1.6       anton    1208: The following macros and variables are used in @file{@var{name}-vm.i}:
1.5       anton    1209: 
                   1210: @table @code
                   1211: 
1.12      anton    1212: @findex LABEL
1.5       anton    1213: @item LABEL(@var{inst_name})
                   1214: This is used just before each VM instruction to provide a jump or
1.11      anton    1215: @code{switch} label (the @samp{:} is provided by Vmgen).  For switch
1.13      anton    1216: dispatch this should expand to @samp{case @var{label}:}; for
                   1217: threaded-code dispatch this should just expand to @samp{@var{label}:}.
1.12      anton    1218: In either case @var{label} is usually the @var{inst_name} with some
                   1219: prefix or suffix to avoid naming conflicts.
1.5       anton    1220: 
1.12      anton    1221: @findex LABEL2
1.9       anton    1222: @item LABEL2(@var{inst_name})
                   1223: This will be used for dynamic superinstructions; at the moment, this
                   1224: should expand to nothing.
                   1225: 
1.12      anton    1226: @findex NAME
1.5       anton    1227: @item NAME(@var{inst_name_string})
                   1228: Called on entering a VM instruction with a string containing the name of
1.13      anton    1229: the VM instruction as parameter.  In normal execution this should be
                   1230: expand to nothing, but for tracing this usually prints the name, and
                   1231: possibly other information (several VM registers in our example).
1.5       anton    1232: 
1.12      anton    1233: @findex DEF_CA
1.5       anton    1234: @item DEF_CA
                   1235: Usually empty.  Called just inside a new scope at the start of a VM
                   1236: instruction.  Can be used to define variables that should be visible
                   1237: during every VM instruction.  If you define this macro as non-empty, you
                   1238: have to provide the finishing @samp{;} in the macro.
                   1239: 
1.12      anton    1240: @findex NEXT_P0
                   1241: @findex NEXT_P1
                   1242: @findex NEXT_P2
1.5       anton    1243: @item NEXT_P0 NEXT_P1 NEXT_P2
                   1244: The three parts of instruction dispatch.  They can be defined in
                   1245: different ways for best performance on various processors (see
                   1246: @file{engine.c} in the example or @file{engine/threaded.h} in Gforth).
1.12      anton    1247: @samp{NEXT_P0} is invoked right at the start of the VM instruction (but
1.5       anton    1248: after @samp{DEF_CA}), @samp{NEXT_P1} right after the user-supplied C
                   1249: code, and @samp{NEXT_P2} at the end.  The actual jump has to be
1.13      anton    1250: performed by @samp{NEXT_P2} (if you would do it earlier, important parts
                   1251: of the VM instruction would not be executed).
1.5       anton    1252: 
                   1253: The simplest variant is if @samp{NEXT_P2} does everything and the other
                   1254: macros do nothing.  Then also related macros like @samp{IP},
                   1255: @samp{SET_IP}, @samp{IP}, @samp{INC_IP} and @samp{IPTOS} are very
                   1256: straightforward to define.  For switch dispatch this code consists just
1.12      anton    1257: of a jump to the dispatch code (@samp{goto next_inst;} in our example);
1.5       anton    1258: for direct threaded code it consists of something like
1.11      anton    1259: @samp{(@{cfa=*ip++; goto *cfa;@})}.
1.5       anton    1260: 
1.12      anton    1261: Pulling code (usually the @samp{cfa=*ip++;}) up into @samp{NEXT_P1}
1.5       anton    1262: usually does not cause problems, but pulling things up into
                   1263: @samp{NEXT_P0} usually requires changing the other macros (and, at least
                   1264: for Gforth on Alpha, it does not buy much, because the compiler often
                   1265: manages to schedule the relevant stuff up by itself).  An even more
                   1266: extreme variant is to pull code up even further, into, e.g., NEXT_P1 of
                   1267: the previous VM instruction (prefetching, useful on PowerPCs).
                   1268: 
1.12      anton    1269: @findex INC_IP
1.5       anton    1270: @item INC_IP(@var{n})
1.8       anton    1271: This increments @code{IP} by @var{n}.
                   1272: 
1.12      anton    1273: @findex SET_IP
1.8       anton    1274: @item SET_IP(@var{target})
                   1275: This sets @code{IP} to @var{target}.
1.5       anton    1276: 
1.12      anton    1277: @cindex type cast macro
                   1278: @findex vm_@var{A}2@var{B}
1.5       anton    1279: @item vm_@var{A}2@var{B}(a,b)
                   1280: Type casting macro that assigns @samp{a} (of type @var{A}) to @samp{b}
                   1281: (of type @var{B}).  This is mainly used for getting stack items into
                   1282: variables and back.  So you need to define macros for every combination
                   1283: of stack basic type (@code{Cell} in our example) and type-prefix types
                   1284: used with that stack (in both directions).  For the type-prefix type,
                   1285: you use the type-prefix (not the C type string) as type name (e.g.,
                   1286: @samp{vm_Cell2i}, not @samp{vm_Cell2Cell}).  In addition, you have to
1.12      anton    1287: define a vm_@var{X}2@var{X} macro for the stack's basic type @var{X}
                   1288: (used in superinstructions).
1.5       anton    1289: 
1.12      anton    1290: @cindex instruction stream, basic type
1.5       anton    1291: The stack basic type for the predefined @samp{inst-stream} is
                   1292: @samp{Cell}.  If you want a stack with the same item size, making its
                   1293: basic type @samp{Cell} usually reduces the number of macros you have to
                   1294: define.
                   1295: 
1.12      anton    1296: @cindex unions in type cast macros
                   1297: @cindex casts in type cast macros
                   1298: @cindex type casting between floats and integers
1.5       anton    1299: Here our examples differ a lot: @file{vmgen-ex} uses casts in these
                   1300: macros, whereas @file{vmgen-ex2} uses union-field selection (or
1.12      anton    1301: assignment to union fields).  Note that casting floats into integers and
                   1302: vice versa changes the bit pattern (and you do not want that).  In this
                   1303: case your options are to use a (temporary) union, or to take the address
                   1304: of the value, cast the pointer, and dereference that (not always
                   1305: possible, and sometimes expensive).
1.5       anton    1306: 
1.12      anton    1307: @findex vm_two@var{A}2@var{B}
                   1308: @findex vm_@var{B}2two@var{A}
1.5       anton    1309: @item vm_two@var{A}2@var{B}(a1,a2,b)
                   1310: @item vm_@var{B}2two@var{A}(b,a1,a2)
1.12      anton    1311: Type casting between two stack items (@code{a1}, @code{a2}) and a
1.5       anton    1312: variable @code{b} of a type that takes two stack items.  This does not
1.12      anton    1313: occur in our small examples, but you can look at Gforth for examples
                   1314: (see @code{vm_twoCell2d} in @file{engine/forth.h}).
1.5       anton    1315: 
1.12      anton    1316: @cindex stack pointer definition
                   1317: @cindex instruction pointer definition
1.5       anton    1318: @item @var{stackpointer}
                   1319: For each stack used, the stackpointer name given in the stack
                   1320: declaration is used.  For a regular stack this must be an l-expression;
                   1321: typically it is a variable declared as a pointer to the stack's basic
                   1322: type.  For @samp{inst-stream}, the name is @samp{IP}, and it can be a
                   1323: plain r-value; typically it is a macro that abstracts away the
1.12      anton    1324: differences between the various implementations of @code{NEXT_P*}.
1.5       anton    1325: 
1.12      anton    1326: @cindex top of stack caching
                   1327: @cindex stack caching
                   1328: @cindex TOS
                   1329: @findex IPTOS
1.5       anton    1330: @item @var{stackpointer}TOS
                   1331: The top-of-stack for the stack pointed to by @var{stackpointer}.  If you
                   1332: are using top-of-stack caching for that stack, this should be defined as
                   1333: variable; if you are not using top-of-stack caching for that stack, this
                   1334: should be a macro expanding to @samp{@var{stackpointer}[0]}.  The stack
                   1335: pointer for the predefined @samp{inst-stream} is called @samp{IP}, so
                   1336: the top-of-stack is called @samp{IPTOS}.
                   1337: 
1.12      anton    1338: @findex IF_@var{stackpointer}TOS
1.5       anton    1339: @item IF_@var{stackpointer}TOS(@var{expr})
                   1340: Macro for executing @var{expr}, if top-of-stack caching is used for the
                   1341: @var{stackpointer} stack.  I.e., this should do @var{expr} if there is
                   1342: top-of-stack caching for @var{stackpointer}; otherwise it should do
                   1343: nothing.
                   1344: 
1.12      anton    1345: @findex SUPER_END
1.8       anton    1346: @item SUPER_END
                   1347: This is used by the VM profiler (@pxref{VM profiler}); it should not do
                   1348: anything in normal operation, and call @code{vm_count_block(IP)} for
                   1349: profiling.
                   1350: 
1.12      anton    1351: @findex SUPER_CONTINUE
1.8       anton    1352: @item SUPER_CONTINUE
1.11      anton    1353: This is just a hint to Vmgen and does nothing at the C level.
1.8       anton    1354: 
1.12      anton    1355: @findex VM_DEBUG
1.5       anton    1356: @item VM_DEBUG
                   1357: If this is defined, the tracing code will be compiled in (slower
                   1358: interpretation, but better debugging).  Our example compiles two
                   1359: versions of the engine, a fast-running one that cannot trace, and one
                   1360: with potential tracing and profiling.
                   1361: 
1.12      anton    1362: @findex vm_debug
1.5       anton    1363: @item vm_debug
                   1364: Needed only if @samp{VM_DEBUG} is defined.  If this variable contains
                   1365: true, the VM instructions produce trace output.  It can be turned on or
                   1366: off at any time.
                   1367: 
1.12      anton    1368: @findex vm_out
1.5       anton    1369: @item vm_out
                   1370: Needed only if @samp{VM_DEBUG} is defined.  Specifies the file on which
                   1371: to print the trace output (type @samp{FILE *}).
                   1372: 
1.12      anton    1373: @findex printarg_@var{type}
1.5       anton    1374: @item printarg_@var{type}(@var{value})
                   1375: Needed only if @samp{VM_DEBUG} is defined.  Macro or function for
                   1376: printing @var{value} in a way appropriate for the @var{type}.  This is
                   1377: used for printing the values of stack items during tracing.  @var{Type}
                   1378: is normally the type prefix specified in a @code{type-prefix} definition
                   1379: (e.g., @samp{printarg_i}); in superinstructions it is currently the
                   1380: basic type of the stack.
                   1381: 
                   1382: @end table
                   1383: 
1.6       anton    1384: 
1.10      anton    1385: @c --------------------------------------------------------------------
                   1386: @node VM instruction table, VM code generation, VM engine, Using the generated code
                   1387: @section VM instruction table
1.12      anton    1388: @cindex instruction table
                   1389: @cindex opcode definition
                   1390: @cindex labels for threaded code
                   1391: @cindex @code{vm_prim}, definition
                   1392: @cindex @file{-labels.i} output file
1.6       anton    1393: 
                   1394: For threaded code we also need to produce a table containing the labels
                   1395: of all VM instructions.  This is needed for VM code generation
                   1396: (@pxref{VM code generation}), and it has to be done in the engine
                   1397: function, because the labels are not visible outside.  It then has to be
                   1398: passed outside the function (and assigned to @samp{vm_prim}), to be used
                   1399: by the VM code generation functions.
                   1400: 
                   1401: This means that the engine function has to be called first to produce
                   1402: the VM instruction table, and later, after generating VM code, it has to
                   1403: be called again to execute the generated VM code (yes, this is ugly).
                   1404: In our example program, these two modes of calling the engine function
                   1405: are differentiated by the value of the parameter ip0 (if it equals 0,
                   1406: then the table is passed out, otherwise the VM code is executed); in our
                   1407: example, we pass the table out by assigning it to @samp{vm_prim} and
                   1408: returning from @samp{engine}.
                   1409: 
1.12      anton    1410: In our example (@file{vmgen-ex/engine.c}), we also build such a table for
                   1411: switch dispatch; this is mainly done for uniformity.
1.6       anton    1412: 
                   1413: For switch dispatch, we also need to define the VM instruction opcodes
                   1414: used as case labels in an @code{enum}.
                   1415: 
                   1416: For both purposes (VM instruction table, and enum), the file
1.11      anton    1417: @file{@var{name}-labels.i} is generated by Vmgen.  You have to define
1.6       anton    1418: the following macro used in this file:
1.5       anton    1419: 
1.12      anton    1420: @table @code
1.5       anton    1421: 
1.12      anton    1422: @findex INST_ADDR
1.5       anton    1423: @item INST_ADDR(@var{inst_name})
                   1424: For switch dispatch, this is just the name of the switch label (the same
1.6       anton    1425: name as used in @samp{LABEL(@var{inst_name})}), for both uses of
                   1426: @file{@var{name}-labels.i}.  For threaded-code dispatch, this is the
                   1427: address of the label defined in @samp{LABEL(@var{inst_name})}); the
1.11      anton    1428: address is taken with @samp{&&} (@pxref{Labels as Values, , Labels as
                   1429: Values, gcc.info, GNU C Manual}).
1.5       anton    1430: 
                   1431: @end table
                   1432: 
                   1433: 
1.10      anton    1434: @c --------------------------------------------------------------------
                   1435: @node VM code generation, Peephole optimization, VM instruction table, Using the generated code
1.6       anton    1436: @section VM code generation
1.12      anton    1437: @cindex VM code generation
                   1438: @cindex code generation, VM
                   1439: @cindex @file{-gen.i} output file
1.6       anton    1440: 
                   1441: Vmgen generates VM code generation functions in @file{@var{name}-gen.i}
                   1442: that the front end can call to generate VM code.  This is essential for
                   1443: an interpretive system.
                   1444: 
1.12      anton    1445: @findex gen_@var{inst}
1.11      anton    1446: For a VM instruction @samp{x ( #a b #c -- d )}, Vmgen generates a
1.6       anton    1447: function with the prototype
                   1448: 
                   1449: @example
                   1450: void gen_x(Inst **ctp, a_type a, c_type c)
                   1451: @end example
                   1452: 
                   1453: The @code{ctp} argument points to a pointer to the next instruction.
                   1454: @code{*ctp} is increased by the generation functions; i.e., you should
                   1455: allocate memory for the code to be generated beforehand, and start with
                   1456: *ctp set at the start of this memory area.  Before running out of
                   1457: memory, allocate a new area, and generate a VM-level jump to the new
1.12      anton    1458: area (this overflow handling is not implemented in our examples).
1.6       anton    1459: 
1.12      anton    1460: @cindex immediate arguments, VM code generation
1.6       anton    1461: The other arguments correspond to the immediate arguments of the VM
                   1462: instruction (with their appropriate types as defined in the
                   1463: @code{type_prefix} declaration.
                   1464: 
                   1465: The following types, variables, and functions are used in
                   1466: @file{@var{name}-gen.i}:
                   1467: 
1.12      anton    1468: @table @code
1.6       anton    1469: 
1.12      anton    1470: @findex Inst
1.6       anton    1471: @item Inst
                   1472: The type of the VM instruction; if you use threaded code, this is
                   1473: @code{void *}; for switch dispatch this is an integer type.
                   1474: 
1.12      anton    1475: @cindex @code{vm_prim}, use
1.6       anton    1476: @item vm_prim
                   1477: The VM instruction table (type: @code{Inst *}, @pxref{VM instruction table}).
                   1478: 
1.12      anton    1479: @findex gen_inst
1.6       anton    1480: @item gen_inst(Inst **ctp, Inst i)
                   1481: This function compiles the instruction @code{i}.  Take a look at it in
                   1482: @file{vmgen-ex/peephole.c}.  It is trivial when you don't want to use
                   1483: superinstructions (just the last two lines of the example function), and
                   1484: slightly more complicated in the example due to its ability to use
                   1485: superinstructions (@pxref{Peephole optimization}).
                   1486: 
1.12      anton    1487: @findex genarg_@var{type_prefix}
1.6       anton    1488: @item genarg_@var{type_prefix}(Inst **ctp, @var{type} @var{type_prefix})
                   1489: This compiles an immediate argument of @var{type} (as defined in a
                   1490: @code{type-prefix} definition).  These functions are trivial to define
                   1491: (see @file{vmgen-ex/support.c}).  You need one of these functions for
                   1492: every type that you use as immediate argument.
                   1493: 
                   1494: @end table
                   1495: 
1.12      anton    1496: @findex BB_BOUNDARY
1.6       anton    1497: In addition to using these functions to generate code, you should call
                   1498: @code{BB_BOUNDARY} at every basic block entry point if you ever want to
                   1499: use superinstructions (or if you want to use the profiling supported by
1.12      anton    1500: Vmgen; but this support is also useful mainly for selecting
                   1501: superinstructions).  If you use @code{BB_BOUNDARY}, you should also
                   1502: define it (take a look at its definition in @file{vmgen-ex/mini.y}).
1.6       anton    1503: 
                   1504: You do not need to call @code{BB_BOUNDARY} after branches, because you
                   1505: will not define superinstructions that contain branches in the middle
                   1506: (and if you did, and it would work, there would be no reason to end the
                   1507: superinstruction at the branch), and because the branches announce
                   1508: themselves to the profiler.
                   1509: 
                   1510: 
1.10      anton    1511: @c --------------------------------------------------------------------
                   1512: @node Peephole optimization, VM disassembler, VM code generation, Using the generated code
1.6       anton    1513: @section Peephole optimization
1.12      anton    1514: @cindex peephole optimization
                   1515: @cindex superinstructions, generating
                   1516: @cindex @file{peephole.c}
                   1517: @cindex @file{-peephole.i} output file
1.6       anton    1518: 
                   1519: You need peephole optimization only if you want to use
                   1520: superinstructions.  But having the code for it does not hurt much if you
                   1521: do not use superinstructions.
                   1522: 
                   1523: A simple greedy peephole optimization algorithm is used for
                   1524: superinstruction selection: every time @code{gen_inst} compiles a VM
1.12      anton    1525: instruction, it checks if it can combine it with the last VM instruction
1.6       anton    1526: (which may also be a superinstruction resulting from a previous peephole
                   1527: optimization); if so, it changes the last instruction to the combined
                   1528: instruction instead of laying down @code{i} at the current @samp{*ctp}.
                   1529: 
                   1530: The code for peephole optimization is in @file{vmgen-ex/peephole.c}.
                   1531: You can use this file almost verbatim.  Vmgen generates
                   1532: @file{@var{file}-peephole.i} which contains data for the peephoile
                   1533: optimizer.
                   1534: 
1.12      anton    1535: @findex init_peeptable
1.6       anton    1536: You have to call @samp{init_peeptable()} after initializing
                   1537: @samp{vm_prim}, and before compiling any VM code to initialize data
                   1538: structures for peephole optimization.  After that, compiling with the VM
                   1539: code generation functions will automatically combine VM instructions
                   1540: into superinstructions.  Since you do not want to combine instructions
                   1541: across VM branch targets (otherwise there will not be a proper VM
                   1542: instruction to branch to), you have to call @code{BB_BOUNDARY}
                   1543: (@pxref{VM code generation}) at branch targets.
                   1544: 
                   1545: 
1.10      anton    1546: @c --------------------------------------------------------------------
                   1547: @node VM disassembler, VM profiler, Peephole optimization, Using the generated code
1.6       anton    1548: @section VM disassembler
1.12      anton    1549: @cindex VM disassembler
                   1550: @cindex disassembler, VM code
                   1551: @cindex @file{disasm.c}
                   1552: @cindex @file{-disasm.i} output file
1.6       anton    1553: 
                   1554: A VM code disassembler is optional for an interpretive system, but
                   1555: highly recommended during its development and maintenance, because it is
                   1556: very useful for detecting bugs in the front end (and for distinguishing
                   1557: them from VM interpreter bugs).
                   1558: 
                   1559: Vmgen supports VM code disassembling by generating
                   1560: @file{@var{file}-disasm.i}.  This code has to be wrapped into a
1.12      anton    1561: function, as is done in @file{vmgen-ex/disasm.c}.  You can use this file
1.6       anton    1562: almost verbatim.  In addition to @samp{vm_@var{A}2@var{B}(a,b)},
                   1563: @samp{vm_out}, @samp{printarg_@var{type}(@var{value})}, which are
                   1564: explained above, the following macros and variables are used in
                   1565: @file{@var{file}-disasm.i} (and you have to define them):
                   1566: 
1.12      anton    1567: @table @code
1.6       anton    1568: 
                   1569: @item ip
                   1570: This variable points to the opcode of the current VM instruction.
                   1571: 
1.12      anton    1572: @cindex @code{IP}, @code{IPTOS} in disassmbler
1.6       anton    1573: @item IP IPTOS
                   1574: @samp{IPTOS} is the first argument of the current VM instruction, and
                   1575: @samp{IP} points to it; this is just as in the engine, but here
                   1576: @samp{ip} points to the opcode of the VM instruction (in contrast to the
                   1577: engine, where @samp{ip} points to the next cell, or even one further).
                   1578: 
1.12      anton    1579: @findex VM_IS_INST
1.6       anton    1580: @item VM_IS_INST(Inst i, int n)
                   1581: Tests if the opcode @samp{i} is the same as the @samp{n}th entry in the
                   1582: VM instruction table.
                   1583: 
                   1584: @end table
                   1585: 
                   1586: 
1.10      anton    1587: @c --------------------------------------------------------------------
                   1588: @node VM profiler,  , VM disassembler, Using the generated code
1.7       anton    1589: @section VM profiler
1.12      anton    1590: @cindex VM profiler
                   1591: @cindex profiling for selecting superinstructions
                   1592: @cindex superinstructions and profiling
                   1593: @cindex @file{profile.c}
                   1594: @cindex @file{-profile.i} output file
1.7       anton    1595: 
                   1596: The VM profiler is designed for getting execution and occurence counts
                   1597: for VM instruction sequences, and these counts can then be used for
                   1598: selecting sequences as superinstructions.  The VM profiler is probably
1.8       anton    1599: not useful as profiling tool for the interpretive system.  I.e., the VM
1.7       anton    1600: profiler is useful for the developers, but not the users of the
1.8       anton    1601: interpretive system.
1.7       anton    1602: 
1.8       anton    1603: The output of the profiler is: for each basic block (executed at least
                   1604: once), it produces the dynamic execution count of that basic block and
                   1605: all its subsequences; e.g.,
1.7       anton    1606: 
1.8       anton    1607: @example
                   1608:        9227465  lit storelocal 
                   1609:        9227465  storelocal branch 
                   1610:        9227465  lit storelocal branch 
                   1611: @end example
1.7       anton    1612: 
1.8       anton    1613: I.e., a basic block consisting of @samp{lit storelocal branch} is
                   1614: executed 9227465 times.
1.6       anton    1615: 
1.12      anton    1616: @cindex @file{stat.awk}
                   1617: @cindex @file{seq2rule.awk}
1.8       anton    1618: This output can be combined in various ways.  E.g.,
1.12      anton    1619: @file{vmgen-ex/stat.awk} adds up the occurences of a given sequence wrt
1.8       anton    1620: dynamic execution, static occurence, and per-program occurence.  E.g.,
1.3       anton    1621: 
1.8       anton    1622: @example
                   1623:       2      16        36910041 loadlocal lit 
                   1624: @end example
1.2       anton    1625: 
1.12      anton    1626: @noindent
1.8       anton    1627: indicates that the sequence @samp{loadlocal lit} occurs in 2 programs,
                   1628: in 16 places, and has been executed 36910041 times.  Now you can select
                   1629: superinstructions in any way you like (note that compile time and space
                   1630: typically limit the number of superinstructions to 100--1000).  After
                   1631: you have done that, @file{vmgen/seq2rule.awk} turns lines of the form
1.11      anton    1632: above into rules for inclusion in a Vmgen input file.  Note that this
1.8       anton    1633: script does not ensure that all prefixes are defined, so you have to do
                   1634: that in other ways.  So, an overall script for turning profiles into
                   1635: superinstructions can look like this:
1.2       anton    1636: 
1.8       anton    1637: @example
                   1638: awk -f stat.awk fib.prof test.prof|
                   1639: awk '$3>=10000'|                #select sequences
                   1640: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
                   1641: awk -f seq2rule.awk|            #turn into superinstructions
                   1642: sort -k 3 >mini-super.vmg       #sort sequences
                   1643: @end example
1.2       anton    1644: 
1.8       anton    1645: Here the dynamic count is used for selecting sequences (preliminary
                   1646: results indicate that the static count gives better results, though);
1.12      anton    1647: the third line eliminates sequences containing instructions that must not
1.8       anton    1648: occur in a superinstruction, because they access a stack directly.  The
                   1649: dynamic count selection ensures that all subsequences (including
                   1650: prefixes) of longer sequences occur (because subsequences have at least
                   1651: the same count as the longer sequences); the sort in the last line
                   1652: ensures that longer superinstructions occur after their prefixes.
                   1653: 
1.12      anton    1654: But before using this, you have to have the profiler.  Vmgen supports its
1.8       anton    1655: creation by generating @file{@var{file}-profile.i}; you also need the
                   1656: wrapper file @file{vmgen-ex/profile.c} that you can use almost verbatim.
                   1657: 
1.12      anton    1658: @cindex @code{SUPER_END} in profiling
                   1659: @cindex @code{BB_BOUNDARY} in profiling
1.8       anton    1660: The profiler works by recording the targets of all VM control flow
                   1661: changes (through @code{SUPER_END} during execution, and through
                   1662: @code{BB_BOUNDARY} in the front end), and counting (through
                   1663: @code{SUPER_END}) how often they were targeted.  After the program run,
                   1664: the numbers are corrected such that each VM basic block has the correct
1.12      anton    1665: count (entering a block without executing a branch does not increase the
                   1666: count, and the correction fixes that), then the subsequences of all
                   1667: basic blocks are printed.  To get all this, you just have to define
                   1668: @code{SUPER_END} (and @code{BB_BOUNDARY}) appropriately, and call
                   1669: @code{vm_print_profile(FILE *file)} when you want to output the profile
                   1670: on @code{file}.
1.8       anton    1671: 
1.12      anton    1672: @cindex @code{VM_IS_INST} in profiling
                   1673: The @file{@var{file}-profile.i} is similar to the disassembler file, and
1.8       anton    1674: it uses variables and functions defined in @file{vmgen-ex/profile.c},
                   1675: plus @code{VM_IS_INST} already defined for the VM disassembler
                   1676: (@pxref{VM disassembler}).
                   1677: 
1.13      anton    1678: @c **********************************************************
                   1679: @node Hints, The future, Using the generated code, Top
                   1680: @chapter Hints
                   1681: @cindex hints
                   1682: 
                   1683: @menu
                   1684: * Floating point::              and stacks
                   1685: @end menu
                   1686: 
                   1687: @c --------------------------------------------------------------------
                   1688: @node Floating point,  , Hints, Hints
                   1689: @section Floating point
                   1690: 
                   1691: How should you deal with floating point values?  Should you use the same
                   1692: stack as for integers/pointers, or a different one?  This section
                   1693: discusses this issue with a view on execution speed.
                   1694: 
                   1695: The simpler approach is to use a separate floating-point stack.  This
                   1696: allows you to choose FP value size without considering the size of the
                   1697: integers/pointers, and you avoid a number of performance problems.  The
                   1698: main downside is that this needs an FP stack pointer (and that may not
                   1699: fit in the register file on the 386 arhitecture, costing some
                   1700: performance, but comparatively little if you take the other option into
                   1701: account).  If you use a separate FP stack (with stack pointer @code{fp}),
                   1702: using an fpTOS is helpful on most machines, but some spill the fpTOS
                   1703: register into memory, and fpTOS should not be used there.
                   1704: 
                   1705: The other approach is to share one stack (pointed to by, say, @code{sp})
                   1706: between integer/pointer and floating-point values.  This is ok if you do
                   1707: not use @code{spTOS}.  If you do use @code{spTOS}, the compiler has to
                   1708: decide whether to put that variable into an integer or a floating point
                   1709: register, and the other type of operation becomes quite expensive on
                   1710: most machines (because moving values between integer and FP registers is
                   1711: quite expensive).  If a value of one type has to be synthesized out of
                   1712: two values of the other type (@code{double} types), things are even more
                   1713: interesting.
                   1714: 
                   1715: One way around this problem would be to not use the @code{spTOS}
                   1716: supported by Vmgen, but to use explicit top-of-stack variables (one for
                   1717: integers, one for FP values), and having a kind of accumulator+stack
                   1718: architecture (e.g., Ocaml bytecode uses this approach); however, this is
                   1719: a major change, and it's ramifications are not completely clear.
1.10      anton    1720: 
                   1721: @c **********************************************************
1.13      anton    1722: @node The future, Changes, Hints, Top
                   1723: @chapter The future
                   1724: @cindex future ideas
                   1725: 
                   1726: We have a number of ideas for future versions of Gforth.  However, there
                   1727: are so many possible things to do that we would like some feedback from
                   1728: you.  What are you doing with Vmgen, what features are you missing, and
                   1729: why?
                   1730: 
                   1731: One idea we are thinking about is to generate just one @file{.c} file
                   1732: instead of letting you copy and adapt all the wrapper files (you would
                   1733: still have to define stuff like the type-specific macros, and stack
                   1734: pointers etc. somewhere).  The advantage would be that, if we change the
                   1735: wrapper files between versions, you would not need to integrate your
                   1736: changes and our changes to them; Vmgen would also be easier to use for
                   1737: beginners.  The main disadvantage of that is that it would reduce the
                   1738: flexibility of Vmgen a little (well, those who like flexibility could
                   1739: still patch the resulting @file{.c} file, like they are now doing for
                   1740: the wrapper files).  In any case, if you are doing things to the wrapper
                   1741: files that would cause problems in a generated-@file{.c}-file approach,
                   1742: please let us know.
                   1743: 
                   1744: @c **********************************************************
                   1745: @node Changes, Contact, The future, Top
1.8       anton    1746: @chapter Changes
1.12      anton    1747: @cindex Changes from old versions
1.8       anton    1748: 
1.17    ! anton    1749: Use-visible changes between 0.5.9-20010501 and 0.5.9-20020822:
        !          1750: 
        !          1751: There is now a manual (in info, HTML, Postscript, or plain text format).
        !          1752: 
        !          1753: There is the vmgen-ex2 variant of the vmgen-ex example; the new
        !          1754: variant uses a union type instead of lots of casting.
        !          1755: 
        !          1756: Both variants of the example can now be compiled with an ANSI C compiler
        !          1757: (using switch dispatch and losing quite a bit of performance); tested
        !          1758: with @command{lcc}.
        !          1759: 
1.11      anton    1760: Users of the gforth-0.5.9-20010501 version of Vmgen need to change
1.8       anton    1761: several things in their source code to use the current version.  I
                   1762: recommend keeping the gforth-0.5.9-20010501 version until you have
                   1763: completed the change (note that you can have several versions of Gforth
                   1764: installed at the same time).  I hope to avoid such incompatible changes
                   1765: in the future.
1.2       anton    1766: 
1.8       anton    1767: The required changes are:
                   1768: 
                   1769: @table @code
1.13      anton    1770: 
                   1771: @cindex @code{TAIL;}, changes
                   1772: @item TAIL;
                   1773: has been renamed into @code{INST_TAIL;} (less chance of an accidental
                   1774: match).
1.2       anton    1775: 
1.12      anton    1776: @cindex @code{vm_@var{A}2@var{B}}, changes
1.8       anton    1777: @item vm_@var{A}2@var{B}
                   1778: now takes two arguments.
                   1779: 
1.12      anton    1780: @cindex @code{vm_two@var{A}2@var{B}}, changes
1.8       anton    1781: @item vm_two@var{A}2@var{B}(b,a1,a2);
                   1782: changed to vm_two@var{A}2@var{B}(a1,a2,b) (note the absence of the @samp{;}).
                   1783: 
                   1784: @end table
1.2       anton    1785: 
1.8       anton    1786: Also some new macros have to be defined, e.g., @code{INST_ADDR}, and
                   1787: @code{LABEL}; some macros have to be defined in new contexts, e.g.,
                   1788: @code{VM_IS_INST} is now also needed in the disassembler.
1.4       anton    1789: 
1.12      anton    1790: @c *********************************************************
1.10      anton    1791: @node Contact, Copying This Manual, Changes, Top
1.8       anton    1792: @chapter Contact
1.17    ! anton    1793: 
        !          1794: To report a bug, use
        !          1795: @url{https://savannah.gnu.org/bugs/?func=addbug&group_id=2672}.
        !          1796: 
        !          1797: For discussion on Vmgen (e.g., how to use it), use the mailing list
        !          1798: @email{bug-vmgen@@mail.freesoftware.fsf.org} (use
        !          1799: @url{http://mail.gnu.org/mailman/listinfo/help-vmgen} to subscribe).
        !          1800: 
        !          1801: You can find vmgen information at
        !          1802: @url{http://www.complang.tuwien.ac.at/anton/vmgen/}.
1.4       anton    1803: 
1.12      anton    1804: @c ***********************************************************
1.10      anton    1805: @node Copying This Manual, Index, Contact, Top
                   1806: @appendix Copying This Manual
                   1807: 
                   1808: @menu
                   1809: * GNU Free Documentation License::  License for copying this manual.
                   1810: @end menu
                   1811: 
                   1812: @include fdl.texi
                   1813: 
                   1814: 
                   1815: @node Index,  , Copying This Manual, Top
                   1816: @unnumbered Index
                   1817: 
                   1818: @printindex cp
                   1819: 
                   1820: @bye

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>