Annotation of gforth/doc/vmgen.texi, revision 1.13

1.10      anton       1: \input texinfo    @c -*-texinfo-*-
                      2: @comment %**start of header
                      3: @setfilename vmgen.info
1.1       anton       4: @include version.texi
1.10      anton       5: @settitle Vmgen (Gforth @value{VERSION})
                      6: @c @syncodeindex pg cp
                      7: @comment %**end of header
                      8: @copying
                      9: This manual is for Vmgen
                     10: (version @value{VERSION}, @value{UPDATED}),
                     11: the virtual machine interpreter generator
                     12: 
                     13: Copyright @copyright{} 2002 Free Software Foundation, Inc.
                     14: 
                     15: @quotation
                     16: Permission is granted to copy, distribute and/or modify this document
                     17: under the terms of the GNU Free Documentation License, Version 1.1 or
                     18: any later version published by the Free Software Foundation; with no
                     19: Invariant Sections, with the Front-Cover texts being ``A GNU Manual,''
                     20: and with the Back-Cover Texts as in (a) below.  A copy of the
                     21: license is included in the section entitled ``GNU Free Documentation
                     22: License.''
                     23: 
                     24: (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
                     25: this GNU Manual, like GNU software.  Copies published by the Free
                     26: Software Foundation raise funds for GNU development.''
                     27: @end quotation
                     28: @end copying
                     29: 
                     30: @dircategory GNU programming tools
                     31: @direntry
1.11      anton      32: * Vmgen: (vmgen).               Interpreter generator
1.10      anton      33: @end direntry
                     34: 
                     35: @titlepage
                     36: @title Vmgen
                     37: @subtitle for Gforth version @value{VERSION}, @value{UPDATED}
1.11      anton      38: @author M. Anton Ertl (@email{anton@@mips.complang.tuwien.ac.at})
1.10      anton      39: @page
                     40: @vskip 0pt plus 1filll
                     41: @insertcopying
                     42: @end titlepage
                     43: 
                     44: @contents
                     45: 
                     46: @ifnottex
                     47: @node Top, Introduction, (dir), (dir)
                     48: @top Vmgen
                     49: 
                     50: @insertcopying
                     51: @end ifnottex
                     52: 
                     53: @menu
                     54: * Introduction::                What can Vmgen do for you?
                     55: * Why interpreters?::           Advantages and disadvantages
                     56: * Concepts::                    VM interpreter background
1.11      anton      57: * Invoking Vmgen::              
1.10      anton      58: * Example::                     
                     59: * Input File Format::           
1.13    ! anton      60: * Error messages::              reported by Vmgen
1.10      anton      61: * Using the generated code::    
1.13    ! anton      62: * Hints::                       VM archictecture, efficiency
        !            63: * The future::                  
1.10      anton      64: * Changes::                     from earlier versions
                     65: * Contact::                     Bug reporting etc.
                     66: * Copying This Manual::         Manual License
                     67: * Index::                       
                     68: 
                     69: @detailmenu
                     70:  --- The Detailed Node Listing ---
                     71: 
                     72: Concepts
                     73: 
                     74: * Front end and VM interpreter::  Modularizing an interpretive system
                     75: * Data handling::               Stacks, registers, immediate arguments
                     76: * Dispatch::                    From one VM instruction to the next
                     77: 
                     78: Example
                     79: 
                     80: * Example overview::            
                     81: * Using profiling to create superinstructions::  
                     82: 
                     83: Input File Format
                     84: 
                     85: * Input File Grammar::          
                     86: * Simple instructions::         
                     87: * Superinstructions::           
1.11      anton      88: * Register Machines::           How to define register VM instructions
1.10      anton      89: 
                     90: Simple instructions
                     91: 
                     92: * C Code Macros::               Macros recognized by Vmgen
                     93: * C Code restrictions::         Vmgen makes assumptions about C code
                     94: 
                     95: Using the generated code
                     96: 
                     97: * VM engine::                   Executing VM code
                     98: * VM instruction table::        
                     99: * VM code generation::          Creating VM code (in the front-end)
                    100: * Peephole optimization::       Creating VM superinstructions
                    101: * VM disassembler::             for debugging the front end
                    102: * VM profiler::                 for finding worthwhile superinstructions
                    103: 
1.13    ! anton     104: Hints
        !           105: 
        !           106: * Floating point::              and stacks
        !           107: 
1.10      anton     108: Copying This Manual
                    109: 
                    110: * GNU Free Documentation License::  License for copying this manual.
                    111: 
                    112: @end detailmenu
                    113: @end menu
1.1       anton     114: 
                    115: @c @ifnottex
1.11      anton     116: @c This file documents Vmgen (Gforth @value{VERSION}).
1.1       anton     117: 
1.10      anton     118: @c ************************************************************
                    119: @node Introduction, Why interpreters?, Top, Top
1.2       anton     120: @chapter Introduction
1.1       anton     121: 
                    122: Vmgen is a tool for writing efficient interpreters.  It takes a simple
                    123: virtual machine description and generates efficient C code for dealing
                    124: with the virtual machine code in various ways (in particular, executing
                    125: it).  The run-time efficiency of the resulting interpreters is usually
                    126: within a factor of 10 of machine code produced by an optimizing
                    127: compiler.
                    128: 
1.11      anton     129: The interpreter design strategy supported by Vmgen is to divide the
1.1       anton     130: interpreter into two parts:
                    131: 
                    132: @itemize @bullet
                    133: 
                    134: @item The @emph{front end} takes the source code of the language to be
                    135: implemented, and translates it into virtual machine code.  This is
                    136: similar to an ordinary compiler front end; typically an interpreter
                    137: front-end performs no optimization, so it is relatively simple to
                    138: implement and runs fast.
                    139: 
                    140: @item The @emph{virtual machine interpreter} executes the virtual
                    141: machine code.
                    142: 
                    143: @end itemize
                    144: 
                    145: Such a division is usually used in interpreters, for modularity as well
1.6       anton     146: as for efficiency.  The virtual machine code is typically passed between
                    147: front end and virtual machine interpreter in memory, like in a
1.1       anton     148: load-and-go compiler; this avoids the complexity and time cost of
                    149: writing the code to a file and reading it again.
                    150: 
                    151: A @emph{virtual machine} (VM) represents the program as a sequence of
                    152: @emph{VM instructions}, following each other in memory, similar to real
                    153: machine code.  Control flow occurs through VM branch instructions, like
                    154: in a real machine.
                    155: 
1.12      anton     156: @cindex functionality features overview
1.11      anton     157: In this setup, Vmgen can generate most of the code dealing with virtual
1.1       anton     158: machine instructions from a simple description of the virtual machine
1.11      anton     159: instructions (@pxref{Input File Format}), in particular:
1.1       anton     160: 
1.13    ! anton     161: @table @strong
1.1       anton     162: 
                    163: @item VM instruction execution
                    164: 
                    165: @item VM code generation
                    166: Useful in the front end.
                    167: 
                    168: @item VM code decompiler
                    169: Useful for debugging the front end.
                    170: 
                    171: @item VM code tracing
                    172: Useful for debugging the front end and the VM interpreter.  You will
                    173: typically provide other means for debugging the user's programs at the
                    174: source level.
                    175: 
                    176: @item VM code profiling
1.12      anton     177: Useful for optimizing the VM interpreter with superinstructions
1.11      anton     178: (@pxref{VM profiler}).
1.1       anton     179: 
                    180: @end table
                    181: 
1.13    ! anton     182: To create parts of the interpretive system that do not deal with VM
        !           183: instructions, you have to use other tools (e.g., @command{bison}) and/or
        !           184: hand-code them.
        !           185: 
1.12      anton     186: @cindex efficiency features overview
1.11      anton     187: @noindent
                    188: Vmgen supports efficient interpreters though various optimizations, in
1.1       anton     189: particular
                    190: 
1.11      anton     191: @itemize @bullet
1.1       anton     192: 
                    193: @item Threaded code
                    194: 
                    195: @item Caching the top-of-stack in a register
                    196: 
                    197: @item Combining VM instructions into superinstructions
                    198: 
                    199: @item
                    200: Replicating VM (super)instructions for better BTB prediction accuracy
                    201: (not yet in vmgen-ex, but already in Gforth).
                    202: 
                    203: @end itemize
                    204: 
1.12      anton     205: @cindex speed for JVM
1.11      anton     206: As a result, Vmgen-based interpreters are only about an order of
                    207: magnitude slower than native code from an optimizing C compiler on small
1.1       anton     208: benchmarks; on large benchmarks, which spend more time in the run-time
1.2       anton     209: system, the slowdown is often less (e.g., the slowdown of a
                    210: Vmgen-generated JVM interpreter over the best JVM JIT compiler we
                    211: measured is only a factor of 2-3 for large benchmarks; some other JITs
                    212: and all other interpreters we looked at were slower than our
                    213: interpreter).
1.1       anton     214: 
                    215: VMs are usually designed as stack machines (passing data between VM
1.11      anton     216: instructions on a stack), and Vmgen supports such designs especially
1.12      anton     217: well; however, you can also use Vmgen for implementing a register VM
                    218: (@pxref{Register Machines}) and still benefit from most of the advantages
                    219: offered by Vmgen.
1.1       anton     220: 
1.2       anton     221: There are many potential uses of the instruction descriptions that are
                    222: not implemented at the moment, but we are open for feature requests, and
1.13    ! anton     223: we will consider new features if someone asks for them; so the feature
1.2       anton     224: list above is not exhaustive.
1.1       anton     225: 
1.2       anton     226: @c *********************************************************************
1.10      anton     227: @node Why interpreters?, Concepts, Introduction, Top
1.2       anton     228: @chapter Why interpreters?
1.12      anton     229: @cindex interpreters, advantages
                    230: @cindex advantages of interpreters
                    231: @cindex advantages of vmgen
1.2       anton     232: 
                    233: Interpreters are a popular language implementation technique because
                    234: they combine all three of the following advantages:
                    235: 
1.11      anton     236: @itemize @bullet
1.2       anton     237: 
                    238: @item Ease of implementation
                    239: 
                    240: @item Portability
                    241: 
                    242: @item Fast edit-compile-run cycle
                    243: 
                    244: @end itemize
                    245: 
1.12      anton     246: Vmgen makes it even easier to implement interpreters.
                    247: 
                    248: @cindex speed of interpreters
1.2       anton     249: The main disadvantage of interpreters is their run-time speed.  However,
                    250: there are huge differences between different interpreters in this area:
                    251: the slowdown over optimized C code on programs consisting of simple
                    252: operations is typically a factor of 10 for the more efficient
                    253: interpreters, and a factor of 1000 for the less efficient ones (the
                    254: slowdown for programs executing complex operations is less, because the
                    255: time spent in libraries for executing complex operations is the same in
                    256: all implementation strategies).
                    257: 
1.12      anton     258: Vmgen supports techniques for building efficient interpreters.
1.2       anton     259: 
                    260: @c ********************************************************************
1.11      anton     261: @node Concepts, Invoking Vmgen, Why interpreters?, Top
1.2       anton     262: @chapter Concepts
                    263: 
1.10      anton     264: @menu
                    265: * Front end and VM interpreter::  Modularizing an interpretive system
                    266: * Data handling::               Stacks, registers, immediate arguments
                    267: * Dispatch::                    From one VM instruction to the next
                    268: @end menu
                    269: 
1.2       anton     270: @c --------------------------------------------------------------------
1.10      anton     271: @node Front end and VM interpreter, Data handling, Concepts, Concepts
                    272: @section Front end and VM interpreter
1.12      anton     273: @cindex modularization of interpreters
1.2       anton     274: 
                    275: @cindex front-end
                    276: Interpretive systems are typically divided into a @emph{front end} that
                    277: parses the input language and produces an intermediate representation
                    278: for the program, and an interpreter that executes the intermediate
                    279: representation of the program.
                    280: 
                    281: @cindex virtual machine
                    282: @cindex VM
1.12      anton     283: @cindex VM instruction
1.2       anton     284: @cindex instruction, VM
1.12      anton     285: @cindex VM branch instruction
                    286: @cindex branch instruction, VM
                    287: @cindex VM register
                    288: @cindex register, VM
                    289: @cindex opcode, VM instruction
                    290: @cindex immediate argument, VM instruction
1.2       anton     291: For efficient interpreters the intermediate representation of choice is
                    292: virtual machine code (rather than, e.g., an abstract syntax tree).
                    293: @emph{Virtual machine} (VM) code consists of VM instructions arranged
                    294: sequentially in memory; they are executed in sequence by the VM
1.12      anton     295: interpreter, but VM branch instructions can change the control flow and
                    296: are used for implementing control structures.  The conceptual similarity
                    297: to real machine code results in the name @emph{virtual machine}.
                    298: Various terms similar to terms for real machines are used; e.g., there
                    299: are @emph{VM registers} (like the instruction pointer and stack
                    300: pointer(s)), and the VM instruction consists of an @emph{opcode} and
                    301: @emph{immediate arguments}.
1.2       anton     302: 
1.11      anton     303: In this framework, Vmgen supports building the VM interpreter and any
1.2       anton     304: other component dealing with VM instructions.  It does not have any
                    305: support for the front end, apart from VM code generation support.  The
                    306: front end can be implemented with classical compiler front-end
1.3       anton     307: techniques, supported by tools like @command{flex} and @command{bison}.
1.2       anton     308: 
                    309: The intermediate representation is usually just internal to the
                    310: interpreter, but some systems also support saving it to a file, either
                    311: as an image file, or in a full-blown linkable file format (e.g., JVM).
                    312: Vmgen currently has no special support for such features, but the
                    313: information in the instruction descriptions can be helpful, and we are
1.13    ! anton     314: open to feature requests and suggestions.
1.3       anton     315: 
1.10      anton     316: @c --------------------------------------------------------------------
                    317: @node Data handling, Dispatch, Front end and VM interpreter, Concepts
1.3       anton     318: @section Data handling
                    319: 
                    320: @cindex stack machine
                    321: @cindex register machine
                    322: Most VMs use one or more stacks for passing temporary data between VM
                    323: instructions.  Another option is to use a register machine architecture
1.13    ! anton     324: for the virtual machine; we believe that using a stack architecture is
        !           325: usually both simpler and faster.
        !           326: 
        !           327: however, this option is slower or
1.3       anton     328: significantly more complex to implement than a stack machine architecture.
                    329: 
                    330: Vmgen has special support and optimizations for stack VMs, making their
                    331: implementation easy and efficient.
                    332: 
1.11      anton     333: You can also implement a register VM with Vmgen (@pxref{Register
                    334: Machines}), and you will still profit from most Vmgen features.
1.3       anton     335: 
                    336: @cindex stack item size
                    337: @cindex size, stack items
                    338: Stack items all have the same size, so they typically will be as wide as
                    339: an integer, pointer, or floating-point value.  Vmgen supports treating
                    340: two consecutive stack items as a single value, but anything larger is
                    341: best kept in some other memory area (e.g., the heap), with pointers to
                    342: the data on the stack.
                    343: 
                    344: @cindex instruction stream
                    345: @cindex immediate arguments
                    346: Another source of data is immediate arguments VM instructions (in the VM
                    347: instruction stream).  The VM instruction stream is handled similar to a
1.11      anton     348: stack in Vmgen.
1.3       anton     349: 
                    350: @cindex garbage collection
                    351: @cindex reference counting
1.12      anton     352: Vmgen has no built-in support for, nor restrictions against
                    353: @emph{garbage collection}.  If you need garbage collection, you need to
                    354: provide it in your run-time libraries.  Using @emph{reference counting}
                    355: is probably harder, but might be possible (contact us if you are
                    356: interested).
1.3       anton     357: @c reference counting might be possible by including counting code in 
                    358: @c the conversion macros.
                    359: 
1.10      anton     360: @c --------------------------------------------------------------------
                    361: @node Dispatch,  , Data handling, Concepts
1.6       anton     362: @section Dispatch
1.12      anton     363: @cindex Dispatch of VM instructions
                    364: @cindex main interpreter loop
1.6       anton     365: 
1.11      anton     366: Understanding this section is probably not necessary for using Vmgen,
1.6       anton     367: but it may help.  You may want to skip it now, and read it if you find statements about dispatch methods confusing.
                    368: 
                    369: After executing one VM instruction, the VM interpreter has to dispatch
1.11      anton     370: the next VM instruction (Vmgen calls the dispatch routine @samp{NEXT}).
1.6       anton     371: Vmgen supports two methods of dispatch:
                    372: 
1.13    ! anton     373: @table @strong
1.6       anton     374: 
                    375: @item switch dispatch
1.12      anton     376: @cindex switch dispatch
1.6       anton     377: In this method the VM interpreter contains a giant @code{switch}
                    378: statement, with one @code{case} for each VM instruction.  The VM
1.12      anton     379: instruction opcodes are represented by integers (e.g., produced by an
                    380: @code{enum}) in the VM code, and dispatch occurs by loading the next
                    381: opcode, @code{switch}ing on it, and continuing at the appropriate
                    382: @code{case}; after executing the VM instruction, the VM interpreter
                    383: jumps back to the dispatch code.
1.6       anton     384: 
                    385: @item threaded code
1.12      anton     386: @cindex threaded code
                    387: This method represents a VM instruction opcode by the address of the
                    388: start of the machine code fragment for executing the VM instruction.
1.6       anton     389: Dispatch consists of loading this address, jumping to it, and
                    390: incrementing the VM instruction pointer.  Typically the threaded-code
                    391: dispatch code is appended directly to the code for executing the VM
                    392: instruction.  Threaded code cannot be implemented in ANSI C, but it can
1.11      anton     393: be implemented using GNU C's labels-as-values extension (@pxref{Labels
                    394: as Values, , Labels as Values, gcc.info, GNU C Manual}).
1.6       anton     395: 
1.13    ! anton     396: @c call threading
1.6       anton     397: @end table
                    398: 
1.12      anton     399: Threaded code can be twice as fast as switch dispatch, depending on the
                    400: interpreter, the benchmark, and the machine.
                    401: 
1.3       anton     402: @c *************************************************************
1.11      anton     403: @node Invoking Vmgen, Example, Concepts, Top
                    404: @chapter Invoking Vmgen
1.12      anton     405: @cindex Invoking Vmgen
1.3       anton     406: 
1.11      anton     407: The usual way to invoke Vmgen is as follows:
1.3       anton     408: 
                    409: @example
1.13    ! anton     410: vmgen @var{inputfile}
1.3       anton     411: @end example
                    412: 
1.13    ! anton     413: Here @var{inputfile} is the VM instruction description file, which
        !           414: usually ends in @file{.vmg}.  The output filenames are made by taking
        !           415: the basename of @file{inputfile} (i.e., the output files will be created
        !           416: in the current working directory) and replacing @file{.vmg} with
        !           417: @file{-vm.i}, @file{-disasm.i}, @file{-gen.i}, @file{-labels.i},
        !           418: @file{-profile.i}, and @file{-peephole.i}.  E.g., @command{vmgen
        !           419: hack/foo.vmg} will create @file{foo-vm.i}, @file{foo-disasm.i},
        !           420: @file{foo-gen.i}, @file{foo-labels.i}, @file{foo-profile.i} and
        !           421: @file{foo-peephole.i}.
1.3       anton     422: 
1.11      anton     423: The command-line options supported by Vmgen are
1.3       anton     424: 
                    425: @table @option
                    426: 
                    427: @cindex -h, command-line option
                    428: @cindex --help, command-line option
                    429: @item --help
                    430: @itemx -h
                    431: Print a message about the command-line options
                    432: 
                    433: @cindex -v, command-line option
                    434: @cindex --version, command-line option
                    435: @item --version
                    436: @itemx -v
                    437: Print version and exit
                    438: @end table
                    439: 
                    440: @c env vars GFORTHDIR GFORTHDATADIR
                    441: 
1.5       anton     442: @c ****************************************************************
1.11      anton     443: @node Example, Input File Format, Invoking Vmgen, Top
1.5       anton     444: @chapter Example
1.12      anton     445: @cindex example of a Vmgen-based interpreter
1.5       anton     446: 
1.10      anton     447: @menu
                    448: * Example overview::            
                    449: * Using profiling to create superinstructions::  
                    450: @end menu
                    451: 
                    452: @c --------------------------------------------------------------------
                    453: @node Example overview, Using profiling to create superinstructions, Example, Example
1.5       anton     454: @section Example overview
1.12      anton     455: @cindex example overview
                    456: @cindex @file{vmgen-ex}
                    457: @cindex @file{vmgen-ex2}
1.5       anton     458: 
1.11      anton     459: There are two versions of the same example for using Vmgen:
1.5       anton     460: @file{vmgen-ex} and @file{vmgen-ex2} (you can also see Gforth as
                    461: example, but it uses additional (undocumented) features, and also
                    462: differs in some other respects).  The example implements @emph{mini}, a
                    463: tiny Modula-2-like language with a small JavaVM-like virtual machine.
1.12      anton     464: 
1.5       anton     465: The difference between the examples is that @file{vmgen-ex} uses many
                    466: casts, and @file{vmgen-ex2} tries to avoids most casts and uses unions
1.12      anton     467: instead.  In the rest of this manual we usually mention just files in
                    468: @file{vmgen-ex}; if you want to use unions, use the equivalent file in
                    469: @file{vmgen-ex2}.
                    470: @cindex unions example
                    471: @cindex casts example
1.5       anton     472: 
                    473: The files provided with each example are:
1.12      anton     474: @cindex example files
1.5       anton     475: 
                    476: @example
                    477: Makefile
                    478: README
                    479: disasm.c           wrapper file
                    480: engine.c           wrapper file
                    481: peephole.c         wrapper file
                    482: profile.c          wrapper file
                    483: mini-inst.vmg      simple VM instructions
                    484: mini-super.vmg     superinstructions (empty at first)
                    485: mini.h             common declarations
                    486: mini.l             scanner
                    487: mini.y             front end (parser, VM code generator)
                    488: support.c          main() and other support functions
                    489: fib.mini           example mini program
                    490: simple.mini        example mini program
                    491: test.mini          example mini program (tests everything)
                    492: test.out           test.mini output
                    493: stat.awk           script for aggregating profile information
                    494: peephole-blacklist list of instructions not allowed in superinstructions
                    495: seq2rule.awk       script for creating superinstructions
                    496: @end example
                    497: 
                    498: For your own interpreter, you would typically copy the following files
                    499: and change little, if anything:
1.12      anton     500: @cindex wrapper files
1.5       anton     501: 
                    502: @example
                    503: disasm.c           wrapper file
                    504: engine.c           wrapper file
                    505: peephole.c         wrapper file
                    506: profile.c          wrapper file
                    507: stat.awk           script for aggregating profile information
                    508: seq2rule.awk       script for creating superinstructions
                    509: @end example
                    510: 
1.11      anton     511: @noindent
1.5       anton     512: You would typically change much in or replace the following files:
                    513: 
                    514: @example
                    515: Makefile
                    516: mini-inst.vmg      simple VM instructions
                    517: mini.h             common declarations
                    518: mini.l             scanner
                    519: mini.y             front end (parser, VM code generator)
                    520: support.c          main() and other support functions
                    521: peephole-blacklist list of instructions not allowed in superinstructions
                    522: @end example
                    523: 
                    524: You can build the example by @code{cd}ing into the example's directory,
1.12      anton     525: and then typing @code{make}; you can check that it works with @code{make
1.5       anton     526: check}.  You can run run mini programs like this:
                    527: 
                    528: @example
                    529: ./mini fib.mini
                    530: @end example
                    531: 
1.12      anton     532: To learn about the options, type @code{./mini -h}.
1.5       anton     533: 
1.10      anton     534: @c --------------------------------------------------------------------
                    535: @node Using profiling to create superinstructions,  , Example overview, Example
1.5       anton     536: @section Using profiling to create superinstructions
1.12      anton     537: @cindex profiling example
                    538: @cindex superinstructions example
1.5       anton     539: 
                    540: I have not added rules for this in the @file{Makefile} (there are many
                    541: options for selecting superinstructions, and I did not want to hardcode
                    542: one into the @file{Makefile}), but there are some supporting scripts, and
                    543: here's an example:
                    544: 
                    545: Suppose you want to use @file{fib.mini} and @file{test.mini} as training
                    546: programs, you get the profiles like this:
                    547: 
                    548: @example
                    549: make fib.prof test.prof #takes a few seconds
                    550: @end example
                    551: 
                    552: You can aggregate these profiles with @file{stat.awk}:
                    553: 
                    554: @example
                    555: awk -f stat.awk fib.prof test.prof
                    556: @end example
                    557: 
                    558: The result contains lines like:
                    559: 
                    560: @example
                    561:       2      16        36910041 loadlocal lit
                    562: @end example
                    563: 
                    564: This means that the sequence @code{loadlocal lit} statically occurs a
                    565: total of 16 times in 2 profiles, with a dynamic execution count of
                    566: 36910041.
                    567: 
                    568: The numbers can be used in various ways to select superinstructions.
                    569: E.g., if you just want to select all sequences with a dynamic
                    570: execution count exceeding 10000, you would use the following pipeline:
                    571: 
                    572: @example
                    573: awk -f stat.awk fib.prof test.prof|
                    574: awk '$3>=10000'|                #select sequences
                    575: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
1.12      anton     576: awk -f seq2rule.awk|  #transform sequences into superinstruction rules
1.5       anton     577: sort -k 3 >mini-super.vmg       #sort sequences
                    578: @end example
                    579: 
                    580: The file @file{peephole-blacklist} contains all instructions that
                    581: directly access a stack or stack pointer (for mini: @code{call},
                    582: @code{return}); the sort step is necessary to ensure that prefixes
1.13    ! anton     583: precede larger superinstructions.
1.5       anton     584: 
                    585: Now you can create a version of mini with superinstructions by just
                    586: saying @samp{make}
                    587: 
1.10      anton     588: 
1.3       anton     589: @c ***************************************************************
1.13    ! anton     590: @node Input File Format, Error messages, Example, Top
1.3       anton     591: @chapter Input File Format
1.12      anton     592: @cindex input file format
                    593: @cindex format, input file
1.3       anton     594: 
                    595: Vmgen takes as input a file containing specifications of virtual machine
                    596: instructions.  This file usually has a name ending in @file{.vmg}.
                    597: 
1.5       anton     598: Most examples are taken from the example in @file{vmgen-ex}.
1.3       anton     599: 
1.10      anton     600: @menu
                    601: * Input File Grammar::          
                    602: * Simple instructions::         
                    603: * Superinstructions::           
1.11      anton     604: * Register Machines::           How to define register VM instructions
1.10      anton     605: @end menu
                    606: 
                    607: @c --------------------------------------------------------------------
                    608: @node Input File Grammar, Simple instructions, Input File Format, Input File Format
1.3       anton     609: @section Input File Grammar
1.12      anton     610: @cindex grammar, input file
                    611: @cindex input file grammar
1.3       anton     612: 
                    613: The grammar is in EBNF format, with @code{@var{a}|@var{b}} meaning
                    614: ``@var{a} or @var{b}'', @code{@{@var{c}@}} meaning 0 or more repetitions
                    615: of @var{c} and @code{[@var{d}]} meaning 0 or 1 repetitions of @var{d}.
                    616: 
1.12      anton     617: @cindex free-format, not
1.3       anton     618: Vmgen input is not free-format, so you have to take care where you put
                    619: spaces and especially newlines; it's not as bad as makefiles, though:
                    620: any sequence of spaces and tabs is equivalent to a single space.
                    621: 
                    622: @example
1.11      anton     623: description: @{instruction|comment|eval-escape@}
1.3       anton     624: 
                    625: instruction: simple-inst|superinst
                    626: 
1.12      anton     627: simple-inst: ident ' (' stack-effect ' )' newline c-code newline newline
1.3       anton     628: 
1.12      anton     629: stack-effect: @{ident@} ' --' @{ident@}
1.3       anton     630: 
1.12      anton     631: super-inst: ident ' =' ident @{ident@}  
1.3       anton     632: 
1.12      anton     633: comment:      '\ '  text newline
1.3       anton     634: 
1.13    ! anton     635: eval-escape:  '\E ' text newline
1.3       anton     636: @end example
                    637: @c \+ \- \g \f \c
                    638: 
                    639: Note that the @code{\}s in this grammar are meant literally, not as
1.5       anton     640: C-style encodings for non-printable characters.
1.3       anton     641: 
                    642: The C code in @code{simple-inst} must not contain empty lines (because
1.11      anton     643: Vmgen would mistake that as the end of the simple-inst.  The text in
1.3       anton     644: @code{comment} and @code{eval-escape} must not contain a newline.
                    645: @code{Ident} must conform to the usual conventions of C identifiers
1.11      anton     646: (otherwise the C compiler would choke on the Vmgen output).
1.3       anton     647: 
                    648: Vmgen understands a few extensions beyond the grammar given here, but
                    649: these extensions are only useful for building Gforth.  You can find a
                    650: description of the format used for Gforth in @file{prim}.
                    651: 
1.10      anton     652: @subsection Eval escapes
1.12      anton     653: @cindex escape to Forth
                    654: @cindex eval escape
                    655: 
1.13    ! anton     656: 
        !           657: 
1.3       anton     658: @c woanders?
                    659: The text in @code{eval-escape} is Forth code that is evaluated when
1.13    ! anton     660: Vmgen reads the line.  You will normally use this feature to define
        !           661: stacks and types.
        !           662: 
        !           663: If you do not know (and do not want to learn) Forth, you can build the
        !           664: text according to the following grammar; these rules are normally all
        !           665: Forth you need for using Vmgen:
1.3       anton     666: 
                    667: @example
                    668: text: stack-decl|type-prefix-decl|stack-prefix-decl
                    669: 
1.12      anton     670: stack-decl: 'stack ' ident ident ident
1.3       anton     671: type-prefix-decl: 
1.12      anton     672:     's" ' string '" ' ('single'|'double') ident 'type-prefix' ident
                    673: stack-prefix-decl:  ident 'stack-prefix' string
1.3       anton     674: @end example
                    675: 
                    676: Note that the syntax of this code is not checked thoroughly (there are
1.13    ! anton     677: many other Forth program fragments that could be written in an
        !           678: eval-escape).
1.3       anton     679: 
                    680: If you know Forth, the stack effects of the non-standard words involved
                    681: are:
1.12      anton     682: @findex stack
                    683: @findex type-prefix
                    684: @findex single
                    685: @findex double
                    686: @findex stack-prefix
1.3       anton     687: @example
                    688: stack        ( "name" "pointer" "type" -- )
                    689:              ( name execution: -- stack )
                    690: type-prefix  ( addr u xt1 xt2 n stack "prefix" -- )
                    691: single       ( -- xt1 xt2 n )
                    692: double       ( -- xt1 xt2 n )
                    693: stack-prefix ( stack "prefix" -- )
                    694: @end example
                    695: 
1.5       anton     696: 
1.10      anton     697: @c --------------------------------------------------------------------
                    698: @node Simple instructions, Superinstructions, Input File Grammar, Input File Format
1.3       anton     699: @section Simple instructions
1.12      anton     700: @cindex simple VM instruction
                    701: @cindex instruction, simple VM
1.3       anton     702: 
                    703: We will use the following simple VM instruction description as example:
                    704: 
                    705: @example
                    706: sub ( i1 i2 -- i )
                    707: i = i1-i2;
                    708: @end example
                    709: 
                    710: The first line specifies the name of the VM instruction (@code{sub}) and
                    711: its stack effect (@code{i1 i2 -- i}).  The rest of the description is
                    712: just plain C code.
                    713: 
                    714: @cindex stack effect
1.12      anton     715: @cindex effect, stack
1.3       anton     716: The stack effect specifies that @code{sub} pulls two integers from the
1.12      anton     717: data stack and puts them in the C variables @code{i1} and @code{i2}
                    718: (with the rightmost item (@code{i2}) taken from the top of stack;
                    719: intuition: if you push @code{i1}, then @code{i2} on the stack, the
                    720: resulting stack picture is @code{i1 i2}) and later pushes one integer
                    721: (@code{i}) on the data stack (the rightmost item is on the top
                    722: afterwards).
                    723: 
                    724: @cindex prefix, type
                    725: @cindex type prefix
                    726: @cindex default stack of a type prefix
1.3       anton     727: How do we know the type and stack of the stack items?  Vmgen uses
                    728: prefixes, similar to Fortran; in contrast to Fortran, you have to
                    729: define the prefix first:
                    730: 
                    731: @example
                    732: \E s" Cell"   single data-stack type-prefix i
                    733: @end example
                    734: 
                    735: This defines the prefix @code{i} to refer to the type @code{Cell}
                    736: (defined as @code{long} in @file{mini.h}) and, by default, to the
                    737: @code{data-stack}.  It also specifies that this type takes one stack
                    738: item (@code{single}).  The type prefix is part of the variable name.
                    739: 
1.12      anton     740: @cindex stack definition
                    741: @cindex defining a stack
1.3       anton     742: Before we can use @code{data-stack} in this way, we have to define it:
                    743: 
                    744: @example
                    745: \E stack data-stack sp Cell
                    746: @end example
                    747: @c !! use something other than Cell
                    748: 
1.12      anton     749: @cindex stack basic type
                    750: @cindex basic type of a stack
                    751: @cindex type of a stack, basic
                    752: @cindex stack growth direction
1.3       anton     753: This line defines the stack @code{data-stack}, which uses the stack
                    754: pointer @code{sp}, and each item has the basic type @code{Cell}; other
                    755: types have to fit into one or two @code{Cell}s (depending on whether the
1.12      anton     756: type is @code{single} or @code{double} wide), and are cast from and to
                    757: Cells on accessing the @code{data-stack} with type cast macros
1.11      anton     758: (@pxref{VM engine}).  Stacks grow towards lower addresses in
                    759: Vmgen-erated interpreters.
1.3       anton     760: 
1.12      anton     761: @cindex stack prefix
                    762: @cindex prefix, stack
1.3       anton     763: We can override the default stack of a stack item by using a stack
                    764: prefix.  E.g., consider the following instruction:
                    765: 
                    766: @example
                    767: lit ( #i -- i )
                    768: @end example
                    769: 
                    770: The VM instruction @code{lit} takes the item @code{i} from the
1.5       anton     771: instruction stream (indicated by the prefix @code{#}), and pushes it on
1.3       anton     772: the (default) data stack.  The stack prefix is not part of the variable
                    773: name.  Stack prefixes are defined like this:
                    774: 
                    775: @example
                    776: \E inst-stream stack-prefix #
                    777: @end example
                    778: 
1.5       anton     779: This definition defines that the stack prefix @code{#} specifies the
1.3       anton     780: ``stack'' @code{inst-stream}.  Since the instruction stream behaves a
                    781: little differently than an ordinary stack, it is predefined, and you do
                    782: not need to define it.
                    783: 
1.12      anton     784: @cindex instruction stream
1.3       anton     785: The instruction stream contains instructions and their immediate
                    786: arguments, so specifying that an argument comes from the instruction
                    787: stream indicates an immediate argument.  Of course, instruction stream
                    788: arguments can only appear to the left of @code{--} in the stack effect.
                    789: If there are multiple instruction stream arguments, the leftmost is the
                    790: first one (just as the intuition suggests).
                    791: 
1.10      anton     792: @menu
                    793: * C Code Macros::               Macros recognized by Vmgen
                    794: * C Code restrictions::         Vmgen makes assumptions about C code
                    795: @end menu
                    796: 
                    797: @c --------------------------------------------------------------------
                    798: @node C Code Macros, C Code restrictions, Simple instructions, Simple instructions
                    799: @subsection C Code Macros
1.12      anton     800: @cindex macros recognized by Vmgen
                    801: @cindex basic block, VM level
1.5       anton     802: 
                    803: Vmgen recognizes the following strings in the C code part of simple
                    804: instructions:
                    805: 
1.12      anton     806: @table @code
1.5       anton     807: 
                    808: @item SET_IP
1.12      anton     809: @findex SET_IP
1.11      anton     810: As far as Vmgen is concerned, a VM instruction containing this ends a VM
1.5       anton     811: basic block (used in profiling to delimit profiled sequences).  On the C
                    812: level, this also sets the instruction pointer.
                    813: 
                    814: @item SUPER_END
1.12      anton     815: @findex SUPER_END
                    816: This ends a basic block (for profiling), even if the instruction
                    817: contains no @code{SET_IP}.
1.5       anton     818: 
1.13    ! anton     819: @item INST_TAIL;
        !           820: @findex INST_TAIL;
        !           821: Vmgen replaces @samp{INST_TAIL;} with code for ending a VM instruction and
        !           822: dispatching the next VM instruction.  Even without a @samp{INST_TAIL;} this
1.12      anton     823: happens automatically when control reaches the end of the C code.  If
                    824: you want to have this in the middle of the C code, you need to use
1.13    ! anton     825: @samp{INST_TAIL;}.  A typical example is a conditional VM branch:
1.5       anton     826: 
                    827: @example
1.11      anton     828: if (branch_condition) @{
1.13    ! anton     829:   SET_IP(target); INST_TAIL;
1.11      anton     830: @}
1.5       anton     831: /* implicit tail follows here */
                    832: @end example
                    833: 
1.13    ! anton     834: In this example, @samp{INST_TAIL;} is not strictly necessary, because there
1.5       anton     835: is another one implicitly after the if-statement, but using it improves
                    836: branch prediction accuracy slightly and allows other optimizations.
                    837: 
                    838: @item SUPER_CONTINUE
1.12      anton     839: @findex SUPER_CONTINUE
1.5       anton     840: This indicates that the implicit tail at the end of the VM instruction
                    841: dispatches the sequentially next VM instruction even if there is a
                    842: @code{SET_IP} in the VM instruction.  This enables an optimization that
                    843: is not yet implemented in the vmgen-ex code (but in Gforth).  The
                    844: typical application is in conditional VM branches:
                    845: 
                    846: @example
1.11      anton     847: if (branch_condition) @{
1.13    ! anton     848:   SET_IP(target); INST_TAIL; /* now this INST_TAIL is necessary */
1.11      anton     849: @}
1.5       anton     850: SUPER_CONTINUE;
                    851: @end example
                    852: 
                    853: @end table
                    854: 
1.11      anton     855: Note that Vmgen is not smart about C-level tokenization, comments,
1.5       anton     856: strings, or conditional compilation, so it will interpret even a
                    857: commented-out SUPER_END as ending a basic block (or, e.g.,
1.13    ! anton     858: @samp{RESET_IP;} as @samp{SET_IP;}).  Conversely, Vmgen requires the literal
1.11      anton     859: presence of these strings; Vmgen will not see them if they are hiding in
1.5       anton     860: a C preprocessor macro.
                    861: 
                    862: 
1.10      anton     863: @c --------------------------------------------------------------------
                    864: @node C Code restrictions,  , C Code Macros, Simple instructions
                    865: @subsection C Code restrictions
1.12      anton     866: @cindex C code restrictions
                    867: @cindex restrictions on C code
                    868: @cindex assumptions about C code
                    869: 
                    870: @cindex accessing stack (pointer)
                    871: @cindex stack pointer, access
                    872: @cindex instruction pointer, access
1.5       anton     873: Vmgen generates code and performs some optimizations under the
                    874: assumption that the user-supplied C code does not access the stack
                    875: pointers or stack items, and that accesses to the instruction pointer
                    876: only occur through special macros.  In general you should heed these
                    877: restrictions.  However, if you need to break these restrictions, read
                    878: the following.
                    879: 
                    880: Accessing a stack or stack pointer directly can be a problem for several
                    881: reasons: 
1.12      anton     882: @cindex stack caching, restriction on C code
                    883: @cindex superinstructions, restrictions on components
1.5       anton     884: 
1.11      anton     885: @itemize @bullet
1.5       anton     886: 
                    887: @item
1.12      anton     888: Vmgen optionally supports caching the top-of-stack item in a local
                    889: variable (that is allocated to a register).  This is the most frequent
                    890: source of trouble.  You can deal with it either by not using
                    891: top-of-stack caching (slowdown factor 1-1.4, depending on machine), or
                    892: by inserting flushing code (e.g., @samp{IF_spTOS(sp[...] = spTOS);}) at
                    893: the start and reloading code (e.g., @samp{IF_spTOS(spTOS = sp[0])}) at
                    894: the end of problematic C code.  Vmgen inserts a stack pointer update
                    895: before the start of the user-supplied C code, so the flushing code has
                    896: to use an index that corrects for that.  In the future, this flushing
                    897: may be done automatically by mentioning a special string in the C code.
1.5       anton     898: @c sometimes flushing and/or reloading unnecessary
                    899: 
                    900: @item
1.11      anton     901: The Vmgen-erated code loads the stack items from stack-pointer-indexed
1.5       anton     902: memory into variables before the user-supplied C code, and stores them
                    903: from variables to stack-pointer-indexed memory afterwards.  If you do
                    904: any writes to the stack through its stack pointer in your C code, it
1.13    ! anton     905: will not affect the variables, and your write may be overwritten by the
1.5       anton     906: stores after the C code.  Similarly, a read from a stack using a stack
                    907: pointer will not reflect computations of stack items in the same VM
                    908: instruction.
                    909: 
                    910: @item
                    911: Superinstructions keep stack items in variables across the whole
                    912: superinstruction.  So you should not include VM instructions, that
1.12      anton     913: access a stack or stack pointer, as components of superinstructions
                    914: (@pxref{VM profiler}).
1.5       anton     915: 
                    916: @end itemize
                    917: 
                    918: You should access the instruction pointer only through its special
                    919: macros (@samp{IP}, @samp{SET_IP}, @samp{IPTOS}); this ensure that these
                    920: macros can be implemented in several ways for best performance.
                    921: @samp{IP} points to the next instruction, and @samp{IPTOS} is its
                    922: contents.
                    923: 
                    924: 
1.10      anton     925: @c --------------------------------------------------------------------
1.11      anton     926: @node Superinstructions, Register Machines, Simple instructions, Input File Format
1.3       anton     927: @section Superinstructions
1.12      anton     928: @cindex superinstructions, defining
                    929: @cindex defining superinstructions
1.5       anton     930: 
1.8       anton     931: Note: don't invest too much work in (static) superinstructions; a future
1.11      anton     932: version of Vmgen will support dynamic superinstructions (see Ian
1.8       anton     933: Piumarta and Fabio Riccardi, @cite{Optimizing Direct Threaded Code by
                    934: Selective Inlining}, PLDI'98), and static superinstructions have much
1.12      anton     935: less benefit in that context (preliminary results indicate only a factor
                    936: 1.1 speedup).
1.8       anton     937: 
1.5       anton     938: Here is an example of a superinstruction definition:
                    939: 
                    940: @example
                    941: lit_sub = lit sub
                    942: @end example
                    943: 
                    944: @code{lit_sub} is the name of the superinstruction, and @code{lit} and
                    945: @code{sub} are its components.  This superinstruction performs the same
                    946: action as the sequence @code{lit} and @code{sub}.  It is generated
                    947: automatically by the VM code generation functions whenever that sequence
1.11      anton     948: occurs, so if you want to use this superinstruction, you just need to
                    949: add this definition (and even that can be partially automatized,
                    950: @pxref{VM profiler}).
1.5       anton     951: 
1.12      anton     952: @cindex prefixes of superinstructions
1.5       anton     953: Vmgen requires that the component instructions are simple instructions
1.11      anton     954: defined before superinstructions using the components.  Currently, Vmgen
1.5       anton     955: also requires that all the subsequences at the start of a
                    956: superinstruction (prefixes) must be defined as superinstruction before
                    957: the superinstruction.  I.e., if you want to define a superinstruction
                    958: 
                    959: @example
1.12      anton     960: foo4 = load add sub mul
1.5       anton     961: @end example
                    962: 
1.12      anton     963: you first have to define @code{load}, @code{add}, @code{sub} and
                    964: @code{mul}, plus
1.5       anton     965: 
                    966: @example
1.12      anton     967: foo2 = load add
                    968: foo3 = load add sub
1.5       anton     969: @end example
                    970: 
                    971: Here, @code{sumof4} is the longest prefix of @code{sumof5}, and @code{sumof3}
                    972: is the longest prefix of @code{sumof4}.
                    973: 
1.11      anton     974: Note that Vmgen assumes that only the code it generates accesses stack
1.5       anton     975: pointers, the instruction pointer, and various stack items, and it
                    976: performs optimizations based on this assumption.  Therefore, VM
1.12      anton     977: instructions where your C code changes the instruction pointer should
                    978: only be used as last component; a VM instruction where your C code
                    979: accesses a stack pointer should not be used as component at all.  Vmgen
                    980: does not check these restrictions, they just result in bugs in your
                    981: interpreter.
1.5       anton     982: 
1.12      anton     983: @c -------------------------------------------------------------------
1.11      anton     984: @node Register Machines,  , Superinstructions, Input File Format
                    985: @section Register Machines
1.12      anton     986: @cindex Register VM
                    987: @cindex Superinstructions for register VMs
                    988: @cindex tracing of register VMs
1.11      anton     989: 
                    990: If you want to implement a register VM rather than a stack VM with
                    991: Vmgen, there are two ways to do it: Directly and through
                    992: superinstructions.
                    993: 
                    994: If you use the direct way, you define instructions that take the
                    995: register numbers as immediate arguments, like this:
                    996: 
                    997: @example
                    998: add3 ( #src1 #src2 #dest -- )
                    999: reg[dest] = reg[src1]+reg[src2];
                   1000: @end example
                   1001: 
1.12      anton    1002: A disadvantage of this method is that during tracing you only see the
                   1003: register numbers, but not the register contents.  Actually, with an
                   1004: appropriate definition of @code{printarg_src} (@pxref{VM engine}), you
                   1005: can print the values of the source registers on entry, but you cannot
                   1006: print the value of the destination register on exit.
                   1007: 
1.11      anton    1008: If you use superinstructions to define a register VM, you define simple
                   1009: instructions that use a stack, and then define superinstructions that
                   1010: have no overall stack effect, like this:
                   1011: 
                   1012: @example
                   1013: loadreg ( #src -- n )
                   1014: n = reg[src];
                   1015: 
                   1016: storereg ( n #dest -- )
                   1017: reg[dest] = n;
                   1018: 
                   1019: adds ( n1 n2 -- n )
                   1020: n = n1+n2;
                   1021: 
                   1022: add3 = loadreg loadreg adds storereg
                   1023: @end example
                   1024: 
                   1025: An advantage of this method is that you see the values and not just the
1.12      anton    1026: register numbers in tracing.  A disadvantage of this method is that
1.11      anton    1027: currently you cannot generate superinstructions directly, but only
                   1028: through generating a sequence of simple instructions (we might change
                   1029: this in the future if there is demand).
                   1030: 
                   1031: Could the register VM support be improved, apart from the issues
                   1032: mentioned above?  It is hard to see how to do it in a general way,
                   1033: because there are a number of different designs that different people
                   1034: mean when they use the term @emph{register machine} in connection with
                   1035: VM interpreters.  However, if you have ideas or requests in that
                   1036: direction, please let me know (@pxref{Contact}).
                   1037: 
1.5       anton    1038: @c ********************************************************************
1.13    ! anton    1039: @node Error messages, Using the generated code, Input File Format, Top
        !          1040: @chapter Error messages
        !          1041: @cindex error messages
        !          1042: 
        !          1043: These error messages are created by Vmgen:
        !          1044: 
        !          1045: @table @code
        !          1046: 
        !          1047: @cindex @code{# can only be on the input side} error
        !          1048: @item # can only be on the input side
        !          1049: You have used an instruction-stream prefix (usually @samp{#}) after the
        !          1050: @samp{--} (the output side); you can only use it before (the input
        !          1051: side).
        !          1052: 
        !          1053: @cindex @code{prefix for this combination must be defined earlier} error
        !          1054: @item the prefix for this combination must be defined earlier
        !          1055: You have defined a superinstruction (e.g. @code{abc = a b c}) without
        !          1056: defining its direct prefix (e.g., @code{ab = a b}),
        !          1057: @xref{Superinstructions}.
        !          1058: 
        !          1059: @cindex @code{sync line syntax} error
        !          1060: @item sync line syntax
        !          1061: If you are using a preprocessor (e.g., @command{m4}) to generate Vmgen
        !          1062: input code, you may want to create @code{#line} directives (aka sync
        !          1063: lines).  This error indicates that such a line is not in th syntax
        !          1064: expected by Vmgen (this should not happen).
        !          1065: 
        !          1066: @cindex @code{syntax error, wrong char} error
        !          1067: @cindex syntax error, wrong char
        !          1068: A syntax error.  Note that Vmgen is sometimes anal retentive about white
        !          1069: space, especially about newlines.
        !          1070: 
        !          1071: @cindex @code{too many stacks} error
        !          1072: @item too many stacks
        !          1073: Vmgen currently supports 4 stacks; if you need more, let us know.
        !          1074: 
        !          1075: @cindex @code{unknown prefix} error
        !          1076: @item unknown prefix
        !          1077: The stack item does not match any defined type prefix (after stripping
        !          1078: away any stack prefix).  You should either declare the type prefix you
        !          1079: want for that stack item, or use a different type prefix
        !          1080: 
        !          1081: @item @code{unknown primitive} error
        !          1082: @item unknown primitive
        !          1083: You have used the name of a simple VM instruction in a superinstruction
        !          1084: definition without defining the simple VM instruction first.
        !          1085: 
        !          1086: @end table
        !          1087: 
        !          1088: In addition, the C compiler can produce errors due to code produced by
        !          1089: Vmgen; e.g., you need to define type cast functions.
        !          1090: 
        !          1091: @c ********************************************************************
        !          1092: @node Using the generated code, Hints, Error messages, Top
1.5       anton    1093: @chapter Using the generated code
1.12      anton    1094: @cindex generated code, usage
                   1095: @cindex Using vmgen-erated code
1.5       anton    1096: 
1.11      anton    1097: The easiest way to create a working VM interpreter with Vmgen is
1.12      anton    1098: probably to start with @file{vmgen-ex}, and modify it for your purposes.
1.13    ! anton    1099: This chapter explains what the various wrapper and generated files do.
        !          1100: It also contains reference-manual style descriptions of the macros,
        !          1101: variables etc. used by the generated code, and you can skip that on
        !          1102: first reading.
1.5       anton    1103: 
1.10      anton    1104: @menu
                   1105: * VM engine::                   Executing VM code
                   1106: * VM instruction table::        
                   1107: * VM code generation::          Creating VM code (in the front-end)
                   1108: * Peephole optimization::       Creating VM superinstructions
                   1109: * VM disassembler::             for debugging the front end
                   1110: * VM profiler::                 for finding worthwhile superinstructions
                   1111: @end menu
1.6       anton    1112: 
1.10      anton    1113: @c --------------------------------------------------------------------
                   1114: @node VM engine, VM instruction table, Using the generated code, Using the generated code
1.5       anton    1115: @section VM engine
1.12      anton    1116: @cindex VM instruction execution
                   1117: @cindex engine
                   1118: @cindex executing VM code
                   1119: @cindex @file{engine.c}
                   1120: @cindex @file{-vm.i} output file
1.5       anton    1121: 
                   1122: The VM engine is the VM interpreter that executes the VM code.  It is
                   1123: essential for an interpretive system.
                   1124: 
1.6       anton    1125: Vmgen supports two methods of VM instruction dispatch: @emph{threaded
                   1126: code} (fast, but gcc-specific), and @emph{switch dispatch} (slow, but
                   1127: portable across C compilers); you can use conditional compilation
                   1128: (@samp{defined(__GNUC__)}) to choose between these methods, and our
                   1129: example does so.
                   1130: 
                   1131: For both methods, the VM engine is contained in a C-level function.
                   1132: Vmgen generates most of the contents of the function for you
                   1133: (@file{@var{name}-vm.i}), but you have to define this function, and
                   1134: macros and variables used in the engine, and initialize the variables.
                   1135: In our example the engine function also includes
                   1136: @file{@var{name}-labels.i} (@pxref{VM instruction table}).
                   1137: 
1.12      anton    1138: @cindex tracing VM code
1.13    ! anton    1139: @cindex superinstructions and tracing
1.12      anton    1140: In addition to executing the code, the VM engine can optionally also
                   1141: print out a trace of the executed instructions, their arguments and
                   1142: results.  For superinstructions it prints the trace as if only component
                   1143: instructions were executed; this allows to introduce new
                   1144: superinstructions while keeping the traces comparable to old ones
                   1145: (important for regression tests).
                   1146: 
                   1147: It costs significant performance to check in each instruction whether to
                   1148: print tracing code, so we recommend producing two copies of the engine:
                   1149: one for fast execution, and one for tracing.  See the rules for
                   1150: @file{engine.o} and @file{engine-debug.o} in @file{vmgen-ex/Makefile}
                   1151: for an example.
                   1152: 
1.6       anton    1153: The following macros and variables are used in @file{@var{name}-vm.i}:
1.5       anton    1154: 
                   1155: @table @code
                   1156: 
1.12      anton    1157: @findex LABEL
1.5       anton    1158: @item LABEL(@var{inst_name})
                   1159: This is used just before each VM instruction to provide a jump or
1.11      anton    1160: @code{switch} label (the @samp{:} is provided by Vmgen).  For switch
1.13    ! anton    1161: dispatch this should expand to @samp{case @var{label}:}; for
        !          1162: threaded-code dispatch this should just expand to @samp{@var{label}:}.
1.12      anton    1163: In either case @var{label} is usually the @var{inst_name} with some
                   1164: prefix or suffix to avoid naming conflicts.
1.5       anton    1165: 
1.12      anton    1166: @findex LABEL2
1.9       anton    1167: @item LABEL2(@var{inst_name})
                   1168: This will be used for dynamic superinstructions; at the moment, this
                   1169: should expand to nothing.
                   1170: 
1.12      anton    1171: @findex NAME
1.5       anton    1172: @item NAME(@var{inst_name_string})
                   1173: Called on entering a VM instruction with a string containing the name of
1.13    ! anton    1174: the VM instruction as parameter.  In normal execution this should be
        !          1175: expand to nothing, but for tracing this usually prints the name, and
        !          1176: possibly other information (several VM registers in our example).
1.5       anton    1177: 
1.12      anton    1178: @findex DEF_CA
1.5       anton    1179: @item DEF_CA
                   1180: Usually empty.  Called just inside a new scope at the start of a VM
                   1181: instruction.  Can be used to define variables that should be visible
                   1182: during every VM instruction.  If you define this macro as non-empty, you
                   1183: have to provide the finishing @samp{;} in the macro.
                   1184: 
1.12      anton    1185: @findex NEXT_P0
                   1186: @findex NEXT_P1
                   1187: @findex NEXT_P2
1.5       anton    1188: @item NEXT_P0 NEXT_P1 NEXT_P2
                   1189: The three parts of instruction dispatch.  They can be defined in
                   1190: different ways for best performance on various processors (see
                   1191: @file{engine.c} in the example or @file{engine/threaded.h} in Gforth).
1.12      anton    1192: @samp{NEXT_P0} is invoked right at the start of the VM instruction (but
1.5       anton    1193: after @samp{DEF_CA}), @samp{NEXT_P1} right after the user-supplied C
                   1194: code, and @samp{NEXT_P2} at the end.  The actual jump has to be
1.13    ! anton    1195: performed by @samp{NEXT_P2} (if you would do it earlier, important parts
        !          1196: of the VM instruction would not be executed).
1.5       anton    1197: 
                   1198: The simplest variant is if @samp{NEXT_P2} does everything and the other
                   1199: macros do nothing.  Then also related macros like @samp{IP},
                   1200: @samp{SET_IP}, @samp{IP}, @samp{INC_IP} and @samp{IPTOS} are very
                   1201: straightforward to define.  For switch dispatch this code consists just
1.12      anton    1202: of a jump to the dispatch code (@samp{goto next_inst;} in our example);
1.5       anton    1203: for direct threaded code it consists of something like
1.11      anton    1204: @samp{(@{cfa=*ip++; goto *cfa;@})}.
1.5       anton    1205: 
1.12      anton    1206: Pulling code (usually the @samp{cfa=*ip++;}) up into @samp{NEXT_P1}
1.5       anton    1207: usually does not cause problems, but pulling things up into
                   1208: @samp{NEXT_P0} usually requires changing the other macros (and, at least
                   1209: for Gforth on Alpha, it does not buy much, because the compiler often
                   1210: manages to schedule the relevant stuff up by itself).  An even more
                   1211: extreme variant is to pull code up even further, into, e.g., NEXT_P1 of
                   1212: the previous VM instruction (prefetching, useful on PowerPCs).
                   1213: 
1.12      anton    1214: @findex INC_IP
1.5       anton    1215: @item INC_IP(@var{n})
1.8       anton    1216: This increments @code{IP} by @var{n}.
                   1217: 
1.12      anton    1218: @findex SET_IP
1.8       anton    1219: @item SET_IP(@var{target})
                   1220: This sets @code{IP} to @var{target}.
1.5       anton    1221: 
1.12      anton    1222: @cindex type cast macro
                   1223: @findex vm_@var{A}2@var{B}
1.5       anton    1224: @item vm_@var{A}2@var{B}(a,b)
                   1225: Type casting macro that assigns @samp{a} (of type @var{A}) to @samp{b}
                   1226: (of type @var{B}).  This is mainly used for getting stack items into
                   1227: variables and back.  So you need to define macros for every combination
                   1228: of stack basic type (@code{Cell} in our example) and type-prefix types
                   1229: used with that stack (in both directions).  For the type-prefix type,
                   1230: you use the type-prefix (not the C type string) as type name (e.g.,
                   1231: @samp{vm_Cell2i}, not @samp{vm_Cell2Cell}).  In addition, you have to
1.12      anton    1232: define a vm_@var{X}2@var{X} macro for the stack's basic type @var{X}
                   1233: (used in superinstructions).
1.5       anton    1234: 
1.12      anton    1235: @cindex instruction stream, basic type
1.5       anton    1236: The stack basic type for the predefined @samp{inst-stream} is
                   1237: @samp{Cell}.  If you want a stack with the same item size, making its
                   1238: basic type @samp{Cell} usually reduces the number of macros you have to
                   1239: define.
                   1240: 
1.12      anton    1241: @cindex unions in type cast macros
                   1242: @cindex casts in type cast macros
                   1243: @cindex type casting between floats and integers
1.5       anton    1244: Here our examples differ a lot: @file{vmgen-ex} uses casts in these
                   1245: macros, whereas @file{vmgen-ex2} uses union-field selection (or
1.12      anton    1246: assignment to union fields).  Note that casting floats into integers and
                   1247: vice versa changes the bit pattern (and you do not want that).  In this
                   1248: case your options are to use a (temporary) union, or to take the address
                   1249: of the value, cast the pointer, and dereference that (not always
                   1250: possible, and sometimes expensive).
1.5       anton    1251: 
1.12      anton    1252: @findex vm_two@var{A}2@var{B}
                   1253: @findex vm_@var{B}2two@var{A}
1.5       anton    1254: @item vm_two@var{A}2@var{B}(a1,a2,b)
                   1255: @item vm_@var{B}2two@var{A}(b,a1,a2)
1.12      anton    1256: Type casting between two stack items (@code{a1}, @code{a2}) and a
1.5       anton    1257: variable @code{b} of a type that takes two stack items.  This does not
1.12      anton    1258: occur in our small examples, but you can look at Gforth for examples
                   1259: (see @code{vm_twoCell2d} in @file{engine/forth.h}).
1.5       anton    1260: 
1.12      anton    1261: @cindex stack pointer definition
                   1262: @cindex instruction pointer definition
1.5       anton    1263: @item @var{stackpointer}
                   1264: For each stack used, the stackpointer name given in the stack
                   1265: declaration is used.  For a regular stack this must be an l-expression;
                   1266: typically it is a variable declared as a pointer to the stack's basic
                   1267: type.  For @samp{inst-stream}, the name is @samp{IP}, and it can be a
                   1268: plain r-value; typically it is a macro that abstracts away the
1.12      anton    1269: differences between the various implementations of @code{NEXT_P*}.
1.5       anton    1270: 
1.12      anton    1271: @cindex top of stack caching
                   1272: @cindex stack caching
                   1273: @cindex TOS
                   1274: @findex IPTOS
1.5       anton    1275: @item @var{stackpointer}TOS
                   1276: The top-of-stack for the stack pointed to by @var{stackpointer}.  If you
                   1277: are using top-of-stack caching for that stack, this should be defined as
                   1278: variable; if you are not using top-of-stack caching for that stack, this
                   1279: should be a macro expanding to @samp{@var{stackpointer}[0]}.  The stack
                   1280: pointer for the predefined @samp{inst-stream} is called @samp{IP}, so
                   1281: the top-of-stack is called @samp{IPTOS}.
                   1282: 
1.12      anton    1283: @findex IF_@var{stackpointer}TOS
1.5       anton    1284: @item IF_@var{stackpointer}TOS(@var{expr})
                   1285: Macro for executing @var{expr}, if top-of-stack caching is used for the
                   1286: @var{stackpointer} stack.  I.e., this should do @var{expr} if there is
                   1287: top-of-stack caching for @var{stackpointer}; otherwise it should do
                   1288: nothing.
                   1289: 
1.12      anton    1290: @findex SUPER_END
1.8       anton    1291: @item SUPER_END
                   1292: This is used by the VM profiler (@pxref{VM profiler}); it should not do
                   1293: anything in normal operation, and call @code{vm_count_block(IP)} for
                   1294: profiling.
                   1295: 
1.12      anton    1296: @findex SUPER_CONTINUE
1.8       anton    1297: @item SUPER_CONTINUE
1.11      anton    1298: This is just a hint to Vmgen and does nothing at the C level.
1.8       anton    1299: 
1.12      anton    1300: @findex VM_DEBUG
1.5       anton    1301: @item VM_DEBUG
                   1302: If this is defined, the tracing code will be compiled in (slower
                   1303: interpretation, but better debugging).  Our example compiles two
                   1304: versions of the engine, a fast-running one that cannot trace, and one
                   1305: with potential tracing and profiling.
                   1306: 
1.12      anton    1307: @findex vm_debug
1.5       anton    1308: @item vm_debug
                   1309: Needed only if @samp{VM_DEBUG} is defined.  If this variable contains
                   1310: true, the VM instructions produce trace output.  It can be turned on or
                   1311: off at any time.
                   1312: 
1.12      anton    1313: @findex vm_out
1.5       anton    1314: @item vm_out
                   1315: Needed only if @samp{VM_DEBUG} is defined.  Specifies the file on which
                   1316: to print the trace output (type @samp{FILE *}).
                   1317: 
1.12      anton    1318: @findex printarg_@var{type}
1.5       anton    1319: @item printarg_@var{type}(@var{value})
                   1320: Needed only if @samp{VM_DEBUG} is defined.  Macro or function for
                   1321: printing @var{value} in a way appropriate for the @var{type}.  This is
                   1322: used for printing the values of stack items during tracing.  @var{Type}
                   1323: is normally the type prefix specified in a @code{type-prefix} definition
                   1324: (e.g., @samp{printarg_i}); in superinstructions it is currently the
                   1325: basic type of the stack.
                   1326: 
                   1327: @end table
                   1328: 
1.6       anton    1329: 
1.10      anton    1330: @c --------------------------------------------------------------------
                   1331: @node VM instruction table, VM code generation, VM engine, Using the generated code
                   1332: @section VM instruction table
1.12      anton    1333: @cindex instruction table
                   1334: @cindex opcode definition
                   1335: @cindex labels for threaded code
                   1336: @cindex @code{vm_prim}, definition
                   1337: @cindex @file{-labels.i} output file
1.6       anton    1338: 
                   1339: For threaded code we also need to produce a table containing the labels
                   1340: of all VM instructions.  This is needed for VM code generation
                   1341: (@pxref{VM code generation}), and it has to be done in the engine
                   1342: function, because the labels are not visible outside.  It then has to be
                   1343: passed outside the function (and assigned to @samp{vm_prim}), to be used
                   1344: by the VM code generation functions.
                   1345: 
                   1346: This means that the engine function has to be called first to produce
                   1347: the VM instruction table, and later, after generating VM code, it has to
                   1348: be called again to execute the generated VM code (yes, this is ugly).
                   1349: In our example program, these two modes of calling the engine function
                   1350: are differentiated by the value of the parameter ip0 (if it equals 0,
                   1351: then the table is passed out, otherwise the VM code is executed); in our
                   1352: example, we pass the table out by assigning it to @samp{vm_prim} and
                   1353: returning from @samp{engine}.
                   1354: 
1.12      anton    1355: In our example (@file{vmgen-ex/engine.c}), we also build such a table for
                   1356: switch dispatch; this is mainly done for uniformity.
1.6       anton    1357: 
                   1358: For switch dispatch, we also need to define the VM instruction opcodes
                   1359: used as case labels in an @code{enum}.
                   1360: 
                   1361: For both purposes (VM instruction table, and enum), the file
1.11      anton    1362: @file{@var{name}-labels.i} is generated by Vmgen.  You have to define
1.6       anton    1363: the following macro used in this file:
1.5       anton    1364: 
1.12      anton    1365: @table @code
1.5       anton    1366: 
1.12      anton    1367: @findex INST_ADDR
1.5       anton    1368: @item INST_ADDR(@var{inst_name})
                   1369: For switch dispatch, this is just the name of the switch label (the same
1.6       anton    1370: name as used in @samp{LABEL(@var{inst_name})}), for both uses of
                   1371: @file{@var{name}-labels.i}.  For threaded-code dispatch, this is the
                   1372: address of the label defined in @samp{LABEL(@var{inst_name})}); the
1.11      anton    1373: address is taken with @samp{&&} (@pxref{Labels as Values, , Labels as
                   1374: Values, gcc.info, GNU C Manual}).
1.5       anton    1375: 
                   1376: @end table
                   1377: 
                   1378: 
1.10      anton    1379: @c --------------------------------------------------------------------
                   1380: @node VM code generation, Peephole optimization, VM instruction table, Using the generated code
1.6       anton    1381: @section VM code generation
1.12      anton    1382: @cindex VM code generation
                   1383: @cindex code generation, VM
                   1384: @cindex @file{-gen.i} output file
1.6       anton    1385: 
                   1386: Vmgen generates VM code generation functions in @file{@var{name}-gen.i}
                   1387: that the front end can call to generate VM code.  This is essential for
                   1388: an interpretive system.
                   1389: 
1.12      anton    1390: @findex gen_@var{inst}
1.11      anton    1391: For a VM instruction @samp{x ( #a b #c -- d )}, Vmgen generates a
1.6       anton    1392: function with the prototype
                   1393: 
                   1394: @example
                   1395: void gen_x(Inst **ctp, a_type a, c_type c)
                   1396: @end example
                   1397: 
                   1398: The @code{ctp} argument points to a pointer to the next instruction.
                   1399: @code{*ctp} is increased by the generation functions; i.e., you should
                   1400: allocate memory for the code to be generated beforehand, and start with
                   1401: *ctp set at the start of this memory area.  Before running out of
                   1402: memory, allocate a new area, and generate a VM-level jump to the new
1.12      anton    1403: area (this overflow handling is not implemented in our examples).
1.6       anton    1404: 
1.12      anton    1405: @cindex immediate arguments, VM code generation
1.6       anton    1406: The other arguments correspond to the immediate arguments of the VM
                   1407: instruction (with their appropriate types as defined in the
                   1408: @code{type_prefix} declaration.
                   1409: 
                   1410: The following types, variables, and functions are used in
                   1411: @file{@var{name}-gen.i}:
                   1412: 
1.12      anton    1413: @table @code
1.6       anton    1414: 
1.12      anton    1415: @findex Inst
1.6       anton    1416: @item Inst
                   1417: The type of the VM instruction; if you use threaded code, this is
                   1418: @code{void *}; for switch dispatch this is an integer type.
                   1419: 
1.12      anton    1420: @cindex @code{vm_prim}, use
1.6       anton    1421: @item vm_prim
                   1422: The VM instruction table (type: @code{Inst *}, @pxref{VM instruction table}).
                   1423: 
1.12      anton    1424: @findex gen_inst
1.6       anton    1425: @item gen_inst(Inst **ctp, Inst i)
                   1426: This function compiles the instruction @code{i}.  Take a look at it in
                   1427: @file{vmgen-ex/peephole.c}.  It is trivial when you don't want to use
                   1428: superinstructions (just the last two lines of the example function), and
                   1429: slightly more complicated in the example due to its ability to use
                   1430: superinstructions (@pxref{Peephole optimization}).
                   1431: 
1.12      anton    1432: @findex genarg_@var{type_prefix}
1.6       anton    1433: @item genarg_@var{type_prefix}(Inst **ctp, @var{type} @var{type_prefix})
                   1434: This compiles an immediate argument of @var{type} (as defined in a
                   1435: @code{type-prefix} definition).  These functions are trivial to define
                   1436: (see @file{vmgen-ex/support.c}).  You need one of these functions for
                   1437: every type that you use as immediate argument.
                   1438: 
                   1439: @end table
                   1440: 
1.12      anton    1441: @findex BB_BOUNDARY
1.6       anton    1442: In addition to using these functions to generate code, you should call
                   1443: @code{BB_BOUNDARY} at every basic block entry point if you ever want to
                   1444: use superinstructions (or if you want to use the profiling supported by
1.12      anton    1445: Vmgen; but this support is also useful mainly for selecting
                   1446: superinstructions).  If you use @code{BB_BOUNDARY}, you should also
                   1447: define it (take a look at its definition in @file{vmgen-ex/mini.y}).
1.6       anton    1448: 
                   1449: You do not need to call @code{BB_BOUNDARY} after branches, because you
                   1450: will not define superinstructions that contain branches in the middle
                   1451: (and if you did, and it would work, there would be no reason to end the
                   1452: superinstruction at the branch), and because the branches announce
                   1453: themselves to the profiler.
                   1454: 
                   1455: 
1.10      anton    1456: @c --------------------------------------------------------------------
                   1457: @node Peephole optimization, VM disassembler, VM code generation, Using the generated code
1.6       anton    1458: @section Peephole optimization
1.12      anton    1459: @cindex peephole optimization
                   1460: @cindex superinstructions, generating
                   1461: @cindex @file{peephole.c}
                   1462: @cindex @file{-peephole.i} output file
1.6       anton    1463: 
                   1464: You need peephole optimization only if you want to use
                   1465: superinstructions.  But having the code for it does not hurt much if you
                   1466: do not use superinstructions.
                   1467: 
                   1468: A simple greedy peephole optimization algorithm is used for
                   1469: superinstruction selection: every time @code{gen_inst} compiles a VM
1.12      anton    1470: instruction, it checks if it can combine it with the last VM instruction
1.6       anton    1471: (which may also be a superinstruction resulting from a previous peephole
                   1472: optimization); if so, it changes the last instruction to the combined
                   1473: instruction instead of laying down @code{i} at the current @samp{*ctp}.
                   1474: 
                   1475: The code for peephole optimization is in @file{vmgen-ex/peephole.c}.
                   1476: You can use this file almost verbatim.  Vmgen generates
                   1477: @file{@var{file}-peephole.i} which contains data for the peephoile
                   1478: optimizer.
                   1479: 
1.12      anton    1480: @findex init_peeptable
1.6       anton    1481: You have to call @samp{init_peeptable()} after initializing
                   1482: @samp{vm_prim}, and before compiling any VM code to initialize data
                   1483: structures for peephole optimization.  After that, compiling with the VM
                   1484: code generation functions will automatically combine VM instructions
                   1485: into superinstructions.  Since you do not want to combine instructions
                   1486: across VM branch targets (otherwise there will not be a proper VM
                   1487: instruction to branch to), you have to call @code{BB_BOUNDARY}
                   1488: (@pxref{VM code generation}) at branch targets.
                   1489: 
                   1490: 
1.10      anton    1491: @c --------------------------------------------------------------------
                   1492: @node VM disassembler, VM profiler, Peephole optimization, Using the generated code
1.6       anton    1493: @section VM disassembler
1.12      anton    1494: @cindex VM disassembler
                   1495: @cindex disassembler, VM code
                   1496: @cindex @file{disasm.c}
                   1497: @cindex @file{-disasm.i} output file
1.6       anton    1498: 
                   1499: A VM code disassembler is optional for an interpretive system, but
                   1500: highly recommended during its development and maintenance, because it is
                   1501: very useful for detecting bugs in the front end (and for distinguishing
                   1502: them from VM interpreter bugs).
                   1503: 
                   1504: Vmgen supports VM code disassembling by generating
                   1505: @file{@var{file}-disasm.i}.  This code has to be wrapped into a
1.12      anton    1506: function, as is done in @file{vmgen-ex/disasm.c}.  You can use this file
1.6       anton    1507: almost verbatim.  In addition to @samp{vm_@var{A}2@var{B}(a,b)},
                   1508: @samp{vm_out}, @samp{printarg_@var{type}(@var{value})}, which are
                   1509: explained above, the following macros and variables are used in
                   1510: @file{@var{file}-disasm.i} (and you have to define them):
                   1511: 
1.12      anton    1512: @table @code
1.6       anton    1513: 
                   1514: @item ip
                   1515: This variable points to the opcode of the current VM instruction.
                   1516: 
1.12      anton    1517: @cindex @code{IP}, @code{IPTOS} in disassmbler
1.6       anton    1518: @item IP IPTOS
                   1519: @samp{IPTOS} is the first argument of the current VM instruction, and
                   1520: @samp{IP} points to it; this is just as in the engine, but here
                   1521: @samp{ip} points to the opcode of the VM instruction (in contrast to the
                   1522: engine, where @samp{ip} points to the next cell, or even one further).
                   1523: 
1.12      anton    1524: @findex VM_IS_INST
1.6       anton    1525: @item VM_IS_INST(Inst i, int n)
                   1526: Tests if the opcode @samp{i} is the same as the @samp{n}th entry in the
                   1527: VM instruction table.
                   1528: 
                   1529: @end table
                   1530: 
                   1531: 
1.10      anton    1532: @c --------------------------------------------------------------------
                   1533: @node VM profiler,  , VM disassembler, Using the generated code
1.7       anton    1534: @section VM profiler
1.12      anton    1535: @cindex VM profiler
                   1536: @cindex profiling for selecting superinstructions
                   1537: @cindex superinstructions and profiling
                   1538: @cindex @file{profile.c}
                   1539: @cindex @file{-profile.i} output file
1.7       anton    1540: 
                   1541: The VM profiler is designed for getting execution and occurence counts
                   1542: for VM instruction sequences, and these counts can then be used for
                   1543: selecting sequences as superinstructions.  The VM profiler is probably
1.8       anton    1544: not useful as profiling tool for the interpretive system.  I.e., the VM
1.7       anton    1545: profiler is useful for the developers, but not the users of the
1.8       anton    1546: interpretive system.
1.7       anton    1547: 
1.8       anton    1548: The output of the profiler is: for each basic block (executed at least
                   1549: once), it produces the dynamic execution count of that basic block and
                   1550: all its subsequences; e.g.,
1.7       anton    1551: 
1.8       anton    1552: @example
                   1553:        9227465  lit storelocal 
                   1554:        9227465  storelocal branch 
                   1555:        9227465  lit storelocal branch 
                   1556: @end example
1.7       anton    1557: 
1.8       anton    1558: I.e., a basic block consisting of @samp{lit storelocal branch} is
                   1559: executed 9227465 times.
1.6       anton    1560: 
1.12      anton    1561: @cindex @file{stat.awk}
                   1562: @cindex @file{seq2rule.awk}
1.8       anton    1563: This output can be combined in various ways.  E.g.,
1.12      anton    1564: @file{vmgen-ex/stat.awk} adds up the occurences of a given sequence wrt
1.8       anton    1565: dynamic execution, static occurence, and per-program occurence.  E.g.,
1.3       anton    1566: 
1.8       anton    1567: @example
                   1568:       2      16        36910041 loadlocal lit 
                   1569: @end example
1.2       anton    1570: 
1.12      anton    1571: @noindent
1.8       anton    1572: indicates that the sequence @samp{loadlocal lit} occurs in 2 programs,
                   1573: in 16 places, and has been executed 36910041 times.  Now you can select
                   1574: superinstructions in any way you like (note that compile time and space
                   1575: typically limit the number of superinstructions to 100--1000).  After
                   1576: you have done that, @file{vmgen/seq2rule.awk} turns lines of the form
1.11      anton    1577: above into rules for inclusion in a Vmgen input file.  Note that this
1.8       anton    1578: script does not ensure that all prefixes are defined, so you have to do
                   1579: that in other ways.  So, an overall script for turning profiles into
                   1580: superinstructions can look like this:
1.2       anton    1581: 
1.8       anton    1582: @example
                   1583: awk -f stat.awk fib.prof test.prof|
                   1584: awk '$3>=10000'|                #select sequences
                   1585: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
                   1586: awk -f seq2rule.awk|            #turn into superinstructions
                   1587: sort -k 3 >mini-super.vmg       #sort sequences
                   1588: @end example
1.2       anton    1589: 
1.8       anton    1590: Here the dynamic count is used for selecting sequences (preliminary
                   1591: results indicate that the static count gives better results, though);
1.12      anton    1592: the third line eliminates sequences containing instructions that must not
1.8       anton    1593: occur in a superinstruction, because they access a stack directly.  The
                   1594: dynamic count selection ensures that all subsequences (including
                   1595: prefixes) of longer sequences occur (because subsequences have at least
                   1596: the same count as the longer sequences); the sort in the last line
                   1597: ensures that longer superinstructions occur after their prefixes.
                   1598: 
1.12      anton    1599: But before using this, you have to have the profiler.  Vmgen supports its
1.8       anton    1600: creation by generating @file{@var{file}-profile.i}; you also need the
                   1601: wrapper file @file{vmgen-ex/profile.c} that you can use almost verbatim.
                   1602: 
1.12      anton    1603: @cindex @code{SUPER_END} in profiling
                   1604: @cindex @code{BB_BOUNDARY} in profiling
1.8       anton    1605: The profiler works by recording the targets of all VM control flow
                   1606: changes (through @code{SUPER_END} during execution, and through
                   1607: @code{BB_BOUNDARY} in the front end), and counting (through
                   1608: @code{SUPER_END}) how often they were targeted.  After the program run,
                   1609: the numbers are corrected such that each VM basic block has the correct
1.12      anton    1610: count (entering a block without executing a branch does not increase the
                   1611: count, and the correction fixes that), then the subsequences of all
                   1612: basic blocks are printed.  To get all this, you just have to define
                   1613: @code{SUPER_END} (and @code{BB_BOUNDARY}) appropriately, and call
                   1614: @code{vm_print_profile(FILE *file)} when you want to output the profile
                   1615: on @code{file}.
1.8       anton    1616: 
1.12      anton    1617: @cindex @code{VM_IS_INST} in profiling
                   1618: The @file{@var{file}-profile.i} is similar to the disassembler file, and
1.8       anton    1619: it uses variables and functions defined in @file{vmgen-ex/profile.c},
                   1620: plus @code{VM_IS_INST} already defined for the VM disassembler
                   1621: (@pxref{VM disassembler}).
                   1622: 
1.13    ! anton    1623: @c **********************************************************
        !          1624: @node Hints, The future, Using the generated code, Top
        !          1625: @chapter Hints
        !          1626: @cindex hints
        !          1627: 
        !          1628: @menu
        !          1629: * Floating point::              and stacks
        !          1630: @end menu
        !          1631: 
        !          1632: @c --------------------------------------------------------------------
        !          1633: @node Floating point,  , Hints, Hints
        !          1634: @section Floating point
        !          1635: 
        !          1636: How should you deal with floating point values?  Should you use the same
        !          1637: stack as for integers/pointers, or a different one?  This section
        !          1638: discusses this issue with a view on execution speed.
        !          1639: 
        !          1640: The simpler approach is to use a separate floating-point stack.  This
        !          1641: allows you to choose FP value size without considering the size of the
        !          1642: integers/pointers, and you avoid a number of performance problems.  The
        !          1643: main downside is that this needs an FP stack pointer (and that may not
        !          1644: fit in the register file on the 386 arhitecture, costing some
        !          1645: performance, but comparatively little if you take the other option into
        !          1646: account).  If you use a separate FP stack (with stack pointer @code{fp}),
        !          1647: using an fpTOS is helpful on most machines, but some spill the fpTOS
        !          1648: register into memory, and fpTOS should not be used there.
        !          1649: 
        !          1650: The other approach is to share one stack (pointed to by, say, @code{sp})
        !          1651: between integer/pointer and floating-point values.  This is ok if you do
        !          1652: not use @code{spTOS}.  If you do use @code{spTOS}, the compiler has to
        !          1653: decide whether to put that variable into an integer or a floating point
        !          1654: register, and the other type of operation becomes quite expensive on
        !          1655: most machines (because moving values between integer and FP registers is
        !          1656: quite expensive).  If a value of one type has to be synthesized out of
        !          1657: two values of the other type (@code{double} types), things are even more
        !          1658: interesting.
        !          1659: 
        !          1660: One way around this problem would be to not use the @code{spTOS}
        !          1661: supported by Vmgen, but to use explicit top-of-stack variables (one for
        !          1662: integers, one for FP values), and having a kind of accumulator+stack
        !          1663: architecture (e.g., Ocaml bytecode uses this approach); however, this is
        !          1664: a major change, and it's ramifications are not completely clear.
1.10      anton    1665: 
                   1666: @c **********************************************************
1.13    ! anton    1667: @node The future, Changes, Hints, Top
        !          1668: @chapter The future
        !          1669: @cindex future ideas
        !          1670: 
        !          1671: We have a number of ideas for future versions of Gforth.  However, there
        !          1672: are so many possible things to do that we would like some feedback from
        !          1673: you.  What are you doing with Vmgen, what features are you missing, and
        !          1674: why?
        !          1675: 
        !          1676: One idea we are thinking about is to generate just one @file{.c} file
        !          1677: instead of letting you copy and adapt all the wrapper files (you would
        !          1678: still have to define stuff like the type-specific macros, and stack
        !          1679: pointers etc. somewhere).  The advantage would be that, if we change the
        !          1680: wrapper files between versions, you would not need to integrate your
        !          1681: changes and our changes to them; Vmgen would also be easier to use for
        !          1682: beginners.  The main disadvantage of that is that it would reduce the
        !          1683: flexibility of Vmgen a little (well, those who like flexibility could
        !          1684: still patch the resulting @file{.c} file, like they are now doing for
        !          1685: the wrapper files).  In any case, if you are doing things to the wrapper
        !          1686: files that would cause problems in a generated-@file{.c}-file approach,
        !          1687: please let us know.
        !          1688: 
        !          1689: @c **********************************************************
        !          1690: @node Changes, Contact, The future, Top
1.8       anton    1691: @chapter Changes
1.12      anton    1692: @cindex Changes from old versions
1.8       anton    1693: 
1.11      anton    1694: Users of the gforth-0.5.9-20010501 version of Vmgen need to change
1.8       anton    1695: several things in their source code to use the current version.  I
                   1696: recommend keeping the gforth-0.5.9-20010501 version until you have
                   1697: completed the change (note that you can have several versions of Gforth
                   1698: installed at the same time).  I hope to avoid such incompatible changes
                   1699: in the future.
1.2       anton    1700: 
1.8       anton    1701: The required changes are:
                   1702: 
                   1703: @table @code
1.13    ! anton    1704: 
        !          1705: @cindex @code{TAIL;}, changes
        !          1706: @item TAIL;
        !          1707: has been renamed into @code{INST_TAIL;} (less chance of an accidental
        !          1708: match).
1.2       anton    1709: 
1.12      anton    1710: @cindex @code{vm_@var{A}2@var{B}}, changes
1.8       anton    1711: @item vm_@var{A}2@var{B}
                   1712: now takes two arguments.
                   1713: 
1.12      anton    1714: @cindex @code{vm_two@var{A}2@var{B}}, changes
1.8       anton    1715: @item vm_two@var{A}2@var{B}(b,a1,a2);
                   1716: changed to vm_two@var{A}2@var{B}(a1,a2,b) (note the absence of the @samp{;}).
                   1717: 
                   1718: @end table
1.2       anton    1719: 
1.8       anton    1720: Also some new macros have to be defined, e.g., @code{INST_ADDR}, and
                   1721: @code{LABEL}; some macros have to be defined in new contexts, e.g.,
                   1722: @code{VM_IS_INST} is now also needed in the disassembler.
1.4       anton    1723: 
1.12      anton    1724: @c *********************************************************
1.10      anton    1725: @node Contact, Copying This Manual, Changes, Top
1.8       anton    1726: @chapter Contact
1.4       anton    1727: 
1.12      anton    1728: @c ***********************************************************
1.10      anton    1729: @node Copying This Manual, Index, Contact, Top
                   1730: @appendix Copying This Manual
                   1731: 
                   1732: @menu
                   1733: * GNU Free Documentation License::  License for copying this manual.
                   1734: @end menu
                   1735: 
                   1736: @include fdl.texi
                   1737: 
                   1738: 
                   1739: @node Index,  , Copying This Manual, Top
                   1740: @unnumbered Index
                   1741: 
                   1742: @printindex cp
                   1743: 
                   1744: @bye

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>