VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at
Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | $S08

Last Lectures (2)

« Dependencies
- Control Dependencies
- Data Dependencies
« Read-after-write (true dependence)

» Write-after-Read (anti dependence)
« Write-after-write (output dependence)

« Alias Analysis
- Flow-sensitive vs. flow-insensitive
- Inter- / Intraprocedural

05/05/08 Ebner, Brandner | Compilation Techniques for VLIW

Slide #1

Slide #3

Last Lectures (1)

« Traditional Scalar Optimizations
- Common subexpression elimination
- Copy propagation
- Copy elimination
- Dead-code elimination
- Strength reduction
= Function Inlining

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs

Last Lectures (3)

sso8

Natural loops
* Dominance relation
* Backedges

Reducible control flow graphs
* Loop carried dependencies

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs

Slide #2

Slide #4

Last Lectures (4)

* Loop Transformations
* Scalar expansion
* Loop distribution
* Loop interchange
* Loop fusion
* Loop peeling
* Loop blocking

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

Code Layout Techniques

Embedded processors usually adopt simple
cache structures (direct mapped / low
associativity)

Instruction cache fetch path is usually among
the critical drivers of overall clock cycle
 Sources of i-cache misses

- capacity misses

- conflict misses <= Code Layout Techniques
- compulsory (cold) misses

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

In Today's Lecture

» Code Layout
- Block / function
placement
« Instruction Selection

- Translates a
compilers IR to
machine code

- BURS systems

- DAG based
approaches

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Excursion: Cache Organization

o T T T T T
Diregt ———
2way
d-way
s |
oo 8way
Full
0.001 |- g
2
&
g oot |- -
E
16005 - B
16:006 - R
Hill, Cantin:
I 1 I L 1 Cache for
K e ek &g 2K M it SPEC CPU2000 Benchmarks
cache size
5/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | $508 slide #8

Placement Techniques - Motivation

 Default Code Layout is often bad

- Instructions and Procedures are usually placed
according to source order

* Rearraging can lead to a reduced miss rate

* “Closest is best’ strategy
- procedures calling each other frequently wind up

close to each other
- reduces working set

05/05/08

Procedure Positioning

Pettis and Hansen:
Procedure Positioning

 Construct a weighted call graph
- Nodes correspond to procedures
- Edge label denote the total number of dynamic

calls

* lteratively merge both nodes incident to edges
with highest dynamic weight

* Keep a “chain” within those merged nodes
corresponding to the link order

Procedure Positioning

Procedure Positioning

How to merge chains for
AD and CF?

2 closest is best
strategy

Pick either DACF or FCAD

(C and Ashould be adjacent)

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | $S08 slide #13

Chain Formation: Top-Down

1.Place the entry block of the procedure

2.Among all unplaced successors, select and
append the one with the largest dynamic count

3.If all successors have been selected, pick
among the unselected blocks with the largest
connection to the already selected blocks

4 .Continue until all blocks are placed.

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

Pettis and Hansen:
Basic Block Ordering

« Defines the order of blocks within a procedure
* Weighted control flow graph

« Layout blocks such that the “normal” flow of
control is in a straight line
« Two step approach:
- Identify chains of blocks
« top-down
* bottom-up
- Define a precedence relation among those chains

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

Chain Formation: Bottom-Up

1.Consider each block to be the head an the tail
of a new chain

2.Consider the edges from largest to smallest
weight. Two different chains are merged if the
arc connects the tail of one chain to the head of
the other

Chain Formation: Example

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | $S08

More Sophisticated Techniques

* Procedure Splitting
* Procedure Inlining (IMPACT compiler)
 Cache Line Coloring

- Assign each cache line a different color

- A parent function gets a color different from its
descendants, as an attempt to prevent cache
conflicts when they call each other

« Temporal Order Placement

05/05/08 Ebner,

de #19 05/05/08

Precedence Relation

¢ Order chains such that non-taken conditional
branches point forward (branch prediction)

* Not always possible

- Prefer the edge with highest weight
« 6 conditional branches in our example
BtoC/O CtoD/G D to E/F
FtoHI 1toJM Jto KIL

e Final order: A, E-N-B-C-D-F-H, I-J-L, G-O, K, M

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Instruction Selection

Task: Translate the abstract syntax tree (AST) to
concrete machine instructions supported by the
target architecture

* In general, many different combinations of
machine instructions are semantically
equivalent

¢ Usually, a cost model is used to balance among
different optimization goals (performance, code
size, energy).

Ebner, Brandner | Compilation Techniques for VLIWs Slide #20

ss08

Phases of an ILP Oriented Compiler Scope

Front-End

« Single (abstract) instruction
- peephole approach
- simple / efficient
« Statements (expression trees)
- efficient (tree pattern matching)
- optimal for each statement
 Functions / blocks

Back-End

Alias
| | Information
Opt. HLIR Database

Target

Machine Sched. LLIR i
Description Assembly - NP complete in general
Code
05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21 05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22
Tree Pattern Matching Example
 Machine instructions represented by tree i B fuens pastern Cost it
r o i(reran 0 stmt = r 0
patterns S 1 rertr 1 ada
« Patterns have associated costs and semantic 2 Tor-dmo 1 suni
actions stmt: 1 (stmt=r) 3 r=r-r 1 sub
« Two-phase approach ' s tmm = 1 0
- labeling phase: find a min-cost cover of the AST . ¢ ot o
stmt : 1 (stmt =r]
- reduction phase: apply semantic actions bottom-up D ey
mmgz S mm = Result:
« Linear in the size of the tree subi rl = R - I

add r2 = rl + R

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23 05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

Limitations

* Limited scope; global flow of information is not
visible to the matcher

» Cannot cope with general DAG patterns

* More sophisticated approaches:

- DAG based techniques

« NP complete in general (Ertl99)

¢ Linear programming (Wilson95, LeupersBashford00)
- SSA-graph based techniques

* Model data and control flow of a whole function

» Sound transition to PBQP

05/05/08 Ebner, Brandner | Compi

PBQP Based Instruction Selection

 Scholz, Eckstein (2003)

1.Construct the SSA graph

2. Transform the graph to an instance of PBQP
3.Solve the (NP complete) problem (heuristically)
4 Back-propagate the solution

05/05/08 Ebner, Brandner | Compi

Partitioned Boolean Quadratic
Programming (PBQP)

* Quadratic optimization problem

minf = Z X,'.C,'J.XJ-TJr Z C,'.X,-T

1<i<j<n 1<i<n
stVie{l...n}:x.17T =1
« Equivalent graph theoretic interpretation

- boolean vectors are represented as nodes
- edges represent cost matrizes

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs Ss08

SSA graphs

« Describe the computational flow of a whole
function
« Based on static single assignment (SSA) form
- Each variable is defined exactly once
- Each use is dominated by its definition

- If there are multiple definitions, an artificial
®-function is inserted

Example: SSA graph

int f(short *a, short *b)
{

int s1=0;
loop (i) {
s2 = PHI(sl, s3) ° °
s3 = abs(s2) + a[i] * b[i]
}
©Jo
}

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #29

Problem Transformation

* Main idea: PBQP and SSA graphs are
structurally equivalent

¢ For each node, the domain for the decision
vectors is defined by the set of applicable base
rules

« Cost matrizes represent the least transition
costs among the particular nonterminals

— costs for transitions of the form nt, ¢ nt are0

- costs for impossible transitions are set to infinity

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

Rule Grammar

« Additional rules for matching ®-nodes

« Two types of rules
_ base rules nt ¢ P(nt, ..., nt)

_ chain rule nt, € nt,

« Straight forward automatic normalization
r € +(r, *(r, r)) : ¢
=>t &€ *(r, r) : 0
r € +(r, t) : c

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #30

Heuristic PBQP Solver

¢ Reduction Phase

- Reduce I: eliminates a node i of degree 1 by transferring
costs ¢, and matrix costs Cij to the adjacent node j

- Reduce II: for degree 2 nodes, cost vector c, and the two
adjacent cost matrices Cij and C,, are merged into a new
cost matrix among j and k

- Reduce N: heuristically select a local minimum for a node of
degree > 2 and eliminate the node

* Reconstruction Phase

reconstruct the graph in inverse order and select the
corresponding rules

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

Comparison to Tree Pattern
Matching

* Both methods can use the same grammar
(automatic normalization, implizit rules for @
nodes)

* Operates on the scope of a whole function
rather than statements

* When applied to trees, the heuristic solver acts
almost like a tree pattern matcher (what is the
difference?)

* Heuristic solver terminates with a provable
optimal solution in most cases

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Simple Algorithm

« Backward scan over all instructions
¢ Maintain two maps
- def[r]: last instruction that defines register r
- uses|[r]: list of all uses that are still “pending”
 Simplified memory model

Ignore memory disambiguation by considering
loads/stores to use/define an artificial memory
resource

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #35

Dependence Testing

« Data Dependencies

- Read-after-write (true/flow dependence)
- Write-after-Read (anti dependence)
- Write-after-write (output dependence)

* Data Dependence Graph (DDG)

- Vertizes represent instructions

- There is an edge among u and v, if u has to precede v due to data
dependencies

« Acyclic, if loop carried dependencies are left out

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #34

build ddg

foreach i in I in reversed order:
/* create a new node */
n = new_node(i)
/* insert edges */
foreach definition o in i
if(def[o]) new_edge(n, def[o], WAW)
foreach p in uses[o]
new_edge(n, p, RAW)
foreach use u in i
if(def[u]) new_edge(n, def[u], WAR)
/* update temporary data structures */
foreach definition o in i
def[o] = n
uses[o] = {}
foreach use u in i
uses[u].insert(n)

05/05/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Outlook

» Scheduling Techniques
- Region scheduling (traces, super-/hyper-blocks)
- Region formation
- Software pipelining
- Phase ordering issues

05/05/08 Ebner, Brandner | Compilation Techniques for VLIW

