Engineering/Signal Processing

undoubtedly the most accessible book on digital signal processing
vailable to the beginner. Using intuitive explanations and well-chosen
»s, this book gives you the tools to develop a fundamental under-
1 of DSP theory.

hor covers the essential mathematics by explaining the meaning and
ince of the key DSP equations. Comprehensive in scope, and gentle
sach, the book will help you achieve a thorough grasp of the basics
ve gradually to more sophisticated DSP concepts and applications.

sk begins with a complete explanation of the often misunderstood
f periodic sampling. The introduction to the important discrete
transform, and its fast Fourier transform (FFT) implementation, is
it lucid and illuminating explanation available anywhere. You will
d extensive information on both finite impulse response (FIR) and
impulse response (IIR) digital filters, as well as coverage of the
of signal averaging. In addition, the book demystifies the abstruse
f the Convolution theorem and complex signals. The practical uses
us binary number formats are also carefully described and compared.
a collection of tricks-of-the-trade used by professionals to make DSP
ms more efficient will help you apply DSP concepts successfully.

G. Lyons is a Systems Engineer with the Systems Integration Group
" Inc. He has been involved with the design and testing of digital
rocessing systems for the past fifteen years. He is the author of
us articles on the topic and is 2 member of the IEEE and Eta Kappa
electrical engineering honor society.

A Prentice Hall PTR Publication
Upper Saddle River, NJ 07458
www.phptr.com

_ VNI i

bv Mind of the Machine ISBN 0-20 1'63467'8

B UG o e S e S

d [eusis [eysig Suipueyssspun

SuISsa0u

5‘49 9

RICHARD G. LYONS

*—

Understanding Digital
Signal Processing

7 i

002132174

Registro ...363Y..... Fecha ..Pmui-0d,
rada ...A%.4

) .Fv'irod\mwwffgo AL @L‘g!;g e

/ .
M MALAL C.Q_,q

=

Understanding Digital
Signal Processing

Richard G. Lyons

Pl
e

PRENTICE HALL PTR

A Prentice Hall PTR Publication
Upper Saddle River, NJ 07458
WWW.phptr.com

DEDICATION :

I dedicate this book to my two daughters Julie and Meredith, I wish I
could go with you; to my mother Ruth for making me finish my home-
work; to my father Grady who didn’t know what he started when he built
that workbench in the basement; to my brother Ray for improving us all;

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where

iled; to my sister Nancy for
those designations appear in this book and Addison-Wesley was to m},’ br.other Ken who succeeded where I failed 9 . Y toD Ly
aware of a trademark claim, the designations have been printed running interference for us; to John Lennon for not giving up; to Dr. Laura
with initial capital letters. Schlessinger for keeping us honest; to my advisor Glenn Caldwell and to

the Iron Riders Motorcycle Club (Niles, CA) who keep me alive. Finally to
Sigi Pardula, without your keeping the place running this book wouldn't
exist.

The publisher offers discounts on this book when ordered in
quantity for special sales.

For more information, please contact:
Corporate Sales Department
Prentice Hall PTR
1 Lake Street
Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data

Lyons, Richard G., 1948~
Understanding digital signal processing / Richard G. Lyons.
p- om
Includes bibliographical references and index.
ISBN 0-201-63467-8
1. Signal processing--Digital techniques. I Title.
TK5102.9.L96 1997
621.382'2--dc20 96-28818

CIP
Copyright 2001 By Prentice Hall PTR.

All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the pub-
lisher. Printed in the United States of America. Published simul-
taneously in Canada.

0-201-63467-8

8 9—MA—01
Eighth Printing, April 2001

=CONTENT$='

Prefaceooo i xi
1 DISCRETE SEQUENCES AND SYSTEMS 1
1.1 Discrete Sequences and Their Notation 2
1.2 Signal Amplitude, Magnitude, Power........................ 8
1.3 Signal Processing Operational Symbols 10
14 Introduction to Discrete Linear Time-Invariant Systems 12
1.5 Discrete Linear Systems ... 13
16 Time-InvariantSystemsc..oiiiiiiiiiiiiiiinen. 18
1.7 The Commutative Property of Linear Time-Invariant Systems .. 20
18 Analyzing Linear Time-Invariant Systems 20
2 PERIODICSAMPLING......................iiiiiiiiiinines 23
2.1 Aljasing: Signal Ambiquity in the Frequency Domain 23
22 Sampling Low-Pass Signals oot 29
2.3 Sampling Bandpass Signals ...l 32
24 Spectral Inversion in Bandpass Sampling 43
3 THE DISCRETE FOURIERTRANSFORM......................... 49
3.1 Understanding the DFT Equation 50
32 DFTSYMMETY. ..ottt tieninei e 63
33 DFTLINearity.......oovvviinitiii i, 65
34 DFI'Magnitudesooviviiiiiiiiiiiiieniien., 66
35 DFTFrequency AXiS «....oovviireniioiennnenciiniie ., 67
3.6 DFTShifting Theoremc.oviiiireiiininnn. 68
37 Inverse DFT i 70
38 DFTLeakageovvnririnirinioraiirireinanaeenens 71
39 WINAOWS ...ttt it e 80
310 DFT Scalloping Lossovvviiniiiii e 88
3.11 DFT Resolution, Zero Stuffing, and Frequency-Domain
Samplingt e e 89
3.12 DFT Processing Gain.............ooviiiiiiiininieeeins 93
3.13 The DFT of Rectangular Functions 97
3.14 The DFT Frequency Response to a Complex Input 119
3.15 The DFT Frequency Response to a Real Cosine Input 123
3.16 The DFT Single-Bin Frequency Response to a Real
CosiNeINPUL.vvvnt it e 125

viii Understanding Digital Signal Processing

4

THE FASTFOURIERTRANSFORM 129
41 Relationship of the FFTtothe DFT 130
42 Hintson Using FFTsin Practice 131
43 FFT Software Programs.c.ccooeiiin.... 136
44 Derivation of the Radix-2 FFT Algorithm 136
45 FFT Input/Output Data Index Bit Reversal 145
46 Radix-2 FFT Butterfly Structures 146
FINITE IMPULSE RESPONSE FILTERS 157
5.1 An Introduction to Finite Impulse Response FIR Filters 158
52 Convolutionin FIR Filters 163
53 Low-Pass FIR Filter Designcoovivini.... 174
54 Bandpass FIR Filter Design 191
5.5 Highpass FIR Filter Design 193
5.6 Remez Exchange FIR Filter Design Method 194
5.7 Half-Band FIR Filtersccoiiuinn.... 197
5.8 Phase Responseof FIR Filters 199
59 A Generic Description of Discrete Convolution 204
INFINITE IMPULSE RESPONSE FILTERS 219
6.1 An Introduction to Infinite Impulse Response Filters 220
6.2 The Laplace Transformooiiiiinn. ..., 223
6.3 Thez-Transformviiiiiia.. 238
6.4 Impulse Invariance IIR Filter Design Method 254
6.5 Bilinear Transform IIR Filter Design Method 272
6.6 Optimized IIR Filter Design Method 284
6.7 Pitfalls in Building IIR Digital Filters. 286
6.8 Cascade and Parallel Combinations of Digital Filters 290
6.9 A Brief Comparison of IR and FIR Filters 292
ADVANCED SAMPLING TECHNIQUES 297
71 QuadratureSampling e 297
7.2 Quadrature Sampling with Digital Mixing 301
7.3 Digital Resamplingl 303
SIGNALAVERAGING 319
81 CoherentAveragingccoiiiiiiiai.., 320
82 Incoherent Averagingoiiiiiiiiiiii.. 327
8.3 Averaging Multiple Fast Fourier Transforms 330
84 Filtering Aspects of Time-Domain Averaging 340

85 Exponential Averaging 341

Contents

9 DIGITAL DATA FORMATS AND THEIR EFFECTS 349
9.1 Fixed-Point Binary Formats 349

9.2 Binary Number Precision and DynamicRange 356

9.3 Effects of Finite Fixed-Point Binary Word Length 357

9.4 Floating-Point Binary Formats 375

9.5 Block Floating-Point Binary Format..................... ... 381

10 DIGITAL SIGNAL PROCESSING TRICKS 385
10.1 Frequency Translation without Multiplication 385

10.2 High-Speed Vector-Magnitude Approximation 400

10.3 Data Windowing Trickst 406

104 Fast Multiplication of Complex Numbers................... 411

10.5 Efficiently Performing the FFT of Real Sequences 412

10.6 Calculating the Inverse FFT Using the Forward FFT 425

10.7 FastFFT Averagingooiiiiienniiiiinnnenn. 429

10.8 Simplified FIR Filter Structure 430

10.9 Accurate A/D Converter Testing Technique 432

10.10 Fast FIR Filtering Using the FFT........................... 435

10.11 Calculation of Sines and Cosines of Consecutive Angles 436

10.12 Generating Normally Distributed Random Data 438
APPENDIX A. THE ARITHMETIC OF COMPLEX NUMBERS 443
Al Graphical Representation of Real and Complex Numbers 443

A2 Arithmetic Representation of Complex Numbers 444

A3 Arithmetic Operations of Complex Numbers 446

A4 Some Practical Implications of Using Complex Numbers 453
APPENDIX B. CLOSED FORM OF A GEOMETRIC SERIES 455

APPENDIX C. COMPLEX SIGNALS AND NEGATIVE FREQUENCY 458

C.1 Development of Imaginary Numbers 460
C.2 Representing Real Signals Using Complex Phasors........... 462
C.3 Representing Real Signals Using Negative Frequencies 467
C.4 Complex Signals and Quadrature Mixing................... 471

APPENDIX D. MEAN, VARIANCE, AND STANDARD DEVIATION 476

D.1 Statistical Measuresttt 476
D.2 Standard Deviation, or RMS, of a Continuous Sinewave 480
D.3 The Mean and Variance of Random Functions............... 481
D.4 The Normal Probability Density Function 484

X

Understanding Digital Signai Processing

APPENDIX E. DECIBELS (dB AND dBm)

........................... 486
E.l Using Logarithms to Determine Relative Signal Power 486

E2 Some Useful Decibel Numbers 492

E.3 Absolute Power Using Decibels 493
APPENDIX F. DIGITAL FILTER TERMINOLOGY 494
Index. ..o 507

=PREFACE= .

Learning Digital Signal Processing

Learning the fundamentals, and how to speak the language, of digital sig-
nal processing does not require profound analytical skills or an extensive
background in mathematics. All you need is a little experience with ele-
mentary algebra, knowledge of what a sinewave is, this book, and enthu-
siasm. This may sound hard to believe, particularly if you've just flipped
through the pages of this book and seen figures and equations that appear
rather complicated. The content here, you say, looks suspiciously like the
material in technical journals and textbooks, material that is difficult to
understand. Well, this is not just another book on digital signal processing.

This book’s goal is to gently provide explanation followed by illustra-
tion, not so that you may understand the material, but that you must
understand the material." Remember the first time you saw two people
playing chess? The game probably appeared to be mysterious and con-
fusing. As you now know, no individual chess move is complicated.
Given a little patience, the various chess moves are easy to learn. The
game’s complexity comes from deciding what combinations of moves to
make and when to make them. So it is with understanding digital signal
processing. First we learn the fundamental rules and processes and, then,
practice using them in combination.

If learning digital signal processing is so easy, then why does the sub-
ject have the reputation of being difficult to understand? The answer lies
partially in how the material is typically presented in the literature. It's
difficult to convey technical information, with its mathematical subtleties,
in written form. It’s one thing to write equations, but it's another matter
altogether to explain what those equations really mean from a practical
standpoint, and that’s the goal of this book.

Too often, written explanation of digital signal processing theory
appears in one of two forms: either mathematical miracles occur and you
are simply given a short and sweet equation without further explanation,
or you are engulfed in a flood of complex variable equations and phrases

t “Here we have the opportunity of expounding more clearly what has already been said”
(Rene Descartes).

Xi

Xii

Understanding Digital Signal Processing

such as “it is obvious that,” “such that W(f) 20 V {,” and “with judicious
application of the homogeneity property.” Authors usually do provide the
needed information, but, too often, the reader must grab a pick and
shovel, put on a miner’s helmet, and try to dig the information out of a
mountain of mathematical expressions. (This book presents the results of
several fruitful mining expeditions.) How many times have you followed
the derivation of an equation, after which the author states that he or she
is going to illustrate that equation with a physical example—and this
turns out to be another equation? Although mathematics is necessary to
describe digital signal processing, I've tried to avoid overwhelming the
reader because a recipe for technical writing that’s too rich in equations is
hard for the beginner to digest.

The intent of this book is expressed in a popular quote from E. B. White
in the introduction of his Elements of Style (New York: Macmillan
Publishing, 1959):

Will (Strunk) felt that the reader was in serious trouble most of the
time, a man floundering in a swamp, and that it was the duty of any-
one attempting to write English to drain the swamp quickly and get
his man up on dry ground, or at least throw him a rope.

I've attempted to avoid the traditional instructor-student relationship,
but, rather, to make reading this book like talking to a friend while walk-
ing in the park. I've used just enough mathematics to develop a funda-
mental understanding of the theory, and, then, illustrate that theory with
examples.

The Journey

Learning digital signal processing is not something you accomplish; it's a
journey you take. When you gain an understanding of some topic, ques-
tions arise that cause you to investigate some other facet of digital signal
processing. Armed with more knowledge, you're likely to begin exploring
further aspects of digital signal processing much like those shown in the
following diagram. This book is your tour guide during the first steps of
your journey.

You don’t need a computer to learn the material in this book, but it
would help. Digital signal processing software allows the beginner to ver-

* “We need elucidation of the obvious more than investigation of the obscure” (Oliver
Wendell Holmes).

Preface

How can the spectra of sampled
signals be analyzed?

How can DFT
measurement accuracy
be improved?

" How can
Discrete Fourier spectra be —
Transform modified?

Why are discrete
spectra periodic, and How
what causes DFT windowil
leakage?

Periodic sampling

Window functions

How can the effective sample
rates of discrets signals be
changed?

How can digital filter
frequency responses be
improved?

Digital filters

What causes
passband ripple in
digital filters?

does
ng work?

How can spectral

How can the noise

noise be reduced to reduction effects of
volution]
enhance signal Convolutio averaging be analyzed?

detection?

Signal averaging

Figure P-1

ify signal processing theory through trial and error.’ In particular, soft-
ware routines that plot signal data, perform the fast Fourier transform,
and analyze digital filters would be very useful.

As you go through the material in this book, don’t be discouraged if your
understanding comes slowly. As the Greek mathematician Menaechmus

t “One must learn by doing the thing; for though you think you know it, you have no cer-
tainty until you try it” (Sophocles).

Xiv

Understanding Digital Signal Processing

curtly remarked to Alexander the Great, when asked for a quick explana-
tion of mathematics, “There is no royal road to mathematics.” Menaechmus
was confident in telling Alexander that the only way to learn mathematics
is through careful study. The same applies to digital signal processing. Also,
don’t worry if you have to read some of the material twice. While the con-
cepts in this book are not as complicated as quantum physics, as mysteri-
ous as the lyrics of the song “Louie Louie,” or as puzzling as the assembly
instructions of a metal shed, they do get a little involved. They deserve your
attention and thought. So go slow and read the material twice if you have
to; you'll be glad you did. If you show persistence, to quote a phrase from
Susan B. Anthony, “Failure is impossible.”

Coming Attractions

Chapter 1 of this book begins by establishing the notation used through-
out the remainder of our study. In that chapter, we introduce the concept
of discrete signal sequences, show how they relate to continuous signals,
and illustrate how those sequences can be depicted in both the time and
frequency domains. In addition, Chapter 1 defines the operational sym-
bols we’ll use to build our signal processing system block diagrams. We
conclude that chapter with a brief introduction to the idea of linear sys-
tems and see why linearity enables us to use a number of powerful math-
ematical tools in our analysis.

Chapter 2 introduces the most frequently misunderstood process in
digital signal processing, periodic sampling. Although it’s straightfor-
ward to grasp the concept of sampling a continuous signal, there are
mathematical subtleties in the process that require thoughtful attention.
Beginning gradually with simple examples of low-pass sampling and
progressing to the interesting subject of bandpass sampling, Chapter 2
explains and quantifies the frequency-domain ambiguity (aliasing) asso-
ciated with these important topics. The discussion there highlights the
power and pitfalls of periodic sampling.

Chapter 3 is devoted to one of the foremost topics in digital signal pro-
cessing, the discrete Fourier transform (DFT). Coverage begins with
detailed examples illustrating the important properties of the DFT and
how to interpret DFT spectral results, progresses to the topic of windows
used to reduce DFT leakage, and discusses the processing gain afforded
by the DFT. The chapter concludes with a detailed discussion of the vari-
ous forms of the transform of rectangular functions that the beginner is
likely to encounter in the literature. That last topic is included there to
clarify and illustrate the DFT of both real and complex sinusoids.

Preface

Chapter 4 covers the innovation that made the most profound impact
on the field of digital signal processing, the fast Fourier transform (FFT).
There we show the relationship of the popular radix-2 FFT to the DFT,
quantify the powerful processing advantages gained by using the FFT,
demonstrate why the FFT functions as it does, and present various FFT
implementation structures. Chapter 4 also includes a list of recommenda-
tions to help us when we use the FFT in practice.

Chapter 5 ushers in the subject of digital filtering. Beginning with a
simple low-pass finite impulse response (FIR) filter example, we care-
fully progress through the analysis of that filter’s frequency-domain
magnitude and phase response. Next we learn how window functions
affect and can be used to design FIR filters. The methods for converting
low-pass FIR filter designs to bandpass and highpass digital filters are
presented, and the popular Remez Exchange (Parks McClellan) FIR fil-
ter design technique is introduced and illustrated by example. In that
chapter we acquaint the reader with, and take the mystery out of, the
process called convolution. Proceeding through several simple convolu-
tion examples, we conclude Chapter 5 with a discussion of the powerful
convolution theorem and show why it's so useful as a qualitative tool in
understanding digital signal processing.

Chapter 6 introduces a second class of digital filters, infinite impulse
response (IIR) filters. In discussing several methods for the design of
IIR filters, the reader is introduced to the powerful digital signal pro-
cessing analysis tool called the z-transform. Because the z-transform is
so closely related to the continuous Laplace transform, Chapter 6 starts
by gently guiding the reader from the origin, through the properties,
and on to the utility of the Laplace transform in preparation for learn-
ing the z-transform. We’ll see how IIR filters are designed and imple-
mented, and why their performance is so different from FIR filters. To
indicate under what conditions these filters should be used, the chap-
ter concludes with a qualitative comparison of the key properties of FIR
and IIR filters.

Chapter 7 discusses two important advanced sampling techniques
prominent in digital signal processing, quadrature sampling and digital
resampling. In the chapter we discover why quadrature sampling is so
useful when signal phase must be analyzed and preserved, and how this
special sampling process can circumvent some of the limitations of tradi-
tional periodic sampling techniques. Our introduction to digital resam-
pling shows how we can, and when we should, change the effective
sample rate of discrete data after the data has already been digitized.
We've delayed the discussion of digital resampling to this chapter

Xv

Xvi

Understanding Digital Signal Processing

because some knowledge of low-pass digital filters is necessary to under-
stand how resampling schemes operate.

Chapter 8 covers the important topic of signal averaging. There we
learn how averaging increases the accuracy of signal measurement
schemes by reducing measurement background noise. This accuracy
enhancement is called processing gain, and the chapter shows how to pre-
dict the processing gain associated with averaging signals in both the time
and frequency domains. In addition, the key differences between coherent
and incoherent averaging techniques are explained and demonstrated
with examples. To complete the chapter, the popular scheme known as
exponential averaging is covered in some detail.

Chapter 9 presents an introduction to the various binary number for-
mats that the reader is likely to encounter in modern digital signal pro-
cessing. We establish the precision and dynamic range afforded by these
formats along with the inherent pitfalls associated with their use. Our
exploration of the critical subject of binary data word width (in bits) natu-
rally leads us to a discussion of the numerical resolution limitations of ana-
log to digital (A/D) converters and how to determine the optimum A/D
converter word size for a given application. The problems of data value
overflow roundoff errors are covered along with a statistical introduction
to the two most popular remedies for overflow, truncation and rounding.
We end the chapter by covering the interesting subject of floating-point
binary formats that allow us to overcome most of the limitations induced
by fixed-point binary formats, particularly in reducing the ill effects of data
overflow.

Chapter 10 provides a collection of tricks of the trade that the profes-
sionals often use to make their digital signal processing algorithms more
efficient. Those techniques are compiled into a chapter at the end of the
book for two reasons. First, it seems wise to keep our collection of tricks
in one chapter so that we’ll know where to find them in the future.
Second, many of these schemes require an understanding of the material
from the previous chapters, so the last chapter is an appropriate place to
keep our collection of clever tricks. Exploring these techniques in detail
verifies and reiterates many of the important ideas covered in previous
chapters.

The appendices include a number of topics to help the beginner under-
stand the mathematics of digital signal processing. A comprehensive
description of the arithmetic of complex numbers is covered in Appendix
A, while Appendix B derives the often used, but seldom explained, closed
form of a geometric series. Appendix C strives to clarify the troubling top-
ics of complex signals and negative frequency. The statistical concepts of

Preface

mean, variance, and standard deviation are introduced and illustrated in
Appendix D, and Appendix E provides a discussion of the origin and util-
ity of the logarithmic decibel scale used to improve the magnitude Teso-
lution of spectral representations. In a slightly different vein, Appendix F
provides a glossary of the terminology used in the field of digital filters.

Acknowledgments

How do I sufficiently thank the people who helped me write this book? I
do this by stating that any quality existing herein is due to the follov?/ing
talented people: for their patient efforts in the unpleasant task of review-
ing early versions of the manuscript, I am grateful to Sean McCrory, Paul
Chestnut, Paul Kane, John Winter, Terry Daubek, and Robin Wiprud.
Special thanks go to Nancy Silva for her technical and literary guidanc'e,
and encouragement, without which this book would not have been writ-
ten. For taking time to help me understand digital signal processing, I
thank Frank Festini, Harry Glaze, and Dick Sanborn. I owe you people.

Gratitude goes to the reviewers, under the auspices of Addison-Wesley,
whose suggestions improved much of the material. They are Mark
Sullivan, David Goodman, Satyanarayan Namdhari, James Kresse,
Ryerson Gewalt, David Cullen, Richard Herbert, Maggie Carr, and anony-
mous at Alcatel Bell. Finally, Yacknowledge my good fortune in being able
to work with those talented folks at Addison-Wesley: Rosa Aimée
Gonzalez, Simon Yates, and Tara Herries.

If you're still with me this far into the Preface, I end by saying that I.had
a ball writing this book and hope you get some value out of reading it.

xvi

CHAPTER ONE

Discrete Sequences
and Systems

Digital signal processing has never been more prevalent or easier to per-
form. It wasn’t that long ago when the fast Fourier transform (FFT), a
topic we'll discuss in Chapter 4, was a mysterious mathematical process
used only in industrial research centers and universities. Now, amazingly,
the FFT is readily available to us all. It's even a built-in function provided
by inexpensive spreadsheet software for home computers. The availabil-
ity of more sophisticated commercial signal processing software now
allows us to analyze and develop complicated signal processing applica-
tions rapidly and reliably. We can now perform spectral analysis, design
digital filters, develop voice recognition, data communication, and image
compression processes using software that’s interactive in both the way
algorithms are defined and how the resulting data are graphically dis-
played. Since the mid-1980s the same integrated circuit technology that
led to affordable home computers has produced powerful and inexpen-
sive hardware development systems on which to implement our digital
signal processing designs.” Regardless, though, of the ease with which
these new digital signal processing development systems and software
can be applied, we still need a solid foundation in understanding the
basics of digital signal processing. The purpose of this book is to build
that foundation.

In this chapter we'll set the stage for the topics we'll study throughout the
remainder of this book by defining the terminology used in digital signal

t During a television interview in the early 1990s, a leading computer scientist stated that
had automobile technology made the same strides as the computer industry, we'd all have
a car that would go a half million miles per hour and get a half million miles per gallon. The
cost of that car would be so low that it would be cheaper to throw it away than pay for one
day’s parking in San Francisco.

Discrete Sequences and Systems

processing, illustrating the various ways of graphically representing discrete
signals, establishing the notation used to describe sequences of data values,
presenting the symbols used to depict signal processing operations, and
briefly introducing the concept of a linear discrete system.

1.1 Discrete Sequences and Their Notation

In general, the term signal processing refers to the science of analyzing
time-varying physical processes. As such, signal processing is divided
into two categories, analog signal processing and digital signal process-
ing. The term analog is used to describe a waveform that’s continuous in
time and can take on a continuous range of amplitude values. An exam-
ple of an analog signal is some voltage that can be applied to an oscillo-
scope resulting in a continuous display as a function of time. Analog
signals can also be applied to a conventional spectrum analyzer to deter-
mine their frequency content. The term analog appears to have stemmed
from the analog computers used prior to 1980. These computers solved
linear differential equations by means of connecting physical (electronic)
differentiators and integrators using old-style telephone operator patch
cords. That way, a continuous voltage or current in the actual circuit was
analogous to some variable in a differential equation, such as speed, tem-
perature, air pressure, etc. (Although the flexibility and speed of modern-
day digital computers have since made analog computers obsolete, a
good description of the short-lived utility of analog computers can be
found in reference [1].) Because present-day signal processing of continu-
ous radio-type signals using resistors, capacitors, operational amplifiers,
etc., has nothing to do with analogies, the term analog is actually a mis-
nomer. The more correct term is continuous signal processing for what is
today so commonly called analog signal processing. As such, in this book
we’ll minimize the use of the term analog signals and substitute the phrase
continuous signals whenever appropriate.

The term discrete-time signal is used to describe a signal whose inde-
pendent time variable is quantized so that we know only the value of the
signal at discrete instants in time. Thus a discrete-time signal is not repre-
sented by a continuous waveform but, instead, a sequence of values. In
addition to quantizing time, a discrete-time signal quantizes the signal
amplitude. We can illustrate this concept with an example. Think of a con-
tinuous sinewave with a peak amplitude of 1 at a frequency f, described
by the equation

x(t) = sin(2nf.t) . (1-1)

Discrete Sequences and Their Notation

The frequency f, is measured in hertz (Hz). (In physical systems, we usu-
ally measure frequency in units of hertz. One Hz is a single oscillation, or
cycle, per second. One kilohertz (kHz) is a thousand Hz, and a megahertz
(MHz) is one million Hz." With ¢ in Eq. 1-1 representing time in seconds,
the f,t factor has dimensions of cycles, and the complete 27f t term is an
angle measured in radians.

Plotting Eq. (1-1), we get the venerable continuous sinewave curve
shown in Figure 1-1(a). If our continuous sinewave represents a physical
voltage, we could sample it once every ¢, seconds using an analog-to-digital
converter and represent the sinewave as a sequence of discrete values.
Plotting those individual values as dots would give us the discrete wave-
form in Figure 1-1(b). We say that Figure 1-1(b) is the “discrete-time” ver-
sion of the continuous signal in Figure 1-1(a). The independent variable ¢ in
Eq. (1-1) and Figure 1-1(a) is continuous. The independent index variable n
in Figure 1-1(b) is discrete and can have only integer values. That is, index
n is used to identify the individual elements of the discrete sequence in
Figure 1-1(b).

Do not be tempted to draw lines between the dots in Figure 1-1(b). For
some reason, people (particularly those engineers experienced in working
with continuous signals) want to connect the dots with straight lines, or
the stairstep lines shown in Figure 1-1(c). Don't fall into this innocent-
looking trap. Connecting the dots can mislead the beginner into forgetting
that the x(n) sequence is nothing more than a list of numbers. Remember,
x(n) is a discrete-time sequence of individual values, and each value in
that sequence plots as a single dot. It's not that we're ignorant of what lies
between the dots of x(n); there is nothing between those dots.

We can reinforce this discrete-time sequence concept by listing those
Figure 1-1(b) sampled values as follows:

x(0)=0 (1st sequence value, index 7 = 0)

x(1)=0.31 (2nd sequence value, index n =1)
x(2) =059 (3rd sequence value, index n =2)
x(3)=0.81 (4th sequence value, index n = 3)

and so on, (1-2)

t The dimension for frequency used to be cycles/second; that's why the tuning dials of old
radios indicate frequency as kilocycles/second (keps) or megacycles/ second (Mcps). In 1960
the scientific community adopted hertz as the unit of measure for frequency in honor of the
German physicist, Heinrich Hertz, who first demonstrated radio wave transmission and
reception in 1887.

Discrete Sequences and Systems

A Continous x(f)

l/ .
Continuous time
variable, ¢

Discrete x(n

X() x(7) at time 7tsseconds
| el |
L] L]
»)
i L] i | ! L]
;1\131517(9 I {1 31 33 35 37 39
O w8 et 8 Bt
a 5 7 9 iR o1 21 23 25 27 29 | il . Discrete time
‘ - Bl " index,n
I FER R
n ‘m . ‘a
ags a » -
i
Is
Discrete x(n)
31 33 35 37 39
Discrete time
index, n

Figure 1-1 A time-domain sinewave: (a) continuous waveform representation;
(b) discrete sample representation; (c) discrete samples with
connecting lines.

where n represents the time index integer sequence 0, 1, 2, 3, etc., and ¢ _is
some constant time period. Those sample values can be represented col-
lectively, and concisely, by the discrete-time expression

x(n) = sin(2rf nt) . (1-3)

(Here again, the 2nf,nt, term is an angle measured in radians.) Notice that
the index n in Eq. (1-2) started with a value of 0, instead of 1. There’s noth-
ing sacred about this; the first value of n could just as well have been 1, but
we start the index n at zero out of habit because doing so allows us to

Discrete Sequences and Their Notfation

X(0), (1), x2), x3). ... | Discrete Y0), M1), ©2), ¥3), ...
(@ : System gl
(b) X Discrete)
System

Figure 1-2 With an input applied, a discrete system provides an output: (Q)
the input and output are sequences of individual values: (b) input
and output using the abbreviated notation of x(n) and y(n).

describe the sinewave starting at time zero. The variable x(n) in Eq. (1-3)is
read as “the sequence x of n.” Equations (1-1) and (1-3) describe what are
also referred to as time-domain signals because the independent variables,
the continuous time ¢ in Eq. (1-1), and the discrete-time nf, values used in
Eq. (1-3) are measures of time.

With this notion of a discrete-time signal in mind, let’s say that a dis-
crete system is a collection of hardware components, or software routines,
that operate on a discrete-time signal sequence. For example, a discrete
system could be a process that gives us a discrete output sequence y(0),
¥(1), ¥(2), etc, when a discrete input sequence of x(0), x(1), x(2), etc., is
applied to the system input as shown in Figure 1-2(a). Again, to keep the
notation concise and still keep track of individual elements of the input
and output sequences, an abbreviated notation is used as shown in Figure
1-2(b) where n represents the integer sequence 0, 1, 2, 3, etc. Thus, x(n) and

y(n) are general variables that represent two separate sequences of num-
bers. Figure 1-2(b) allows us to describe a system’s output with a simple
expression such as

y(n) =2x(n) - 1. (1-4)

Illustrating Eq. (1-4), if x(n) is the five-element sequence: x(0)=1,x1)=3,
x(2) = 5, x(3) = 7, and x(4) = 9, then y(n) is the five-element sequence
y(0) =1, y(1) = 5, y(2) = 9, ¥(3) = 13, and y(4) =

The fundamental difference between the way time is represented in
continuous and discrete systems leads to a very important difference in
how we characterize frequency in continuous and discrete systems. To
illustrate, let’s reconsider the continuous sinewave in Figure 1-1(a).
If it represented a voltage at the end of a cable, we could measure its

5

Discrete Sequences and Systems

frequency by applying it to an oscilloscope, a spectrum analyzer, or a fre-
quency counter. We'd have a problem, however, if we were merely given
the list of values from Eq. (1-2) and asked to determine the frequency of
the waveform they represent. We’'d graph those discrete values, and, sure
enough, we’d recognize a single sinewave as in Figure 1-1(b). We can say
that the sinewave repeats every 20 samples, but there’s no way to deter-
mine the exact sinewave frequency from the discrete sequence values
alone. You can probably see the point we're leading to here. If we knew
the time between samples—the sample period t—we’d be able to deter-
mine the absolute frequency of the discrete sinewave. Given that the ¢,
sample period is, say, 0.05 milliseconds/sample, the period of the
sinewave is

20 samples 0.05 milliseconds
period sample

sinewave period = =1 millisecond. (1-5)

Because the frequency of a sinewave is the reciprocal of its period, we now
know that the sinewave’s absolute frequency is 1/(1 ms), or 1 kHz. On the
other hand, if we found that the sample period was, in fact, 2 milliseconds,
the discrete samples in Figure 1-1(b) would represent a sinewave whose
period is 40 milliseconds and whose frequency is 25 Hz. The point here is
that, in discrete systems, absolute frequency determination in Hz is depen-
dent on the sample frequency f, = 1/t_. We'll be reminded of this dependence
throughout the rest of this book.

In digital signal processing, we often find it necessary to characterize
the frequency content of discrete-time domain signals. When we do so,
this frequency representation takes place in what's called the frequency
domain. By way of example, let’s say we have a discrete sinewave
sequence x,(n) with an arbitrary frequency f, Hz as shown on the left
side of Figure 1-3(a). We can also describe x,(n) as shown on the right
side of Figure 1-3(a) by indicating that it has a frequency of 1, measured
in units of f,, and no other frequency content. Although we won't dwell
in it just now, notice that the frequency-domain representations in
Figure 1-3 are themselves discrete.

To illustrate our time- and frequency-domain representations further,
Figure 1-3(b) shows another discrete sinewave x,(1), whose peak ampli-
tude is 0.4, with a frequency of 2f . The discrete sample values of x,(n) are
expressed by the equation

X,(n) = 0.4 - sin(2m2f nt,) . (1-6)

Discrete Sequences and Their Notation

A X,{n) in the time domain
L X4{m) amplitude in the
" -'..'.'- frequency domain
" i [1
05+ * i .
L] : »
LN »] 20 25 0 05
(@) O St .
s 10 15w w Time (n} 0 B — ‘i -
051 . . 0 2f, 3% 4f 5 Frequency
- []
1 LT L
X,(m) amplitude in the i
3 Xo{(n) in the time domain frequency domain “
LT i
» L]
1| .5 e ‘
- |
i 20 ", ® Time () N |
LYy e !
F
0 0 2fﬂ 3’0 4/0 510 requency j
‘ Xsum (M) in the time domain ;
15+ X,um m) amplitude in the
’ (L) frequency domain
] a
14+ a "
L]
L] -
05 Ty l.. » "
© o --4—1—;—4—1—++1—0—|—H—0—?~'..-iﬂ-44+0—44-|-e-+-94-0-—>
5 10 15 LA u Time (n) . \\“ .
5T = ° f 2 af 4f, 5, Frequency
14 . -
' LT
-15 +

Figure 1-3 Time- and frequency-domain graphical representations: (a) sinewave of
frequency f,; (b) reduced amplitude sinewave of frequency 2f,; (C) sum
of the two smewoves

When the two sinewaves, x,(n) and x,(n), are added to produce a new
waveform x_ (n), its time-domain equation is

Xoum(1) = %, (1) + x,(n) = sin(2nf nt,) + 0.4 - sin(2n2f nt) , (1-7)

and its time- and frequency-domain representations are those given in
Figure 1-3(c). We interpret the X, (m) frequency-domain depiction, the
spectrum, in Figure 1-3(c) to indicate that X _(n) has a frequency compo-
nent of f, Hz and a reduced-amplitude frequency component of 2f, Hz.
Notice three things in Figure 1-3. First, time sequences use lowercase
variable names like the “x” in x,(n), and uppercase symbols for frequency-
domain variables such as the “X” in X,(m). The term X,(m) is read as “the
spectral sequence X sub one of m.” Second, because the X, () frequency-
domain representation of the x; () time sequence is itself a sequence (a list

Discrete Sequences and Systems

of numbers), we use the index “m” to keep track of individual elements in
X,(m). We can list frequency-domain sequences just as we did with the
time sequence in Eq. (1-2). For example X_ () is listed as

X m©® =0 (Ist X,,(m) value, index m = 0)

X) =10 (2nd X (m) value, indexm = 1)
X =04 (3rd X, (m)value, index m = 2)
X, m3) =0 (4th X

uml{m) value, index m = 3)

and so on,

where the frequency index m is the integer sequence 0, 1, 2, 3, etc. Third,
because the x,(n) + x,(n) sinewaves have a phase shift of zero degrees rel-
ative to each other, we didn’t really need to bother depicting this phase
relationship in X, _(m) in Figure 1-3(c). In general, however, phase rela-
tionships in frequency-domain sequences are important, and we’ll cover
that subject in Chapters 3 and 5.

A key point to keep in mind here is that we now know three equivalent
ways to describe a discrete-time waveform. Mathematically, we can use a
time-domain equation like Eq. (1-6) for example. We can also represent a
time-domain waveform graphically as we did on the left side of Figure 1-3,
and we can depict its corresponding, discrete, frequency-domain equiva-
lent as that on the right side of Figure 1-3.

As it turns out, the discrete-time domain signals we’re concerned with
are not only quantized in time; their amplitude values are also quantized.
Because we represent all digital quantities with binary numbers, there’s a
limit to the resolution, or granularity, that we have in representing the val-
ues of discrete numbers. Although signal amplitude quantization can be
an important consideration—we cover that particular topic in Chapter 9—
we won't worry about it just now.

1.2 Signal Amplitude, Magnitude, Power

Let’s define two important terms that we'll be using throughout this book:
amplitude and magnitude. It’s not surprising that, to the layman, these
terms are typically used interchangeably. When we check our thesaurus,
we find that they are synonymous.! In engineering, however, they mean

t Of course, layman are “other people.” To the engineer, the brain surgeon is the layman. To
the brain surgeon, the engineer is the layman.

Signal Amplitude, Magnitude, Power

-0.5 +

|

|

1 ...'. l-..l i‘
[W a i n i

s A} | I] i

. ‘n . . |

L ! Y " |
CIRERRERE R EL I 0N] i
0|-+}-H—H—H—|—H—H—f—|-t ‘ - i
5 10 15 20 25 s0 Time (n) 1

1

I

J

Figure 1-4 Magnitude samples, | (M |. of the fime waveform in Figure 1-3(Q).

two different things, and we must keep that difference clear in our dis-
cussions. The amplitude of a variable is the measure of how far, and in
what direction, that variable differs from zero. Thus, signal amplitudes
can be either positive or negative. The time-domain sequences in Figure
1-3 presented the sample value amplitudes of three different waveforms.
Notice how some of the individual discrete amplitude values were posi-
tive and others were negative.

The magnitude of a variable, on the other hand, is the measure of how
far, regardless of direction, its quantity differs from zero. So magnitudes
are always positive values. Figure 1-4 illustrates how the magnitude of
the x,(n) time sequence in Figure 1-3(a) is equal to the amplitude, but with
the sign always being positive for the magnitude. We use the modulus
symbol (| I) to represent the magnitude of x,(n). Occasionally, in the liter-
ature of digital signal processing, we'll find the term magnitude referred to
as the absolute value.

When we examine signals in the frequency domain, we'll often be
interested in the power level of those signals. The power of a signal is pro-
portional to its amplitude (or magnitude) squared. If we assume that the
proportionality constant is one, we can express the power of a sequence
in the time or frequency domains as

xpwr(n) =x(n?= lx(m)1?, (1-8)
or

X (m)=X(m)?=|X(m)2. (1-8)

le’

Very often we’'ll want to know the difference in power levels of two sig-
nals in the frequency domain. Because of the squared nature of power,

9

10

Discrete Sequences and Systems

Xsum{m) amplitude in the Xsum(m) power in the
1 frequency domain 1 - frequency domain
0.5 .. 04 05
| m 016
0 ——t——a—n}— > 0 #—f—tr
0 f, 2f, 3f, 4f, 5f; Frequency 0 f, 2f, 3f, 4f, 5f Frequency

Figure 1-5 Frequency-domain amplitude and frequency-domain power of the

XM fime waveform in Figure 1-3(¢).

two signals with moderately different amplitudes will have a much larger
difference in their relative powers. In Figure 1-3, for example, signal
x,(n)’s amplitude is 2.5 times the amplitude of signal x,(n), but its power
level is 6.25 that of x,(n)’s power level. This is illustrated in Figure 1-5
where both the amplitude and power of X () are shown.

Because of their squared nature, plots of power values often involve
showing both very large and very small values on the same graph. To
make these plots easier to generate and evaluate, practitioners usually
employ the decibel scale as described in Appendix E.

1.3 Signal Processing Operational Symbols

We'll be using block diagrams to graphically depict the way digital signal-
processing operations are implemented. Those block diagrams will com-
prise an assortment of fundamental processing symbols, the most common
of which are illustrated and mathematically defined in Figure 1-6.

Figure 1-6(a) shows the addition, element for element, of two discrete
sequences to provide a new sequence. If our sequence index n begins at 0,
we say that the first output sequence value is equal to the sum of the first
element of the b sequence and the first element of the ¢ sequence, or
a(0) = b(0) + ¢(0). Likewise, the second output sequence value is equal to
the sum of the second element of the b sequence and the second element
of the ¢ sequence, or a(1) = b(1) + ¢(1). Equation (1-7) is an example of
adding two sequences. The subtraction process in Figure 1-6(b) generates
an output sequence that’s the element-for-element difference of the two
input sequences. There are times when we must calculate a sequence
whose elements are the sum of more than two values. This operation,
illustrated in Figure 1-6(c), is called summation and is very common in

Signal Processing Operational Symbols

Adder:
@ Bin) —>?—> aln) a(n) = bin) + o(n)
o(n)
. Subtractor:
b(n) a(n) a(n) = p(n) - o)
(b) -
on)
b{n)
Summation: .
bin+1) Z
0 a(n) a(n)y=) blk) = b(m + b{n+1) + b(n+2) + B{n+3)
] Pre2) — _ <
Bn+3) =
Multiptication:
bin) an) a(n) = b{n)e(n) = b(n)- &(n)
(d) [Sometimes we use a "-"
to signify multiplication.]
on)
Unit Delay: |
bin) [Detay |——> at) |
e) a(n) = Kn-1)
b(n) 2t a(n) |

O ———

Figure 1-6 Terminology and symbols used in digital signal processing block diagrams.

digital signal processing. Notice how the lower and upper limits of the
summation index k in the expression in Figure 1-6(c) tell us exactly
which elements of the b sequence to sum to obtain a given a(n) value.
Because we'll encounter summation operations so often, let’s make sure
we understand their notation. If we repeat the summation equation
from Figure 1-6(c) here we have

n+3

a(n) = Zb(k) . (1-9)
k=n

12

Discrete Sequences and Systems

This means that

when 7 = 0, index k goes from 0 to 3, so a(0) = b(0) + b(1) + b(2) + b(3)
when 1 = 1, index k goes from 1 to 4,s0 a(1) = b(1) + b(2) + b(3) + b(4)
when n = 2, index k goes from 2 t0 5, so a(2) = b(2) + b(3) + b(4) + b(5)
when 7 = 3, index k goes from 3 to 6, s0 a(3) = b(3) + b(4) + b(5) + b(6)

and so on. (1-10)

We'll begin using summation operations in earnest when we discuss dig-
ital filters in Chapter 5.

The multiplication of two sequences is symbolized in Figure 1-6(d).
Multiplication generates an output sequence that’s the element-for-element
product of two input sequences: a(0) = b(0)c(0), a(1) = b(1)c(1), and so on.
The last fundamental operation that we'll be using is called the unit delay in
Figure 1-6(e). While we don’t need to appreciate its importance at this
point, we'll merely state that the unit delay symbol signifies an operation
where the output sequence a(n) is equal to a delayed version of the b(n)
sequence. For example, a(5) = b(4), a(6) = b(5), a(7) = b(6), etc. As we'll see in
Chapter 6, due to the mathematical techniques used to analyze digital fil-
ters, the unit delay is very often depicted using the term 2.

The symbols in Figure 1-6 remind us of two important aspects of digi-
tal signal processing. First, our processing operations are always per-
formed on sequences of individual discrete values, and second, the
elementary operations themselves are very simple. It's interesting that,
regardless of how complicated they appear to be, the vast majority of dig-
ital signal processing algorithms can be performed using combinations of
these simple operations. If we think of a digital signal processing algo-
rithmn as a recipe, then the symbols in Figure 1-6 are the ingredients.

1.4 Introduction to Discrete Linear
Time-Invariant Systems

In keeping with tradition, we'll introduce the subject of linear time-invari-
ant (LTI) systems at this early point in our text. Although an appreciation
for LTI systems is not essential in studying the next three chapters of this
book, when we begin exploring digital filters, we'll build on the strict def-
initions of linearity and time invariance. We need to recognize and under-
stand the notions of linearity and time invariance not just because the vast
majority of discrete systems used in practice are LTI systems, but also

Discrete Linear Systems

because LTI systems are very accommodating when it comes to their
analysis. That's good news for us because we can use straightforward
methods to predict the performance of any digital signal processing
scheme as long as it's linear and time invariant. Because linearity and time
invariance are two important system characteristics having very special
properties, we’ll discuss them now.

1.5 Discrete Linear Systems

The term linear defines a special class of systems where the output is the
superposition, or sum, of the individual outputs had the individual
inputs been applied separately to the system. For example, we can say
that the application of an input x,(#) to a system results in an output y,(n).
We symbolize this situation with the following expression:

xl(n) results in yl(n) (1_11)

Given a different input x,(r1), the system has a y,(n) output as
xy(n) =y (n) (1-12)

For the system to be linear, when its input is the sum x, (1) + x,(1), its out-
put must be the sum of the individual outputs so that

xy(n) + x5 () —2EER sy (n)+ y(n) (1-13)

One way to paraphrase expression (1-13) is to state that a linear system’s
output is the sum of the outputs of its parts. Also, part of this description
of linearity is a proportionality characteristic. This means that if the inputs
are scaled by constant factors ¢, and c, then the output sequence parts are
also scaled by those factors as

¢y, (1) + ¢y, (1) _fesultsin o (m)+ ey, (n) . (1-14)

In the literature, this proportionality attribute of linear systems in
expression (1-14) is sometimes called the homogeneity property. With
these thoughts in mind, then, let’s demonstrate the concept of system
linearity.

13

14

Discrete Sequences and Systermns

1.5.1 Example of a Linear System

To illustrate system linearity, let’s say we have the discrete system shown
in Figure 1-7(a) whose output is defined as

y(n) = :—xi(l) , (1-15)

that is, the output sequence is equal to the negative of the input sequence
with the amplitude reduced by a factor of two. If we apply an x,(n) input
sequence representing a 1-Hz sinewave sampled at a rate of 32 samples

Linear
(a) input x(n) ——»>| Discrete j———= Output y(n) = -x(n)/2
System
yy(n) Y;(m)
05
Iy,
g I' 1
e SR S EREERT AR RIS
CHM Time .2 46 8 10 12 14 F
. Tt !
05 4im
x,(n) ¥,(n)
A " - i Y, (m)
{] n i 05
* -l. o8 o g a%, 3
(©) O mHHIHHIHHNHNHHHIIEE 0 giHHHHE e 0 BarraassaynrTned
T Time T S A w Time 2.4 6 810 12 14 F
05+ "% g . osfat W s ¢
e ia »: ~05 []
-1 . L] L -1
n)
N3G ¥a(m)
05
1
fr, e 103
@ T B g R et ovir
R T 2.4 6 8 10 12 14]
EPL I
5im =
-2

Figure 1-7 Linear system input-to-output relationships: (a) system block diagram
where y(n) = -x(n)/2; (b) system input and output with a 1-Hz sinewave
applied; (¢) with a 3-Hz sinewave applied; (d) with the sum of 1-Hz and
3-Hz sinewaves applied.

i

Discrete Linear Systems

per cycle, we'll have a y,(n) output as shown in the center of Figure 1-7(b).
The frequency-domain spectral amplitude of the y,(n) output is the plot
on the right side of Figure 1-7(b) indicating that the output comprises a
single tone of peak amplitude equal to -0.5 whose frequency is 1 Hz.
Next, applying an x,(n) input sequence representing a 3-Hz sinewave, the
system provides a y,(n) output sequence, as shown in the center of Figure
1-7(c). The spectrum of the y,(n) output, Y,(m), confirming a single 3-Hz
sinewave output is shown on the right side of Figure 1-7(c). Finally—
here’s where the linearity comes in—if we apply an x,(n) input sequence
that's the sum of a 1-Hz sinewave and a 3-Hz sinewave, the y,(n) output
is as shown in the center of Figure 1-7(d). Notice how y,(n) is the sample-
for-sample sum of y,(n) and y,(n). Figure 1-7(d) also shows that the out-
put spectrum Y,(m) is the sum of Y;(m) and Y,(m). That’s linearity.

1.5.2 Example of a Nonlinear System

It's easy to demonstrate how a nonlinear system yields an output that is
not equal to the sum of y,(n) and y,(n) when its input is x,(n) + x,(n). A
simple example of a nonlinear discrete system is that in Figure 1-8(a)
where the output is the square of the input described by

y(n) = [x(m)} . (1-16)

We'll use a well-known trigonometric identity and a little algebra to pre-
dict the output of this nonlinear system when the input comprises simple
sinewaves. Following the form of Eq. (1-3), let’s describe a sinusoidal
sequence, whose frequency f, = 1 Hz, by

x,(n) = sin2nf nt) = sinr - 1 - nt) . (1-17)
Equation (1-17) describes the x, (1) sequence on the left side of Figure 1-8(b).

Given this x,(n) input sequence, the y,(n) output of the nonlinear system is
the square of a 1-Hz sinewave, or

yy(n) =[x,(mMP=sin@r - 1-nt)sin@r-1-nt). (1-18)

We can simplify our expression for y,(n) in Eq. (1-18) by using the follow-
ing trigonometric identity:

cos(a—f) cos(a+)

- - (1-19)

sin(¢) - sin(f) =

15

16

Discrete Sequences and Systems

Nonlinear 2
(@ Input () ——=| Discrete {—— = Output y(n) = [x{r)]
System

Yi(m)
1 zero Hz component

05 e,
0 %.!.rq.q-g--l.q-q--.l.l-l.q-'q-b

il ared
-o.sI w48 810 1214 0

4 4 8 10 12 14 Frea
. (H2)

im @
TRSTHHE S B HHH
R

Al Ll
8 10 12 14 Freq
{Hz)

4o

(d) LHis Time .

L] H H
- : » 05 i !
i s e ol ‘-ll .- LA
2 MH-HHYS HHH S-SR H

Figure 1-8 Nonlinear system input-to-output relationships: (@) system block diagram
where y(n) = ()2 (b) system input and output with a 1-Hz sinewave
applied; (c) with a 3-Hz sinewave appiied; (d) with the sum of 1-Hz and 3-Hz
sinewaves applied.

Using Eq. (1-19), we can express yy(n) as

cos(2m-1-nt;~2n-1-nt,) cos(2m-1-nt; +2n-1-nt,)
2 2

yi(m)=

cos(0) cos(4m-1-nt) 1 cos(2m-2-nt,)
- 2(- > 2 T (1-20)
which is shown as the all positive sequence in the center of Figure 1-8(b).
Because Eq. (1-19) results in a frequency sum (o + B) and frequency dif-
ference (o - B) effect when multiplying two sinusoids, the y,(n) output

Discrete Linear Systems

sequence will be a cosine wave of 2 Hz and a peak amplitude of -0.5,
added to a constant value of 1/2. The constant value of 1/2 in Eq. (1-20)
is interpreted as a zero Hz frequency component, as shown in the Y,(m)
spectrum in Figure 1-8(b). We could go through the same algebraic exer-
cise to determine that, when a 3-Hz sinewave x,(n) sequence is applied
to this nonlinear system, the output y,(n) would contain a zero Hz com-
ponent and a 6 Hz component, as shown in Figure 1-8(c).

System nonlinearity is evident if we apply an x,(n) sequence compris-
ing the sum of a 1-Hz and a 3-Hz sinewave as shown in Figure 1-8(d). We
can predict the frequency content of the y,(n) output sequence by using
the algebraic relationship

(a+b)? = a2+2ab+b? , (1-21)

where 2 and b represent the 1-Hz and 3-Hz sinewaves, respectively. From
Eq. (1-19), the 4? term in Eq. (1-21) generates the zero-Hz and 2-Hz output
sinusoids in Figure 1-8(b). Likewise, the b? term produces in y,() another
zero-Hz and the 6-Hz sinusoid in Figure 1-8(c). However, the 2ab term
yields additional 2-Hz and 4-Hz sinusoids in y,(n). We can show this alge-
braically by using Eq. (1-19) and expressing the 2ab term in Eq. (1-21) as

2ab=2-sin(2n-1-nt,) - sin(2n - 3-nt,)

_2cos(2n-1.nt, —2n-3-nt;) 2cos(2n-1-nt, +2n-3-ni,)
2 2

= cos(2n- 2 nt,)—cos(2m-4-nt,) ! (1-22)

Equation (1-22) tells us that two additional sinusoidal components will be
present in y,(n) because of the system’s nonlinearity, a 2-Hz cosine wave
whose amplitude is +1 and a 4-Hz cosine wave having an amplitude of
~1. These spectral components are illustrated in Y,(m) on the right side of
Figure 1-8(d).

Notice that, when the sum of the two sinewaves is applied to the non-
linear system, the output contained sinusoids, Eq. (1-22), that were not
present in either of the outputs when the individual sinewaves alone were
applied. Those extra sinusoids were generated by an interaction of the

* The first term in Eq. (1-22) is cos(2n - nf,—6m - nt,)=cos(~4n - nt) = cos(-2n - 2 - nt,). However,
because the cosine function is even, cos(-a) = cos(c), we can express that first term as
cos2m-2-nt).

17

18

Discrete Sequences and Systems

two input sinusoids due to the squaring operation. That's nonlinearity;
expression (1-13) was not satisfied. (Electrical engineers recognize this
effect of internally generated sinusoids as intermodulation distortion.)
Although nonlinear systems are usually difficult to analyze, they are occa-
sionally used in practice. References [2], [3], and [4], for example, describe
their application in nonlinear digital filters. Again, expressions (1-13) and
(1-14) state that a linear system’s output resulting from a sum of individ-
ual inputs, is the superposition (sum) of the individual outputs. They also
stipulate that the output sequence y,(n) depends only on x,(1) combined
with the system characteristics, and not on the other input x,(n), i.e,
there’s no interaction between inputs x,(1) and x,(n) at the output of a lin-
ear system.

1.6 Time-Invariant Systems

A time-invariant system is one where a time delay (or shift) in the input
sequence causes a equivalent time delay in the system'’s output sequence.
Keeping in mind that 7 is just an indexing variable we use to keep track
of our input and output samples, let’s say a system provides an output
y(n) given an input of x(n), or

x(n) —ZEEI i) (1-23)

For a system to be time invariant, with a shifted version of the original
x(n) input applied, x'(n), the following applies:

X' (n)=x(n+k) —=250 5 v (m)=y(n+k), (1-24)

where k is some integer representing k sample period time delays. For a
system to be time invariant, expression (1-24) must hold true for any inte-
ger value of k and any input sequence.

1.6.1 Example of a Time-Invariant System

Let’s look at a simple example of time invariance illustrated in Figure 1-9.
Assume that our initial x(n) input is a unity-amplitude 1-Hz sinewave
sequence with a y(n) output, as shown in Figure 1-9(b). Consider a differ-
ent input sequence x'(1), where

x'(n) = x(n+4) . (1-25)

Time-Invariant Systems

Time-Invariant
(a) Input x(n) ————m=] Discrete = |——® Output y(n) = —x(n)/2
System

ammey
AN W
-.|
e’ g
12 16 18 21 24 27 "W Time

e
RRERRT
05 05 Pengen®”

-1

-1 4

Figure 1-9 Time-invariant system input-to-output relationships: () system block
diagram where y(n) = -x(n)/2; (b) system input and output with a 1-Hz
sinewave applied; (¢) system input and output when a 1-Hz sinewave,
delayed by four samples, is applied. When x'(n) = x(n+4), then,

y'(n) = y(n+4).

Equation (1-25) tells us that the input sequence x'(n) is equal to sequence
x(n) shifted four samples to the left, that is, x'(0) = x(4), x'(1) = x(5),
¥'(2) = x(6), and so on, as shown on the left of Figure 1-9(c). The discrete
system is time invariant because the y'(n) output sequence is equal to the
y(n) sequence shifted to the left by four samples, or y'(n) = y(n+4). We
can see that '(0) = y(4), y'1) = ¥(5), ¥'(2) = y(6), and so on, as shown in
Figure 1-9(c). For time-invariant systems, the y time shift is equal to the
x time shift.

Some authors succumb to the urge to define a time-invariant system as
one whose parameters do not change with time. That definition is incom-
plete and can get us in trouble if we're not careful. We'll just stick with the
formal definition that a time-invariant system is one where a time shift in
an input sequence results in an equal time shift in the output sequence. By
the way, time-invariant systems in the literature are often called shift-
invariant systems.

t An example of a discrete process that's not time-invariant is the downsampling, or deci-
mation, process described in Section 7.3.

1

20

Discrete Sequences and Systems

P T T T ———— e —]
e
Input x(n) LTI fn) LTI Output y(n)
@ -1 System #1 1 System #2 >
Input x(n) LTI g(n) LTI Output y(n)
(b) 1 System #2 1 System #1 >

Figure 1-10 Linear time-invariant (LTI) systems in series: (@) block diagram of two LTl
systems; (b) swapping the order of the two systems does not change
the resultant output y(n).

1.7 The Commutative Property of Linear Time-
Invariant Systems

Although we don't substantiate this fact until we reach Section 6.8, it's not
too early to realize that LTI systems have a useful commutative property by
which their sequential order can be rearranged with no change in their final
output. This situation is shown in Figure 1-10 where two different LTI sys-
tems are configured in series. Swapping the order of two cascaded systems
does not alter the final output. Although the intermediate data sequences
fln) and g(n) will usually not be equal, the two pairs of LTI systems will have
identical y(n) output sequences. This commutative characteristic comes in
handy for designers of digital filters, as we'll see in Chapters 5 and 6.

1.8 Andalyzing Linear Time-Invariant Systems

As previously stated, LTI systems can be analyzed to predict their perfor-
mance. Specifically, if we know the unit impulse response of an LTI system,
we can calculate everything there is to know about the system; that is, the
system’s unit impulse response completely characterizes the system. By
unit impulse response, we mean the system’s time-domain output
sequence when the input is a single unity-valued sample (unit impulse)
preceded and followed by zero-valued samples as shown in Figure 1-11(b).

Knowing the (unit) impulse response of an LTI system, we can deter-
mine the system’s output sequence for any input sequence because the
output is equal to the convolution of the input sequence and the system's
impulse response. Moreover, given an LTI system’s time-domain impulse

References

Linear
(a) Input x(n) ——— Tlm[)eig:/;relant — Qutput y(n)
System
x(n) impulse input * ¥n) impulse response
1 B a
: \ unity-valued sample s
(b) i o
i ; L) .
i : Py aly
ONNS_ NSNS ESEEESUSENBENE o} - Hhe 2228,
T T /R o o e [T R g
| I wi®
2

Figure 1-11 LTI system unit impulse response sequences: (a) system block diagram:;
(b) impulse Input sequence x(n) and impulse response output
sequence y(n).

response, we can find the system’s frequency response by taking the Fourier
transform in the form of a discrete Fourier transform of that impulse
response[5].

Don’t be alarmed if you're not exactly sure what is meant by convolu-
tion, frequency response, or the discrete Fourier transform. We'll intro-
duce these subjects and define them slowly and carefully as we need them
in later chapters. The point to keep in mind here is that LTI systems can
be designed and analyzed using a number of straightforward and power-
ful analysis techniques. These techniques will become tools that we’ll add
to our signal processing toolboxes as we journey through the subject of
digital signal processing.

References

[1] Karplus, W.], and Soroka, W. W. Analog Methods, Second Edition,
McGraw-Hill, New York, 1959, p. 117.

[2] Mikami, N., Kobayashi, M., and Yokoyama, Y. “A New DSP-Oriented
Algorithm for Calculation of the Square Root Using a Nonlinear Digital
Filter,” IEEE Trans. on Signal Processing, Vol. 40, No. 7, July 1992.

[3] Heinen, P, and Neuvo, Y. “FIR-Median Hybrid Filters,” IEEE Trans. on Acoust.
Speech, and Signal Processing, Vol. ASSP-35, No. 6, June 1987.

[4] Oppenheim, A., Schafer, R., and Stockham, T. “Nonlinear Filtering of
Multiplied and Convolved Signals,” Proc. IEEE, Vol. 56, August 1968.

[5] Pickerd, John. “Impulse-Response Testing Lets a Single Test Do the Work of
Thousands,” EDN, April 27, 1995.

2

CHAPTER TWO .

Periodic Sampling

Periodic sampling, the process of representing a continuous signal with a
sequence of discrete data values, pervades the field of digital signal pro-
cessing. In practice, sampling is performed by applying a continuous sig-
nal to an analog-to-digital (A/D) converter whose output is a series of
digital values. Because sampling theory plays an important role in deter-
mining the accuracy and feasibility of any digital signal processing
scheme, we need a solid appreciation for the often misunderstood effects
of periodic sampling. With regard to sampling, the primary concern is just
how fast must a given continuous signal be sampled in order to preserve
its information content. We can sample a continuous signal at any sample
rate we wish, and we'll get a series of discrete values—but the question is
how well do these values represent the original signal? Let’s learn the
answer to that question and, in doing so, explore the various sampling
techniques used in digital signal processing.

2.1 Aliasing: Signal Ambiguity in the
Frequency Domain

There is a frequency-domain ambiguity associated with discrete-time sig-
nal samples that does not exist in the continuous signal world, and we can
appreciate the effects of this uncertainty by understanding the sampled
nature of discrete data. By way of example, suppose you were given the
following sequence of values,

x(0) =0

x(1) = 0.866
x(2) = 0.866
x(3)=0

x(4) = -0.866
x(5) = -0.866
x6)=0,

23

24

Periodic Sampling
A
0.866 L .
! i
|
@ o ;] . \ i —
] : Time
-0.866 . i

(b) —u \

Figure 2-1 Frequency ambiguity: (a) discrete-time sequence of values;
(b) two different sinewaves that pass through the points of the
discrete sequence.

and were told that they represent instantaneous values of a time-domain
sinewave taken at periodic intervals. Next, you were asked to draw that
sinewave. You'd start by plotting the sequence of values shown by the
dots in Figure 2-1(a). Next, you'd be likely to draw the sinewave, illus-
trated by the solid line in Figure 2-1(b), that passes through the points rep-
resenting the original sequence.

Another person, however, might draw the sinewave shown by the
shaded line in Figure 2-1(b). We see that the original sequence of values
could, with equal validity, represent sampled values of both sinewaves.
The key issue is that, if the data sequence represented periodic samples of
a sinewave, we cannot unambiguously determine the frequency of the
sinewave from those sample values alone.

Reviewing the mathematical origin of this frequency ambiguity enables
us not only to deal with it, but to use it to our advantage. Let’s derive an
expression for this frequency-domain ambiguity and, then, look at a few
specific examples. Consider the continuous time-domain sinusoidal signal
defined as

Aliasing: Signal Ambiguity in the Frequency Domain

x(t) = sin(2nf,f) . (2-1)

This x(¢) signal is a garden variety sinewave whose frequency is f, Hz.
Now let’s sample x(t) at a rate of f, samples/s, i.e., at regular periods of £,
seconds where ¢, = 1/f,. If we start sampling at time ¢ = 0, we will obtain
samples at times 0t,, 1t,, 2t, and so on. So, from Eq. (2-1), the first n suc-
cessive samples have the values

Oth sample: x(0) = sin(2rf 0t,)
1st sample: x(1) = sin(2nf,1£)
2nd sample: x(2) = sin(2nf 2t)
nth sample: x(n) = sin2nf nt) . (2-2)

Equation (2-2) defines the value of the nth sample of our x(1) sequence
to be equal to the original sinewave at the time instant nf,. Because two
values of a sinewave are identical if they’re separated by an integer mul-
tiple of 2r radians, i.e., sin(g) = sin(g+27tm) where m is any integer, we can
modify Eq. (2-2) as

x(n) = sin(2nf,nt,) = sin(2nf,nt, + 2nm) = sin(2n(f, + ni’;—)nts) . (2-3)

If we let m be an integer multiple of n, m = kn, we can replace the m/n ratio
in Eq. (2-3) with k so that

x(n) = sin(2xr(f, + ?k—)nts) . (2-4)

£
Because f, = 1/t,, we can equate the x(n) sequences in Egs. (2-2) and (2-4) as
x(n) = sin@nfnt) = sin2n(f +kfInt) . (2-5)

The f, and (f,+kf,) factors in Eq. (2-5) are therefore equal. The implication
of Eq. (2-5) is critical. It means that an x(n) sequence of digital sample
values, representing a sinewave of f, Hz, also exactly represents
sinewaves at other frequencies, namely, f, + kf,. This is one of the most
important relationships in the field of digital signal processing. It's the

25

26

Periodic Sampling

thread with which all sampling schemes are woven. In words, Eq. (2-5)
states that

‘When sampling at a rate of f, samples/s, if k is any positive or neg-
ative integer, we cannot distinguish between the sampled values of
a sinewave of f, Hz and a sinewave of (f, +kf)) Hz.

It's true. No sequence of values stored in a computer, for example, can
unambiguously represent one and only one sinusoid without additional
information. This fact applies equally to A/D-converter output samples
as well as signal samples generated by computer software routines. The
sampled nature of any sequence of discrete values makes that sequence
also represent an infinite number of different sinusoids.

Equation (2-5) influences all digital signal processing schemes. It’s the
reason that, although we’ve only shown it for sinewaves, we'll see in
Chapter 3 that the spectrum of any discrete series of sampled values con-
tains periodic replications of the original continuous spectrum. The period
between these replicated spectra in the frequency domain will always be
f, and the spectral replications repeat all the way from DC to daylight in
both directions of the frequency spectrum. That's because k in Eq. (2-5) can
be any positive or negative integer. (In Chapters 5 and 6, we’ll learn that
Eq. (2-5) is the reason that all digital filter frequency responses are period-
ic in the frequency domain and is crucial to analyzing and designing a
popular type of digital filter known as the infinite impulse response filter.)

To illustrate the effects of Eq. (2-5), let’s build on Figure 2-1 and con-
sider the sampling of a 7-kHz sinewave at a sample rate of 6 kHz. A new
sample is determined every 1/6000 seconds, or once every 167 microsec-
onds, and their values are shown as the dots in Figure 2-2(a).

Notice that the sample values would not change at all if, instead, we
were sampling a 1-kHz sinewave. In this example f, = 7 kHz, f, = 6 kHz,
and k = -1 in Eq. (2-5), such that f +kf, = [7+(-1-6)] = 1 kHz. Our problem
is that no processing scheme can determine if the sequence of sampled
values, whose amplitudes are represented by the dots, came from a 7-kHz
or a 1-kHz sinusoid. If these amplitude values are applied to a digital
process that detects energy at 1 kHz, the detector output would indicate
energy at 1 kHz. But we know that there is no 1-kHz tone there—our
input is a spectrally pure 7-kHz tone. Equation (2-5) is causing a sinusoid,
whose name is 7 kHz, to go by the alias of 1 kHz. Asking someone to
determine which sinewave frequency accounts for the sample values in
Figure 2-2(a) is like asking them “When I add two numbers I get a sum of
four. What are the two numbers?” The answer is that there are an infinite
number of number pairs that can add up to four.

Aliasing: Signal Ambiguity in the Frequency Domain

7kHz . 1kHz

VAP

VUV INAT

-2 kHz
4 kHz

RAGANAWAN
AN

| Spectral band
J of interest

//\
" A N

T T :
Freq
-3 -2 0o 1 3 4 6 7
-£/2) (£/2) (£,) (kHz)

(@

Figure 2-2 Frequency ambiguity effects of Eq. (2-5): (a) sampling a 7-kHz sinewave
at a sample rate of é kHz; () sampling a 4-kHz sinewave at a sample
rate of 6 kHz; (c) spectral relationships showing aliasing of the 7- and
4-kHz sinewaves.

Figure 2-2(b) shows another example of frequency ambiguity, that we'll
call aliasing, where a 4-kHz sinewave could be mistaken for a ~2-kHz
sinewave. In Figure 2-2(b), f, = 4 kHz, f, = 6 kHz, and k = -1 in Eq. (2-5),
so that f,+kf, = [4+(-1 - 6)] = -2 kHz. Again, if we examine a sequence of
numbers representing the dots in Figure 2-2(b), we could not determine if
the sampled sinewave was a 4-kHz tone or a —2-kHz tone. (Although the

2;

28

Periodic Sampling

concept of negative frequencies might seem a bit strange, it provides a
beautifully consistent methodology for predicting the spectral effects of
sampling. Appendix C discusses negative frequencies and how they
relate to real and complex signals.)

Now, if we restrict our spectral band of interest to the frequency range
of 1f_/2 Hz, the previous two examples take on a special significance. The
frequency f,/2 is an important quantity in sampling theory and is referred
to by different names in the literature, such as critical Nyquist, half
Nyquist, and folding frequency. A graphical depiction of our two frequen-
cy aliasing examples is provided in Figure 2-2(c). We're interested in signal
components that are aliased into the frequency band between -f,/2 and
+f,/2. Notice in Figure 2-2(c) that, within the spectral band of intesrest 3
kHz, because f, = 6 kHz), there is energy at -2 kHz and +1 kHz, aliased
from 4 kHz and 7 kHz, respectively. Note also that the vertical positions of
the dots in Figure 2-2(c) have no amplitude significance but that their hor-
izontal positions indicate which frequencies are related through aliasing.

A general illustration of aliasing is provided in the shark’s tooth pattern
in Figure 2-3(a). Note how the peaks of the pattern are located at integer
multiples of f, Hz. The pattern shows how signals residing at the inter-
section of a horizontal line and a sloped line will be aliased to all of the
intersections of that horizontal line and all other lines with like slopes. For
example, the pattern in Figure 2-3(b) shows that our sampling of a 7-kHz

Band of . | ; !
- erest —><——- Replica —>t<— Replica —>€— Replica —»

(@ N\ /N N AN
\// \\// .\\.// .\\.// '\/>

Y 0 1,2 A 2f, a1, Freq

;=6 kHz

N\

AN
1t 3 67

-3 Y 12 13 18 19 Freq
(kHz)

Figure 2-3 Shark’s tooth pattern: (a) aliasing at multiples of the sampling

frequency:; (b) dliasing of the 7-kHz sinewave to 1 kHz, 13 kHz,
and 19 kHz.

Sampling Low-Pass Signals

sinewave at a sample rate of 6 kHz will provide a discrete sequence of
numbers whose spectrum ambiguously represents tones at 1 kHz, 7 kHz,
13 kHz, 19 kHz, etc. Let’s pause for a moment and let these very impor-
tant concepts soak in a bit. Again, discrete sequence representations of a
continuous signal have unavoidable ambiguities in their frequency
domains. These ambiguities must be taken into account in all practical
digital signal processing algorithms.

OK, let's review the effects of sampling signals that are more interest-
ing than just simple sinusoids.

2.2 Sampling Low-Pass Signals

Consider sampling a continuous real signal whose spectrum is shown in
Figure 2-4(a). Notice that the spectrum is symmetrical about zero Hz,
and the spectral amplitude is zero above +B Hz and below -B Hz, i.e., the
signal is band-limited. (From a practical standpoint, the term band-limited
signal merely implies that any signal energy outside the range of +B Hz
is below the sensitivity of our system.) Given that the signal is sampled
at a rate of f, samples/s, we can see the spectral replication effects of sam-
pling in Figure 2-4(b), showing the original spectrum in addition to an
infinite number of replications, whose period of replication is f, Hz.
(Although we stated in Section 1.1 that frequency-domain representa-
tions of discrete-time sequences are themselves discrete, the replicated
spectra in Figure 2-4(b) are shown as continuous lines, instead of discrete
dots, merely to keep the figure from looking too cluttered. We'll cover the
full implications of discrete frequency spectra in Chapter 3.)

Let’s step back a moment and understand Figure 2-4 for all it’s worth.
Figure 2-4(a) is the spectrum of a continuous signal, a signal that can only
exist in one of two forms. Either it's a continuous signal that can be sam-
pled, through A/D conversion, or it is merely an abstract concept such as
a mathematical expression for a signal. It cannot be represented in a digi-
tal machine in its current band-limited form. Once the signal is represent-
ed by a sequence of discrete sample values, its spectrum takes the repli-
cated form of Figure 2-4(b).

The replicated spectra are not just figments of the mathematics; they
exist and have a profound effect on subsequent digital signal processing.!
The replications may appear harmless, and it's natural to ask, “Why care
about spectral replications? We're only interested in the frequency band

+ Toward the end of Section 5.9, as an example of using the convolution theorem, another
derivation of periodic sampling’s replicated spectrums will be presented.

29

30

Periodic Sampling

4 Continuous spectrum

(a)

-8 0 B

| Discrete spectrum

ANAARA

-2f ~f,

s s

T
~f2 0 fi2 £ of, Freq

Aliasing

Aliasing

%, *

() \>< < N

- N\ //\\ A

| (N LAY O
-2f - o o y f iy
: fs / 12 \ /fs/z ’\ 158 2 Freq

-B
-82 B2 B

Figure 2-4 Specfro] replications: (0) original continuous signal spectrum; (o) spectral
repllcqhqns of the sampled signal when f,/2 > B: (c) frequency overlap
and dfiasing when the sampling rate Is too low because f/2<B.

within #f /2.” Well, if we perform a frequency translation operation or
induce a change in sampling rate through decimation or interpolation,
the spectral replications will shift up or down right in the middle of the
frequency range of interest xf,/2 and could cause problems[1]. Let’s see
how we can control the locations of those spectral replications.

In practical A/D conversion schemes, f, is always greater than 2B to
separate spectral replications at the folding frequencies of f,/2. This very
important relationship of f, > 2B is known as the Nyquist criterion. To
illustrate why the term folding frequency is used, let's lower our sam-
pling frequency to f, = 1.5B Hz. The spectral result of this undersampling
is illustrated in Figure 2-4(c). The spectral replications are now overlap-
ping the original baseband spectrum centered about zero Hz. Limiting
our attention to the band 1f, /2 Hz, we see two very interesting effects.
First, the lower edge and upper edge of the spectral replications centered

Sampling Low-Pass Signals

at +f, and -, now lie in our band of interest. This situation is equivalent
to the original spectrum folding to the left at +f,/2 and folding to the
right at —f,/2. Portions of the spectral replications now combine with the
original spectrum, and the result is aliasing errors. The discrete sampled
values associated with the spectrum of Figure 2-4(c) no longer truly rep-
resent the original input signal. The spectral information in the bands of
-B to -B/2 and B/2 to B Hz has been corrupted. We show the amplitude
of the aliased regions in Figure 2-4(c) as dashed lines because we don't
really know what the amplitudes will be if aliasing occurs.

The second effect illustrated by Figure 2-4(c) is that the entire spec-
tral content of the original continuous signal is now residing in the
band of interest between —f,/2 and +f,/2. This key property was true in
Figure 2-4(b) and will always be true, regardless of the original signal
or the sample rate. This effect is particularly important when we're dig-
itizing (A/D converting) continuous signals. It warns us that any sig-
nal energy located above +B Hz and below -B Hz in the original con-
tinuous spectrum of Figure 2-4(a) will always end up in the band of
interest after sampling, regardless of the sample rate. For this reason,
continuous (analog) low-pass filters are necessary in practice.

We illustrate this notion by showing a continuous signal of bandwidth
B accompanied by noise energy in Figure 2-5(a). Sampling this composite
continuous signal at a rate that's greater than 2B prevents replications of
the signal of interest from overlapping each other, but all of the noise
energy still ends up in the range between -f,/2 and +f,/2 of our discrete
spectrum shown in Figure 2-5(b). This problem is solved in practice by

Noise Signal of Noise
v interest 4
@ ./]/\ /T\ /\[\ -
—B ¥ 8 Freg
, 1
® / .
Freq
|

Figure 2-5 Spectral replications: (a) original continuous signal plus noise
spectrum; (b) discrete spectrum with nolse contaminafing the
signal of interest.

31

32

Periodlic Sampling
Noise , Noise
- 1 D . — 1
B 0 B Freq -fg —f2 0 A 2f, Freq
Original \ Filtered Discrete
continuous Analog Low-Pass 1 continuous signal AD samples
signal =i Filter (cutoff Converter "
frequency = B Hz) /
-8 0 B Freq

Figure 2-6 Low-pass analog fittering prior to sampling at a rate of £, Hz.

using an analog low-pass anti-aligsing filter prior to A/D conversion to
attenuate any unwanted signal energy above +B and below ~B Hz as
shown in Figure 2-6. An example low-pass filter response shape is shown
as the dotted line superimposed on the original continuous signal spec-
trum in Figure 2-6. Notice how the output spectrum of the low-pass filter
has been band-limited, and spectral aliasing is avoided at the output of the
A/D converter.

This completes the discussion of simple low-pass sampling. Now let’s go
on to a more advanced sampling topic that’s proven so useful in practice.

2.3 Sampling Bandpass Signals

Although satisfying the majority of sampling requirements, the sampling
of low-pass signals, as in Figure 2-6, is not the only sampling scheme used
in practice. We can use a technique known as bandpass sampling to sample
a continuous bandpass signal that is centered about some frequency other
than zero Hz. When a continuous input signal’s bandwidth and center
frequency permit us to do so, bandpass sampling not only reduces the
speed requirement of A/D converters below that necessary with tradi-
tional low-pass sampling; it also reduces the amount of digital memory
necessary to capture a given time interval of a continuous signal.

By way of example, consider sampling the band-limited signal shown
in Figure 2-7(a) centered at f, = 20 MHz, with a bandwidth B = 5 MHz. We
use the term bandpass sampling for the process of sampling continuous
signals whose center frequencies have been translated up from zero Hz.
What we're calling bandpass sampling goes by various other names in the

Sampling Bandpass Signals

B=
1 Bandpass signal >E 5MHZ ¢

spectrum
N (continuous) M
(a) ‘:»\ 4 i

~fe 0 = Freq
20 MHz

Bandpass signal
spectrum (discrete)

(b)

7 0%
< f ——>———,

2.5 MHz Freq

Figure 2-7 Bandpass signal sampling: (a) original continuous signal
spectrum; (k) sampled signal spectrum replications when
sample rate is 17.5 MHz.

literature, such as IF sampling, harmonic sampling[2], sub-Nyquist sam-
pling, and undersampling[3]. In bandpass sampling, we’re more con-
cerned with a signal’s bandwidth than its highest frequency component.
Note that the negative frequency portion of the signal, centered at -f, is the
mirror image of the positive frequency portion—as it must be for real sig-
nals. Our bandpass signal’s highest frequency component is 22.5 MHz.
Conforming to the Nyquist criterion (sampling at twice the highest fre-
quency content of the signal) implies that the sampling frequency must be
a minimum of 45 MHz. Consider the effect if the sample rate is 17.5 MHz
shown in Figure 2-7(b). Note that the original spectral components remain
located at f,, and spectral replications are located exactly at baseband, i.e.,
butting up against each other at zero Hz. Figure 2-7(b) shows that sam-
pling at 45 MHz was unnecessary to avoid aliasing—instead we've used
the spectral replicating effects of Eq. (2-5) to our advantage.

Bandpass sampling performs digitization and frequency translation in
a single process, often called sampling translation. The processes of sam-
pling and frequency translation are intimately bound together in the world
of digital signal processing, and every sampling operation inherently
results in spectral replications. The inquisitive reader may ask, “Can we
sample at some still lower rate and avoid aliasing?” The answer is yes, but,
to find out how, we have to grind through the derivation of an important
bandpass sampling relationship. Our reward, however, will be worth the
trouble because here’s where bandpass sampling really gets interesting.

33

Periodic Sampling

i 2f,-B Bl
fs- B2 g |
o L1 M e ’\4 M Y bl
-4y 4 2y 0 2ty fe 4 Freq

carrier
fraquency

2,-B

. thﬂhmhmmgwammw

o fﬁﬁ“ﬁm/ﬁlﬂ\ﬂ\ /‘wm -

Figure 2-8 Bandpass sampling frequency limits: (a) sample rate £, = (2f_ - B)/6:
(b) sample rate Is less than £, (c) minimum sample rate f. < .

Let’s assume we have a continuous input bandpass signal of band-
width B. Its carrier frequency is f, Hz, i.e., the bandpass signal is centered at
f. Hz, and its sampled value spectrum is that shown in Figure 2-8(a). We
can sample that continuous signal at a rate, say f, Hz, so the spectral repli-
cations of the positive and negative bands, P and Q, just butt up against
each other exactly at zero Hz. This situation, depicted in Figure 2-8(a), is
reminiscent of Figure 2-7(b). With an arbitrary number of replications, say
m, in the range of 2f, - B, we see that

mf, =2f, -B or fs=-2fCT—B . (2-6)

In Figure 2-8(a), m = 6 for illustrative purposes only. Of course m can be
any positive integer so long as f, is never less than 2B. If the sample rate
f, is increased, the original spectra (bold) do not shift, but all the replica-
tions will shift. At zero Hz, the P band will shift to the right, and the Q
band will shift to the left. These replications will overlap and aliasing
occurs. Thus, from Eq. (2-6), for an arbitrary m, there is a frequency that
the sample rate must not exceed, or

fsvssz_B or zfc_BZfs.. (2-7)

m m

Sampiling Bandpass Signals

If we reduce the sample rate below the £, value shown in Figure 2-8(a), the
spacing between replications will decrease in the direction of the arrows
in Figure 2-8(b). Again, the original spectra do not shift when the sample
rate is changed. At some new sample rate f,,, where f,. < f,, the replication
P will just butt up against the positive original spectrum centered at f, as
shown in Figure 2-8(c). In this condition, we know that

2f.+B

(m+1f.=2f.+B or f.= il

(2-8)

Should f,. be decreased in value, P' will shift further down in frequency
and start to overlap with the positive original spectrum at f, and aliasing
occurs. Therefore, from Eq. (2-8) and for m+1, there is a frequency that the
sample rate must always exceed, or

2f.+B
m+1

fo2 29)

We can now combine Egs. (2-7) and (2-9) to say that f, may be chosen any-
where in the range between f,. and £, to avoid aliasing, or

2f.+B
m+1

2f. - B X
2> : (2-10)

where m is an arbitrary, positive integer ensuring that f, > 2B. (For this
type of periodic sampling of real signals, known as real or first-order sam-
pling, the Nyquist criterion f, > 2B must still be satisfied.)

To appreciate the important relationships in Eq. (2-10), let’s return to our
bandpass signal example, where Eq. (2-10) enables the generation of Table
2-1. This table tells us that our sample rate can be anywhere in the range of
22.5 to 35 MHz, anywhere in the range of 15 to 17.5 MHz, or anywhere in
the range of 11.25 to 11.66 MHz. Any sample rate below 11.25 MHz is unac-
ceptable because it will not satisfy Eq. (2-10) as well as f, > 2B. The spectra
resulting from several of the sampling rates from Table 2-1 are shown in
Figure 2-9 for our bandpass signal example. Notice in Figure 2-9(f) that
when f, equals 7.5 MHz (m = 5), we have aliasing problems because neither
the greater than relationships in Eq. (2-10) nor f, 2 2B have been satisfied.
The m = 4 condition is also unacceptable because f, 2 2B is not satisfied. The
last column in Table 2-1 gives the optimum sampling frequency for each
acceptable m value. Optimum sampling frequency is defined here as that

35

36

Periodic Sampling

Table 2-1 Equation (2-10) Applied to the Bandpass Signal Example

m (2f ~B)/m (2f +B)(m+1) Optimum Sampling Rate
1 35.0 MHz 22.5 MHz 22.5 MHz

2 17.5 MHz 15.0 MHz 17.5 MHz

3 11.66 MHz 11.25 MHz 11.25 MHz

4 8.75 MHz 9.0 MHz -

5 7.0 MHz 7.5 MHz —

frequency where spectral replications do not butt up against each other
except at zero Hz. For example, in the m = 1 range of permissible sampling
frequencies, it is much easier to perform subsequent digital filtering or
other processing on the signal samples whose spectrum is that of Figure
2-9(b), as opposed to the spectrum in Figure 2-9(a).

The reader may wonder, “Is the optimum sample rate always equal to
the minimum permissible value for f, using Eq. (2-10)?” The answer
depends on the specific application—perhaps there are certain system con-
straints that must be considered. For example, in digital telephony, to sim-
plify the follow-on processing, sample frequencies are chosen to be integer
multiples of 8 kHz[4]. Another application-specific factor in choosing the
optimum f; is the shape of analog anti-aliasing filters[5]. Often, in practice,
high-performance A/D converters have their hardware components fine-
tuned during manufacture to ensure maximum linearity at high frequen-
cies (>5 MHz). Their use at lower frequencies is not recommended.

An interesting way of illustrating the nature of Eq. (2-10) is to plot the
minimum sampling rate, (2f +B)/(m+1), for various values of m, as a func-
tion of R defined as

_ highest signal frequency component _ £, +B/2
- bandwidth - B

R

(2-11)

If we normalize the minimum sample rate from Eq. (2-10) by dividing it
by the bandwidth B, we get a curve whose axes are normalized to the
bandwidth shown as the solid curve in Figure 2-10. This figure shows us
the minimum normalized sample rate as a function of the normalized
highest frequency component in the bandpass signal. Notice that,
regardless of the value of R, the minimum sampling rate need never
exceed 4B and approaches 2B as the carrier frequency increases.
Surprisingly, the minimum acceptable sampling frequency actually
decreases as the bandpass signal’s carrier frequency increases. We can

Sampling Bandpass Signals

Original spectrum f./2 Criginal spectrum
\ f, = 35.0 MHz T ¢ \‘L &
X 4 7 m=1

N 7
N -

AN
AN 2

o ’ //

O .

N P

N g

(a) DAy

71 1 1 v v+ 1T 17T T 17T771 MHz
-250 -20.0 -150 -10.0 -5.0 [¢] 60 100 150 200 25.0
T fs = 22.5 MHz A 52 T
© [N PANN v 7 AN
L ' LI 1 LD 1 LIS | L | 1 T T 1 7 ¥ MHz
-25.0 -20.0 -150 -100 -50 0 50 100 150 200 25.0

fo =17.5 MHz
X 7,7 AT =7
N A6 NONR A
(c) ANV ENEN i
T

T =T 1 7 |
250 -200 -150 -10.0 -50 0 50

fs2
fg = 15.0 MHz Y me2
I 7 ~
o S P X 7 N il R
/ ZIN NN s] N~ AN N
(d) m 5///\\\\\ ‘7, \\\\ TN o
| LA DL L |

Tt T T 1 1 1
-250 -20.0 -150 -10.0 -5.0 0 50 100 150 200 250

(e)

U]

]
-250 -200 -150 -100 -5.0 0 5.0 100 150 200 250

interpret Figure 2-10 by reconsidering our bandpass signal example
from Figure 2-7 where R = 22.5/5 = 4.5. This R value is indicated by the
dashed line in Figure 2-10 showing that m =3 and f,/B is 2.25. With B=5
MHz, then, the minimum f, = 11.25 MHz in agreement with Table 2-1.
The leftmost line in Figure 2-10 shows the low-pass sampling case,
where the sample rate f, must be twice the signal’s highest frequency
component. So the normalized sample rate f,/B is twice the highest fre-
quency component over B or 2R.

Figure 2-10 has been prominent in the literature, but its normal pre-
sentation enables the reader to jump to the false conclusion that any

37

38

Periodic Sampling

Sampling Bandpass Signals

A Minimum /B
4.0

This line corresponds to
the low-pass sampling case,
35 : thatis, fo= 2(f,+ B2)

3.0

25 N "
225 / / VA -
20 /

45 6 7 8 9 10 R
Ratio: highest frequency component/bandwidth

Figure 2-10 Minimum bandpass sampling rate from Eq. (2-10).

sample rate above the minimum shown in the figure will be an accept-
able sample rate[6-12]. There’s a clever way to avoid any misunder-
standing[13]. If we plot the acceptable ranges of bandpass sample fre-
quencies from Eq. (2-10) as a function of R we get the depiction shown
in Figure 2-11. As we saw from Eq. (2-10), Table 2-1, and Figure 2-9,
acceptable bandpass sample rates are a series of frequency ranges sepa-
rated by unacceptable ranges of sample rate frequencies, that is, an
acceptable bandpass sample frequency must be above the minimum
shown in Figure 2-10, but cannot be just any frequency above that min-
imum. The shaded region in Figure 2-11 shows those normalized band-
pass sample rates that will lead to spectral aliasing. Sample rates within
the white regions of Figure 2-11 are acceptable. So, for bandpass sam-
pling, we want our sample rate to be in the white wedged areas associ-
ated with some value of m from Eq. (2-10). Let’s understand the signifi-
cance of Figure 2-11 by again using our previous bandpass signal
example from Figure 2-7.

Figure 2-12 shows our bandpass signal example R value (highest fre-
quency component/bandwidth) of 4.5 as the dashed vertical line. Because
that line intersects just three white wedged areas, we see that there are
only three frequency regions of acceptable sample rates, and this agrees
with our results from Table 2-1. The intersection of the R = 4.5 line and the
borders of the white wedged areas are those sample rate frequencies list-
ed in Table 2-1. So Figure 2-11 gives a depiction of bandpass sampling
restrictions much more realistic than Figure 2-10.

Sampling rate (f5/B)
14 + :
_ 2f-B
= m
121 ;
Shaded region is :
the forbidden zone 2f,+ B :
10 +
8 ——
6 -
4 4
24
0 } } t t } t 1 t -+
1 2 3 4 5 6 7 8 9 10 R
Ratio: highest frequency component/bandwidth

Figure 2-11 Regions of acceptable bandpass sampling rates from Eq. (2-10),
normalized to the sample rate over the signal bandwidth (£/8).

Although Figures 2-11 and 2-12 indicate that we can use a sample rate
that lies on the boundary between a white and shaded area, these sample
rates should be avoided in practice. Nonideal analog bandpass filters,
sample rate clock generator instabilities, and slight imperfections in avail-
able A /D converters make this ideal case impossible to achieve exactly. It's
prudent to keep f, somewhat separated from the boundaries. Consider the
bandpass sampling scenario shown in Figure 2-13. With a typical (non-
ideal) analog bandpass filter, whose frequency response is indicated by
the dashed line, it's prudent to consider the filter’s bandwidth not as B,
but as B, in our equations. That is, we create a guard band on either side
of our ﬁ%ter so that there can be a small amount of aliasing in the discrete
spectrum without distorting our desired signal, as shown at the bottom of
Figure 2-13.

We can relate this idea of using guard bands to Figure 2-11 by looking
more closely at one of the white wedges. As shown in Figure 2-14, we'd like

39

40

Periodic Sampling

‘ Sampling rate (f¢/B)
-

— =7, 50 fg=35MHz

f
—; =45, 50 f;=225MHz

’s
—B=3, s0 fg= 15 MHz

f
—é =2.25, 80 fy=11.25 MHz

1 2 3 s ¥ 5R
Ratio: highest frequency component/bandwidth

Figure 2-12 Acceptable sample rates for the bandpass signal example (B = § MHz)
with a value of R = 4.5,

to set our sample rate as far down toward the vertex of the white area as we
can—lower in the wedge means a lower sampling rate. However, the clos-
er we operate to the boundary of a shaded area, the more narrow the guard
band must be, requiring a sharper analog bandpass filter, as well as the
tighter the tolerance we must impose on the stability and accuracy of our
A/D clock generator. (Remember, operating on the boundary between a
white and shaded area in Figure 2-11 causes spectral replications to butt up
against each other.) So, to be safe, we operate at some intermediate point
away from any shaded boundaries as shown in Figure 2-14. Further analy-
sis of how guard band widths and A/D clock parameters relate to the
geometry of Figure 2-14 is available in reference [13]. For this discussion,
we'll just state that it’s a good idea to ensure that our selected sample rate
does not lie too close to the boundary between a white and shaded area in
Figure 2-11.

There are a couple of ways to make sure we're not operating near a
boundary. One way is to set the sample rate in the middle of a white
wedge for a given value of R. We do this by taking the average between
the maximum and minimum sample rate terms in Eq. (2-10) for a partic-
ular value of m, that is, to center the sample rate operating point within a
wedge we use a sample rate of

Sampling Bandpass Signals
Nonse _f:_—: B ——> Finerresponse
A I’/_'—”_ﬁ:l‘/wse
N N .-
~ -~ B ——> Freq
Guard band
L\\ N | -
o = "— Bgh —> Freq
Original Digital
continuous Bandpass AD samples
i —]) ——
signal Filter Filtered Converter
continuous signal
Aliasing
Aliasing
B L i T
7 I-X % LA
Freq
» _ A >

S

Figure 2-13 Bandpass sampling with aliasing occurring only in the filter guard bands.

Guard band width

A/D clock
{olerance

Practical
operating point

_____ Ideal operating

point

Figure 2-14 Typical operating point for £, fo compensate for nonideal
hardware.

41

42

Periodic Sampling

fsm=%-[2fC—B+2f”+B}=f“_B/2+fC+B/2 . (2-12)

m m+1 m m+1

Another way to avoid the boundaries of Figure 2-14 is to use the follow-
ing expression to determine an intermediate f, operating point:
1

4,
fo, ==, 2-13
T Mogg @13)
where m_,, is an odd integer[14]. Of course the choice of m 4, must ensure
that the Nyquist restriction of fSi > 2B be satisfied. We show the results of
Egs. (2-12) and (2-13) for our bandpass signal example in Figure 2-15.

A Sampling rate (f,/B)

B '

R f, = 26.66 MHz
1 , S—
<y =28.75MHz
i entr

5 o / i /

f, = 16.0 MHz |
4 A i ,

/| fs o= 16-25 MHz
3 f,= 11.43 MHz

fy ™ 11:46 MH2

Bandpass signal
example: R=45 —]

4] i B IV i i
1 y 1 25 t
1 2 3 4 5

Ratio: highest frequency component/bandwidth

s
R

Figure 2-15 Intermediate f; and f,, operating points, from Egs. (2-12) and (2-13),
to avoid operating at the shaded boundaries for the bandpass signal
example. B=5MHz and R= 4.5,

Spectral Inversion in Bandpass Sampling

2.4 Spectral Inversion in Bandpass Sampling

Some of the permissible f, values from Eq. (2-10) will, although avoiding
aliasing problems, provide a sampled baseband spectrum (located near
zero Hz) that is inverted from the original positive and negative spectral
shapes, that is, the positive baseband will have the inverted shape of the
negative half from the original spectrum. This spectral inversion hap-
pens whenever m, in Eq. (2-10), is an odd integer, as illustrated in
Figures 2-9(b) and 2-9(e). When the original positive spectral bandpass
components are symmetrical about the f, frequency, spectral inversion
presents no problem and any nonaliasing value for f, from Eq. (2-10)
may be chosen. However, if spectral inversion is something to be avoid-
ed, for example, when single sideband signals are being processed, the
minimum applicable sample rate to avoid spectral inversion is defined
by Eq. (2-10) with the restriction that m is the largest even integer such
that f, 2 2B is satisfied.” Using our definition of optimum sampling rate,
the expression that provides the optimum noninverting sampling rates
and avoids spectral replications butting up against each other, except at
zero Hz, is

2f.—B
Sy == 2-14
* meven ()
where m,, . =2, 4, 6, etc. For our bandpass signal example, Eq. (2-14) and

m = 2 provide an optimum noninverting sample rate of f, = 17.5 MHz, as
shown in Figure 2-9(c). In this case, notice that the spectrum translated
toward zero Hz has the same orientation as the original spectrum cen-
tered at 20 MHz.

Then again, if spectral inversion is unimportant for your application,
we can determine the absolute minimum sampling rate without having
to choose various values for m in Eq. (2-10) and creating a table like we
did for Table 2-1. Considering Figure 2-16, the question is “How many
replications of the positive and negative images of bandwidth B can we
squeeze into the frequency range of 2f, + B without overlap?” That num-
ber of replications is

_ frequencyspan _2f.+B _f. +B/2
" twice the bandwidth 2B B

(2-15)

* Single sideband signals are discussed in Section C.4 of Appendix C.

43

44

Periodic Sampling

< 21+ B

Figure 2-16 Frequency span of a continuous bandpass signal.

To avoid overlap, we have to make sure that the number of replications is
an integer less than or equal to R in Eq. (2-15). So, we can define the inte-
gral number of replications to be R, , where

R SR<R,+1,

int =

or

+B/2
R S %— <Ry +1. (2-16)

With R, replications in the frequency span of 2f, + B, then, the spectral

repetition period, or minimum sample rate fsmin' is
2f. +B
Joun = ’; : (2-17)
int

In our bandpass signal example, finding f, __first requires the appro-
priate value for R, ; in Eq. (2-16) as

RmS%<Riﬂt+1 ,

so Ry, = 4. Then, from Eq. (2-17), mem = (40+5)/4 = 11.25 MHz, which is
the sample rate illustrated in Figures 2-9(e) and 2-12. So, we can use Eq.
(2-17) and avoid using various values for m in Eq. (2-10) and having to cre-
ate a table like Table 2-1. (Be careful though. Eq. (2-17) places our sampling
rate at the boundary between a white and shaded area of Figure 2-12, and
we have to consider the guard band strategy discussed above.) To recap
the bandpass signal example, sampling at 11.25 MHz, from Eq. (2-17),

Spectral Inversion in Bandpass Sampling

avoids aliasing and inverts the spectrum, while sampling at 17.5 MHz,
from Eq. (2-14), avoids aliasing with no spectral inversion.

Now here’s some good news. With a little additional digital process-
ing, we can sample at 11.25 MHz, with its spectral inversion and easily
reinvert the spectrum back to its original orientation. The discrete spec-
trum of any digital signal can be inverted by multiplying the signal’s dis-
crete-time samples by a sequence of alternating plus ones and minus
ones (1, -1, 1, =1, etc.), indicated in the literature by the succinct expres-
sion (~1)". This scheme allows bandpass sampling at the lower rate of Eq.
(2-17) while correcting for spectral inversion, thus avoiding the necessity
of using the higher sample rates from Eq. (2-14). Although multiplying
time samples by (~1)" is explored in detail in Section 10.1, all we need to
remember at this point is the simple rule that multiplication of real sig-
nal samples by (~1)" is equivalent to multiplying by a cosine whose fre-
quency is f,/2. In the frequency domain, this multiplication flips the pos-
itive frequency band of interest, from zero to +f,/2 Hz, about f,/4 Hz, and
flips the negative frequency band of interest, from —f,/2 to zero Hz, about
—f./4 Hz as shown in Figure 2-17. The (-1)" sequence is not only used for
inverting the spectra of bandpass sampled sequences; it can be used to
invert the spectra of low-pass sampled signals. Be aware, however, that,
in the low-pass sampling case, any DC (zero Hz) component in the orig-
inal continuous signal will be translated to both +f,/2 and —f,/2 after
multiplication by (-1)".

Band of Band of
interest , interest
> i€

(a)

(b)

Freq

Figure 2-17 Spectral inversion through multiplication by (-1)™ (a) original spectrum
of a time-domain sequence:; (b) new spectrum of the product of
original time sequence and the (-1)" sequence.

4t

46

Periodic Sampling

<—— B —> <« B —— >

T
0 ‘I fe '[Freq
- B2 .+ B2

Figure 2-18 Continuous signal spectrum where bandpass sampling is not
possible because f.- B/2 < B,

Now that we have an understanding of bandpass sampling, we’d bet-
ter remind ourselves of the situation where bandpass sampling is not pos-
sible. If a continuous bandpass signal’s lowest frequency component is
less than the bandwidth, we can’t use bandpass sampling. This condition
is shown in Figure 2-18 where f, — B/2 < B. There’s no way to squeeze any
spectral replications between f, - B/2 and zero Hz with bandpass sam-
pling. In this case, we’d have to low-pass sample the signal in Figure 2-17
at a rate of at least twice the highest frequency component, or
f.22(f.+ B/2).

We conclude this topic by consolidating in Table 2-2 what we need to
know about bandpass sampling.

Table 2-2 Bandpass Sampling Relationships

Requirement

Sample Rate Expression

Conditions

Acceptable ranges of
f, for bandpass sam-
pling: Eq. (2-10)
Sample rate in the
middle of the accept-
able sample rate
bands: Eq. (2-12)

Sample rate at an

B, 2B
m T m+1

g fBl2 f+B/2

m m+1

m = any positive integer so
that f, > 2B.

m = any positive integer so
thatf, 22B.
onte

- : n o 4f, M qq = any positive odd
intermediate point in fs,- = " < integer so that f, 22B .

the acceptable sample odd (Spectral inversion occurs
rate bands: Eq. (2-13) whenm ;, =3,7,11, etc)
Optimum sample rate 2f.-B Myyeq = @NY eVen positive
to avoid spectral fo, == integer so that f, > 2B.
inversion: Eq. (2-14) Meven ’

Absolute minimum f; 2f. +B where

to avoid aliasing: Eq. fs,,,i" = '};—

(217) it Ry <2 B2 Rov1

int = B int

References

References

[1] Crochiere, R.E. and Rabiner, L.R. “Optimum FIR Digital Implementations for
Decimation, Interpolation, and Narrow-band Filtering,” IEEE Trans. on
Acoust. Speech, and Signal Proc., Vol. ASSP-23, No. 5, October 1975.

[2] Steyskal, H. “Digital Beamforming Antennas,” Microwave Journal, January
1987.

[3] Hill, G. “The Benefits of Undersampling,” Electronic Design, July 11, 1994.

[4] Yam, E., and Redman, M. “Development of a 60-channel FDM-TDM Trans-
multiplexer,” COMSAT Technical Review, Vol. 13, No. 1, Spring 1983.

[5] Floyd, P., and Taylor, J. “Dual-Channel Space Quadrature-Interferometer
System,” Microwave System Designer's Handbook, Fifth Edition, Microwave
Systems News, 1987.

[6] Lyons, R. G. “How Fast Must You Sample,” Test and Measurement World,
November 1988.

{71 Stremler, E. Introduction to Communication Systems, Chapter 3, Second Edition,
Addison Wesley Publishing Co., Reading, Massachusetts, p. 125.

[8] Webb, R. C. “IF Signal Sampling Improves Receiver Detection Accuracy,”
Microwaves & RF, March 1989.

[91 Haykin, S. Communications Systems, Chapter 7, John Wiley and Sons, New
York, 1983, p. 376.

[10] Feldman, C. B., and Bennett, W. R. “Bandwidth and Transmission
Performance,” Bell System Tech. Journal, Vol. 28, 1989, p. 490.

[11] Panter, P. E Modulation Noise, and Spectral Analysis, McGraw-Hill, New York,
1965, p. 527.

[12] Shanmugam, K. S. Digital and Analogue Communications Systems, John Wiley
and Sons, New York, 1979, p. 378.

{13] Vaughan, R., Scott, N. and White, D. “The Theory of Bandpass Sampling,”
IEEE Trans. on Signal Processing, Vol. 39, No. 9, September 1991, pp. 1973-1984.

[14] Xenakis B., and Evans, A. “Vehicle Locator Uses Spread Spectrum Technology,”
RF Design, October 1992.

47

me———— CHAPTER THREE |

The Discrete Fourier
Transform

The discrete Fourier transform (DFT) is one of the two most common, and
powerful, procedures encountered in the field of digital signal processing.
(Digital filtering is the other.) The DFT enables us to analyze, manipulate,
and synthesize signals in ways not possible with continuous (analog) signal
processing. Even though it’s now used in almost every field of engineering,
we'll see applications for DFT continue to flourish as its utility becomes
more widely understood. Because of this, a solid understanding of the DFT
is mandatory for anyone working in the field of digital signal processing.

The DFT is a mathematical procedure used to determine the harmonic,
or frequency, content of a discrete signal sequence. Although, for our pur-
poses, a discrete signal sequence is a set of values obtained by periodic
sampling of a continuous signal in the time domain, we'll find that the
DFT is useful in analyzing any discrete sequence regardless of what that
sequence actually represents. The DFT’s origin, of course, is the continu-
ous Fourier transform X(f) defined as

X(H)= _[x(e P | (3-1)

where x(t) is some continuous time-domain signal.t

In the field of continuous signal processing, Eq. (3-1) is used to transform
an expression of a continuous time-domain function x(t) into a continuous
frequency-domain function X(f). Subsequent evaluation of the X(f) expres-
sion enables us to determine the frequency content of any practical signal
of interest and opens up a wide array of signal analysis and processing

* Fourier is pronounced ‘for-ya. In engineering school, we called Eq. (3-1) the “four-year”
transform because it took about four years to do one homework problem.

49

50

The Discrete Fourler Transform

possibilities in the fields of engineering and physics. One could argue that
the Fourier transform is the most dominant and widespread mathematical
mechanism available for the analysis of physical systems. (A prominent
quote from Lord Kelvin better states this sentiment: “Fourier’s theorem is
not only one of the most beautiful results of modern analysis, but it may be
said to furnish an indispensable instrument in the treatment of nearly every
recondite question in modern physics.” By the way, the history of Fourier’s
original work in harmonic analysis, relating to the problem of heat conduc-
tion, is fascinating. References [1] and [2] are good places to start for those
interested in the subject.)

With the advent of the digital computer, the efforts of early digital pro-
cessing pioneers led to the development of the DFT defined as the discrete
frequency-domain sequence X(m), where

DFT equation
(exponential form): —

N-1
X(m) ="y x(me 2N (3-2)
n=0

For our discussion of Eq. (3-2), x(n) is a discrete sequence of time-domain
sampled values of the continuous variable x(t). The “¢” in Eq. (3-2) is, of
course, the base of natural logarithms and j = V-1,

3.1 Understanding the DFT Equation

Equation (3-2) has a tangled, almost unfriendly, look about it. Not to worry.
After studying this chapter, Eq. (3-2) will become one of our most familiar
and powerful tools in understanding digital signal processing. Let’s get
started by expressing Eq. (3-2) in a different way and examining it care-
fully. From Euler’s relationship €7 = cos(@) —jsin(p), Eq. (3-2) is equivalent to

DFT equation N-1
(rectangular form): > X(m) = Y x(n)[cos(2nnm / N) - jsin(2rnm/N)] . (3-3)

n=0

We have separated the complex exponential of Eq. (3-2) into its real and
imaginary components where ‘
X(m) = the mth DFT output component, i.e., X(0), X(1), X(2), X(3), etc.,

m = the index of the DFT output in the frequency domain,
m=0,1,23,...,N-1,

x(n) = the sequence of input samples, x(0), x(1), x(2), x(3), etc.,

Understanding the DFT Equation

n = the time-domain index of the input samples, n=0,1,2,3,...,N-1,
j = v-1,and

N = the number of samples of the input sequence and the number of
frequency points in the DFT output.

Although it looks more complicated than Eq. (3-2), Eq. (3-3) turns out
to be easier to understand. (If you're not too comfortable with it, don’t let
the j = V-1 concept bother you too much. It's merely a convenient
abstraction that helps us compare the phase relationship between vari-
ous sinusoidal components of a signal. Appendix C discusses the j oper-
ator in some detail.)! The indices for the input samples (n) and the DFT
output samples (m) always go from 0 to N-1 in the standard DFT nota-
tion. This means that with N input time-domain sample values, the DFT
determines the spectral content of the input at N equally spaced fre-
quency points. The value N is an important parameter because it deter-
mines how many input samples are needed, the resolution of the
frequency-domain results, and the amount of processing time necessary
to calculate an N-point DFT.

It’s useful to see the structure of Eq. (3-3) by eliminating the summation
and writing out all the terms. For example, when N = 4, n and m both go
from 0 to 3, and Eq. (3-3) becomes

3
X(m) =Y x(n)[cos(2nm / 4) - jsin(2mm/ 4)] . (3-4a)

n=0

Writing out all the terms for the first DFT output term corresponding to
m =0,

X(0) = x(0)cos(21-0-0/4) ~ jx(0)sin(2n-0-0/ 4)
+x(1)cos(2n-1-0/4)- jx(1)sin(2r-1-0/4)
+x(2)cos(2r-2-0/4) - jx(2)sin(2n-2-0/4)
+x(3)cos(2n-3-0/4) - jx(3)sin(2r-3-0/ 4). (3-4b)

For the second DFT output term corresponding to m = 1, Eq. (3-4a)
becomes

t Instead of the letter j, be aware that mathematicians often use the letter i to represent the
-1 operator.

gaemm——— e |

51

52

The Discrete Fourier Transform

X(1) = x(0)cos(2r - 0-1/ 4) - jx(0)sin(2r-0-1/4)
+x(1)cos(2m-1-1/4) - jx(1)sin(2n-1-1/4)
+x(2)cos(2r-2-1/4)~ jx(2)sin(2r-2-1/ 4)
+x(3)cos(2r-3-1/4) - jx(3)sin(2r-3-1/4). (3-4c)

For the third output term corresponding to m = 2, Eq. (3-4a) becomes

X(2) = x(0)cos(2r-0-2/ 4) - jx(0)sin(27-0-2/ 4)
+x(1)cos(2r-1-2/4) - jx(1)sin(2x-1-2/ 4)
+x(2)cos(2rv2-2/ 4) - jx(2)sin(2n-2-2/ 4)
+x(3)cos(2m-3-2/4)- jx(3)sin(2r-3-2/ 4). (3-4d)

Finally, for the fourth and last output term corresponding to m = 3, Eq.
(3-4a) becomes

X(3) = x(0)cos(2x-0-3 / 4) - jx(0)sin(2x-0- 3/ 4)
+x(1)cos(2m-1-3/4) - jx(1)sin(2r-1-3/4)
+x(2)cos(2m-2-3/4)~ jx(2)sin(2n-2-3/4)
+x(3)cos(2r-3-3/4) - jx(3)sin(2n-3-3/4). (3-4e)

The above multiplication symbol “-” in Eq. (3-4) is used merely to separate
the factors in the sine and cosine terms. The pattern in Eq. (3-4b) through
(3-4e) is apparent now, and we can certainly see why it's convenient to use
the summation sign in Eq. (3-3). Each X(m) DFT output term is the sum of
the point for point product between an input sequence of signal values and
a complex sinusoid of the form cos() - jsin(@). The exact frequencies of the
different sinusoids depend on both the sampling rate f, at which the orig-
inal signal was sampled, and the number of samples N. For example, if we
are sampling a continuous signal at a rate of 500 samples /s and, then, per-
form a 16-point DFT on the sampled data, the fundamental frequency of
the sinusoids is f,/N = 500/16 or 31.25 Hz. The other X(m) analysis fre-
quencies are integral multiples of the fundamental frequency, i.e.,

X(0) = 1st frequency term, with analysis frequency =0 - 31.25 = 0 Hz,
X(1) = 2nd frequency term, with analysis frequency =1 - 31.25 = 31.25Hz,
X(2) = 3rd frequency term, with analysis frequency =2 - 31.25 = 62.5 Hz,
X(3) = 4th frequency term, with analysis frequency =3 - 31.25 = 93.75 Hz,

X(15) = 16th frequency term, with analysis frequency =15 - 31.25 = 468.75 Hz.

Understanding the DFT Equation

Imaginary axis (j)

/ \ This point represents the

complex number
X(m) = Xieal(m) + iXimag (M).

.

0 X ea(M) R;:l axis

Figure 3-1 Trigonometric relationships of an individuai DFT X(m) complex
output value.

The N separate DFT analysis frequencies are

fanalysis (M) = %fs . (3-5)

So, in this example, the X(0) DFT term tells us the magnitude of any 0-Hz
(“DC”) component contained in the input signal, the X(1) term specifies
the magnitude of any 31.25-Hz component in the input signal, and the
X(2) term indicates the magnitude of any 62.5-Hz component in the input
signal, etc. Moreover, as we’ll soon show by example, the DFT output
terms also determine the phase relationship between the various analysis
frequencies contained in an input signal.

Quite often we're interested in both the magnitude and the power
(magnitude squared) contained in each X(m) term, and the standard def-
initions for right triangles apply here as depicted in Figure 3-1.

If we represent an arbitrary DFT output value, X(m), by its real and
imaginary parts

X(11) = X oy (1) + Ximag (1) = X () at an angle of X, (m) , (3-6)

the magnitude of X(m) is

Kinggm) = 1K) = X + Xignag () (3-7)

By definition, the phase angle of X(m), X, (m), is

X.
X, (m)= tan'l[_%@] . (3-8)

X real ()

54

The Discrete Fourier Transform

The power of X(m), referred to as the power spectrum, is the magnitude
squared where

Xpglm) = X

m;

ag(m)2 = X o (m)? + Ximag(m)z. (3-9)

3.1.1 DFT Example 1

The above Egs. (3-2) and (3-3) will become more meaningful by way of an
example, 50, let’s go through a simple one step-by-step. Let’s say we want
to sample and perform an 8-point DFT on a continuous input signal con-
taining components at 1 kHz and 2 kHz, expressed as

x, () = sin(27-1000-#) + 0.5sin(2r-2000 -++37/4) (3-10)

To make our example input signal x; (t) a little more interesting, we have
the 2-kHz term shifted in phase by 135° (3n/4 radians) relative to the 1-kHz
sinewave. With a sample rate of f,, we sample the input every 1 /f, = t, sec-
onds. Because N = 8, we need 8 input sample values on which to perform
the DFT. So the 8-element sequence x(n) is equal to x;,(f) sampled at the nt;
instants in time so that

x(n) = x, (nt) = sin(2n-1000-nt) + 0.5sin(27-2000-nt +31/4) . (3-11)

If we choose to sample x, () at a rate of f; = 8000 samples/s from Eq. (3-5),
our DFT results will indicate what signal amplitude exists in x(n) at the
analysis frequencies of mf,/N, or 0 kHz, 1 kHz, 2 kHz, . . ., 7 kHz. With
£, = 8000 samples/s, our eight x(n) samples are

x(0)=0.3535, x(1)=0.3535,

x(2) =0.6464, x(3)=1.0607,

x(4)=0.3535, x(5)=-1.0607,

x(6) = -1.3535, x(7)=-0.3535 . (3-11)

These x(n) sample values are the dots plotted on the solid continuous
x,(t) curve in Figure 3-2(a). (Note that the sum of the sinusoidal terms in
Eq. (3-10), shown as the dashed curves in Figure 3-2(a), is equal to x,.(t).)

Now we're ready to apply Eq. (3-3) to determine the DFT of our x(n)
input. We'll start with m = 1 because the m = 0 case leads to a special result
that we'll discuss shortly. So, for m =1, or the 1-kHz (mf,/N = 1-8000/8)
DFT frequency term, Eq. (3-3) for this example becomes

Understanding the DFT Equation

7
XM= Z x(n)cos(2nn / 8) - jx(n)sin(2rn /8) . (3-12)
n=0

Next we multiply x(n) by successive points on the cosine and sine curves
of the first analysis frequency that have a single cycle over our 8 input
samples. In our example, for m =1, we’ll sum the products of the x(n)
sequence with a 1-kHz cosine wave and a 1-kHz sinewave evaluated at
the angular values of 2nn/8. Those analysis sinusoids are shown as the
dashed curves in Figure 3-2(b). Notice how the cosine and sinewaves
have m = 1 complete cycles in our sample interval.

Substituting our x(n) sample values into Eq. (3-12) and listing the
cosine terms in the left column and the sine terms in the right column,
we have

X(1) =0.3535 - 1.0 -j(0.3535 - 0.0) « this is the n = 0 term
+0.3535 - 0.707 -j(0.3535 - 0.707) «thisisthen=1term
+0.6464 - 0.0 - j(0.6464 - 1.0) « this is the n = 2 term
+1.0607 - -0.707 - j(1.0607 - 0.707)
+0.3535 - -1.0 -(0.3535 - 0.0)
~1.0607 - -0.707 - j(-1.0607 - -0.707) .
-1.3535:0.0 -j(-1.3535 - -1.0) e
~0.3535 - 0.707 - j(-0.3535 - —0.707) <« thisis then =7 term

= 0.3535 +70.0
+0.250 -j0.250
+0.0 - j0.6464
-0.750 -j0.750
—-0.3535 -j0.0
+ 0.750 -j0.750
+0.0 -j1.3535
-0.250 -j0.250

= 0.0-j40=4 £-90°.

So we now see that the input x(1) contains a signal component at a fre-
quency of 1 kHz. Using Eq. (3-7), Eq. (3-8), and Eq. (3-9) for our X1
result, Xmag(l) =4, Xp5(1) = 16, and X(1)'s phase angle relative to a 1-kHz
cosine is X (1) = -90°.

For the m = 2 frequency term, we correlate x(r) with a 2-kHz cosine wave
and a 2-kHz sinewave. These waves are the dashed curves in Figure 3-2(c).
Notice here that the cosine and sinewaves have m = 2 complete cycles in our

55

The Discrete Fourier Transform

151
sin(2n10008) Xin (D)

1 \ - \. /
05 al g ™S
- T,'T_,.’_._/ N

-] LT
ol BSAN -l /
(a)) . ," / //
. T~ et e -
-05 o R
\\ P
-1 . ~ . ;
0.58in(2120006+3m/4) N+
-15 1 2 3 4 [[7 n -

(b) 0

N B\ L 2
- ,” .///
0571 N NI / s
- Y [.
1 IR N

-1.5¢
18

- — L - -
TN / N T TN
x N n K A N\
054+ o 5 L X7 7 N

/ S, !
-0.5 \\ / . N
s N 4
-1 ~ DN RN (i
- " . -
_4'
-155 1 2 3 4 5 [7 n -
15 :
-‘ m=3

054 /° \ / , I \
e ' y I\\ K // . \\ i
(d) Y = 7 + 7 Y ;
. \ / / / ' w
054 . / R \ '\ N
< \ / . X / . \ /
-1 NN LY N
154 _/'
: 1 2 3 4 5 6 7 n -

Figure 3-2 DFT Example 1: (d) the input signal; (o) the input signal and them=1
sinusoids; (c) the input signal and the m = 2 sinusolds; (d) the input signal
and the m = 3 sinusoids.

Understanding the DFT Equation 5;

sample interval in Figure 3-2(c). Substituting our x(n) sample values in Eq.
(3-3), for m = 2, gives .
X(2) =0.3535 - 1.0 -(0.3535 - 0.0)
+0.3535 - 0.0 ~(0.3535 - 1.0)
+0.6464 - -1.0 - j(0.6464 - 0.0)
+1.0607 - 0.0 ~7(1.0607 - -1.0)
+0.3535 - 1.0 -(0.3535 - 0.0)
-1.0607 - 0.0 - j(-1.0607 - 1.0)
-1.3535 - -1.0 -j(~1.3535 - 0.0)
-0.3535 - 0.0 -(=0.3535 - -1.0)
= 0.3535 +70.0
+0.0 -70.3535
- 0.6464 -70.0
-0.0 + j1.0607
+0.3535 -70.0
+0.0 +71.0607
+1.3535 -70.0
-0.0 -70.3535

1.414 +j1.414 = 2 £ 45°.

Here our input x(r) contains a signal at a frequency of 2 kHz whose rela-
tive amplitude is 2, and whose phase angle relative to a 2-kHz cosine is
45°. For the m = 3 frequency term, we correlate x(n) with a 3-kHz cosine
wave and a 3-kHz sinewave. These waves are the dashed curves in Figure
3-2(d). Again, see how the cosine and sinewaves have m = 3 complete
cycles in our sample interval in Figure 3-2(d). Substituting our x(n) sam-
ple values in Eq. (3-3) for m = 3, gives

X(3) = 0.3535 - 1.0 - /(0.3535 - 0.0)
+0.3535 - ~0.707 - 7(0.3535 - 0.707)
+0.6464 - 0.0 — 1(0.6464 - ~1.0)
+1.0607 - 0.707 — §(1.0607 - 0.707)
+0.3535 - 1.0 - /(0.3535 - 0.0)
~1.0607 - 0.707 - j(~1.0607 - —0.707)
~1.3535- 0.0 ~ j(~1.3535 - 1.0)

- 0.3535 - —0.707 - 7(~0.3535 - -0.707)

58 The Discrete Fourier Transform

0.3535
- 0.250
+ 0.0
+0.750
-0.3535
-0.750
+ 0.0
+0.250

Our DFT indicates that x(r) contained no signal at a frequency of 3 kHz.
Let’s continue our DFT for the m = 4 frequency term using the sinusoids

in Figure 3-3(a).
So Eq. (3-3) is

X(4) =0.3535- 1.0
+0.3535 . -1.0
+0.6464 - 1.0
+1.0607 - -1.0
+0.3535-1.0
~-1.0607 - -1.0
-1.3535- 1.0
-0.3535--1.0

= 0.3535

-0.3535
+ 0.6464
-1.0607
+0.3535
+ 1.0607
—-1.3535
+ 0.3535

+70.0

- 70.250
+j0.6464
-70.750
-70.0

- j0.750
+11.3535
- 70.250

0.0-j0.0=0 £ 0°

- /(03535 - 0.0)
- j(0.3535 - 0.0)
- (0.6464 - 0.0)
- 7(1.0607 - 0.0)
~ 7(0.3535 - 0.0)
- (~1.0607 - 0.0)
— #(~1.3535 - 0.0)
- j(~0.3535 - 0.0)

-j0.0
- 0.0
0.0
- j0.0
-70.0
- 0.0
-j0.0
- 0.0

= 00-j0.0=0Z£0°

Our DFT for the m = 5 frequency term using the sinusoids in Figure 3-3(b)

yields

X(5) =0.3535- 1.0
+0.3535 - -0.707
+0.6464 - 0.0
+1.0607 - 0.707

- j(0.3535 - 0.0)
- j(0.3535 - -0.707)
- j(0.6464 - 1.0)
- §(1.0607 - =0.707)

Understanding the DFT Equation

m=4
LE SN o~ B SN e .
PN N SO .
st ; -{T \ A S ;
e N e
okl N N RN
(a) R A ’ / N N 7 T T N < K
| Ny N vl ! | | / N . !
054+ . Loy Y N A
Yo BN \ N/ b
11 NS RN . N/ N
-154 _,-
o 1 2 3 4 5 [3 7 n -
157 »
1 m=5
~ » BN -

I XN 2 A :
0.5 . g ' CE B J
w \"f//k'\ AT N S

(b) 0 i ; 2 A SRV \\ T . I // - 3 ;
N \ \\ K / \ ,’ / B K | ;/\ .
0.5+ o \,' / [Ny Ay
. LA
» A/ T ,,\v/ Y AN, N
154 _,-
~o 1 2 3 4 5 8 7 n—e
151
1} . m=6
Ty ONSTINNG T A\
05+1 [I N [I hoy
7*—‘\-\‘ - \ ; [| =/ \ /~\ v e \
© P R AR U A AR A A N W I
AR x‘\./’ YRR AY
o5 N\ b v TR VAL SRR
N Y A VY 2R Y
-4 \/ WAV v N LS
|}
-15% i 2 3 4 5 8 7 n—»
1.5 !
g
&
T . - a CA “
i/\\ o \\ -’/;f\/ \.‘\Q\ SOV ey OV
e AR S VO
@ okt vt NGy [
S li LS N N ’/ ROVER ! ' \\ //T \\ -
054 \\ II [) v RV A X . v
) / X vR Vo v vy
-1 VoA A AP 4 "y
154 \/'
~o 1 2 3 4 5] 7 n =

Figure 3-3 DFT Exampile 1: () the input signal and the m = 4 sinusoids; (9) the input
and the m = 5 sinusoids; () the input and the m = 6 sinusoids; (d) the

input and the m = 7 sinusoids.

59

60

The Discrete Fourier Transform

Understanading the DFT Equation 61

+0.3535 - 1.0 - (0.3535 - 0.0)
- 1.0607 - 0.707 - j(-1.0607 - 0.707)
-1.3535 - 0.0 - j(-1.3535 - -1.0)
-0.3535 - -0.707 - j(~0.3535 - 0.707)
= 0.3535 -70.0
-0.250 +70.250
+0.0 - j0.6464
+0.750 + j0.750
-0.3535 -70.0
-0.750 +70.750
+0.0 -71.3535
+0.250 +70.250
= 0.0-7.0=0 £0°.

For the m = 6 frequency term using the sinusoids in Figure 3-3(c), Eq. (3-3) is

X(6) =0.3535 - 1.0

- j(0.3535 -

0.0)

+0.3535 - -1.0 -7(0.3535 - 0.0)
-1.0607 - -0.707 - j(-1.0607 - 0.707)
-1.3535-0.0 ~j(-1.3535 - 1.0)
-0.3535 - 0.707 - j(=0.3535 - 0.707)
= 0.3535 +j0.0

+0.250 +j0.250

+0.0 + j0.6464

-0.750 +j0.750

-0.3535 -j0.0

+0.750 +70.750

+0.0 +j1.3535

-0.250 +70.250
= 0.0+j40=4290°
If we plot the X(m) output magnitudes as a function of frequency, we get

the magnitude spectrum of the x(n) input sequence, shown in Figure 3-4(a).
The phase angles of the X(m) output terms are depicted in Figure 3-4(b).

+0.3535 - 0.0

+ 0.6464
+1.0607 -
+0.3535 -
- 1.0607 -
-1.3535 .
~0.3535 .

--1.0

0.0
1.0
0.0
-1.0
0.0

- (0.3535 - -1.0)
~ (0.6464 - 0.0)

- /(1.0607 - 1.0)

- #(0.3535 - 0.0)

- j(-1.0607 - ~1.0)
- j(-1.3535 - 0.0)
- j(~0.3535 - 1.0)

Hang in there, we're almost finished with our example. We've saved
the calculation of the m = 0 frequency term to the end because it has a spe-
cial significance. When m = 0, we correlate x(n) with cos(0) — jsin(0) so that

Eq. (3-3) becomes

= 0.3535
+0.0
- 0.6464
+0.0
+ 0.3535
+0.0
+ 1.3535
+0.0

-j0.0
+70.3535
-70.0
- 11.0607
-70.0
- j1.0607
-70.0
+0.3535

= 1.414-j1.414 =2 £ -45°.

For the m = 7 frequency term using the sinusoids in Figure 3-3(d), Eq. (3-3)

18

X(7y=0.3535- 1.0
+0.3535 - 0.707
+0.6464 - 0.0
+ 1.0607 - -0.707

~ j(0.3535 -
- j(0.3535 -
- 7(0.6464 -
- 7(1.0607 -

0.0)
-0.707)
-1.0)
~0.707)

N-1
X(0)=Y x(n)[cos(0) - jsin(0)] (3-13)
n=0
Example 1: Magnitude of X(m) Example 1: Real part of X(m)
4 . L 1.5 [} L}
3 ! ! 4
2 [] []
1 ‘ ‘ 05
(@) 0% 4 - n + é; () om —a—u Tn
0 1 2 3 4 5 6 7 (kHz) (VI | 2 3 4 5 6 7 (kH2)
Example 1: Phase of X(m) in degrees, X,(m) Example 1: Imaginary part of X(m)
90 L] 4 .
By 4 @ 6 | 2T 1 . 6
(b) 0 f——p——t— At (d) 0 #——t——t—s Y. -
—451: R R R A _zi BEREERER 7 o
~80 » -4]

Figure 3-4 DFT results from Example 1: (@) magnitude of X(m); (b) phase of X(m).
(c) reai part of X(m); (d) imaginary part of X(m).

62

The Discrete Fourier Transform

Because cos(0) = 1, and sin(0) = 0,
N-1
X(0) = 2 x(n) . (3-13)
n=0

We can see that Eq. (3-13) is the sum of the x(n) samples. This sum is, of
course, proportional to the average of x(n). (Specifically, X(0) is equal to N
times x(n)’s average value). This makes sense because the X(0) frequency
term is the nontime-varying (DC) component of x(n). If X(0) were nonzero,
this would tell us that the x(1) sequence is riding on a DC bias and has some
nonzero average value. For our specific example input from Eq. (3-10), the
sum, however, is zero. The input sequence has no DC component, so we
know that X(0) will be zero. But let’s not be lazy—we’ll calculate X(0) any-
way just to be sure. Evaluating Eq. (3-3) or Eq. (3-13') for m = 0, we see that

X(0) =0.3535 - 1.0 -j(0.3535 - 0.0)

+0.3535 - 1.0 ~j(0.3535 - 0.0)
+0.6464 - 1.0 -j(0.6464 - 0.0)
+1.0607 - 1.0 -j(1.0607 - 0.0)
+0.3535- 1.0 ~j(0.3535 - 0.0)
-1.0607 - 1.0 -j(-1.0607 - 0.0)
~1.3535- 1.0 -j(~1.3535 - 0.0)
-0.3535- 1.0 -j(-0.3535 - 0.0)
X(0)= 0.3535 -70.0

+03535 -j0.0
+06464 -j0.0
+1.0607 -j0.0

+03535 —j0.0
-1.0607 -j0.0
-13535 -j0.0
-03535 -j0.0

= 0.0-j0.0=0Z0°

So our x(n) had no DC component, and, thus, its average value is zero.
Notice that Figure 3-4 indicates that x, (t), from Eq. (3-10), has signal
components at 1 kHz (m = 1) and 2 kHz (m = 2). Moreover, the 1-kHz tone
has a magnitude twice that of the 2-kHz tone. The DFT results depicted in
Figure 3-4 tell us exactly what’s the spectral content of the signal defined
by Egs. (3-10) and (3-11).

DFT Symmetry

The perceptive reader should be asking two questions at this point. First,
what do those nonzero magnitude values at m = 6 and m = 7 in Figure 3-4(a)
mean? Also, why do the magnitudes seem four times larger than we would
expect? We'll answer those good questions shortly. The above 8-point DFT
example, although admittedly simple, illustrates two very important char-
acteristics of the DFT that we should never forget. First, any individual X(m)
output value is nothing more than the sum of the term-by-term products, a
correlation, of an input signal sample sequence with a cosine and a sinewave
whose frequencies are m complete cycles in the total sample interval of N
samples. This is true no matter what the f; sample rate is and no matter how
large N is in an N-point DFT. The second important characteristic of the DFT
of real input samples is the symmetry of the DFT output terms.

3.2 DFT Symmetry

Looking at Figure 3-4(a) again, there is an obvious symmetry in the DFT
results. Although the standard DFT is designed to accept complex input
sequences, most physical DFT inputs (such as digitized values of some
continuous signal) are referred to as real, that is, real inputs have nonzero
real sample values, and the imaginary sample values are assumed to be
zero. When the input sequence x(n) is real, as it will be for all of our exam-
ples, the complex DFT outputs for m =1 tom = (N/2) - 1 are redundant
with frequency output values for m > (N/2). The mth DFT output will
have the same magnitude as the (N-m)th DFT output. The phase angle of
the DFT’s mth output is the negative of the phase angle of the (N-m)th
DFT output. So the mth and (N-m)th outputs are related by the following:

X(m) =1 X(m)|at X,(m) degrees
=l X(N -m)lat —X, (N —m) degrees. (3-14)

We can state that when the DFT input sequence is real, X(m) is the com-
plex conjugate of X(N-m), or

X(m)=X"(N-m) ! (3-14)

where the superscript * symbol denotes conjugation.

* Using our notation, the complex conjugate of x =4 + jb is defined as x* = a — jb; that is, we
merely change the sign of the imaginary part of x. In an equivalent form, if x = #?, then x* = ¢7°.

63

The Discrete Fourler Transform

In our example above, notice in Figures 3-4(b) and 3-4(d), that X(5),
X(6), and X(7) are the complex conjugates of X(3), X(2), and X(1), respec-
tively. Like the DFT’s magnitude symmetry, the real part of X(m) has what
is called even symmetry, as shown in Figure 3-4(c), while the DFT’s imagi-
nary part has odd symmetry, as shown in Figure 3-4(d). This relationship is
what is meant when the DFT is called conjugate symmetric in the litera-
ture. It means that, if we perform an N-point DFT on a real input sequence,
we’ll get N separate complex DFT output terms, but only the first N/2
terms are independent. So to obtain the DFT of x(n), we need only compute
the first N/2 values of X(m) where 0 < m < (N/2) - 1; the X(IN/2) to X(N-1)
DFT output terms provide no additional information about the spectrum
of the real sequence x(n).

Although Egs. (3-2) and (3-3) are equivalent, expressing the DFT in the
exponential form of Eq. (3-2) has a terrific advantage over the form of Eq.
(3-3). Not only does Eq. (3-2) save pen and paper, Eg. (3-2)’s exponentials
are so much easier to manipulate when we're trying to analyze DFT rela-
tionships. Using Eq. (3-2), products of terms become the addition of expo-
nents and, with due respect to Euler, we don't have all those
trigonometric relationships to memorize. Let’s demonstrate this by prov-
ing Eq. (3-14) to show the symmetry of the DFT of real input sequences.
Substituting N-m for m in Eq. (3-2), we get the expression for the (N-m)th
component of the DFT:

N-1 N-1
X(N-m)= 2 x(n)e—jznn(N-m)/N — 2 x(n)e—jZnnN /N p=j2nn(-m)/N
n=0 n=0
N-1))
= 2 x(n)e—]Znneﬂnnm/N) (3-15)

n=
Because e72™ = cos(2nn) -jsin(2nn) = 1 for all integer values of n,

N-1
X(N -m)= 2 x(n)e /2mm/N (315"

n=0

We see that X(N-m) in Eq. (3-15) is merely X(m) in Eq. (3-2) with the sign
reversed on X(m)’s exponent—and that’s the definition of the complex
conjugate. This is illustrated by the DFT output phase-angle plot in
Figure 3-4(b) for our DFT Example 1. Try deriving Eq. (3-15") using the

DFT Linearity

cosines and sines of Eq. (3-3), and you'll see why the exponential form of
the DFT is so convenient for analytical purposes.

There’s an additional symmetry property of the DFT that deserves
mention at this point. In practice, we're occasionally required to deter-
mine the DFT of real input functions where the input index n is defined
over both positive and negative values. If that real input function is even,
then X(m) is always real and even; that is, if the real x(n) = x(-n), then,
X .a(m) is in general nonzero and X, . (m) is zero. Conversely, if the real
input function is odd, x(n) = —x(-n), then X, (m) is always zero and
Ximag(M) is, in general, nonzero. This characteristic of input function sym-
metry is a property that the DFT shares with the continuous Fourier trans-
form, and (don’t worry) we'll cover specific examples of it later in Section
3.13 and in Chapter 5.

3.3 DFT Linearity

The DFT has a very important property known as linearity. This property
states that the DFT of the sum of two signals is equal to the sum of the
transforms of each signal; that is, if an input sequence x,(n) has a DFT
X,(m) and another input sequence x,(n) has a DFT X,(m), then the DFT of
the sum of these sequences x_ (1) = x,(n) + x,(n) is

X, (m) = X,(m) + X,(m) . (3-16)

This is certainly easy enough to prove. If we plug x, () into Eq. (3-2) to
get X (m), then

N-1
Xoum (m)= 2 [x1 (n)y+ X, (n)]e-ﬂnnm /N

n=0

N-1 N-1
= le(n)e'iz""’"/N + sz(n)e'jz""’”/N =X, (m)+X,(m) .

n=0 n=0

Without this property of linearity, the DFT would be useless as an analy-
tical tool because we could transform only those input signals that contain
a single sinewave. The real-world signals that we want to analyze are much
more complicated than a single sinewave.

65

66

The Discrete Fourier Transform

3.4 DFT Magnitudes

The DFT Example 1 results of 1X(1)! =4 and | X(2)! =2 may puzzle the
reader because our input x(n) signal, from Eq. (3-11), had peak amplitudes
of 1.0 and 0.5, respectively. There’s an important point to keep in mind
regarding DFTs defined by Eq. (3-2). When a real input signal contains a
sinewave component of peak amplitude A, with an integral number of
cycles over N input samples, the output magnitude of the DFT for that
particular sinewave is M, where

M,=AN/2. (3-17)

If the DFT input is a complex sinusoid of magnitude A, (i.e., A ¢*¥) with
an integral number of cycles over N samples, the output magnitude of the
DFT is M, where

M,=AN. (3-17)

As stated in relation to Eq. (3-13), if the DFT input was riding on a DC
value equal to D,, the magnitude of the DFT’s X(0) output will be D N.

Looking at the real input case for the 1000 Hz component of Eq. (3-11),
A,=1and N=8,so0 that M, = 1-8/2 = 4, as our example shows. Equation
(3-17) may not be so important when we're using software or floating-
point hardware to perform DFTs, but if we're implementing the DFT with
fixed-point hardware, we have to be aware that the output can be as large
as N'/2 times the peak value of the input. This means that, for real inputs,
hardware memory registers must be able to hold values as large as N/2
times the maximum amplitude of the input sample values. We discuss
DFT output magnitudes in further detail later in this chapter. The DFT
magnitude expressions in Egs. (3-17) and (3-17') are why we occasionally
see the DFT defined in the literature as

1 N-1)
X' (m) =~ 2 x(n)e12mm/ N, (3-18)

n=0

The 1/N scale factor in Eq. (3-18) makes the amplitudes of X'(m) equal
to half the time-domain input sinusoid’s peak value at the expense
of the additional division by N computation. Thus, hardware or soft-
ware implementations of the DFT typically use Eq. (3-2) as opposed to
Eq. (3-18). Of course, there are always exceptions. There are commercial
software packages using

DFT Frequency Axis
1 “f —
Xn(m) = x(n)e—jznnm N,
\/ﬁ n=0
and N-1
x(n) = _1__ z x" (m)eiZMm/N (3-18)
\/ﬁ n=0

for the forward and inverse DFTs. (In Section 3.7, we discuss the mean-
ing and significance of the inverse DFT.) The 1/ VN scale factors in Egs.
(3-18') seem a little strange, but they’re used so that there’s no scale
change when transforming in either direction. When analyzing signal
spectra in practice, we're normally more interested in the relative magni-
tudes rather than absolute magnitudes of the individual DFT outputs, so
scaling factors aren’t usuaily that important to us.

3.5 DFT Frequency Axis

The frequency axis m of the DFT result in Figure 3-4 deserves our attention
once again. Suppose we hadn't previously seen our DFT Example 1, were
given the eight input sample values, from Eq. (3-11), and asked to perform
an 8-point DFT on them. We'd grind through Eq. (3-2) and get the X(m) val-
ues shown in Figure 3-4. Next we ask, “What's the frequency of the highest
magnitude component in X(m) in Hz?” The answer is not “1.” The answer
depends on the original sample rate f,. Without prior knowledge, we have no
idea over what time interval the samples were taken, so we don’t know the
absolute scale of the X(m) frequency axis. The correct answer to the question
is to take £, and plug it into Eq. (3-5) with m = 1. Thus, if f, = 8000 samples/s,
then, the frequency associated with the largest DFT magnitude term is

m 1-8000
"Nji =fana1ysis n=

ﬁmalysis (m)= =1000 Hz.

If we said the sample rate f, was 75 samples/s, we’d know, from Eq. (3-5),
that the frequency associated with the largest magnitude term is now

1.75
fanalysis (1) = T =9.375Hz.

OK, enough of this—just remember that the DFT’s frequency spacing (res-
olution) is f,/N.
To recap what we’ve learned so far:

67

68

The Discrete Fourier Transform

« each DFT output term is the sum of the term-by-term products of an
input time-domain sequence with sequences representing a sine and
a cosine wave,

e for real inputs, an N-point DFT’s output provides only N/2 indepen-
dent terms,

* the DFT is a linear operation,
o the magnitude of the DFT results are directly proportional to N, and
* the DFT’s frequency resolution is f,/N.

It’s also important to realize, from Eq. (3-5), that X(N/2), whenm=N/2, cor-
responds to half the sample rate, i.e. the folding (Nyquist) frequency f,/2.

3.6 DFT Shifting Theorem

There’s an important property of the DFT known as the shifting theorem.
It states that a shift in time of a periodic x(n) input sequence manifests
itself as a constant phase shift in the angles associated with the DFT
results. (We won't derive the shifting theorem equation here because its
derivation is included in just about every digital signal processing text-
book in print.) If we decide to sample x(n) starting at n equals some inte-
ger k, as opposed to 1 = 0, the DFT of those time-shifted sample values is
X iftea(m) where

X isrea() = &2%/N X(m) . (3-19)

Equation (3-19) tells us that, if the point where we start sampling x(n) is
shifted to the right by k samples, the DFT output spectrum of X, .4(m) is
X(m) with each of X(m)’s complex terms multiplied by the linear phase
shift ¢2%m/N which is merely a phase shift of 2nkm /N radians or 360km/N
degrees. Conversely, if the point where we start sampling x() is shifted to
the left by k samples, the spectrum of Xgq.4(m) is X(m) multiplied by
g2mkm/N 1 et’s illustrate Eq. (3-19) with an example.

3.6.1 DFT Example 2

Suppose we sampled our DFT Example 1 input sequence later in time by
k = 3 samples. Figure 3-5 shows the original input time function,

X (t) = sin(2r1000¢) + 0.5sin(2n2000¢+371/4) .

DFT Shifting Theorem
The DFT in Example 1 was taken
over these eight sample values.
I L 1
1.5 T
1 .8 X in(t)
1 p Pid \/ /-
05 + ~ .
------------- .\ /.ﬁ../
1}
7
_1'5 A \—.
-3 -2 -1 [} 1 2 3 4 5 6 7 n —p-
L "l
T
The DFT in Example 2 is taken
over these eight sample values.

Figure 3-5 Comparison of sampling times between DFT Example 1 and DFT
Example 2.

We can see that Figure 3-5 is a continuation of Figure 3-2(a). Our new x()
sequence becomes the values represented by the solid black dots in Figure
3-5 whose values are

x(0) = 1.0607, x(1) = 0.3535,

x(2) = -1.0607, x(3) = -1.3535,

x(4) = -0.3535, x(3) = 0.3535,

x(6) = 0.3535, x(7) = 0.6464 . (3-20)

Performing the DFT on Eq. (3-20), X, ¢.q(m) is

X pipea(m) = | M Xshiﬂed{m)'s Xohied VS | Xpipea(m)’s . Xsh,fted(m)’s
magnitude phase real part | imaginary part
0 0 0 0 0
1 4 +45 2.8284 2.8284
2 2 ~45 14142 -1.414
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 2 +45 14142 14142
7 4 -45 2.8284 -2.828 (3-21)

69

70

The Discrete Fourier Transform

Example 2: Magnitude of X g oq (M) Example 2: Real part of Xshied (M)
4 n - 3 » L}
2 ©° |
2 . - C [] L]
a :
(a) p ; 1 [
Ow } i . - H . O ; i
e 4 — J t —=. J . + ™
¢ 1 2 3 4 5 6 7 (kHz) 1 2 3 4 5 6 7 (kHz)
Example 2: Phase of X neg (M) in degrees Example 2: Imaginary part of Xgniteg (M)
451+) 4
i H a
2 L7 2 2 LI
b) o#—"t—r . p—t— (d) o= ——n—n—n sl
pom . pom
l L A S R -2i ! 8 45 8k
~45 [. 4

Figure 3-6 DFT results from Example 2: (a) magnitude of Xy u.4(m): (0) phase of
XittoaCM: (©) real part of Xy e 4(m): (d) imaginary part of X e ().

The values in Eq. (3-21) are illustrated as the dots in Figure 3-6. Notice that
Figure 3-6(a) is identical to Figure 3-4(a). Equation (3-19) told us that the
magnitude of Xq.4(m) should be unchanged from that of X(m). That's a
comforting thought, isn’t it? We wouldn’t expect the DFT magnitude of
our original periodic x, () to change just because we sampled it over a dif-
ferent time interval. The phase of the DFT result does, however, change
depending on the instant at which we started to sample x; ().

By looking at the m = 1 component of X .q.4(m), for example, we can
double-check to see that phase values in Figure 3-6(b) are correct. Using
Eq. (3-19) and remembering that X(1) from DFT Example 1 had a magni-
tude of 4 at a phase angle of -90 (or -n/2 radians), k = 3 and N = 8 so that

Xshifted(l) = gf2mkm/N X1) = o213-1/8 . goin/2 = 4ei(6n/8 - 4n/8) — gofn/4 (3-22)

S0 X feq(1) has a magnitude of 4 and a phase angle of /4 or +45°, which
is what we set out to prove using Eq. (3-19).

3.7 Inverse DFT

Although the DFT is the major topic of this chapter, it’s appropriate, now,
to introduce the inverse discrete Fourier transform (IDFT). Typically we
think of the DFT as transforming time-domain data into a frequency-
domain representation. Well, we can reverse this process and obtain the
original time-domain signal by performing the IDFT on the X(m) fre-
quency-domain values. The standard expressions for the IDFT are

DFT Leakage
x(n) = L I\iX(m)ejz"’"" /N (3-23)
N
m=0
and equally,

1 Nl
x(n) = N 2 X(m)[cos(2rmn / N) + jsin(2nmn/ N)] . (3-23)

m=0

Remember the statement we made in Section 3.1 that a discrete time-
domain signal can be considered the sum of various sinusoidal analytical
frequencies and that the X(m) outputs of the DFT are a set of N complex val-
ues indicating the magnitude and phase of each analysis frequency com-
prising that sum. Equations (3-23) and (3-23") are the mathematical
expressions of that statement. It’s very important for the reader to under-
stand this concept. If we perform the IDFT by plugging our results from
DFT Example 1 into Eq. (3-23), we'll go from the frequency-domain back to
the time-domain and get our original real Eq. (3-11') x(n) sample values of

2(0) = 03535 +j0.0 x(1) = 0.3535 + j0.0
x(2) = 0.6464 + /0.0 x(3) = 1.0607 + j0.0
x(4) = 03535 +j0.0 x(3) = -1.0607 + j0.0
x(6) = ~1.3535 + j0.0 x(7) =—-0.3535 + j0.0 .

Notice that Eq. (3-23)'s IDFT expression differs from the DFT’s Eq. (3-2)
only by a 1/N scale factor and a change in the sign of the exponent. Other
than the magnitude of the results, every characteristic that we’ve covered,
thus far, regarding the DFT, also applies to the IDFT.

3.8 DFT Leakage

Hold on to your seat now. Here's where the DFT starts to get really inter-
esting. The two previous DFT examples gave us correct results because
the input x(n) sequences were very carefully chosen sinusoids. As it turns
out, the DFT of sampled real-world signals provides frequency-domain
results that can be misleading. A characteristic, known as leakage, causes
our DFT results to be only an approximation of the true spectra of the
original input signals prior to digital sampling. Although there are ways
to minimize leakage, we can’t eliminate it entirely. Thus, we need to
understand exactly what effect it has on our DFT results.

n

72

The Discrete Fourier Transform

Let's start from the beginning. DFTs are constrained to operate on a
finite set of N input values sampled at a sample rate of f,, to produce an
N-point transform whose discrete outputs are associated with the indi-
vidual analytical frequencies f, i ("), with

fonatysis(M) = —n;]—fi,where m=0,1,2,..,N-1. (3-24)

Equation (3-24), illustrated in DFT Example 1, may not seem like a prob-
lem, but it is. The DFT produces correct results only when the input data
sequence contains energy precisely at the analysis frequencies given in
Eq. (3-24), at integral multiples of our fundamental frequency f,/N. If the
input has a signal component at some intermediate frequency between
our analytical frequencies of mf,/N, say 1.5f,/N, this input signal will
show up to some degree in all of the N output analysis frequencies of our
DFT! (We typically say that input signal energy shows up in all of the
DFT's output bins, and we'll see, in a moment, why the phrase “output
bins” is appropriate.) Let's understand the significance of this problem
with another DFT example.

Assume we're taking a 64-point DFT of the sequence indicated by the
dots in Figure 3-7(a). The sequence is a sinewave with exactly three
cycles contained in our N = 64 samples. Figure 3-7(b) shows the first half
of the DFT of the input sequence and indicates that the sequence has an
average value of zero (X(0) = 0) and no signal components at any fre-
quency other than the m = 3 frequency. No surprises so far. Figure 3-7(a)
also shows, for example, the m = 4 sinewave analysis frequency, super-
imposed over the input sequence, to remind us that the analytical fre-
quencies always have an integral number of cycles over our total sample
interval of 64 points. The sum of the products of the input sequence and
the m = 4 analysis frequency is zero. (Or we can say, the correlation of the
input sequence, and the m = 4 analysis frequency is zero.) The sum of the
products of this particular three-cycle input sequence and any analysis
frequency other than m = 3 is zero. Continuing with our leakage exam-
ple, the dots in Figure 3-8(a) show an input sequence having 3.4 cycles
over our N = 64 samples. Because the input sequence does not have an
integral number of cycles over our 64-sample interval, input energy has
leaked into all the other DFT output bins as shown in Figure 3-8(b). The
m = 4 bin, for example, is not zero because the sum of the products of the
input sequence and the m = 4 analysis frequency is no longer zero. This
is leakage—it causes any input signal whose frequency is not exactly at a
DFT bin center to leak into all of the other DFT output bins. Moreover,

DFT Leakage

m = 4 analysis frequency

et \
u)

A

a5 ‘ DFT output magnitude
L

0 8-8-9—4-5-5-0-0-0-0-0-5-8-8-5-5-0-8-1-5-2-0-0-0-0-1-0-0-0-0-0-0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 7
{Freq)

Figure 3-7 64-point DFT: () input sequence of three cycles and the m = 4
analysis frequency sinusoid; (b) DFT output magnitude.

leakage is an unavoidable fact of life when we perform the DFT on real-
world finite-length time sequences.

Now, as the English philosopher Douglas Adams would say, “Don't
panic.” Let’s take a quick look at the cause of leakage to learn how to pre-
dict and minimize its unpleasant effects. To understand the effects of leak-
age, we need to know the amplitude response of a DFT when the DFT’s
input is an arbitrary, real sinusoid. Although Sections 3.14 and 3.15 dis-
cuss this issue in detail, for our purposes, here, we’ll just say that, for a
real cosine input having k cycles in the N-point input time sequence, the
amplitude response of an N-point DFT bin in terms of the bin index m is
approximated by the sinc function

- N sinfn(k - m)]

Xm) = ==

(3-25)

74

The Discrete Fourier Transform

Input frequency = 3.4 cycles m = 4 analysis frequency

A
30 4 DFT output magnitude
25+ "

204
154 |=

© 101

.

i

8 10 12 14 16 18 20 22 24 26 28 30 m
(Freq)

o
N

Figure 3-8 64-point DFT: (0) 3.4 cycles input sequence and the m = 4 analysis
frequency sinusoid:; (o) DFT output magnifude.

We’ll use Eq. (3-25), illustrated in Figure 3-9(a), to help us determine
how much leakage occurs in DFTs. We can think of the curve in Figure
3-9(a), comprising a main lobe and periodic peaks and valleys known as
sidelobes, as the continuous positive spectrum of an N-point, real cosine
time sequence having k complete cycles in the N-point input time inter-
val. The DFT’s outputs are discrete samples that reside on the curves in
Figure 3-9; that is, our DFT output will be 2 sampled version of the con-
tinuous spectrum. (We show the DFT’s magnitude response to a real
input in terms of frequency (Hz) in Figure 3-9(b).) When the DFT’s input
sequence has exactly an integral k number of cycles (centered exactly in
the m = k bin), no leakage occurs, as in Figure 3-9, because when the
angle in the numerator of Eq. (3-25) is a nonzero integral muitiple of x,
the sine of that angle is zero.

DFT Leakage
N A
2 \
Conti i 4 Discrete DFT sequence defined by
ontinuous, positive, .
frequency spectrum of X(m) = N. Sinfr{k-m)]
a discrete cosine 1 2 nlk-m)
sequence
(a) 9 \ 4
0 g
| Freq
(m)
k+5

-
! ; Fre

! KisiN-— | i : (Hzc;

(N (DN (eDEIN (BN (ks5)fgIN

Figure 3-9 DFT positive frequency response due to an N-point input sequence
containing k cycles of a real cosine: (0) amplitude response as a
function of bin index m; () magnitude response as a function of
frequency in Hz.

By way of example, we can illustrate again what happens when the
input frequency k is not located at a bin center. Assume that a real 8-kHz
sinusoid, having unity amplitude, has been sampled at a rate of f, = 32,000
samples/s. If we take a 32-point DFT of the samples, the DFT’s frequency
resolution, or bin spacing, is f,/N = 32,000/32 Hz = 1.0 kHz. We can pre-
dict the DFT’s magnitude response by centering the input sinusoid’s spec-
tral curve at the positive frequency of 8 kHz, as shown in Figure 3-10(a).
The dots show the DFT’s output bin magnitudes.

Again, here’s the important point to remember: the DFT output is a
sampled version of the continuous spectral curve in Figure 3-10(a). Those
sampled values in the frequency-domain, located at mf,/N, are the dots
in Figure 3-10(a). Because the input signal frequency is exactly at a DFT

75

The Discrete Fourier Transform

Input frequency = 8.0 kHz i
|
|
(a) e /‘_/_l ¢ //\"/\ P

s 4 5 6 7 8 9 10 11 12 13 Freq
(kHz)

[
|

Input frequency =8.5kHz 7 .
() 8 . /..\/} H 1 .\/‘A ol S
9

3 4 5 6 7 8 10 11 2 13 Freq
(kH2)

S
Input frequency = 8.75 kHz / k
]
515 . |

Y N

(C)) a L} Il

.
8 g 10 11 12 13 Freq
(kHz)

w
N
o 4
)
~ 4w

Figure 3-10 DFT bin positive frequency responses: (Q) DFT input
frequency = 8.0 kHz; () DFT input frequency = 8.5 kHz
(c) DFT input frequency = 8.75 kHz.

bin center, the DFT results have only one nonzero value. Stated in
another way, when an input sinusoid has an integral number of cycles
over N time-domain input sample values, the DFT outputs reside on the
continuous spectrum at its peak and exactly at the curve’s zero crossing
points. From Eq. (3-25) we know the peak output magnitude is 32/2=16.
(If the real input sinusoid had an amplitude of 2, the peak of the response
curve would be 2 -32/2, or 32.) Figure 3-10(b) illustrates DFT leakage
where the input frequency is 8.5 kHz, and we see that the frequency-
domain sampling results in nonzero magnitudes for all DFT output bins.
An 8.75-kHz input sinusoid would result in the leaky DFT output shown
in Figure 3-10(c). If we're sitting at a computer studying leakage by plot-
ting the magnitude of DFT output values, of course, we'll get the dots in
Figure 3-10 and won't see the continuous spectral curves.

At this point, the attentive reader should be thinking;: “If the continuous
spectrums that we're sampling are symmetrical, why does the DFT output in

DFT Leakage

Figure 3-8(b) look so asymmetrical?” In Figure 3-8(b), the bins to the right of
the third bin are decreasing in amplitude faster than the bins to the left of the
third bin. “And another thing, evaluating the continuous spectrum’s X(mf)
function at an abscissa value of 0.4 gives a magnitude scale factor of 0.75.
Applying this factor to the DFT’s maximum possible peak magnitude of 32,
we should have a third bin magnitude of approximately 32 - 0.75 = 24—but
Figure 3-8(b) shows that the third-bin magnitude is slightly greater than 25.
What's going on here?” We answer this by remembering what Figure 3-8(b)
really represents. When examining a DFT output, we're normally interested
only in the m = 0 to m = (N/2-1) bins. Thus, for our 3.4 cycles per sample
interval example in Figure 3-8(b), only the first 32 bins are shown. Well, the
DFT is periodic in the frequency domain as illustrated in Figure 3-11. Upon
examining the DFT’s output for higher and higher frequencies, we end up
going in circles, and the spectrum repeats itself forever.

The more conventional way to view a DFT output is to unwrap the
spectrum in Figure 3-11 to get the spectrum in Figure 3-12. Figure 3-12
shows some of the additional replications in the spectrum for the
3.4 cycles per sample interval example. Concerning our DFT output
asymmetry problem, as some of the input 3.4-cycle signal amplitude leaks
into the 2nd bin, the 1st bin, and the Oth bin, leakage continues into the
~1st bin, the —2nd bin, the —3rd bin, etc. Remember, the 63rd bin is the -1st
bin, the 62nd bin is the —2nd bin, and so on. These bin equivalencies allow

meEN S asnang,, / m=32

o . m=31

Figure 3-11 Cyclic representation of the DFT's spectral replication when the
DFT input Is 3.4 cycles per sample inferval.

77

78

The Discrete Fourler Transform

—

Input signal also shows up at
(0 - 3.4 = -3.4 cycles/interval

Input signal aiso shows up at64 - 3.4 = 60.6,
and 64 + 3.4 = 67.4 cycles/interval

Lol

Input signal is at 3.4

. . (cycles/interval
L} [[} .
Spectrums repeat in i Spactrums repeat in
this diraction [- ™ ' this direction
| ; i

a []
ey
LU | LSLAS IS LI LA B B ll"'l'l'l'l'l'l'l'
2 -10-8 6 4 -2 0 2 4 8 8 10 12 52 54 56 58 60 62 64 66 83 7O 72 74 TE Fm)
(Freq)

Figure 3-12 Spectral replication when the DFT input is 3.4 cycles per sample inferval.

" " DFT output magnitude
(with input = 3.4 cyclesfinterval)

a m=0 ' m
@ . l .l
m. mges @
ws” Pl ey
mo L L]
A B A s B s o A
5052545655606202468101214m
(-14)(-12)(-10)(-8) {-6) (-4} (-2) (Freq)

. DFT output magnitude
| (with input = 28.6 cycles/interval)

Figure 3-13 DFT output magnitude: (a) when the DFT input is 3.4 cycles per
sample interval; (o) when the DFT input is 28.6 cycles per sample
interval.

us to view the DFT output bins as if they extend into the negative fre-
quency range, as shown in Figure 3-13(a). The result is that the leakage
wraps around the m = 0 frequency bin, as well as around the m = N fre-
quency bin. This is not surprising because the m = 0 frequency is them =N

DFT Leakage

frequency. The leakage wraparound at the m = 0 frequency accounts for
the asymmetry about the DFT's m = 3 bin in Figure 3-8(b).

Recall from the DFT symmetry discussion, when a DFT input
sequence x(n) is real, the DFT outputs from m = 0 to m = (N/2-1) are
redundant with frequency bin values for m > (N/2), where N is the DFT
size. The mth DFT output will have the same magnitude as the (N-m)th
DFT output. That is, | X(m)! = | X(N-m)!. What this means is that leak-
age wraparound also occurs about the m = N/2 bin. This can be illus-
trated using an input of 28.6 cycles per sample interval (32 - 3.4) whose
spectrum is shown in Figure 3-13(b). Notice the similarity between
Figure 3-13(a) and Figure 3-13(b). So the DFT exhibits leakage wrap-
around about the m = 0 and m = N/2 bins. Minimum leakage asymme-
try will occur near the N/4th bin as shown in Figure 3-14(a) where the
full spectrum of a 16.4 cycles per sample interval input is provided.
Figure 3-14(b) shows a close-up view of the first 32 bins of the 16.4 cycles
per sample interval spectrum.

DFT output magnitude
4 (with input = 16.4 cycles/interval)
251
|] "
20 +
L &
15 +
@ 104 |
54
0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 m
(Freq)

‘ DFT output magnitude
264 (withinput=16.4 .
cycles/interval)

20 +
16 +

® 104

54

oan

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 m
(Freq)

m=N4=16

Figure 3-14 DFT output magnitude when the DFT inpuf is 16.4 cycles per
sample intervatl: (@) full output spectrum view; (b) close-up view
showing minimized leakage asymmetry at frequency m = N/A4,

80

The Discrete Fourler Transform

You can read about leakage all day. However, the best way to appreci-
ate its effects is to sit down at a computer and use a software program to
take DFTs, in the form of fast Fourier transforms (FFTs), of your personally
generated test signals like those in Figures 3-7 and 3-8. You can, then,
experiment with different combinations of input frequencies and various
DET sizes. You'll be able to demonstrate that DFT leakage effect is trouble-
some because the bins containing low-level signals are corrupted by the
sidelobe levels from neighboring bins containing high-amplitude signals.

Although there’s no way to eliminate leakage completely, an important
technique known as windowing is the most common remedy to reduce its
unpleasant effects. Let's look at a few DFT window examples.

3.9 Windows

Windowing reduces DFT leakage by minimizing the magnitude of Eq.
(3-25)’s sinc function’s sin(x)/x sidelobes shown in Figure 3-9. We do this
by forcing the amplitude of the input time sequence at both the beginning
and the end of the sample interval to go smoothly toward a single common
amplitude value. Figure 3-15 shows how this process works. If we consider
the infinite-duration time signal shown in Figure 3-15(a), a DFT can only
be performed over a finite-time sample interval like that shown in Figure
3-15(c). We can think of the DFT input signal in Figure 3-15(c) as the prod-
uct of an input signal existing for all time, Figure 3-15(a), and the rectan-
gular window whose magnitude is 1 over the sample interval shown in
Figure 3-15(b). Anytime we take the DFT of a finite-extent input sequence
we are, by default, multiplying that sequence by a window of all ones and
effectively multiplying the input values outside that window by zeros. As
it turns out, Eq. (3-25)’s sinc function’s sin(¥)/x shape, shown in Figure
3-9, is caused by this rectangular window because the continuous Fourier
transform of the rectangular window in Figure 3-15(b) is the sinc function.

As we’ll soon see, it’s the rectangular window’s abrupt changes
between one and zero that are the cause of the sidelobes in the the sin(x)/x
sinc function. To minimize the spectral leakage caused by those sidelobes,
we have to reduce the sidelobe amplitudes by using window functions
other than the rectangular window. Imagine if we multiplied our DFT
input, Figure 3-15(c), by the triangular window function shown in Figure
3-15(d) to obtain the windowed input signal shown in Figure 3-15(e).
Notice that the values of our final input signal appear to be the same at the
beginning and end of the sample interval in Figure 3-15(e). The reduced
discontinuity decreases the level of relatively high frequency components
in our overall DFT output; that is, our DFT bin sidelobe levels are reduced
in magnitude using a triangular window. There are other window func-

Windows

tions that reduce leakage even more than the triangular window, such as
the Hanning window in Figure 3-15(f). The product of the window in
Figure 3-15(f) and the input sequence provides the signal shown in Figure
3-15(g) as the input to the DFT. Another common window function is the
Hamming window shown in Figure 3-15(h). It's much like the Hanning
window, but it’s raised on a pedestal.

| Sample !
< interval —
(a)
Time
(e)
; s 1
DR S <~ pg ——>
1.0 1.0
® P ®
Hanning
o window
Time
Time
! Sample i
{ intgrval ——>
i :
(c) h A ’\) l\ f\ .
V V U \) V V U V -
, . Sar ;
e Samle > f— o~
BTN N S— - ; 1.0 =
i
@ g ® Hamors
ol .
Time Time

Figure 3-15 Minimizing sample interval endpoint discontinuities: (a) infinite duration
input sinusoid; (o) rectanguiar window due to finite-time sample
interval; (¢) product of rectangular window and infinite-duration input
sinusoid; (d) triangular window function; (&) product of triangular
window and Infinite-duration input sinusold; (f) Honning window
function; (g) product of Hanning window and Infinite-duration input
sinusoid; (h) Hamming window function.

81

82

The Discrete Fourier Transform

Before we see exactly how well these windows minimize DFT leakage,
let’s define them mathematically. Assuming that our original N input signal
samples are indexed by n, where 0 <n <N-1, we'll call the N time-domain
window coefficients w(n); that is, an input sequence x(n) is multiplied by
the corresponding window w(n) coefficients before the DFT is performed.
So the DFT of the windowed x(n) input sequence, X, (m), takes the form of

N-1
Xo(m)="Y w(n): x(n)e1Tmm/IN, (3-26)

n=0

To use window functions, we need mathematical expression of them in
terms of n. The following expressions define our window function
coefficients:

Rectangular window: wny=1forn=0,1,2,...,N-1 (3-27)

(also called the uniform,

or boxcar, window)

Triangular window: n

(very similar to the ©(n) = N/2 ,forn=0,1,2,..,N/2,and

Bartlett[3], and "

. g

Parzen[4,5] windows) N2
forn=N/2+1,N/2+2,.,N-1. (3-28)

Hanning window: w(n) = 0.5 — 0.5cos(2nn/N-1),

(also called the raised forn=0,1,2,..., N-1. (3-29)

cosine, Hann, or

von Hann window)

Hamming window: w(n) = 0.54 - 0.46cos(2nn/N-1),
forn=0,1,2,..., N-L (3-30)
If we plot the w(n) values from Egs. (3-27) through (3-30), we’d get the
corresponding window functions like those in Figures 3-15(b), 3-15(d),
3-15(f), and 3-15(h).t

t In the literature, the equations for window functions depend on the range of the sample
index n. We define to be in the range 0 < n < N-1. Some authors define n to be in the range
—N/2 < n < N/2, in which case, for example, the expression for the Hanning window would
have a sign change and be w(n) =05 + 0.5cos(2nn/N-1).

Windows

The rectangular window’s amplitude response is the yardstick we nor-
mally use to evaluate another window function’s amplitude response; that
is, we typically get an appreciation for a window’s response by comparing
it to the rectangular window that exhibits the magnitude response shown
in Figure 3-9(b). The rectangular window’s sin(x)/x magnitude response,
{W(m)|, is repeated in Figure 3-16(a). Also included in Figure 3-16(a) are
the Hamming, Hanning, and triangular window magnitude responses.
(The frequency axis in Figure 3-16 is such that the curves show the response
of a single N-point DFT bin when the various window functions are used.)
We can see that the last three windows give reduced sidelobe levels relative
to the rectangular window. Because the Hamming, Hanning, and triangu-
lar windows reduce the time-domain signal levels applied to the DFT, their
main lobe peak values are reduced relative to the rectangular window.
(Because of the near-zero w(n) coefficients at the beginning and end of the
sample interval, this signal level loss is called the processing gain, or loss,
of a window.) Be that as it may, we're primarily interested in the windows’
sidelobe levels, which are difficult to see in Figure 3-16(a)’s linear scale. We
will avoid this difficulty by plotting the windows’ magnitude responses on
a logarithmic decibel scale, and normalize each plot so its main lobe peak
values are zero dB. (Appendix E provides a discussion of the origin and
utility of measuring frequency-domain responses on a logarithmic scale
using decibels.) Defining the log magnitude response to be | W z(m) |, we
get | W g(m)| by using the expression

[W, (m) | = 20- loglo(%). (3-31)

(The | W(0) | term in the denominator of Eq. (3-31) is the value of W(m) at
the peak of the main lobe when m = 0.) The { W (m) | curves for the var-
ious window functions are shown in Figure 3-16(b). Now we can really
see how the various window sidelobe responses compare to each other.

Looking at the rectangular window’s magnitude response we see that
its main lobe is the most narrow, f,/N. However, unfortunately, its first
sidelobe level is only -13 dB below the main lobe peak, which is not so
good. (Notice that we're only showing the positive frequency portion of
the window responses in Figure 3-16.) The triangular window has
reduced sidelobe levels, but the price we've paid is that the triangular
window’s main lobe width is twice as wide as that of the rectangular win-
dow’s. The various nonrectangular windows’ wide main lobes degrade
the windowed DFT’s frequency resolution by almost a factor of two.
However, as we'll see, the important benefits of leakage reduction usually
outweigh the loss in DFT frequency resolution.

83

84 The Discrete Fourier Transform

4 Linear-scale window magnitude responses, IW(m)l
1.

K / Rectangular (dotted)

0.6 . Hamming {dash-dot)

(@)
Triangular {dashed)

Hanning (solid)

1
4N Freq

0 Rectanguiar (dotted) ‘
Hanning (solid)
-10k .
. Hamming (dash-dot)
b Triangular (dashed)
-20p 3 . -
(b) -30} ',:
-40} o
-
4
-850 *
1
[]
.
-60 t -
fg/N Freq

Windows

Figure 3-16 Window magnifude responses: (0) | Wm)| ona linear scale; ()
| Wgg(m)l ona normalized logarithmic scale.

Notice the further reduction of the first sidelobe level, and the rapid side-
lobe roll-off of the Hanning window. The Hamming window has even
lower first sidelobe levels, but this window’s sidelobes roll off slowly rela-
tive to the Hanning window. This means that leakage three or four bins
away from the center bin is lower for the Hamming window than for the
Hanning window, and leakage a half dozen or so bins away from the cen-
ter bin is lower for the Hanning window than for the Hamming window.

(a)

A Windowed input signal

08 T
06T
04+
024

Hanning
window function

-02 4+
04 ¢+
0.6 +
-08 4

4l

x(n) = [0.5 - 0.5c0s(2rn/64)] - {sin(2n3.4¥64)]

T T
window function 3.4-cycle sinawave

A DFT output magnitudes

25 -1- u
20 4+
15 4 !
A)
\‘1 ® Rectangular window response
\ A Hanning window response
10 4
i
o |
5 a7 N
LA i\
| |
i/ A~
S NG Ty
0 AA T S N O i vy B o o

A\Y
01234567 89101112131415161718 2728293031 m
(Freq)

Figure 3-17 Hanning window: (@) 64-sample product of a Hanning window and a

3.4 cycles per sample inferval input sinewave; (b) Hanning DFT output
response vs. rectangular window DFT output response.

When we apply the Hanning window to Figure 3-8(a)’s 3.4 cycles per
sample interval example, we end up with the DFT input shown in Figure
3-17(a) under the Hanning window envelope. The DFT outputs for the
windowed waveform are shown in Figure 3-17(b) along with the DFT
results with no windowing, i.e,, the rectangular window. As we expected,

85

86

The Discrete Fourier Transform

the shape of the Hanning window’s response looks broader and has a
lower peak amplitude, but its sidelobe leakage is noticeably reduced from
that of the rectangular window.

We can demonstrate the benefit of using a window function to help us
detect a low-level signal in the presence of a nearby high-level signal.
Let’s add 64 samples of a 7 cycles per sample interval sinewave, with a
peak amplitude of only 0.1, to Figure 3-8(a)’s unity-amplitude 3.4 cycles
per sample sinewave. When we apply a Hanning window to the sum of
these sinewaves, we get the time-domain input shown in Figure 3-18(a).
Had we not windowed the input data, our DFT output would be the
squares in Figure 3-18(b) where DFT leakage causes the input signal com-
ponent at m = 7 to be barely discernible. However, the DFT of the win-
dowed data shown as the triangles in Figure 3-18(b), makes it easier for us
to detect the presence of the m = 7 signal component. From a practical
standpoint, people who use the DFT to perform real-world signal detec-
tion have learned that their overall frequency resolution and signal sensi-
tivity are affected much more by the size and shape of their window
function than the mere size of their DFIs.

As we become more experienced using window functions on our DFT
input data, we’ll see how different window functions have their own indi-
vidual advantages and disadvantages. Furthermore, regardless of the
window function used, we've decreased the leakage in our DFT output
from that of the rectangular window. There are many different window
functions described in the literature of digital signal processing—so many,
in fact, that they’ve been named after just about everyone in the digital
signal processing business. It's not that clear that there’s a great deal of
difference among many of these window functions. What we find is that
window selection is a trade-off between main lobe widening, first side-
lobe levels, and how fast the sidelobes decrease with increased frequency.
The use of any particular window depends on the application[5], and
there are many applications.

Windows are used to improve DFT spectrum analysis accuracy[6], to
design digital filters[7,8], to simulate antenna radiation patterns, and
even in the hardware world to improve the performance of certain
mechanical force to voltage conversion devices[9]. So there’s plenty of
window information available for those readers seeking further knowl-
edge. (The Mother of all technical papers on windows is that by
Harris[10]. A useful paper by Nuttall corrected and extended some por-
tions of Harris’s paper[11].) Again, the best way to appreciate window-
ing effects is to have access to a computer software package that contains
DFT, or FFT, routines and start analyzing windowed signals. (By the way,

Windows

A Windowed input signal Window function 3.4- and 7-cycle sinewaves

*(n) = [0.5 - 0.5cos(2n64)]- [sin(2n3.41V64) +0.1sin(2n7 E4))
08 4 uy

06 1
04 1

02 4

(a) 0
-02 4
04l
06+ .

Lt 20 Sna s —p
n

{Tima)

-1 4 "

-12 4

»

A DFT output magnitudes

s+ .

A
i
j
i
[

20 + i
i

® Rectangular window response

A Hanning window response

(b)

Signal component
atm=7

O S T O e S
67 8 910111213 141516171819 282930 31

m
(Freq)

Figure 3-18 Increased signal detection sensitivity afforded using windowing: (o) 64-
sample product of a Hanning window and the sum of a 3.4 cycles and
a7 cycles per sampls inferval sinewaves; (b) reduced leakage
Hanning DFT output response vs. rectangutar window DFT output
response.

while we delayed their discussion until Section 5.3, there are two other
commonly used window functions that can be used to reduce DFT leak-
age. They’re the Chebyshev and Kaiser window functions, that have
adjustable parameters, enabling us to strike a compromise between
widening main lobe width and reducing sidelobe levels.)

87

88

The Discrete Fourler Transform

3.10 DFT Scalloping Loss

Scalloping is the name used to describe fluctuations in the overall magni-
tude response of an N-point DFT. Although we derive this fact in Section
3.16, for now we'll just say that when no input windowing function is
used, the sin{x)/x shape of the sinc function’s magnitude response applies
to each DFT output bin. Figure 3-19(a) shows a DFI’s aggregate magni-
tude response by superimposing several sin(x)/x bin magnitude
responses.’ (Because the sinc function’s sidelobes are not key to this dis-
cussion, we don’t show them in Figure 3-19(a).) Notice from Figure 3-19(b)
that the overall DFT frequency-domain response is indicated by the bold
envelope curve. This rippled curve, also called the picket fence effect, illus-
trates the processing loss for input frequencies between the bin centers.

sin(x)
X
(a) + 4 ¥ Y ¥ ¥ +) - >
A A A e
mis (me2)ts | (M)t
N N N
(rn+1)fs (m+3) 1 (m+5)fg
N N N
....... -1.0
© /] VAT
T ¢ Freq
_mis (m+2)fs (m+d)fs
N N N

Figure 3-19 DFT bin magnitude response curves: (6) individual sin{x)/x
responses for each DFT bin; (b) equivalent overail DFT magnitude
response.

* Perhaps Figure 3-1%(a) is why individual DFT outputs are called “bins.” Any signal energy
under a sin(x)/x curve will show up in the enclosed storage compartment of that DFI"s output
sample.

DFT Resolution, Zero Stuffing, and Frequency-Domain Sampling

From Figure 3-19(b), we can determine that the magnitude of the DFT
response fluctuates from 1.0, at bin center, to 0.637 halfway between bin
centers. If we’re interested in DFT output power levels, this envelope rip-
ple exhibits a scalloping loss of almost -4 dB halfway between bin cen-
ters. Figure 3-19 illustrates a DFT output when no window (ie., a
rectangular window) is used. Because nonrectangular window functions
broaden the DFT’s main lobe, their use results in a scalloping loss that
will not be as severe as the rectangular window[10,12]. That is, their
wider main lobes overlap more and fill in the valleys of the envelope
curve in Figure 3-19(b). For example, the scalloping loss of a Hanning
window is approximately 0.82, or ~1.45 dB, halfway between bin centers.
Scalloping loss is not, however, a severe problem in practice. Real-world
signals normally have bandwidths that span many frequency bins so that
DFT magnitude response ripples can go almost unnoticed. Let’s look at
a scheme called zero stuffing that’s used to both alleviate scalloping loss
effects and to improve the DFT’s frequency resolution.

3.11 DFT Resolution, Zero Stuffing, and
Frequency-Domain Sampling

One popular method used to improve DFT frequency resolution is known
as zero stuffing, or zero padding. This process involves the addition of zero-
valued data samples to an original DFT input sequence to increase the
total number of input data samples. Investigating this zero stuffing tech-
nique illustrates the DFT’s important property of frequency-domain sam-
pling alluded to in the discussion on leakage. When we sample a
continuous time-domain function, having a continuous Fourier transform
(CFT), and take the DFT of those samples, the DFT results in a frequency-
domain sampled approximation of the CFT. The more points in our DFT,
the better our DFT output approximates the CFT.

To illustrate this idea, suppose we want to approximate the CFT of the
continuous f{f) function in Figure 3-20(a). This f{t) waveform extends to
infinity in both directions but is nonzero only over the time interval of T
seconds. If the nonzero portion of the time function is a sinewave of three
cycles in T seconds, the magnitude of its CFT is shown in Figure 3-20(b).
(Because the CFT is taken over an infinitely wide time interval, the CFT
has infinitesimally small frequency resolution, resolution so fine-grained
that it’s continuous.) It's this CFT that we'll approximate with a DFT.

Suppose we want to use a 16-point DFT to approximate the CFT of f(f) in
Figure 3-20(a). The 16 discrete samples of f{t), spanning the three periods of
fitY’s sinusoid, are those shown on the left side of Figure 3-21(a). Applying

89

90

The Discrete Fourier Transform

(@

Continuous
time

Continuous Fourier
transform of f(t)

(b)

[

¥ T L) T ¥
YT 2T 3T 4T 5T Continuous
frequency

Figure 3-20 Continuous Fourier fransform: (a) continuous time-domain f(f) of
a truncated sinusoid of frequency 3/T; (b) continuous Fourler
transform of f(f).

those time samples to a 16-point DFT results in discrete frequency-domain
samples, the positive frequency of which are represented by the dots on
the right side of Figure 3-21(a). We can see that the DFT output samples
Figure 3-20(b)’s CFT. If we append (or zero stuff) 16 zeros to the input
sequence and take a 32-point DFT, we get the output shown on the right
side of Figure 3-21(b), where we've increased our DFT frequency sampling
by a factor of two. Our DFT is sampling the input function’s CFT more
often now. Adding 32 more zeros and taking a 64-point DFT, we get the
output shown on the right side of Figure 3-21(c). The 64-point DFT output
now begins to show the true shape of the CFT. Adding 64 more zeros and
taking a 128-point DFT, we get the output shown on the right side of
Figure 3-21(d). The DFT frequency-domain sampling characteristic is obvi-
ous now, but notice that the bin index for the center of the main lobe is dif-
ferent for each of the DFT outputs in Figure 3-21.

Does this mean we have to redefine the DFT’s frequency axis when
using the zero-stuffing technique? Not really. If we perform zero stuffing
on L nonzero input samples to get a total of N time samples for an N-point
DFT, the zero-stuffed DFT output bin center frequencies are related to the
original f, by our old friend Eq. (3-5), or

center frequency of the mth bin = %ff— (3-32)

DFT Resolution, Zero Stuffing, and Frequency-Domain Sampling

input amplitude

Time

. &
L =
—
a
.’
L 3
-

Input amplitude
i1y . =
u [
05T :

f

ilnput amplitude

A -

3 s ol 12, 1 1 21 24 27 g0 Tme
anm

DFT magnitude
8
6
4
N N » [.
[L 9 + " ¥ -
[1 2 3 4 5 [
DFT magnitude
8 -
s ;
* .
4
2 LI .
- R R)
g —t L e W —
0 Bl —pmoef—}——— 0 —— 0 Ll
01 2 3 45386 78091 1w ™™

DFT magnitude .

o H
i i
-n 6 .
0.5 : Ty ; n
4 5
(c) o--m---mm - :
X Time . .
D15 101520 2530 85 40 45 50 55 60 2 wy .
05T - '-.\ ,'. . i = ..'~
i ma 0 Wb B W B B
i ® " 0 2 4 6 8 10 12 14 16 18 20 22 24 4
A Input amplitude DFT magnitude -
.
150" a g
. g
1] s .
05T, \m "
@ oy . 4 -
S0 S -
. 1z Tme n s -
| e
s " et b a? " e e
] OIWIWHWIWIM'-—V
LY 0 4 B 12 16 20 24 28 3236 40 44 48 [

Figure 3-21 DFT frequency-domain sampling: (@) 16 input data samples and
= 16; (b) 16 input data samples, 16 stuffed zeros, and N = 32; (¢) 16
input data samples, 48 stuffed zeros, and N = 64; (d) 16 input data
samples, 112 stuffed zeros, and N = 128,

So in our Figure 3-21(a) example, we use Eq. (3-32) to show that,
although the zero-stuffed DFT output bin index of the main lobe
changes as N increases, the zero-stuffed DFT output frequency associ-
ated with the main lobe remains the same. The following list shows how
this works:

N

92

The Discrete Fourler Transform

Main lobe peak Frequency of main lobe
Figure No. locatedatm= | L= | N= peak relative to f_ =
Figure 3-21(a) 3 16 16 ¥,/16
Figure 3-21(b) 6 16 32 6-£,/32=3f,/16
Figure 3-21(c) 12 16 64 12.f,/64 = 3f, /16
Figure 3-21(d) 2 16 | 128 24-£,/128 = 3f,/16

Do we gain anything by appending more zeros to the input sequence
and taking larger DFTs? Not really, because our 128-point DFT is sam-
pling the input’s CFT sufficiently now in Figure 3-21(d). Sampling it more
often with a larger DFT won’t improve our understanding of the input’s
frequency content. The issue here is that adding zeros to an input
sequence will improve our DFT’s output resolution, but there’s a practi-
cal limit on how much we gain by adding more zeros. For our example
here, a 128-point DFT shows us the detailed content of the input spec-
trum. We've hit a law of diminishing returns here. Performing a 256-point
or 512-point DFT, in our case, would serve little purpose.? There’s no rea-
son to oversample this particular input sequence’s CFT. Of course, there’s
nothing sacred about stopping at a 128-point DFT. Depending on the
number of samples in some arbitrary input sequence and the sample rate,
we might, in practice, need to append any number of zeros to get some
desired DFT frequency resolution.

There are two final points to be made concerning zero stuffing. First,
the DFT magnitude expressions in Egs. (3-17) and (3-17) don’t apply if
zero stuffing is being used. If we perform zero stuffing on L nonzero
samples of a sinusoid whose frequency is located at a bin center to geta
total of N input samples for an N-point DFT, we must replace the N with
L in Egs. (3-17) and (3-17") to predict the DFT’s output magnitude for
that particular sinewave. Second, in practical situations, if we want to
perform both zero stuffing and windowing on a sequence of input data
samples, we must be careful not to apply the window to the entire input
including the appended zero-valued samples. The window function
must be applied only to the original nonzero time samples, otherwise
the stuffed zeros will zero out and distort part of the window function,

* Notice that the DFT sizes (N) we've discussed are powers of 2 (64, 128, 256, 512). That’s
because we actually perform DFTs using a special algorithm known as the fast Fourier trans-
form (FFT). As we'll see in Chapter 4, the typical implementation of the FFT requires that N
be a power of 2.

DFT Processing Gain

leading to erroneous results. (Section 4.5 gives additional practical
pointers on performing the DFT using the FFT algorithm to analyze real-
world signals.)

To digress slightly, now’s a good time to define the term discrete-time
Fourier transform (DTFT) that the reader may encounter in the literature.
The DTFT is the continuous Fourier transform of an L-point discrete time-
domain sequence; some authors use the DTFT to describe many of the
digital signal processing concepts we've covered in this chapter. We can’t
perform the DTFT on a computer because it has an infinitely fine fre-
quency resolution—but we could, if we wished, approximate the DTFT
by performing an N-point DFT on an L-point discrete time sequence
where N > L. That is, in fact, what we did in Figure 3-21 when we zero-
stuffed the original 16-point time sequence. While we don’t emphasize
the DTFT in this book, keep in mind that when N = L the DTFT approxi-
mation is identical to the DFT.

3.12 DFT Processing Gain

There are two types of processing gain associated with DFTs. People who
use the DFT to detect signal energy embedded in noise often speak of the
DFT’s processing gain because the DFT can pull signals out of background
noise. This is due to the inherent correlation gain that takes place in any
N-point DFT. Beyond this natural processing gain, additional integration
gain is possible when multiple DFT outputs are averaged. Let's look at the
DFT'’s inherent processing gain first.

3.2.1 Processing Gain of a Single DFT

The concept of the DFT having processing gain is straightforward if we
think of a particular DFT bin output as the output of a narrowband filter.
Because a DFT output bin has the amplitude response of the sin(x)/x
function, that bin’s output is primarily due to input energy residing
under, or very near, the bin’s main lobe. It's valid to think of a DFT bin as
a kind of bandpass filter whose band center is located at mf,/N. We know
from Eq. (3-17) that the maximum possible DFT output magnitude
increases as the number of points (N) in a DFT increases. Also, as N
increases, the DFT output bin main lobes become more narrow. So a DFT
output bin can be treated as a bandpass filter whose gain can be increased
and whose bandwidth can be reduced by increasing the value of N.
Decreasing a bandpass filter’s bandwidth is useful in energy detection

93

94

The Discrete Fourier Transform

0 A Bin power in dB

- v
N IvVAW \ |
i a

|
L
\
v

0 5 10 15 20 25 30
DFT bin number

‘ Bin power in dB

B S .
o e I L
AT TR

]

-
[72]
z
o1]

i

3"

0 20 40 60 80 100 120
DFT bin number

‘ Bin power in dB

(c)

| I
0 100 200 300 400 500
DFT bin number

SW

Figure 3-22 Single DFT processing gain: (@) N = 64; (o) N = 256; (c) N = 1024.

because the frequency resolution improves in addition to the filter’s abil-
ity to minimize the amount of background noise that resides within its
passband. We can demonstrate this by looking at the DFT of a spectral tone
(a constant frequency sinewave) added to random noise. Figure 3-22(a) is

DFT Processing Gain

a logarithmic plot showing the first 32 outputs of a 64-point DFT when
the input tone is at the center of the DFT’s m = 20th bin. The output
power levels (DFT magnitude squared) in Figure 3-22(a) are normal-
ized so that the highest bin output power is set to 0 dB. Because the
tone’s original signal power is below the average noise power level,
the tone is a bit difficult to detect when N = 64. (The time-domain
noise, used to generate Figure 3-22(a), has an average value of zero,
i.e,, no DC bias or amplitude offset.) If we quadruple the number of
input samples and increase the DFT size to N = 256, we can now see
the tone power raised above the average background noise power as
shown for m = 80 in Figure 3-22(b). Increasing the DFT’s size to
N = 1024 provides additional processing gain to pull the tone further
up out of the noise as shown in Figure 3-22(c).

To quantify the idea of DFT processing gain, we can define a signal-to-
noise ratio (SNR) as the DFI’s output signal-power level over the average
output noise-power level. (In practice, of course, we like to have this ratio as
large as possible.) For several reasons, it's hard to say what any given sin-
gle DFT output SNR will be. That’s because we can’t exactly predict the
energy in any given N samples of random noise. Also, if the input signal
frequency is not at bin center, leakage will raise the effective background
noise and reduce the DFT’s output SNR. In addition, any window being
used will have some effect on the leakage and, thus, on the output SNR.
What we'll see is that the DFT’s output SNR increases as N gets larger
because a DFT bin’s output noise standard deviation (rms) value is pro-
portional to v/N, and the DFT’s output magnitude for the bin containing
the signal tone is proportional to N. More generally for real inputs, if
N > N, an N-point DFT’s output SNR,, increases over the N'-point DFT
SNR,,. by the following relationship:

SNRy =SNRy. +20- loglo(/%) (3-33)

If we increase a DFT’s size from N' to N = 2N', from Eq. (3-33), the DFT"s
output SNR increases by 3 dB. So we say that a DFI's processing gain
increases by 3 dB whenever N is doubled. Be aware that we may double
a DFT’s size and get a resultant processing gain of less than 3 dB in the
presence of random noise; then again, we may gain slightly more than
3 dB. That’s the nature of random noise. If we perform many DFTs, we'll
see an average processing gain, shown in Figure 3-23(a), for various input
signal SNRs. Because we're interested in the slope of the curves in Figure

95

96

The Discrete Fourier Transform

40 ~ DFT output SNR (dB)

35 _Input SNR
—— =+6dB

30 e
25
(a) 20 / / — .
//] 1 -12aB
0 // —] -18 dB

—————==0dB

I -6dB

0 200 400 600 800 1000 N

40 — DFT output SNR (dB)

Input SNR o

3 =+6dB

30

25 et : ; :
o

10

5

0

1 10 700 000 N

Figure 3-23 DFT processing gain vs. number of DFT points N for various input signal-
to-noise ratios: (a) linear N axis; (b) logarithmic N axis.

3-23(a), we plot those curves on a logarithmic scale for N in Figure 3-23(b)
where the curves straighten out and become linear. Looking at the slope
of the curves in Figure 3-23(b), we can now see the 3 dB increase in pro-
cessing gain as N doubles so long as N is greater than 20 or 30 and the sig-
nal is not overwhelmed by noise. There’s nothing sacred about the
absolute values of the curves in Figures 3-23(a) and 3-23(b). They were
generated through a simulation of noise and a tone whose frequency was
at a DFT bin center. Had the tone’s frequency been between bin centers,
the processing gain curves would have been shifted downward, but their

The DFT of Rectangular Functions

shapes would still be the same,! that is, Eq. (3-33) is still valid regardless
of the input tone’s frequency.

3.12.2 Integration Gain Due to Averaging Multiple DFTs

Theoretically, we could get very large DFT processing gains by increasing
the DFT size arbitrarily. The problem is that the number of necessary DFT
multiplications increases proportionally to N 2, and larger DFTs become
very computationally intensive. Because addition is easier and faster to
perform than multiplication, we can average the outputs of multiple DFTs
to obtain further processing gain and signal detection sensitivity. The sub-
ject of averaging muitiple DFT outputs is covered in Section 8.3.

3.13 The DFT of Rectangular Functions

We conclude this chapter by providing the mathematical details of two
important aspects of the DFT. First, we obtain the expressions for the DFT
of a rectangular function (rectangular window), and then we’ll use these
results to illustrate the magnitude response of the DFT. We're interested
in the DFT’s magnitude response because it provides an alternate view-
point to understand the leakage that occurs when we use the DFT as a sig-
nal analysis tool.

One of the most prevalent and important computations encountered in
digital signal processing is the DFT of a rectangular function. We see it in
sampling theory, window functions, discussions of convolution, spectral
analysis, and in the design of digital filters. As common as it is, however,
the literature covering the DFT of rectangular functions can be confusing
for several reasons for the digital signal processing beginner. The stan-
dard mathematical notation is a bit hard to follow at first, and sometimes
the equations are presented with too little explanation. Compounding the
problem, for the beginner, are the various expressions of this particular
DFT. In the literature, we're likely to find any one of the following forms
for the DFT of a rectangular function:

sin(x) sin(x) . sin{Nx /2)

DFT, = , , . 3-34
rectfunction = gin(x / N) Ty '° sin(x/2) (3-34)

+ The curves would be shifted downward, indicating a lower SNR, because leakage would
raise the average noise-power level, and scalloping loss would reduce the DFT bin’s output
power level.

97

98

The Discrete Fourier Transform

In this section we’ll show how the forms in Eq. (3-34) were obtained,
see how they’re related, and create a kind of Rosetta stone table allowing
us to move back and forth between the various DFT expressions. Take a
deep breath and let’s begin our discussion with the definition of a rectan-
gular function.

3.13.1 DFT of a General Rectangular Function

A genmeral rectangular function x(n) can be defined as N samples contain-
ing K unity-valued samples as shown in Figure 3-24. The full N-point
sequence, x(n), is the rectangular function that we want to transform. We
call this the general form of a rectangular function because the K unity
samples begin at a arbitrary index value of -n_. Let’s take the DFT of x(n)
in Figure 3-24 to get our desired X(m). Using m as our frequency-domain
sample index, the expression for an N-point DFT is

N/2
X(m)= 2 x(n)e~j2mm/N . (3-35)
n=—N/2)+1

With x(n) being nonzero only over the range of -n_ <n < -n_+(K-1), we
can modify the summation limits of Eq. (3-35) to express X(m) as

~n+(K-1)
X(m)= Y 1.e7/2mmN (3-36)

n=-n,

because only the K samples contribute to X(m). That last step is important
because it allows us to eliminate the x(r) terms and make Eq. (3-36) easier
to handle. To keep the following equations from being too messy, let’s use
the dummy variable g = 2nm/N.

x(n)
f . 1
K e
lessusussssuns
I i i
(PR S N S i - E-E-E-B-8-B -
! y o ! oo
~N2 +1 n=-n, n=-n0+(K—1) N2

Figure 3-24 Rectangular function of width K samples defined over N samples
where K< N.

The DFT of Rectanguilar Functions

OK, here’s where the algebra comes in. Over our new limits of sum-
mation, we eliminate the factor of 1 and Eq. (3-36) becomes

-1, +(K—1)'
X@= e

n=-n,

= o) g p=fAna) | p= Ao ¥Y) | oA (K1)
= o I g=08 | i) o= g pmfARe)p=j2 Ly pmAMe) g fa(K-1)

) [oI08 4 g Tl 4 g7 4 D] (3:37)

The series inside the brackets of Eq. (3-37), allows the use of a summation,
such as

K-1
X(q) = eiﬂ("a)ze-iﬂ . (3-38)
p=0

Equation (3-38) certainly doesn’t look any simpler than Eq. (3-36), but it
is. Equation (3-38) is a geometric series and, from the discussion in
Appendix B, it can be evaluated to the closed form of

Y e = - —_,-,, , (3-39)
-e

We can now simplify Eq. (3-39)—here’s the clever step. If we multiply and
divide the numerator and denominator of Eq. (3-39)'s right-hand side by
the appropriate half-angled exponentials, we break the exponentials into
two parts and get

K-1 ~ ji -jqK /2
o e (eIt 2 _gmial 2y

aK/2 -jgK/2
=e-,'q(1<-1)/2.(€’q)

A — -4
T T (3-40)

99

100

The Discrete Fourler Transform

Let’s pause for a moment here to remind ourselves where we're going.
We're trying to get Eq. (3-40) into a usable form because it’s part of
Eq. (3-38) that we're using to evaluate X(m) in Eq. (3-36) in our quest for
an understandable expression for the DFT of a rectangular function.

Equation (3-40) looks even more complicated than Eq. (3-39), but
things can be simplified inside the parentheses. From Euler’s equation:
sin(s) = (¢° - €79)/2j, Eq. (3-40) becomes

K-1 .
ze-ipq = giak-1/2 2] sin(qK/ 2)
=0 2jsin(q/2)

= giak-1/2 SINGK/2) (3-41)
sin(g/2)

Substituting Eq. (3-41) for the summation in Eq. (3-38), our expression for
X(q) becomes

X(g) = eHs) . giAK-D/2, sin(gK/2)
sin{g/ 2)

_ itn,-(k=1)/2) SI(GK/2) i
e /D) (3-42)

Returning our dummy variable 4 to its original value of 2nm/N,

X(m) = el 2mm/ N =(K=1/2) sin(2nmK /2N)

sin2mm/2N) " O

General form of the .
Dirichlet kemel: X () = /(2%m/N)(no~(K-1)/2) sin(mmK/N) (3-43)
sin(nm /N)

So there it is (Whew!). Equation (3-43) is the general expression for the
DFT of the rectangular function as shown in Figure 3-24. Our X(m) is a

The DFT of Rectanguiar iﬁ;gﬁons 10b

[¢
: & .
complex expression (pun intended) where a ratio of sine ter s is the
amplitude of X(m) and the exponential term is the phase angle of X(m) L

The ratio of sines factor in Eq. (3-43) lies on the periodic curve shown.ipr~ .

Figure 3-25(a), and like all N-point DFT representations, the periodicity of
X(m) is N. This curve is known as the Dirichlet kernel (or the aliased sinc
function) and has been thoroughly described in the literature[10,13,14].
(It's named after the nineteenth-century German mathematician Peter
Dirichlet (pronounced dee-ree-klay’), who studied the convergence of
trigonometric series used to represent arbitrary functions.)

We can zoom in on the curve at the m = 0 point and see more detail in
Figure 3-25(b). The dots are shown in Figure 3-25(b) to remind us that
the DFT of our rectangular function results in discrete amplitude values
that lie on the curve. So when we perform DFTs, our discrete resuits are
sampled values of the continuous sinc function’s curve in Figure 3-25(a).
As we'll show later, we're primarily interested in the absolute value, or
magnitude, of the Dirichlet kernel in Eq. (3-43). That magnitude | X(m) |
is shown in Figure 3-25(c). Although we first saw the sinc function’s
curve in Figure 3-9 in Section 3.8, where we introduced the topic of DFT
leakage, we'll encounter this curve often in our study of digital signal
processing.

For now, there are just a few things we need to keep in mind concern-
ing the Dirichlet kernel. First, the DFT of a rectangular function has a main
lobe, centered about the m = 0 point. The peak amplitude of the main lobe
is K. This peak value makes sense, right? The m = 0 sample of a DFT X(0)
is the sum of the original samples, and the sum of K unity-valued samples
is K. We can show this in a more substantial way by evaluating Eq. (3-43)
for m = 0. A difficulty arises when we plug m = 0 into Eq. (3-43) because
we end up with sin(0)/sin(0), which is the indeterminate ratio 0/0. Well,
hardcore mathematics to the rescue here. We can use L'Hospital’s rule to
take the derivative of the numerator and the denominator of Eq. (3-43),
and then set m = 0 to determine the peak value of the magnitude of the
Dirichlet kernel.* We proceed as

* N was an even number in Figure 3-24 depicting the x(n). Had N been an odd number, the
limits on the summation in Eq. (3-35) would have been -(N-1)/2<n< (N-1)/2. Using these
alternate limits would have led us to exactly the same X(m) as in Eq. (3-43).

 L'Hospital is pronounced ‘15-p&-tol, like baby doll.

3

i

4

The Discrete Fourler Transform

_d _ d[sin(mmK/ N)]/ dm
Xm0 = g X = i G/ N1/

__cos(an/N).d(an/N)/dm
"~ cos(mm/N) d(rmm/N)/dm

_Cos@ mK/N 1 x_k . (3-44)

which is what we set out to show. (We could have been clever and evalu-
ated Eq. (3-35) with m = 0 to get the result of Eq. (3-44). Try it, and keep in
mind that e® = 1.) Had the amplitudes of the nonzero samples of x(17) been

']\X(m)

EAVASAAAVI VA S ARV IRV A AV

A x
1.0 }) N K
0.81 Ia \
0.6 4 /1. ! I L]
0.4 IR A
®) 024 ARRRER
0 -g—-q—kr-4+b-+o+--v+t-/-—#-o+f—H+-+++-—H+-4—q-e--.—l—r-.i>
-0.2 J LY * 0 LI m
m=-NK m=NK
IX(m)
- K
0.8 Main
0.6 fobe ™S /'
(c) 04
0.2 wia \ / how .(" mug
o -#—5—7—-—'&—4—7—-+0-—+—--|—|+-—+—0—0—|—0—H— AL AL (UL T
<— 2NK m
RA A A /"JJJ
lobes

Figure 3-25 The Dirichlet kernel of X(m): (a) periodic continuous curve on which
the X(m) samples lie; (b) X(m) amplitudes about the m = 0 sample;
(c) L X(m)| magnitudes about the m = 0 sample.

The DFT of Rectangular Functions

different than unity, say some amplitude A, then, of course, the peak
value of the Dirichlet kernel would be A K instead of just K. The next
important thing to notice about the Dirichlet kernel is the main lobe’s
width. The first zero crossing of Eq. (3-43) occurs when the numerator’s
argument is equal to %. That is, when nmK/N = n. So the value of m at the
first zero crossing is given by

Miirst zero crossing = 7{1_(— = E (3-45)

as shown in Figure 3-25(b). Thus the main lobe width 2N/K, as shown in
Figure 3-25(c), is inversely proportional to K.

Notice that the main lobe in Figure 3-25(a) is surrounded by a series of
oscillations, called sidelobes, as in Figure 3-25(c). These sidelobe magni-
tudes decrease the farther they're separated from the main lobe. However,
no matter how far we look away from the main lobe, these sidelobes
never reach zero magnitude—and they cause a great deal of heartache for
practitioners in digital signal processing. These sidelobes cause high-
amplitude signals to overwhelm and hide neighboring low-amplitude
signals in spectral analysis, and they complicate the design of digital fil-
ters. As we'll see in Chapter 5, the unwanted ripple in the passband and
the poor stopband attenuation in simple digital filters are caused by the
rectangular function’s DFT sidelobes. (The development, analysis, and
application of window functions came about to minimize the ill effects of
those sidelobes in Figure 3-25.)

Let’s demonstrate the relationship in Eq. (3-45) by way of a simple
but concrete example. Assume that we’re taking a 64-point DFT of the
64-sample rectangular function, with eleven unity values, shown in
Figure 3-26(a). In this example, N = 64 and K = 11. Taking the 64-point
DFT of the sequence in Figure 3-26(a) results in an X(m) whose real and
imaginary parts, X ,,(m) and lea (m), are shown in Figure 3-26(b) and
Figure 3-26(c) respectively. Flgure 3-26(b) is a good illustration of how
the real part of the DFT of a real input sequence has even symmetry,
and Figure 3-26(c) confirms that the imaginary part of the DFT of a real
input sequence has odd symmetry. (These symmetry properties were
introduced in Section 3.2 and are discussed further in Appendix C,
Section C.3.)

1 This is a fundamental characteristic of Fourier transforms. The narrower the function in
one domain, the wider its transform will be in the other domain.

103

104

The Discrete Fourier Transform

-«<— K —»
x(n) LLLLL .
0.5 !
(8) I i
0qql_-gqqquqlqllll-llllluli + t t ‘,'lll.llll!!.llll*q!l_l!l,l,l-»
28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 327
12+ x (m
10 real
8
6
4
® 2 A -8 :
O tuigat P tua et i i+ ','-'-"“'-T—‘-;'-i—t-ﬁ#—b—»
-2 20 16 -12"%8% 4 0 4 "es" 5 {5 2
2 (m
15)qmag()
1
05 ' 20 . .

© .0-.'.'-.-1-5-0-0-1-'
0.

-1
-15
-2

Figure 3-26 DFT of a rectangular function: () original function x(n) ; (b) real part of
the DFT of (), X,,o(m): (c) imaginary part of the DFT of x(n). X,mcg(m).

12
b IX(m)l
8
6
@@y 4
2- ung gu® -“- ..".w Sa__a%a, _siap
B LR LI TR A LTl THIENE W;ﬂ-ﬁqw‘-h—b
—28 —24 -20 —16 -12 8 -4 0 4 16 20 24 28 M

Figure 3-27 DFT of a generalized rectanguiar function: () magnitude | X(m)1; (o)
phase angle in radians.

Although X (m) and leag(m) tell us everything there is to know
about the DFT of x(n), it's a bit easier to comprehend the true spectral
nature of X(m) by viewing its absolute magnitude. This magnitude, fron

Eq. (3-7), is provided in Figure 3-27(a) where the main and sidelobes are

The DFT of Rectanguilar Functions

clearly evident now. As we expected, the peak value of the main lobe is
11 because we had K = 11 samples in x(n). The width of the main lobe
from Eq. (3-45) is 64/11, or 5.82. Thus, the first positive frequency zero-
crossing location lies just below the m = 6 sample of our discrete | X(m) |
represented by the squares in Figure 3-27(a). The phase angles associated
with | X(m)|, first introduced in Equations (3-6) and (3-8), are shown in
Figure 3-27(b).

To understand the nature of the DFT of rectangular functions more
fully, let’s discuss a few more examples using less general rectangular
functions that are more common in digital signal processing than the x(n)
in Figure 3-24.

3.13.2 DFT of a Symmetrical Rectangular Function

Equation (3-43) is a bit complicated because our original function x(n) was
so general. In practice, special cases of rectangular functions lead to sim-
pler versions of Eq. (3-43). Consider the symmetrical x(n) rectangular
function in Figure 3-28. As shown in Figure 3-28, we often need to deter-
mine the DFT of a rectangular function that’s centered about the n = 0
index point. In this case, the K unity-valued samples begin at
n = -n_ =—(K-1)/2. So substituting (K-1)/2 for #, in Eq. (3-43), yields

X(m) = el@mm/ NX(K-D/2-K-/2) sin(nmK/ N)

sin(nm / N)
_ pjamm/N)o) sin(mmK/N) (3-46)
sin{(mm / N)
Because ¢ = 1, Eq. (3-46) becomes
Symmetrical form of :
the Dirichlet kernel: - X(m) = SEmK/N) (3-47)
sin(nm / N)

n
-N/2 +1 Ny=-(K-1)/2 ny= (K-1)/2 N/2

Figure 3-28 Rectangular x(n) with K samples centered about n=0.

105

106

The Discrete Fourier Transform

Equation (3-47) indicates that the DFT of the symmetrical rectangular
function in Figure 3-28 is itself a real function; that is, there’s no complex
exponential in Eq. (3-47), so this particular DFT contains no imaginary part
or phase term. As we stated in Section 3.2, if x(n) is real and even,
x(n) = x(-n), then X (m) is nonzero and X, . (m) is always zero. We
demonstrate this by taking the 64-point DFT ofg the sequence in Figure
3-29(a). Our x(n) is 11 unity-valued samples centered about the 7 = 0 index.
Here the DFT results in an X(m) whose real and imaginary parts are shown
in Figure 3-29(b) and Figure 3-29(c), respectively. As Eq. (3-47) predicted,

11 xn) sssuesansan
@ 95
O mennsnnnensnusasnnsnnnuensif-Hisannasnanannanunsannnnanans o
28 24 20 -16 12 8 -4 0 4 8 12 16 20 24 28 32N
12
10 I Xrear(m a%a o 11
8 n .:.
8 [BEERE |
(b} 4 - .
2 20 R T R 1
L ot"n . Le g
O g e e M e R LT PR,
_41 -28 24 -16 ~12 "wg" -4 0 4 "gw® 12 16 2628 3B m

05 o Xina(M)
04 imag!

03
¢y 02
0.1
CRLLEI LI AL LLLDEL R L PR LR LEL LLEL L LI IT LR L LT IET S
28 24 20 -16 -12 8 4 0 4 8 12 16 20 24 28

12
10
8
6
@ 4
2-- anp, guug_ «"%a @ L I
(Rt P i Pl T LIREE FEERL T TT ik L Y L kL L ML

1m0
)
-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 m
4.1 Xlm)

3 musn (L1 1]} suEnEl T

2
1\/\/\ 4 8§ 12 16 20 24 28
() 0 I.EI.I.l.l,+H-1—H-l.l,!l.l.l,++-H—H!7l.l.!l,l.l.l,l:ltv%7!l.l.I:lﬂ-kﬂ-?]l.!l.l:l»
-; -28 -24 -20 -16 -12 -8 -4 0 \ \ \ m
-3
an

i - - AARSER LT}

X(m)

Figure 3-29 DFT of a rectangular function centered about n = 0: (@) original x(n) ;
©) Xoai(m: () Ximcg(m); (d) magnitude of X(m); (e) phase angle of
X(m) in radians.

The DFT of Rectangular Functions

X ..i(m) is nonzero and Ximag(m) is zero. The magnitude and phase of X(m)
are depicted in Figure 3-29(d) and Figure 3-29(e).

Notice that the magnitudes in Figure 3-27(a) and Figure 3-29(d) are
identical. This verifies the very important shifting theorem of the DFT;
that is, the magnitude |X(m)! depends only on the number of nonzero
samples in x(n), K, and not on their position relative to the n = 0 index
value. Shifting the K unity-valued samples to center them about then=0
index merely affects the phase angle of X(m), not its magnitude.

Speaking of phase angles, it’s interesting to realize here that even
though Ximag(m) is zero in Figure 3-29(c), the phase angle of X(m) is not
always zero. In this case, X(m)’s individual phase angles in Figure 3-29(e)
are either +, zero, or -« radians. With +7 and - radians both being equal
to -1, we could easily reconstruct X, (m) from [X(m)! and the phase
angle X (m) if we must. X .a(m) is equal to | X(m) | with the signs of
| X(m) | ’s alternate sidelobes reversed. To gain some further appreciation
of how the DFT of a rectangular function is a sampled version of the
Dirichlet kernel, let’s increase the number of our nonzero x(n) samples.
Figure 3-30(a) shows a 64-point x(n) where 31 unity-valued samples are
centered about the n = 0 index location. The magnitude of X(m) is pro-
vided in Figure 3-30(b). By broadening the x(n) function, i.e., increasing K,
we've narrowed the Dirichlet kernel of X(mn). This follows from Eq. (3-45),
right? The kernel’s first zero crossing is inversely proportional to K, so, as
we extend the width of K, we squeeze |X(m)!| in toward m = 0. In this

tr ; e
(a) 05 [H
GEPRYPEITLELITILY e Hanmensunasensnunpo

1
-28 -24 -20 -16 4 8 12 16 20 24 28 32"
35 [x(ml

() 20

Figure 3-30 DFT of a symmetrical rectangular function with 31 unity values:
() original x(n); (o) magnitude of X(m).

t The particular pattern of +% and -n values in Figure 3-29(e) is an artifact of the software
used to generate that figure. A different software package may show a different pattern, but
as long as the nonzero phase samples are either +7 or -1, the phase results will be correct.

107

108

The Discrete Fourier Transform

example, N = 64 and K = 31. From Eq. (3-45) the first positive zero cross-
ing of X(m) occurs at 64/31, or just slightly to the right of the m = 2 sam-
ple in Figure 3-30(b). Also notice that the peak value of | X(m)| = K = 31,
as mandated by Eq. (3-44).

3.13.3 DFT of an All Ones Rectangular Function

The DFT of a special form of x(n) is routinely called for, leading to yet
another simplified form of Eq. (3-43). In the literature, we often encounter
a rectangular function where K = N; that is, all N samples of x(n) are
nonzero, as shown in Figure 3-31. In this case, the N unity-valued samples
begin at n = -n = -(N-1)/2. We obtain the expression for the DFT of the
function in Figure 3-31 by substituting K = N and n_ = (N~1)/2 in Eq. (3-43)
to get

i ~1)/2-(N- i N/N)
X(m) = ef@rm/NIN-1/2-(N-1/2) _ Sin{zm.
(m)=e sin(nm /N)

= pf2mm/NY0) ___Sin(mm)

r
sin(um /N)" °
All Ones form of
the Dirichlet .
kemel (Type 1: > X(m) = _sin(nm) (3-48)

sin(rm / N}’

Equation (3-48) takes the first form of Eq. (3-34) that we alluded to at
the beginning of this Section 3.13.' Figure 3-32 demonstrates the mean-
ing of Eq. (3-48). The DFT magnitude of the all ones function, x(n) in

< K=N >
1,l‘lllIIIT!lllTl-llTlll.lI‘TTTTIT. x(n)
. P [R |
Ei‘\[iifgi"H!I]M!E‘#:ill”.
A 0 L
No= -(N-1)/2 (N-1)/2

Figure 3-31 Rectangular function with N unity-valued samples.

! By the way, there’s nothing official about calling Eq. (3-48) a Type 1 Dirichlet kernel, We're
using the phrase Type 1 merely to distinguish Eq. (3-48) from other mathematical expres-
sions for the Dirichlet kernel that we’re about to encounter.

The DFT of Rectangular Functions

x(n)
1 asesunnsennns
[
@ o054y |
RN . i
O ++
-28 -24 -20 -16 -12 -8 -4
70
60 IX(m)l § e 64
50 A
40 !
(b) 30 !

20
10
Ousnnsnnensuasansnnnadnnsnunss

i
ﬂéfuﬁ}--.l.-,-.-.--,-.u-,-.-.-.p.n.-,--.u,u-.-»
-28 -24 20 -16 -12 8 -4 O

4 8 12 16 20 24 28 M

70
&l .
50 /
y [\
c) 30 /
(© pos) \/ \
1% NN . \//\\/~ TN o
v g g 1 » g 1 g g i el
5 -4 3 2 -1 0 1 2 3 4 5 m

Figure 3-32 All ones function: (@) rectangular function with N = 64 unity-valued
sampiles; () DFT magnitude of the all ones time function; (c) close-up
view of the DFT magnitude of an all ones time function.

Figure 3-32(a), is shown in Figure 3-32(b) and Figure 3-32(c). Take note
that if m was continuous Eq. (3-48) describes the shaded curves in
Figure 3-32(b) and Figure 3-32(c). If m is restricted to be integers, then
Eq. (3-48) represents the dots in those figures.

The Dirichlet kernel of X(m) in Figure 3-32(b) is now as narrow as it can
get. The main lobe’s first positive zero crossing occurs at the m = 64/64 = 1
sample in Figure 3-32(b) and the peak value of | X(m)| = N = 64. With x(n)
being all ones, | X(m) | is zero for all m = 0. The sinc function in Eq. (3-48)
is of utmost importance—as we’'ll see at the end of this chapter, it defines
the overall DFT frequency response to an input sinusoidal sequence, and
it's also the amplitude response of a single DFT bin.

The form of Eq. (3-48) allows us to go one step further to identify the
most common expression for the DFT of an all ones rectangular function
found in the literature. To do this, we have to use an approximation prin-
ciple found in the mathematics of trigonometry that you may have heard
before. It states that when o is small, then sin(0) is approximately equal to
a, i.e., sin(o) = o. This idea comes about when we consider a pie-shaped

110

The Discrete Fourier Transform

(a)

Figure 3-33 Relationships between an angle o, line a = sin(e), and a's chord
b: (a) Large angle «; (b) Small angle o.

section of a circle whose radius is 1 as shown in Figure 3-33(a). That sec-
tion is defined by the length of the arc o measured in radians and o's
chord b. If we draw a right triangle inside the section, we can say that
a = sin(0). As gets smaller the long sides of our triangle become almost
parallel, the length of chord b approaches the length of arc o, and the
length of line a approaches the length of b. So, as depicted in Figure
3-33(b), when o is small, o = b = a = sin(c). We use this sin(o) = o approx-
imation when we look at the denominator of Eq. (3-48). When nm/N is
small, then sin(nm/N) is approximately equal to nm/N. So we can, when
N is large, state

All Ones form of the . .
Dirichlet kernel (Type 2): — X(m) = sin(rm) _ ;. sin(mm) (3-49)
mm/N nm

It has been shown that when N is larger than, say, 10 in Eq. (3-48), Eq.
(3-49) accurately describes the DFT’s output.” Equation (3-49) is often
normalized by dividing it by N, so we can express the normalized DFT of
an all ones rectangular function as

+ We can be comfortable with this result because, if we let K= N, we'll see that the peak value
of X(m) in Eq. (3-49), for m = 0, is equal to N, which agrees with Eq. (3-44).

The DFT of Rectanguiar Functions

All Ones form of the

Dirichlet kernel (Type 3): > X(m)= m)-

— (3-50)

Equation (3-50), taking the second form of Eq. (3-34) that is so often seen
in the literature, also has the DFT magnitude shown in Figure 3-32(b) and
Figure 3-32(c).

3.13.4 Time and Frequency Axes Associated with
Rectangular Functions

Let’s establish the physical dimensions associated with the n and m index
values. So far in our discussion, the n index was merely an integer
enabling us to keep track of individual x(n) sample values. If the n index
represents instants in time, we can identify the time period separating
adjacent x(n) samples to establish the time scale for the x(n) axis and the
frequency scale for the X(m) axis. Consider the time-domain rectangular
function given in Figure 3-34(a). That function comprises N time samples
obtained t_seconds apart, and the full sample interval is Nt_seconds. Each

n-‘L i
x0)
(@ An o . hem time = 9ts seconds
A i i
. : M ————
0] ts seconds
B\
.
Ampiitude of X{m) ./ \. 1/(NIg) = f/N = (2rf/N)
[- =
/ >l - (@s/N) = [@/M
L% ,l'...\ /"'."» n-¥n
®) -p--—l-,-nmq-b-d—l-l\-i—o—i-/-.—o—i—o-f—i—o-o--.\ /!—0—0—4-'.::—0—;1!:1—4—'-"! -
LN 0 "t = ; fs/NHz
< f, Hz ! > (e
_&/2 Hz (2nfs = mg radians/sec) £ /2 Hz [w/M
" s
(~0g /2 ==Rfg) [= 2= radians] (g 12 =7g)
[-nl] m=7 [}

freq. = 7 f3/NHz
(freq. = 7mrg /N radians/sec)
[normalized angle = 7w /N radians}

Figure 3-34 DFT time and frequency axis dimensions: (@) time-domain axis uses
time index n; () various representations of the DFT’s frequency axis.

m

112

The Discrete Fourler Transform

Table 3-1 Characteristics of Various DFT Frequency Axis Representations

DFT Frequency X(m) Repetition Frequency
Axis Frequency Resolution Interval of Axis
Representation Variable of X(m) X(m) Range
Frequency in Hz mf /N f/N fs +/2tof,/2
Frequency in ma /N or o, /N or o, or 2mf —@,/2 to @ /2
radians 2nmf /N 2nf /N or -uif, to aif;
Normalized angle 2nm/N 2r/N 2r -nton
in radians

x(n) sample occurs at nt, seconds for some value of n. For example, the
n = 9 sample value, x(9) = 0, occurs at 9¢, seconds.

The frequency axis of X(m) can be represented in a number of different
ways. Three popular types of DFT frequency axis labeling are shown in
Figure 3-34(b) and listed in Table 3-1. Let’s consider each representation
individually.

3.13.4.1 DFT Frequency Axis in Hz

If we decide to relate X(m) to the time sample period t,, or the sample
rate f, = 1/t then the frequency axis variable is m/Nt_ = mf,/N. So each
X(m) sample is associated with a cyclic frequency of mf,/N Hz. In this
case, the resolution of X(m) is f,/N. The DFT repetition period, or peri-
odicity, is f, Hz, as shown in Figure 3-34(b). If we substitute the cyclic
frequency variable mf,/N for the generic variable of m/N in Eq. (3-47),
we obtain an expression for the DFT of a symmetrical rectangular func-
tion, where K < N, in terms of the sample rate f, in Hz. That expression
is

_ sin(mmf,K/N)

_si . (3-51)
sin(rmf, / N)

X(mf)

For an all ones rectangular function where K = N, the amplitude normal-
ized sin(x)/x approximation in Eq. (3-50) can be rewritten in terms of sam-
ple rate f, in Hz as

sin(mmf,)

— (3-52)

X(mf,) =

The DFT of Rectanguilar Functions

3.13.4.2 DFT Frequency Axis in Radians/Second

We can measure X(m)’s frequency in radians/s by defining the time-
domain sample rate in radians/s as @ , = 2xf,. So each X(m) sample is asso-
ciated with a radian frequency of ma, /N = 2rmf,/N radians/s. In this case,
X{m)'s resolution is w,/N = 2nf,/N radians/s, and the DFT repetition
period is @, = 2nf, radians/s, as shown by the expressions in parenthesis in
Figure 3-34(b). With w, = 2nf,, then nf, = /2. If we substitute w,/2 for nf,
in Eq. (3-51), we obtain an expression for the DFT of a symmetrical rectan-
gular function, where K < N, in terms of the sample rate a, in radians/s:

sin(mw,K /2N)

X(ma,)= sin(mw, /2N)

(3-53)

For an all ones rectangular function where K = N, the amplitude normal-
ized sin(x)/x approximation in Eq. {3-50) can be stated in terms of a sam-
ple rate @, in radians/s as
X(ma,) = 2sin(me, /2) (3-54)
ma,

3.13.4.3 DFT Frequency Axis Using a Normalized Angle Variable

Many authors simplify the notation of their equations by using a normal-
ized variable for the radian frequency w, = 2nf.. By normalized, we mean
that the sample rate f, is assumed to be equal to 1, and this establishes a
normalized radian frequency , equal to 2x. Thus, the frequency axis of
X(m) now becomes a normalized angle ®, and each X(m) sample is asso-
ciated with an angle of mw/N radians. Using this convention, X(m)'s res-
olution is ®/N radians, and the DFT repetition period is ® = 2r radians,
as shown by the expressions in brackets in Figure 3-34(b).

Unfortunately the usage of these three different representations of the
DFT’s frequency axis is sometimes confusing for the beginner. When
reviewing the literature, the reader can learn to convert between these fre-
quency axis notations by consulting Figure 3-34 and Table 3-1.

3.13.5 Alternate Form of the DFT of an All Ones
Rectangular Function

Using the normalized radian angle notation for the DFT axis from the bot-
tom row of Table 3-1 leads to another prevalent form of the DFT of the all

113

114

The Discrete Fourler Transform

ones rectangular function in Figure 3-31. Letting our normalized discrete
frequency axis variable be @, = 2nm/N, then nm = No,,/2. Substituting
the term No, /2 for m in Eq. (3-48), we obtain

All Ones form of the

Dirichlet kernel (Type 4): - X(@) = M (3-55)
sin(w,, / 2)
Table 3-2 DFT of Various Rectangular Functions
Description Expression
DFT of a general rectangular function, where sin(nmK / N)

K < N, in terms of the integral frequency m X(m)= sin(mm/ N)

variable . pf@mm/ N)n,~(K-1)/2) (3-46)

DFT of a symmetrical rectangular function, sin(nmK / N) 347

where K < N, in terms of the integral frequency X(m)= “sin(mm/N) (3-47)

variable m

DFT of an all ones rectangular function in terms sin(mm)

of the integer frequency variable m (Dirichlet X(m)= ==t |(3-48)
sin(rtm / N)

kernel Type 1)

DET of an all ones rectangular function in terms N sin(rm) (3-49)

of the integer frequency variable m (Dirichlet X(m) = o

kernel Type 2)

Amplitude normalized DFT of an all ones sin{mm)
rectangular function in terms of the integral X(m) = o (3-50)
frequency variable m (Dirichlet kernel Type 3)

DFT of a symmetrical rectangular function, sin(tmf,K / N)
where K < N, in terms of the sample rate f, in Hz X(mf,)= W (3-51)

Amplitude normalized DFT of an all ones sin(zmf,)
rectangular function in terms of the sample X(mf,)= _nm-fs_ (3-52)
rate f in Hz

DFT of a symmetrical rectangular function,
where K < N, in terms of the sample rate o,
in radians/s

sin(mo,K/2N) | (a
X(mo) =~ inimo, /2N) (3-53)

Amplitude normalized DFT of an all ones 2sin({mew, /2)
rectangular function in terms of the sample X(may,) = —%_:_—' (3-54)
rate @, in radians/s

DFT of an all ones rectangular function in X(@)= E‘M (3-55)
terms of the normalized discrete frequency sin(@,, / 2)
variable @, (Dirichlet kernel Type 4).

The DFT of Rectangular Functions

Equation (3-55), taking the third form of Eq. (3-34) sometimes seen in the
literature, also has the DFT magnitude shown in Figure 3-32(b) and
Figure 3-32(c).

We've covered so many different expressions for the DFT of various

rectangular functions that it's reasonable to compile their various forms in
Table 3-2.

3.13.6 Inverse DFT of a General Rectangular Function

Let’s think now about computing the inverse DFT of a rectangular fre-
quency-domain function; that is, given a rectangular X(m) function, find
a time-domain function x(1). We can define the general form of a rectan-
gular frequency-domain function, as we did for Figure 3-24, to be that
shown in Figure 3-35. The inverse DFT of the rectangular function X(m)in
Figure 3-35 is

N/2)
2 X(m)e/wmn/N (3-56)
m=—(N/2)+1

x(n)=—

The same algebraic acrobatics we used to arrive at Eq. (3-43) can be
applied to Eq. (3-56), guiding us to

2mn/ NY(m, ~(K-1)/2) | 1 sin(mnK/N)

=K
xm)=e N sin(an/N) ’

(3-57)

for the inverse DFT of the rectangular function in Figure 3-35. The
descriptions we gave for Eq. (3-43) apply equally well to Eq. (3-57) with
the exception of a 1/N scale factor term and a change in the sign of
Eq. (3-43)'s phase angle. Let’s use Eq. (3-57) to take a 64-point inverse
DFT of the 64-sample rectangular function shown in Figure 3-36(a). The

< K—>

Sssumsns X(m)

m==m,+ (K-1) N2

Figure 3-35 General rectangular frequency-domain function of width K
sampiles defined over N samples where K< N.

116

The Discrete Fourler Transform

1 X(m)

(@) 05

-28 -24 -20 -6 -12 -8 -4 0 4 8 12 16 20 24 28 32M
02

015 | Xreal () Lol 0.172

01 .
(b) 005

-8
ot teyss .'-.!-l-}!n-,!!'.ﬁ;-q-h\.-w.' LT L
20 16 -2 "%* 4 0 ¢ "ws" {2 {5 20 n

-0.05

0.03
0.02
0.01
(c) 0
-0.01 | H | i
-0.02 LA s .l L

X imag (n

-0.03 " uy

Figure 3-36 Inverse DFT of a general rectangular function: (a) original function X(m);
(o) real part, x,(n): () imaginary part, ximog(n).

02+ ix(n)l
015 ata 0.172
014
[| a
@ 505§ i
(1] s n IR LA LM [1]
0:-:#..I-I...-..l " YT NI .?-z ,..I.I-....*I.l-.!l
28 -24 -20 -16 ~12 -8 -4 O 4 8 12 16 20 24 28 N
3+ .-.-.l
24
..-.-l
1T 16
(b) 0
-14
24
34

Figure 3-37 Inverse DFT of a generalized rectangular function: (@) magnitude
1 x(n) 1. (©) phase angle of x(n) In radians.

inverse DFT of the sequence in Figure 3-36(a) results in an x(n) whose
real and imaginary parts, x,,(n) and ximag(n), are shown in Figure 3-36(b)
and Figure 3-36(c), respectively. With N = 64 and K = 11 in this example,
we’ve made the inverse DFT functions in Figure 3-36 easy to compare

The DFT of Rectangular Functions

with those forward DFT functions in Figure 3-26. See the similarity
between the real parts, X, (m) and x,,,/(n), in Figure 3-26(b) and Figure
3-36(b)? Also notice the sign change between the imaginary parts in
Figure 3-26(c) and Figure 3-36(c).

The magnitude and phase angle of x(n) are shown in Figure 3-37(a)
and Figure 3-37(b). Note the differences in main lobe peak magnitude
between Figure 3-27(a) and Figure 3-37(a). The peak magnitude value in
Figure 3-37(a) is K/N = 11/64, or 0.172. Also notice the sign change
between the phase angles in Figure 3-27(b) and Figure 3-37(b). The illus-
trations in Figures 3-26, 3-27, 3-36, and 3-37 are good examples of the fun-
damental duality relationships between the forward and inverse DFT.

3.13.7 Inverse DFT of a Symmetrical Rectangular Function

The inverse DFT of the general rectangular function in Figure 3-36 is
not very common in digital signal processing. However, in discussions
concerning digital filters, we will encounter the inverse DFT of sym-
metrical rectangular functions. This inverse DFT process is found in the
window design method of what are called low-pass finite impulse
response (FIR) digital filters. That method begins with the definition of
a symmetrical frequency function, H(m), such as that in Figure 3-38.
The inverse DFT of the frequency samples in Figure 3-38 is then taken
to determine the time-domain coefficients for use in a low-pass FIR fil-
ter. (Time-Domain FIR filter coefficients are typically denoted h(n)
instead of x(n), so we'll use h(n) throughout the remainder of this
inverse DFT discussion.)

In the case of the frequency domain H(m) in Figure 3-38, the K unity-
valued samples begin at m = -m, = -(K-1)/2. So plugging (K-1)/2 in for
m, in Eq. (3-57), gives

h(n) = e/ @™/ N(K-D/2-(K-1)/2) .1 sin(nnK/N)

N sin(mn/N)
= g/(2mn/ N)O) .1 sin(znK/N)) (3-58)
N sin{(nn/N)

Again, because ¢/’ = 1, Eq. (3-58) becomes

_1 sin(mnK/ N))
MW= N Smn/N) (3-59)

11

118

The Discrete Fourier Transform

€< K——m>»

1smnunsm IIII_IIIIH(m)
......... : ‘--_-------»
A A 0 A A m
-N2 +1 m=-m,=—(K-1)/2 m= (K=1)/2 N2

Figure 3-38 Frequency-domain rectangular function of width K samples
defined over N samples.

047 Nimag (M
0.3

IS
=

H(m) ENSENERENEN
(a) 0.
Osnannunzussnannesnnnnnsaoniit HHHestnessssssEsnnIngnnnusnn -
38 o4 20 6 12 B -4 0 4 8 12 16 20 24 28 32mM
021 hygq (M)
0.15 - 0172
.
01 .
®) oes . .
g
0 Lszunii%n l4-H+..-|r+0-+|‘+H-|- +H+H+H—H- TN Lol R T T
51 12 Wag® 4 T ez ds % 2528 30 n
0.0

{c) 0.2
0.1
(EITTITTAYTLEYTITTELTTELELLELLLLL sasmmeny TITITITYLL TLT) TLIITTITE
28 -24 20 -16 12 8 -4 0 4 8 12 16 20 24 28 7
021 1
s 0.172
01 » [}
01 | | YI
(d) 00 it % "
' a |
28 -24 20 16 12 -8 o, 12 16 20 24 28 N
4 n
3 ha() T~ NNAREE ssmamn an
2
14 -28 -24 -20 -16 -12 -8 -4 0 / \ / /
©) T e t LLL Lt tasaaas LLLLEELTI L S nans CLLLT T
-1 4 8 12 16 20 24 28 N
-2
Suns ITTLLT sanEmE -

Figure 3-39 Inverse DFT of a rectangular function centered about m=0:
(@) original Him); (©) hgg: () hlmog(n) (d) magnitude of K{n);
(e) phase of h(n) in radians.

The DFT Frequency Response to a Complex Input

Equation (3-59) tells us that the inverse DFT of the symmetrical rectan-
gular function in Figure 3-38 is itself a real function that we can illustrate by
example. We'll perform a 64-point inverse DFT of the sequence in Figure
3-39(a). Our H(m) is 11 unity-valued samples centered about the m = 0
index. Here the inverse DFT results in an h(n) whose real and imaginary
parts are shown in Figure 3-39(b) and Figure 3-39(c), respectively. As Eq.
(3-47) predicted, h,,, (n) is nonzero and himag(n) is zero. The magnitude and
phase of h(n) are depicted in Figure 3-39(d) and Figure 3-39(e). (Again,
we’'ve made the functions in Figure 3-39 easy to compare with the forward
DFT function in Figure 3-29.) It is h(n)’s real part that we're really after here.
Those values of h_, (1) are used for the time-domain filter coefficients in the
design of FIR low-pass filters that we'll discuss in Section 5.3.

3.14 The DFT Frequency Response fo a
Complex Input

In this section, we'll determine the frequency response to an N-point DFT
when its input is a discrete sequence representing a complex sinusoid
expressed as x(n). By frequency response we mean the DFT output sam-
ples when a complex sinusoidal sequence is applied to the DFT. We begin
by depicting an x (1) input sequence in Figure 3-40. This time sequence is
of the form

Real part of x,(n)

Imaginary part of x.(n)

! '.--' ',"-.' N1

b) O -M-M%H-M-T&HH—»

o

Figure 3-40 Complex time-domain sequence x(n) = e/2"%N having two
complete cycles (k = 2) over N samples: (0) real part of x (n): (©)
imaginary part of x(n).

119

120

The Discrete Fourier Transform

x(n) = g2mnk/N (3-60)

where k is the number of complete cycles occurring in the N samples.
Figure 3-40 shows x (n) if we happen to let k = 2. If we denote our DFT
output sequence as X (m), and apply our x () input to the DFT expression
in Eq. (3-2) we have

N-1 N-1
Xc(m) = Zxc(n)e'lz"”"’/” = Zelz’mk/N'e—ﬂnnm/N
n=0 =0
N-1
= Zeﬂnn(k-mww . (361)
=0

If welet N =K, n =p, and g4 = -2n(k—m)/N, Eq. (3-61) becomes

K-1
Xc(m)=2e“j”‘7 . (3-62)
p=0

Why did we make the substitutions in Eq. (3-61) to get Eq. (3-62)?
Because, happily, we've already solved Eq. (3-62) when it was Eq. (3-39).
That closed form solution was Eq. (3-41) that we repeat here as

K-1
X, (m) = z e iPA = pmiaK-1/2,
p=0

sin(gK / 2)

sin(q/2) (3-63)

Replacing our original variables from Eq. (3-61), we have our answer:

DFT of a complex

sinusoid: — X, () = e/lRtk=m)=ntk-m)/ NI, sin[n(k ~ m)] (3-64)

sin[n(k —m)/ N}

Like the Dirichlet kernel in Eq. (3-43), the X (m) in Eq. (3-64) is a com-
plex expression where a ratio of sine terms is the amplitude of X (m) and
the exponential term is the phase angle of X (m). At this point, we're inter-
ested only in the ratio of sines factor in Eq. (3-64). Its magnitude is shown
in Figure 3-41. Notice that, because x (n) is complex, there are no negative
frequency components in X (m). Let’s think about the shaded curve in

The DFT Frequency Response to a Complex Input

Figure 3-41 for a moment. That curve is the continuous Fourier transform
of the complex x (1) and can be thought of as the continuous spectrum of
the x (1) sequence.” By continuous spectrum we mean a spectrum that’s
defined at all frequencies, not just at the periodic f,/N analysis frequen-
cies of an N-point DFT. The shape of this spectrum with its main lobe and
sidelobes is a direct and unavoidable effect of analyzing any finite-length
time sequence, such as our x (n) in Figure 3-40.

We can conceive of obtaining this continuous spectrum analytically by
taking the continuous Fourier transform of our discrete x () sequence, a
process some authors call the discrete-time Fourier transform (DTFT), but
we can't actually calculate the continuous spectrum on a computer. That’s
because the DTFT is defined only for infinitely long time sequences, and
the DTFT’s frequency variable is continuous with infinitely fine-grained
resolution. What we can do, however, is use the DFT to calculate an
approximation of x(n)’s continuous spectrum. The DFT outputs repre-
sented by the dots in Figure 3-41 are a discrete sampled version of x,(n)’s
continuous spectrum. We could have sampled that continuous spectrum
more often, i.e., approximated it more closely, with a larger DFT by
appending additional zeros to the original x (n) sequence. We actually did
that in Figure 3-21.

Figure 3-41 shows us why, when an input sequence’s frequency is
exactly at the m = k bin center, the DFT output is zero for all bins except
where m = k. If our input sequence frequency was k+0.25 cycles in the
sample interval, the DFT will sample the continuous spectrum shown in
Figure 3-42 where all of the DFT output bins would be nonzero. This
effect is a demonstration of DFT leakage described in Section 3.8.

1X,(m)l DFT This curve is the continuqus Fourier
response N . transform of x(n) = gl2rnik/N

:f \3

[

[y

A

A~ Y N
N) 4 [y Y R
J '“I'I'I'I'l‘l\tmI
-k 0 ks kP g KRt Ko M2 g5 B s

Figure 3-41 N-point DFT frequency magnitude response o a complex sinusoid
having integral k cycles in the N-point time sequence x (n) = @l2mniiN,

* Just as we used L'Hospital’s rule to find the peak value of the Dirichlet kernel in
Eq. (3-44), we could also evaluate Eq. (3-64) to show that the peak of X (m) is N whenm = k.

121

122

The Discrete Fourier Transform

X (m)} DFT
response

~k 0

Figure 3-42 N-point DFT frequency magnitude response showing spectral leakage of a
complex sinusold having k+0.25 cycles in the N-point time sequence x ().

A gain, just as there are several different expressions for the DFT of a
rectangular function that we listed in Table 3-2, we can express the ampli-
tude response of the DFT to a complex input sinusoid in different ways to
arrive at Table 3-3.

Table 3-3 Various Forms of the Amplitude Response of the DFT fo a
Complex Input Sinusoid Having k Cycles in the Sample interval

Description Expression
Complex input DFT amplitude inlm(k -
response in terms of the integral X (m)= % (3-65)

frequency variable m [From Eq. (3-64)]

Alternate form of the complex input DFT N sin[r(k — m))
amplitude response in terms of the integral X (m) = (k- m) (3-66)
frequency variable m [based on Eq. (3-49)]

Amplitude normalized complex input DFT
response in terms of the integral frequency
variable m

_ sin[n(k ~m)] _
xm== 0T E1(367)

Complex input DFT response in terms N sin[n(k - m)f.]
of the sample rate f, in Hz X (mf,) = W (3-68)
s

Amplitude normalized complex input DFT
response in terms of the sample rate f; in Hz X (mf;) =

sin[n(k — m)f,] ~
n(k - m)f, (3-69)

Amplitude normalized complex input DFT
response in terms of the sample rate o, X (ma,) =

2sinl(k=m)a, /2] | (3 70,

(k - m)ws

The DFT Frequency Response to a Real Cosine Input

At this point, the thoughtful reader may notice that the DFT’s response
to a complex input of k cycles per sample interval in Figure 3-41 looks sus-
piciously like the DFT’s response to an all ones rectangular function in
Figure 3-32(c). The reason the shapes of those two response curves look
the same is because their shapes are the same. If our DFT input sequence
was a complex sinusoid of k = 0 cycles, i.e., a sequence of identical con-
stant values, the ratio of sines term in Eq. (3-64) becomes

sin[x(0-m)] _ -sin(mm) _ sin(mm)
sin[n(0-m)/N] -sin(am/N) sin(nm/N)’

which is identical to the all ones form of the Dirichlet kernel in Eq. (3-48).
The shape of our X (m) DFT response is the sinc function of the Dirichlet
kernel.

3.15 The DFT Frequency Response to a Real

Cosine input
Now that we know what the DFT frequency response is to a complex
sinusoidal input, it’s easy to determine the DFT frequency response to a

real input sequence. Say we want the DFT’s response to a real cosine
sequence, like that shown in Figure 3-40(a), expressed as

x,(n) = cos(2nnk/N) , (3-71)
where k is the integral number of complete cycles occurring in the N sam-

ples. Remembering Euler’s relationship cos(a) = (€°+ e72) /2, we can show
the desired DFT as X (m) where

N-1 N-1
X,(m)= zx,(n)e'jz""'"/N = 2cos(21mk/N)-e'i2""’"/N

n=0 n=0

N-1
- Z(ejZnnk/N +eTI2mkINY y o pmj2mnm/N

n=0

1 . (k-m)/ N 1 o, (k+m)/ N)
-2 ej nn(k-m += e-;‘ nn(k+m . (3-72
P2 12

123

124

The Discrete Fourier Transform

Fortunately, in the previous section we just finished determining the
closed form of a summation expression like those in Eq. (3-72), so we can
write the closed form for X (m) as

DFT of a real
cosine: — X, (m) = e/n(k=m)=n(k=m)/N] 1 sin[n(k —m)]
2 sin[n(k - m)/ N]

4+ eltmkemy-ngeemy/Ny 1 _sin[mk+m)] »
2 sin[n(k + m)/ N] (3-73)

We show the magnitude of those two ratio of sines terms as the sinc
functions in Figure 3-43. Here again, the DFT is sampling the input
cosine sequence’s continuous spectrum and, because k = m, only one DFT
bin is nonzero. Because the DFT’s input sequence is real, X (m) has both
positive and negative frequency components. The positive frequency
portion of Figure 3-43 corresponds to the first ratio of sines term in Eq.

X, (m)l DFT
response
N . pol N This curve, along with its
2 / \ =z .l\ negative frequency
/ \ \ portion, is the continuous
/ Fourier transform of
/[’ \\ / x(n} = cos{2rni/N).
| H ;
R ___,_/__/i_/ _/;_/“__/__ 0 VA BIRAVAVAN 2
S e) w2) e DU '
—k—a et K et 3 0 k-3 —2k_1‘ k g k+k o

Figure 3-43 N-point DFT frequency magnitude response to a real cosine having
integral k cycles In the N-point time sequence x,(r) = cos(2rnk/N).

1X,(m)l DFT
response

N N
2N =z
A ®
/-1 /\

a
N\ | ._\]
PRV QAT SN IRV Y R A e -
—
k4 | k2
448 —k o 1"‘*2-« g 0 kA g K2y K| g K2 g R
-k-0.25 £:0.25

Figure 3-44 N-point DFT frequency magnitude response showing spectral leakage of
areal cosine having k+0.25 cycles in the N-point time sequence x,(n).

The DFT Single-Bin Frequency Response to a Real Cosine Input

Table 3-4 Various Forms of the Positive Frequency Amplitude Response of the
DFT to a Real Cosine Input Having k Cycles in the Sample Interval

Description Expression

Real input DFT amplitude response in sin[n(k - m)) 4
terms of the integral frequency variable m X, (m)= Zsin[n(k—m)/ N] (3-74)
[From Eq. (3-73)]

Alternate form of the real input DFT
amplitude response in terms of the integral
frequency variable m [based on Eq. (3-49)]

N sin[n(k - m)] R
X, (m) R (3-75)

Amplitude normalized real input sin[n(k - m))
DFT response in terms of the integral X, (m) = 2nk—m) (3-76)
frequency variable m

Real input DFT response in terms of N sin{n(k - m)f,]

the sample rate f, in Hz X, (mf;) = k-], (3-77)
5

Amplitude normalized real input sin{n(k — m)

DFT response in terms of the sample X, (mf;) _Z-(T—Wffs- (3-78)

rate f; in Hz d

Amplitude normalized real input sinf(k - m)o, /2]
DFT response in terms of the sample X, (mw;) = W (3-79)
rate o, in radians/s y

(3-73) and the second ratio of sines term in Eq. (3-73) produces the nega-
tive frequency components of X (m).

DFT leakage is again demonstrated if our input sequence frequency
were shifted from the center of the kth bin to k+0.25 as shown in Figure
3-44. (We used this concept of real input DFT amplitude response to
introduce the effects of DFT leakage in Section 3.8.)

In Table 3-4, the various mathematical expressions for the (positive fre-
quency) amplitude response of the DFT to a real cosine input sequence are
simply those expressions in Table 3-3 reduced in amplitude by a factor of 2.

3.16 The DFT Single-Bin Frequency Response to a
Real Cosine Input

Now that we understand the DFT’s overall N-point (or N-bin) frequency
response to a real cosine of k cycles per sample interval, we conclude this
chapter by determining the frequency response of a single DFT bin. We
can think of a single DFT bin as a kind of bandpass filter, and this useful
notion is used, for example, to describe DFT scalloping loss (Section 3.10),
employed in the design of frequency-domain filter banks, and applied in

125

126

The Discrete Fourler Transform

a telephone frequency multiplexing technique known as transmultiplex-
ing[15]. To determine a DFT single-bin’s frequency response, consider
applying a real x (n) cosine sequence to a DFT and monitoring the output
magnitude of just the m = k bin. Let’s say the initial frequency of the input
cosine sequence starts at a frequency of k<m cycles and increases up to a
frequency of k>m cycles in the sample interval. If we measure the DFT’s

Output
magnitude of / \
the mth bin i
[==

) n
| VAN /\\/ N

0 m14|m12Ir'71|m12|m,',4 k
m-3 m-1 m+1 m+3

Qutput
magnitude of //\
the mth bin
3
[==
() [\ .
H £
| /\/:\/\/ : V | VAN -
0 m-4 l m-2 I m l 2 l m-'+4 k
m-3 m-1 m1 m3
Output =
magnitude of / ’\
the mth bin f ~
g/ i’\,
(© |
{ P
. PaVavd i AV -
1
0 ma | mz | m | mz| me k
m-1 m+ m+3
Single-bin NI2--m
! This curve is th
magnitude continuous frelzue:cy
response magnitude response
of a DFT's mth bin
(d) when the D!;'T input is
real.
} r o
0

T T
m—4|m—2|m|m:~2|ml+4 In|
put
m3 m1 m+1 m+3 frequency k

Figure 3-45 Determining the output magnitude of the mth bin of an N-point DFT:
(@) when the real x(n) has k = m-2.5 cycles in the time sequence;
(b) when the real x,(n) has k = m-1.5 cycles in the time sequence;
(c) when the real x,(n) has k = m cycles in the time sequence;
(d) the DFT single-bin frequency magnitude response of the m = k bin.

References

m = k bin during that frequency sweep, we'll see that its output magni-
tude must track the input cosine sequence’s continuous spectrum, shown
as the shaded curves in Figure 3-45.

Figure 3-45(a) shows the m = k bin’s output when the input x,(n)’s fre-
quency is k = m-2.5 cycles per sample interval. Increasing x,(n)’s fre-
quency to k = m-1.5 cycles per sample interval results in the m = k bin’s
output, shown in Figure 3-45(b). Continuing to sweep x,(n)’s frequency
higher Figure 3-45(c) shows the m = k bin’s output when the input fre-
quency is k = m. Throughout our input frequency sweeping exercise, we
can see that the m = k bin’s output magnitude must trace out the cosine
sequence’s continuous spectrum, shown by the solid curve in Figure
3-45(d). This means that a DFT’s single-bin frequency magnitude
response, to a real input sinusoid, is that solid sinc function curve
defined by Egs. (3-74) through (3-79).

References
[1] Bracewell, R. “The Fourier Transform,” Scientific American, June 1989.

[2] Struik, D. A Concise History of Mathematics, Dover Publications Inc., New York,
1967, p. 142.

[3] Williams, C. S. Designing Digital Filters. Section 8.6, Prentice-Hall, Englewood
Cliffs, New Jersey, 1986, p. 122.

[4] Press, W., et al. Numerical Recipes—The Art of Scientific Computing. Cambridge
University Press, 1989, p. 426.

[5] Geckinli, N. C., and Yavuz, D. “Some Novel Windows and a Concise Tutorial
Comparison of Window Families,” IEEE Trans. on Acoust. Speech, and Signal
Proc., Vol. ASSP-26, No. 6, December 1978. (By the way, on page 505 of this
paper, the phrase “such that W(f) 2 0 V f” indicates that W(f) is never nega-
tive. The symbol V means “for all.”)

[6] O’Donnell, J. “Looking Through the Right Window Improves Spectral
Analysis,” EDN, November 1984.

[7] Kaiser, J. E “Digital Filters,” in System Analysis by Digital Computer. Ed. by F.
F. Kuo and J. F. Kaiser, John Wiley and Sons, New York, 1966, pp. 218-277.

[8] Rabiner, L. R., and Gold, B. The Theory and Application of Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 1975, p. 88.

[9] Schoenwald, J. “The Surface Acoustic Wave Filter: Window Functions,” RF
Design, March 1986.

[10] Harris, F. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

127

128

The Discrete Fourier Transform

[11] Nuttall, A. H. “Some Windows with Very Good Sidelobe Behavior,” IEEE
Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-29, No. 1, February 1981.

[12] Yanagimoto, Y. “Receiver Design for a Combined RF Network and Spectrum
Analyzer,” Hewlett-Packard Journal, October, 1993.

[13] Gullemin, E. A. The Mathematics of Circuit Analysis. John Wiley and Sons, New
York, 1949, p. 511.

[14] Lanczos, C. Discourse on Fourier Series, Chapter 1, Hafner Publishing Co., New
York, 1966, p. 7-47.

[15] Freeny, S. “TDM/FDM Translation As an Application of Digital Signal
Processing,” IEEE Communications Magazine, January 1980.

CHAPTER FOUR

The Fast Fourier
Transform

Although the DFT is the most straightforward mathematical procedure
for determining the frequency content of a time-domain sequence, it’s ter-
ribly inefficient. As the number of points in the DFT is increased to hun-
dreds, or thousands, the amount of necessary number crunching becomes
excessive. In 1965 a paper was published by Cooley and Tukey describing
a very efficient algorithm to implement the DFT[1]. That algorithm is now
known as the fast Fourier transform (FFT).! Before the advent of the FFT,
thousand-point DFTs took so long to perform that their use was restricted
to the larger research and university computer centers. Thanks to Cooley,
Tukey, and the semiconductor industry, 1024-point DFTs can now be per-
formed in a few seconds on home computers.

Volumes have been written about the FFT, and, like no other innova-
tion, the development of this algorithm transformed the discipline of dig-
ital signal processing by making the power of Fourier analysis affordable.
In this chapter, we'll show why the most popular FFT algorithm (called
the radix-2 FFT) is superior to the classical DFT algorithm, present a series
of recommendations to enhance our use of the FFT in practice, and pro-
vide a list of sources for FFT routines in various software languages. We
conclude this chapter, for those readers wanting to know the internal
details, with a derivation of the radix-2 FFT and introduce several differ-
ent ways in which this FFT is implemented.

¥ Actually, the FFT has an interesting history. While analyzing X-ray scattering data, a cou-
ple of physicists in the 1940s were taking advantage of the symmetries of sines and cosines
using a mathematical method based on a technique published in the early 1900s.
Remarkably, over 20 years passed before the FFT was (re)discovered. Reference [2] tells the
full story.

129

130

The Fast Fourler Transform

4.1 Relationship of the FFT to the DFT

Although many different FFT algorithms have been developed, in this
section we’ll see why the radix-2 FFT algorithm is so popular and learn
how it’s related to the classical DFT algorithm. The radix-2 FFT algorithm
is a very efficient process for performing DFTs under the constraint that
the DFT size be an integral power of two. (That is, the number of points
in the transform is N = 2, where k is some positive integer.) Let’s see just
why the radix-2 FFT is the favorite spectral analysis technique used by
signal-processing practitioners.

Recall that our DFT Example 1 in Section 3.1 illustrated the number of
redundant arithmetic operations necessary for a simple 8-point DFT. (For
example, we ended up calculating the product of 1.0607 - 0.707 four sepa-
rate times.) On the other hand, the radix-2 FFT eliminates these redundan-
cies and greatly reduces the number of necessary arithmetic operations. To
appreciate the FFT's efficiency, let’s consider the number of complex multi-
plications necessary for our old friend, the expression for an N-point DFT,

N-1
X(m) = Zx(n)e'jz"""'/ N, (4-1)
n=0

For an 8-point DFT, Eq. (4-1) tells us that we’d have to perform N? or 64
complex multiplications. (That's because, for each of the eight X(m)s, we
have to sum eight complex products as n goes from 0 to 7.) As we’ll ver-
ify in later sections of this chapter, the number of complex multiplications,
for an N-point FFT, is approximately

% -log, N. (4-2)

(We say approximately because some multiplications turn out to be mul-
tiplications by +1 or -1, which amount to mere sign changes.) Well, this
(N/2)log,N value is a significant reduction from the N? complex multipli-
cations required by Eq. (4-1), particularly for large N. To show just how
significant, Figure 4-1 compares the number of complex multiplications
required by DFTs and radix-2 FFTs as a function of the number of input
data points N. When N = 512, for example, the DFT requires 200 times
more complex multiplications than those needed by the FFT. When
N = 8192, the DFT must calculate 1000 complex multiplications for each
complex multiplication in the FFT!

Hints on Using FFTs in Practice

A Number of complex multiplications

109 L]

i\
T
A
Y
a
X

\

-
10" 10° 1¢° 1d* 1 N

Figure 4-1 Number of complex mulfiplications in the DFT and the radix-2 FFT
as a function of N,

It's appropriate now to make clear that the FFT is not an approximation
to the DFT. It's exactly equal to the DFT; it is the DFT. Moreover, all of the
performance characteristics of the DFT described in the previous chapter,
output symmetry, linearity, output magnitudes, leakage, scalloping loss,
etc., also describe the behavior of the FFT.

4.2 Hints on Using FFTs in Practice

Based on how useful FFTs are, here’s a list of practical pointers, or tips, on
acquiring input data samples and using the radix-2 FFT to analyze real-
world signals or data.

4.2.1 Sample Fast Enough and Long Enough

When digitizing continuous signals with an A/D converter, for exam-
ple, we know, from Chapter 2, that our sampling rate must be greater
than twice the bandwidth of the continuous A/D input signal to pre-
vent frequency-domain aliasing. Depending on the application, practi-
tioners typically sample at 2.5 to four times the signal bandwidth. If we
know that the bandwidth of the continuous signal is not too large rela-
tive to the maximum sample rate of our A/D converter, it's easy to
avoid aliasing. If we don’t know the continuous A/D input signal’s

131

132

The Fast Fourier Transform

bandwidth, how do we tell if we’re having aliasing problems? Well, we
should mistrust any FFT results that have significant spectral compo-
nents at frequencies near half the sample rate. Ideally, we’d like to work
with signals whose spectral amplitudes decrease with increasing fre-
quency. Be very suspicious of aliasing if there are any spectral compo-
nents whose frequencies appear to depend on the sample rate. If we
suspect that aliasing is occurring or that the continuous signal contains
broadband noise, we’ll have to use an analog low-pass filter prior to
A/D conversion. The cutoff frequency of the low-pass filter must, of
course, be greater than the frequency band of interest but less than half
the sample rate.

Although we know that an N-point radix-2 FFT requires N = 2* input
samples, just how many samples must we collect before we perform our
FFT? The answer is that the data collection time interval must be long
enough to satisfy our desired FFT frequency resolution for the given sam-
ple rate f,. The data collection time interval is the reciprocal of the desired
FFT frequency resolution, and the longer we sample at a fixed f, sample
rate, the finer our frequency resolution will be; that is, the total data col-
lection time interval is N/f, seconds, and our N-point FFT bin-to-bin fre-
quency resolution is f,/N Hz. So, for example, if we need a spectral
resolution of 5 Hz, then, f, /N = 5 Hz, and

f AT 43

" desired resolution 5

In this case, if f, is, say, 10 kHz, then N must be at least 2,000, and we’d
choose N equal to 2048 because this number is a power of 2.

4.2.2 Manipulating the Time Data Prior to Transformation

When using the radix-2 FFT, if we don’t have control over the length of
our time-domain data sequence, and that sequence length is not an
integral power of two, we have two options. We could discard enough
data samples so that the remaining FFT input sequence length is some
integral power of two. This scheme is not recommended because ignor-
ing data samples degrades our resultant frequency-domain resolution.
(The larger N, the better our frequency resolution, right?) A better
approach is to append enough zero-valued samples to the end of the
time data sequence to match the number of points of the next largest
radix-2 FFT. For example, if we have 1000 time samples to transform,
rather than analyzing only 512 of them with a 512-point FFT, we should

Hints on Using FFTs in Practice

add 24 trailing zero-valued samples to the original sequence and use a
1024-point FFT. (This zero-stuffing technique is discussed in more detail
in Section 3.11.)

FFTs suffer the same ill effects of spectral leakage that we discussed for
the DFT in Section 3.8. We can multiply the time data by a window func-
tion to alleviate this leakage problem. Be prepared, though, for the fre-
quency resolution degradation inherent when windows are used. By the
way, if appending zeros is necessary to extend a time sequence, we have
to make sure that we append the zeros after multiplying the original time
data sequence by a window function. Applying a window function to the
appended zeros will distort the resultant window and worsen our FFT
leakage problems.

Although windowing will reduce leakage problems, it will not elimi-
nate them altogether. Even when windowing is employed, high-level
spectral components can obscure nearby low-level spectral components.
This is especially evident when the original time data has a nonzero aver-
age, i.e., it’s riding on a DC bias. When the FFT is performed in this case,
a large-amplitude DC spectral component at 0 Hz will overshadow its
spectral neighbors. We can eliminate this problem by calculating the aver-
age of the time sequence and subtract that average value from each sam-
ple in the original sequence. (The averaging and subtraction process must
be performed before windowing.) This technique makes the new time
sequence’s average (mean) value equal to zero and eliminates any high-
level, 0-Hz component in the FFT resuits.

4.2.3 Enhancing FFT Results

If we're using the FFT to detect signal energy in the presence of noise and
enough time-domain data is available, we can improve the sensitivity of
our processing by averaging multiple FFTs. This technique, discussed in
Section 10.7, can be implemented very efficiently to detect signal energy
that’s actually below the average noise level; that is, given enough time-
domain data, we can detect signal components that have negative signal-
to-noise ratios.

If our original time-domain data is real-valued only, we can take
advantage of the 2N-Point Real FFT technique in Section 10.5 to speed up
our processing; that is, a 2N-point real sequence can be transformed with
a single N-point complex radix-2 FFT. Thus we can get the frequency res-
olution of a 2N-point FFT for just about the computational price of per-
forming a standard N-point FFT. Another FFT speed enhancement is the
possible use of the frequency-domain windowing technique discussed in

134

The Fast Fourier Transform

Section 10.3. If we need the FFT of unwindowed time-domain data and,
at thie same time, we also want the FFT of that same time data with a win-
dow function applied, we don’t have to perform two separate FFTs. We
can perform the FFT of the unwindowed data, and then we can perform
frequency-domain windowing to reduce spectral leakage on any, or all, of
the FFT bin outputs.

4.2.4 Interprefing FFT Results

The first step in interpreting FFT results is to compute the absolute fre-
quency of the individual FFT bin centers. Like the DFT, the FFT bin spac-
ing is the ratio of the sampling rate (f,) over the number of points in the
FFT, or f,/N. With our FFT output designated by X(m), where m =0, 1, 2,
3, ..., N-1, the absolute frequency of the mth bin center is mf,/N. If the
FFT’s input time samples are real, only the X(m) outputs from m = 0 to
m = N/2 are independent. So, in this case, we need determine only the
absolute FFT bin frequencies for m over the range of 0 < m < N/2. If the
FFT input samples are complex, all N of the FFT outputs are independent,
and we should compute the absolute FFT bin frequencies for m over the
full range of 0 S m < N-1.

If necessary, we can determine the true amplitude of time-domain sig-
nals from their FFT spectral results. To do so, we have to keep in mind that
radix-2 FFT outputs are complex and of the form

X(m) =X (m) +jX. . (m). 4-4)

mag

Also, the FFT output magnitude samples,

X g (1) =1 X (1) 1= | X o (1)? + X (m1)? (4-5)

are all inherently multiplied by the factor N/2, as described in Section 3.4,
when the input samples are real. If the FFT input samples are complex, the
scaling factor is N. So to determine the correct amplitudes of the time-
domain sinusoidal components, we'd have to divide the FFT magnitudes by
the appropriate scale factor, N/2 for real inputs and N for complex inputs.
If a window function was used on the original time-domain data, some
of the FFT input samples will be attenuated. This reduces the resultant
FFT output magnitudes from their true unwindowed values. To calculate
the correct amplitudes of various time-domain sinusoidal components,
then, we’d have to further divide the FFT magnitudes by the appropriate

Hints on Using FFTs in Practice

processing loss factor associated with the window function used.
Processing loss factors for the most popular window functions are listed
in Reference [3].

Should we want to determine the power spectrum Xpg(m) of an FFT
result, we'd calculate the magnitude-squared values using

Xpg(m) = 1 X(m)12 =X (m)? + Ximag(m)z. (4-6)
Doing so would allow us to compute the power spectrum in decibels with

X 5(m) = 10-log,, (1 X(m)|2) dB. 4-7)

The normalized power spectrum in decibels can be calculated using

. | X(m) 12
normalized X =10-1 —_—
1Ze dB(m) Oglo((| X(m) ,max)z J ’ (4"8)
or
normalized X 5(m) = 20- loglo(éf—;(;n%—] . (4-9)

In Egs. (4-8) and (4-9), the term | X(m) | max 18 the largest FFT output mag-
nitude sample. In practice, we find that plotting X ,,(m) is very informa-
tive because of the enhanced low-magnitude resolution afforded by the
logarithmic decibel scale, as described in Appendix E. If either Eq. (4-8)
or Eq. (4-9) is used, no compensation need be performed for the above-
mentioned N or N/2 FFT scale or window processing loss factors.
Normalization through division by (I X(m)| max)? of | X(m)| max €limi-
nates the effect of any absolute FFT or window scale factors.

Knowing that the phase angles X, (m) of the individual FFT outputs are
given by

(4-10)

X, (m)= tan'l(ﬁ‘iag(—m)) ,

Xreal(m)

it’s important to watch out for X, (m) values that are equal to zero. That
would invalidate our phase angle calculations in Eq. (4-10) due to division

135

136

The Fast Fourler Transform

by a zero condition. In practice, we want to make sure that our calculations
(or software compiler) detect occurrences of X, (m) = 0 and set the corre-
sponding X (m) to 90° if Ximag(m) is positive, set X (m) to 0° if Xmg(m) is
zero, and set X (m) to 90° if X, (m) is negative. While we're on the subject
of FFT output phase angles, be aware that FFT outputs containing signifi-
cant noise components can cause large fluctuations in the computed X (m)
phase angles. This means that the X _(m) samples are only meaningful when
the corresponding | X(m)| is well above the average FFT output noise level.

4.3 FFT Software Programs

For readers seeking actual FFT software routines without having to buy
those high-priced signal processing software packages, public domain
radix-2 FFT routines are readily available. References [4-7] provide stan-
dard FFT program listings using the FORTRAN language. Reference [8]
presents an efficient FFT program written in FORTRAN for real-only
input data sequences. Reference [9] provides a standard FFT program
written in HP BASIC™, and reference [10] presents an FFT routine writ-
ten in Applesoft BASIC™. Readers interested in the Ada language can
find FFT-related subroutines in reference {11].

4.4 Derivation of the Radix-2 FFT Algorithm

This section and those that follow provide a detailed description of the
internal data structures and operations of the radix-2 FFT for those read-
ers interested in developing software FFT routines or designing FFT hard-
ware. To see just exactly how the FFT evolved from the DFT, we return to
the equation for an N-point DFT,

N-1
X(m)="Y x(me2m/N . (4-11)

n=0

A straightforward derivation of the FFT proceeds with the separation of
the input data sequence x(n) into two parts. When x(r) is segmented into
its even and odd indexed elements, we can, then, break Eq. (4-11) into
two parts as

(N/2)-1 , (N/2)-1 '
X(m)= Zx(Zn)e”z"(z")"'/N+ Zx(2n+1)e-l2"(2"+1>'"/N. (4-12)
n=0 n=0

Derivation of the Radix-2 FFT Algorithm

Pulling the constant phase angle outside the second summation,

(N/2)-1)) (N/2)-1 .
X(my= Y x(2m)e 2r@Nm/N o gmjzem/N ix(2n+1)e"2"(2")'"/ N (413)

n=0 n=0

Well, here the equations get so long and drawn out that we’ll use the
standard notation to simplify things. We’ll define Wy, = e72*/N to repre-
sent the complex phase angle factor that is constant with N. So Eq. (4-13)
becomes

(N/2)~1 (N/2)-1
X(my="y x@mWE™ +WE Y x(2n+ W™ (4-14)
=0 n=0

Because W} = e722/(N) = ¢7j27/(N/2), we can substitute Wy, , for W% in
Eq. (4-14), as

(N/2)-1 (N/2)-1
X(m) = zf X2mWT, + WY x(2n + WS, . (4-15)
n=0 n=0

So we now have two N/2 summations whose results can be combined
to give us the N-point DFT. We've reduced some of the necessary number
crunching in Eq. (4-15) relative to Eq. (4-11) because the W terms in the
two summations of Eq. (4-15) are identical. There’s a further benefit in
breaking the N-point DFT into two parts because the upper half of the
DFT outputs are easy to calculate. Consider the X(m+N/2) output. If we
plug m+N/2 in for m in Eq. (4-15), then

(N/2)-1
X(m+N/2)= i x(2n)W™m+N/2)

- N/2
(N/2)~1
(m+N/2) n(m+N /2)
4-1
Wy 2:.) x(2n+ YW . (4-16)
n=

It looks like we're complicating things, right? Well, just hang in there for
a moment. We can now simplify the phase angle terms inside the sum-
mations because

137

138

The Fast Fourier Transform

n(m+N /2) __a7nm nN/2 _anm —-j2rn2N /2N
W9 =W Wiy =W e)

=W, () =Wy7,, (#-17)

for any integer n. Looking at the so-called twiddle factor in front of the sec-
ond summation in Eq. (4-16), we can simplify it as

W;SJ"HN/Z) =WI:InWI$I/2 =w}:}n(e-j2nN/2N) = Wg’n(_l) - —wzl]" . (4-18)

OK, using Egs. (4-17) and (4-18), we represent Eq. (4-16)'s X(m+N/2) as

(N/2)-1 (N/2)-1
X(m+N/2)= Zx(Zn)W,(',"/'z -wr Zx(2n+1)w,s'72. (4-19)
n=0 n=0

Now, let’s repeat Egs. (4-15) and (4-19) to see the similarity;

(N/2)-1 (N/2)-1
X(m)=" Y xQ@mWT, + W Y x@n+DWT, (4-20)
n=0 n=0
and
(N/2)-1 (N/2)-1
X(m+N/2)= 2 XU, -WE Y x(@n+ W7, . (420)
=0 n=0

So here we are. We need not perform any sine or cosine multiplications to
get X(m+N/2). We just change the sign of the twiddle factor W} and use
the results of the two summations from X(m) to get X(m+N/2). Of course,
m goes from 0 to (N/2)-1 in Eq. (4-20) which means, for an N-point DFT,
we perform an N/2-point DFT to get the first N/2 outputs and use those
to get the last N/2 outputs. For N = 8, Egs. (4-20) and (4-20") are imple-
mented as shown in Figure 4-2.
If we simplify Egs. (4-20) and (4-20') to the form

X(m) = A(m) + W B(m) , (4-21)

and

Derivation of the Radix-2 FFT Algorithm

x(0) —»1 * 7-» X(0)
4-point (o

DFT /Wa

x(2) —] { - Xx(1)
w

x(4) —>1 < / / - X(2)

x(6) ~—-]

X(3)

x(1) —» X(4)

X3) —] X(5)

x(5) —| X(6)

x(7) —] ‘¢ w; = X(7)

Figure 4-2 FFT Implementation of an 8-point DFT using two 4-point DFTs.

X(m+N/2) = A(m) - WT" B(m) , (4-21)

we can go further and think about breaking the two 4-point DFTs into
four 2-point DFTs. Let’s see how we can subdivide the upper 4-point DFT
in Figure 4-2 whose four outputs are A(m) in Eqs. (4-21) and (4-21'). We
segment the inputs to the upper 4-point DFT into their odd and even
components

139

140

The Fast Fourler Transform

(N/2)-1 (N/4H-1 (N/4)-1
A(m)= Y xQu)WT, = i x(AnYWEs + 2 x(dn+ YWD

n=0 2n=0 2n=0
or
(N/4)-1 (N/4-1
A(m)=) x(4mWITL + W2 ix(4n + WIS (4-22)
2n=0 2n=0

If we let p = 21, the index of the summations in Eq. (4-22) can be simpli-
fied to give A(m) the more familiar form of

(N/4)-1 (N/9-1
Am)= Y xQp)WET, + W), ix(2p+1)Wb’}'74. (4-23)
p=0 p=0

Notice the similarity between Eq. (4-23) and Eq. (4-20). This capability to
subdivide an N/2-point DFT into two N/4-point DFT5 gives the FFT its
capacity to greatly reduce the number of necessary multiplications to imple-
ment DFTs. (We're going to prove this shortly.) Following the same steps that
we used to obtain A(m), we can show that Eq. (4-21)’s B(m) is given by

(N/9-1 (N/4)-1
Bim)= 3 xQpIWGT, -Wi)2 Y x@p+ WS, (4-24)
p=0 p=0

For our N = 8 example, Eqs. (4-23) and (4-24) are implemented as shown
in Figure 4-3. The FFT's well-known butterfly pattern of signal flows is cer-
tainly evident, and we see the further shuffling of the input data in Figure
4-3. The twiddle factor W[, in Eqgs. (4-23) and (4-24), for our N = 8 exam-
ple, ranges from W{ to W3 because the m index, for A(m) and B(m), goes
from 0 to 3. For any N-point DFT, we can break each of the N/2-point
DFTs into two N/4-point DFTs to further reduce the number of sine and
cosine multiplications. Eventually, we would arrive at an array of 2-point
DFTs where no further computational savings could be realized. This is
why the number of points in our FFTs are constrained to be some power
of 2 and why this FFT algorithm is referred to as the radix-2 FFT.
Moving right along, let’s go one step further, and then we’ll be fin-
ished with our N = 8 point FFT derivation. The 2-point DFT functions in

Derivation of the Radix-2 FFT Algorithm

A(0)
X(0) — - / - X(0)
2-point
DFT
x{(4) — —— - X(1)
x(2) —I X)
2-point
DFT
Xx(6) —I» X(3)
X(1) ——ip| X(4)
2-point
DFT
X(5) el X(5)
X{3) —b- X(8)
2-point
DFT
X7 —= X

Figure 4-3 FFT implementation of an 8-point DFT as two 4-point DFTs and four
2-point DFTs.

Figure 4-3 cannot be partitioned into smaller parts—we’ve reached the
end of our DFT reduction process arriving at the butterfly of a single
2-point DFT as shown in Figure 4-4. From the definition of Wy,
WY = e#2m0/N =1 and WY/2=¢72™N/2N = ¢t =1, So the 2-point DFT blocks
in Figure 4-3 can be replaced by the butterfly in Figure 4-4 to give us a
full 8-point FFT implementation of the DFT as shown in Figure 4-5.

141

The Fast Fourier Transform

x(k)

x(k+NI2)

Figure 4-4 Single 2-point DFT butterfly.

OK, we've gone through a fair amount of algebraic foot shuffling
here. To verify that the derivation of the FFT is valid, we can apply the
8-point data sequence of Chapter 3's DFT Example 1 to the 8-point FFT
represented by Figure 4-5. The data sequence representing
x(12) = sin(2r1000nt) + 0.5sin(2n2000nt +31/4) is

x(0) = 0.3535,
x(2) = 0.6464,
x(4) = 0.3535,
x(6) = -1.3535,

x(1) = 0.3535,

x(3) = 1.0607,

x(5) = -1.0607,

x(7) = ~0.3535. (4-25)

We begin grinding through this example by applying the input values
from Eq. (4-25) to Figure 4-5, giving the data values shown on left side of
Figure 4-6. The outputs of the second stage of the FFT are

A(0) = 0707 + W (<0.707) = 0.707 + (1 + j0)(=0.707) = 0 + jO,

A(1) = 0.0 + W! (1.999) = 0.0 + (0 - j1)(1.999) = 0 - j1.999,

A(2) = 0707 + W2 (<0.707) = 0.707 + (-1 + j0)(~0.707) = 1.414 + {0,

A(3) = 0.0 + W3(1.999) = 0.0 + (0 +{1)(1.999) = 0 + j1.999,

B(0) = —0.707 + W8 (0.707) = ~0.707 + (1 + j0)(0.707) = 0 + 0,

B(1) = 1414 + W) (1.414) = 1.414 + (0 - 1)(1.414) = 1.414 - j1.414,

B(2) = -0.707 + W2 (0.707) = -0.707 + (-1 + j0)(0.707) = ~1.414 + j0, and
B(3) = 1414 + W3 (1.414) = 1.414 + (0 + j1)(1.414) = 1.414 + 1414 .

Calculating the outputs of the third stage of the FFT to arrive at our final
answer

Derivation of the Radix-2 FFT Algorithm

x0) — o /~ X(0)
1
/\ P (\ !
x4) / — / - X(1)

x2)

X(6) X3)
X(1) X(4)
X(5) X(s)
X(3) X@)
X(7) -1 i ; X7)

Figure 4-5 Full decimation-in-time FFT implementation of an 8-point DFT.
X(O)=A(0)+WgB(O)=0+jO+(1+j0)(0+j0)=0+j0+0+j0=040°,

X(1) = A(1) + WL B(1) = 0 - j1.999 + (0.707 - j0.707)(1.414 — j1.414)
=0-71.999 + 071999 = 0 —j4 = 4 £-90°

X(2) = A(2) + W2 B(2) = 1.414 + jO + (0 — j1)(~1.414 + jO)
= 1414 + 0 + 0+ j1.4242 = 1.414 + j1.414 = 2 £45°,

X(3) = A3) + W2 B(3) = 0 +j1.999 + (~0.707 ~ j0.707)(1.414 + j1.414)
=0+71.999 +0-1.999 = 0 £0°,

143

144

The Fast Fourier Transform

0.3535 0.707 A(0)
x(0) > / - X(0)
0

Wy Ws

A1)

X(4) 0.3535 -1 v X(1)
‘ W,
0.6464 A(2)
x(2) ’_0 p— ‘ X(2)
X(6) » A®) ‘A

-1.3535 1.999 w. X(3)

rw

0.3535 -0.707
x(1) X(4)
1
x(5)] —— e X(5)
~1.0607 1.414
0.707
x(3) 1.0607 X(6)
1
x(7) -y = X(7)
-0.3535 1.414
i 11
T T
1st Stage 2nd Stage 3rd Stage

Figure 4-6 8-point FFT of Example 1 from Section 3.1.

X(4) = A(0) + W B(0) = 0 + jO + (-1 + jO)(0 + j0)
=0+j0+0+j0=0£0°

X(5) = A1) + WE B(1) = 0 - j1.999 + (~0.707 + j0.707)(1.414 - j1.414)
=0-71.999 + 0 + j1.999 = 0 £0°,

X(6) = A(2) + WEB(2) = 1414 + jO + (0 + j1)(-1.414 + j0)
=1.414 +j0 + 0 —j1.414 = 1.414 - j1.414 = 2 £-45°, and

X(7) = AB) + W B@3) = 0 + j1.999 + (0.707 + j0.707)(1.414 + j1.414)
=0+71.999 + 0+ j1.999 = 0 + j4 = 4 £90°.

FFT Input/Qutput Data Index Bit Reversal

6 3
Wa—W4
5
w | w’
8 8
4 w' = 0
w, =w, <& W, =W,
3 1
W Y v
2 1
W8=|/l{1

Figure 4-7 Cyclic redundancies in the twiddle factors of an 8-point FFT.

So, happily, the FFT gives us the correct results, and again we remind

the reader that the FFT is not an approximation to a DFT; it is a DFT with

a reduced number of necessary arithmetic operations. You've seen from
the above example that the 8-point FFT example required less effort than
the 8-point DFT Example 1 in Section 3.1. Some authors like to explain this
arithmetic reduction by the redundancies inherent in the twiddle factors
W2, They illustrate this with the starburst pattern in Figure 4-7 showing
the equivalencies of some of the twiddle factors in an 8-point DFT.

4.5 FFT Inpui/Output Data Index Bit Reversal

OK, let’s look into some of the special properties of the FFT that are
important to FFT software developers and FFT hardware designers.
Notice that Figure 4-5 was titled “Full decimation-in-time FFT imple-
mentation of an 8-point DFT.” The decimation-in-time phrase refers to
how we broke the DFT input samples into odd and even parts in the
derivation of Egs. (4-20), (4-23), and (4-24). This time decimation leads to
the scrambled order of the input data’s index n in Figure 4-5. The pattern
of this shuffled order can be understood with the help of Table 4-1. The
shuffling of the input data is known as bit reversal because the scrambled
order of the input data index can be obtained by reversing the bits of the
binary representation of the normal input data index order. Sounds con-
fusing, but it’s really not—Table 4-1 illustrates the input index bit rever-
sal for our 8-point FFT example. Notice the normal index order in the left

145

146

The Fast Fourier Transform

Table 4-1 Input Index Bit Reversal for an 8-point FFT

Normal order | Binary bits Reversed bits Bit-reversed
of index n of index n of index n order of index n
0 000 000 0
1 001 100 [3
2 010 010 2
3 on 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 m 11 7

column of Table 4-1 and the scrambled order in the right column that cor-
responds to the final decimated input index order in Figure 4-5. We've
transposed the original binary bits representing the normal index order
by reversing their positions. The most significant bit becomes the least
significant bit and the least significant bit becomes the most significant
bit, the next to the most significant bit becomes the next to the least sig-
nificant bit, and the next to the least significant bit becomes the next to
the most significant bit, and so on.*

4.6 Radix-2 FFT Butterfly Structures

Let’s explore the butterfly signal flows of the decimation-in-time FFT a bit
further. To simplify the signal flows, let’s replace the twiddle factors in
Figure 4-5 with their equivalent values referenced to Wy}, where N =8. We
can show just the exponents m of W7, to get the FFT structure shown in
Figure 4-8. That is, W} from Figure 4-5 is equal to Wand is shown as a 2
in Figure 4-8, W2 from Figure 4-5 is equal to Wy and is shown as a 4 in
Figure 4-8, etc. The 1s and -1s in the first stage of Figure 4-5 are replaced
in Figure 4-8 by 0s and 4s, respectively. Other than the twiddle factor nota-
tion, Figure 4-8 is identical to Figure 4-5. We can shift around the signal
nodes in Figure 4-5 and arrive at an 8-point decimation-in-time FFT as
shown in Figure 4-9. Notice that the input data in Figure 4-9 is in its nor-
mal order and the output data indices are bit-reversed. In this case, a bit-
reversal operation needs to be performed at the output of the FFT to
unscramble the frequency-domain results.

* Many that are first shall be last; and the last first. [Mark 10:31]

Radix-2 FFT Butterfly Structures

x0)
x(4)
X2)

x(6)

x(1)
x(5)
x(3)

X7)

Figure 4-9 8-point decimation-in-time FFT with bit-reversed outputs.

Figure 4-10 shows an FFT signal-flow structure that avoids the bit-
reversal problem altogether, and the graceful weave of the traditional FFT
butterflies is replaced with a tangled, but effective, configuration.

Not too long ago, hardware implementations of the FFT spent most of
their time (clock cycles) performing multiplications, and the bit-reversal
process necessary to access data in memory wasn't a significant portion of

147

148

The Fast Fourler Transform

X(1)

X2)

X(@3)

X4)

X(5)

X(6)

x(7) X7

Figure 4-10 8-poinf decimation-in-time FFT with inputs and outputs in normal
order.

the overall FFT computational problem. Now that high-speed multi-
plier/accumulator integrated circuits can multiply two numbers in a sin-
gle clock cycle, FFT data multiplexing and memory addressing have
become much more important. This has led to the development of effi-
cient algorithms to perform bit reversal[12-15].

There's another derivation for the FFT that leads to butterfly struc-
tures looking like those we've already covered, but the twiddle factors in
the butterflies are different. This alternate FFT technique is known as the
decimation-in-frequency algorithm. Where the decimation-in-time FFT
algorithm is based on subdividing the input data into its odd and even
components, the decimation-in-frequency FFT algorithm is founded
upon calculating the odd and even output frequency samples separately.
The derivation of the decimation-in-frequency algorithm is straightfor-
ward and included in many tutorial papers and textbooks, so we won't
go through the derivation here[4,5,15,16]. We will, however, illustrate
decimation-in-frequency butterfly structures (analogous to the structures
in Figures 4-8 through 4-10) in Figures 4-11 though 4-13.

So an equivalent decimation-in-frequency FFT structure exists for each
decimation-in-time FFT structure. It's important to note that the number
of necessary multiplications to implement the decimation-in-frequency
FFT algorithms is the same as the number necessary for the decimation-
in-time FFT algorithms. There are so many different FFT butterfly struc-
tures described in the literature, that it's easy to become confused about

Radix-2 FFT Butterfly Structures

x(0) 2 = X(0)
x(4) vv X1)

Dl \v ! o
«6) W2 ‘A‘A’ X3

-
o0
x2) .
6 2
x(1)
x(5) 5
X(3)
—
3
7

X7)

Figure 4-11 8-point decimation-in-frequency FFT with bit-reversed inputs

x(0)

X(0)

x(1) e x(4)
0
x(2) 4 X(2)
2 0
x(@) 4 X(6)
x(4) 4 X(1)
1
x(5) : e e X5)

0
x(6) \ﬁ > 4 X(3)
L__SSL 2 0
x(7) 7 6 i . X7

Figure 4-12 8-point decimation-in-frequency FFT with bit-reversed outputs.

which structures are decimation-in-time and which are decimation-in-
frequency. Depending on how the material is presented, it's easy for a
beginner to fall into the trap of believing that decimation-in-time FFTs
always have their inputs bit-reversed and decimation-in-frequency FFTs
always have their outputs bit-reversed. This is not true, as the above fig-
ures show. Decimation-in-time or -frequency is determined by whether

149

150

The Fast Fourler Transform

X0)

x1)

x2)

x(3)

x(4)

x(5)

x(6)

X7

Figure 4-13 8-point decimation-in-frequency FFT with inputs and outputs in
normail order.

the DFT inputs or outputs are partitioned when deriving a particular FFT
butterfly structure from the DFT equations.

Let’s take one more look at a single butterfly. The FFT butterfly struc-
tures in Figures 4-8, 4-9, 4-11, and 4-12 are the direct result of the deriva-
tions of the decimation-in-time and decimation-in-frequency algorithms.
Although it’s not very obvious at first, the twiddle factor exponents
shown in these structures do have a consistent pattern. Notice how they
always take the general forms shown in Figure 4-14(a)." To implement
the decimation-in-time butterfly of Figure 4-14(a), we’d have to perform
two complex multiplications and two complex additions. Well, there’s a
better way. Consider the decimation-in-time butterfly in Figure 4-14(a). If
the top input is x and the bottom input is y, the top butterfly output
would be

X =x+Why, (4-26)
and the bottom butterfly output would be

y=x+WkN2y. (4-27)

* Remember, for simplicity the butterfly structures in Figures 4-8 through 4-13 show only the
twiddle factor exponents, k and k+N/2, and not the entire complex twiddle factors.

Radix-2 FFT Butterfly Structures

Decimation in time Decimation in frequency

w,
(a) N
k+N/2 WN
+
y W) , W,/:;N/z A,

(b)

yo—Wg -1 ¥ y -1 We—te

Figure 4-14 Decimation-in-time and decimation-in-frequency butterfly structures:
(a) original form; () simplified form; (¢) optimized form.

Fortunately, the operations in Eqs. (4-26) and (4-27) can be simplified
because the two twiddle factors are related by

WI\I;+N/2 =WII\5WI\I;,/2 =W15(e_j2"N/2N) =W£("1)=—W15 . (4-28)

So we can replace the Wt*N/2 twiddle factors in Figure 4-14(a) with
-W¥ to give us the simplified butterflies shown in Figure 4-14(b).
Realizing that the twiddle factors in Figure 4-14(b) differ only by their
signs, the optimized butterflies in Figure 4-14(c) can be used. Notice
that these optimized butterflies require two complex additions but only

152

The Fast Fourler Transform

one complex multiplication, thus reducing our computational work-
load.t

We'll often see the optimized butterfly structures of Figure 4-14(c) in
the literature instead of those in Figure 4-14(a). These optimized butter-
flies give us an easy way to recognize decimation-in-time and decimation-
in-frequency algorithms. When we do come across the optimized
butterflies from Figure 4-14(c), we'll know that the algorithm is decima-
tion-in-time if the twiddle factor precedes the -1, or else the algorithm is
decimation-in-frequency if the twiddle factor follows the -1.

Sometimes we’ll encounter FFT structures in the literature that use the
notation shown in Figure 4-15 {5, 17]. These wingless butterflies are equiv-
alent to those shown in Figure 4-14(c). The signal-flow convention in
Figure 4-15 is such that the plus output of a circle is the sum of the two
samples that enter the circle from the left, and the minus output of a cir-
cle is the difference of the samples that enter the circle. So the outputs of
the decimation-in-time butterflies in Figure 4-14(c) and Figure 4-15(a) are
given by

X=x+Why,andy =x- Wy. (4-29)

The outputs of the decimation-in-frequency butterflies in Figure 4-14(c)
and Figure 4-15(b) are

x'=x+y,and y"=W,1‘,(x—-y) =Wrx-Wiy. (4-30)

(@ (b)

Figure 4-15 Aiternate FFT butterfly notation: (a) decimation-in-time;
(b) decimation-in-frequency.

*1It's because there are (N/ 2)log,N butterflies in an N-point FFT that we said the number of
complex multiplications performed by an FFT is (N/2)log,N in Eq. (4-2).

Radix-2 FFT Butterfly Structures

So which FFT structure is the best one to use? It depends on the appli-
cation, the hardware implementation, and convenience. If we're using a
software routine to perform FFTs on a general-purpose computer, we usu-
ally don't have a lot of choices. Most folks just use whatever existing FFT
routines happen to be included in their commercial software package.
Their code may be optimized for speed, but you never know. Examination
of the software code may be necessary to see just how the FFT is imple-
mented. If we feel the need for speed, we should check to see if the software
calculates the sines and cosines each time it needs a twiddle factor.
Trigonometric calculations normally take many machine cycles. It may be
possible to speed up the algorithm by calculating the twiddle factors
ahead of time and storing them in a table. That way, they can be looked up,
instead of being calculated each time they’re needed in a butterfly. If we're
writing our own software routine, checking for butterfly output data
overflow and careful magnitude scaling may allow our FFT to be per-
formed using integer arithmetic that can be faster on some machines.
Care must be taken, however, when using integer arithmetic; some
Reduced Instruction Set Computer (RISC) processors actually take longer
to perform integer calculations because they’re specifically designed to
operate on floating-point numbers.

If we're using commercial array processor hardware for our calcula-
tions, the code in these processors is always optimized because their pur-
pose in life is high speed. Array processor manufacturers typically
publicize their products by specifying the speed at which their machines
perform a 1024-point FFT. Let’s look at some of our options in selecting a
particular FFT structure in case we’re designing special-purpose hard-
ware to implement an FFT.

The FFT butterfly structures previously discussed typically fall into
one of two categories: in-place FFT algorithms and double-memory
FFT algorithms. An in-place algorithm is depicted in Figure 4-5. The
output of a butterfly operation can be stored in the same hardware
memory locations that previously held the butterfly’s input data. No
intermediate storage is necessary. This way, for an N-point FFT, only 2N
memory locations are needed. (The 2 comes from the fact that each but-
terfly node represents a data value that has both a real and an imagi-
nary part.) The rub with the in-place algorithms is that data routing and
memory addressing is rather complicated. A double-memory FFT

* Overflow is what happens when the result of an arithmetic operation has too many bits, or
digits, to be represented in the hardware registers designed to contain that result. FFT data
overflow is described in Section 9.3.

153

154

The Faist Fourler Transform

structure is that depicted in Figure 4-10. With this structure, intermedi-
ate storage is necessary because we no longer have the standard but-
terflies, and 4N memory locations are needed. However, data routing
and memory address control is much simpler in double-memory FFT
structures than the in-place technique. The use of high-speed, floating-
point integrated circuits to implement pipelined FFT architectures
takes better advantage of their pipelined structure when the double-
memory algorithm is used[18].

There’s another class of FFT structures, known as constant-geometry
algorithms, that make the addressing of memory both simple and con-
stant for each stage of the FFT. These structures are of interest to those
folks who build special-purpose FFT hardware devices[4,19]. From the
standpoint of general hardware the decimation-in-time algorithms are
optimum for real input data sequences, and decimation-in-frequency is
appropriate when the input is complex[8]. When the FFT input data is
symmetrical in time, special FFT structures exist to eliminate unnecessary
calculations. These special butterfly structures based on input data sym-
metry are described in the literature[20].

For two-dimensional FFT applications, such as processing photo-
graphic images, the decimation-in-frequency algorithms appear to be the
optimum choice[21]. Your application may be such that FFT input and
output bit reversal is not an important factor. Some FFT applications
allow manipulating a bit-reversed FFT output sequence in the frequency
domain without having to unscramble the FFT’s output data. Then an
inverse transform that’s expecting bit-reversed inputs will give a time-
domain output whose data sequence is correct. This situation avoids the
need to perform any bit reversals at all. Multiplying two FFT outputs to
implement convolution or correlation are examples of this possibility.t As
we can see, finding the optimum FFT algorithm and hardware architec-
ture for an FFT is a fairly complex problem to solve, but the literature pro-
vides guidance[4,22,23].

References

{11 Cooley,]. and Tukey,]. “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. Comput., Vol. 19, No. 90, Apr. 1965, pp. 297-301.

[2] Cocley,]., Lewis, P., and Welch, P. “Historical Notes on the Fast Fourier
Transform,” IEEE Trans. on Audio and Electroacoustics, Vol. AU-15, No. 2, June
1967.

* See Section 10.10 for an example of using the FFT to perform convolution.

References

[3] Harris, F.J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, pp. 54, January 1978.

{4] Oppenheim , A. V., and Schafer, R. W. Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989, pp. 608.

[5] Rabiner, L. R. and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 367.

[6] Stearns, S. Digital Signal Analysis, Hayden Book Co., Rochelle Park, New
Jersey, 1975, pp. 265.

[71 Programs for Digital Signal Processing, Chapter 1, IEEE Press, New York, 1979.

[8] Sorenson, H. V., Jones, D. L., Heideman, M. T., and Burrus, C. S. “Real-Valued
Fast Fourier Transform Algorithms,” IEEE Trans. on Acoust. Speech, and Signal
Proc., Vol. ASSP-35, No. 6, June 1987.

[9] Bracewell, R. The Fourier Transform and It's Applications, 2nd Edition, Revised,
McGraw-Hill, New York, 1986, pp. 405.

[10] Cobb, E. “Use Fast Fourier Transform Programs to Simplify, Enhance Filter
Analysis,” EDN, 8 March 1984.

{11] Carlin, F. “Ada and Generic FFT Generate Routines Tailored to Your Needs,”
EDN, 23 April 1992

[12] Evans, D. “An Improved Digit-Reversal Permutation Algorithm for the Fast
Fourier and Hartley Transforms,” IEEE Trans. on Acoust. Speech, and Signal
Proc., Vol. ASSP-35, No. 8, August 1987.

[13] Burrus, C. S. “Unscrambling for Fast DFT Algorithms,” IEEE Trans. on Acoust.
Speech, and Signal Proc., Vol. 36, No. 7, July 1988.

[14] Rodriguez, J. J. “An Improved FFT Digit-Reversal Algorithm,” IEEE Trans. on
Acoust. Speech, and Signal Proc., Vol. ASSP-37, No. 8, August 1989.

[15] Land, A. “Bit Reverser Scrambles Data for FFT,” EDN, March 2, 1995.

[16] JG-AE Subcommittee on Measurement Concepts, “What Is the Fast Fourier
Transform?,” IEEE Trans. on Audio and Electroacoustics, Vol. AU-15, No. 2,
June 1967.

[17] Cohen, R., and Perlman, R. “500 kHz Single-Board FFT System Incorporates
DSP-Optimized Chips,” EDN, 31 October 1984.

[18] Eldon, J., and Winter, G. E. “Floating-point Chips Carve Out FFT Systems,”
Electronic Design, 4 August 1983.

{19] Lamb, K. “CMOS Building Blocks Shrink and Speed Up FFT Systems,”
Electronic Design, 6 August 1987.

[20] Markel, J. D. “FFT Pruning,” IEEE Trans. on Audio and Electroacoustics, Vol.
AU-19, No. 4, December 1971.

155

156

The Fast Fourier Transform

[21] Wu, H. R., and Paoloni, E. J. “The Structure of Vector Radix Fast Fourier
Transforms,” IEEE Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-37, No.
8, August 1989.

[22] Ali, Z. M. “High Speed FFT Processor,” IEEE Trans. on Communications, Vol.
COM-26, No. 5, May 1978.

[23] Bergland, G. “Fast Fourier Transform Hardware Implementations—An
Overview,” IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, June 1969.

CHAPTER FIVE

Finite Impulse
Response Filters

The filtering of digitized data, if not the most fundamental, is certainly the
oldest discipline in the field of digital signal processing. Digital filtering’s
origins go back forty years. The growing availability of digital computers
in the early 1950s led to efforts in the smoothing of discrete sampled data
and the analysis of discrete data control systems. However it wasn’t until
the early to mid-1960s, around the time the Beatles came to America, that
the analysis and development of digital equivalents of analog filters
began in earnest. That’s when digital signal processing experts realized
that computers could go beyond the mere analysis of digitized signals
into the domain of actually changing signal characteristics through filter-
ing. Today, digital filtering is so widespread that the quantity of literature
pertaining to it exceeds that of any other topic in digital signal processing.
In this chapter, we introduce the fundamental attributes of digital filters,
learn how to quantify their performance, and review the principles asso-
ciated with the design of finite impulse response digital filters.

So let’s get started by illustrating the concept of filtering a time-domain
signal as shown in Figure 5-1.

In general, filtering is the processing of a time-domain signal resulting
in some change in that signal’s original spectral content. The change is
usually the reduction, or filtering out, of some unwanted input spectral
components; that is, filters allow certain frequencies to pass while attenu-
ating other frequencies. Figure 5-1 shows both analog and digital versions
of a filtering process. Where an analog filter operates on a continuous sig-
nal, a digital filter processes a sequence of discrete sample values. The
digital filter in Figure 5-1(b), of course, can be a software program in a
computer, a programmable hardware processor, or a dedicated integrated
circuit. Traditional linear digital filters typically come in two flavors: finite

157

158

Finite Impuilse Response Fiiters

An Introduction to Finite Impuise Response FIR Filters

Table §-1 Vaiues for the Averaging Example

\/ \’/ Time \/ \/ Time
(@
Input signal Analog Output signal
Filter
’ ‘ : b ; Time
o ot
(b)
Input sequence Digital Output sequence
Filter

Figure 5-1 Filters: (@) an analog filter with a noisy tone input and a reduced-noise
tone output; (b) the digital equivaient of the analog filter.

impulse response (FIR) filters and infinite impulse response (IIR) filters.
Because FIR filters are the simplest type of digital filter to analyze, we'll
examine them in this chapter and cover IIR filters in Chapter 6.

5.1 An Introduction to Finite Impulse Response
FIR Filters

First of all, FIR digital filters use only current and past input samples, and
none of the filter’s previous output samples, to obtain a current output
sample value. (That's also why FIR filters are sometimes called nonrecur-
sive filters.) Given a finite duration of nonzero input values, the effect is
that an FIR filter will always have a finite duration of nonzero output val-
ues and that’s how FIR filters got their name. So, if the FIR filter’s input
suddenly becomes a sequence of all zeros, the filter’s output will eventu-
ally be all zeros. While not sounding all that unusual, this characteristic is
however, very important, and we'll soon find out why, as we learn more
about digital filters.

FIR filters use addition to calculate their outputs in a manner much
the same as the process of averaging uses addition. In fact, averaging is
a kind of FIR filter that we can illustrate with an example. Let's say
we're counting the number of cars that pass over a bridge every minute,
and we need to know the average number of cars per minute over five-
minute intervals; that is, every minute we'll calculate the average num-

Number of Number of cars/minute
Minute cars/minute over averaged over the
index the last minute last five minutes
1 10 -
2 22 -
3 24 -
4 42 -
5 37 27
6 77 40.4
7 89 53.8
8 22 534
9 63 57.6
10 9 52

ber of cars/minute over the last five minutes. If the results of our car
counting for the first ten minutes are those values shown in the center
column of Table 5-1, then the average number of cars/minute over the
previous five one-minute intervals is listed in the right column of the
table. We've added the number of cars for the first five one-minute inter-
vals and divided by five to get our first five-minute average output
value, (10+22+24+42+37)/5 = 27. Next we've averaged the number of
cars/minute for the second to the sixth one-minute intervals to get our
second five-minute average output of 40.4. Continuing, we average the
number of cars/minute for the third to the seventh one-minute intervals
to get our third average output of 53.8, and so on. With the number of
cars/minute for the one-minute intervals represented by the dashed line
in Figure 5-2, we show our five-minute average output as the solid line.
(Figure 5-2 shows cars/minute input values beyond the first ten min-
utes listed in Table 5-1 to illustrate a couple of important ideas to be dis-
cussed shortly.)

There’s much to learn from this simple averaging example. In Figure
5-2, notice that the sudden changes in our input sequence of cars/minute
are flattened out by our averager. The averager output sequence is con-
siderably smoother than the input sequence. Knowing that sudden tran-
sitions in a time sequence represent high frequency components, we can
say that our averager is behaving like a low-pass filter and smoothing
sudden changes in the input. Is our averager an FIR filter? It sure is—no
previous averager output value is used to determine a current output

159

160

Finite Impulse Response Filters

A Number of cars
YT R
Number of cars/minute Bridge closes at
I R [7 A b R T the end of the
Average number of 4~ 18th minute.

J(I R / (R LEEREERE cars/minute over last five - g --------------

60 4oeeeeens Jood BT \
50-/!/"%'/;[N
w04 /.\ yﬁ_\ﬁ

R S W S S S S —t
LZBNNNE SERSE MENENE RASEED SN T lllli

12 3456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 Minutes

Figure 5-2 Averaging the number of cars/minute. The dashed line shows the
individual cars/minute, and the solid fine is the number of cars/minute
averaged over the last five minutes.

value; only input values are used to calculate output values. In addition,
we see that, if the bridge were suddenly closed at the end of the 19th
minute, the dashed line immediately goes to zero cars/minute at the end
of the 20th minute, and the averager’s output in Figure 5-2 approaches
and settles to a value of zero by the end of the 24th minute.

Figure 5-2 shows the first averager output sample occurring at the end
of the 5th minute because that’s when we first have five input samples to
calculate a valid average. The 5th output of our averager can be denoted
as y,..(5) where

1
Yave(D) = g[x(l) +2(2) + x(3) + x(4) + x(5)] . (5-1)
In the general case, if the kth input sample is x(k), then the nth output is

Yave() = —;—[x(n -+ x(n-3)+x(n-2)+x(n-1)+x(n)]= %kg_':(k) . (5-2)

Look at Eq. (5-2) carefully now. It states that the nth output is the average
of the nth input sample and the four previous input samples.

We can formalize the digital filter nature of our averager by creating
the block diagram in Figure 5-3 showing how the averager calculates its
output samples.

An Introduction to Finite Impuise Response FIR Filters

fifth output = 27
-

Figure 5-3 Averaging filter block diagram when the fifth Input sample value,
37.1s applied.

This block diagram, referred to as the filter structure, is a physical
depiction of how we might calculate our averaging filter outputs with
the input sequence of values shifted, in order, from left to right along the
top of the filter as new output calculations are performed. This structure,
implementing Egs. (5-1) and (5-2), shows those values used when the
first five input sample values are available. The delay elements in Figure
5-3, called unit delays, merely indicate a shift register arrangement where
input sample values are temporarily stored during an output calculation.

In averaging, we add five numbers and divide the sum by five to get
our answer. In a conventional FIR filter implementation, we can just as
well multiply each of the five input samples by the coefficient 1/5 and
then perform the summation as shown in Figure 5-4(a). Of course, the two
methods in Figures 5-3 and 5-4(a) are equivalent because Eq. (5-2) describing
the structure shown in Figure 5-3 is equivalent to

Yave(n) = %x(n—4)+%x(n—3)+éx(n——2)+—;-x(n-1)+%x(n)

n

1
=3 Law (5-3)

that describes the structure in Figure 5-4(a).!

Let’s make sure we understand what’s happening in Figure 5-4(a).
Each of the first five input values are multiplied by 1/5, and the five
products are summed to give the 5th filter output value. The left to right

t We've used the venerable distributive law for multiplication and addition of scalars,
a(b+c+d) = ab+ac+ad, in moving Eq. (5-2)’s factor of 1/5 inside the summation in Eq. (5-3).

161

162

Finite Impulse Response Filters

(a)

(b)

(©

7th output = 53.8
'

Figure §-4 Alternate averaging filter structure: (a) input values used for the 5th
output value; (b) input values used for the 6th output value; (¢) input
values used for the 7th output value.

sample shifting is illustrated in Figures 5-4(b) and 5-4(c). To calculate
the filter’s 6th output value, the input sequence is right shifted discard-
ing the 1st input value of 10, and the 6th input value 77 is accepted on
the left. Likewise, to calculate the filter’s 7th output value, the input
sequence is right shifted discarding the 2nd value of 22, and the 7th
input value 89 arrives on the left. So, when a new input sample value is
applied, the filter discards the oldest sample value, multiplies the sam-
ples by the coefficients of 1/5, and sums the products to get a single new
output value. The filter’s structure using this bucket brigade shifting
process is often called a transversal filter due to the cross-directional
flow of the input samples. Because we tap off five separate input sample

Convolution in FIR Fitters

values to calculate an output value, the structure in Figure 5-4 is called
a 5-tap FIR filter in digital filter vernacular.

One important and, perhaps, most interesting aspect of understanding
FIR filters is learning how to predict their behavior when sinusoidal sam-
ples of various frequencies are applied to the input, i.e., how to estimate
their frequency-domain response. Two factors affect an FIR filter’s fre-
quency response: the number of taps and the specific values used for the
multiplication coefficients. We’ll explore these two factors using our aver-
aging example and, then, see how we can use them to design FIR filters.
This brings us to the point where we have to introduce the C word: con-
volution. (Actually, we already slipped a convolution equation in on the
reader without saying so. It was Eq. (5-3), and we’ll examine it in more
detail later.)

5.2 Convolution in FIR Filters

OK, here’s where we get serious about understanding the mathematics
behind FIR filters. We can graphically depict Eq. (5-3)’s and Figure 5-4’s
calculations as shown in Figure 5-5. Also, let’s be formal and use the stan-
dard notation of digital filters for indexing the input samples and the fil-
ter coefficients by starting with an initial index value of zero; that is, we'll
call the initial input value the Oth sample x(0). The next input sample is
represented by the term x(1), the following input sample is called x(2),
and so on. Likewise, our five coefficient values will be indexed from zero
to four, h(0) through h(4). (This indexing scheme makes the equations
describing our example consistent with conventional filter notation found
in the literature.)

In Eq. (6-3) we used the factor of 1/5 as the filter coefficients multi-
plied by our averaging filter’s input samples. The left side of Figure 5-5
shows the alignment of those coefficients, black squares, with the filter
input sample values represented by the white squares. Notice in Figure
5-5(a) through 5-5(e) that we’re marching the input samples to the right,
and, at each step, we calculate the filter output sample value using Eq.
(5-3). The output samples on the right side of Figure 5-5 match the first
five values represented by the black squares in Figure 5-2. The input
samples in Figure 5-5 are those values represented by the white squares
in Figure 5-2. Notice the time order of the inputs in Figure 5-5 has been
reversed from the input sequence order in Figure 5-2! That is, the input
sequence has been flipped in the time domain in Figure 5-5. This time
order reversal is what happens to the input data using the filter struc-
ture in Figure 5-4.

163

164

Finite Impulse Response Filters

|;| a First input sampie, x(0) Sum of the first
1 five products
(a) Compute y{4) -
—_—
= 4
Output, y(n)
Sum of the
second
!1/ five products
(b) l:| Compute y(5) -
P >
. 4 5 n
Output, 1(n)
[m] a
o 70 |
: o QR L
© [= D I:l =] Compute ¥(6) . {
E——'—-é—'—T Qutput, y(n)
o a =
o 7
]
@ ‘o - 00 5 Compute)
RN => - >
LA L 4 56 7 n
T+ Output, y(n)
I_J g Fifth input sample, x(4) S L]
o %Y L
o 9%.44 .
© 0 Compute y(8) . ; -
ﬁ_—f Output, y{n)

Figure 5-5 Averaging filtter convolution: (a) first five input samples aligned with the
stationary filter coefficients, index n = 4; (b) input samples shift fo the
right and index n = 5; (c) index n = é; (d) Index n = 7; (&) index n = 8.

Repeating the first part of Eq. (5-3) and omitting the subscript on the
output term, our original FIR filter’s y(n)th output is given by

=L en-n+ Lxno+ Lo+ X .
y(n)—sx(n 4)+5x(n 3)+5x(n 2)+5x(n 1)+5x(n). (5-4)

Convolution in FIR Filters

Because we'll explore filters whose coefficients are not all the same value,
we need to represent the individual filter coefficients by a variable, such
as the term h(k), for example. Thus we can rewrite the averaging filter’s
output from Eq. (5-4) in a more general way as

y(n) = h(4)x(n ~ 4) + h(3)x(n - 3) + K(2)x(n - 2) + KLx(n - 1) + h(0)x(n)

4
=Y hk)x(n-k) , (5-5)
k=0

where h(0) through h(4) all equal 1/5. Equation (5-5) is a concise way of
describing the filter structure in Figure 5-4 and the process illustrated in
Figure 5-5.

Let's take Eq. (5-5) one step further and say, for a general M-tap FIR fil-
ter, the nth output is

M-1
y(m) =Y hk)x(n-k) . (5-6)

k=0

Well, there it is. Eq. (5-6) is the infamous convolution equation as it
applies to digital FIR filters. Beginners in the field of digital signal pro-
cessing often have trouble understanding the concept of convolution. It
need not be that way. Eq. (5-6) is merely a series of multiplications fol-
lowed by the addition of the products. The process is actually rather sim-
ple. We just flip the time order of an input sample sequence and start step-
ping the flipped sequence across the filter’s coefficients as shown in
Figure 5-5. For each new filter input sample, we sum a series of products
to compute a single filter output value.

Let’s pause for a moment and introduce a new term that’s important to
keep in mind, the impulse response. The impulse response of a filter is exact-
ly what its name implies—it’s the filter’s output time-domain sequence
when the input is a single unity-valued sample (impulse) preceded and
followed by zero-valued samples. Figure 5-6 illustrates this idea in the
same way we determined the filter’s output sequence in Figure 5-5. The
left side of Figure 5-6 shows the alignment of the filter coefficients, black
squares, with the filter input impulse sample values represented by the
white squares. Again, in Figure 5-6(a) through 5-6(e) we're shifting the
input samples to the right, and, at each step, we calculate the filter output
sample value using Eq. (5-4). The output samples on the right side of

165

166

Finite Impulse Response Filters

Impulse input Sum of the first
Ve e
1 I:l Compute y(4) . five products
(a) -o—O-00—0o-o00-0 => —_
Stationary). - . - - 4 n
0 > n Impulse response, y(n)
Sum of the second
1 D Compute 1(5) - . five products
®) Tesan 4 n
O——Z-_tt— impulse responss, y{n)
o Compute) = = =
c -000-0——0-0-0-0- &> S
) T & u 4 5 6 n
) > 2 impulse response, y(n)
1 U Compute U7) L I ll
T T P »
() CIC I B $ 4 56 7 n
0 2 4 Impulse response, y(n)
1o Computeyig) ® % ® ®» ®
e) -o—o-o-0—0-0-0-0- -
¢ . LRI ¢ 4 5 6 7 8 n
Tz 4 Impulse response, y{n)

Figure §-6 Convolution of filter coefficlents and an input impulse to obtain the
filter's output impulse response: (a) impulse sample aligned with the first
fiter coefficient, index n = 4; (b) impuise sample shifts to the right and
index n=5; (c) index n=6; (d) index n=7; (e) index n= 8.

Figure 5-6 are the filter’s impulse response. Notice the key point here: the
FIR filter’s impulse response is identical to the five filter coefficient values.
For this reason, the terms FIR filter coefficients and impulse response are syn-
onymous. Thus, when someone refers to the impulse response of an FIR
filter, they're also talking about the coefficients.

Returning to our averaging filter, recall that coefficients (or impulse
response) 1(0) through h(4) were all equal to 1/5. As it turns out, our fil-
ter’s performance can be improved by using coefficients whose values are
not all the same. By performance we mean how well the filter passes
desired signals and attenuates unwanted signals. We judge that perfor-
mance by determining the shape of the filter’s frequency-domain response
that we obtain by the convolution property of linear systems. To describe
this concept, let’s repeat Eq. (5-6) using the abbreviated notation of

Conwvolution in FIR Filters

y(n) = h(k) » x(n) (5-7)

where the * symbol means convolution. (Equation 5-7 is read as “y of n
equals the convolution of & of k and x of n.”) The process of convolution,
as it applies to FIR filters is as follows: The discrete Fourier transform
(DFT) of the convolution of a filter’s impulse response (coefficients), and
an input sequence is equal to the product of the spectrum of the input
sequence and the DFT of the impulse response. The idea we're trying to
convey here is that if two time-domain sequences h(k) and x(1) have DFTs
of H(m) and X(m), respectively, then the DFT of y(n) = h(k) » x(n) is
H(m) - X(m). Making this point in a more compact way, we state this rela-
tionship with the expression

y(n) = h(ky* () = H(m)- X(m). (5-9)

With IDFT indicating the inverse DFT, Eq. (5-8) indicates that two sequences
resulting from h(k) *x(r1) and H(m)- X(m) are Fourier transform pairs. So tak-
ing the DFT of h(k)*x(n) gives us the product H(m)-X(m) that is the spectrum
of our filter output Y(m). Likewise, we can determine h(k) *x(n) by taking the
inverse DFT of H(m)-X(m). The very important conclusion to learn from Eq.
(5-8) is that convolution in the time-domain is equivalent to multiplication
in the frequency-domain. To help us appreciate this principle, Figure 5-7
sketches the relationship between convolution in the time domain and mul-
tiplication in the frequency domain. The process of convolution with regard
to linear systems is discussed in more detail in Section 5.9. The beginner is
encouraged to review that material to get a general idea of why and when
the convolution process can be used to analyze digital filters.

Equation (5-8) and the relationships in Figure 5-7 tell us what we need
to do to determine the frequency response of an FIR filter. The product
X(m)-H(m) is the DFT of the filter output. Because X(m) is the DFT of the
filter’s input sequence, the frequency response of the filter is then defined
as H(m), the DFT of filter’s impulse response h(k).! Getting back to our
original problem, we can determine our averaging filter’s frequency-
domain response by taking the DFT of the individual filter coefficients
{(impulse response) in Eq. (5-4). If we take the five h(k) coefficient values
of 1/5 and append 59 zeros, we have the sequence depicted in Figure
5-8(a). Performing a 64-point DFT on that sequence, and normalizing the

* We use the term impulse response here, instead of coefficients, because this concept also
applies to IIR filters. IIR filter frequency responses are also equal to the DFT of their impulse
responses.

167

168

Finite Impulse Response Filters

Input x(n) ¢
Coefficients h(k)
Filter output sequence in the Time
time domain, y(n) = h(k)* x(n) domain
/_ Inverse @ DET }----- DFT }-----
DFT
Fourier
transform pair H(m) X(m)
Frequency
\ domain
Filter output sequence in the
frequency domain, Y(m) = H{(m) « X{m)

Figure 5-7 Relationships of convolution as applied to FIR digital fitters.

DFT magnitudes, gives us the filter’s frequency magnitude response
| H(m) | in Figure 5-8(b) and phase response shown in Figure 5-8(c)." H(m)
is our old friend, the sin(x)/x function from Section 3.13.

Let's relate the discrete frequency response samples in Figures 5-8(b)
and 5-8(c) to the physical dimension of the sample frequency f,. We know,
from Section 3.5 and our experience with the DFT, that the m = N/2 dis-
crete frequency sample, m = 32 in this case, is equal to the folding fre-
quency, or half the sample rate, f,/2. Keeping this in mind, we can convert
the discrete frequency axis in Figure 5-8 to that shown in Figure 5-9. In
Figure 5-9(a), notice that the filter’s magnitude response is, of course, peri-
odic in the frequency domain with a period of the equivalent sample rate
f.- Because we're primarily interested in the filter’s response between 0 and
half the sample rate, Figure 5-9(c) shows that frequency band in greater

* There’s nothing sacred about using a 64-point DFT here. We could just as well have
appended only enough zeros to take a 16- or 32-point FFT. We chose 64 points to get a fre-
quency resolution that would make the shape of the response in Figure 5-8(b) reasonably
smooth. Remember, the more points in the FFT, the finer the frequency resolution-—right?

Convolution in FIR Filters

. BBl a—n-n) . —

. L\
5 7 9 11 13 15 17 59 61 63 k

08
0.6
04
0.2

0

(b)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 /"

A Halm
180+
1351 i
n s
2 + s i ..,....l .. : .]
I, ?. : L. . ; L . H . .

i . H
(©) 0 '-W'W‘W' H
% 6.9 .12 15 "8, .24.27.30 .8y 39 42 45 %, 54.57.60.63 M
-45 1 L iy
-90 + "a, 7 g
-135 [.
-180

Figure 5-8 Averaging FIR filter: (a) filter coefficient sequence h(k) with
appended zeros; (b) normalized discrete frequency magnitude
response | H(m)| of the KK) filter coefficients; (c) phase-angle
response of H(m) in degrees.

detail affirming the notion that averaging behaves like a low-pass filter. It's
a relatively poor low-pass filter compared to an arbitrary, ideal low-pass
filter indicated by the dashed lines in Figure 5-9(c), but our averaging fil-
ter will attenuate higher frequency inputs relative to its response to low-
frequency input signals.

We can demonstrate this by way of example. Suppose we applied a
low-frequency sinewave to the averaging FIR filter, as shown in Figure
5-10(a), and that the input sinewave’s frequency is f,/32 and its peak
amplitude is unity. The filter output in this case would be a sinewave of
frequency f,/32, but it’s peak amplitude would be reduced to a value of
0.96, and the output sinewave’s first sample value is delayed by a phase

169

170

Finite Impulse Response Filters

(@
(b)
LI S 1 .
i Main lobe
0.8 b e
|
© ©°° . Sidelobes
0.4
0.2 :\ \/—\ # \
1
[-
T T T
Freq
/8 /4 /2

Figure 5-9 Averaging FIR filter frequency response shown as contfinuous curves: ()]
normalized frequency magnitude response, | Him) | ; (b) phase angle
response of H(my) in degrees; () the filter’'s magnitude response
between zero Hz and half the sample rate, £/2 Hz.

angle of 22.5°. Next, if we applied a higher frequency sinewave of 3f,/32
to the FIR filter as shown in Figure 5-10(b), the filter output would, then,
be a sinewave of frequency 3f,/32, but it's peak amplitude is even fur-
ther reduced to a value of 0.69. In addition, the Figure 5-10(b) output
sinewave’s first sample value has an even larger phase angle delay of
67.5°. Although the output amplitudes and phase delays in Figure 5-10
were measured values from actually performing a 5-tap FIR filter
process on the input sinewave samples, we could have obtained those
amplitude and phase delay values directly from Figures 5-8(a) and 5-
8(b). The emphasis here is that we don't have to implement an FIR filter
and apply various sinewave inputs to discover what its frequency

Convolution In FIR Filters

0.96 -
Frequency of 9% T
m=2, or f,/32 1

Phase

8,
(®) delay = 22.5°

5-tap FIR
fiter -

Frequency of
m= 6, or 3f,/32

(b)

5-tap FIR =67.5°
— filter L

Figure 5-10 Averaging FIR fitter input and output responses; (a) with an input sinewave
of frequency £ /32; (o) with an input sinewave of frequency 3£/32.

response will be. We need merely take the DFT of the FIR filter’s coeffi-
cients (impulse response) to determine the filter’s frequency response as
we did for Figure 5-8.

Figure 5-11 is another depiction of how well our 5-tap averaging FIR
filter performs, where the dashed line is the filter’s magnitude response
{H(m)|, and the shaded line is the |X(m) | magnitude spectrum of the fil-
ter’s input values (the white squares in Figure 5-2). The solid line is the
magnitude spectrum of the filter’s output sequence which is shown by
the black squares in Figure 5-2. So in Figure 5-11, the solid output spec-
trum is the product of the dashed filter response curve and the shaded
input spectrum, or |X(m)-H(m)!. Again, we see that our averager does
indeed attenuate the higher frequency portion of the input spectrum.

Let’s pause for a moment to let all of this soak in a little. So far we've
gone through the averaging filter example to establish that

* FIR filters perform time-domain convolution by summing the prod-
ucts of the shifted input samples and a sequence of filter coefficients,

+ an FIR filter’s output sequence is equal to the convolution of the input
sequence and a filter’s impulse response (coefficients),

m

Finite Impulse Response Filters

1.0 -
" Filter magnitude response, 1H{m)i
06 4.1
%, Filter input, IX(m)!
04 4
Magnitude spectrum of filter output
is IY(m)l = iX(m) - H{m)\
e .
|||||||||| bl dd >
0) LR P ’ J Freq
fs/8 fo/4 fgf2

Figure 5-11 Averaging FIR filter input magnitude spectrum, frequency
magnitude response, and output magnitude spectrum.

* an FIR filter’s frequency response is the DFT of the filter’s impulse
response,t

* an FIR filter’s output spectrum is the product of the input spectrum
and the filter’s frequency response, and

¢ convolution in the time domain and multiplication in the frequency
domain are Fourier transform pairs.

OK, here’s where FIR filters start to get really interesting. Let’s change
the values of the five filter coefficients to modify the frequency response
of our 5-tap, low-pass filter. In fact, Figure 5-12(a) shows our original five
filter coefficients and two other arbitrary sets of 5-tap coefficients. Figure
5-12(b) compares the frequency magnitude responses of those three sets
of coefficients. Again, the frequency responses are obtained by taking the
DFT of the three individual sets of coefficients and plotting the magni-
tude of the transforms, as we did for Figure 5-9(c). So we see three impor-
tant characteristics in Figure 5-12. First, as we expected, different sets of
coefficients give us different frequency magnitude responses. Second, a

*In Section 6.3, while treating an FIR filter as a special case of an IIR filter, we'll arrive at a math-
ematical expression for an FIR filter's frequency response in terms of its coefficient values.

Convolution In FIR Filters

(a)

02,02,02,02,02

0.1,0.2,0.2,0.2, 0.1

{b) 4 0.04,0.12, 0.2, 0.12, 0.04

/2 Freq

L

Figure 5-12 Three sets of 5-tap low-pass filter coefficients: () sefs of coefficients;
0202020202 0.1,0.2,0.2 0.2,0. 1. and 0.04,0.12,0.2,0.12, 0.04: ©)
frequency magnitude response of three low-pass FiR filters using those
sets of coefficients,

sudden change in the values of the coefficient sequence, such as the 0.2 to
0 transition in the first coefficient set, causes ripples, or sidelobes, in the
frequency response. Third, if we minimize the suddenness of the changes
in the coefficient values, such as the third set of coefficients in Figure 5-
12(a), we reduce the sidelobe ripples in the frequency response. However,
redycing the sidelobes results in increasing the main lobe width of our
low-pass filter. (As we'll see, this is exactly the same effect encountered in
the discussion of window functions used with the DFT in Section 3.9.)
To reiterate the function of the filter coefficients, Figure 5-13 shows the
5-tap FIR filter structure using the third set of coefficients from Figure 5-12.
The implementation of constant-coefficient transversal FIR filters does
not get any more complicated than that shown in Figure 5-13. It's that
simple. We can have a filter with more than five taps, but the input sig-
nal sample shifting, the multiplications by the constant coefficients, and
the summation are all there is to it. (By constant coefficients, we don’t
mean coefficients whose values are all the same; we mean coefficients
whose values remain unchanged, or time-invariant. There is a class of

4———

173

Finite Impulse Response Filters

Figure 5-13 Five-tap, low-pass FIR fitter implementation using the coefficients 0.04,
0.12,0.2,0.12, and 0.04.

digital filters, called adaptive filters, whose coefficient values are period-
ically changed to adapt to changing input signal parameters. While we
won't discuss these adaptive filters in this introductory text, their
descriptions are available in the literature[1-5].)

So far, our description of an FIR filter implementation has been pre-
sented from a hardware perspective. In Figure 5-13, to calculate a sin-
gle filter output sample, five multiplications and five additions must
take place before the arrival of the next input sample value. In a soft-
ware implementation of a 5-tap FIR filter, however, all of the input data
samples would be previously stored in memory. The software filter rou-
tine’s job, then, is to access different five-sample segments of the x(n)
input data space, perform the calculations shown in Figure 5-13, and
store the resulting filter y(n) output sequence in an array of memory
locations.

Now that we have a basic understanding of what a digital FIR filter is,
let’s see what effect is had by using more than five filter taps by learning
to design FIR filters.

5.3 Low-Pass FIR Filter Design

OK, instead of just accepting a given set of FIR filter coefficients and ana-
lyzing their frequency response, let’s reverse the process and design our

* In reviewing the literature of FIR filters, the reader will often find the term z™! replacing
the delay function in Figure 5-13. This equivalence is explained in the next chapter when we
study IIR filters.

Low-Pass FIR Filter Design

own low-pass FIR filter. The design procedure starts with the determina-
tion of a desired frequency response followed by calculating the filter coef-
ficients that will give us that response. There are two predominant tech-
niques used to design FIR filters, the window method, and the so-called
optimum method. Let’s discuss them in that order.

5.3.1 Window Design Method

The window method of FIR filter design (also called the Fourier series
method) begins with our deciding what frequency response we want for
our low-pass filter. We can start by considering a continuous low-pass fil-
ter, and simulating that filter with a digital filter. We’ll define the contin-
uous frequency response H(f) to be ideal, i.e., a low-pass filter with unity
gain at low frequencies and zero gain (infinite attenuation) beyond some
cutoff frequency, as shown in Figure 5-14(a). Representing this H(f)
response by a discrete frequency response is straightforward enough
because the idea of a discrete frequency response is essentially the same
as a continuous frequency response—with one important difference. As
described in Sections 2.2 and 3.13, discrete frequency-domain representa-
tions are always periodic with the period being the sample rate f.. The dis-
crete representation of our ideal, continuous low-pass filter H(f) is the

periodic response H(m) depicted by the frequency-domain samples in
Figure 5-14(b).

Filter frequency “ Hin

—l 1 Cutoff
response \,— frequency
(a) t -

y -
~f 1,2 0 ts/2 r, Freq

12) (t./2)
S ~f/21o /2 interval ———

~———— 0to fs interval ———=

Figure 5-14 Low-pass filtter frequency responses: (a) continuous frequency
response H(f); (b) periodic, discrete frequency response H(m).

—

175

176

Finite iImpulse Response Filters

< K

1!l‘l‘ll!lll!lIllI!H(m)

L [T i
....... R I P
A A 0 A A om
N2 +1 m=—{K-1)2 m=(K-1)R N2

Figure 5-15 Arbitrary, discrete low-pass FIR filter frequency response defined
over N frequency-domain sampies covering the frequency
range of £, Hz.

We have two ways to determine our low-pass filter’s time-domain
coefficients. The first way is algebraic:

1. Develop an expression for the discrete frequency response H(m).

2. Apply that expression to the inverse DFT equation to get the time
domain h(k).

3. Evaluate that h(k) expression as a function of time index k.

The second method is to define the individual frequency-domain samples
representing H(m) and then have a software routine perform the inverse
DFT of those samples, giving us the FIR filter coefficients. In either
method, we need only define the periodic H(m) over a single period of f,
Hz. As it turns out, defining H(m) in Figure 5-14(b) over the frequency
span —,/2 to f,/2 is the easiest form to analyze algebraically, and defining
H(r) over the frequency span 0 to, is the best representation if we use the
inverse DFT to obtain our filter’s coefficients. Let’s try both methods to
determine the filter’s time-domain coefficients.

In the algebraic method, we can define an arbitrary discrete frequency
response H(m) using N samples to cover the -f,/2 to f,/2 frequency range
and establish K unity-valued samples for the passband of our low-pass fil-
ter as shown in Figure 5-15. To determine h(k) algebraically we need to
take the inverse DFT of H(m) in the form of

h(k) = ZH(m)ejz"'"k/ N, (5-9)

N
m=—(

l /2
N N

/2)+1

where our time-domain index is k. The solution to Eq. (5-9), derived in
Section 3.13 as Eq. (3-59), is repeated here as

Low-Pass FIR Filter Design

LN st e,
L il ¥ Th BEREERE
Figure §-16 Time-domain h(k) coefficients obtained by evaluating Eq. (5-10).
1 sin(nkK/N)
h(k) = — ————~. 5-10
) N sin{nk/N) ()

If we evaluate Eq. (5-10) as a function of k, we get the sequence shown in
Figure 5-16 taking the form of the classic sin(x)/x function. By reviewing
the material in Section 3.13, it's easy to see the great deal of algebraic
manipulation required to arrive at Eq. (5-10) from Eq. (5-9). So much alge-
bra, in fact, with its many opportunities for making errors, that digital fil-
ter designers like to avoid evaluating Eq. (5-9) algebraically. They prefer
to use software routines to perform inverse DFTs (in the form of an
inverse FFT) to determine h(k), and so will we.

We can demonstrate the software inverse DFT method of FIR filter
design with an example. Let’s say we need to design a low-pass FIR fil-
ter simulating the continuous frequency response shown in Figure
5-17(a). The discrete representation of the filter’s frequency response
H(m) is shown in Figure 5-17(b), where we’ve used N = 32 points to rep-
resent the frequency-domain variable H(f). Because it's equivalent to
Figure 5-17(b) but avoids the negative values of the frequency index m,
we represent the discrete frequency samples over the range 0 to f, in
Figure 5-17(c), as opposed to the —f,/2 to +f,/2 range in Figure 5-17(b).
OK, we're almost there. Using a 32-point inverse FFT to implement a
32-point inverse DFT of the H(m) sequence in Figure 5-17(c), we get the
32 h(k) values depicted by the dots from k = -15 to k = 16 in Figure
5-18(a).t We have one more step to perform. Because we want our final
31-tap h(k) filter coefficients to be symmetrical with their peak value in
the center of the coefficient sample set, we drop the k = 16 sample and
shift the k index to the left from Figure 5-18(a) giving us the desired

* If you want to use this FIR design method but only have a forward FFT software routine
available, Section 10.6 shows a slick way to perform an inverse FFT with the forward FFT
algorithm.

177

178

Finite Impulse Response Filters

Filter frequency “ H(r)
response Sy Cutoff frequency
(a) T] 1] T 1 L]] >
~1f2 /4 8 o L8 /4 /2 Frea
1nam L ERRY H(m}
®) SHNNPFPMPRNPLEE S SR PP —
45 -12 -8 -4 0 4 8 6 m
/9 (-1/8) {ts/8) (fs/4) (ts/2)

3Y

8 12 16 20 24 28 3
(£/8) (fs/4) (£/2) (31,/4) (*,)

Figure 5-17 An ideal low-pass filter: (a) continuous frequency response H(f); (b)
discrete response H(m) over the range of -f,/2 to f,/2 Hz; (C) discrete
response H(m) over the range O fo f Hz.

0219 . . ®
® 1%, Inverse DFT of H(m)

g mME® 4
LI
12 Val

@ LTI PR 4-_?-2.”'

k

» % u h(k) = Shifted inverse
" DFT of H(m)

() LN e L

Figure 5-18 Inverse DFT of the discrete response in Figure 5-17(c): (0} normal
inverse DFT indexing for k; (b) symmetrical coefficients used for a
31-tap low-pass FIR filter.

sin(x)/x form of h(k) as shown in Figure 5-18(b). This shift of the index
k will not change the frequency magnitude response of our FIR filter.
(Remember from our discussion of the DFT Shifting Theorem in Section
3.6 that a shift in the time-domain manifests itself only as a linear phase
shift in the frequency domain with no change in the frequency domain
magnitude.) The sequence in Figure 5-18(b), then, is now the coeffi-

Low-Pass FIR Fliter Design

cients we use in the convolution process of Figure 5-5 to implement a
low-pass FIR filter.

It's important to demonstrate that the more h(k) terms we use as filter
coefficients, the closer we’ll approximate our ideal low-pass filter
response. Let’s be conservative, just use the center nine h(k) coefficients,
and see what our filter response looks like. Again, our filter's magnitude
response in this case will be the DFT of those nine coefficients as shown
on the right side of Figure 5-19(a). The ideal filter’s frequency response is
also shown for reference as the dashed curve. (To show the details of its
shape, we've used a continuous curve for 1H(m)| in Figure 5-19(a), but
we have to remember that | H(m) | is really a sequence of discrete values.)
Notice that using nine coefficients gives us a low-pass filter, but it’s cer-
tainly far from ideal. Using more coefficients to improve our situation,
Figure 5-19(b) shows 19 coefficients and their corresponding frequency
magnitude response that is beginning to look more like our desired rec-
tangular response. Notice that magnitude fluctuations, or ripples, are evi-
dent in the passband of our H(m) filter response. Continuing, using all 31

|H(m)| for a 9-tap filter

Ideal low-pass
L4 response
Cutoff

frequency

(a)

o

15/8 Freq

|H(m)| for a 19-tap filter
L\
L7 \

"as et 18 0 18 Freq

e

(b)

tH(m)l for a 31-tap filter
AN L\

<

()

o o

1) I
~f5/8 118 Freq

Figure 5-19 Coefficients and frequency responses of three low-pass filters: (a) 9-tap
FIR filter; (b) a 19-tap FIR filter; (C) frequency response of the full 31-tap
FIR filter,

179

180

Finiter Impulse Response Filters

of the h(k) values for our filter coefficients results in the frequency
response in Figure 5-19(c). Our filter’s response is getting better
(approaching the ideal), but those conspicuous passband magnitude rip-
ples are still present.

It’s important that we understand why those passband ripples are in
the low-pass FIR filter response in Figure 5-19. Recall the above discus-
sion of convolving the 5-tap averaging filter coefficients, or impulse
response, with an input data sequence to obtain the averager’s output. We
established that convolution in the time domain is equivalent to multipli-
cation in the frequency domain, that we symbolized with Eq. (5-8), and
repeat it here as

h(k) * x(n) i":_ H(m)-X(m) . (5-11)

This association between convolution in the time-domain and multiplica-
tion in the frequency domain, sketched in Figure 5-7, indicates that, if two
time-domain sequences h(k) and x(n) have DFTs of H(m) and X(m), respec-
tively, then the DFT of h(k) *x(n) is H(m)-X(m). No restrictions whatsoev-
er need be placed on what the time-domain sequences h(k) and x(r) in Eq.
(5-11) actually represent. As detailed later in Section 5.9, convolution in
one domain is equivalent to multiplication in the other domain allowing
us to state that multiplication in the time domain is equivalent to convo-
lution in the frequency domain, or

(k) x(m) j‘;"? H(m)* X(m) . (5-12)

Now we're ready to understand why the magnitude ripples are present in
Figure 5-19.

Rewriting Eq. (5-12) and replacing the (k) and x(n) expressions with
h=(k) and w(k), respectively,

B> (k) - w(k) ?F;_ H>(m)*W(m) . (5-13)

Let’s say that h=(k) represents an infinitely long sin(x)/x sequence of ideal
low-pass FIR filter coefficients and that w(k) represents a window sequence
that we use to truncate the sin(x)/x terms as shown in Figure 5-20. Thus,
the w(k) sequence is a finite-length set of unity values and its DFT is W(m).
The length of w(k) is merely the number of coefficients, or taps, we intend

Low-Pass FIR Filter Design

Figure 5-20 Infinite h*(k) sequence windowed by w(k) to define the final
filter coefficients A(k).

to use to implement our low-pass FIR filter. With k=(k) defined as such, the
product h=(k) - w(k) represents the truncated set of filter coefficients k(k) in
Figures 5-19(a) and 5-19(b). So, from Eq. (5-13), the FIR filter’s true fre-
quency response H(m) is the convolution

H(m) = H=(m) *W(m) . (5-14)

We depict this convolution in Figure 5-21 where, to keep the figure from
being so busy, we show H=(m) (the DFT of the h”(k) coefficients) as the
dashed rectangle. Keep in mind that it’s really a sequence of constant-
amplitude sample values.

Let’s look at Figure 5-21(a) very carefully to see why all three | H(m)|s
exhibit passband ripple in Figure 5-19. We can view a particular sample
value of the H(m) = H"(m) * W(m) convolution as being the sum of the
products of H=(m) and W(m) for a particular frequency shift of W(m).
H>(m) and the unshifted W(m) are shown in Figure 5-21(a.) With an
assumed value of unity for all of H=(m), a particular H(m) value is now
merely the sum of the W(m) samples that overlap the H*(m) rectangle. So,
with a W(m) frequency shift of 0 Hz, the sum of the W(m) samples that
overlap the H=(m) rectangle in Figure 5-21(a) is the value of H{(m) at 0 Hz.

181

Finite Impulse Response Filters

H*(m) = DFT of K™ W(m) = DFT of
m otk e < rectangular w(n)

1

@

N e

Freq

()

O]

Freq

Figure 5-21 Convolution W(m)«H*=(m): (a) unshifted W(m) and H>=(m):
(b) shift of W(m) leading to ripples within H{mM)'s positive
frequency passband; (c) shift of W(m) causing response roll-off
near H(m)'s positive cutoff frequency; (d) shift of W(m) causing
ripples beyond H(m)'s posltive cutoff frequency.

As W(m) is shifted to the right to give us additional positive frequency
H(m) values, we can see that the sum of the positive and negative values
of W(m) under the rectangle oscillate during the shifting of W(m). As the
convolution shift proceeds, Figure 5-21(b) shows why there are ripples in
the passband of H(m)—again, the sum of the positive and negative W(m)
samples under the H™(m) rectangle continue to vary as the W(m) function
is shifted. The W(m) frequency shift, indicated in Figure 5-21(c), where the
peak of W(m)’s main lobe is now outside the H(m) rectangle, corresponds
to the frequency where H(m)’s passband begins to roll off. Figure 5-21(d)
shows that, as the W(m) shift continues, there will be ripples in H(m)

Low-Pass FIR Filter Design

Transition region
AL
LN

TH(m)!
Ripple ../[\

(a) /V\/\/\/
i
~1s/8 0 /8 Freq

B

IH(m)l A Transition region

Ripple J_/}v/\v vr:?'\
(b)
,vl\/\/\} \/\/\’I\" e

/8 0 t./8 Freq

Figure 5-22 Passband ripple and transition regions: (a) for a 31-tap low-pass
filter; (b) for a 63-tap low-pass filter.

beyond the positive cutoff frequency.t The point of all of this is that the rip-
ples in H(m) are caused by the sidelobes of W(m).

Figure 5-22 helps us answer the question: How many sin(x)/x coeffi-
cients do we have to use (or how wide must w(k) be) to get nice sharp
falling edges and no ripples in our H(m) passband? The answer is that
we can’t get there from here. It doesn’t matter how many sin(x)/x coef-
ficients (filter taps) we use, there will always be filter passband ripple.
As long as w(k) is a finite number of unity values (i.e., a rectangular win-
dow of finite width) there will be sidelobe ripples in W(m), and this will
induce passband ripples in the final H(m) frequency response. To illus-
trate that increasing the number of sin(x)/x coefficients doesn’t reduce
passband ripple, we repeat the 31-tap, low-pass filter response in Figure
5-22(a). The frequency response, using 63 coefficients, is shown in

* In Figure 5-21(b), had we started to shift W(m) to the left in order to determine the nega-
tive frequency portion of H(m), we would have obtained the mirror image of the positive fre-
quency portion of H(m).

184

Finite Impulse Response Filters

Figure 5-22(b), and the passband ripple remains. We can make the fil-
ter’s transition region more narrow using additional h(k) filter coeffi-
cients, but we cannot eliminate the passband ripple. That ripple, known
as Gibbs’ phenomenon, manifests itself anytime a function (w(k) in this
case) with a instantaneous discontinuity is represented by a Fourier
series[6-8]. No finite set of sinusoids will be able to change fast enough
to be exactly equal to an instantaneous discontinuity. Another way to
state this Gibbs’ dilemma is that, no matter how wide our w(k) window
is, its DFT of W(m) will always have sidelobe ripples. As shown in
Figure 5-22(b), we can use more coefficients by extending the width of
the rectangular w(k) to narrow the filter transition region, but a wider
w(k) does not eliminate the filter passband ripple nor does it even reduce
their peak-to-peak ripple magnitudes, as long as w(k) has sudden dis-
continuities.

5.3.2 Windows Used in FIR Filter Design

OK. The good news is that we can minimize FIR passband ripple with
window functions the same way we minimized DFT leakage in Section
3.9. Here’s how. Looking back at Figure 5-20, by truncating the infinitely
long A=(k) sequence through multiplication by the rectangular w(k), our
final A(k) exhibited ripples in the frequency-domain passband. Figure 5-21
show's us that the passband ripples were caused by W(m)’s sidelobes that,
in turn, were caused by the sudden discontinuities from zero to one and
one to zero in w(k). If we think of w(k) in Figure 5-20 as a rectangular win-
dow, then, it is w(k)’s abrupt amplitude changes that are the source of our
filter passband ripple. The window FIR design method is the technique of
reducing w(k)’s discontinuities by using window functions other than the
rectangular window.

Consider Figure 5-23 to see how a nonrectangular window function
can be used to design low-ripple FIR digital filters. Imagine if we replaced
Figure 5-20’s rectangular w(k) with the Blackman window function whose
discrete values are defined as'

(k) =0.42-05 cos(%) +0.08 cos(%), fork=0,1,2,..,N-1. (5-15)

¥ As we mentioned in Section 3.9, specific expressions for window functions depend on the
range of the sample index k. Had we defined k to cover the range -N/2, < k < N/2, for exam-
ple, the expression for the Blackman window would have a sign change and be
w(k) = 0.42 + 0.5cos(2rk/N) + 0.08cos(4nk/N).

Low-Pass FIR Filter Design

|] oo,
=k
.. _.l.él ; i » -!..-
D TN TR
Blackman window
function | — »
(a) B Pl l—.’.:’.é,
k
a" h(k)
? H
l ‘m
.. u_m " [.
» LN T - p

Transition region
IH(m)lA |

(b) / \
/ N

~f /8 0 f,/8 Freq

T
s
Transition region

el W

(© /
/ \\ -

1 -

1
~f,/8 0 f/8 Freq

Figure 5-23 Coefficients and frequency response of a 31-tap Blackman-windowed
FIR Fitter: (@) defining the windowed filter coefficients hK): (©) low-ripple
31-tap frequency response; (C) low-ripple 63-tap frequency response.

This situation is depicted for N = 31 in Figure 5-23(a) where Eq. (5-15)’s
w(k) looks very much like the Hanning window function in Figure 3-17(a).
This Blackman window function results in the 31 smoothly tapered h(k)
coefficients at the bottom of Figure 5-23(a). Notice two things about the

185

186

Finite Impulse Response Filters

resulting H(m) in Figure 5-23(b). First, the good news. The passband rip-
ples are greatly reduced from those evident in Figure 5-22(a)—so our
Blackman window function did its job. Second, the price we paid for
reduced passband ripple is a wider H(m) transition region. We can get a
steeper filter response roll-off by increasing the number of taps in our FIR
filter. Figure 5-23(c) shows the improved frequency response had we used
a 63-coefficient Blackman window function for a 63-tap FIR filter. So using
a nonrectangular window function reduces passband ripple at the
expense of slower passband to stopband roll-off.

A graphical comparison of the frequency responses for the rectangular
and Blackman windows is provided in Figure 5-24. (The curves in Figure
5-24 were obtained for the window functions defined by 32 discrete sam-
ples, to which 480 zeros were appended, applied to a 512-point DFT.) The

ﬂ Linear window frequency magnitude responses, IW(m)l
11)
A Rectangular (dotted)
08f '-/
061 .=
(a) F-l3 Blackman (dashed)
N \/ B
. ~
5 NN
o021 LR AL .
A N .
0 b3 'f' ~ o "at et Yoo, LLI] ._' -~
1s/8 fo/4 fg/2 Freq
0“ Logarithmic window frequency magnitude responses, W (m) in dB
.'._‘ RN Rectangular (dotted)
-10 /\/
= .. \
oot Blackman (dashed)
20 N
R A W I W)
(b) -30f e . h. ‘.d
o 2 \ o . [
- - Vel : .
40} e - \ . .
- v T
- [y ;: . :.
4 - LY .
-50 < 3 ¥
NS S U
: 3 Aoy N T s
-60 . H LEN d V) AR 77N - [
fs/8 fs/4 fs/2 Freq

Figure 5-24 Rectangular vs. Blackman window frequency magnitude responses:
(@ | Wm)| on alinear scale; (b) normalized logarithmic scale of W p(m).

Low-Pass FIR Filter Design

sidelobe magnitudes of the Blackman window’s | W(m}| are too small to
see on a linear scale. We can see those sidelobe details by plotting the two
windows’ frequency responses on a logarithmic scale and normalizing
each plot so that their main lobe peak values are both zero dB. For a given
window function, we can get the log magnitude response of W(m) by
using the expression

W5 (m) = 20- 1ogw["vv:'/((’g)) I'). (5-16)

(The | W(0}! term in Eq. (5-16) is the magnitude of W(im) at the peak of the
main lobe when m = 0.) Figure 5-24(b) shows us the greatly reduced side-
lobe levels of the Blackman window and how that window’s main lobe is
almost three times as wide as the rectangular window’s main lobe.

Of course, we could have used any of the other window functions, dis-
cussed in Section 3.9, for our low-pass FIR filter. That’s why this FIR fil-
ter design technique is called the window design method. We pick a win-
dow function and multiply it by the sin{x)/x values from H*(m) in Figure
5-23(a) to get our final h(k) filter coefficients. It's that simple. Before we
leave the window method of FIR filter design, let’s introduce two other
interesting window functions.

Although the Blackman window and those windows discussed in
Section 3.9 are useful in FIR filter design, we have little control over their
frequency responses; that is, our only option is to select some window
function and accept its corresponding frequency response. Wouldn't it be
nice to have more flexibility in trading off, or striking a compromise
between, a window’s main lobe width and sidelobe levels? Fortunately,
there are two popular window functions that give us this opportunity.
Called the Chebyshev and the Kaiser window functions, they're defined
by the following formidable expressions:

w(k) = the N-point inverse DFT of

Chebyshev window:— N) m

(also called the Dolph- COs| [N -COS 7| O+ COS| T N
Chebyshev and the - ,
Tehebyschev window) coshiN -cosh ()l

where o = cosh(% cosh™ (107)] andm=0,1,2,..,N-1, (617)

187

188

Finite Impulse Response Filters

2
Kaiser window:— I|B,1- (k—_p
(also called the P
Kaiser-Bessel window) k)= ,
I,(B)
fork=0,1,2,..., N-1,and p = (N-1)/2. (5-18)

Two typical Chebyshev and Kaiser window functions and their fre-
quency magnitude responses are shown in Figure 5-25. For comparison,
the rectangular and Blackman window functions are also shown in that
figure. (Again, the curves in Figure 5-25(b) were obtained for window

‘ Window functions

I S L) T T L

Blackman (dashed)

08

0.6 | Kaiser (solid)

Chebyshev (dash-dot)
B=4) Y

@ fy=25]
04r
02F
s 7 - N
ol 22z -~ .
0 5 10 15 20 25 30 k
Window frequency magnitude responses, Wgg (m)
¥ Rectangular (dotted)
Kaiser (solid) [= 4] .
Blackman (dashed)
Chebyshev (dash-dot)
(N '~ [y=28] ™
1 I' Pl
v v
(b) ')
_aob .;i, . RE. A
o 3 u
sl oL [\\ A\Na
= L :\ ¥ PR Lol
\ ’
vl \ N 1
60 S A \ \',, Vi i1
i I, \ “
.70 1 ‘ P \ Z \\ t [
fs/8 fs/4 ts/2 Freq

Figure 5-25 Typical window functions used with digital fitters: (@) window coefficients
in the fime domain; (b) frequency-domain magnitude responses in dB.

Low-Pass FIR Filter Design

functions defined by 32 discrete samples, with 480 zeros appended,
applied to a 512-point DFT.)

Equation (5-17) was originally based on the analysis of antenna arrays
using the mathematics of Chebyshev polynomials[9-11]. Equation (5-18)
evolved from Kaiser’s approximation of prolate spheroid functions using
zeroth-order Bessel functions[12-13}. Don't be intimidated by the com-
plexity of Egs. (5-17) and (5-18)—at this point, we need not be concerned
with the mathematical details of their development. We just need to real-
ize that the control parameters yand B, in Egs. (5-17) and (5-18), give us con-
trol over the windows’ main lobe widths and the sidelobe levels.

Let’s see how this works for Chebyshev window functions, having four
separate values of y, and their frequency responses shown in Figure 5-26.
FIR filter designers applying the window method typically use prede-
fined software routines to obtain their Chebyshev window coefficients.
Commercial digital signal processing software packages allow the user to
specify three things: the window function (Chebyshev in this case), the
desired number of coefficients (the number of taps in the FIR filter), and
the value of ¥. Selecting different values for y enables us to adjust the side-
lobe levels and see what effect those values have on main lobe width, a
capability that we didn’t have with the Blackman window or the window
functions discussed in Section 3.9. The Chebyshev window function’s
stopband attenuation, in decibels, is equal to

Atteng, , = —20Y. (5-19)

So, for example, if we needed our sidelobe levels to be no greater than
—60 dB below the main lobe, we use Eq. (5-19) to establish a y value of 3.0
and let the software generate the Chebyshev window coefficients.

The same process applies to the Kaiser window, as shown in Figure
5-27. Commercial software packages allow us to specify B in Eq. (5-18)
and provide us with the associated window coefficients. The curves in
Figure 5-27(b), obtained for Kaiser window functions defined by 32 dis-
crete samples, show that we can select the desired sidelobe levels and
see what effect this has on the main lobe width.

Chebyshev or Kaiser, which is the best window to use? It depends on
the application. Returning to Figure 5-25(b), notice that, unlike the con-
stant sidelobe peak levels of the Chebyshev window, the Kaiser window’s

* By the way, some digital signal processing software packages require that we specify
Attens, . in decibels instead of v. That way, we don't have to bother using Eq. (5-19) at all.

189

190

Finite Impulse Response Filters

Bandpass FIR Filter Design

A Chabyshev window functions
1

-,

Y=15(dotted) .5

08
06} M 7 = 3.0 (solid)
(a)
04
02f
0 —
0 5 10 15 20 25 0k

‘l Chebyshev window frequency magnitude responses, Wgg (m)

¥=1.5 (dotted)
¥=2.0 (dashed)
¥ =2.5 (dash-dot)
¥=3.0 (solid)

(b) -30

60 -

-70

; A Kaiser window coefficients

oak B = 6 (dotted) % B = 8 (dash-dot)
@ o6 B =8 (solid)
a)

04F

0.2¢

0 ol
[¢] 5 10 15 20 25 30 k

-20

-40

(b)

&
o
T
i i Eebeiuly

-100

/2 Freq

Figure §-26 Chebyshev window functions for various y values: (@) window coefficients
in the time domain; (b) frequency-domain magnitude responses in dB.

sidelobes decrease with increased frequency. However, the Kaiser side-
lobes are higher than the Chebyshev window’s sidelobes near the main
lobe. Our primary trade-off here is trying to reduce the sidelobe levels
without broadening the main lobe too much. Digital filter designers typi-
cally experiment with various values of y and B for the Chebyshev and
Kaiser windows to get the optimum W (m) for a particular application.
(For that matter, the Blackman window’s very low sidelobe levels out-
weigh its wide main lobe in many applications.) Different window func-
tions have their own individual advantages and disadvantages for FIR fil-
ter design. Regardless of the nonrectangular window function used, they

Figure 5-27 Kaiser window functions for various B values: (a) window coefficients in
the time domain; (b) frequency-domain magnitude responses in dB.

always decrease the FIR filter passband ripple over that of the rectangu-
lar window. For the enthusiastic reader, a very thorough discussion of
window functions can be found in reference [14].

5.4 Bandpass FIR Filter Design

The window method of low-pass FIR filter design can be used as the first
step in designing a bandpass FIR filter. Let’s say we want a 31-tap FIR fil-
ter with the frequency response shown in Figure 5-22(a), but instead of
being centered about zero Hz, we want the filter's passband to be centered

19

192

Finite Impulse Response Filters

g B 0 g =
[l LI T 5
a ! ']
(@ e
L] a ‘ n l |] [])
./ hbp (k)
_I_l_l_-.nT-_._....‘_.Ln‘_._%_._:_I_.._l_-'_n._l_.-.L._l_.__
i - [] k
. .
Original lowpass
response |Hy, (m)l [Hpp (m)1
;'}“ Wm\
/ \
® N TN
L I 0 - T e
12 ~fgl4 1.4 f,/2 Freq

Figure 5-28 Bandpass filter with frequency response centered at £/4.
(a) generating 31-tap filter coefficients hbp(k); (b) frequency
magnitude response | pr(m) l.

about f./4 Hz. If we define a low-pass FIR filter’s coefficients as hlp(k), our
problem is to find the hbp(k) coefficients of a bandpass FIR filter. As shown
in Figure 5-28, we can shift H,(m)’s frequency response by multiplying the
filter's hlp(k) low-pass coefficients by a sinusoid of f,/4 Hz. That sinusoid
is represented by the s (k) sequence in Figure 5-28(a) whose values are
a sinewave sampled at a rate of four samples per cycle. Our final 31-tap
hbp(k) FIR bandpass filter coefficients are

) = F(R) 556 (6) (5-20)

Highpass FIR Fitter Design

whose frequency magnitude response |H, (m)!| is shown as the solid
curves in Figure 5-28(b). The actual magnitude of leP(m) | is half that
of the original | H, (m)| because half the values in hbp(k) are zero when
Sun(k) corresponds exactly to f,/4. This effect has an important practical
implication. It means that, when we design an N-tap bandpass FIR filter
centered at a frequency of f,/4 Hz, we only need to perform approxi-
mately N/2 multiplications for each filter output sample. (There’s no
reason to multiply an input sample value, x(n—k), by zero before we sum
all the products from Eq. (5-6) and Figure 5-13, right? We just don't both-
er to perform the unnecessary multiplications at all.) Of course, when
the bandpass FIR filter’s center frequency is other than f,/4, we're forced
to perform the full number of N multiplications for each FIR filter out-
put sample.

Notice, here, that the hlp(k) low-pass coefficients in Figure 5-28(a) have
not been multiplied by any window function. In practice, we’d use an
hlp(k) that has been windowed prior to implementing Eq. (5-20) to reduce
the passband ripple. If we wanted to center the bandpass filter’s response
at some frequency other than f,/4, we merely need to modify s,,(k) to
represent sampled values of a sinusoid whose frequency is equal to the
desired bandpass center frequency. That new s (k) sequence would then
be used in Eq. (5-20) to get the new hbp(k).

5.5 Highpass FIR Filter Design

Going one step further, we can use the bandpass FIR filter design tech-
nique to design a highpass FIR filter. To obtain the coefficients for a high-
pass filter, we need only modify the shifting sequence s, (k) to make it
represent a sampled sinusoid whose frequency is f,/2. This process is
shown in Figure 5-29. Our final 31-tap highpass FIR filter’s i, (k) coeffi-
cients are

hyp(K) = Py (K) 5 i (K)
= () (1,-1,1,-1, 1, -1, etc) , (5-21)

whose |H, (m)| frequency response is the solid curve in Figure 5-29(b).
Because 5., (k) in Figure 5-2%(a) has alternating plus and minus ones, we
can see that i, _(k) is merely hlp(k) with the sign changed for every other
coefficient. Unfike IHbP(m)I in Figure 5-28(b), the Ith(m)l response in
Figure 5-29(b) has the same amplitude as the original | H (m)!.

193

194

Finite Impulse Response Filters

S u g [
[CaL L ¢
[] [] l‘ a |] n
!
@) — Tk
E
n a . - -'
5
u [. s ng * o= .
T e TR : s " = ®F k
]]
-
Original low-pass
response 1), (m)| IH,, (mt
’f\%,../' "\....S/M\\
; 3
/ {
(b) / \
N L -
T T 0 T ¥ FTe
/2 ~fsld 14 1j2 Freq

Figure §-29 Highpass filter with frequency response centered at £,/2:
(Q) generating 31-tap fitter coefficients hhp(k); (b) frequency
magnitude response | th(m)l .

Again, notice that the hlp(k) low-pass coefficients in Figure 5-29(a) have
not been modified by any window function. In practice, we’d use a win-
dowed hy,(k) to reduce the passband ripple before implementing Eq. (5-21).

5.6 Remez Exchange FIR Filter Design Method

Let’s introduce one last FIR filter design technique that has found wide
acceptance in practice. The Remez Exchange FIR filter design method
(also called the Parks-McClellan, or Optimal method) is a popular tech-

Remez Exchange FIR Filter Design Method

s
yAN A d
0 f | U N S— } .
0 pass \ fs /2 Freq

f;top B

7 Passband ->§ &——————— Stopband

Figure 5-30 Desired frequency response definition of a low-pass FIR fiiter
using the Remez Exchange design method.

nique used to design high-performance FIR filters.t To use this design
method, we have to visualize a desired frequency response H,(m) like that
shown in Figure 5-30.

We have to establish a desired passband cutoff frequency £, and the
frequency where the attenuated stopband begins, £, In addition, we
must establish the variables 8, and 3, that define our desired passband
and stopband ripple. Passband and stopband ripple, in decibels, are relat-
ed to 8, and §; by[15]

Passband ripple = 20 -log, (1 + Sp) , (5-22)

and
Stopband ripple = -20 -log,(3,) - (5-22)

(Some of the early journal papers describing the Remez design method
used the equally valid expression 20 - log,(3,) to define the passband
ripple in decibels. However, Eq. (5-22) is the most common form used
today.) Next, we apply these parameters to a computer software routine
that generates the filter’s N time-domain h(k) coefficients where N is the
minimum number of filter taps to achieve the desired filter response.

* Remez is pronounced re-'m3, like “away.”

195

196

Finlte Impuise Response Filters

Hy(m)

1omaman

0 ‘:“*-I-I—I—I-I-l—l—l-l-l;—>

0 f pass fstop /2 Freq

3«- Passband >i<- Tr%r;ﬂgon >l Stopband

Figure 5-31 Alternate method for defining the desired frequency response of
d low-pass FIR filter using the Remez Exchange technique.

On the other hand, some software Remez routines assume that we
want 8, and §, to be as small as possible and require us only to define
the desired values of the H (m) response as shown by the solid black
dots in Figure 5-31. The software then adjusts the values of the unde-
fined (shaded dots) values of H,(m) to minimize the error between our
desired and actual frequency response while minimizing 8, and §_. The
filter designer has the option to define some of the H,(m) values in the
transition band, and the software calculates the remaining undefined
H ,(m) transition band values. With this version of the Remez algorithm,
the issue of most importance becomes.how we define the transition
region. We want to minimize its width while, at the same time, mini-
mizing passband and stopband ripple. So exactly how we design an FIR
filter using the Remez Exchange technique is specific to the available fil-
ter design software. Although the mathematics involved in the develop-
ment of the Remez Exchange method is rather complicated, we don’t
have to worry about that here[16-20]. Just remember that the Remez
Exchange design method gives us a Chebyshev-type filter whose actual
frequency response is as close as possible to the desired Hy(m) response
for a given number of filter taps.

To illustrate the advantage of the Remez method, the solid curve in
Figure 5-32 shows the frequency response of a 31-tap FIR designed using
this technique. For comparison, Figure 5-32 also shows the frequency
responses of two 31-tap FIR filters for the same passband width using the

Half-Band FiR Fitters

‘ Filter frequency magnitude responses (dB)

\ Remez (solid)
-10 >

\((‘ Chebyshev (dash-dot)
-20 “\

=70] 1]

T 1 r
0 0.05f, 0.1% 0.15¢, 0.2, 0.25f, 03f 0.35¢, Freq

[l n i -

Figure §-32 Frequency response comparison of three 31-tap FIR filters: Remez,
Chebyshev windowed, and Kaiser windowed.

Chebyshev and Kaiser windowing techniques. Notice how the three fil-
ters have roughly the same stopband sidelobe levels, near the main lobe,

but that the Remez filter has the more desirable (steeper) transition band
roll-off.

5.7 Half-Band FIR Filters

There’s a specialized FIR filter that's proved useful in decimation appli-
cations[21-25]. Called a half-band FIR filter, its frequency response is sym-
metrical about the f,/4 point as shown in Figure 5-33(a). As such, the sum
of fpass and fsmp is f;/2. This symmetry has the beautiful property that the
time-domain FIR impulse response has every other filter coefficient being
zero, except at the peak. This enables us to avoid approximately half the

‘number of multiplications when implementing this kind of filter. By way

of example, Figure 5-33(b) shows the coefficients for a 31-tap half-band fil-
ter where Af was defined to be approximately f,/32 using the Remez
Exchange method. (To preserve further symmetry, the parameters 8, and
8, were specified to be equal to each other.)

197

198

Finite Impulse Response Filters

Idealized frequency

response
1+8 I‘
'

Af > Af>

L

1.0 B

(a) 0.5

foass 14 fotop t,/2 Tred

A

08 +

06 +

04 41
(b)
02 4
| § n
I I R . R T

H v i ol l>
DR i 1 [] v P

11_%13 15 1719 21"23 25 27 29

w -a

0

'
9

1 5 7

024

04 L

* IH(m))

1.0-5715575

‘ — e R SR A e e
1 3 5 7 9 11 13 15|17 19 21 23 25 27 29 31 Freq
[}

f/4 fs/2

Figure 5-33 Half-Band FIR filter: (a) idealized continuous frequency response; (b)
coefficients for a 31-tap half-band FiR filter; () discrete frequency
magnitude response of a 31-tap half-band FIR filter.

Notice how the alternating h(k) coefficients are zero, so we have to per-
form only 17 multiplications for each filter output sample instead of the
expected 31 multiplications. For the general case of an 5-tap half-band FIR
filter, we'll need perform only (S + 1)/2 + 1 multiplications for each out-
put sample.’ Taking the DFT of those h(k) coefficients gives us the half-
band FIR frequency response shown in Figure 5-33(c).

* Section 10.8 shows a technique to further reduce the number of necessary multiplications
for certain types of FIR filters including half-band filters.

Phase Response of FIR Filters

5.8 Phase Response of FIR Filters

Although we illustrated a couple of output phase shift examples for our
original averaging FIR filter in Figure 5-10, the subject of FIR phase
response deserves additional attention. One of the dominant features of
FIR filters is their linear phase response that we can demonstrate by
way of example. Given the 25 h(k) FIR filter coefficients in Figure 5-
34(a), we can perform a DFT to determine the filter’s H(m) frequency
response. The normalized real part, imaginary part, and magnitude of

-
[-LI

[
o nd

)
4

® Real part of H(m)

0O Imaginary part of H(m)

16/

=t
28 "8

Frequency =

EEELLEEN TR T X ¥ T .
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 m

l<———— Passband ———>x

Figure 5-34 FIR filter frequency response H(m): (a) h(k) filter coefficlents; (b) real
and imaginary parts of H(m); (c) magnitude of H(m).

199

200

Finite Impulse Response Filters

H(m) are shown in Figures 5-34(b) and 5-34(c), respectively.! Being com-
plex values, each H(m) sample value can be described by its real and
imaginary parts, or equivalently, by its magnitude |H(m)| and its
phase H_(m) shown in Figure 5-35(a).

Ha(m) in degrees

Discontinuity induced by
arctangent calculation method

-270°
23625 (90% 30378
(123.75°) (56.25%

Hy (6) =~202.5°
(157.5%)
H,(0) = 0°
®) -168.75°
~33.75°
-135°
(c)

., Legitimate
-500 "l\. discontinuities
in Ho(m)

«—— Passband = L; —

Figure 5-35 FIR filter phase response H,(m) In degrees: (a) calculated H(m);
(b) polar plot of H,(m)’s first ten phase angles in degrees;
(c) actual Hy(m).

* Any DFT size greater than the h(k) width of 25 is sufficient to obtain H(m). The h(k)
sequence was padded with 103 zeros to take a 128-point DFT resulting in the H(m) sample
values in Figure 5-34.

E

Lo ;
Phase Response of Fl?ﬁ?llfgrs

£

The phase of a complex quantity is, of course, the arctangent of the

imaginary part divided by the real part, or @ = tan '1(imag/ real). Thug,m B

the phase of H_(m) is determined from the samples in Figure 5-34(b).

The phase response in Figure 5-35(a) certainly looks linear over select-
ed frequency ranges, but what do we make of those sudden jumps, or dis-
continuities, in this phase response? If we were to plot the angles of H (m)
starting with the m = 0 sample on a polar graph, using the nonzero real
part of H(0), and the zero-valued imaginary part of H(0), we’d get the
zero-angled H,(0) phasor shown on the right side of Figure 5-35(b).
Continuing to use the real and imaginary parts of H(m) to plot additional
phase angles results in the phasors going clockwise around the circle in
increments of ~33.75°, It's at the H (6) that we discover the cause of the
first discontinuity in Figure 5-35(a). Taking the real and imaginary parts
of H(6), we’d plot our phasor oriented at an angle of ~202.5°. But Figure
5-35(a) shows that H_(6) is equal to 157.5°. The problem lies in the soft-
ware routine used to generate the arctangent values plotted in Figure
5-35(a). The software adds 360° to any negative angles in the range of
-180° > 8 2 -360°, i.e., angles in the upper half of the circle. This makes &
a positive angle in the range of 0° < @ < 180° and that’s what gets plotted.
(This apparent discontinuity between H ,(5) and H,(6) is called phase wrap-
ping.) So the true H,(6) of ~202.5° is converted to a +157.5° as shown in
parentheses in Figure 5-35(b). If we continue our polar plot for additional
H,(m) values, we'll see that their phase angles continue to decrease with
an angle increment of -33.75°. If we compensate for the software’s behav-
ior and plot phase angles more negative than -180°, by unwrapping the
phase, we get the true H »(m) shown in Figure 5-35(c).t Notice that H (m)
is, indeed, linear over the passband of H(m). It’s at H, ,(17) that our partic-
ular H(m) experiences a polarity change of its real part while its imaginary
part remains negative—this induces a true phase angle discontinuity that
really is a constituent of H(m) at m = 17. (Additional phase discontinuities
occur each time the real part of H(m) reverses polarity, as shown in Figure
5-35(c).) The reader may wonder why we care about the linear phase
response of H(m). The answer, an important one, requires us to introduce
the notion of group delay.

Group delay is defined as the derivative of the phase with respect to fre-
quency, or G = Ag/Af. For FIR filters, then, group delay is the slope of the
H,(m) response curve. When the group delay is constant, as it is over the

¥ When plotting filter phase responses, if we encounter a phase angle sample & that looks
like an unusual discontinuity, it's a good idea to add 360° to & when o is negative, or -360°
when & is positive, to see if that compensates for any software anomalies.

202

Finite Impuise Response Filters

passband of all FIR filters having symmetrical coefficients, all frequency
components of the filter input signal are delayed by an equal amount of
time G before they reach the filter’s output. This means that no phase dis-
tortion is induced in the filter’s desired output signal, and this is crucial in
communications signals. For amplitude modulation (AM) signals, con-
stant group delay preserves the time waveform shape of the signal’s mod-
ulation envelope. That's important because the modulation portion of an
AM signal contains the signal’s information. Conversely, a nonlinear phase
will distort the audio of AM broadcast signals, blur the edges of television
video images, blunt the sharp edges of received radar pulses, and increase
data errors in digital communication signals. (Group delay is sometimes
called envelope delay because group delay was originally the subject of
analysis due to its affect on the envelope, or modulation signal, of ampli-
tude modulation AM systems.) Of course we're not really concerned with
the group delay outside the passband because signal energy outside the
passband is what we're trying to eliminate through filtering.

Over the passband frequency range for an S-tap FIR digital filter, group
delay has been shown to be given by

g=£2s zl)ts / (5-23)
where ¢_is the sample period (1/f,). This group delay is measured in sec-
onds. Eliminating the ¢, factor in Eq. (5-23) would change its dimensions
to samples. The value G, measured in samples, is always an integer for
odd-tap FIR filters, and a non-integer for even tap-filters.

Although we used a 128-point DFT to obtain the frequency responses in
Figures 5-34 and 5-35, we could just as well have used N = 32-point or
N = 64-point DFTs. These smaller DFTs give us the phase response curves
shown in Figure 5-36(a) and 5-36(b). Notice how different the phase
response curves are when N = 32 in Figure 5-36(a) compared to when
N =128 in Figure 5-36(c). The phase angle resolution is much finer in Figure
5-36(c). The passband phase angle resolution, or increment Ag, is given by

_ -G-360°

Ao ,
N

(5-24)

* As derived in Section 3.4 of reference [15], and Section 5.7.3 of reference [19].

Phase Response of FIR Fiiters

where N is the number of points in the DFT. So, for our S = 25-tap filter in
Figure 5-34(a), G = 12, and Ag is equal to -12 -360°/32 = -135° in Figure
5-36(a), and Ae is ~33.75° in Figure 5-36(c). If we look carefully at the sam-
ple values in Figure 5-36(a), we'll see that they’re all included within the
samples in Figures 5-36(b) and 5-36(c).

Let’s conclude this FIR phase discussion by reiterating the meaning of
phase response. The phase, or phase delay, at the output of an FIR filter is

200A Hy(m) in degrees ..
150 T A
100 + g 32-point DFT /l\ /- \ T
50 -\ . 2\ _/' \ _/' _ |
@ o1 A WA WV VAR W
M)A AW anY T m
-50 \ ./ \ ./ \./ \
_100--\-I \ ./ \./]
—sot ™\
-200 4
200 + Ho(m) in degrees _
% - i\
}ﬁg {_ 64-point DFT . 7\\ o\ 7\\!\-\ T\‘
\ -...... oA] aj A] L -
o ok . !_7\-.1\1\/\-./\/\\/\-/\/\'/./ \,»
I VAN LY AT]
50 1 - VALE VX ' ™
SN AR |
-150 1% \.‘-’. e '
ZOOT H,(m) in degrees
(© % = -
o -

Figure §-36 FIR filter phase response H,(m) In degrees: (a) calculated using a
32-point DFT; (b) using a 64-point DFT: (¢) using a 128-point DFT.

203

204

Finite Impulse Response Filters

Table 5-2 Values Used in Eq. (5-25) for the
Frequency £/32

DFT size, N Index m H (mf /N)
32 1 -135°
64 2 ~135°
128 4 -135°

the phase of the first output sample relative to the phase of the filter’s first
input sample. Over the passband, that phase shift, of course, is a linear
function of frequency. This will be true only as long as the filter has sym-
metrical coefficients. Figure 5-10 is a good illustration of an FIR filter’s
output phase delay.

For FIR filters, the output phase shift measured in degrees, for the pass-
band frequency f = mf,/N, is expressed as

-m-G-360°

phase delay = H,(mf /N)=m- Ao = N

(5-25)

We can illustrate Eq. (5-25) and show the relationship between the phase
responses in Figure 5-36, by considering the phase delay associated with
the frequency of f,/32 in Table 5-2. The subject of group delay is described
further in Appendix F where an example of envelope delay distortion,
due to a filter’s nonlinear phase, is illustrated.

5.9 A Generic Description of Discrete Convolution

Although convolution was originally an analysis tool used to prove con-
tinuous signal processing theorems, we now know that convolution
affects every aspect of digital signal processing. Convolution influences
our results whenever we analyze or filter any finite set of data samples
from a linear time-invariant system. Convolution not only constrains
DFTs to be just approximations of the continuous Fourier transform; it is
the reason that discrete spectra are periodic in the frequency domain. It’s
interesting to note that, although we use the process of convolution to
implement FIR digital filters, convolution effects induce frequency
response ripple preventing us from ever building a perfect digital filter. Its
influence is so pervasive that, to repeal the law of convolution, quoting a

A Generic Description of Discrete Convolution

K=
- oL -
Yo Qp Qpny Qp,p Qq| |Po
Yy Q; Q5 Qpy Qy1 | Py
Yo Q; Q7 Q Q3| | P2
_YN'l _QN'1 QN'2 QN_3 e QO PN_U
Theorem: if

Pj «DFT— A,

Qj<-DFT-—> B, , and

Yj «DFT= Gy .

then,
Ch = N-ApB,

Figure 5-37 One very efficient, but perplexing, way of defining convolution,

phrase from Dr. Who, would “unravel the entire causal nexus” of digital
signal processing.

Convolution has always been a somewhat difficult concept for the
beginner to grasp. That’s not too surprising for several reasons.
Convolution’s effect on discrete signal processing is not intuitively obvi-
ous for those without experience working with discrete signals, and the
mathematics of convolution does seem a little puzzling at first. Moreover,
in their sometimes justified haste, many authors present the convolution
equation and abruptly start using it as an analysis tool without explaining
its origin and meaning. For example, this author once encountered what
was called a tutorial article on the FFT in a professional journal that pro-
ceeded to define convolution merely by presenting something like that
shown in Figure 5-37 with no further explanation!

Unfortunately, few beginners can gain an understanding of the convo-
lution process from Figure 5-37 alone. Here, we avoid this dilemma by
defining the process of convolution and gently proceed through a couple
of simple convolution examples. We conclude this chapter with a discus-
sion of the powerful convolution theorem and show why it's so useful as
a qualitative tool in discrete system analysis.

205

206

Finfte Impulse Response Filters

5.9.1 Discrete Convolution in the Time-Domain

Discrete convolution is a process, whose input is two sequences, that pro-
vides a single output sequence. Convolution inputs can be two time-
domain sequences giving a time-domain output, or two frequency-domain
input sequences providing a frequency-domain result. (Although the two
input sequences must both be in the same domain for the process of con-
volution to have any practical meaning, their sequence lengths need not be
the same.) Let’s say we have two input sequences h(k) of length P and x(k)
of length Q in the time domain. The output sequence y(n) of the convolu-
tion of the two inputs is defined mathematically as

P+Q-2

ym= Y hk)x(n-k). (5-26)
k=0

Let’s examine Eq. (5-26) by way of example using the h(k) and x(k)
sequences shown in Figure 5-38. In this example, we can write the terms
for each y(n) in Eq. (5-26) as

¥(0) = h(0)x(0-0) + h(1)x(0-1) + h(2)x(0-2) + h(3)x(0~3) + h(4)x(0-4) + h(5)x(0-5),
y(1) = h(0)x(1-0) + h(1)x(1-1) + h(2)x(1-2) + h(3)x(1-3) + h(4)x(1-4) + h(5)x(1-5),
¥(2) = K(0)x(2-0) + h(1)x(2-1) + h(2)x(2-2) + h(3)x(2-3) + h(4)x(2—4) + h(5)x(2-5),
¥(3) = h(0)x(3-0) + H(1)x(3-1) + h(2)x(3-2) + h(3)x(3-3) + h(4)x(3—4) + h(5)x(3-5),
¥(4) = h(0)x(4-0) + h(1)x(4-1) + h(2)x(4-2) + h(3)x(4-3) + h(4)x(4-4) + h(5)x(4-5),
and
y(5) = h(0)x(5-0) + h(1)x(5-1) + h(2)x(5-2) + h(3)x(5-3) + h(4)x(5—4) + h(5)x(5-5).
(5-27)

With P = 4 and Q = 3, we need evaluate only 4 + 3 - 1 = 6 individual y(n)
terms. Because h(4) and h(5) are zero, we can eliminate some of the terms
in Eq. (5-27) and evaluate the remaining x(n—k) indices giving the follow-
ing expressions for y(n) as

Y(0) = h(0)x(0) + h(1)x(-1) + h(2)x(=2) + h(3)x(-3) ,
y(1) = h(0)x(1) + ~(1)x(0) + h(2)x(-1) + h(3)x(-2) ,
Y(2) = h(0)x(2) + h(1)x(1) + K(2)x(0) + h(3)x(-1) ,
yB3) = h(0)x(3) + h(1)x(2) + M(2)x(1) + h(3)x(0) ,
y(4) = h(0)x(4) + h(1)x(3) + h(2)x(2) + h(3)x(1) ,

and
y(5) = h(0)x(5) + h(1)x(4) + h(2)x(3) + h(3)x(2) . (5-28)

 eEmm]

A Generic Description of Discrete Convolution

-3-2-10123456 k

(@) (o))

Figure 5-38 Convolution example Input sequences: () first sequence h(k) of
length P = 4; (b) second sequence x(k) of length @ = 3,

o = N W

[|
-3-2-10123456 k -32-10123456 k
(a) (b)

Figure 5-39 Convolution example input sequence: (a) second sequence
x(k) of length 3; (b) reflection of the second sequence about
the k = 0 index.

Looking at the indices of the A(k) and x(k) terms in Eq. (5-28), we see two
very important things occurring. First, convolution is merely the summa-
tion of a series of products—so the process itself is not very complicated.
Second, notice that, for a given y(n), h(k)’s index is increasing as x(k)’s
index is decreasing. This fact has led many authors to introduce a new
sequence x(-k), and use that new sequence to graphically illustrate the
convolution process. The x(—k) sequence is simply our original x(k) reflect-
ed about the 0 index of the k axis as shown in Figure 5-39. Defining x(~k)
as such enables us to depict the products and summations of Eq. (5-28)'s
convolution as in Figure 5-40; that is, we can now align the x(-k) samples
with the samples of h(k) for a given 7 index to calculate y(n). As shown
in Figure 5-40(a), the alignment of h(k) and x(n-k), for n = 0, yields
y(0) = 1. This is the result of the first line in Eq. (5-28) repeated on the
right side of Figure 5-40(a). The calculation of y(1), for n = 1, is depicted

208

Finite Impulse Response Filters

J0) = HO)X(O) + h{T)xi-1) + M2)-2) + H3X-3)

1-1-"(") snavw =21+0+0+0=1
0 i

[convolution g
—0-216;;3456* wihn =0 4/
54 - D
@ 3 o X(0-K) 2
zi i m 0
i ;

012345678 n

A1) = HOM(T) + H(1)X(0) + H2)-1) + hB)x(-2)

1 KR neswm - 0=3
L 1t s ol 6] -Erive
0-4-3—2‘10123456“ wihn=1 4
-5 - [

(b sexih d> 21 "

. :
f.{ T 0

]

432-1012345¢6F%k

#2) » KOINR) + M1)M(1) + W2)X(0) + N3)x(=1)

1t MK sans convolution £ =3+2+140=6
-
oT i

[with n=2

5-4-3-2-1012 3456FK C:>
(c)

§$ x2-K -
3 i m
0 i

on & O

VYRS P 012345678 n

#3) = MO)A(3) + M{1)x(2) + M2)x(1) + K3)XO)
L =0+3+424+1=8

__ convoltion 6
0 Attt —t——t———+ a3
543210123456k "1 4
S 34 A3# [] 2
2 . T
’¥ —— - 4—0——0—0—+—0—0—TT
0—4-3—2—\0123456 01234567
1) = HOM4) + M1)(3) + H2)X(2) + HEX1)
1]"’(“) . - . .= conolution 6 . » .I a0+0+3+2=5
S o1z 5466 wnn=4 4y
© spen . = .l
e dci2a4serk 012345¢678
18) = HOIHS) + H{1)x(4) + H2)X(3) + A2
T hi asen) =0+0+0+3=3
T Pl o eonvo(unosn 6 LI
oy i ot .
54210123456k R0 4

. 1N
. 1}

——t+ n
3486K 0123465678

~ J

==+t
~4-3-2-101

Figure 5-40 Graphical depiction of the convolution of h(k) and x(k) in Figure 5-38.

in Figure-34(b) where x(n-k) is shifted one element to the r?ght, resu}ting
in y(1) = 3. We continue this x(n—k) shifting and incrementing n unt'll we
arrive at the last nonzero convolution result of y(5) shown. in Figure
5-40(f). So, performing the convolution of h(k) and x(k) comprises

A Generic Description of Discrete Convolution

Step 1: plotting both k(k) and x(k),

Step 2: flipping the x(k) sequence about the k = 0 value to get x(-k),
Step 3: summing the products of h(k) and x(0-k) for all k to get y(0),
Step 4: shifting x(-k) one sample to the right,

Step 5: summing the products of h(k) and x(1-k) for all k to get y(1), and

Step 6: shifting and summing products until there’s no overlap of h(k)

and the shifted x(n-k), in which case all further y(n)s are zero and
we're done.

The full convolution of our A(k) and x(k) is the y(n) sequence on the right
side of Figure 5-40(f). We’ve scanned the x(—k) sequence across the h(k)
sequence and summed the products where the sequences overlap. By the
way, notice that the y(n) sequence in Figure 5-40(f) has six elements where
h(k) had a length of four and x(k) was of length three. In the general case,

if h(k) is of length P and x(k) is of length Q, the length of y(n) will have a
sequence length of L, where

L=(P+Q-1). (5-29)

At this point, it's fair for the beginner to ask, “OK, so what? What does
this strange convolution process have to do with digital signal process-

ing?” The answer to that question lies in understanding the effects of the
convolution theorem.

5.9.2 The Convolution Theorem

The convolution theorem is a fundamental constituent of digital signal pro-
cessing. It impacts our results anytime we filter or Fourier transform dis-

crete data. To see why this is true, let’s simplify the notation of Eq. (5-26)
and use the abbreviated form

y(n) = h(k) »x(k) , (5-30)

where, again, the “+” symbol means convolution. The convolution theo-
rem may be stated as follows: If two time-domain sequences h(k) and x(k)
have DFTs of H(m) and X(m), respectively, then the DFT of h(k) *x(k) is the
product H(m) - X(m). Likewise, the inverse DET of H(m) -X(m) is h(k) *x(k).
We can represent this relationship with the expression

h(k) * x(k) i H(m)- X(m). (5-31)

209

210 Finite Impulse Response Filters
A Generic Description of Discrete Convolution 211

Table 5-3 Convolution Values of h(k) and x(k) from Figure 5-38.
‘ Sequence x(k)
Index DFT of DFT of IDFT of)
Sequence h(k) korm | h(k)| x(k) | h(k) = H(m) | x(k) = X(m) | H(m) - X(m) H(m) - X(m); h(k)#x(k,
0 1 1 4.0 +j0.0 6.0 +70.0 24.0 +0.0 1.0 +j0.0 1
1 1 2 1.00 - j2.41 241-j441 | -8.24-1024 | 3.0+j0.0 3
2 1 ~20~j j
Convolution in the time Time ° ° 20-729 ° 60+100 ¢
domain = h{K » (/0 domain 3 1 0 1.00 - j0.41 -041+j158 { 0.24+/1.75 6.0 +j0.0 6
4 0 0 0 2.0 +70.0 0 5.0 +j0.0 5
I 5 0 0 1.00 + j0.41 ~041-j158 | 0.24-71.75 3.0 +70.0 3
nverse
DFT -=-+A{DFT)---- 6 0 0 0 -2.00 + j2.00 0 0.0 +j0.0 0
Founer ¢ 7 0 0 1.00 + j2.41 241+7441 | -8.24+j1024 | 0.0+/0.0 0
transform pair H(m) X(m)
Frequency
domain
Sequence x(k)
1.
——anu Sequence h{k)
Multlpllcatlon in the frequency °o s !
domain = H(m): X{(m) s
0122345867

Figure 5-41 Relationships of the convolution theorem.

R GELURT

Convolution in the *
time domain 2

Equation (5-31) tells us that two sequences resulting from h(k) * x(k) and
H(m) - X(m) are Fourier transform pairs. So, taking the DFT of h(k) *x(k)
always gives us H(m) - X(m). Likewise, we can determine h(k) »x(k) by taking
the inverse DFT of H(m) - X(m). The important point to learn from Eq. (5-31)
is that convolution in the time domain is equivalent to multiplication in the
frequency domain. (We won't derive the convolution theorem here because
it’s derivation is readily available to the interested reader[26-29].) To help us
appreciate this principle, Figure 5-41 sketches the relationship between con-
volution in the time domain and multiplication in the frequency domain.

M S
0123 456 7"

We can easily illustrate the convolution theorem by taking 8-point DFTs z __';____:__ N :
of h(k) and x(k) to get H(m) and X(m), respectively, and listing these values as ot 2saser” 0123458 7"
in Table 5-3. (Of course, we have to pad h(k) and x(k) with zeros, so they both v
have lengths of 8 to take 8-point DFTs.) Tabulating the inverse DFT of the o 1R X

product H(m) - X(m) allows us to verify Eq. (5-31), as listed in the last two
columns of Table 5-3, where the acronym IDFT again means inverse DFT.
The values from Table 5-3 are shown in Figure 5-42. (For simplicity, only the
magnitudes of H(m), X(m), and H(m) - X(m) are shown in the figure.) We
need to become comfortable with convolution in the time domain because,

Multiplication in the
frequency domain

I H
-t in
012345677

Figure 5-42 Convolution relationships of h(K), X(K), H(m), and X(rm) from Figure 5-38,

212

Finite Impulse Response Filters

I Sequence x(k)

Sequence h(k)

Multiplication in the time Time
domain = h(k) - x(K) domain
/ @D
Fourier ¢
transform pair X(m)
Frequency
domain

Convolution in the frequency
domain = H(m) = X(m)

Figure 5-43 Relationships of the convolution theorem related to multiplication in
the time domain.

as we've learned, it’s the process used in FIR filters. As detailed in Section
5.2, we perform discrete time-domain FIR filtering by convolving an input
sequence, x(n) say, with the impulse response x(k) of a filter, and, for FIR fil-
ters that impulse response happens to also be the filter’s coefficients.! The
result of that convolution is a filtered time-domain sequence whose spec-
trum is modified (multiplied) by the filter’s frequency response X(m).
Section 10.10 describes a clever scheme to perform FIR filtering efficiently
using the FFT algorithm to implement convolution.

Because of the duality of the convolution theorem, we could have
swapped the time and frequency domains in our discussion of convolu-
tion and multiplication being a Fourier transform pair. This means that,
similar to Eq. (5-31), we can also write

* As we'll see in Chapter 6, the coefficients used for an infinite impulse response (IIR) filter
are not equal to that filter’s impulse response.

A Generic Description of Discrete Convolution

h(k) - x(k) ﬁ’ H(m)* X(m) . (5-32)

So the convolution theorem can be stated more generally as Convolution
in one domain is equivalent to multiplication in the other domain. Figure 5-43
shows the relationship between multiplication in the time domain and
convolution in the frequency domain. Equation (5-32) is the fundamental
relationship used in the process of windowing time-domain data to
reduce DFT leakage, as discussed in Section 3.9.

5.9.3 Applying the Convolution Theorem

The convolution theorem is useful as a qualitative tool in predicting the
affects of different operations in discrete linear time-invariant systems. For
example, many authors use the convolution theorem to show why period-
ic sampling of continuous signals results in discrete samples whose spec-
tra are periodic in the frequency domain. Consider the real continuous
time-domain waveform in Figure 5-44(a), with the one-sided spectrum of
bandwidth B. Being a real signal, of course, its spectrum is symmetrical
about 0 Hz. (In Figure 5-44, the large right-pointing shaded arrows repre-
sent Fourier transform operations.) Sampling this waveform is equiva-
lent to multiplying it by a sequence of periodically spaced impulses,
Figure 5-44(b), whose values are unity. If we say that the sampling rate
is f, samples/second, then the sample period t, = 1/f, seconds. The
result of this multiplication is the sequence of discrete time-domain
impulses shown in Figure 5-44(c). We can use the convolution theorem
to help us predict what the frequency-domain effect is of this multipli-
cation in the time domain. From our theorem, we now realize that the
spectrum of the time-domain product must be the convolution of the
original spectra. Well, we know what the spectrum of the original con-
tinuous waveform is. What about the spectrum of the time-domain
impulses? It has been shown that the spectrum of periodic impulses,
whose period is t, seconds, is also periodic impulses in the frequency
domain with a spacing of f, Hz as shown in Figure 5-44(b) [30].

Now, all we have to do is convolve the two spectra. In this case, con-
volution is straightforward because both of the frequency-domain func-
tions are symmetrical about the zero-Hz point, and flipping one of them
about zero Hz is superfluous. So we merely slide one of the functions
across the other and plot the product of the two. The convolution of the
original waveform spectrum and the spectral impulses results in replica-
tions of the waveform spectrum every f, Hz, as shown in Figure 5-44(c).

213

Finite Impulse Response Filters

m -
@) 0 Time @ —E’ 0 \B Frequsncy

®) X, ™ 2 i, 0 i, 2t feq
0Ny ime s] s ts Frequency
s

fe=1/t,

o5 Q0000

(©)

—2f; - 2% F"WUOWY

Figure 5-44 Using convolution to predict the spectral replication effects of periodic
sampling.

This discussion reiterates the fact that the DFT is always periodic with a
period of f, Hz.

Here's another example of how the convolution theorem can come in
handy when we try to understand digital signal processing operations.
This author once used the theorem to resolve the puzzling result, at the
time, of a triangular window function having its first frequency
response null at twice the frequency of the first null of a rectangular
window function. The question was “If a rectangular time-domain func-
tion of width T has its first spectral null at 1/T Hz, why does a triangu-
lar time-domain function of width T have its first spectral null at 2/T
Hz?” We can answer this question by considering convolution in the
time domain.

Look at the two rectangular time-domain functions shown in Figures
5-45(a) and 5-45(b). If their widths are each T seconds, their spectra are
shown to have nulls at 1/T Hz as depicted in the frequency-domain func-
tions in Figures 5-45(a) and 5-45(b). We know that the frequency magnitude

A Generic Description of Discrete Convolution

responses will be the absolute value of the classic sin(x)/x function.! If we
convolve those two rectangular time-domain functions of width T, we'll get
the triangular function shown in Figure 5-45(c). Again, in this case, flipping
one rectangular function about the zero time axis is unnecessary. To con-
volve them, we need only scan one function across the other and determine

Isin(x)/xi

\ (First null

(@) - —— Lot
T2 Time -4r 0 ur Freq

Y% Y%

-vr o yur Freq

:9
& v
A, <> A:th.,
>

(b)

Tlme

T Time T 9 T Fraq

A

Time

(sin(x/%°

N

2T 0 2T Freq

Figure 5-45 Using convolution to show that the Fourier fransform of a triangular
function has its first null at twice the frequency of the Fourier transform
of a rectangular function.

* The sin(x)/x function was introduced in our discussion of window functions in Section 3.9
and is covered in greater detail in Section 3.13.

216

Finite Impulse Response Filters

the area of their overlap. The time shift where they overlap the most hap-
pens to be a zero time shift. Thus, our resultant convolution has a peak at a
time shift of zero seconds because there’s 100 percent overlap. If we slide one
of the rectangular functions in either direction, the convolution decreases
linearly toward zero. When the time shift is T/2 seconds, the rectangular
functions have a 50 percent overlap. The convolution is zero when the time
shift is T seconds—that’s when the two rectangular functions cease to over-
lap.

PNotice that the triangular convolution result has a width of 2T, and
that'’s really the key to answering our question. Because convolution in
the time domain is equivalent to multiplication in the frequency
domain, the Fourier transform magnitude of our 2T width triangular
function is the Isin(x)/x! in Figure 5-45(a) times the Isin(x)/x] in
Figure 5-45(b), or the (sin(x)/x)? function in Figure 5-45(c). If a triangu-
lar function of width 2T has its first frequency-domain null at 1/T Hz,
then the same function of width T must have its first frequency null at
2/T Hz as shown in Figure 5-45(d), and that’s what we set out to show.
Comparison of Figure 5-45(c) and Figure 5-45(d) illustrates a funda-
mental Fourier transform property that compressing a function in the
time domain results in an expansion of its corresponding frequency-
domain representation.

References
[1] Shynk,]J.J. “Adaptive IIR Filtering,” IEEE ASSP Magazine, April 1989.

[2] Laundrie, A. “Adaptive Filters Enable Systems to Track Variations,”
Microwaves & RF, September 1989.

[3] Bullock, S. R. “High Frequency Adaptive Filter,” Microwave Journal,
September 1990.

[4] Haykin, S. S. Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, New
Jersey, 1986.

[5] Goodwin, G. C., and Sin, K. S. Adaptive Filtering Prediction and Control,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[6] Gibbs, J. W. Nature, Vol. 59, 1899, pp. 606.

[7] Stockham, T. G. “High-Speed Convolution and Correlation with Applications
to Digital Filtering,” Chapter 7 in Digital Processing of Signals, Ed. by B. Gold
et al., McGraw-Hill, New York, 1969, pp. 203-232.

References

[8] Wait, J. V. “Digital Filters,” in Active Filters: Lumped, Distributed, Integrated,
Digital, and Parametric. Ed. by L. P. Huelsman, McGraw-Hill, New York, 1970,
pp. 200-277.

[91 Dolph, C. L. “A Current Distribution for Broadside Arrays Which Optimizes
the Relationship between Beam Width and Side-Lobe Level,” Proceedings of
the IRE, Vol. 35, June 1946.

[10] Barbiere, D. “A Method for Calculating the Current Distribution of
Chebyshev Arrays,” Proceedings of the IRE, Vol. 40, January 1952.

[11] Cook, C. E., and Bernfeld, M. Radar Signals, Academic Press, New York, 1967,
pp. 178~180.

{12] Kaiser, J. F. “Digital Filters,” in System Analysis by Digital Computer. Ed. by
F. F. Kuo and]. F. Kaiser, John Wiley and Sons, New York, 1966, pp. 218-277.

[13] Williams, C. S. Designing Digital Filters, Prentice-Hall, Englewood Cliffs, New
Jersey, 1986, pp. 117.

[14] Harris, E. J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

[15] McClellan, J. H., Parks, T. W., and Rabiner, L. R. “A Computer Program for
Designing Optimum FIR Linear Phase Digital Filters,” IEEE Trans. on Audio
and Electroacoustics, Vol. AU-21, No. 6, December 1973, pp. 515.

[16] Rabiner, L. R. and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 136.

[17] Parks, T. W., and McClellan, J. H. “Chebyshev Approximation For Nonrecursive
Digital Filters with Linear Phase,” IEEE Trans. on Circuit Theory, Vol. CT-19,
March 1972.

[18] McClellan, J. H., and Parks, T. W. “A Unified Approach to the Design of
Optimum FIR Linear Phase Digital Filters,” IEEE Trans. on Circuit Theory, Vol.
CT-20, November 1973,

[19] Rabiner, L. R., McClellan, J. H., and Parks, T. W. “FIR Digital Filter Design
Techniques Using Weighted Chebyshev Approximation,” Proc. IEEE, Vol. 63,
No. 4, April 1975.

[20] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989, pp. 478.

[21] Funderburk, D. M., and Park, S. “Implementation of a C-QUAM AM-Stereo
Receiver Using a General Purpose DSP Device,” RF Design, June 1993.

{22] Harris Semiconductor Inc. “A Digital, 16-Bit, 52 Msps Halfband Filter,”
Microwave Journal, September 1993.

[23] Ballanger, M. G. “Computation Rate and Storage Estimation in Multirate
Digital Filtering with Half-Band Filters,” IEEE Trans. on Acoust. Speech, and
Signal Proc., Vol. ASSP-25, No. 4, August 1977.

218

Finite Impulse‘Response Filters

[24] Crochiere, R. E., and Rabiner, L. R. “Decimation and Interpolation of Digital
Signals—A Tutorial Review,” Proceedings of the IEEE, Vol. 69, No. 3, March
1981, pp. 318.

[25] Ballanger, M. G., Daguet, J. L., and Lepagnol, G. P. ”Interpo.latior}:
Extrapolation, and Reduction of Computational Speed in Digital Filters,
IEEE Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-22, No. 4, August
1974.

[26] Oppenheim, A. V., Willsky, A. S., and Young, 1. T. Signals and Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983, pp. 212.

[27] Stearns, S. Digital Signal Analysis, Hayden Book Co., Rochelle Park, New
Jersey, 1975, pp. 93.

[28] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989, pp. 58.

[29] Rabiner, L. R., and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 59.

[30] Oppenheim, A. V., Willsky, A. §., and Young, 1. T. Signals and Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983, pp. 201.

= CHAPTER SIX =

Infinite Impulse
Response Filters

Infinite impulse response (IIR) digital filters are fundamentally different
from FIR filters because practical IIR filters always require feedback.
Where FIR filter output samples depend only on past input samples,
each IIR filter output sample depends on previous input samples and
previous filter output samples. IIR filters’ memory of past outputs is both
a blessing and a curse. Like all feedback systems, perturbations at the
IIR filter input could, depending on the design, cause the filter output to
become unstable and oscillate indefinitely. This characteristic of possi-
bly having an infinite duration of nonzero output samples, even if the
input becomes all zeros, is the origin of the phrase infinite impulse
response. It's interesting at this point to know that, relative to FIR filters,
IIR filters have more complicated structures (block diagrams), are
harder to design and analyze, and do not have linear phase responses.
Why in the world, then, would anyone use an IIR filter? Because they
are very efficient. IIR filters require far fewer multiplications per filter
output sample to achieve a given frequency magnitude response. From
a hardware standpoint, this means that IIR filters can be very fast, allow-
ing us to build real-time IIR filters that operate over much higher sam-
ple rates than FIR filters.t

To illustrate the utility of IIR filters, Figure 6-1 contrasts the frequency
magnitude responses of what's called a fourth-order low-pass IIR filter
and the 19-tap FIR filter of Figure 5-19(b) from Chapter 5. Where the 19-
tap FIR filter in Figure 6-1 requires 19 multiplications per filter output
sample, the fourth-order IIR filter requires only 9 multiplications for
each filter output sample. Not only does the IIR filter give us reduced

* At the end of this chapter, we briefly compare the advantages and disadvantages of IIR fil-
ters relative to FIR filters.

219

220

Infinfte Impuise Response Filters

IH(m)i for a 19-tap FIR filter
A o IH(m)| for a 4th-order IiR filter
=y
. . | _ : -
—fs/8 fs/8 req (m)

Figure 6-1 Comparison of the frequency magniiude responses of a 19-tap
low-pass FIR filter and a 4th-order low-pass IR filter.

passband ripple and a sharper filter roll-off; it does so with less than
half the multiplication workload of the FIR filter.

Recall from Section 5.3 that, to force an FIR filter’s frequency response
to have very steep transition regions, we had to design an FIR filter with a
very long impulse response. The longer the impulse response, the more
ideal our filter frequency response will become. From a hardware stand-
point, the maximum number of FIR filter taps we can have (the length of
the impulse response) depends on how fast our hardware can perform the
required number of multiplications and additions to get a filter output
value before the next filter input sample arrives. IIR filters, however, can
be designed to have impulse responses that are longer than their number
of taps! Thus, IIR filters can give us much better filtering for a given num-
ber of multiplications per output sample than FIR filters. With this in
mind, let’s take a deep breath, flex our mathematical muscles, and learn
about IIR filters.

6.1 An Introduction to Infinite Impuise
Response Filters

IIR filters get their name from the fact that some of the filter’s previous
output samples are used to calculate the current output sample. Given a
finite duration of nonzero input values, the effect is that an IIR filter could
have a infinite duration of nonzero output samples. So, if the IIR filter’s
input suddenly becomes a sequence of all zeros, the filter’s output could
conceivably remain nonzero forever. This peculiar attribute of IIR filters
comes about because of the way they're realized, i.e., the feedback struc-
ture of their delay units, multipliers, and adders. Understanding IIR filter

An Infroduction to Infinite Impulse Response Filters

structures is straightforward if we start by recalling the building blocks of
an FIR filter. Figure 6-2(a) shows the now familiar structure of a 4-tap FIR
digital filter that implements the time-domain FIR equation

y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3) + h(4)x(n-4). (6-1)

Although not specifically called out as such in Chapter 5, Eq. (6-1) is
known as a difference equation. To appreciate how past filter output sam-
ples are used in the structure of IIR filters, let’s begin by reorienting our
FIR structure in Figure 6-2(a) to that of Figure 6-2(b). Notice how the
structures in Figure 6-2 are computationally identical, and both are imple-
mentations, or realizations, of Eq. (6-1).

x(n) yn)
x(r-1)
(b) Iielay 1)
x(n-2)
Delay | p(2)
x(n-3) ?___
h3)

Figure 6-2 FIR digital filter structures: (@) traditional FiR filter structure;
(b) rearranged, but equivalent, FIR filter structure,

221

222

Infinite Impuise Response Filters

We can now show how past filter output samples are combined with
past input samples by using the IIR filter structure in Figure 6-3. Because
IIR filters have two sets of coefficients, we'll use the standard notation of
the variables b(k) to denote the feed forward coefficients and the variables
a(k) to indicate the feedback coefficients in Figure 6-3. OK, the difference
equation describing the IIR filter in Figure 6-3 is

y(n) = b(0)yx(n) + b(L)x(n - 1) + b(2)x(n ~ 2) + b(3)x(n - 3)
+a(l)y(n-1)+a(2)y(n—2)+a(3)y(n-3) . (6-2)

Look at Figure 6-3 and Eq. (6-2) carefully. It's important to convince our-
selves that Figure 6-3 really is a valid implementation of Eq. (6-2) and that,
conversely, difference equation Eq. (6-2) fully describes the IIR filter struc-
ture in Figure 6-3. Keep in mind now that the sequence y(n) in Figure 6-3
is not the same y(n) sequence that’s shown in Figure 6-2. The d(n)
sequence in Figure 6-3 is equal to the y(n) sequence in Figure 6-2.

il

IDeIay |
*?‘—" y(n-1)
Iélay

a(1)

x(n-2) »—»? ?4—4 ¥(n-2)
ay | b2)
b(3)
_

Yy
Del a(2) |Delay
x(n-3) y(n-3)
|

a(3)

T T
Feed forward calculations Feedback calculations

Figure 6-3 IIR digitai filter structure showing feed forward and feedback
calculations.

The Laplace Transform

By now you're probably wondering, “Just how do we determine those
a(k) and b(k) IR filter coefficients if we actually want to design an IIR fil-
ter?” Well, fasten your seat belt because this is where we get serious about
understanding IIR filters. Recall from the last chapter concerning the win-
dow method of low-pass FIR filter design that we defined the frequency
response of our desired FIR filter, took the inverse Fourier transform of
that frequency response, and then shifted that transform result to get the
filter’s time-domain impulse response. Happily, due to the nature of
transversal FIR filters, the desired (k) filter coefficients turned out to be
exactly equal to the impulse response sequence. Following that same pro-
cedure with IIR filters, we could define the desired frequency response of
our IIR filter and then take the inverse Fourier transform of that response
to yield the filter’s time-domain impulse response. The bad news is that
there’s no direct method for computing the IIR filter’s a(k) and b(k) coeffi-
cients from the impulse response! Unfortunately, the FIR filter design
techniques that we’ve learned so far simply cannot be used to design IIR
filters. Fortunately for us, this wrinkle can be ironed out by using one of
several available methods of designing IIR filters.

Standard IIR filter design techniques fall into three basic classes: the
impulse invariance, bilinear transform, and optimization methods. These
design methods use a discrete sequence, mathematical transformation
process known as the z-transform whose origin is the Laplace transform
traditionally used in the analyzing of continuous systems. With that in
mind, let’s start this IIR filter analysis and design discussion by briefly
reacquainting ourselves with the fundamentals of the Laplace transform.

6.2 The Laplace Transform

The Laplace transform is a mathematical method of solving linear differ-
ential equations that has proved very useful in the fields of engineering
and physics. This transform technique, as it's used today, originated from
the work of the brilliant English physicist Oliver Heaviside." The funda-
mental process of using the Laplace transform goes something like the
following:

* Heaviside (1850-1925), who was interested in electrical phenomena, developed an efficient
algebraic process of solving differential equations. He initially took a lot of heat from his
contemporaries because they thought his work was not sufficiently justified from a mathe-
matical standpoint. However, the discovered correlation of Heaviside’s methods with the
rigorous mathematical treatment of the French mathematician Marquis Pierre Simon de
Laplace’s (1749-1827) operational calculus verified the validity of Heaviside's techniques.

223

224

Infinite Impuise Response Filters

Step 1: A time-domain differential equation is written that describes the
input/output relationship of a physical system (and we want to
find the output function that satisfies that equation with a given
input).

Step 2: The differential equation is Laplace transformed, converting it to
an algebraic equation.

Step 3: Standard algebraic techniques are used to determine the desired
output function’s equation in the Laplace domain.

Step 4: The desired Laplace output equation is, then, inverse Laplace
transformed to yield the desired time-domain output function’s
equation.

This procedure, at first, seems cumbersome because it forces us to go the
long way around, instead of just solving a differential equation directly. The
justification for using the Laplace transform is that although solving dif-
ferential equations by classical methods is a very powerful analysis tech-
nique for all but the most simple systems, it can be tedious and (for some
of us) error-prone. The reduced complexity of using algebra outweighs the
extra effort needed to perform the required forward and inverse Laplace
transformations. This is especially true now that tables of forward and
inverse Laplace transforms exist for most of the commonly encountered
time functions. Well-known properties of the Laplace transform also allow
practitioners to decompose complicated time functions into combinations
of simpler functions and, then, use the tables. (Tables of Laplace trans-
forms allow us to translate quickly back and forth between a time function
and its Laplace transform—analogous to, say, a German-English dictio-
nary if we were studying the German language.") Let’s briefly look at a few
of the more important characteristics of the Laplace transform that will
prove useful as we make our way toward the discrete z-transform used to
design and analyze IIR digital filters.

The Laplace transform of a continuous time-domain function f(t),
where f(t) is defined only for positive time (t > 0), is expressed mathe-
matically as

F(s)= j fitetdt . (6-3)
0

t Although tables of commonly encountered Laplace transforms are included in almost
every system analysis textbook, very comprehensive tables are also availablef1-3].

The Laplace Transform

F(s) is called “the Laplace transform of f{t),” and the variable s is the com-
plex number

§=0+jo. (6-4)

A more general expression for the Laplace transform, called the bilateral
or two-sided transform, uses negative infinity (—e) as the lower limit of
integration. However, for the systems that we’ll be interested in, where
system conditions for negative time (¢ < 0) are not needed in our analysis,
the one-sided Eq. (6-3) applies. Those systems, often referred to as causal
systems, may have initial conditions at ¢ = 0 that must be taken into
account (velocity of a mass, charge on a capacitor, temperature of a body,
etc.) but we don’t need to know what the system was doing prior to t = 0.

In equation (6-4), ¢ is a real number and ® is frequency in radians/
second. Because ¢* is dimensionless, the exponent term s must have the
dimension of 1/time, or frequency. That's why the Laplace variable s is
often called a complex frequency.

To put Eq. (6-3) into words, we can say that it requires us to multiply,
point for point, the function f{(t) by the complex function e for a given
value of 5. (We’'ll soon see that using the function ¢ here is not acciden-
tal; e is used because it's the general form for the solution of linear dif-
ferential equations.) After the point-for-point multiplications, we find the
area under the curve of the function f{t)e™* by summing all the products.
That area, a complex number, represents the value of the Laplace trans-
form for the particular value of s = 6 + jo chosen for the original multi-
plications. If we were to go through this process for all values of s, we'd
have a full description of F(s) for every value of s.

1like to think of the Laplace transform as a continuous function, where
the complex value of that function for a particular value of s is a correla-
tion of f(f) and a damped complex e sinusoid whose frequency is ® and
whose damping factor is 6. What do these complex sinusoids look like?
Well, they are rotating phasors described by

: ; e_jmt
e—st = e—(c+/m)t - e—cte—/mt =
eo‘t

(6-5)

From our knowledge of complex numbers, we know that 7% is a unity-
magnitude phasor rotating clockwise around the origin of a complex
plane at a frequency of ® radians per second. The denominator of Eq. (6-5)
is a real number whose value is one at time ¢ = 0. As ¢ increases, the denom-
inator e°! gets larger (when o is positive), and the complex ¢ phasor’s

225

226

Infinite Impulse Response Filters

magnitude gets smaller as the phasor rotates on the complex plane. The
tip of that phasor traces out a curve spiraling in toward the origin of the
complex plane. One way to visualize a complex sinusoid is to consider its
real and imaginary parts individually. We do this by expressing the com-
plex ¢ sinusoid from Eq. (6-5) in rectangular form as

oo e cos(@t) _.sin(@t) 65)

edt th eﬁt

Figure 6-4 shows the real parts (cosine) of several complex sinusoids with
different frequencies and different damping factors. In Figure 6-4(a), the
complex sinusoid’s frequency is the arbitrary @', and the damping factor
is the arbitrary ¢'. So the real part of F(s), at s = o'+ jw, is equal to the cor-
relation of f{t) and the wave in Figure 6-4(a). For different values of s, we'll
correlate f(t) with different complex sinusoids as shown in Figure 6-4. (As
we1l see, this correlation is very much like the correlation of f(t) with var-
ious sine and cosine waves when we were calculating the discrete Fourier
transform.) Again, the real part of F(s), for a particular value of s, is the
correlation of f{t) with a cosine wave of frequency ® and a damping fac-
tor of G, and the imaginary part of F(s) is the correlation of f(t) with a
sinewave of frequency ® and a damping factor of 6.

Now, if we associate each of the different values of the complex s vari-
able with a point on a complex plane, rightfully called the s-plane, we
could plot the real part of the F(s) correlation as a surface above (or below)
that s-plane and generate a second plot of the imaginary part of the F(s)
correlation as a surface above (or below) the s-plane. We can’t plot the full
complex F(s) surface on paper because that would require four dimen-
sions. That's because s is complex, requiring two dimensions, and F(s) is
itself complex and also requires two dimensions. What we can do, how-
ever, is graph the magnitude [F(s)} as a function of s because this graph
requires only three dimensions. Let’s do that as we demonstrate this
notion of an | F(s)| surface by illustrating the Laplace transform in a tan-
gible way.

Say, for example, that we have the linear system shown in Figure 6-5.
Also, let's assume that we can relate the x(f) input and the y(f) output of
the linear time invariant physical system in Figure 6-5 with the following
messy homogeneous constant-coefficient differential equation

d2y(t) dy(t) dx(t)
4 d¥2 +o —yat_ +agy(t)=by— =+ box(t) - (6-6)

The Laplace Transform

(2)
Time

(b)

Time

(d

Figure 6-4 Real part (cosine) of various e functions, where s = ¢ + jo, to be
correlated with f(1).

We'll use the Laplace transform toward our goal of figuring out how the
system will behave when various types of input functions are applied,
i.e.,, what will the y(t) output be for any given x(t) input.

Let’s slow down here and see exactly what Figure 6-5 and Eq. (6-6) are
telling us. First, if the system is time invariant, then the 4, and b, coeffi-
cients in Eq. (6-6) are constant. They may be positive or negative, zero,
real or complex, but they do not change with time. If the system is elec-
trical, the coefficients might be related to capacitance, inductance, and
resistance. If the system is mechanical with masses and springs, the coef-
ficients could be related to mass, coefficient of damping, and coefficient of

227

228

infinite Impuise Response Filters

x(t) y(t)
—p| System [|[—P

Figure 6-5 System described by Eq. (6-6). The system’s input and output are
the continuous time functions x(t) and y(t) respectivety.

resilience. Then, again, if the system is thermal with masses and insula-
tors, the coefficients would be related to thermal capacity and thermal
conductance. To keep this discussion general, though, we don’t really care
what the coefficients actually represent.

OK, Eq. (6-6) also indicates that, ignoring the coefficients for the
moxment, the sum of the y(f) output plus derivatives of that output is equal
to the sum of the x(t) input plus the derivative of that input. Our problem
is to determine exactly what input and output functions satisfy the elabo-
rate relationship in Eq. (6-6). (For the stout hearted, classical methods of
solving differential equations could be used here, but the Laplace trans-
form makes the problem much simpler for our purposes.) Thanks to
Laplace, the complex exponential time function of ¢* is the one we'll use.
It has the beautiful property that it can be differentiated any number of
times without destroying its original form. That is

de”) _ e

_ 2 st ds(e“) _SSESI‘ dn(eSt)
at at? -

T s g 67)

’

If we let x(f) and y(f) be functions of e*, x(e*') and y(e¥), and use the prop-
erties shown in Eq. (6-7), Eq. (6-6) becomes

ays2y(e) + agsy(e™) + agy(e™) = bysx(e®!) + byx(e®),

or
(a,5° + a5+ uo)y(e“) =(b;s+ by)x(e™) . (6-8)

Although it's simpler than Eq. (6-6), we can further simplify the rela-
tionship in the last line in Eq. (6-8) by considering the ratio of y(et) over
x(e) as the Laplace transfer function of our system in Figure 6-5. If we call
that ratio of polynomials the transfer function H(s),

The Laplace Transform

st
He =) bisth
x(e™) ays +as+ag

(6-9)

To indicate that the original x(t) and y(t) have the identical functional form
of %, we can follow the standard Laplace notation of capital letters and
show the transfer function as

Y(s) bis+by
H(s)=——=—5"——"— -
(®) X(s) as* +as+ay (6-10)

where the output Y(s) is given by

Y(s)= x(s)_.flsL
a,s° + a5+ 4y

= X(s)H(s) . (6-11)
Equation (6-11) leads us to redraw the original system diagram in a form
that highlights the definition of the transfer function H(s) as shown in
Figure 6-6.

The cautious reader may be wondering, “Is it really valid to use this
Laplace analysis technique when it’s strictly based on the system’s x(f)
input being some function of ¥, or x(e!)?” The answer is that the Laplace
analysis technique, based on the complex exponential x(¢*), is valid
because all practical x(¢) input functions can be represented with complex
exponentials. For example,

* a constant, ¢ = ce®,
* sinusoids, sin(®f) = (¢** - €79%) /2] or cos(wt) = (@ + e7%)/2,
¢ a monotonic exponential, e*, and

* an exponentially varying sinusoid, e cos(w1).

X(s) Y(s)

System N

H(s)

Figure 6-6 Linear system described by Egs. (6-10) and (6-11). The system’s
input Is the Laplace function X(s), its output is the Laplace
function ¥(s). and the system fransfer function is H(s).

229

230

Infinite impulse Response Fliters

With that said, if we know a system’s transfer function H(s), we can
take the Laplace transform of any x(f) input to determine X(s), multiply
that X(s) by H(s) to get Y(s), and then inverse Laplace transform Y(s) to
yield the time-domain expression for the output y(t). In practical situa-
tions, however, we usually don’t go through all those analytical steps
because it's the system’s transfer function H(s) in which we're most inter-
ested. Being able to express H(s) mathematically or graph the surface
|H(s)! as a function of s will tell us the two most important properties we
need to know about the system under analysis: Is the system stable, and
if so, what is its frequency response? .

“But wait a minute,” you say. “Equations (6-10) and (6-11) indicate that
we have to know the Y(s) output before we can determine H(s)!" Not
really. All we really need to know is the time-domain differential equation
like that in Eq. (6-6). Next we take the Laplace transform of that differen-
tial equation and rearrange the terms to get the H(s) ratio in the form of
Eq. (6-10). With practice, systems designers can look at a diagram (block,
circuit, mechanical, whatever) of their system and promptly write the
Laplace expression for H(s). Let’s use the concept of the Laplace transfer
function H(s) to determine the stability and frequency response of simple
continuous systems.

6.2.1 Poles and Zeros on the s-plane and Stability

One of the most important characteristics of any system involves the con-
cept of stability. We can think of a system as stable if, given any bounded
input, the output will always be bounded. This sounds like an easy con-
dition to achieve because most systems we encounter in our daily lives
are indeed stable. Nevertheless, we have all experienced instability in a
system containing feedback. Recall the annoying howl when a pubtic
address system’s microphone is placed too close to the loudspeaker. A
sensational example of an unstable system occurred in western
Washington when the first Tacoma Narrows Bridge began oscillating on
the afternoon of November 7th, 1940. Those oscillations, caused by 42
mph winds, grew in amplitude until the bridge destroyed itself. For IIR
digital filters with their built-in feedback, instability would result in a fil-
ter output that’s not at all representative of the filter input; that is, our fil-
ter output samples would not be a filtered version of the input; they’d be
some strange oscillating or pseudorandom values. A situation we’d like to
avoid if we can, right? Let’s see how.

We can determine a continuous system’s stability by examining sev-
eral different examples of H(s) transfer functions associated with linear

The Laplace Transform

time-invariant systems. Assume that we have a system whose Laplace
transfer function is of the form of Eq. (6-10), the coefficients are all real,

and the coefficients b, and a4, are equal to zero. We'll call that Laplace
transfer function H,(s), where

b by/a
H.(s)= 0 = 0 1
1(6) as+ay S+ag/a; (6-12)

Notice that if s = —4,/4,, the denominator in Eq. (6-12) equals zero and
H,(s) would have an infinite magnitude. This s = -4,/4, point on the
s-plane is called a pole, and that pole’s location is shown by the “x” in
Figure 6-7(a). Notice that the pole is located exactly on the negative por-
tion of the real ¢ axis. If the system described by H, were at rest and we
disturbed it with an impulse like x(t) input at time ¢ = 0, its continuous
time-domain y(t) output would be the damped exponential curve
shown in Figure 6-7(b). We can see that H,(s) is stable because its y(t)
output approaches zero as time passes. By the way, the distance of the
pole from the ¢ = 0 axis, a,/a, for our H,(s), gives the decay rate of the
¥(t) impulse response. To illustrate why the term pole is appropriate,
Figure 6-8(b) depicts the three-dimensional surface of | H,(s) | above the
s-plane. Look at Figure 6-8(b) carefully and see how we’ve reoriented
the s-plane axis. This new axis orientation allows us to see how the H,(s)
system’s frequency magnitude response can be determined from its
three-dimensional s-plane surface. If we examine the | H,(s)| surface at
o =0, we get the bold curve in Figure 6-8(b). That bold curve, the inter-
section of the vertical 6 = 0 plane (the jo axis plane) and the | H,(s)! sur-
face, gives us the frequency magnitude response |H (0)! of the
system—and that’s one of the things we're after here. The bold | H ()|

jo y(t)
o =-ag/a, ¥ty = (bo/a‘)e—ao/aﬁ

(a) (b)

Figure 6-7 Descriptions of H,(s): (a) pole located at s= ¢ + jo = -0/, + jOon the
splane; (b) time-domain y () impuise response of the system.,

231

232

Infinite Impulse Response Filters

ay

(a) _ %)

A 1H (@)l
(c) /\
-
0 jo

Figure 6-8 Further depictions of H,(s): (0) pole located at ¢ = -ay/a, on the
splane; (b) 1 H()| surface; (C) curve showing the intersection of the
I Hi(®! surface and the vertical ¢ = 0 plane. This is the conventional
depiction of the | Hy(w)| frequency magnitude response.

curve in Figure 6-8(b) is shown in a more conventional way in Figure
6-8(c). Figures 6-8(b) and 6-8(c) highlight the very important proper‘ty
that the Laplace transform is a more general case of the Fourier
transform because if ¢ = 0, then s = jo. In this case, the | H,(s)| curve for

The Laplace Transform

6 = 0 above the s-plane becomes the IH,(®)!| curve above the jo axis in
Figure 6-8(c).

Another common system transfer function leads to an impulse
response that oscillates. Let’s think about an alternate system whose
Laplace transfer function is of the form of Eq. (6-10), the coefficient b,
equals zero, and the coefficients lead to complex terms when the denom-
inator polynomial is factored. We'll call this particular second-order trans-
fer function H,(s), where

b;s _ (b /ay)s

Hy(s)= = .
B +as+ay 2 +(ay/ay)s+ay/ a

(6-13)

(By the way, when a transfer function has the Laplace variable s in both
the numerator and denominator, the order of the overall function is
defined by the largest exponential order of s in the denominator polyno-
mial. So our H,(s) is a second-order transfer function.) To keep the fol-
lowing equations from becoming too messy, let’s factor its denominator
and rewrite Eq. (6-13) as

As

L= e

(6-14)

where A=b /a, p=p_, + Pimagr and p* = p, . - JPimag (complex conju-
gate of p). Notice that, if s is equal to -p or -p’, one of the polynomial
roots in the denominator of Eq. (6-14) will equal zero, and H,(s) will
have an infinite magnitude. Those two complex poles, shown in Figure
6-9(a), are located off the negative portion of the real & axis. If the H, sys-
tem were at rest and we disturbed it with an impulselike x(t) input at
time t = 0, its continuous time-domain y(t) output would be the damped
sinusoidal curve shown in Figure 6-9(b). We see that H,(s) is stable
because its oscillating y(t) output, like a plucked guitar string,
approaches zero as time increases. Again, the distance of the poles from
the 6 = 0 axis (-p,,,) gives the decay rate of the sinusoidal y(t) impulse
response. Likewise, the distance of the poles from the Jjo =0 axis (:pl.mag)
gives the frequency of the sinusoidal y(t) impulse response. Notice
something new in Figure 6-%(a). When s = 0, the numerator of Eq. (6-14)
is zero, making the transfer function H,(s) equal to zero. Any value of s
where H,(s) = 0 is sometimes of interest and is usually plotted on the s-
plane as the little circle, called a “zero,” shown in Figure 6-9(a). At this
point we're not very interested in knowing exactly what p and p” are in

233

234

Infinfte Impuise Response Filters

¥t ~Proa !
¥it) = 2lAl6 Proai *cos(pimeg ¢ + 6)

T \/ — Time

X *zero” at s = 0

$="Preat _]pimlo

(a) (b)

Figure 6-9 Descriptions of Hy(s): (@) poles located at s = P, + JBimag ON the
splane; (b) time domain y(t) impulse response of the sys?em.

terms of the coefficients in the denominator of Eq. (6-13). However, an
energetic reader could determine the values of p and p* in terms of a,, 4,
and a, by using the following well-known quadratic factorization for-
mula: Given the second-order polynomial f(s) = as? + bs + ¢, then f(s) can
be factored as

2 2
f(S)=asz+bs+c=(s+_211_+ b —/hzc}{s b b2 aac
a

+—- . -
44° 2a 44° } (6-15)

Figure 6-10(b) illustrates the |H,(s)! surface above the s-plane.
Again, the bold |H,(w)| curve in Figure 6-10(b) is shown in the con-
ventional way in Figure 6-10(c) to indicate the frequency magnitude
response of the system described by Eq. (6-13). Although the three-
dimensional surfaces in Figures 6-8(b) and 6-10(b) are informative,
they're also unwieldy and unnecessary. We can determine a system’s
stability merely by looking at the locations of the poles on the two-
dimensional s-plane.

To further illustrate the concept of system stability, Figure 6-11 shows
the s-plane pole locations of several example Laplace transfer functions
and their corresponding time-domain impulse responses. We recognize
Figures 6-11(a) and 6-11(b), from our previous discussion, as indicative
of stable systems. When disturbed from their at-rest condition they
respond and, at some later time, return to that initial condition. The sin-
gle pole location at s = 0 in Figure 6-11(c) is indicative of the 1/s trans-
fer function of a single element of a linear system. In an electrical
system, this 1/s transfer function could be a capacitor that was charged
with an impulse of current, and there’s no discharge path in the circuit.

B

The Laplace Transform

(a)

(b)

|H2 ((1))'

(o)

0 Jo

_

Figure 6-10 Further depictions of Hy(8): (@) poles and zero locations on the

s-plane; (b) FHx(9) | surface; (c) I HXw) | frequency magnitude
response curve.

For a mechanical system, Figure 6-11(c) would describe a kind of spring
that’s compressed with an impulse of force and, for some reason,
remains under compression. Notice, in Figure 6-11(d), that, if an H(s)
transfer function has conjugate poles located exactly on the jo axis

235

236

Infinite iImpulse Response Fiiters

Jo yit)

@

jo
X
(b)

~Y

a¥

©

(d)

<
-
(>

(e)

U]

i - Ise responses:
Figure é-11 Various H(s) pole locations and their ime-domain Impul
¢ (@) single pole at o < 0; (b) conjugate poles at ¢ < 0; (c) single pole
located at ¢ = 0; (d) conjugate poles located at ¢ = 0; (e) single pole
at ¢ > 0; (f) conjugate poles at o > 0.

(6 = 0), the system will go into oscillation when disturbed from its ini-
tial condition. This situation, called conditional stability, happens to
describe the intentional transfer function of electronic oscillat.ors.
Instability is indicated in Figures 6-11(e) and 6-11(f). Here, the poles he to
the right of the jo axis. When disturbed from their initial at-rest condition

The Laplace Transform

Stable Unstable .
region region

N Conditionally stable

Figure 6-12 The Laplace s-plane showing the regions of stability and
instabliity for pole locations for linear continuous systems.

by an impulse input, their outputs grow without bound.' See how the
value of o, the real part of s, for the pole locations is the key here? When
0 <0, the system is well behaved and stable; when ¢ = 0, the system is
conditionally stable; and when ¢ > 0 the system is unstable. So we can
say that, when ¢ is located on the right half of the s-plane, the system is
unstable. We show this characteristic of linear continuous systems in
Figure 6-12. Keep in mind that real-world systems often have more than
two poles, and a system is only as stable as its least stable pole. For a sys-
tem to be stable, all of its transfer-function poles must lie on the left half
of the s-plane.

To consolidate what we’ve learned so far: H(s) is determined by writing
a linear system'’s time-domain differential equation and taking the Laplace
transform of that equation to obtain a Laplace expression in terms of X(s),
Y(s), s, and the system’s coefficients. Next we rearrange the Laplace
expression terms to get the H(s) ratio in the form of Eq. (6-10). (The really
slick part is that we do not have to know what the time-domain x(t) input

* Impulse response testing in a laboratory can be an important part of the system design
process. The difficult part is generating a true impulselike input. If the system is electrical,
for example, although somewhat difficult to implement, the input x(t) impulse would be a
very short duration voltage or current pulse. If, however, the system were mechanical, a
whack with a hammer would suffice as an x(t) impulse input. For digital systems, on the
other hand, an impulse input is easy to generate; it's a single unity-valued sample preceded
and followed by all zero-valued samples.

237

238

Infinite Impulse Response Filters

is to analyze a linear system!) We can get the expression for the continuous
frequency response of a system just by substituting j for s in the H(s) equa-
tion. To determine system stability, the denominator polynomial of H(s) is
factored to find each of its roots. Each root is set equal to zero and solved
for s to find the location of the system poles on the s-plane. Any pole located
to the right of the jo axis on the s-plane will indicate an unstable system.

OK, returning to our original goal of understanding the z-transform,
the process of analyzing IIR filter systems requires us to replace the
Laplace transform with the z-transform and to replace the s-plane with a
z-plane. Let’s introduce the z-transform, determine what this new z-plane
is, discuss the stability of IIR filters, and design and analyze a few simple
IR filters.

6.3 The z-Transform

The z-transform is the discrete-time cousin of the continuous Laplace
transform.t While the Laplace transform is used to simplify the analysis
of continuous differential equations, the z-transform facilitates the analy-
sis of discrete difference equations. Let's define the z-transform and
explore its important characteristics to see how it’s used in analyzing IIR
digital filters.

The z-transform of a discrete sequence h(n), expressed as H(z), is
defined as

H(z)= ih(n)z"" , (6-16)

n=-—oco

where the variable z is complex. Where Eq. (6-3) allowed us to take the
Laplace transform of a continuous signal, the z-transform is performed
on a discrete h(n) sequence, converting that sequence into a continuous
function H(z) of the continuous complex variable z. Similarly, as the func-
tion e is the general form for the solution of linear differential equa-
tions, z7 is the general form for the solution of linear difference
equations. Moreover, as a Laplace function F(s) is a continuous surface

tIn the early 1960s, James Kaiser, after whom the Kaiser window function is named, con-
solidated the theory of digital filters using a mathematical description known as the
z-transform[4,5]. Until that time, the use of the z-transform had generally been restricted to
the field of discrete control systems[6-9].

The z-Transform

above the s-plane, the z-transform function H(z) is a continuous surface
above a z-plane. To whet your appetite, we'll now state that, if H(z) rep-
resents an IIR filter’s z-domain transfer function, evaluating the H(z) sur-
face will give us the filter’s frequency magnitude response, and H(z)'s
pole and zero locations will determine the stability of the filter.

We can determine the frequency response of an IIR digital filter by
expressing z in polar form as z = rei®, where 7 is a magnitude and o is the
angle. In this form, the z-transform equation becomes

H(z)= H(re’®) = Zh(n)(ref‘“)_" = ih(n)r'"(e‘f“’")) (6-17)

n=—o0 n=woco

Equation (6-17) can be interpreted as the Fourier transform of the product
of the original sequence h(n) and the exponential sequence 7", When r
equals one, Eq. (6-17) simplifies to the Fourier transform. Thus on the
z-plane, the contour of the H(z) surface for those values where |z] =1is
the Fourier transform of h(n). If h(n) represents a filter impulse response
sequence, evaluating the H(z) transfer function for Iz| = 1 yields the fre-
quency response of the filter. So where on the z-plane is Iz| = 1? It's a cir-
cle with a radius of one, centered about the z = 0 point. This circle, so
important that it’s been given the name unit circle, is shown in Figure 6-13.
Recall that the jo frequency axis on the continuous Laplace s-plane was
linear and ranged from —e to +eo radians/s. The © frequency axis on the
complex z-plane, however, spans only the range from - to +7 radians.
With this relationship between the j axis on the Laplace s-plane and the
unit circle on the z-plane, we can see that the z-plane frequency axis is

A zimag
At this point
zZ-plan . ’
P e / Z=el
0o=0
®
‘i»
Zreal
At this point,
W=T=-x
Unit circle
L (where 1z} = 1)

Figure 6-13 Unit circle on the complex z-plane.

239

240

Infinite impulse Response Fllters

0= ws/2 =rxfs

Figure 6-14 Mapping of the Laplace s-plane to the z-plane. All frequency values
are in radians/s.

equivalent to coiling the s-plane’s jo axis about the unit circle on the
z-plane as shown in Figure 6-14.

Then, frequency ® on the z-plane, is not a distance along a straight line,
but rather an angle around a circle. With @ in Figure 6-13 being a general
normalized angle in radians ranging from -1 to +7, we can relate @ to an
equivalent f, sampling rate by defining a new frequency variable o, = 27f,
in radians/s. The periodicity of discrete frequency representations, with a
period of @, = 2nf, radians/s or f, Hz, is indicated for the z-plane in Figure
6-14. Where a walk along the jo frequency axis on the s-plane could take
us to infinity in either direction, a trip on the © frequency path on the
z-plane leads us in circles (on the unit circle). Figure 6-14 shows us that
only the -nf, to +nf; radians/s frequency range for o can be accounted for
on the z-plane, and this is another example of the universal periodicity of
the discrete frequency domain. (Of course the —nf, to +nf, radians/s range
corresponds to a cyclic frequency range of f,/2 to +f,/2.) With the
perimeter of the unit circle being z = ef®, later, we'll show exactly how to
substitute e/® for z in a filter’s H(z) transfer function, giving us the filter’s
frequency response.

6.3.1 Poles and Zeros on the z-plane and Stability

Ome of the most important characteristics of the z-plane is that the region
of filter stability is mapped to the inside of the unit circle on the z-plane.
Given the H(z) transfer function of a digital filter, we can examine that
function’s pole locations to determine filter stability. If all poles are
located inside the unit circle, the filter will be stable. On the other hand, if

The z-Transform

(a)

-
n

(b)

=Y

(©

yin

(@

(e)

Figure 6-15 Various H(2) pole locations and their discrete time-domain impulse
responsgs: .(c) single pole inside the unit circle; (b) conjugate poles
quc@d inside the unit circle; (c) conjugate poles located on the
unit circte; (d) single pole outside the unit circle; (e) conjugate
poles located outside the unit circle.

any pole is located outside the unit circle, the filter will be unstable. Figure
6-15 shows the z-plane pole locations of several example z—domaix‘1 trans-
fer functions and their corresponding discrete time-domain impulse
responses. It’s a good idea for the reader to compare the z-plane and
c?1screte-time responses of Figure 6-15 with the s-plane and the continuous
time responses of Figure 6-11. The y(n) outputs in Figures 6-15(d) and

241

242

Infinfte Impulse Response Filters

(e) show examples of how unstable filter outputs increase in amplitude,
as time passes, whenever their x(n) inputs are nonzero. To avoid this sit-
uation, any IR digital filter that we design should have an H (z) transfer
function with all of its individual poles inside the unit circle. Like a chain
that's only as strong as its weakest link, an IIR filter is only as stable as its
least stable pole.

The @, oscillation frequency of the impulse responses in Figures 6-15(c)
and (e) is, of course, proportional to the angle of the conjugate pole pairs
from the z_, axis, or o, radians/s corresponding to f, = @, /2rm Hz.
Because the intersection of the -z, axis and the unit circle, point z = -1,
corresponds to 7 radians (or 7f, radians/s = f,/2 Hz), the ®, angle of n/4
in Figure 6-15 means that f, = f,/8 and our y(n) will have eight samples per
cycle of f,.

6.3.2 Using the z-transform to Analyze IIR Filters

We have one last concept to consider before we can add the z-transform to
our collection of digital signal processing tools. We need to determine what
the time delay operation in Figure 6-3 is relative to the z-transform. To do
this, assume we have a sequence x(n) whose z-transform is X(z) and a
sequence y(n) = x(n-1) whose z-transform is Y(z) as shown in Figure 6-16.
The z-transform of y(n) is, by definition,

Y(z)= iy(n)z'” = ix(n -1z . (6-18)

N=—o0 n=—oo

Now if we let k = n-1, then, Y(z) becomes

Y(z) = ix(k)z“(k”) = ix(k)z"kz'l , (6-19)
k=—oo k=—c0
x(n) yn) =x(n-1)
| Delay [
X(2) Y(2)

Figure 6-16 Output seguence y(n) equalto a unit delayed version of the
input x(n) sequence.

The z-Transform

which we can write as

Y(z)=z71 ix(k)z('k) =z7[X(2)] . (6-20)

=00

Thus, the effect of a single unit of time delay is to multiply the z-transform
by z7..

Interpreting a unit time delay to be equivalent to the z7! operator leads
us to the relationship shown in Figure 6-17, where we can say
X(2)z° = X(z) is the z-transform of x(n), X(z)z™! is the z-transform of x(n)
delayed by one sample, X(z)z2 is the z-transform of x(n) delayed by two
samples, and X(z)z'¥ is the z-transform of x(n) delayed by k samples. So a
transfer function of z* is equivalent to a delay of kt, seconds from the
instant when t = 0, where ¢{_is the period between data samples, or one
over the sample rate. Specifically, t, = 1/f,. Because a delay of one sample
is equivalent to the factor z7!, the unit time delay symbol used in Figures
6-2 and 6-3 is usually indicated by the z! operator.

Let’s pause for a moment and consider where we stand so far. Our
acquaintance with the Laplace transform with its s-plane, the concept of
stability based on H(s) pole locations, the introduction of the z-transform
with its z-plane poles, and the concept of the z! operator signifying a sin-
gle unit of time delay has led us to our goal: the ability to inspect an IIR
filter difference equation or filter structure and immediately write the fil-
ter’s z-domain transfer function H(z). Accordingly, by evaluating an IIR
filter’s H(z) transfer function appropriately, we can determine the filter’s
frequency response and its stability. With those ambitious thoughts in
mind, let’s develop the z-domain equations we need to analyze IIR filters.

Using the relationships of Figure 6-17, we redraw Figure 6-3 as a gen-
eral Mth-order IIR filter using the z! operator as shown in Figure 6-18. (In
hardware, those z7! operations are shift registers holding successive filter

x(n) x(n-1) x(n-2)

X -1 -2 -3 -
z domain ﬂ—i 0 }LZ)Z—LZ-‘ X2z Vo Iﬁz_

Figure 6-17 Correspondence of the delay operation in the time domain
and the z-* operation in the z-domain.

243

244

Infinite Impuilse Response Filters

input and output sample values. When implementing an IIR filter in a
software routine, the z! operation merely indicates sequential memory
locations where input and output sequences are stored.) The IIR filter
structure in Figure 6-18 is often called the Direct Form I structure.

The time-domain difference equation describing the general Mth-order
IIR filter, having N feed forward stages and M feedback stages, in Figure
6-18 is

y(n) = b(0)x(n) + b()x(n—1) + b(2)x(n - 2) + ...+ b(N)x(n~ N)
r +a(Dy(n-D+a2y(n-2)+...+a(My(n- M) . (6-21)

Time domain expression for an Mth-order IIR filter

In the z-domain, that IIR filter’s output can be expressed by

Y(z) = b(0)X(2) + b()X(2)z ™} + B(2)X(2)2 7% + ... + (N)X(2)z N
+a()Y(2)zt +a(Q)Y(2)z 2 + ... +a(M)Y(z)z™ , (6-22)

where Y(z) and X(z) represent the z-transform of y() and x(n). Look Egs.
(6-21) and (6-22) over carefully and see how the unit time delays translate

yin)

' y(n-1)

o]

 y(n-2)

b2) a(@)

am

Figure 6-18 General (Direct Form I structure of an Mth-order IR fitter, hclzvlng
N feed forward stages and M feedback stages, with the z-
operator indicating a unit time delay.

The z-Transform

to negative powers of z in the z-domain expression. A more compact form
for Y(z) is

z-domain expression for an

N M
Mith-order IIR filter: Y(z) = X(z)z b(k)z™* + Y(z)z ak)z™ . (6-23)
k=0 k=1

OK, now we've arrived at the point where we can describe the transfer
function of a general IIR filter. Rearranging Eq. (6-23) to collect like terms,

M N
Y(z){l -y a(k)z'k} =X@2)Y bk)z™* . (6-24)
k=1 k=0

Finally, we define the filter’s z-domain transfer function as Hi (@) =Y(2)/X(2),
where H(z) is given by

N
-k
z-domain transfer function Y(z) 2 b(k)z
of an Mth-order IR filter » H(z) = XG) = 4= .
zZ
1-Y a(kz™ (6-25)
k=1

(Just like Laplace transfer functions, the order of our z-domain transfer
function is defined by the largest exponential order of z in the denominator,
in this case M.) Equation (6-25) tells us all we need to know about an IIR fil-
ter. We can evaluate the denominator of Eq. (6-25) to determine the posi-
tions of the filter’s poles on the z-plane indicating the filter’s stability.

Remember, now, just as the Laplace transfer function H(s) in Eq. (6-9)
was a complex-valued surface on the s-plane, H(z) is a complex-valued
surface above, or below, the z-plane. The intersection of that H(z) surface
and the perimeter of a cylinder representing the z = ¢ unit circle is the fil-
ter’s complex frequency response. This means that substituting ¢/® for z in
Eq. (6-25)'s transfer function gives us the expression for the filter’s Hip(w)
frequency response as

Frequency response of an
Mth-order IIR filter filter
(exponential form): —»

N .
Zb(k)e””“"
=—k0_ (6-26)

M 1
1- 2 a(k)e~

k=1

Hyg ()= H(z)

z=¢/®

245

246

Infinite Impulse Response Fiiters

Let's alter the form of Eq. (6-26) to obtain more useful expressions for
Hyg(®)'s frequency magnitude and phase responses. Because a typical IR
filter frequency response Hyp(®) is the ratio of two complex functions, we
can express Hyp() in its equivalent rectangular form as

N
z b(k) - [cos(kw) - j sin(kw)]
Hyg (@) = —=5% , 6-27)
1- 2 a(k) - [cos(kw) - jsin(k)]
k=1

or

Frequency response
of an Mth-order IIR
filter (rectangular

N N
Y bk)- cos(ke) ~ j3 blk)- sin(ke)
k=0

form): — Hyg(w)= k=(I)VI 5
1= a(k)- cos(ka) + jZ a(k) - sin(ko)
k=1 k=1 (6-28)

It's usually easier and, certainly, more useful, to consider the complex
frequency response expression in terms of its magnitude and phase. Let’s
do this by representing the numerator and denominator in Eq. (6-28) as
two complex functions of radian frequency . Calling the numerator of
Eq. (6-28) Num{w), then,

Num(w) = Num_,,(®) + jNumimag(a)) , (6-29)
where
N
Nttty (@) = Y b(k) - cos(ka) ,
k=0
and
N
Nttt (@) = ‘2 b(k)- sin(ko) . (6-30)
k=0

Likewise, the denominator in Eq. (6-28) can be expressed as

Den(w) = Den_, (@) + jDenimg(m) , (6-31)

The z-Transform

where
M
Denreal ((D) =1~ a(k) . COS(k(D) ,
k=1
and
M
Dty (@) = Y a(k)-sin(ke) . (6-32)
k=1

These Num(o) and Den(w) definitions allow us to represent Hp(®) in the
more simple forms of

Num(a)) _ Numreal ((O) + jNumimag ((D)

H = -
IR ((t)) Den(ﬂ)) D €M real ((0) +] D enimag (0)) (6 33)
Do 2o (6-33")

Given the form in Eq. (6-33) and the rules for dividing one complex num-
ber by another, provided by Egs. (A-2) and (A-19') in Appendix A, the fre-
quency magnitude response of a general IIR filter is

| Num(@)| | INuT g (@] + [Nt ()]

| Hyg(w) 1= -
| Den(w)| \/ [Dett oy (@)] ty [Denimag (w)] ’

(6-34)

Furthermore, the filter’s phase response @;;(®) is the phase of the numer-
ator minus the phase of the denominator, or

IR (©) = B Ny (©) — @ pen ()

= tan‘l(——Numimag (m)) —tan™ (———De""““g(m)j . (6-35)

Numreal (w) Denreal ((J))

24}

248

Infinite Impuise Response Filters

To reiterate our intent here, we’ve gone through the above algebraic gym-
nastics to develop expressions for an IIR filter’s frequency magnitude
response |Hjp(®)| and phase response () in terms of the filter coef-
ficients in Egs. (6-30) and (6-32). Shortly, we'll use these expressions to
analyze an actual IIR filter.

Pausing a moment to gather our thoughts, we realize that we can use
Egs. (6-34) and (6-35) to compute the magnitude and phase response of
IIR filters as a function of the frequency . And again, just what is ©? It's
the normalized radian frequency represented by the angle around the unit
circle in Figure 6-13, having a range of -1 < ® < +. In terms of a discrete
sampling frequency o, measured in radians/s, from Figure 6-14, we see
that o covers the range -,/2 < @ £ +w,/2. In terms of our old friend f, Hz,
Egs. (6-34) and (6-35) apply over the equivalent frequency range of —f,/2
to +£,/2 Hz. So, for example, if digital data is arriving at the filter’s input
at a rate of f, = 1000 samples/s, we could use Eq. (6-34) to plot the filter’s
frequency magnitude response over the frequency range of -500 Hz to
+500 Hz.

Although the equations describing the transfer function H(0), its
magnitude response | Hjz(®)!, and phase response ey(®) look some-
what complicated at first glance, let’s illustrate their simplicity and utility
by analyzing the simple second-order low-pass IIR filter in Figure 6-19
whose positive cutoff frequency is w,/10. By inspection, we can write the
filter’s time-domain difference equation as

0.0605 -0.436

Figure 6-19 Second-order low-pass IR fiiter example.

The z-Transform

y(n) = 0.0605 - x(n) +0.121- x(n— 1) + 0.0605 - x(n — 2)
+1.194- y(n-1)-0.436-y(n-2) , (6-36)

or the z-domain expression as

Y(z) = 0.0605- X(2) +0.121- X(2)z™! +0.0605 - X(z)z 2
+1.194-Y(z)z - 0.436- Y(2)z2 . (6-37)

Using Eq. (6-25), we write the z-domain transfer function Hi (z) as

Hz) = Y(z) _ 0.0605-z° +0.121- 27 +0.0605 - 22
X(z) 1-1.194-271 +0.436- 272

(6-38)

Replacing z with ei®, we see that the frequency response of our example
IIR filter is

H 0.0605-¢7/%% 1+.0.121.¢7/1® 40,0605 . ~/2®
IIR ((l)) = ~ilo 73
1-1.194-¢71% 4 0.436. 7720

(6-39)

We're almost there. Remembering Euler’s equations and that cos(0) = 1
and sin(0) = 0, we can write the rectangular form of H(w) as

Hig (@)= 0.0605 +0.121 - cos(1w) + 0.0605 - cos(2w) ~ j10.121 - sin(1w) + 0.0605 - sin(20)]
1-1.194 - cos(1w) + 0.436 - cos(2w) + j11.194 - sin(10) - 0.436 - sin(2w)]

. (6-40)

Equation (6-40) is what we're after here, and if we calculate its magnitude
over the frequency range of - < < &, we get the | Hyp(®)| shown as the
solid curve in Figure 6-20(a). For comparison purposes we also show a 5-
tap low-pass FIR filter magnitude response in Figure 6-20(a). Although
both filters require the same computational workload, five multiplications
per filter output sample, the low-pass IIR filter has the superior frequency
magnitude response. Notice the steeper roll-off and lower sidelobes of the
IIR filter relative to the FIR filter.!

tTo make this IIR and FIR filter comparison valid, the coefficients used for both filters were
chosen so that each filter would approximate the ideal low-pass frequency response shown
in Figure 5-17(a).

245

250

Infinite Impulse Response Filters

P |HyR ()] for the IR filter

{Heip (@) for a 5-tap FIR filter

N\

. ST
@ oetld o=m/2 o=t O
(5/8) (/4 {fs/2)
Degrees
180
(fs4) (fs/2)
O o
(b} 4 . § e
\\\i

-
8
S /

Ok () for a 5-tap FIR fitter

Figure 6-20 Frequency responses of the example IR filter (solid line) in Figure &-19
and a 5-tap FR filter (dashed line): (@) magnitude responses; (b) phase
responses.

A word of warning here. It’s easy to reverse some of the signs for the
terms in the denominator of Eq. (6-40), so be careful if you attempt these
calculations at home. Some authors avoid this problem by showing the
a(k) coefficients in Figure 6-18 as negative values, so that the summation
in the denominator of Eq. (6-25) is always positive. Moreover, some com-
mercial software IIR design routines provide a(k) coefficients whose signs
must be reversed before they can be applied to the IIR structure in Figure
6-18. (If, while using software routines to design or analyze IIR filters,
your results are very strange or unexpected, the first thing to do is reverse
the signs of the a(k) coefficients and see if that doesn’t solve the problem.)

The solid curve in Figure 6-20(b) is our IIR filter’s g;z(w) phase
response. Notice its nonlinearity relative to the FIR filter’s phase
response. (Remember now, we're only interested in the filter p}}ase
responses over the low-pass filters’ passband. So those phase discontinu-
ities for the FIR filter are of no consequence.) Phase nonlinearity is inher-
ent in IIR filters and, based on the ill effects of nonlinear phase introduced
in the group delay discussion of Section 5.8, we must carefully consider
its implications whenever we decide to use an IIR filter instead of an FIR

The z-Transform

filter in any given application. The question any filter designer must ask
and answer, is “How much phase distortion can I tolerate to realize the
benefits of the reduced computational load and high data rates afforded
by IIR filters?”

We've arrived at an appropriate point to illustrate an important rela-
tionship between IIR and FIR filters. We can use our IIR analysis equa-
tions to characterize FIR filters. Notice that, if there were no feedback
coefficients in Figure 6-18, equivalent to setting a(1) through a(M) in Eq.
(6-21) all to zero, we’d have an N-tap FIR filter. This simplifies Eqs. (6-25)
through (6-28) because their denominators would be equal to one. In
addition, Den(w) in Eq. (6-33) and | Den(o)| in Eq. (6-34) would both be
unity, and e,,,(w) would be zero in Eq. (6-35). Thus, for an FIR filter, with
the a(k) coefficients in Figure 6-18 being all zeros, we can rewrite Egs.
(6-26) and (6-28) as

Frequency response of an
N-stage FIR filter
(exponential form): —

N
Hyg(0) =Y bk)e ™, (6-41)
k=0

and

Frequency response
of an N-stage FIR

N N
filter (rectangular Hpp(®) = z b(k) - cos(kw) - j 2 b(k)-sin(kw) . (6-42)
k=0 k=0

form): -

Just as in Egs. (6-34) and (6-35), the ® in Egs. (6-41) and (6-42), is the
normalized radian frequency represented by the angle around the unit
circle in Figure 6-13, having a range of -t < @ < +m, corresponding to the
equivalent frequency range of /2 to +f./2 Hz.

6.3.3 An Improved IIR Filter Structure

The structure of the IIR filter in Figure 6-18 can be converted to a more
efficient and popular form. It’s easy to explore this idea by assuming that
there are an equal number of feed forward and feedback stages, letting
M = N in Figure 6-18 and thinking of the feed forward and feedback
stages as two separate filters. Specifically, the b(k) coefficients are used to
calculate the sequence d(n) from x(n), and the a(k) coefficients are used to
calculate the filter output y(n) sequence from d(n). Because the two halves
of the filter are both linear, we can swap them, as shown in Figure 6-21(a),
with no change in the final y(n) output. Of course, after this reorientation,

251

252

Infinite Impulse Response Filters

a2 . 2)

an

(a) ’ (b)

: forward and feedback
Figure 6-21 Rearranged Nth-order IR filter structure: (o) feed ‘ '
¢ paths swapped from the structure in Figure 6-3; (b) final simpiified Direct
Form li filter structure.

a new sequence that we'll call g(n) is generated. The tw? ident'ical délay
paths in Figure 6-21(a) provide the motivation for this reorientation.
Because the sequence g(n) is being shifted down along bo'fh delay pa’ths
in Figure 6-21(a), we can eliminate one of the paths and arrive at t%xe sim-
plified Direct Form II filter structure shown in Figure 6-21(b). Notice that
eliminating a delay path simplifies the structure, so that a hardwa're
implementation would need only half the number of delay storage regis-
ters required by the original IIR structure in Figure 6-18. .

Although the filter structure depicted in Figure 6-21(b) is very popular,
in the literature we'll also encounter the equivalent representation shov_vn
in Figure 6-22. It's interesting to compare Figure 6-22’. s ‘IIR struct‘ure 'w1th
the FIR structure in Figure 6-2(a). If the feedback coefficients a(k) m‘Flgure
6-22 were all zeros, for example, then this IIR filter would bg e':qulvalent
to the FIR filter in Figure 6-2(a) as long as the b(k) IIR coeff‘laen'ts were
equal to the h(k) FIR coefficients. It's very important to keep in mind tk}at
Eq. (6-21), associated with the IR structure in Figure 6-18, does not explic-
itly describe the filter structures in Figures 6-21(b) and 6-22. However, the
frequency-domain expressions in Egs. (6-25) through (6-?)5) can be used to
analyze the performance of the popular filter structures in Figures 6-21(b)
and 6-22.

The z-Transform

gin-Ny

Figure 6-22 Alternate depiction of the IR fitter Direct Form Il structure in Figure 6-21(b).

By the way, because of the feedback nature of IIR filters, they’re some-
times referred to as recursive filters. Similarly, FIR filters are often called
nonrecursive filters. (The term recursive originally signified filters with
both poles and zeros on the complex z-plane whereas nonrecursive signi-
fied filters with only zeros on the z-plane.) We'll avoid the terms recursive
and nonrecursive, however, because it's been shown that filters with only
zeros can be designed with recursive structures and that filters with both
poles and zeros on the z-plane can be designed with nonrecursive struc-
tures[10]. So the terms recursive and nonrecursive more correctly apply to
the structures used to implement a digital filter, and the terms IIR and FIR
better describe whether a filter has only zeros (FIR) or both poles and
zeros (IIR) on the z-plane[11].

Now that we have a feeling for the performance and implementation
structures of IIR filters, let’s briefly introduce three filter design tech-
niques. These IIR design methods go by the impressive names of impulse
invariance, bilinear transform, and optimized methods. The first two methods
use analytical techniques to design digital filters that approximate con-
tinuous analog filters.! The impulse invariance and bilinear transform
IIR design methods both start with a closed-form Laplace equation
describing the desired analog filter and yield z-transform expressions for
the approximating IIR digital filter. The filter designer then solves the
z-transform equations to obtain the a(k) and b(k) coefficients for use in the
IR structures in Figures 6-21(b) or 6-22. Because analog filter design

tDuetoits popularity, throughout the rest of this chapter we'll use the phrase analog filter to

designate those filters made up of resistors, capacitors, and inductors, designed to operate
on continuous signals.

25

254

Infinite Impuise Response Filters

methods are very well understood, designers can take advantage of an
abundant variety of analog filter design techniques to design, say, a
Butterworth filter with its very flat passband response or, perhaps, go
with a Chebyshev filter with its fluctuating passband response and
sharper passband-to-stopband cutoff characteristics.

6.4 Impuise Invariance IR Filter Design Method

The impulse invariance method of IIR filter design is based upon the
notion that we can design a discrete filter whose time-domain impulse
response is a sampled version of the impulse response of a continuous
analog filter. If that analog filter (often called the prototype filter) has some
desired frequency response, then our IIR filter will yield a discrete
approximation of that desired response. The impulse response equiva-
lence of this design method is depicted in Figure 6-23 where we use the
conventional notation of § to represent an impulse function and () is
the analog filter’s impulse response. We use the subscript “c” in Figure
6-23(a) to emphasize the continuous nature of the analog filter. Figure
6-23(Db) illustrates the definition of the discrete filter’s impulse response:
the filter’s time-domain output sequence when the input is a single
unity-valued sample (impulse) preceded and followed by all zero-valued
samples. Our goal is to design a digital filter whose impulse response is a
sampled version of the analog filter’s continuous impulse response. Implied
in the correspondence of the continuous and discrete impulse responses is
the property that we can map each pole on the s-plane for the analog filter’s

| a

o Analog \/ ConEuaus
@ | Filter fme

[E——
H(s) Impulse response
output = h (1)

TR T . -

IR Digital LI e
(b) Filter time
=5(n) ——) L
X = () H(2) Impulse response

output = h(n) = hy(nts)

Figure 6-23 Impuise invariance design equivalence of (a) analog filter continuous
impulse response; (b) digital filter discrete impulse response.

Impuilse Invariance IR Filter Design Method

H (s) transfer function to a pole on the z-plane for the discrete IIR filter’s
H(z) transfer function. What designers have found is that the impulse
invariance method does yield useful IIR filters, as long as the sampling
rate is high relative to the bandwidth of the signal to be filtered. In other
words, IIR filters designed using the impulse invariance method are sus-
ceptible to aliasing problems because practical analog filters cannot be
perfectly band-limited. Aliasing will occur in an IIR filter’s frequency
response as shown in Figure 6-24.

From what we’ve learned in Chapter 2 about the spectral replicating
effects of sampling, if Figure 6-4(a) is the spectrum of the continuous k (B
impulse response, then the spectrum of the discrete h J(nt) sample
sequence is the replicated spectra in Figure 6-24(b).

A4 (o) "
(a) -
0 [
[
b /\ 1Hyz (@) /
(b)
-2n ""5 0 1': 2:: o
("2fs) (‘fs) (fs) <2fs)
Final 1Hyg(w)!

@

-2n

9
2f) 1) (%) (21)
]

Figure 6-24 Aliasing in the impulse invariance design method: () profotype
analog filter magnitude response; (b) replicated magnitude responses
where H,(w) is the discrete Fourier fransform of h(n) = h.(nt): (©
potenttal resultant IR filter magnitude response with dliasing effects.

S4q

255

256

Infinite Impulse Response Filters

In Figure 6-24(c) we show the possible effect of aliasing where the
dashed curve is a desired Hjg(w) frequency magnitude response.
However, the actual frequency magnitude response, indicated by the
solid curve, can occur when we use the impulse invariance design
method. For this reason, we prefer to make the sample frequency f, as
large as possible to minimize the overlap between the primary frequency
response curve and its replicated images spaced at multiples of f, Hz. To
see how aliasing can affect IIR filters designed with this method, let’s list
the necessary impulse invariance design steps and then go through a fil-
ter design example.

There are two different methods for designing IIR filters using impulse
invariance. The first method, which we’ll call Method 1, requires that an
inverse Laplace transform as well as a z-transform be performed[12,13].
The second impulse invariance design technique, Method 2, uses a direct
substitution process to avoid the inverse Laplace and z-transformations at
the expense of needing partial fraction expansion algebra necessary to
handle polynomials[14-17]. Both of these methods seem complicated
when described in words, but they’re really not as difficult as they sound.
Let’s compare the two methods by listing the steps required for each of
them. The impulse invariance design Method 1 goes like this:

Method 1, Step 1: Design (or have someone design for you) a prototype
analog filter with the desired frequency response.t
The result of this step is a continuous Laplace trans-
fer function H (s) expressed as the ratio of two poly-
nomials, such as,

N
2 b(k)s*
BN)s™ +b(N - 1)sN 1+ ..+ b(D)s +b(0) _ 1o
He8) = T =15 5 7 a3 7a(0) i o (6-43)
k=0

which is the general form of Eq. (6-10) with N < M,
and a(k) and b(k) are constants.

Method 1, Step 2: Determine the analog filter’s continuous time-
domain impulse response h (t) from the H,(s) Laplace

tIna low-pass filter design, for example, the filter type (Chebyshev, Butterworth, elliptic), fil-
ter order (number of poles), and the cutoff frequency are parameters to be defined in this step.

Impul._s'e Invariance iR Filter Design Method

transfer function. I hope, this can be done using
'Laplace tables as opposed to actually evaluating an
inverse Laplace transform equation.

Method 1, Step 3: Determine the digital filter’s sampling frequency f,
and calculate the sample period as f = 1/f, The }s‘
sampling rate is chosen based on the absolute fref
quency, in Hz, of the prototype analog filter. Because
of the aliasing problems associated with this impulse
invariance design method, later, we’ll see why f
should be made as large as practical. ’

Method 1, Step 4: Find the z-transform of the continuous h(t) to obtain
the IIR filter’s z-domain transfer function H(z) in the
form of a ratio of polynomials in z.

Method 1, Step 5: Substitute the value (not the variable) t, for the con-
tinuous variable ¢ in the H(z) transfer function
obtained in Step 4. In performing this step, we are
ensuring, as in Figure 6-23, that the IIR filter’s dis-
crete h(n) impulse response is a sampled version of
the continuous filter’s h(t) impulse response so that
h(n) = h(nt), for0<n < oo,

Method 1, Step 6: Our H(z) from Step 5 will now be of the general form

-k
H(z) < B2 + BN - 12"MD 4 b1z 4 1(0) _ ok

a(M)z™Me a(M - 1)z ™M-D)T a(0)

=l M=

. (6-44)
1-Y a(k)z™*
1

Eoad
)

Because the process of sampling the continuous
impulse response results in a digital filter frequency
response that’s scaled by a factor of 1/ t, many filter
designers find it appropriate to include the £. factor in
Eq. (6-44). So we can rewrite Eq. (6-44) as ’

N
£y bik)z™*

Hez)= & - ks . (649)
X 1- a(k)z
k=1

257

258 Infinite Impulse Response Filters Impuise Invariance IIR Fitter Design Method 259

Incorporating the value of ¢, in Eq. (6-45), then,
makes the IIR filter time-response scaling indepen- M-pole analog prototype fiter] -
dent of the sampling rate, and the discrete filter will x(t) | & N)
have the same gain as the prototype analog filter.! - gb(k)sk >_as
o
Method 1, Step 7: Because Eq. (6-44) is in the form of Eq. (6-25), by partial ik
inspection, we can express the filter’s time-domain on expand Msinal ,]
difference equation in the general form of Eq. (6-21) as shalepole ;:scme fiters
s/-:}.v1 Perform 1= gPg
Xt substitution
y(n) = K0)x(n) + b(Dx(n-1) + b(2)x(n - 2) +...+ b(N)x(n - N) A2] 07 vt d> A | [k ¥(n)
+ay(n -1 +a@y(n-2)+...+a(M)y(n-M) . (6-46) s P | 1~ e:"z'-z-“ /e
Choosing to incorporate t_, as in Eq. (6-45), to make Sf‘;’k _'::‘t -
the digital filter’s gain equal to the prototype analog M single-pole analog fitters : —': =
filter’s gain, by multiplying the b(k) coefficients by Algebraically combine
the sample period ¢, leads to an IIR filter time-
domain expression of the form - -
LN > bRk Za(k)z-k_y_(ﬂ
y(n) =t - [b(0)x(n) + b(1)x(n - 1) + b(2)x(n - 2) +...+ B(N)x(n - N)] A:pol ApT— n?n P
+aDy(n-1)+ a(2)y(n 2)+...+ a(M)y(n - M). (6-47) Figure 6-25 Mathematical flow of the Impulse invariance design Method 2.
Notice how the signs changed for the a(k) coeffi-) _
cients from Eqgs. (6-44) and (6-45) to Eqs. (6-46) and The impulse invariance Design Method 2, also called the standard
(6-47). These sign changes always seem to cause z-transform method, takes a different approach. It mathematically parti-
problems for beginners, so wa tch out. Also, keep in tions the prototyPe analog filter into multiple single-pole continuous filters
mind that the time-domain expressions in Eq. and then .approx1mat<'es each one of those by a single-pole digital filter. The
(6-46) and Eq. (6-47) apply only to the filter struc- Is&t of M single-pole dlgital' filters is then algebraically combined to form an
ture in Figure 6-18. The a(k) and b(k), or t, - b(k), coef- d"POIE, A'/Ith-ordered. IIR jfﬂte.r. This process of breaking the analog filter to
ficients, however, can be applied to the improved 2lscrete filter approximation into manageable pieces is shown in Figure 6-
IR structure shown in Figure 6-22 to complete our 5. .The steps necessary to perform an impulse invariance Method 2
design. design are
Before we go through an actual example of this design process, let’s dis- Method 2, Step 1: Obtain the Laplace transfer function H,(s) for the pro-
cuss the other impulse invariance design method. totype analog filter in the form of Eq. (6-43). (Same as
Method 1, Step 1.)

Method 2, Step 2: i ;
* Some authors have chosen to include the , factor in the discrete i(n) impulse response in 7 Step Select an ap propriate sampling frequencyfs and cal-
the above Step 4; that is, make h(n) = ¢ 1 (nt) [14, 18]. The final result of this, of course, is the culate the sample period as t, = 1/f, (Same as
same as that obtained by including t, as described in Step 5. Method 1, Step 3)

260 Infinite Impulse Response Filters Impulse Invariance IIR Filter Design Method 261
Method 2, Step 3: Express the analog filter’s Laplace transfer function Keep in mind that the above H(z) is not a function of
H (s) as the sum of single-pole filters. This requires us time. The ¢, factor in Eq. (6-51) is a constant equal to
toc use partial fraction expansion methods to express the discrete-time sample period.
the ratio of polynomials in Eq. (6-43) in the form of Method 2, Step 5: Calculate the z-domain transfer function of the sum

of the M single-pole digital filters in the form of a
_ BN)sN +B(N =1)sN ! +...+ B(1)s + b(0)

H ratio of two polynomials in z. Because the H(z) in
s)= a(M)sM + a(M-1)sM1 + ... + a(1)s + a(0) Eq. (6-51) will be a series of fractions, we’'ll have to
combine those fractions over a common denomina-
tor to get a single ratio of polynomials in the famil-
M
= A _ A + Ay ..+ Au , (6-48) iar form of
=it Pe StPL St S+Pm
N
where the individual A, factors are constants and the z b(k)z~*
kth pole is located at —p, on the s-plane. We'll denote H(z)= Y(z) - k=(1)u) (6-52)
the kth single-pole analog filter as H,(s), or X(2) 1- Z a(k)z™*
k=1
Hi(s)= A (6-49)
5+ Pk Method 2, Step 6: Just as in Method 1 Step 6, by inspection, we can
. express thé filtér’s time-domain equation in the gen-
Method 2, Step 4: Substitute 1 — e Pz for s + p, in Eq. (6-48). This eral form of

mapping of each H,(s) pole, located at s = —p, on the
s-plane, to the z = ¢P: location on the z-plane is how

imate the impulse response of each single- Y(m) = b(0)x(m) + b(1)x(n — 1) + b(2)x(n - 2) +... + B(N)x(n - N)
we approximate

pole analog filter by a single-pole digital filter. (The +a)y(n-1)+ayn-2)+...+ aM)y(n-M) . (6-53)
reader can find the derivation of this 1 — e Pz sub-
stitution, illustrated in our Figure 6-25, in references Again, notice the a(k) coefficient sign changes from
[14] through [16].) So, the kth analog single-pole filter Eq. (6-52) to Eq. (6-53). As described in Method 1
H,(s) is approximated by a single-pole digital filter Steps 6 and 7, if we choose to make the digital filter’s
whose z-domain transfer function is gain equal to the prototype analog filters gain by
multiplying the b(k) coefficients by the sample period
Ay . t,, then the IIR filter’s time-domain expression will be
Hl@) =T - (6-50) in the form

The final combined discrete filter transfer function y(n) =t - [b(0)x(n) + b(1)x(n—1) + b(2)x(n~2)+...+ b(N)x(n- N)]

H(z) is the sum of the single-poled discrete filters, or +a(l)y(n-1)+a(2y(n-2) +... + Myy(n-M) , (6-54)
M M
A - ielding a final H(z) z-domain transf i
H(z)= 2 Hy(z)= z 1-e"’:‘5z‘1) (6-51) yielding a (z) z-domain transfer function of

k=1 k=1

262

Infinite Impuise Response Filters

N
t.- Y bk)z*
) ; : (6-54)

X@ 1- Y ak)z™*
=1

H(z)=

S

x

Finally, we can implement the improved IIR structure
shown in Figure 6-22 using the a(k) and b(k) coeffi-
cients from Eq. (6-53) or the a(k) and ¢, b(k) coeffi-
cients from Eq. (6-54).

To provide a more meaningful comparison between the two impulse
invariance design methods, let’s dive in and go through an IIR filter
design example using both methods.

6.4.1 Impuise Invariance Design Method 1 Example

Assume that we need to design an IR filter that approximates a second-
order Chebyshev prototype analog low-pass filter whose passband ripple
is 1 dB. Our f, sampling rate is 100 Hz (t, = 0.01), and the filter’s 1 dB cut-
off frequency is 20 Hz. Our prototype analog filter will have a frequency
magnitude response like that shown in Figure 6-26.

Given the above filter requirements, assume that the analog prototype
filter design effort results in the H (s) Laplace transfer function of

17410.145

7 . (6-55)
s2 +137.94536s + 17410.145

H.(s)=

1t’s the transfer function in Eq. (6-55) that we intend to approximate with
our discrete IIR filter. To find the analog filter’s impulse response, we’'d

} 1Hg (P!

0dB 4 —;
N\ s

4 -

0 20 Hz 50 Hz Freq
(fs/2)

Figure 6-26 Frequency magnitude response of the example prototype
analog fitter.

Impuise Invariance IR Filter Design Method

likg to get H (s) into a form that allows us to use Laplace transform tables
to ﬁ'nd h.(£). Searching through systems analysis textbooks we find the fol-
lowing Laplace transform pair:

X(s), Laplace transform of x(t): x(t):
Aw —at .
m Ae -sin{wt) . (6-56)

Qur intent, then, is to modify Eq. (6-55) to get it into the form on the left
side of'Eq. (6-56). We do this by realizing that the Laplace transform
expression in Eq. (6-56) can be rewritten as

Ao _ Aw
2 - .
(s+a)y+o s2+2as5+02+m2

(6-57)

If we set Eq. (6-55) equal to the right side of Eq. (6-57), we can solve for A
a, and @. Doing that, ’

17410145 A
H.(s)= -)
T $?4137.945365+17410.145 2 +2as+ 021 | 008

Solving Eq. (6-58) for A, 0, and ®, we first find

o= 137.94536

o =68.972680 ; (6-59)
o? +@? =17410.145 , (6-60)
SO
® =17410.145— 02 =112.485173 ; (6-61)
and

A

17410.
= % =154.77724 .

(6-62)

OK, we can now express H «(5) in the desired form of the left side of Eq.
(6-57) as

263

264

Infinite impulse Response Filters

(15477724)(112485173) (663)
(s+68.972680)* +(112.485173)%

H (s)=

Using the Laplace transform pair in Eq. (6-56), the time-domain impulse
response of the prototype analog filter becomes

h(t) = Ae™ - sin(ot) = 154.77724¢ 597268 5in(112.485173¢) . (6-64)

OK, we're ready to perform Method 1, Step 4, to determine the discrete
IR filter’s z-domain transfer function H(z) by performing the z-transform
of 1 (t). Again, scanning through digital signal processing textbqoks ora
good math reference book, we find the following z-transform pair where
the time-domain expression is in the same form as Eq. (6-64)'s h(t)
impulse response:

x(t): X(z), z - transform of x(t) :
Ce™ .sin{m#)z! i (6:65)
1-2[e™*! . cos(wt)]z ! + 7242~

Ce™™ . sin(wt)

Remember now, the o and o in Eq. (6-65) are generic and are not related
to the o and @ values in Eq. (6-59) and Eq. (6-61). Substituting the con-
stants from Eq. (6-64) into the right side of Eq. (6-65), we get the
z-transform of the IIR filter as

154.77724¢%8972680¢ , 5in(112.485173¢)z !
Hez)= 1-2[e 758972680t , :55(112.485173¢)]z ! + ¢ 2'68972680¢ ;-2 (6-66)

Performing Method 1, Step 5, we substitute the t_ value of 0.01 for th('-:‘ con-
tinuous variable t in Eq. (6-66), yielding the final H(z) transfer function of

154.77724¢889726800.01 5i(112 485173 0.01)z "
—2[08972680001, 16(112.485173 - 0.01)]z ! + ¢ 268972680001 -2

H(z)= I

154.77724¢ 068972680 , in(1.12485173)z !
T 1 2[e OSTI(1 12485173)z) 4 ¢ 200200,

_Y(@) 70.059517z~ _
" X(z) 1-0.43278805z71 +0.251716052~2 (6-67)

Impulse Invariance IR Filter Design Method

OK, hang in there, we're almost finished. Here are the final steps of
Method 1. Because of the transfer function H(z) = Y(2)/ X(z), we can cross-
multiply the denominators to rewrite the bottom line of Eq. (6-67) as

¥Y(z)-(1-0.432788052 7 +0.2517160522) = X(z) (70.059517z71) |

or
Y(2)=70.059517 - X(2)2™" +0.43278805- Y(z)z™ - 025171605 Y (2)z 2, (6-68)

By inspection of Eq. (6-68), we can now get the time-domain expression
for our IIR filter. Performing Method 1, Steps 6 and 7, we multiply the
x(n-1) coefficient by the sample period value of t; = 0.01 to allow for
proper scaling as

¥(n)=0.01-70.059517 - x(n - 1) +0.43278805 - y(n — 1) ~ 0.25171605 - y(n-2)
=0.70059517 - x(n - 1) + 0.43278805 - ¥(n-1)-0.25171605- y(n - 2) , (6-69)

and there we (finally) are. The coefficients from Eq. (6-69) are what we use
in implementing the improved IIR structure shown in Figure 6-22 to
approximate the original second-order Chebyshev analog low-pass filter.
Let’s see if we get the same result if we use the impulse invariance
design Method 2 to approximate the example prototype analog filter.

6.4.2 Impuise Invariance Design Method 2 Example

Given the original prototype filter’s Laplace transfer function as

17410.145
HC (S) = 2 I
§° +137.945365 + 17410.145

(6-70)

and the value of ¢ = 0.01 for the sample period, we're ready to proceed
with Method 2s Step 3. To express H(s) as the sum of single-pole filters,
we'll have to factor the denominator of Eq. (6-70) and use partial fraction
expansion methods. For convenience, let’s start by replacing the constants
in Eq. (6-70) with variables in the form of

c

H.(s)= ——~1——
«(5) s +bs+c (6-71)

265

266

Infinfte Impuise Response Filters

where b = 137.94536, and ¢ = 17410.145. Next, using Eq. (6-15) witha =1,
we can factor the quadratic denominator of Eq. (6-71) into

H(9)= : : (©-72)

b |¥*-4c b |b?-4c
s+—+ Is+=—-
2 4 2 4

If we substitute the values for b and ¢ in Eq. (6-72), we'll find that the
quantity under the radical sign is negative. This means that the factors in
the denominator of Eq. (6-72) are complex. Because we have lots of alge-
bra ahead of us, let’s replace the radicals in Eq. (6-72) with the imaginary
term jR, where j = V-1 and R = | (b>~4c)/41, such that

i c 6-73
H(s) (s+b/2+jR)(s+b/2~jR) -

OK, partial fraction expansion methods allow us to partition Eq. (6-73)
into two separate fractions of the form '

c

He(s)= (s+b/2+R)(s+b/2—R)

= K + K
(s+b/2+jR) (s+b/2—jR)’

(6-74)

where the K, constant can be found to be equal to jc/2R and constant K,
is the complex conjugate of K, or K, = —jc/2R. (To learn the details of par-
tial fraction expansion methods, the interested reader should investigate
standard college algebra or engineering mathematics textbooks.) Thus,
H (s) can be of the form in Eq. (6-48) or

(6-75)

_ je/2R -jc/2R
H°(S)“(s+b/2+jR)+(s+b/2—jR) '

We can see from Eq. (6-75) that our second-order prototype filter has two
poles, one located at p; = —b/2 - jR and the other at p, = -b/2 + jR. We're
now ready to map those two poles from the s-plane to the z-plane as
called out in Method 2, Step 4. Making our 1 - e P¢:z~} substitution for the
s +p, terms in Eq. (6-75), we have the following expression for the
z-domain single-pole digital filters,

Impuise invariance IR Filter Design Method

H(z)= 1 je/2R —jc/2R (6-76)

- +
0 p 6/ 3= .
e (/2+]R)t,z 1 1-¢ /2 /R)tsz—-l

Our objective in Method 2, Step 5 is to massage Eq. (6-76) into the form of
Eq. (6-52), so that we can determine the [IR filter’s feed forward and feed-

back coefficients. Putting both fractions in Eq. (6-76) over a common
denominator gives us

H(z)= (je/2R) (1 - e /2R 51y _ (e / 2R) (1~ -0/ 241,)
(1- ¢~ @72+ ;1)(1— e ®7 2R,) . (677

Collecting like terms in the numerator and multiplying out the denomi-
nator gives us

/ 2R) (1 _ e—(b/Z—jR)ts Z'-1+ e—(b/2+jR)l, z—l)
_ e-(b/2—jR)t, z e—(b/2+jR)t

(e
H(z)=
@) 1 iz etz (678)

Factoring the exponentials and collecting like terms of powers of z in
Eq. (6-78),

(jC/ZR)(e_(b/2+jR)t‘ _ e—(b/Z-jR)t‘s)Z—l
1_(e—(b/2—jR)t, + e~ 07 24K, Yz l4e g2 (6-79)

H(z)=

Continuing to simplify our H(z) expression by factoring out the real part
of the exponentials,

(]'C/ZR)E_M’ /Z(e—ths _ Eth’)Z—-l

H(z)= - -
1-e T2 (iR | 7RG T

(6-80)

We now have H(z) in a form with all the like powers of z combined into sin-
gle terms, and Eq. (6-80) looks something like the desired form of Eq.
(6-52). Knowing that the final coefficients of our IIR filter must be real num-
bers, the question is “What do we do with those imaginary j terms in Eq.
(6-80)?” Once again, Euler to the rescue.! Using Euler’s equations for sinu-
soids, we can eliminate the imaginary exponentials and Eq. (6-80) becomes

¥ From Euler, we know that sin(a) = (2 ~ ¢70)/ 2j, and cos(e) = (62 + ¢79) /2.

267

268 Infinite impulse Response Fitters

H(z)= ¢/ 2R)e™"/2[2jsin(Rt,)]z™!
T 1-e" 2 [2c0s(Rt,)7 +e 22

(c/R)e"+/2[sin(Rt,)]z

- . (6-81)
1-e™/2[2cos(Rt,)]z ! + e 272

If we plug the values ¢ = 17410.145, b = 137.94536, R = 112.48517, and
t;=0.01 into Eq. (6-81), we get the following IIR filter transfer function:

H(z) = (154.77724)(0.50171312) (0.902203655)z
" 1-(0.50171312)(0.86262058)z " + 02517160522

70.059517z!

=) (6-82)
1-0.43278805z +0.25171605z2

Because the transfer function H(z) = Y(z)/X(z), we can again cross-multiply
the denominators to rewrite Eq. (6-82) as

Y(2)- (1-0.432788052" +0.25171605z %) = X(z) - (70.059517z"") ,
or
Y(z)=70.059517 - X(2)z"" + 0.43278805- Y(z)z™" ~ 0.25171605- Y(2)z”2 . (6-83)

Now we take the inverse z-transform of Eq. (6-83), by inspection, to get
the time-domain expression for our IIR filter as

y(n) =70.059517 - x(n - 1) + 0.43278805 - y(n - 1) - 0.25171605 - y(n - 2) . (6-84)
One final step remains. To force the IIR filter gain equal to the prototype
analog filter’s gain, we multiply the x(n-1) coefficient by the sample
period £; as suggested in Method 2, Step 6. In this case, there’s only one
x(n) coefficient, giving us

¥(n) = 0.01-70.059517 - x(n — 1) + 0.43278805 - y(n — 1) — 0.25171605 - y(rn ~ 2)

=0.70059517 - x(n ~ 1) +0.43278805 - y(n - 1) - 0.25171605 - y(n -2), (6-85)

Impulse Invariance IIR Filter Design Method 269

s-plane z-plane
Imag(s) Imag(z)
Stable Unstable
region region
. Stable
+R region
(a) =
bz Real(s)
X -+ —jR

4 1H(Hlin dB

(b} 6T

-8 t + :
] 20 Hz 50Hz 'red
(55/2)

Figure 6-27 Impulse invariance design example filter characteristics: (@) splane pole
locations of profotype analog fitter and z-plane pole locations of discrete
IR fiter; (o) frequency magnitude response of the discrete IIR fitter.

that compares well with the Method 1 result in Eq. (6-69). (Isn't it com-
forting to work a problem two different ways and get the same result?)

Figure 6-27 shows, in graphical form, the result of our IIR design exam-
ple. The s-plane pole locations of the prototype filter and the 2-plane poles
of the IIR filter are shown in Figure 6-27(a). Because the s-plane poles are
to the left of the origin and the z-plane poles are inside the unit circle, both
the prototype analog and the discrete IIR filters are stable. We find the
prototype filter’s s-plane pole locations by evaluating H (s) in Eq. (6-75).
When s = ~b/2 - jR, the denominator of the first term in Eq. (6-75)
becomes zero and H (s) is infinitely large. That s = —b/2 - jR value is the
location of the lower s-plane pole in Figure 6-27(a). When s = -b/2 + jR the
denominator of the second term in Eq. (6-75) becomes zero and
§ =-b/2 + jR is the location of the second s-plane pole.

The IIR filter’s z-plane pole locations are found from Eq. (6-76). If we
multiply the numerators and denominators of Eq. (6-76) by z,

270

Infinite Impulse Response Filters

H(z). %= 2je/2R) 2(~jc/2R)
(Z) . ; = 2(1 _ e“(b/2+iR)ts Z—l) 2(1 _ e—(b/z_]'R)ts Z—l)
(jc/2R)z (-jc/2R)z
T 7= o-G72R0, + 7 — -G/ RE, (6-86)

In Eq. (6-86), when z is set equal to el/2+/R)s, the denominator of the first
term in Eq. (6-86) becomes zero and H(z) becomes infinitely large. The
value of z of

z= e—(b/2+]'R)t5 - e—bl’s /ZE-le ~bt, /21 _Rts radians (6_87)

s=e
defines the location of the lower z-plane pole in Figure 6-27(a).
Specifically, this lower pole is located at a distance of e%/2 = 0.5017 from
the origin, at an angle of 8 = -Rt, radians, or -64.45°. Being conjugate
poles, the upper z-plane pole is located the same distance from the origin
at an angle of 6 = Rt_ radians, or +64.45°. Figure 6-27(b) illustrates the fre-
quency magnitude response of the IIR filter in Hz.

Two different implementations of our IIR filter are shown in Figure
6-28. Figure 6-28(a) is an implementation of our second-order IIR filter
based on the general IIR structure given in Figure 6-22, and Figure
6-28(b) shows the second-order IIR filter implementation based on the
alternate structure from Figure 6-21(b). Knowing that the b(0) coefficient
on the left side of Figure 6-28(b) is zero, we arrive at the simplified struc-
ture on the right side of Figure 6-28(b). Looking carefully at Figure
6-28(a) and the right side of Figure 6-28(b), we can see that they are
equivalent.

Although both impulse invariance design methods are covered in the
literature, we might ask, “Which one is preferred?” There’s no definite
answer to that question because it depends on the H (s) of the prototype
analog filter. Although our Method 2 example above required more
algebra than Method 1, if the prototype filter’s s-domain poles were
located only on the real axis, Method 2 would have been much simpler
because there would be no complex variables to manipulate. In general,
Method 2 is more popular for two reasons: (1) the inverse Laplace and
z-transformations, although straightforward in our Method 1 example,
can be very difficult for higher-order filters, and (2) unlike Method 1,
Method 2 can be coded in a software routine or a computer spreadsheet.

Upon examining the frequency magnitude response in Figure 6-27(b),
we can see that this second-order IIR filter’s roll-off is not particularly

Impulse Invariance IR Filter Design Method

b(1) =0.70059517
a(1) = 0.43278805
(@) a(2) = -0.25171605
y(n)
(b) yin)

| a@) a(2)

Figure 6-28 Implementations of the impulse invariance design example fitter,

steep. This is, admittedly, a simple low-order filter, but it’s attenuation
slope is so gradual that it doesn’t appear to be of much use as a low-pass
filter.* We can also see that the filter’s passband ripple is greater than the
desired value of 1 dB in Figure 6-26. What we'll find is that it's not the low
order of the filter that contributes to it's poor performance, but the sam-
pling rate used. That second-order IIR filter response is repeated as the
shaded curve in Figure 6-29. If we increased the sampling rate to 200 Hz,
we’d get the frequency response shown by the dashed curve in Figure
6-29. Increasing the sampling rate to 400 Hz results in the much improved
frequency response indicated by the solid line in the figure. Sampling rate
changes do not affect our filter order or implementation structure.
Remember, if we change the sampling rate, only the sample period ¢

changes in our design equations, resulting in a different set of fil'cerS

ta .

A piece 'of advice. Whenever you encounter any frequency representation (be it a digital fil-
tgr magnitude response or a signal spectrum) that has nonzero values at +f,/2, be suspi-
cious—be very suspicious—that aliasing is taking place. ’

271

272

Infindte Impulse Response Filters

09 /\ fs =100 Hz
0.8 V'

07
0.6
05
0.4
0.3

0.2 N
041 fe=400Hz 0 TTse—e L
0 20 Hzwhen 20 Hz when 12 Freq
f4= 400 Hz fs= 100 Hz

Figure 6-29 IIR filter frequency magnitude response, on a linear scale, at three
separate sampling rates. Notice how the filtter’s absolute cutoff
frequency of 20 Hz shifts relative fo the different f, sampling rates.

coefficients for each new sampling rate. So we can see that the smaller we
make £ (larger f,) the better the resulting filter when either impulse
invariance design method is used because the replicated spectral overlap
indicated in Figure 6-24(b) is reduced due to the larger f, sampling rate.
The bottom line here is that impulse invariance IIR filter design tech-
niques are most appropriate for narrowband filters; that is, low-pass fil-
ters whose cutoff frequencies are much smaller than the sampling rate.

The second analytical technique for analog filter approximation, the
bilinear transform method, alleviates the impulse invariance method’s
aliasing problems at the expense of what’s called frequency warping.
Specifically, there’s a nonlinear distortion between the prototype analog
filter’s frequency scale and the frequency scale of the approximating IIR
filter designed using the bilinear transform. Let’s see why.

6.5 Bilinear Transform IiR Filter Design Method

There’s a popular analytical IIR filter design technique known as the bilin-
ear transform method. Like the impulse invariance method, this design tech-
nique approximates a prototype analog filter defined by the continuous
Laplace transfer function H (s) with a discrete filter whose transfer function
is H(z). However, the bilinear transform method has great utility because

Bllinear Transform IR Filter Design Method '

* itallows us to simply substitute a function of z for s in H () to get H(z),
thankfully, eliminating the need for Laplace and z-transformations as
well as any necessity for partial fraction expansion algebra;

* it maps the entire s-plane to the z-plane, enabling us to completely
avoid the frequency-domain aliasing problems we had with the
impulse invariance design method; and

® it induces a nonlinear distortion of H(z)’s frequency axis, relative to
the original prototype analog filter’s frequency axis, that sharpens the
final roll-off of digital low-pass filters.

Don’t worry. We'll explain each one of these characteristics and see
exactly what they mean to us as we go about designing an IIR filter.

If the transfer function of a prototype analog filter is H (s), then we can
obtain the discrete IIR filter z-domain transfer function H (z) by substitut-
ing the following for s in H (s)

2 — |
s=;—[i+§_lj , (6-88)
s

where, again, ¢, is the discrete filter’s sampling period (1/f,). Just as in the
impulse invariance design method, when using the bilinear transform
method, we're interested in where the analog filter’s poles end up on the
z-plane after the transformation. This s-plane to z-plane mapping behav-
ior is exactly what makes the bilinear transform such an attractive design
technique.*

Let’s investigate the major characteristics of the bilinear transform’s
s-plane to z-plane mapping. First we'll show that any pole on the left
side of the s-plane will map to the inside of the unit circle in the z-plane.
It’s easy to show this by solving Eq. (6-88) for z in terms of s.
Multiplying Eq. (6-88) by (t,/2)(1 + z71) and collecting like terms of z
leads us to

L, L4 /2)s

672 (6-89)

* The bilinear transform is a technique in the theory of complex variables for mapping a
function on the complex plane of one variable to the complex plane of another variable. It
maps circles and straight lines to straight lines and circles, respectively.

273

274

Infinite Impulse Response Fifters

If we designate the real and imaginary parts of s as
s=0+jo,, : (6-90)

where the subscript in the radian frequency o, signifies analog, Eq. (6-89)
becomes

_1+ot, /2+jw,t, /2 (1+0¢t /2)+ ot /2

z= = - . (6-91)
1-0t,/2-jwt, /2 (-0t /2)-jw.t, /2

We see in Eq. (6-91) that z is complex, comprising the ratio of two complex
expressions. As such, if we denote z as a magnitude at an angle in the
form of z = |z1 £8,, we know that the magnitude of z is given by

2 2
|2 1= V2B numerator__ J Crof /2y +ad, /2 (692)
Magdenominator (1 -C ts / 2) + (wats / 2)

OK, if 6 is negative (o < 0) the numerator of the ratio on the right side of
Eq. (6-92) will be less than the denominator, and !z| will be less than 1.
On the other hand, if ¢ is positive (¢ > 0), the numerator will be larger
than the denominator, and |1z! will be greater than 1. This confirms that,
when using the bilinear transform defined by Eq. (6-88), any pole located
on the left side of the s-plane (6 < 0) will map to a z-plane location inside
the unit circle. This characteristic ensures that any stable s-plane pole of a
prototype analog filter will map to a stable z-plane pole for our discrete
IIR filter. Likewise, any analog filter pole located on the right side of the
s-plane (o > 0) will map to a z-plane location outside the unit circle when
using the bilinear transform. This reinforces our notion that, to avoid fil-
ter instability, during IIR filter design, we should avoid allowing any
z-plane poles to lie outside the unit circle.

Next, let’s show that the jo, axis of the s-plane maps to the perimeter of
the unit circle in the z-plane. We can do this by setting 6 = 0 in Eq. (6-91)
to get

g L@t /2 (6-93)
1-jew.t; /2

Here, again, we see in Eq. (6-93) that z is a complex number compris-
ing the ratio of two complex numbers, and we know the magnitude of this
z is given by

Bilinear Transform IIR Filter Design Method

'Z ,a_0= Magnumerator = (1)2 + (wats /2)2

) Magdenominator (1)2 + (wats / 2)2 . (6-94)
The magnitude of z in Eq. (6-94) is always 1. So, as we stated, when using
the bilinear transform, the jw, axis of the s-plane maps to the perimeter of
the unit circle in the z-plane. However, this frequency mapping from the
s-plane to the unit circle in the z-plane is not linear. It's important to know
why this frequency nonlinearity, or warping, occurs and to understand its
effects. So we shall, by showing the relationship between the s-plane fre-
quency and the z-plane frequency that we’ll designate as ;.

If we define z on the unit circle in polar form as z = 7¢794 as we did for

Figure 6-13, where 7 is 1 and o, is the angle, we can substitute z = ¢/94 in
Eq. (6-88) as

2(1-¢7®
§= | ——o -
t {14774 (6-95)
If we show s in its rectangular form and partition the ratio in brackets into

half-angle expressions,

s=0+in _-2_ e_jmd/z(ejmd/z_e_jmd/z)
]9, S TR IS DY

(6-96)

Using Euler’s relationships of sin(e) = (¢ - ¢79)/ 2j and
cos(@) = (¢ + ¢79) /2, we can convert the right side of Eq. (6-96) to rectan-
gular form as

2 e jsin(, /2)]

s=0+jw, = -
J eTfed/2[n cos(w, /2)]

(2679472 jsin(w, /2)
2e7%4/2 " cos(w, /2)

=2
tS
= -iztan(cod /2).

s (6-97)

If we now equate the real and imaginary parts of Eq. (6-97), we see that
0=0,and

275

276

Infinite Impulse Response Filters

(6-98)

Let’s rearrange Eq. (6-98) to give us the useful expression for the z-domain
frequency @, in terms of the s-domain frequency ,, of

w; = 2tan‘1(9—“£) .
2 (6-99)

The important relationship in Eq. (6-99), which accounts for the so-called
frequency warping due to the bilinear transform, is illustrated in Figure
6-30. Notice that, because tan~!(w,t,/2) approaches 11/2 as o, gets large, @,
must, then, approach twice that value, or . This means that no matter
how large @, gets, the z-plane @, will never be greater than x.

Remember how we considered Figure 6-14 and stated that only the -xf,
to +nf, radians/s frequency range for ®, can be accounted for on the
z-plane? Well, our new mapping from the bilinear transform maps the
entite s-plane to the z-plane, not just the primary strip of the s-plane
shown in Figure 6-14. Now, just as a walk along the jo, frequency axis on
the s-plane takes us to infinity in either direction, a trip halfway around
the unit circle in a counterclockwise direction takes us from w, = 0 to
®, = +o radians/s. As such, the bilinear transform maps the s-plane’s
entire jo_ axis onto the unit circle in the z-plane. We illustrate these bilin-
ear transform mapping properties in Figure 6-31.

A(Dd

-n

Figure 6-30 Nonlinear relationship between the z-domain frequency o and
the s-domain frequency w,,.

. Blinear Transform IIR Filter Design Method

z
z-plane imag

5

Zreal

Figure 6-31 Bllinear transform mapping of the s-plane to the zplane.

To show the practical implications of this frequency warping, let’s
relate the s-plane and z-plane frequencies to the more practical measure
of the f, sampling frequency. We do this by remembering the funda-
mental relationship between radians/s and Hz of o = 2nf and solving
for f to get

f= p (6-100)
Applying Eq. (6-100) to Eq. (6-99),

2nf; = 2tan™! (——2nﬁ‘t5)
R

(6-101)
Substituting 1/f, for t,, we solve Eq. (6-101) for f;to get
(2 a1 27/ £ _ tanN(nf, / £)
f (zn)tan (.) = -) (6-102)

Equation (6-102), the relationship between the s-plane frequency f, in Hz
and the z-plane frequency f, in Hz, is plotted in Figure 6-32(a) as a func-
tion of the IIR filter’s sampling rate f..

The distortion of the f, frequency scale, as it translates to the fa
frequency scale, is illustrated in Figure 6-32(b) where an s-plane
bandpass frequency magnitude response TH,(f)! is subjected to

277

278

Infinite Impulse Response Filters

Al
0.5¢,
0.4, e
/

0.3f, /.
(a) //

21,

02t 1/

016, 1./

0 et

L] L] T T T
0 O5f f, 15f 2f 25f 3f 35f, 4f 45f 5f I

A= fa=tan (mh/fs)in

IH(f,)1

(b)

-
o -
fﬁ
PRAT
-
0 fa

Figure 6-32 Nonlinear relationship between the f;and £, frequencles: (a) frequency
warping curve scaled in terms of the IR filter’s £, sampling rate;
(b) s-domain frequency response H(f,) transformation to a zdomain
frequency response H(f;).

frequency compression as it is transformed to | H,(f,) |. Notice how the
low-frequency portion of the IIR filter’s |H,(f,)| response is reasonably
linear, but the higher frequency portion has been squeezed in toward
zero Hz. That’s frequency warping. This figure shows why no IIR filter
aliasing can occur with the bilinear transform design method. No matter
what the shape or bandwidth of the | H,(f,)| prototype analog filter,
none of its spectral content can extend beyond half the sampling rate of

“Bilinear Transform IR Filter Design Method 276§

f/2 in |H/(f)—and that’s what makes the bilinear transform design
method as popular as it is. -

The steps necessary to perform an IIR filter design using the bilinear
transform method are as follows:

Step 1: Obtain the Laplace transfer function H (s) for the prototype ana-
log filter in the form of Eq. (6-43).

Step 2: Determine the digital filter’s equivalent sampling frequency f,
and establish the sample period ¢, = 1/f..

Step 3: In the Laplace H (s) transfer function, substitute the expression

2{1-27
e (6109
s

for the variable s to get the IIR filter’s H(z) transfer function.

Step 4: Multiply the numerator and denominator of H(z) by the appro-
priate power of (1 + z7') and grind through the algebra to collect
terms of like powers of z in the form

H(z)=—%0_ (6-104)

Step 5: Just as in the impulse invariance design methods, by inspection,
we can express the IIR filter’s time-domain equation in the gen-
eral form of

y(n) = b(0)x(n) + b()x(n — 1) + B(2)x(n ~ 2) +... + B(N)x(n ~ N)
+a(y(n-1)+aQR)y(n-2)+...+ a(M)y(n- M) . (6-105)

Although the expression in Eq. (6-105) only applies to the filter
structure in Figure 6-18, to complete our design, we can apply the
a(k) and b(k) coefficients to the improved IIR structure shown in
Figure 6-22.

280

Infinfte Impulse Response Filters

To show just how straightforward the bilinear transform design
method really is, let’s use it to solve the IIR filter design problem first pre-
sented for the impulse invariance design method. -

6.5.1 Bilinear Transform Design Example

Again, our goal is to design an IIR filter that approximates the second-
order Chebyshev prototype analog low-pass filter, shown in Figure 6-26,
whose passband ripple is 1 dB. The f, sampling rate is 100 Hz (¢, = 0.01),
and the filter’s 1 dB cutoff frequency is 20 Hz. As before, given the origi-
nal prototype filter’s Laplace transfer function as

_ 17410.145
s* +137.945365+17410.145 '

H,(s) (6-106)

and the value of ¢, = 0.01 for the sample period, we’re ready to proceed
with Step 3. For convenience, let’s replace the constants in Eq. (6-106) with
variables in the form of

c

H.(s) = ——r,
(%) s*+bs+c

(6-107)

where b = 137.94536 and ¢ = 17410.145. Performing the substitution of Eq.
(6-103) in Eq. (6-107),

H(z)= 5 . (6-108)
2 1-z71 2(1-z7"
- 5| +tb— - |+¢
t, 1+2 t, {142

To simplify our algebra a little, let’s substitute the variable 4 for the frac-
tion 2/t to give

c
3 .
of1-271 1-z71
a [1+z'l +ab) 17T +c

Proceeding with Step 4, we multiply Eq. (109)’s numerator and denomi-
nator by (1 + z71)? to yield

H(z)=

(6-109)

Bilinear Transform IR Fiter Design Method

c(1+2z71)?

A (1-z71)2 +ab(1+27)(1- 27+ c(1+271)?

H(z)=

(6-110)

Multiplying through by the factors in the denominator of Eq. (6-110), and
collecting like powers of z,

_ c(1+2z71 +272)
(@ +ab+c)+(2c-2a)z T + (@ +c—ab)z 2

H(z)

(6-111)

We're almost there. To get Eq. (6-111) into the form of Eq. (6-104) with a
constant term of one in the denominator, we divide Eq. (6-111)’s numera-
tor and denominator by (42 + ab + ¢) giving us

¢ (1+2z71+27%)

2
H@z)=—@ *obtg) : (6-112)
(2c-2a°) 4 (a°+c-ab)
1+— 7+ z
(a“ +ab+c) (a° +ab+c)

We now have H(z) in a form with all the like powers of z combined into sin-
gle terms, and Eq. (6-112) looks something like the desired form of
Eq. (6-104). If we plug the values a = 2/t = 200, b = 137.94536, and
¢ =17410.145 into Eq. (6-112) we get the following IIR filter transfer function:

0.20482712(1+ 2z +z72)

H(z)= =})
1-0.53153089z" +0.35083938 2

_ 0.20482712 + 0.40965424 7 +0.20482712 272
1-0.53153089 27" +0.35083938 22

7 (6'113)

and there we are. Now, by inspection of Eq. (6-113), we get the time-
domain expression for our IIR filter as

y(n) = 0.20482712 + 0.40965424 - x(nn — 1) + 0.20482712 - x(n ~ 2)
+0.53153089 - y(n — 1) - 0.35083938 - y(n - 2) . (6-114)

The frequency magnitude response of our bilinear transform IIR
design example is shown as the dark curve in Figure 6-33(a), where, for

281

Infinite Impulse Response Fllters

IHglt !

N

/

Bilinear transform
design

Impulse invariance

\< design
\\‘vw._........,

1 ;
20 Hz s50Hz Freq

(6/2)
| Degrees
180
140
100
Phase of bilinear 80
transform design
(b)) 20
L} L)
-50 Hz ~20 50Hz Freq
(-f+/2) -60 (fs/2)
~100
-140
-180

Figure 6-33 Comparison of the billinear transform and impulise invariance design iR
filters: (@) frequency magnitude responses; () phase of the bilinear
transform IIR fiiter.

comparison, we've shown the result of that impulse invariance design
example as the shaded curve. Notice how the bilinear transform designed
filter’s magnitude response approaches zero at the folding frequency of
f./2 = 50 Hz. This is as it should be—that’s the whole purpose of the bilin-
ear transform design method. Figure 6-33(b) illustrates the nonlinear
phase response of the bilinear transform designed IIR filter.

We might be tempted to think that not only is the bilinear transform
design method easier to perform than the impulse invariance design
method, but that it gives us a much sharper roll-off for our low-pass filter.
Well, the frequency warping of the bilinear transform method does com-
press (sharpen) the roll-off portion of a low-pass filter, as we saw in Figure
6-32, but an additional reason for the improved response is the price we
pay in terms of the additional complexity of the implementation of our
IIR filter. We see this by examining the implementation of our IIR filter as
shown in Figure 6-34. Notice that our new filter requires five multiplica-
tions per filter output sample where the impulse invariance design filter
in Figure 6-28(a) required only three multiplications per filter output sam-
ple. The additional multiplications are, of course, required by the addi-
tional feed forward z terms in the numerator of Eq. (6-113). These added

Bilinear Transform IR Filter Design Method

B0) = 0.20482712
B(1) = 0.40965424
B(2) = 0.20482712
(1) = 0.53153089
a(2) = -0.35083038

yn)
-

Figure 6-34 Implementation of the bilinear transform design example fitter.

b(k) coefficient terms in the H(z) transfer function correspond to zeros in
the z-plane created by the bilinear transform that did not occur in the
impulse invariance design method.

Because our example prototype analog low-pass filter had a cutoff fre-
quency that was f,/5, we don't see a great deal of frequency warping in
the bilinear transform curve in Figure 6-33. (In fact, Kaiser has shown that,
when f, is large, the impulse invariance and bilinear transform design
methods result in essentially identical H(z) transfer functions[19].) Had
our cutoff frequency been a larger percentage of f,, bilinear transform
warping would have been more serious, and our resultant | H,(f,) | cutoff
frequency would have been below the desired value. What the pros do to
avoid this is to prewarp the prototype analog filter’s cutoff frequency
requirement before the analog H (s) transfer function is derived in Step 1.

In that way, they compensate for the bilinear transform’s frequency warp-
ing before it happens. We can use Eq. (6-98) to determine the prewarped pro-
totype analog filter low-pass cutoff frequency that we want mapped to the
desired IIR low-pass cutoff frequency. We plug the desired IIR cutoff fre-
quency o, in Eq. (6-98) to calculate the prototype analog ®, cutoff frequency
used to derive the prototype analog filter’s H (s) transfer function.

Although we explained how the bilinear transform design method
avoided the impulse invariance method’s inherent frequency response
aliasing, it’s important to remember that we still have to avoid filter input
data aliasing. No matter what kind of digital filter or filter design method
is used, the original input signal data must always be obtained using a
sampling scheme that avoids the aliasing described in Chapter 2. If the
original input data contains errors due to sample rate aliasing, no filter
can remove those errors.

283

284

Infinite Impulse Response Filters

Our introductions to the impulse invariance and bilinear transform
design techniques have, by necessity, presented only the essentials of
those two design methods. Although rigorous mathematical treatment of
the impulse invariance and bilinear transform design methods is inap-
propriate for an introductory text such as this, more detailed coverage is
available to the interested reader[13-16]. References [13] and [15], by the
way, have excellent material on the various prototype analog filter types
used as a basis for the analytical IIR filter design methods. Although our
examples of IIR filter design using the impulse invariance and bilinear
transform techniques approximated analog low-pass filters, it’s important
to remember that these techniques apply equally well to designing band-
pass and highpass IIR filters. To design a highpass IIR filter, for example,
we’d merely start our design with a Laplace transfer function for the pro-
toty pe analog highpass filter. Our IIR digital filter design would then pro-
ceed to approximate that prototype highpass filter.

As we have seen, the impulse invariance and bilinear transform design
techniques are both powerful and a bit difficult to perform. The mathe-
matics is intricate and the evaluation of the design equations is arduous
for all but the simplest filters. As such, we'll introduce a third class of IIR
filter design methods based on software routines that take advantage of
iterative optimization computing techniques. In this case, the designer
defines the desired filter frequency response, and the algorithm begins
generating successive approximations until the IIR filter coefficients con-
verge (hopefully) to an optimized design.

6.6 Optimized IIR Filter Design Method

The final class of IIR filter design methods we'll introduce are broadly cat-
egorized as optimization methods. These IIR filter design techniques were
developed for the situation when the desired IIR filter frequency response
was not of the standard low-pass, bandpass, or highpass form. When the
desired response has an arbitrary shape, closed-form expressions for the
filter’s z-transform do not exist, and we have no explicit equations to work
with to determine the IIR filter’s coefficients. For this general IIR filter
design problem, algorithms were developed to solve sets of linear, or non-
linear, equations on a computer. These software routines mandate that the
designer describe, in some way, the desired IIR filter frequency response.
The algorithms, then, assume a filter transfer function H(z) as a ratio of
polynomials in z and start to calculate the filter’s frequency response.
Based on some error criteria, the algorithm begins iteratively adjusting the
filter’s coefficients to minimize the error between the desired and the
actual filter frequency response. The process ends when the error cannot

Optimized IIR Filter Design Method 285

be further minimized, or a predefined number of iterations has occurred,
and the final filter coefficients are presented to the filter designer. Although
these optimization algorithms are too mathematically complex to cover in
any detail here, descriptions of the most popular optimization schemes are
readily available in the literature[14,16,20-25].

The reader may ask, “If we’re not going to cover optimization methods
in any detail, why introduce the subject here at all?” The answer is that if
we spend much time at all designing IIR filters, we'll end up using opti-
mization techniques in the form of computer software routines most of
the time. The vast majority of commercially available digital signal pro-
cessing software packages include one or more IIR filter design routines
that are based on optimization methods. When a computer-aided design
technique is available, filter designers are inclined to use it to design the
simpler low-pass, bandpass, or highpass forms even though analytical
techniques exist. With all due respect to Laplace, Heaviside, and Kaiser,
why plow through all the z-transform design equations when the desired
frequency response can be applied to a software routine to yield accept-
able filter coefficients in a few seconds?

As it turns out, using commercially available optimized IIR filter
design routines is very straightforward. Although they come in several
flavors, most optimization routines only require the designer to specify
a few key amplitude and frequency values, the desired order of the IIR
filter (the number of feedback taps), and the software computes the
final feed forward and feedback coefficients. In specifying a low-pass,
IIR filter for example, a software design routine might require us to
specify the values for 8, 8 fi, and f, shown in Figure 6-35. Some opti-
mization design routines require the user to specify the order of the IIR

AIHd(f)I

T

1"8,]

|
7 P
of AN -
i f fs/2 Freq

Figure 6-35 Example low-pass 1R filter design parameters required for the
optimized IIR filter design method.

286

Infinlte Impulse Response Filters

filter. Those routines then compute the filter coefficients that best
approach the required frequency response. Some software routines, on
the other hand, don’t require the user to specify the filter order. They
compute the minimum order of the filter that actually meets the desired
frequency response.

6.7 Pitfalls in Building IIR Digital Filters

There’s an old saying in engineering: “It’s one thing to design a system on
paper, and another thing to actually build one and make it work.” (Recall
the Tacoma Narrows Bridge episode!) Fabricating a working system
based on theoretical designs can be difficult in practice. Let’s see why this
is often true for IIR digital filters.

Again, the IIR filter structures in Figures 6-18, 6-21(b), and 6-22 are
called Direct Form implementations of an IIR filter because they’re all
equivalent to directly implementing the general time-domain expression
for an Mth-order IIR filter given in Eq. (6-21). As it turns out, there can be
stability problems and frequency response distortion errors when direct
form implementations are used. Such problems arise because we're forced
to represent the IR filter coefficients and the results of intermediate filter
calculations with binary numbers having a finite number of bits. These
finite word length effects are particularly serious if a direct form IIR filter’s
H(z) transfer function polynomial in z is of high order (i.e., a filter having
a large number of delay elements). There are three major categories of
finite word length errors that plague IIR filter implementations: coefficient
quantization, overflow errors, and roundoff errors. Although Chapter 9
discusses the nature and effects of using finite word lengths in more detail,
we'll briefly discuss those error types as they relate to IIR filters and see
what precautions can be taken to minimize their effects.

Remember, all of our IIR filter calculations, thus far, have resulted in
very accurate filter coefficient values. In fact, the fractional coefficient val-
ues in our previous IIR design examples were accurate to eight decimal
digits as indicated in Eq. (6-114). Knowing that it takes four binary bits to
store a single decimal digit, we can say that the coefficient values in Eq.
(6-114) require the equivalent of 32 bits of accuracy. Consider the situation
where we try to actually build the IIR filter in Figure 6-34, but we’re con-
strained to store our a(k) and b(k) coefficients in four-bit hardware regis-
ters. Well, we can, indeed, represent the fractional coefficients with only
one decimal digit, but they lose some of their precision. For example, we
can represent Eq. (6-114)’s original b(0) = 0.20482712 coefficient as
b(0) = 0.2 and lose some accuracy due to coefficient quantization.

Pitfalls in Building IR Digital Filters

Limited-precision coefficients will result in slight filter pole and zero
shifting on the z plane, and a frequency magnitude response that may not
meet our requirements.

For example, if we used only four-bits (one decimal digit) to represent
the coefficients in Figure 6-34, our reduced-accuracy filter magnitude
response is shown by the solid curve in Figure 6-36. For contrast, we've
also shown the original high-accuracy coefficient response as the shaded
curve in Figure 6-36. Sure enough, using four-bit coefficients distorted our
original second-order IIR frequency response. Had our filter cutoff fre-
quency (20 Hz) been higher relative to the sample rate (100 Hz), coeffi-
clent quantization would result in a frequency response that was even
more skewed from the original. As it turns out, higher order filters are
very sensitive to coefficient accuracy and, for them, coefficient quantiza-
tion is more likely to cause unacceptable frequency response distortion.
An even bigger problem can occur in high-order polynomials of H(z)
when quantized coefficients are rounded up to the nearest quantization
level. After factoring a high-order error-containing H(z) polynomial into
its single-order factors, this can result in actually moving a pole outside
the unit circle, yielding an unstable filter.

Overflow, the second finite word length effect that troubles digital fil-
ters, is what happens when the result of an arithmetic operation is too
large to be represented in the fixed-length hardware registers designed
to contain that result. Because we perform so many additions when we
implement IIR filters, overflow is always a potential problem. With no
precautions being made to handle overflow, large nonlinearity errors

AIH ()
1 ‘ d(d) Full accuracy Four-bit coefficients:
= .~ coefficients boy=0.2
0.8 b{1)=04
Four-bit b2)=02
0.6 coefficients a(1)=0.5
04l a2)<—0.3
02¢
i
0 20 Hz 50Hz Freq
(fs/2)

Figure 6-36 Comparison of the bilinear transform designed filter magnitude

responses using full-accuracy coefficients (shaded curve) and
four-bit coefficients (solid curve).

287

288

Infinite Impulse Response Filters

can result in our filter output samples—often in the form of overflow
oscillations.

The most common way of dealing with binary overflow errors is called
roundoff, or rounding, where a data value is represented by, or rounded
off to, the b-bit binary number that’s nearest the unrounded data value.
It's usually valid to treat roundoff errors as a random process, but condi-
tions occur in IIR filters where rounding can cause the filter output to
oscillate forever, even when the filter input sequence is all zeros. This sit-
uation, going by the names limit cycles and deadband effects, has been well
analyzed in the literature[26,27]. We can demonstrate limit cycles by con-
sidering the second-order IIR filter in Figure 6-37(a) whose time-domain
expression is

y(n) =x(n) + 1.3y(n - 1) - 0.76y(n - 2) . (6-115)

Let’s assume that this filter rounds the adder’s output to the nearest inte-
gral value. If the situation ever arises where ¥(=2) = 0, y(-1) = 8, and x(0)
and all successive x(n) inputs are zero, the filter output goes into endless
oscillation, as shown in Figure 6-37(b). If this filter were to be used in an
audio application, when the input signal went silent, the listener could
end up hearing an audio tone instead of silence. The shaded line in Figure
6-37(b) shows the filter’s stable response to this particular situation if no
rounding is used. With rounding, however, this IIR filter certainly lives up
to its name.

There are several ways to reduce the il effects of quantization errors
and limit cycles. We can increase the word widths of the hardware regis-
ters that contain the results of intermediate calculations. Because round-
off limit cycles affect the least significant bits of an arithmetic result, larger
word sizes diminish the impact of limit cycles should they occur. To avoid
filter input sequences of all zeros, some practitioners add a dither sequence
to the filter’s input signal sequence. A dither sequence is a sequence of
low-amplitude pseudorandom numbers that interferes with an IIR filter’s
roundoff error generating tendency, allowing the filter output to reach
zero should the input signal remain at zero. Dithering, however, decreases
the effective signal-to-noise ratio of the filter output[11]. Finally, to avoid
limit cycle problems, we can just use an FIR filter. Because FIR filters, by
definition, have finite-length impulse responses and have no feedback
paths, they cannot support output oscillations of any kind.

As for overflow oscillations, we can eliminate them if we increase the
word width of hardware registers, so that overflow never takes place in
the IIR filter. Alternatively, it has been shown that the effects of overflow
oscillations can be avoided by modifying hardware adders so that their

Pitfalls in Building IR Dlgirql Filters

(@

4 vin)

0.

84"

64 % Response with

ol ‘ no rounding

.
® 21 o "

0 e =
-2 4 PR 24 Time
-4 1 L
-6 4

Figure 6-37 Limit cycle oscillations due to rounding in an [IR filter: (a) secona-
order IR filter with rounding taking place following the adder;
(b) one possible time-domain response of the IR fiiter.

sum saturates to a fixed limit when an overflow condition is detected|[28,
29]. It may be useful for the reader to keep in mind that, when the signal
data is represented in two’s complement arithmetic, multiple summations
resulting in intermediate overflow errors cause no problems if we can
guarantee that the final magnitude of the sum of the numbers is not too
large for the final accumulator register. This potential relief from overflow
errors, as discussed under the data overflow topic in Section 9.3, is one
reason for the popularity of the two's complement format for binary num-
bers. Some digital filters incorporate additional control circuitry to detect
overflow conditions and allow the designer to control (by scaling down)
the amplitudes of signals at critical points in the system[14,17]. If your
budget can afford floating-point hardware, it has been shown that both
standard floating-point and block floating-point data formats can greatly
reduce the errors associated with overflow oscillations and limit
cycles[30]. (We discuss floating-point number formats in Section 9.4)
Perhaps the most popular technique for minimizing the errors associated
with finite word widths is to design filters comprising a cascade string, or
parallel combination, of low-order filters. The next section tells us why.

289

290

infinite Impulse Response Filters

6.8 Cascade and Parallel Combinations of
Digital Filters

In practice, we're likely to encounter multiple digital filters connected in
cascade or parallel like those in Figure 6-38. As indicated in Figure 6-38(a),
the resultant transfer function of two cascaded filter transfer functions is
the product of those functions, or

H yocade(2) = Hi(2)H,(2) . (6-116)

If the filters in Figure 6-38(a) are linear, we can swap their order, having
H,(z) precede H,(z), with no change in the Y(z) output. By the way, this
property of the combined transfer function equaling the product of the
two individual transfer functions applies to any combination of linear
time invariant IIR and FIR filters. As shown in Figure 6-38(b), the com-
bined transfer function of two parallel filters is the sum of their transfer
functions, or

Hpara]lel (Z) = Hl(z) + HZ(Z) . (6-117)

Hardware filter designers routinely partition high-order digital filters
into a string of lower order filters arranged in cascade because the cas-
caded system usually requires fewer multiplications for a given filter fre-
quency response. It's common practice to subdivide a high-order digital

X(2) Filter 1: H, (X2 Filter 1°

Y(2) = Hy(2)H,(2)X(2)
(a) — H.‘ (2) F——— H2(2) >

Filter 1: H,(2)X(2)
H,(@
X@ Y(2) = [Hy(2) + Ha(2]X(2)
(b)
Filter 1:
i Hy(2)X(2)

Figure 6-38 Combinations of two digital filters: (a) cascaded filters; (b) paraliel
filters.

Cascade and Paralle! Combinations of Digital Fitters

filter into multiple second-order building blocks because second-order fil-
ters are easier to design, are less susceptible to coefficient quantization
and roundoff errors, and their implementations allow easier data word
scaling to reduce the potential overflow effects of data word size growth.

Optimizing the partitioning of a high-order filter into multiple second-
order filter sections is a challenging task, however. For example, say we
have the sixth-order filter in Figure 6-39(a) that we want to partition into
three second-order sections. In factoring the sixth-order filter’s H(z) poly-
nomial, we could get up to three separate sets of feedback coefficients in
the factored H(z) numerator: a'(n), a"(n), and a™'(n). Likewise, we could
have up to three separate sets of feed forward coefficients in the factored

(@)

a(6) b(6)

(b)

a(2) b2 a') b2) a"(2) b(2)

Figure 6-39 IR fitter partitioning: (a) original sixth-order IR filter: (b) three secona-
order sections.

291

292

Infinite Impulse Response Filters

denominator: b'(n), b"(n), and b'"'(n). Because there are three second-
ordered sections, there are three factorial, or six, ways of pairing the sets of
coefficients. Notice in Figure 6-39(b) how the first section uses the a'(n)
and b'(n) coefficients, and the second section uses the a"(n) and b"(n) coef-
ficients. We could just as well have interchanged the sets of coefficients so
that the first second-order section uses the a'(n) and b"(n) coefficients, and
the second section uses the a"(n) and b'(n) coefficierits. So there are six dif-
ferent mathematically equivalent ways of combining the sets of coeffi-
cients. Add to this the fact that, for each different combination of
low-order sections, there are three factorially distinct ways those three
separate second-order sections can be arranged in cascade.

This means that if we want to partition a 2M-order IIR filter into M dis-
tinct second-order sections, there are M factorial squared, or (M!)?, ways
to do so. As such, there are then (3!)? = 36 different cascaded filters we
could obtain when going from Figure 6-39(a) to 6-39(b).' To further com-
plicate this filter sectioning problem, the errors due to quantization will,
in general, be different for each possible filter combination. Although this
subject is outside the scope of this introductory text, ambitious readers
can find further material on optimizing cascaded filter sections in refer-
ences [19,27], and in part 3 of reference [31].

There’s a considerable amount of material in the literature concerning
finite word effects as they relate to digital filters. (References [14,16] and
[19] discuss quantization noise effects in some detail as well as providing
extensive bibliographies on the subject.) Although these books and papers
provide useful guidelines in predicting and minimizing quantization
errors, prudent designers eventually resort to computer simulations of fil-
ter designs. This way they can vary filter hardware characteristics, such as
coefficient word widths, accumulator register sizes, sequencing of cas-
caded sections, and input signal sets. This experimental approach is
attractive because it’s both reliable and economical.

6.9 A Brief Comparison of IR and FIR Filters

The question naturally arises as to which filter type, IIR or FIR, is best
suited for a given digital filtering application. That's not an easy ques-
tion to answer, but we can point out a few factors that should be kept in
mind. First, we can assume that the differences in the ease of design
between the two filter types are unimportant. There are usually more
important performance and implementation properties to consider than

* These combinations can get very large. For example, there are (5!) = 14,400 ways to com-
bine five second-order filters to implement a 10*-order IIR filter.

A Brief Comparison of IR and FIR Filters

design difficulty when choosing between an IIR and an FIR filter. One
design consideration that may be significant is the IIR filter’s ability to
simulate a predefined prototype analog filter. FIR filters do not have this
design flexibility.

From a hardware standpoint, with so many fundamental differences
between IIR and FIR filters, our choice must be based on those filter char-
acteristics that are most and least important to us. For example, if we
needed a filter with exactly linear phase, then an FIR filter is the only way
to go. On the other hand, if our design required that a filter accept very high
data rates and slight phase nonlinearity is tolerable, we might lean toward
IR filters with their reduced number of necessary multipliers per output
sample. Table 6-1 presents a brief comparison between IIR and FIR filters
based on several different performance and implementation properties.

Table 6-1 IR and FIR Filter Characteristics Comparison

Characteristic IIR FIR
Number of necessary Least Most
multiplications
Sensitivity to filter Can be high for Very low
coefficient quantization Direct Form*

Probability of overflow Can be high for Very low
errors Direct Form*

Stability Must be designed in Guaranteed
Linear phase No Guaranteed **
Can simulate prototype Yes No

analog filters

Required hardware Least Most

memory

Hardware filter control Moderate Simple
complexity

Availability of design Good Very good
software

Ease of design or Moderately Simple
complexity of design complicated

software

Difficulty of quantization Most complicated Least complicated
noise analysis

Supports adaptive Yes Yes

filtering

* These problems can be minimized though cascade or parallel implementations.

** Guaranteed so long as the FIR coefficients are symmetrical.

293

294

Infinite Impulse Response Filters

References

(11 Churchill, R. V. Modern Operational Mathematics in Engineering, McGraw-Hill,
New York, 1944, pp. 307-34.

[2] Aseltine, J. A. Transform Method in Linear System Analysis, McGraw-Hill, New
York, 1958, pp. 287-92.

[3] Nixon, F E. Handbook of Laplace Transformation, Tables and Examples,
Prentice-Hall, Englewood Cliffs, New Jersey, 1960.

[4] Kaiser, J. F. “Digital Filters,” in System Analysis by Digital Computer. Ed. by E.
F. Kuo and J. F. Kaiser, John Wiley and Sons, New York, 1966, pp. 218-77.

(5] Kaiser, J. F. “Design Methods for Sampled Data Filters,” Chapter 7, in $1963
Proc. 1st Allerton Conference, pp. 221-36.

[6] Ragazzini, J. R. and Franklin, G. F Sampled-Data Control Systems,
McGraw-Hill, New York, 1958, pp. 52-83.

[7] Milne-Thomson, L. M. The Calculus of Finite Differences, Macmillan, London,
1951, pp. 232-51.

[8] Truxal, J. G. 1955. Automatic Feedback Control System Synthesis, McGraw-Hill,
New York, 1955, pp. 283.

[9] Blackman, R. B. Linear Data-Smoothing and Prediction in Theory and Practice,
Addison-Wesley, Reading, Mass., 1965, pp. 81-84.

[10] Gold, B. and Jordan, K. L., Jr. “A Note on Digital Filter Synthesis,” Proceedings
of the IEEE, Vol. 56, October 1968, pp. 1717.

[11] Rabiner, L. R, et al. “Terminology in Digital Signal Processing,” IEEE Trans.
on Audio and Electroacoustics, Vol. AU-20, No. 5, December 1972, pp. 327.

[12] Stearns, S. D. Digital Signal Analysis, Hayden Book Co. Inc., Rochelle Park,
New Jersey, 1975, pp. 114.

[13] Stanley, W. D., et al., Digital Signal Processing, Reston Publishing Co. Inc.,
Reston, Virginia, 1984, pp. 191.

[14] Oppenheim, A. V,, and Schafer, R. W. Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989, pp. 406.

[15] Williams, C. S. Designing Digital Filters, Prentice-Hall, Englewood Cliffs, New
Jersey, 1986, pp. 166-86.

(16] Rabiner, L. R., and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 216.

{17] Johnson, M. “Implement Stable IIR Filters Using Minimal Hardware,” EDN,
14 April 1983.

[18] Oppenheim, A. V., Willsky, A. S., and Young, L. T. Signals and Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1983, pp. 659.

References

[19] Kaiser, J. F. “Some Practical Considerations in the Realization of Linear
Digital Filters,” Proc. Third Annual Allerton Conference on Circuit and System
Theory, 1965, pp. 621-33

[20] Deczky, A. G. “Synthesis of Digital Recursive Filters Using the Minimum P
Error Criterion,” IEEE Trans. on Audio and Electroacoustics, Vol. AU-20, No. 2,
October 1972, pp. 257.

[21] Steiglitz, K. “Computer-Aided Design of Recursive Digital Filters,” IEEE
Trans. on Audio and Electroacoustics, Vol. 18, No. 2, 1970, pp. 123.

[22] Richards, M. A. “Application of Deczky’s Program for Recursive Filter
Design to the Design of Recursive Decimators,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, Vol. ASSP-30, October 1982, pp. 811.

(23] Parks, T. W, and Burrus, C. S. Digital Filter Design, John Wiley and Sons, New
York, 1987, pp. 244.

[24] Rabiner, L., Graham, Y., and Helms, H. “Linear Programming Design of IIR
Digital Filters with Arbitrary Magnitude Functions,” IEEE Trans. on Acoustics,
Speech, and Signal Processing., Vol. ASSP-22, No. 2, April 1974, pp. 117.

[25] Friedlander, B., and Porat, B. “The Modified Yule-Walker Method of ARMA
Spectral Estimation,” IEEE Trans. on Aerospace Electronic Systems, Vol. AES-20,
No. 2, March 1984, pp. 158-73.

[26] Jackson, L. B. “On the Interaction of Roundoff Noise and Dynamic Range and
Dynamic Range in Digital Filters,” Bell System Technical Journal, Vol. 49,
February 1970, pp. 159-84.

[27] Jackson, L. B. “Roundoff Noise Analysis for Fixed-Point Digital Filters
Realized in Cascade or Parallel Form,” IEEE Trans. Audio Electroacoustics, Vol.
AU-18, June 1970, pp. 107-22.

[28] Sandberg, I. W. “A Theorem Concerning Limit Cycles in Digital Filters,” Proc.
Seventh Annual Allerton Conference on Circuit and System Theory, Monticello,
Illinois, October 1969.

[29] Ebert, P. M., et al. “Overflow Oscillations in Digital Filters,” Bell Sys. Tech.
Journal, Vol. 48, November 1969, Pp- 2999-3020.

[30] Oppenheim, A. V. “Realization of Digital Filters Using Block Floating Point
Arithmetic,” IEEE Trans. Audio Electroacoustics, Vol. AU-18, June 1970, pp.
130-36.

[31] Rabiner, L. R., and Rader, C. M., Eds., Digital Signal Processing, IEEE Press,
New York, 1972, pp. 361.

295

CHAPTER SEVEN

Advanced Sampling
Techniques

Beyond the low-pass and bandpass sampling schemes discussed in
Chapter 2 there are specialized sampling techniques that we're likely to
encounter in practice. In this chapter we introduce several of those
advanced sampling methods and show why and when they're used.

7.1 Quadrature Sampling

Many digital signal processing applications use the complex data for-
mat with its real (in-phase) and imaginary (quadrature phase) parts.
These applications fall in the general category known as quadrature pro-
cessing. For example, the phase preservation characteristic of complex
data representation is exploited in high data rate digital communica-
tions systems, radar systems, and time difference of arrival (TDOA)
processing in radio direction-finding schemes[1,2]. The enhanced phase
measurement capabilities of quadrature processing are used in coher-
ent pulse measurement systems, antenna beamforming applications,
and single sideband modulators[3-6]. Complex data representation
allows us to realize additional processing power through the coherent
measurement of the phase of sinusoids comprising an input signal. To
obtain the time-domain representation of a continuous signal using
complex notation, the signal must be digitized by a technique called
quadrature sampling.*

* Quadrature sampling goes by various other names in the literature, such as vector demod-
ulation, complex demodulation, complex down-conversion, quadrature heterodyning, I/Q
sampling, and complex sampling{7-9]. Care must be exercised here from a semantic view-
point. There’s a testing scheme referred to as coherent sampling, used to characterize the
dynamic performance of A/D converters, that is unrelated to quadrature sampling[10,11].
This clever A/D testing technique is discussed in Section 10.9.

297

298

Advanced Sampling Techniques

Quadrature-phase (imaginary) axis

>
In-phase (real) axis

T 7 o

Figure 7-1 in-phase /(1) and quadrature-phase q(t) components of a
continuous signal x(f). :

To illustrate this idea, let’s consider a continuous time-domain signal
x(t) that has some instantaneous magnitude at a phase angle of &(t). This
signal can, equally well, be defined by its in-phase i(f) and quadrature-
phase g(t) components as shown in Figure 7-1. We could use the low-pass,
or bandpass, sampling schemes in Chapter 2 to obtain discrete samples
representing x(f) and then calculate the i(t) and g() components.
Quadrature sampling, on the other hand, allows us to obtain the discrete
samples representing i(t) and g(t) directly. Thus, quadrature sampling
procluces two separate sampled data sequences, one sequence represent-
ing the in-phase and one sequence representing the quadrature-phase
components of the original continuous signal x(f).

Let’s keep two things in mind as we begin our discussion of quadra-
ture sampling. First, in studying quadrature processing, we'll encounter
frequency-domain spectra that are not symmetrical about the 0 Hz axis.
Although frequency-domain symmetry is inherent in real signals, the
complex nature of quadrature signals does not have this restriction. It's
the lifting of this symmetry restriction that makes quadrature processing
so powerful. Second, recall from Euler’s relationships discussed in
Appendix C that

D I

in(2 = , 7-1
sin(2nft) % 5 3 (7-1)
and
jenft | o-j2nft jenft -j2nft
cos(2nft) = ¢ +2€ = > +£ 7 (7-2)

Quadrature Sampling

reminding us that real sinusoids or cosinusoids can be represented as com-
plex phasor quantities through the convention of negative frequency, that is,
negative exponentials. With these thoughts in mind, we view the hybrid
processing known as I/Q demodulation (or Weaver demodulation for those
readers with experience in communications theory), shown in Figure 7-2(a).

é | Discrete

cos(2nf.t)
@ X —> ¢ } itm) - jatey

XA1)
sin(2nf,t) q(
L X(F) “~—B——>
(b) [\‘1 l——‘/l -
-fc 0 I Freq
X ()
(© t\.\"l b% I_”/l -
-2f, ~f, -B2 o +B2 fe 2f; Freq
rll(f)l Filtered
@ | -
-B2 o B2 Freq
;jIXq(f)l
(@) [~ — 2
-2 =fe l//r“' fe ‘\]—ﬁeq
b J1Q()! Filtered
=B
U} — -
/6— B2 Freq
r Complex spectrum of {n) - jq(n)
© '_’/1 '_/] —1—

~2f . =82 o B2 fs 2f, Freq

s

Figure 7-2 Quadrature bandpass sampling: (a) sampling block diagram; (b)
continuous spectrum of continuous input x(); (c) continuous in-phase
component of x(1); (d) filtered in-phase component of x(1); (e)
continuous quadrature-phase component of x(1); (f) filtered quadrature-
phase component of x(1); (g) sampled sum of the fittered in-phase
component and the fittered quadrature-phase component of x(1).

299

300

Advanced Sampling Techniques

Consider a bandpass signal x(t), centered at carrier frequency f, Hz,
that has the real spectrum X(f) shown in Figure 7-2(b). When we mix x(t)
with a cosine wave of f, Hz, the positive phasor portion of the cosine (that
is, ¢/2) will translate the spectral components located at -f, (dashed
curve) up to baseband centered at 0 Hz, resulting in what is sometimes
called a zero-frequency IF format[4]. Likewise, the negative phasor por-
tion of the cosine (¢72%¢/2) will translate the spectral components located
at +f, (solid curve) down to baseband also centered at 0 Hz. The resultant
continuous signal spectrum is shown as X,(f) in Figure 7-2(c) where we
show the two translated spectra as overlaid, not summed, to see their
individuality. X(f) is low-pass filtered by an analog filter with a cutoff
frequency slightly greater than B/2 Hz, called the in-phase component of
x(t), and shown as the I(f) magnitude spectrum in Figure 7-2(d). (For the
reader who's not at ease with the notion of negative frequencies, it’s a
good idea to review Appendix C to see why negative frequencies exist
when we use complex signal notation.)

The continuous heterodyned product of x(f) and the sinewave of f, Hz
is shown in Figure 7-2(e) where the spectra lying below the frequency axis
result from the negative sign of the positive frequency —je&?%¢/2 compo-
nent in Eq. (7-1). This product is low-pass filtered and represents the
quadrature-phase component of x(t), shown as the jQ(f) spectrum in
Figure 7-2(f). The original real signal x(t) is now represented in a complex
format as i(t) - jg(t). (To recover the real x(t), we need only multiply i(t) by
cos(2nf t), multiply 4(t) by sin(2nf.t), and sum the two products.)

Figure 7-2 helps remind us that real signals can be represented by a sin-
gle sequence of sampled values and that their spectra show symmetry
about zero Hz. Complex, or quadrature, signals must be represented by
two sequences of sampled values, one sequence for the in-phase part and
one for the quadrature part. Again, complex signal spectra are not required
to be symmetrical about zero Hz. Returning to Figure 7-2(a), the two sep-
arate, continuous signals, i() and g(t), are digitized by an A/D converter
at a sample rate of f, samples/s. The resultant spectrum for the complex
i(n)-jq(n) is shown in Figure 7-2(g). Again, note the spectral teplications
every f, Hz. So what’s the big deal here? In Figure 7-2(g), notice that the
sample rate need only be greater than twice B/2 to avoid aliasing.

In quadrature sampling f, need only be greater than the signal band-
width, as opposed to twice the signal bandwidth previously described in
Chapter 2 for low-pass and bandpass sampling. This means that a given
A/D converter can be used to sample signal bandwidths twice as wide
with the quadrature sampling technique. Notice, however, that two low-
pass filters and two A/D converters are necessary with this scheme.

sl W

Quadrature Sampling with Digital Mixing. 30§

What we have is two A/D converters operating at half the equivaiggt ST

first-order bandpass sampling rate. Are we violating the Nyquist crif?&_;fg

rion? Not really—we still have two discrete sample values being gener- o

ated for every cycle in the bandwidth of our original signal. So, when we
need to digitize very wide bandwidths, the quadrature sampling scheme
is attractive, particularly, when our goal is spectral analysis using the FFT.
When the two data streams representing the in-phase and quadrature-
phase components are applied to a complex radix-2 FFT algorithm, the
FFT operates more efficiently than when its inputs are real signals[3,12].
(That particular topic is discussed in Section 10.5.)

7.2 Quadrature Sampling with Digital Mixing

To obtain quadrature samples in practice, the process shown in. Figure
7-2(a) is difficult to implement without errors. Over moderately wide
bandwidths, it’s not easy to configure two analog signal paths that have
identical frequency responses (gain and phase)—phase differences of a
few degrees are common. Moreover, large DC components are routinely
induced by the mixers in the x,(t) and x(t) signals before filtering. Finally,
if the low-pass filters are active devices, a kind of continuous noise known
as 1/f noise from the semiconductor components in the mixers/filters
induces increased noise energy near 0 Hz.

These disadvantages can be avoided with digital mixers and filters
where the sample rate is four times the carrier frequency of the bandpass
signal[13-16]. This process is illustrated in Figure 7-3(a). The input signal
x(t) from Figure 7-2(a), with the spectrum shown in Figure 7-3(b), is digi-
tized at a sample rate of f, = 4f, providing the discrete samples x(nt)
whose spectrum, X(m), is shown in Figure 7-3(c). The quadrature mixing
with f, = f./4, to center the input signal’s in-phase and quadrature phase
components about 0 Hz, is performed digitally with the results of the in-
phase replicated components depicted in Figure 7-3(d) and the low-pass
filtered in-phase spectrum in Figure 7-3(e). Although the A/D converter
must sample at four times the carrier frequency, the difficulties in signal-
path phase and amplitude matching are eliminated because only one
A/D converter is necessary. In addition, the DC bias problems associated
with analog signal mixing to zero Hz are avoided.

The real advantage of this technique is how easy the quadrature mix-
ing by f, can be performed digitally. For example, the input sampled val-
ues x(nt;) can be multiplied by the repetitive four-element sequence
1,0, -1, 0, etc., to provide i(n). Likewise, x(nt} is multiplied by the four-
element sequence 0, 1, 0, -1, to generate the g(n) samples. The trick is that

Advanced Sampling Techniques

l e O ; Discrete () I
i Kn)
o
xX(ntg)
@ (1) cos(2nfgntg)
@ aw
fg = dfc=1ht,
sin(2nfgntg)
X0 ep»l
(b) M 0 fo Freq
c

IX(m)l Sampled

1 | r\’ ri/rm’

I\N :
3f,

t ¢ f. Fre
© 4 B A e 0 fo=tgs 2 e Freq
()t
. - Magfe
M : l } l } #4 } l } l . " Fr:
@ -4‘fc 's"c -2, + 0 fo=tgd 2 3, e q
(myl
A Mg B
L -
" 4
(® s o fs Freq

- re bandpass sampling with digital mixing: (a) qucdrctu‘re
Flgure 7-3 s%ir?;:r?;u belock diggrom;) spectrum of conﬂnugus bondpc.:ssdmgnal
X(1): (c) discrete spectrum of sampled bandpass signal Xt (d) onert
frequency-transiated | I({m)| discrete spectrum of in-phase comp! ron
of x(nt,); (e) low-pass fitered | '(m)| spectrum of In-phase compo .

these two orthogonal ones sequences translate the input signal’s siectTn}llx'n
by exactly f,/4, and that’s why our original fs was .made equal ‘tol- fc.f 12
clever technique enables complex sampling 'w1thout multiplication
because the mixing is implemented merely by sign c}}anges on x(nt,). |
If we implement this digital mixing process, we'll f'md‘that the spe%?
replication period in Figure 7-3(d) is half what is vYas,m Flg.u.re 7-3(c). This
comes about from the convolution of the real cosine’s positive and.nega-
tive frequency components with | X(m)| in Figure' 7.-3(c). To use tl’;l; dllg-
ital mixing scheme, we must ensure that the cond.mon B.< fc = 1./ o1 S
true. In addition to the reduced spectral replication periodicity, we also

]

Digital Resampling

need to be aware that the DFT magnitude of the frequency-translated i(n),
lI(m)1, is related to the DFT magnitude of x(nt,), | X(m)|, by

mlyg, 0= XL 73)

This is indicated by the Mag and Mag/2 factors in Figures 7-3(c) and (d).
Likewise, the DFT magnitude of the frequency-translated g(n), 1Q(m) 1, is
related to the DFT magnitude | X(m) !, by

Q) l00.4= X -9

So what this all means is that the i(n) and q(n) signals, after translation
down to zero Hz, have been reduced in amplitude by a factor of 2. We can
find out why Figure 7-3(d)’s replication period and equations (7-3) and
(7-4) are true by reviewing Section 10.1, which discusses several different
digital quadrature mixing sequences in more detail,

Thus far, we've reviewed the fundamentals of, and an efficient tech-
nique for, quadrature bandpass sampling. Let’s introduce three other
advanced sampling topics, all of which fall in the general category of dig-
ital resampling.

7.3 Digital Resampling

The useful and fascinating process of digital resampling is a scheme for
changing the effective sampling rate of a discrete signal after the signal has
already been sampled. As such, resampling has many applications; it's
used to minimize computations by reducing data rates when signal band-
widths are narrowed through low-pass filtering. Resampling is manda-
tory in real-time processing when a hardware.digital processor must
accept data at a rate that differs from that processor’s fundamental clock
rate. (A simple example of this is when a digital processor can accept
input data at a 1-MHz rate and the incoming data is arriving at a rate of
1.5 MHz. In this case, the incoming data rate must be converted from a
1.5-MHz rate to a 1-MHz sample rate with a minimum of signal distor-
tion.) In satellite and medical image processing, digital resampling is nec-
essary for image enhancement, image scale change, and image rotation.
Resampling is also used to reduce the computational complexity of cer-
tain narrowband digital filters.

303

304

Advanced Sampling Techniques

We can define resampling as follows: Consider the process where a
continuous signal y, has been sampled at a rate of f,,; = 1/T 4, and the
discrete samples are x_4(n) = y (nT ;). Resampling is necessary when we
need x_ (1) = y(nT,.,), and direct sampling of the continuous y, at the
rate of f, _=1/T,,, is not possible. For example, imagine we have an ana-
log-to-digital (A/D) conversion system supplying a sample value every
T,1q seconds. But our processor can accept data only at a rate of one sam-
ple every T seconds. How do we obtain x,, (1) directly from x,,(n)?
One possibility is to digital-to-analog (D/A) convert the x,,(1) sequence
to regenerate the continuous y, and, then, A/D convert y, at a sampling
rate of f . to obtain x (). Due to the spectral distortions induced by
D/A followed by A/D conversion, this technique limits our effective
dynamic range and is typically avoided in practice. Fortunately, accurate

all-digital resampling schemes have been developed, as we shall see.

7.3.1 Resampling by Decimation

Sampling rate changes come in two flavors: rate decreases and rate
increases. Decreasing the sampling rate is known as decimation. (The
term decimation is somewhat of a misnomer because decimation originally
meant to reduce by a factor of ten. Currently, decimation is the term used
for reducing the sample rate by any integral factor.) When the sampling
rate is being increased, the process is known as interpolation, i.e., esti-
mating intermediate sample values. Because it’s the simplest of the two
rate-changing schemes, let’s explore decimation first.

We can decimate, or downsample, a sequence of sampled values by a
factor of D by retaining every Dth sample and discarding the remaining
samples. Relative to the original sample rate, f,,,, the new sample rate is

fnew = fOId . (7'5)

For example, to decimate a sequence x_,(n) by a factor of D = 3, we retain
x,4(0) and discard x 4(1) and x4(2), retain x_4(3) and discard x;,(4) and
x,q(5), retain x,4(6), and so on. So x (1) = x_,4(3n), where n = 0, 1, 2, etc.
The result of this decimation process is identical to the result of originally
sampling at a rate of f, . = f,,/3 to obtain x . (n). The spectral implica-
tions of decimation are what we should expect, as shown in Figure 7-4,
where the spectrum of an original bandlimited continuous signal is indi-
cated by the solid lines. Figure 7-4(a) shows the discrete replicated spec-

trum of x4(n), X 4(m). With x_ (1) = x,4(3n), the discrete spectrum

SN S —

Digital Resampling 305

X, ew(™) is shown in Figure 7-4(b). Two important features are illustrated
in Figure 7-4. First, X, (m) could have been obtained directly by sam-
pling the original continuous signal at a rate of f, ., as opposed to deci-
mating x,4(n) by a factor of 3. And second, there is, of course, a limit to
the amount of decimation that can be performed relative to the band-
width of the original signal B. We must ensure that faew > 2B to prevent
aliasing after decimation. When an application requires that f.__be less
than 2B, then x_,(n) must be low-pass filtered before the d'::imation
process is performed. An example of the need for low-pass filtering before
decimation is shown in Figure 7-4(c). If the original signal has a band-
width B, and we're interested in retaining only the band B!, the signal
between B' and f,, /2 must be low-pass filtered before the decimation

Xoig (M)
—>igle—
i y
M 5\\{?
(a) Ll i ; -
o 0 foid Freq
Xnew(m)
M A YL DY YL DY
®) . | NEEEENREREE
Bfew 2fnew ~foew O fiow 2fmew 3fnew Freq
= fold
Xoid (m)
T g ™, MM,M}
(©) % . } T %;
= P } -
id new f, Fi
° fhew/2 o e
Xola (m) P_ : :
B'—><-Af
(d) —~ ’\ ::T_l -
new -8B 0 fhew/2 B few Freq

Figure 7-4 Declimo'ri.on by a factor of three: (a) spectrum and replications of
originat signal; (b) spectrum of signal decimated by a factor of three:
(c) example where only the bandwidth 8' from the original bandwidth B

Is to be retained; (d) relationship of a low-pass fiiter’s cutoff frequency
relative to the bandwidth B,

306

Advanced Sampling Techniques

process is performed. Figure 7-4(d) shows this in more detail where the
frequency response of the low-pass filter, shaded, must attenuate the sig-
nal amplitude above f, . /2. In practice, the direct form of FIR filters (the
structure shown in Figure 5-13) is the prevailing choice for low-pass deci-
mation filters because of the FIR filter’s linear phase response[17].

When the desired decimation factor D is large, say D > 10, there is an
important feature of the filter/decimation process to keep in mind.
Significant computational savings may be had by implementing decima-
tion in multiple stages. By way of example, let’s assume that we have
input data arriving at a sample frequency of 400 kHz, and we must deci-
mate by a factor of D = 100 because our digital processor can only accept
data at a rate of 4 kHz. Also, let’s assume that the baseband frequency
range of interest is from 0 to 1.8 kHz. So, with f,, = 4 kHz, we must filter
out any signal above f,_ /2 by having our filter transition band between
1.8 kHz and f,,,,/2 = 2 kHz. It's been shown that the number of stages S
in the direct form of a FIR low-pass filter is proportional to the ratio of the
original sample frequency over the filter transition band, Af in Figure

7-4(d)[17,18]; that is,

S=k foa foa (7-6)

where 2 < k < 4 depending on the amount of filter passband and stop-
band ripple that can be tolerated. So for our case, if k is 3, for example,
S = 6000. Think of it, a filter with 6000 stages! Fortunately there’s a better
way. Let’s do something that appears to compound our problem and par-
tition our decimation example into two stages: decimation by 50 fol-
lowed by decimation by 2, as shown in Figure 7-5(a). We’ll assume that
the original input signal spectrum extends from zero Hz to something
greater than 100 kHz, as shown in Figure 7-5(b). If the first low-pass fil-
ter LPF, has a cutoff frequency of 1.8 kHz and its stopband is defined to
begin at 6 kHz, the output of the D = 50 decimator will have a spectrum,
as shown in Figure 7-5(c), where our 1.8-kHz band of interest is shaded.
Notice that there is aliasing of the signal between 2 kHz and 4 kHz—not
to worry, LPF, will take care of this. When LPF, has a cutoff frequency of
1.8 kHz and its stopband is designed to be 2 kHz, the output of the D =2
decimator will have our desired spectrum, shown in Figure 7-5(d). The
point is that the total number of stages in the two low-pass filters, Sp .,
is greatly reduced from 6000. From Eq. (7-6) for the combined LPF, and
LPF, filters,

Digital Resampling
Xoid (M) Xold (1)
a X nj
(a) ——| LPF, D=50 - LPF, D=2 _"L”»
fod = 400 khiz ~BkHz Koy
4 Xoa(m)
(b) f
0 t t + " -
200 400 Freq (kHz)

LPFy frequency

/ rasponse

© Reflection of LPF,
frequency response

centered about 8 kHz

T + + ‘>
[18 2 4 6 8 Freq (kHz2)
A Xnew(m)
(@
0 t +—t + 4 -
18 2 4 Freq (kHz)

Figure 7-5 Multistage decimation: () decimation block diagram; (b) spectrum of

originat signal; (¢) output of the D = 50 decimator;
D =2 decimator. H(odtput of the

= 400 8
STotal = Sier, + Sipr, =3- @-18) +3- @-18) = 665 stages. (7-7)

This is an impressive computational reduction. Reviewing Eq. (7-6) for
each stage, in the first stage we see that, although f ,, = 400 kHz remained
constant, we increased Af. In the second stage, both Af and f, , were
reduced. The fact to remember in Eq. (7-6) is that the ratio f /(Zj‘l' has a
much more profound effect than k in determining the numbtelx‘il of stages
necessary in a low-pass filter. This example, although somewhat exag-
geréted, shows the kind of computational saving afforded by multistage
decimation. Isn't it interesting that adding more Pprocessing stages to our

original D = 100 decimation problem actually decreased the necessary
computational requirement?

307

308

Advanced Sampling Techniques

A sensible way to evaluate FIR decimation filter implementations or
any filter implementation, for that matter, is to determine the necessary
number of multiplications/second. Going back to our original D = 3 dec-
imation example, let’s assume f,;; = 60 kHz and our decimation filter need
have only S = 5 multiplier stages, as shown in Figure 7-6(a), with the fil-
ter coefficients being h, to 1. Because the x_4(n) samples are arriving at a
rate of f,,, the low-pass filter requires C,, multiplications/s where

Cp = 5f,; =5 - 60,000 = 300,000 multiplications/s. (7-8)

In Figure 7-6(a), our decimation by three is symbolized by a rotary switch
that rotates clockwise 120° each time an x_ () sample arrives and only
every third filter output sample is retained for x,, (n). This structure is
not so desirable because, for every 15 multiplications, we use only 5 prod-
ucts, an inefficient arrangement even when D is small. Fortunately, the
switching (decimation) can be moved ahead of the multipliers, as illus-
trated in Figure 7-6(b), and we need perform only C, multiplications/s
where

Cp'= %l = ngd = 100,000 multiplications/s. (7-9)
By moving the decimation process ahead of the multipliers, we give the
multipliers D = 3 times as long to perform a multiplication, and x,,,, (1) is
identical in the two filter structures. (If our odd-order FIR filter coeffi-
cients are symmetrical, so that h(4) = h(0), and h(3) = h(1), there’s a clever
way to further reduce the number of necessary multiplications, as
described in Section 10.8.)

Let’s step back for a moment to make sure we understand what’s going
on here. The rotating switches in Figure 7-6 are only conceptual. Again,
the switch in Figure 7-6(a) means that we retain only every third output
sample of x . In this case, the filter is operating at the input sample rate
of f_,4 and we discard two out of every three filter output samples. In
Figure 7-6(b), we don’t even bother to calculate the two out of every three
samples that are to be discarded; here, the filter is operating at the
reduced output sample rate of f, ., where we calculate only those output
samples that we need. By the way, IIR filters cannot take advantage of the
reduced computation scheme in Figure 7-6(b) because the various imple-
mentations of IIR filters mandate that they must always operate at the
input sample rate f ;.

(b)

Xnew(3n)

_

Figure 7-6 Decimqﬂon filter Implementations: () five-stage FIR digltal fiiter;
(b) decimation taking place before the filter multiplications.

‘ Before we leave the subject, it's interesting to realize that decimation
is one of those rare processes that is not time invariant. From the very
nature of its operation, we know that if we delay the input sequence by
one sample, a downsampler will generate an entirely different output
sequence. For example, if we apply an input sequence x(n) = x(0), x(1)

x(2), x(3), x(4), etc., to a downsampler and D = 3, the output y(n) will be,
the sequence x(0), x(3), x(6), etc. Should we delay the input sequence by
one sample, our delayed x'(n) input would be x(1), x(2), x(3), x(4), x(5),
etc. In this case, the delayed output sequence y'(n) would be x(1), x(4)

x(7), etc., which is not a delayed version of y{n). Thus, a decimato;
(downsampler) is not time invariant.

7.3.2 Resampling by Interpolation

As we said before, decimation is only part of the digital resampling
story—let’s now consider interpolation. Sample rate increase by interpo-
lation is a bit more involved than decimation because, with interpolation,
new sample values need to be calculated. Conceptually, interpolation

30

310

Advanced Sampling Techniques

comprises generating a continuous curve that passes through our x,,(n)
sampled values, followed by resampling that curve at the new sample
rate £, .., to obtain the sequence x__ (n). Of course, continuous curves can’t
exist inside a digital machine, so we’ll just have to obtain x_, (n) directly
from x_4(n). To increase a given sample rate or upsample by a factor of U,
we have to calculate U-1 intermediate values between each sample in
¥ ,14(7). The process is beautifully straightforward and best understood by
way of an example.

Let’s assume that we have the sequence x_,(n), part of which is
shown in Figure 7-7(a), and we want to increase its sample rate by a fac-
tor of 4, so, U = 4. The sequence’s spectrum is provided in Figure 7-7(b)
where only the signal spectrum between 0 Hz and 4f,; is shown. To
upsample x_ (1), by a factor of four, we must insert three zeros between
each sample of x_,(n) as shown in Figure 7-7(c), to create the new
sequence x' _ (n'). (This insertion of zeros is called zero padding.)
Notice that :

new

¥ () = x4(n), whenn' = 4n ; (7-10)

that is, the old sequence is now embedded in the new sequence. The inser-
tion of the zeros establishes the sample index for the new sequence x, (1)
where the interpolated values will be assigned. The spectrum of x' (1),
X' pew(m), is shown in Figure 7-7(d) where f = 4f ;. In Figure 7-7(d),
notice that x4(n)’s spectrum is replicated U = 4 times in the frequency
range of zero Hz tof, . This shouldn’t surprise us; x ;4(n)’s spectrum was
already replicated 4 times between 0 Hz and f,,, in Figure 7-7(b). What
we’ve done by adding the zeros is merely increase the effective sample fre-
quency to f, = f, ., in Figure 7-7(d). Likewise, we've also increased the new
folding frequency by a factor of 4 to 2f, .

The final step in interpolation is to filter the x' (1) sequence with a
low-pass digital filter whose frequency response about zero Hz and f,,,
Hz is shown as the dashed lines in Figure 7-7(d). This low-pass filter is
called an interpolation filter, and its output sequence is the desired x, (1),
shown in Figure 7-7(e) while its output spectrum is given in Figure 7-7(f).
Is that all there is to interpolation? Well, not quite—because we can't
implement an ideal low-pass filter, x,, (n') will not be an exact interpola-
tion of x_;,(n). The error manifests itself as the unwanted images indicated
by the low-level replications in Figure 7-7(f). With an ideal filter, these
images would not exist. We can only approximate an ideal, low-pass fil-
ter, and the accuracy of our entire interpolation process depends on the
frequency response of our filter approximation! As with decimation,

Digital Resampling
X1 (n) Xia(m)
[] . A e [N
‘a>¢ ofl Y v YOV
T - BN
i Time 0 fold 20y Bfyy 4oq Freg
{fs)
X () Xnew (M)
[] e e
(@) L @ M\ M
oot : - \ -
Toow Tyg Time 0 fid 200 3y frew Freq
s
Xaew (M)
© 0 h
0 fad 2%a By ey Freg
(fs)

Figure 7-7 Interpolation by a factor of four: (@) original sampled sequence:;
(b) spectrum of original sequencs; (c) zeros inserted In originai
sequence:; (d) spectrum of sequence with inserted zeros; () output
sequence of interpolation filter; (f) output spectrum of interpolation

interpolation can be thought of as, fundamentally, a low-pass filter
design exercise, and the choice of interpolation filter structure deserves
attention.

If the FIR interpolation filter design requires S filter stages, we need
not perform S multiplications to get each of the Xpnew(n') samples in Figure
7-7(e). By way of an example, returning to our U = 4 interpolation case,
let’s assume we’ve decided that we need a low-pass filter with § = 19
stages. Our example uses an FIR filter with an odd number of stages
because this is the optimum structure used for interpolation filters[19].
The job of our low-pass filter is to convolve its impulse response with the
¥ ew(M') sequence. Figure 7-8(a) shows the low-pass filter’s impulse
response being applied to a portion of the X' ew(n') samples to calculate
the ninth sample of Xnew(m), X, (9). The 19 filter coefficients are indi-
cated by the Xs in Figure 7-8(a). With the dots in Figure 7-8(a) represent-
ing the x', (1) sequence, we see that, although there are 19 Xs, only the
bold Xs generate nonzero products that contribute to the convolution sum
Xpew(9). The issue here is that we need not perform the multiplications
associated with the zero-valued samples in X e (). In our example, we
need only perform five multiplications to get x,...(9). For the general case,

Advanéed Sampling Techniques

*xnew(g)
1 xw‘x-‘g,x
/ \
(a) / X
! e [} \x *
SN NS 1 .\ Vi — xS
\xkx’/ \ \x,x"x Time
n'=9
Xnaw (9)
1+ B,
®)
/ N\
(b) /° O\
VAR N\ T e
EIN -, e s e S
~4 \o‘x/ N o Time

Figure 7-8 Nineteen-stage interpolation filter coefficients: ()
interpolation filter’s impulse response shift position to
calculate x,,, (9. (©) Xs mark the only filter coefficients that

need be used to calculate x,,, ().

the number of multiplications necessitated by an odd-order symmetric‘aI
interpolation FIR filter, for each sample of x, , (n'), cannot be expressed in
a closed form for all possible values of S and U, but it can be shown that
the minimum number of nonzero multiplications C;; . is

Comn = r%] multiplications, (7-11)

where[|means “the largest integer contained in.” Clmin is the n@ber of
X' o () values that will be used in the interp‘ola.tior‘l to de'fermme each
Xpew(?') sample. The number of necessary mulhphcat}ons / sis CUmi{l'fn_ew'

So the good news is that the number of interpolation filter ‘multlphca-
tions necessary is approximately equal to S/U, and that’s quxtg a redl.lc-
tion in computational complexity. The bad news is that we still require
that S = 19 filter coefficients be stored, and we can’t take advantage of any
filter coefficient symmetry to reduce the number of multiplications k.)y a
further factor of two as described in Section 10.8. Both of these minor

Digital Resampling

problems are the price we must pay to take advantage of Eq. (7-11), and
they can be understood by examining Figure 7-8(b). To illustrate our U = 4
example, in Figure 7-8(b), we use the filter coefficients indicated by the Xs
to calculate x_, (9). When we slide the filter’s impulse response to the
right one sample, we use the coefficients indicated by the circles to calcu-
late x_ (10) because the nonzero values of X' ew() Wil line up under the
circled coefficients. Likewise, when we slide the impulse response to the
right one more sample to calculate X.ew(11), we use the coefficients indi-
cated by the diamonds. Finally, when we slide the impulse response to the
right once more, we use the coefficients indicated by the triangles to cal-
culate x_ . (12). Sliding the filter’s impulse response once more to the
right, we return to using the coefficients indicated by the Xs to calculate
X,ew(13). You can see the pattern here—there are U, where U = 4 in our
example, different sets of coefficients that are used to calculate x, (n')
from the X' pew(nt') samples. Each time a new ¥pew(?) sample value is to be
calculated, we rotate one step through the sets of coefficients and use

the A coefficient set, when n' = 0,4,8,12,.. ., 4n,
the X coefficient set, when n' = 1,5,9,13,..., 4n+1,
the o coefficient set, when n' = 2,6,10, 14, ..., 4n+2, and

the ¢ coefficient set, when n' = 3,7,11,15,.. ., 4n+3.

This rotation through U sets of coefficients, where each set contains
approximately 5/ U coefficients, is why interpolation filters are sometimes
called time-varying, or polyphase, filters. At different times, we use differ-
ent filter coefficients.

So, even though we don’t have to perform S = 19 multiplications for
eachx, (n') value, we do have to have § = 19 filter coefficients stored and
available to calculate each Xpew(). (During the calculation of any given
X,ew() sample, because the coefficients are not necessarily symmetrical,
we can'’t take advantage of any symmetrical filter structure to reduce the
number of multiplications by an additional factor of two as discussed in
Section 10.8.) There’s one final important feature of the FIR filter’s coeffi-
cients indicated by the triangles. For our example, when the filter’s
impulse response peak is aligned above one of the nonzero values of
X ew('), DOtice that the other coefficients indicated by the remaining tri-
angles have values of zero. This results in the agreeable characteristic that
Xpew(n) =X, (1) = X',...(4n), so that the output of the filter at the original
sampling times is equal to the original samples.

313

314

Advanced Sampling Techniques

7.3.3 Combining Decimation and Interpolation

While changing sampling rates through decimation or interpolation by
integer factors can be useful, what can we do if we need a sample rate
change that is not an integer? The good news is that we can implement
sample rate changes by any rational fraction U/D with interpolation by a
factor of U followed by decimation by a factor of D. Because the fraction
U/D can be obtained as accurately as we want with the correct choice of
integers U and D, we can change sample rates by almost any factor in
practice. For example, a sample rate increase by a factor of 7.125 can be
performed by an interpolation of U = 57 followed by a decimation of
D = 8, because 7.125 = 57/8.

This U/D sample rate change is illustrated by the processes shown
in Figure 7-9(a). The really neat part here is that the computational bur-
den of changing the sample rate by the combination of U/D is less than
the sum of an individual interpolation followed by an individual deci-
mation because we can combine the interpolation filter LPF, and the
decimation filter LPF into a single filter, shown as LPFWD in Figure 7-
9(b). The process in Figure 7-9(b) is normally called a sample rate con-
verter because, if U > D we have interpolation, and, when D > U, we
have decimation. (The filter LPF;, is sometimes referred to as an
interpolation filter, regardless of the ratio U/D, and sometimes it’s
called a multirate filter.) LPFU/D serves two purposes for us now. First, it
must sufficiently attenuate the interpolation images illustrated in
Figure 7-7(f), so that, after decimation, they don’t contaminate our
desired signal beyond acceptable limits. Second, it must have a cutoff
frequency that prevents aliasing of our desired signal images resulting
from the final decimation.

To illustrate these filter requirements, let’s assume we need to resam-
ple an input sequence by 4/3 or 1.333, so, U = 4, and D = 3. The original
sequence x,,,(n) has the spectrum shown in Figure 7-9(c). The spectrum of
the intermediate sequence x', (n') after upsampling by 4 and low-pass
filtering by LPF,; ; is shown in Figure 7-9(d). The spectral result, after the
D = 3 decimation to obtain the desired output sequence x,,, (n"), is shown
in Figure 7-9(e). Notice that the frequency response of LPF,;, must be
designed so that the stopband frequency, f,;,,,, is less than f,..,,/2 to avoid
aliasing after the decimation. Of course LPF,, is a time-varying filter as
described above for Figure 7-8. The attenuation of LPF,;, beyond f,,,
must be great enough, so that the images (shown in Figure 7-9(d) at mul-
tiples of f,,) do not induce intolerable levels of noise when they're aliased
by decimation into the final band of 0 to £, ,,,/2 Hz. If the number of mul-

Digital Resampling

Interpolation Decimation
Xoig(n) Xnew(r")
(@)] U * new.
LPF,, LPF {—a= D * >~
Sample Rate Converter
Xo1q(N) Xoaw(M)
b old 7 f LPF new
(b) U o =™ D } o
Xnew ()
Xo1g(m)
4 ¥ < -
o 11 [l Iyl DY
Pl [P -
0 foid 2o ora Yoa Freq
(fs)
Xnew(m)
N *fum .
? /N
0 fsiop ol f'new Freq
(fs)
Xnew (M)
N 1N N B S
| T N
0 / \ fnew 2hnew Freq
fstop fn_;w (fs)

Figure 7-9 Sampile rate conversion by a factor of 4/3; (a) combination of
Interpoiation and decimation; (b) sample rate conversion with a single
low-pass filter: () original discretes input sequence spectrum;

(d) spectrum of the low-pass filter output; (e) final discrete spectrum
after decimation by a factor of 3.

tiplication stages in LPF,p is S, the computational complexity of our
interpolator/decimator implementation is given by

S e
Cup= 1375) multiplications/output sample. (7-12)

315

316

Advanced Sampling Techniques

Because the input to LPF,;;, is nonzero only for every Uth filter input
sample, so, for each filter output sample we need only perform S/U mul-
tiplications. Moreover, our decimator discards all but every Dth filter out-
put sample, so the actual number of multiplications necessary is (S/U)/D
multiplications per decimator output sample.

Again, our interpolator/decimator problem is an exercise in low-pass
filter design, and all the knowledge and tools we have to design low-pass
filters can be applied to this task. In software interpolator/decimator
design, we want our low-pass filter algorithm to prevent aliasing images
and be fast in execution time. For hardware interpolator/decimators, we
strive to implement a design that optimizes the conflicting goals of high
performance (minimurm aliasing), simple architecture, high data through-
put speed, and low power and parts count requirements.

This introduction to digital resampling has, by necessity, only touched
the surface of this important signal processing technique. Fortunately for
us, the excellent work of the first engineers and mathematicians to explore
this subject is well documented in the literature. The inquisitive reader
can probe further to learn how to choose the number of stages in a multi-
stage process[17,20], the interrelated considerations of designing opti-
mum FIR filters[17,21], the benefits of half-band FIR filters[18,22], when
IR filter structures may be advantageous[21], what special considerations
are applicable to resampling in image processing[23-25], guidance in
developing the control logic necessary for hardware implementations of
resampling algorithms[21], how resampling improves the usefulness of
commercial test equipment[26,27], and software development tools for
designing multirate filters[28].

References

[1] Floyd, P, and Taylor, J. “Dual-Channel Space Quadrature-Interferometer
System,” Microwave System Designer’s Handbook, Fifth Edition, Microwave
Systems News, 1987.

[2] Hack, T. “IQ Sarhpling Yields Flexible Demodulators,” RF Design Magazine,
April 1991.

[3] Mirage Systems, “Automated-Radar-Measurement System for Pulsed 1/Q
Data Collection,” Microwave System News and Communications Technology,
December 1987.

[4] Chester, D. B., and Phillips, G. “Use DSP Filter Concepts in IF System
Design,” Electronic Design, July 11, 1994.

{5] Steyskal, H. “Digital Beamforming Antennas,” Microwave Journal, January
1987.

References

[6] Maruta, R, and Tomozawa, A. “An Improved Method for Digital SSB-FDM
Modulation and Demodulation,” IEEE Trans. on Communications, Vol.
COM-26, No. 5, May 1978.

[71 Albaugh, N. “New ADCs for RF Signal Processing,” RF Design, November 1987,
[8] Oxaal,]. “DSP Hardware Improves Multiband Filters,” EDN, March 1983,
[9] Sigman, E. “Simplified Digital Down-Converters,” NASA Tech Briefs, July 1995.

{10] Coleman, B., Meehan, P, Reidy, J., and Weeks, P. “Coherent Sampling Helps
When Specifying DSP A/D Converters,” EDN, October 1987.

[11] Kester, W. “DSP Test Techniques Keep Flash ADCs in Check,” EDN Magazine,
January 18, 1990.

[12] Morris, G., Jr., and Wilck, H. “JPL 2% Channel 330 MHz Bandwidth Digital
Spectrum Analyzer,” IEEE Proc., Int. Conference, Acoust., Speech, Signal
Processing, 1978.

[13] Considine, V. “Digital Complex Sampling,” Electronics Letters, 19, 4 August,
1983,

[14] Rader, C. M. “A Simple Method for Sampling In-Phase and Quadrature
Components,” IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-20,
No. 6, November 1984.

[15] Rice, D., and Wu, K. “Quadrature Sampling with High Dynamic Range,” IEEE
Trans. on Aerospace and Electronic Systems, Vol. AES-18, No. 4, November 1982,

[16] Pellon, L. E. “A Double Nyquist Digital Product Detector for Quadrature
Sampling,” IEEE Trans. on Signal Processing, Vol. 40, No. 7, July 1992.

[17] Crochiere, R. E., and Rabiner, L. R. “Optimum FIR Digital Implementations
for Decimation, Interpolation, and Narrow-band Filtering,” IEEE Trans. on
Acoust. Speech, and Signal Proc., Vol. ASSP-23, No. 5, October 1975.

[18] Ballanger, M. G. “Computation Rate and Storage Estimation in Multirate
Digital Filtering with Half-Band Filters,” IEEE Trans. on Acoust. Speech, and
Signal Proc., Vol. ASSP-25, No. 4, August 1977.

[19] Schafer, R. W., and Rabiner, L. R. “A Digital Signal Processing Approach to
Interpolation,” Proceedings of the IEEE, Vol. 61, No. 6, June 1973.

[20] Crochiere, R. E., and Rabiner, L. R. “Decimation and Interpolation of Digital
Signals—A Tutorial Review,” Proceedings of the IEEE, Vol. 69, No. 3, March 1981.

[21] Crochiere, R. E., and Rabiner, L. R. “Further Considerations in the Design of
Decimators and Interpolators,” IEEE Trans. on Acoust. Speech, and Signal Proc.,
Vol. ASSP-24, No. 4, August 1976,

[22] Ballanger, M. G., Daguet, J. L., and Lepagnol, G. P. “Interpolation,
Extrapolation, and Reduction of Computational Speed in Digital Filters,” IEEE
Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-22, No. 4, August 1974.

317

318

Advanced Sampling Techniques

[23] Hou, H. S., and Andrews, H. C. “Cubic Splines for Image Interpolation and
Digital Filtering,” IEEE Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-26,
No. 6, August 1978.

[24] Keys, R. G. “Cubic Convolution Interpolation for Digital Image Processing,”
IEEE Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-29, No. 6, August 1981.

[25] Parker, J. A., Kenyon, R. V., and Troxel, D. E. “Comparison of Interpolating
Methods for Image Resampling,” IEEE Trans. on Medical Imaging, Vol. MI-2,
No. 1, August 1983.

[26] Blue, K. J., et al. “Vector Signal Analyzers for Difficult Measurements on
Time-Varying and Complex Modulated Signals,” Hewlett-Packard Journal,
December 1993.

[27] Bartz, M., et al., “Baseband Vector Signal Analyzer Hardware Design,”
Hewlett-Packard Journal, December 1993.

[28] Mitchell, J. A. “Multirate Filters Alter Sampling Rates Even After You've
Captured the Data,” EDN, August 20, 1992.

T JCHAPTER EIGHT
Signal Averaging

How do we determine the typical amount, a valid estimate, or the true
value of some measured parameter? In the physical world, it’s not so easy
to do because unwanted random disturbances contaminate our measure-
ments. These disturbances are due to both the nature of the variable being
measured and the fallibility of our measuring devices. Each time we try to
accurately measure some physical quantity, we'll get a slightly different
value. Those unwanted fluctuations in a measured value are called noise,
and digital signal processing practitioners have learned to minimize noise
through the process of averaging. In the literature, we can see not only
how averaging is used to improve measurement accuracy, but that aver-
aging also shows up in signal detection algorithms as well as in low-pass
filter schemes. This chapter introduces the mathematics of averaging and
describes how and when this important process is used. Accordingly, as
we proceed to quantify the benefits of averaging, we're compelled to
make use of the statistical measures known as the mean, variance, and
standard deviation.

In digital signal processing, averaging often takes the form of summing
a series of time-domain signal samples and then dividing that sum by the
number of individual samples. Mathematically, the average of N samples
of sequence x(n), denoted X,.e 18 expressed as

N
Xave =%2x(n)= x(D)+x(2)+x2(3) +...+ x(N) ‘

n=1 N (8-1)

(What we call the average, statisticians call the mean.) In studying averag-

ing, a key definition that we must keep in mind is the variance of the
sequence 62 defined as

319

320

Signail Averaging_‘
1 N
62 = ﬁzlx(n)—xavelz ’ (8-2)
n=1 '

_ (D) =2y P+ 32 - Xoe P +1X3) = X I+ + [X(N) = g [
5 :

(8-2)

As explained in Appendix D, the 62 variance in Eqgs. (8-2) and (8-2)
gives us a well-defined quantitative measure of how much the values in
a sequence fluctuate about the sequence’s average. That’s because the
x(1) — x,,, value in the bracket, for example, is the difference between the
x(1) value and the sequence average x,,,. The other important quantity
that we'll use is the standard deviation defined as the positive square root

of the variance, or

1 N
o= \/ﬁg;[x(n)-xavelz) (8-3)

To reiterate our thoughts, the average value x,, is the constant level
about which the individual sequence values may vary. The variance o2
indicates the sum of the magnitudes squared of the noise fluctuations of
the individual sequence values about the x, , average value. If the
sequence x(n) represents a time series of signal samples, we can say that
X, Specifies the constant, or DC, value of the signal, the standard devia-
tion o reflects the amount of the fluctuating, or AC, component of the sig-
nal, and the variance 62 is an indication of the power in the fluctuating
component. (Appendix D explains and demonstrates the nature of these
statistical concepts for those readers who don’t use them on a daily basis.)

We're now ready to investigate two kinds of averaging, coherent and
incohierent, to learn how they're different from each other and to see under
what conditions they should be used.

8.1 Coherent Averaging

In the coherent averaging process (also known as linear, predetection, or
vector averaging), the key feature is the timing used to sample the origi-
nal signal; that is, we collect multiple sets of signal plus noise samples,
and we need the time phase of the signal in each set to be identical. For
example, when averaging a sinewave embedded in noise, coherent aver-
aging requires that the phase of the sinewave be the same at the beginning
of each measured sample set. When this requirement is met, the sinewave

Coherent Averaging

will average to its true sinewave amplitude value. The noise, however, is
different in each sample set and will average toward zero.' The point is
that coherent averaging reduces the variance of the noise, while preserv-
ing the amplitude of signals that are synchronous, or coherent, with the
beginning of the sampling interval. With coherent averaging, we can actu-
ally improve the signal-to-noise ratio of a noisy signal. By way of exam-
ple, consider the sequence of 128 data points plotted in Figure 8-1(a).
Those data points represent the time-domain sampling of a single pulse
contaminated with random noise. (For illustrative purposes the pulse,
whose peak amplitude is 2.5, is shown in the background of Figure 8-1.)
It’s very difficult to see a pulse in the bold pulse-plus-noise waveform in

the foreground of Figure 8-1(a). Let’s say we collect 32 sets of 128 pulse-
plus-noise samples of the form

Sample Set, = x,(1), x,(2), %,(3) , ..., %,(128) ,
Sample Set, = x,(1), x)(2), x)(3) , ..., x,(128) ,
Sample Set, = x,(1), x3(2), x,(3) , ..., x5(128) ,

Sample Set,, = x,,(1), %32(2), x35(3) , ..., %5,(128) . (8-4)

Here’s where the coherent part comes in; the signal measurement times
must be synchronized, in some manner, with the beginning of the pulse,
so that the pulse is in a constant time relationship with the first sample of
each sample set. Coherent averaging of the 32 sets of samples, adding up
the columns of Eq. (8-4), takes the form of

32
)= 35 35,0 =B+ 58+ 130+ 2 L/ 32,
or
Xave(D) =[x, (1) + 2, (1) + x5 (1) +... + x35(1)] / 32
1o = (12 + 5,2+ 1,2 +...+ 152/ 32
1ae@) = [13)+ ,3)+ 1,(3)+...+ 75(3)] /32

Xaye(128) = [x;(128) + x,(128) + x(128) + .. + x4,(128)] / 32 . (8-5)

t Noise samples are assumed to be uncorrelated with each other and uncorrelated with the

sample rate. If some component of the noise is correlated with the sample rate, that noise
component will be preserved after averaging.

32]

322

Signal Averaging

‘ Amplitude

0 >
1 20 40 60 80 100 120 Time
A Ampiitude
4
T At Al A AN
A M ALA LA
t\vn vlv 4 f V 'v 7 v v'
N=32 o
1 ‘ >
1 20 40 60 80 100 120 Time
A Amplitude
! Puise risln; Pulse falling
edge edge
7 IR
Al Y 4
j‘ VoY A a4 \'ad
(©) 2 |4 A
| N=256 .
Y 20 40 60 80 100 120 Time

Figure 8-1 Signal pulse pius noise: (a) one sample set; (b) average of 32
sample sets; (¢) average of 256 sample sefts.

If we perform 32 averages indicated by Eq. (8-5) on a noisy pulse 1il.<e
that in Figure 8-1(a), we’d get the 128-point kR (9] sequenc.e Plotted in
Figure 8-1(b). Here, we’ve reduced the noise fluctuations riding on the
pulse, and the pulse shape is beginning to become apparent. The c'oher-
ent average of 256 sets of pulse measurement sequences results 1'n.the
plot shown in Figure 8-1(c), where the pulse shape is clearly visible
now. We've reduced the noise fluctuations while preserving the pulse
amplitude. (An important concept to keep in mind is that summation

Coherent Averaging

and averaging both reduce noise variance. Summation is merely imple-
menting Eq. (8-5) without dividing the sum by N = 32. If we perform
summations and don’t divide by N, we merely change the vertical
scales for the graphs in Figure 8-1(b) and (c). However, the noise fluc-
tuations will remain unchanged relative to true pulse amplitude on the
new scale.)

The mathematics of this averaging process in Eq. (8-5) is both straight-
forward and important. What we’d like to know is the signal-to-noise
improvement gained by coherent averaging as a function of N, the num-
ber of sample sets averaged. Let's say that we want to measure some con-
stant time signal with amplitude A, and each time we actually make a
measurement we get a slightly different value for A. We realize that our
measurements are contaminated with noise such that the nth measure-
ment result r(n) is

r(n) = A + noise(n) , (8-6)

where noise(n) is the noise contribution, Our goal is to determine A when
the r(n) sequence of noisy measurements is all we have to work with. For
a more accurate estimate of A, we average N separate r(n) measurement
samples and calculate a single average value r, .. To get a feeling for the
accuracy of r, ., we decide to take a series of averages r,_(k), to see how
that series fluctuates with each new average; that is,

TarelD) = [1(1) + 1(2) + r3G)+ ... + (\N)]/N,
Tavel2) = [F(N+1) + r(N+2) + r(N+3) +... + r2N)]/N, - 2nd N-point average
Tavel3) = [M(2N+1) + r(2N+2) + r2N+3) + ... + rBN)]/N, <3 N-point average

¢ 1st N-point average

Tavel®) = [P(I6-11-N+1) + r([k-1]- N+2) + r([k=1]-N+3) + ... + r(k-N)]/N . 87)

or, more concisely,
1 &
Taye () = EZr([k—l]-N+n) . (8-8)
n=1

To see how averaging reduces our measurement uncertainty, we need to
compare the standard deviation of our Tave(k) sequence of averages with
the standard deviation of the original r(n) sequence.

323

324

Signal Averaging

If the standard deviation of our original series of measurements r(n) is
O, it has been shown [1-5] that the standard deviation of our ?uvelK)
in/ . .
sequence of N-point averages, o,,., is given by

Oin

Oave = W .

Equation (8-9) is significant because it tells us that the r, (k) series of aver-
ages will not fluctuate as much about A as the original 7(1) measurement
values did; that is, the r, (k) sequence will be less noisy than any r(n)
sequence, and the more we average by increasing N, the more closely an
individual 7, (k) estimate will approach the true value of A.!

In a different way, we can quantify the noise reduction afforded by
averaging. If the quantity A represents the amplitude of a signal and Oin
represents the standard deviation of the noise riding on that 31gn2.11 a?mph-
tude, we can state that the original signal-amplitude-to-noise ratio is

(8-9)

SNR,, = A . (8-10)

Likewise, the signal-amplitude-to-noise ratio at the output of an averag-
ing process, SNR, . is defined as

SNR,,, = 2% = . (8-11)

Continuing, the signal-to-noise ratio gain, SNR_, gain, that we've realized
through coherent averaging is the ratio of SNR,, over SNR, , or

SNRave = A/Gave - Oin . (8-12)
SNRm A/cm o-ave

SNR_,, gain =
Substituting o, from Eq. (8-9) in Eq. (8-12), the SNR gain becomes

in=—3n___ /N . (8-13)
SNR ., gain o /AN

*Equation (8-9) is based on the assumptions that the average of the original noise is zero and
that neither A nor 6, change during the time we're performing our averages.

Coherent Averaging

Through averaging, we can realize a signal-to-noise ratio improvement
proportional to the square root of the number of signal samples averaged.
In terms of signal-to-noise ratio measured in decibels, we have a coherent
averaging, or integration, gain of

SNR o1, gain(dB) =20 log;,(SNR ;) = 20- logm(\/ﬁ)=10-log,(N) . (8-14)

Again, Egs. (8-13) and (8-14) are valid if A represents the amplitude of a sig-
nal and o, represents the original noise standard deviation,

Another way to view the integration gain afforded by coherent aver-
aging is to consider the standard deviation of the input noise, 6, and the
probability of measuring a particular value for the Figure 8-1 pulse ampli-
tude. Assume that we made many individual measurements of the pulse
amplitude and created a fine-grained histogram of those measured values
to get the dashed curve in Figure 8-2(a). The vertical axis of Figure 8-2(a)
represents the probability of measuring a pulse-amplitude value corre-
sponding to the values on the horizontal axis. If the noise fluctuations fol-
low the well-known normal, or Gaussian distribution, that dashed
probability distribution curve is described by

p(x) = j‘z_ e—(x—#)2 /207 _ Ke~x-1)?*/20? (8-15)
OVLT

where ¢ = 6, and the true pulse amplitude is represented by p =25 We
see from that dashed curve that any given measured value will most
likely (with highest probability) be near the actual pulse-amplitude value
of 2.5. Notice, however, that there’s a nonzero probability that the mea-
sured value could be as low as 1.0 or as high as 4.0. Let's say that the
dashed curve represents the probability curve of the pulse-plus-noise sig-
nal in Figure 8-1(a). If we averaged a series of 32 pulse-amplitude values
and plotted a probability curve of our averaged pulse-amplitude mea-
surements, we'd get the solid curve in Figure 8-2. This curve characterizes
the pulse-plus-noise values in Figure 8-1(b). From this solid curve, we see
that there’s a very low likelihood (probability) that a measured value,
after 32-point averaging, will be less than 2.0 or greater than 3.0.

From Eq. (8-9), we know that the standard deviation of the result of
averaging 32 signal sample sets

=S _ O i
e = 35 565 (8-16)

325

326

Signal Averaging

KA pX)

0.8K “

EASE No averaging
[\ e
T . N—'

3 T 7 I ; \
' 4 s /Gave N
0.4K o’ = \
. — °|n7L-‘ \ N=32 i~
0.2K - K/ <
.’ / S -
0 L

0 1.0 2.0 3.0 4.0 Measu;d
amplitude (x)

Figure 8-2 Probability density curves of measured puise ampilitudes with no
averaging (N = 1) and with N= 32 averaging.

In Figure 8-2, we can see a statistical view of how an averager’s output
standard deviation is reduced from the averager’s input standard devia-
tion. Taking larger averages by increasing N beyond 32 would squeeze the
solid curve in Figure 8-2 even more toward its center value of 2.5, the true
pulse amplitude.

Returning to the noisy pulse signal in Figure 8-1, and performing
coherent averaging for various numbers of sample sets N, we see in
Figure 8-3(a) that as N increases, the averaged pulse amplitude
approaches the true amplitude of 2.5. Figure 8-3(b) shows how rapidly
the variance of the noise riding on the pulse falls off as N is increased. An
alternate way to see how the noise variance decreases with increasing N
is the noise power plotted on a logarithmic scale as in Figure 8-3(c). In
this plot, the noise variance is normalized to that noise variance when no
averaging is performed, i.e., when N = 1. Notice that the slope of the
curve in Figure 8-3(c) closely approximates that predicted by Egs. (8-13)
and (8-14); that is, as N increases by a factor of 10, we reduce the average
noise power by 10 dB. Although the test signal in this discussion was a
pulse signal, had the signal been sinusoidal, Egs. (8-13) and (8-14) would
still apply.

* The curves in Figure 8-2 are normalized for convenient illustration. From Eq. (8-15) and
assuming that 6 = 1 when N = 1, then K = 0.3989. When N = 32, the new standard deviation
is6' = 6/+N =1/+/32 and K = 0.3989- /32 =223,

Incoherent Averaging

2 60“ Averaged pulse amplitude

-

(a) 250 [f}- ;

2.40
0 100 200 300 200 500

ZW

0.9 4 Averagec‘1 pulse-amp:litude variance, cazve :

100 200 300 200 500 y

‘l\ Averaged noise power (dB)

()

1 10 — 100 o
500 N
Figure 8-3 Results of averaging signal pulses plus noise: (@) measured pulse

amplitude vs. N: (b) measured variance of pulse amplitude vs. N: ©
measured pulse-amplitude noise power vs. N on a logarithmic scale.

8.2 Incoherent Averaging

The process of incoherent averaging (also known as rms, postdetection,
scalar, or video averaging) is the averaging of signal samples where no
sample timing constraints are used; that is, signal measurement time

327

328

Signal Averaging

intervals are not synchronized in any way with the phase of the signal
being measured. Think for a moment what the average would be of the
noisy pulse signal in Figure 8-1(a) if we didn’t in some way synchronize
the beginning of the collection of the individual signal sample sets with
the beginning of the pulse. The result would be pulses that begin at a dif-
ferent time index in each sample set. The averaging of multiple sample
sets would then smear the pulse across the sample set, or just “average
the pulse signal away.” (For those readers familiar with using oscillo-
scopes, incoherent averaging would be like trying to view the pulse
when the beginning of the scope sweep was not triggered by the signal.)
As such, incoherent averaging is not so useful in the time domain.! In the
frequency domain, however, it’s a different story because incoherent
averaging can provide increased accuracy in measuring relative signal
powers. Indeed, incoherent averaging is used in many test instruments,
such as spectrum, network, and signal analyzers.

In some analog test equipment, time-domain signals are represented in
the frequency domain using a narrowband sweeping filter followed by a
power detector. These devices measure signal power as a function of fre-
quency. The power detector is necessary because the sweeping measure-
ment is not synchronized, in time, with the signal being measured. Thus
the frequency-domain data represents power only and contains no signal
phase information. Although it’s too late to improve the input’s signal-
amplitude-to-noise ratio, incoherent averaging can improve the accuracy
of signal power measurements in the presence of noise; that is, if the
signal-power spectrum is very noisy, we can reduce the power estimation
fluctuations and improve the accuracy of signal-power and noise-power
measurements. Figure 8-4(a) illustrates this idea where we see the power
(magnitude squared) output of an FFT of a fundamental tone and several
tone harmonics buried in background noise. Notice that the noise-power
levels in Figure 8-4(a) fluctuate by almost 20 dB about the true average
noise power indicated by the dashed line at -19 dB.

If we take 10 FFTs, average the square of their output magnitudes, and
normalize those squared values, we get the power spectrum shown in
Figure 8-4(b). Here, we've reduced the variance of the noise in the power
spectrum but have not improved the tones’ signal-power-to-noise-power
ratios; that is, the average noise-power level remains unchanged.
Averaging the output magnitudes squared of 100 FFTs results in the spec-

¥ The term incoherent averaging is a bit of a misnomer. Averaging a set of data is just that, aver-
aging—we add up a set of data values and divide by the number of samples in the set.
Incoherent averaging should probably be called averaging data that's obtained incoherently.

Incoherent Averaging 329

Power (dB
oA er (dB)

True average
noise power

10

Power (dB)

30 40 50 60 Freq

Figure 8-4 Results of averaging signal tones plus noise-

; ower :
averaging, N'= 1; (6) N = 10; (c) N = 100, D spectra: (a) no

tn.1m in Figure 8-4(c), which provides a more accurate measure of the rel-
ative power levels of the fundamental tone’s harmonics.

Just as we arrived at a coherent int
(8-14), we can express an incoheren
terms of SNR measured in dB as

egration SNR gain expression in Eq.
t integration gain, SNR, . gain, in

330

Signal Averaging

4 Processing gain in dB
60 R AR T /’,f
SNRch gain (dB): A
Time-domain ampl I
5o SNR processing gain » !
N 1
40 S
LA
30 3 b
"ot i [
- 1T
20 A /’_—r N
wat | L SNRingon gain (dB):
10 — Fraquency-domain power
il SNR processing gain
T GO
0 | ; AR -
10" 102 108 104 105 108 N

Figure 8-§ Time-domain ampiitude SNR processing gain from Eq. (8-14), and the
frequency-domain power SNR processing gain from Eq. (8-17), as
functions of N.

SNRicon g2in(dB) = 10-log o (vVN) . (8-17)

Equation (8-17) applies when the quantity being averaged represents the
power of a signal. That’s why we used the factor of 10 in Eq. (8-17) as
opposed to the factor of 20 used in Eq. (8-14).' We can relate the process-
ing gain effects of Egs. (8-14) and (8-17) by plotting those expressions in
Figure 8-5.

8.3 Averaging Multiple Fast Fourier Transforms

We discussed the processing gain associated with a single DFT in Section
3.12 and stated that we can realize further processing gain by increasing
the point size of any given N-point DFT. Let’s discuss this issue when the
DFT is implemented using the FFT algorithm. The problem is the.at large
FFTs require a lot of number crunching. Because addition is easier and
faster to perform than multiplication, we can average the outputs of m}lll-
tiple FFTs to obtain further FFT signal detection sensitivity; that is, it's

t Section E.1 of Appendix E explains why the multiplying factor is 10 for signal-power
measurements and 20 when dealing with signal-amplitude values.

Averaging Multiple Fast Fourier Transforms

easier and typically faster to average the outputs of four 128-point FFTs
than it is to calculate one 512-point FFT. The increased FFT sensitivity, or
noise variance reduction, due to multiple FFT averaging is also called
integration gain. So the random noise fluctuations in a FFT's output bins
will decrease, while the magnitude of the FFT’s signal bin output
remains constant when multiple FFT outputs are averaged. (Inherent in
this argument is the assumption that the signal is present throughout
the observation intervals for all of the FFTs that are being averaged and
that the noise sample values are independent of the original sample
rate.) There are two types of FFT averaging integration gain, incoherent
and coherent.

Incoherent integration, relative to FFTs, is averaging the corresponding
bin magnitudes of multiple FFTs; that is, to incoherently average k FFTs,
the zeroth bin of the incoherent FFT average F, . (0) is given by

FL(O) +[E>(0) + |E; (0) + .. + |F (0)]

E incoh (0) = 2 ,

(8-18)

where [F (0)] is the magnitude of the zeroth bin from the nth FFT.
Likewise, the first bin of the incoherent FFT average, F, (1), is given by

[EQ)|+|E, O]+ |B D) +...+ |E (1)
k ’

Fncon(D) = (8-18)

and, so on, out to the last bin of the FFT average, F, . (N-1), which is

F (N-D= [E(N = 1) +]F,(N - 1)]+[£3(N- D+ +[F(N - 1) (618"

Incoherent integration provides additional reduction in background
noise variation to augment a single FFI’s inherent processing gain. We
can demonstrate this in Figure 8-6(a) where the shaded curve is a single
FFT output of random noise added to a tone centered in the 16th bin of a
64-point FFT. The solid curve in Figure 8-6(a) is the incoherent integration
of 10 individual 64-point FFT magnitudes. Both curves are normalized to
their peak values, so that the vertical scales are referenced to 0 dB. Notice
how the variations in the noise power in the solid curve have been
reduced by the averaging of the 10 FFTs. The noise power values in the
solid curve don't fluctuate as much as the shaded noise-power values. By

331

332

Signal Averaging
A Power (aB)
0 ¢ - T
5| Od New
SI\IIR SNR
-10 [y ;‘ l L A A N 5 True
@ -15 J A ATTR) '““_ ; ;Hl /i {\} -« average
! D\f V/V ? VOOV EVSTTT VAN noise power
=20 [t Nggd 1 t 120 V Fr
! [TIRY ¥ V \‘; |
25 |4 X
{ Tone at FFT
bin center .
%0 0 10 20 30 40 50 60 m
Arower (dB)
Toke T8 /|
3 ;
-5 |- Old SNR New SNR]7 \
10 [J _‘,I’_f\ A-fey] Wi True
\— — 4L iﬁ {.\,} jﬁ* x,‘ A\ﬁg- R — — A\ - < average
15 [AL N . VA M LML A | A\ 1Y noise power
R Y ANV A N B S TR AT i B VAV, V
20 AW R F A O B R ¥ /
- U ! i /
i !
-5 ! ') Tone is between
_a0 FFT bin centers -
0 10 20 30 40 50 60 m

Figure 8-6 Single FFT output magnitudes (shaded) and the average of 10 FFT output
magnitudes (solid): (a) tone at bin center; (b) tone between bin centers.

averaging, we haven't raised the power of the tone in the 16th bin, but we
have reduced the peaks of the noise-power values. The larger the numbf:r
of FFTs averaged, the closer the individual noise-power bin Values' will
approach the true average noise power indicated by the dashed horizon-
tal line in Figure 8-6(a). '
When the signal tone is not at a bin center, incoherent integration still
reduces fluctuations in the FFT’s noise-power bins. The shaded curve in
Figure 8-6(b) is a single FFT output of random noise added to a tone
whose frequency is halfway between the 16th and 17th bins of th'e 64-
point FFT. Likewise, the solid curve in Figure 8-6(b) is the ma'gmtude
average of 10 FFIs. The variations in the noise power in the solid curve
have again been reduced by the integration of the 10 FFTs. So incoherent
integration gain reduces noise-power fluctuations regardless of the fre-

Averaging Multiple Fast Fourier Transforms

quency location of any signals of interest. As we would expect, the signal
peaks are wider, and the true average noise power is larger in Figure
8-6(b) relative to Figure 8-6(a) because leakage raises the average noise-
power level and scalloping loss reduces the FFT bin’s output power level
in Figure 8-6(b). The thing to remember is that incoherent averaging of
FFT output magnitudes reduces the variations in the background noise
power but does not reduce the average background noise power.
Equivalent to the incoherent averaging results in Section 8.2, the reduc-
tion in the output noise variance[6] of the incoherent average of k FFTs rel-
ative to the output noise variance of a single FFT is expressed as

2

_ZO_kFFr_s = (8-19)

ol

O Single FFT

Accordingly, if we average the magnitudes of k separate FFTs, we reduce
the noise variance by a factor of k.

In practice, when multiple FFTs are averaged and the FFT inputs are
windowed, an overlap in the time-domain sampling process is commonly
used. Figure 8-7 illustrates this concept with 5.5Nt, seconds worth of time
series data samples, and we wish to average ten separate N-point FFTs
where ¢_ is the sample period (1/ 'f,)- Because the FFTs have a 50 percent
overlap in the time domain, some of the input noise in the N time samples
for the first FFT will also be contained in the second FFT. The question is

Time <————— 55Ntgseconds —— 3.
~)]

. N
series | —% —

1st FFT p———— Time
2nd FFT —— -
3rd FFT p———
4th FFT F——
[E———

N samples .

10th FFT p———y

Figure 8-7 Time relationship of multiple FFTs with 50 percent overlap.

333

334 Signal Averaging

“What's the noise variance reduction when some of the noise is common

to two FFTs in this averaging scheme?” Well, the answer depends on tl‘:e
window function used on the data before the FFTs are performed. It's
been shown that for the most common wind.ow functions using an over-
lap of 50 percent or less, Eq. (8-19) still applies as the level of noise vari

n[7].

anc(cleorlf\e;l;:\ttui)nt[zlgration gain is possible when we average the re'al pa‘rts of
multiple FFT bin outputs separately from the average of the imaginary
parts and then combine the single real average and the smgle.e unagu;\ary
average into a single complex bin output average value; that is, to CSF;;
ently average k separate FFTs, the zeroth bin of the complex coheren

average, F_,(0), is given by

F(0)eal + F2(0)geat + - + Fe (0)geat
th(o)= 1()real 2 kal rea

 FO)imag + F2(Oimag + -+ FOhimag (8-20)
+] k

The first bin of the complex coherent FFT average, F (1), is

EWeat + BEWyeat + -+ Fe(D et
Fay(1) = 2 2230 -

- A(Dimag + F2(Dimag -+ F(Dimag (8-20")
+] k !

and so on out to the last bin of the complex FFT average, F,, (N-1), which is

- -1)
FE(N-Dpea + EWN =D+ + E(N=1) 01
Fh(N-1)= 1N~ Deea * 55 PEE

N = Dimag + BN ~ Vi o BN = Dimag g 5y
+j k

Let’s consider why the integration gain afforded by coherent averaging
is more useful than the integration gain from incoherent averaging.
Where incoherent integration does not reduce the background noise-

Averaging Multiple Fast Fourier Transforms

power average level, it does reduce the variations in the averaged FFT's
background noise power because we're dealing with magnitudes only,
and all FFT noise bin values are positive—they’re magnitudes. So their
averaged noise bin magnitude values will never be zero. On the other
hand, when we average FFT complex bin outputs, those complex noise
bin values can be positive or hegative. Those positive and negative values,
in the real or imaginary parts of multiple FFT bin outputs, will tend to
cancel each other. This means that noise bin averages can approach zero
before we take the magnitude, while a sigpal bin average will approach
its true nonzero magnitude. If we say that the coherently averaged FFT
signal-to-noise ratio is expressed by

(8-21)

SNRy, =20- logw[signal bin magmtude))

noise bin magnitude

we can see that, should the denominator of Eq. (8-21) approach zero, then
SNR ;, can be increased. Let’s look at an example of coherent integration
gain in Figure 8-8(a) where the shaded curve is a single FFT output of ran-
dom noise added to a tone centered in the 16th bin of a 64-point FFT. The
solid curve in Figure 8-8(a) is the coherent integration of ten 64-point
FFTs. Notice how the new noise-power average has actually been
reduced.! That’s coherent integration. The larger the number of FFTs aver-
aged, the greater the reduction in the new noise-power average.

When the signal tone is not at bin center, coherent integration still
reduces the new noise-power average, but not as much as when the tone
is at bin center. The shaded curve in Figure 8-8(b) is a single FFT output
of random noise added to a tone whose frequency is halfway between the
16th and 17th bins of the 64-point FFT. Likewise, the solid curve in Figure
8-8(b) is the coherent integration of 10 FFTs. The new noise-power aver-
age has, again, been reduced by the integration of the 10 FFTs. Coherent
integration provides its maximum gain when the original sample rate f, is
an integral multiple of the tone frequency we’re trying to detect. That way
the tone will always have the same phase angle at the beginning of the
sample interval for each FFT. So, if possible, the f, sample rate should be

—

*The sharp-eyed reader might say, “Wait a minute. Coherent integration seems to reduce the
noise-power average, but it doesn’t look like it reduces the noise-power variations.” Well,
the noise-power variations really are reduced in magnitude—remember, we're using a log-
arithmic scale. The magnitude of a half-division power variation between -20 dB and -30 dB
is smaller than the magnitude of a half-division power variation between -10 dB and ~20 dB,

335

336

Signal Averaging
“Power (dB)
’ A
Old SNR New
SNR Criginal
-0 4 f | iA‘ Lo ; i % A average
FOA O 1 AN 2 ANA Y ©
fpd L £ oL " AL RTATY R Mo
S VAL T TR
\ AN A i A2\ : ~€—— New
ALY YN TVRAYIV RN TAWARATY average
=80 1 Y VV oy N | noise power
'f \j Tone at FFT }
bin center .
0 0 10 20 30 40 50 60 m
Power
A (dB) ¢
0 \
Old SNR New SNR ; \‘3 Original
h | LA g
-10 AN A ' N A noise
- —A,;"* A l’\,’— AR VAR W O |/ ;L\‘.‘—,/rj"\— €— power
VLI W R A AV VR
(b) =20 kK 1 8 8 1 S ‘r I — New
/ v v\/ \,—’\ average
noise power
0 v Tone is between
FFT bin centers) .
0 0 10 20 30 40 50 60 m
| Power (dB) ¢
Y]
Old SNR New SNA New
-10 L N //‘ -VA"I? iy M i fi L~ noise;owsr
DN M A a1
L VAN S 1 A
(c) —20 ““. i N AT SRR’ Original
Vi oy vy ¥ g iy average
i; ¥ : noise
-30 i : power
' Tone at FFT
bin center o
-40
0 10 20 30 40 50 60 m

Figure 8-8 Single FFT output magnitudes (shaded) and the coherent integration of
10 FFT outputs (solid): (a) tone at bin center; (b) tone ‘befween bin .
centers; (C) tone af bin center with random phase shift induced prior to

the FFT process.

chosen to ensure that the tone of interest, assuming it’s not drifting in fre-

quency, will be exactly at a FFT bin center.

Keep two thoughts in mind while using coherent integration of multi-
ple FFTs. First, if the random noise contaminating the time signal dogs not
have an average value of zero, there will be a nonzero DC term in the

Averaging Multiple Fast Fourier Transforms

averaged FFT's F «on(0) bin. Averaging, of course, will not reduce this DC
level in the averaged FFT F n(0) output. Second, coherent integration can
actually reduce the averaged FFT’s SNR if the tone being detected has a
random phase at the beginning of each FFT sample interval. An example
of this situation is as follows: the shaded curve in Figure 8-8(c) is a single
FFT output of random noise added to a tone centered in the 16th bin of a
64-point FFT. The solid curve in Figure 8-8(c) is the coherent integration
of 10 individual 64-point FFTs. However, for each of the 10 FFTs, a ran-
dom phase shift was induced in the fixed-frequency test tone prior to the
FFT. Notice how the averaged FFI’s new average noise power is larger
than the original average noise power for the single FFT. When the tone
has a random phase, we've actually lost rather than gained SNR because
the input tone was no longer phase coherent with the analysis frequency
of the FFT bin.

There’s a good way to understand why coherent integration behaves
the way it does. If we look at the phasors representing the successive out-
puts of a FFT bin, we can understand the behavior of a single phasor rep-
resenting the sum of those outputs. But, first, let’s refresh our memory for
a moment concerning the vector addition of two phasors.* Because an FFT
bin output is a complex quantity with a real and an imaginary part, we
can depict a single FFT bin output as a phasor, like phasor A shown in
Figure 8-9(a). We can depict a subsequent output from the same FFT bin
as phasor B in Figure 8-9(b). There are two ways to coherently add the two
FFT bin outputs, i.e., add phasors A and B. As shown in Figure 8-9(c), we
can add the two real parts and add the two imaginary parts to get the sum
phasor C. A graphical method of summing phasors A and B, shown in
Figure 8-9(d), is to position the beginning of phasor B at the end of pha-
sor A. Then the sum phasor C is the new phasor from the beginning of
phasor A to the end of phasor B. Notice how the two C phasors in Figures
8-9(c) and 8-9(d) are identical. We'll use the graphical phasor summing
technique to help us understand coherent integration of FFT bin outputs.

Now we're ready to look at the phasor outputs of an FFT signal bin to
see how a single phasor representing the sum of multiple signal bin pha-
sors behaves. Consider the three phasor combinations in Figure 8-10(a).
Each phasor is a separate output of the FFT bin containing the signal tone
we're trying to detect with coherent integration. The dark arrows are the
phasor components due to the tone, and the small shaded arrows are
the phasor components due to random noise in the FFT bin containing
the tone. In this case, the original signal sample rate is a multiple of the tone

* Following the arguments put forth in Section A.2 of Appendix A, we'll use the term phasor,
as opposed to the term vector, to describe a single, complex DFT output value.

337

338

Signal Averaging
Ph Real part of B
asor A Imaginary)
part of A Imaginary
Phasor B partof 8
Real part of A
(a) (b)

Imaginary part of A

\ "~ Imaginary
partof B

© Phasor C

Real part of A o Real part of B8 -

Phasor 8

Phasor A
©) 4__’_—)
Phasor C

Figure 8-9 Two ways to add phasors A and 8, where phasor C= A + B.

frequency, so that the tone phasor phase angle g is the same at the begin-
ning of the three FFTs, sample intervals. Thus, the three dark tone pha-
sors have a zero phase angle shift relative to one another. The phase
angles of the random noise components are random. If we add the three
phasor combinations, as a first step in coherent integration, we get the
actual phasor sum shown in Figure 8-10(b). The thick shaded vector in
Figure 8-10(b) is the ideal phasor sum that would result had there been
no noise components in the original three phasor combinations. Because
the noise components are reasonably small, the actual phasor sum is not
too different from the ideal phasor sum.

Now, had the original signal samples been such that the input tone’s
phase angles were random at the beginning of the three FFTs, sample
intervals, the three phasor combinations in Figure 8-10(c) could result.
Summing those three phasor combinations results in the actual phasor
sum shown in Figure 8-10(d). Notice that the random tone phases, in
Figure 8-10(c), have resulted in an actual phasor sum magnitude (length)
that’s shorter than the dark lines of the phasor component due to the tone
in Figure 8-10(c). What we’ve done here is degrade, rather than improve,

Averaging Multiple Fast Fourler Transforms

(a

{b)

(©

(d)

Phasor 3
combination

Phasor 1
combination

Phasor 2
combination

Ideal phasor

Actual sum
phasor sum
f Phasor 6
Pha§or _4 combination
combination

Phasor 5
combination

Actual
phasor sum

Figure 8-10 FFT bin outputs represented as phasors: (@) three outputs from the

same bin when the input tone is at bin center; (b) coherent integration
(phasor addition) of the three bin outputs; (c) three outputs from the
same bin when input tone has a random phase at the beginning of
each FFT; (d) coherent integration of the three bin outputs when input
tone has random phase.

339

- 340

Signal Averaginé

the averaged FFT’s output SNR when the tone has a random phase at the
beginning of each FFT sample interval.

The thought to remember is that, although coherent averaging of FFT
outputs is the preferred technique for realizing integration gain, we're
rarely lucky enough to work real-world signals with a constant phase at the
beginning of every time-domain sample interval. So, in practice, we're usu-
ally better off using incoherent averaging. Of course, with either integration
technique, the price we pay for improved FFT sensitivity is additional com-
putational complexity and slower system response times because of the
additional summation calculations. (A slick way to reduce the computa-
tional burden of averaging multiple FFTs is discussed in Section 10.7.)

8.4 Filtering Aspects of Time-Domain Averaging

In Section 5.2 we introduced FIR filters with an averaging example, and
that’s where we first learned that the process of time-domain averaging
performs low-pass filtering. In fact, successive time-domain outputs of an
N-point averager are identical to the output of an (N-1)-tap FIR filter
whose coefficients are all equal to 1/N, as shown in Figure 8-11.

The question we’ll answer here is “What is the frequency magnitude
response of a generic N-point averager?” We could evaluate Eq. (6-42),
from Section 6.3, that describes the frequency response of a generic N-
stage FIR filter. In those expressions, we’d have to set all the b(0) through
b(N) coefficient values equal to 1/N and calculate Hpp(®)'s magnitude
over the normalized radian frequency range of 0 £ @ < n. That range cor-
responds to an actual frequency range of 0 <f<f,/2 (where f, is the equiv-
alent data sample rate in Hz). A simpler approach is to recall, from Section
5.2, that we can calculate the frequency response of an FIR filter by taking
the DFT of the filter’s coefficients. In doing so, we’d use an M-point FFT

1st 2nd (N-2)th (N=1)th

Averager output

Figure 8-11 An N-point averager depicted as an FIR filter.

Exponential Averaging

Averager frequency magnitude response

fs/8 ol fs/2

Figure 8-12 N-point averager's frequency magnitude response as a function of N.

software routine to transform a sequence of N coefficients whose values
are all equal to 1/N. Of course, M should be larger than N so that the
sin(x) / x shape of the frequency response is noticeable. Following through
on this by using a 128-point FFT routine, our N-point averager’s frge-
quency magnitude responses, for various values of N are %otted i

Flg}lre 8-12. To make these curves more meaningful, the f;equeﬁc axi s
defined in terms of the sample rate f, in samples/s. Y

8.5 Exponential Averaging

There is a kind of time-domain averaging used in some power measure-
ment. équipment—it’s called exponential averaging(8-11). This techniqu
provxde§ noise reduction by multiplying an input sample by a constc:mi
and adding that product to the constant’s ones complement multiplied b
the m'ost fecent averager output. Sounds complicated in words, but thy
equation for the exponential averager is the simple expression ,)

Y(n) = ox(n) + (1 -)y(n - 1), (8-22)

where y(n) is the current averager output sample, y(n-1) is the previous
averager output sample, and « is the weighting factor constant. The

341

342

Signal Averaging
x(n) Averager output
+ l Lt y(n)

Output
Storage

o Register

|
1-o

Figure 8-13 Exponential averager.

process described by Eq. (8-22) is implemented as shown in Figure 8-13.
The advantage of exponential averaging is that only one storage register
is needed to hold the value y(n-1) while waiting for the next input data
sample x(n).

The exponential averager’s name stems from its time-domain impulse
response. Let’s assume that the input to the averager is a long string of
zeros and we apply a single sample of value 1 at time ¢ = 0. Then the input
returns again to a string of zero-valued samples. Now, if the weighting fac-
tor is o = 0.4, the averager’s output is shown as the curve in Figure 8-14.
When ¢ = 0, the input sample is multiplied by ¢, so the output is 0.4. On
the next clock cycle, the input is zero, and the old value of 0.4 is multiplied
by (1 - 0.4), or 0.6, to provide an output of 0.24. On the following clock
cycle, the input is zero, and the old value of 0.24 is multiplied by 0.6 to pro-
vide an output of 0.144. This continues with the averager’s output, or
impulse response, falling off exponentially because of successive multipli-
cations by 0.6.

A useful feature of the exponential averager is its capability to vary the
amount of noise reduction by changing the value of the o weighting fac-
tor. If o equals one, input samples are not attenuated, past averager out-
puts are ignored, and no averaging takes place. In this case, the averager
output responds immediately to changes at the input. As o is decreased
in value, input samples are attenuated, and past averager outputs begin
to affect the present output. These past values represent an exponentially
weighted sum of recent inputs, and that summation tends to smooth out
noisy signals. The smaller o gets, the more noise reduction is realized.
However, with smaller values for a, the slower the averager is in respond-
ing to changes in the input. We can demonstrate this behavior by looking

Exponential Averaging

r 4 Averager output 1
0.35 1
0.30 +

0.25 4 g

020 4 \

0154 - A .
H i

o0 1O\

0.05 +

{ |
H e ——
; i H —a

0
L 0 1 2 3 4 5 6 7 8 9 Time

Figure 8-14 Exponential Qverager impulse response with o = 0.4 .

at the exponential averager’s time-domain step response for various val-
ues of « as shown in Figure 8-15.

' So we have a trade-off. The more the noise reduction, the more slug-
glsh- the averager will be in responding to changes at the input. We can
see in Figure 8-15 that, as o gets smaller, affording better noise reduc-
tion, the averager’s output takes longer to respond and stabilize. Some
tes't instrumentation manufacturers use a clever scheme to resolve this
noise reduction versus response time trade-off. They use a large value
for a at the beginning of a measurement so that the averager’s output
responds immediately with a nonzero value. Then, as the measurement
proceeds, the value of o is decreased to reduce the noise fluctuations at
the input.

The exponential averager’s noise variance reduction as a function of
the weighting factor o, has been shown to be[9,10].

output noise variance
input noise variance

SNRyp = =2 (8-23)

t
The step response is the averager’s output when a strin;
£ .
of all ot i oot e inpu%. tp string of all zeros followed by a string

34

34

Signal Averaging -

Averager output
1.0 + -~y " A=—p—h=—) A e e e | iy ey f el A
A/}/O’V/O/"' ==
0.9 108 » —n
0.6 './):/D/I-r . l/./-’
0.8 - ? '94 » -/./
-
/ ul
07 4 0.2 -t
A
06 < i
/:I u’=0.1
05 + W
v
04 ¢ /'
/l
03 4
./
oz d
01 Wt t—t——— ettt
0 2 4 6 8 10 12 14 16 18 Time

Figure 8-15 Exponential averager output vs. a when a step input Is applied at time
t=0.

Thus, the exponential averager’s noise-power reduction in dB is given by

o
SNRp, =10-log,o(2—a) . (8-24)

Equation (8-24) is plotted in Figure 8-16 to illustrate the trade-off between
noise reduction and averager response times.

To demonstrate the exponential averager’s noise-power reduction
capabilities, Figure 8-17 shows the averager’s output with a cosine wave
plus noise as an input. The weighting factor « starts out with a value of
1.0 and decreases linearly to a final value of 0.1 at the 180th data input
sample. Notice that the noise is reduced as o decreases. However, the
cosine wave's peak amplitude also decreases due to the smaller o value.

The reader may recognize the implementation of the exponential aver-
ager in Figure 8-13 as a one-tap infinite impulse response (IIR) digital fil-
ter[12]. Indeed it is, and, as such, we can determine its frequency
response. We do this by remembering the general expression in Chapter 6
for the frequency response of an IIR filter, or Eq. (6-28) repeated here as

Exponential Averaging
N N
z b(k) - cos(ke) jz b(k) - sin(ke)
Hexp ((D) = k=(1)u k=(1)u .
1- Y a(k)- cos(ke) + 72, a(k)- sin(kw) (8-25)
k=1 k=1
Noise power
A reduction in a8
141 /
2l 1— Faster rgfponse o Slower response ———m= -/
L
84 "
61 —
L - —"
1 .’././l/- v
—
1 9 8 7 6 5 4 3 2 1o

Figure 8-16 Exponential averager noise-power reduction as a function of the
weighting factor .

1 ’f\\l\\/\\f\/\/\/\
LSRR

4 :
1 45 90 135 180 225 Samples
(Time)

Figure 8-17 Exponential averager output nolse reduction as o. decreases.

345

Signal Averaging

From Figure 6-18, we modify Eq. (8-25) to set N = 0, and M = 1, so that

b(0) - cos(0w) - jb(0) - sin(0w)

1-a(l)- cos(lw) + ja(1) - sin(lw) (8-26)

HeXp (m) =

Now with b(0) = o and a(1) = 1 - &, our exponential averager’s frequency
response is the complex expression

o o o
Hex"(m)-l—(l—a)-cos(mﬂ j(1-0a)-sin(w) (6-26)

For now, we're interested only in the magnitude response of our filter, so
we can express it as :

_| o |
| Heg (@)1 1= (1-0)- cos(w) + j(1-a)- sin(a)]
- o
VI1-(1-0)- cos(@)]* +[(1- @) sin(@)]?
o (8-27)

=\/1—2'(1~oc)-cos(w)+(1—002

Evaluating Eq. (8-27) over the normalized angular range of 0 < o < xt (cor-
responding to a frequency range of 0 < f < f,/2 Hz), the frequency magni-
tude responses of our exponential averaging filter for various values of &
are shown in Figure 8-18(a) using a normalized decibel scale. Notice that,
as o decreases, the exponential averager behaves more and more like a
low-pass filter.

We can get some practice manipulating complex numbers by deriving
the expression for the phase of an exponential averager. We know that the
phase angle, as a function of frequency, is the arctangent of the ratio of the

imaginary part of H, (@) over the real part of H__(w), or

Xp exp

(8-27")

imaginary part of H,,, () J

=t -1
Pexp() = tan (real part of H,, ()

To find those real and imaginary parts, knowing that H, (@) is itself a
ratio, we determine what the variables are in Eq. (8-26') corresponding to
the form of Eq. (A-20), from Appendix A. Doing that, we get

Exponential Averaging

A Normalized magnitude response in dB
09 ~—nr—
-5+ 0.7
05
-10 4+ \ B —
0.3
@ -187- \
-20
a=01

-25
=30 T+ ettt ettt -

0 /8 1,/ o2 F1ed

(b)

—40 + -

—50 4

e N
ol

Figure 8-18 Exponential averager frequency response vs. o ! (@) normalized
magnitude response in dB; (b) phase response in degrees.

R1=G,II=0,R2=1—(1—OC)- cos(w), and I, = (1 - &) - sin(w) .

Substituting those variables in Eq. (A-20), yields

ofl-(1- o) cos(w)] - jlo(l-a) - sin(w)]

H, (0)= _

P [1-(1-0)- cos(®)]* +[(1 -) - sin(w)]? (8-28)

Representing the denominator of this messy Eq. (8-28) with the term
Den, we use Eq. (8-27) to express the phase angle of H,_(®) as

exp

348

Signal Averaging

-1~ o)« sin(w) / Den)

a1
Bexp () = tan (oc[l ~(1-a)-cos{(®w)]/ Den

a1 —(1-o)-sin(m) %
=tan (1— (1- oc)-cos(m)) ’ (8-29)

The very nonlinear phase of zexp((n) from Eq. (8-29) is calculated over the
normalized angular range of 0 < ® < =, corresponding to a frequency
range of 0 < f<f,/2 Hz, and plotted in Figure 8-18(b).

References

{1] Miller, I, and Freund, J. Probability and Statistics for Engineers, 2nd Ed.,
Prentice-Hall, Englewood Cliffs, New Jersey, 1977, pp. 118.

[2] Beller, J., and Pless, W. “A Modular All-Haul Optical Time-Domain
Reflectometer for Characterizing Fiber Links,” Hewlett-Packard Journal,
February 1993.

[3] Spiegel, M. R. Theory and Problems of Statistics, Shaum’s Outline Series,
McGraw-Hill Book Co., New York, 1961, pp. 142.

[4] Papoulis, A. Probability, Random Variables, and Stochastic Processes, McGraw-
Hill Book Co., New York, 1984, pp. 245.

{5] Davenport, W. B., Jr., and Root, W. L. Random Signals and Noise, McGraw-Hill
Book Co., New York 1958, pp- 81-84.

[6] Welch, P. D. “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging over Short, Modified
Periodograms,” IEEE Transactions on Audio and Electroacoust., Vol. AU-15, No.
2, June 1967

[71 Harris, F. J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

[8] Booster, D. H., et al. “Design of a Precision Optical Low-Coherence
Reflectometer,” Hewlett-Packard Journal, February 1993.

[9] Witte, R. A. “Averaging Techniques Reduce Test Noise, Improve Accuracy,”
Microwaves & RF, February 1988.

[10] Oxaal, J. “Temporal Averaging Techniques Reduce Image Noise,” EDN,
March 17, 1983.

[11] Lymer, A. “Digital-Modulation Scheme Processes RF Broadcast Signals,”
Microwaves & RF, April 1994.

[12] Hayden, D. “Timer Controls DSP-Filter Frequency Resolution,” EDN, April 13,
1995.

ﬁHAPTER NINEg

Digital Data Formats
and Their Effects

In digital signal processing, there are many ways to represent numerical
data in computing hardware. These representations, known as data for-
mats, have a profound effect on the accuracy and ease of implementation
of any given signal processing algorithm. The simpler data formats enable
uncomplicated hardware designs to be used at the expense of a restricted
range of number representation and susceptibility to arithmetic errors.
The more elaborate data formats are somewhat difficult to implement in
hardware, but they allow us to manipulate very large and very small
numbers while providing immunity to many problems associated with
digital arithmetic. The data format chosen for any given application can
mean the difference between processing success and failure—it’s where
our algorithmic rubber meets the road.

In this chapter, we'll introduce the most common types of fixed-point
digital data formats and show why and when they’re used. Next, we'll
use analog-to-digital (A/D) converter operation to establish the precision
and dynamic range afforded by these fixed-point formats along with the
inherent errors encountered with their use. Finally, we’ll cover the inter-
esting subject of floating-point binary formats.

9.1 Fixed-Point Binary Formats

Within digital hardware, numbers are represented by binary digits
known as bits—in fact, the term bit originated from the words Binary

349

350

Digital Data Formats and Thelir Effects

digIT. A single bit can be in only one of two possible states: either a one
or a zero.! A six-bit binary number could, for example, take the form
101101, with the leftmost bit known as the most significant bit (msb), while
the rightmost bit is called the least significant bit (Isb). The number of bits
in a binary number is known as the word length—hence 101101 has a
word length of six. Like the decimal number system so familiar to us, the
binary number system assumes a weight associated with each digit in the
number. That weight is the base of the system (two for binary numbers
and ten for decimal numbers) raised to an integral power. To illustrate
this with a simple example, the decimal number 4631 is

(4-10% + (6- 102 + (3- 10Y) + (1 - 10)
= 4000 + 600 + 30 + 1 = 4631 . (9-1)

The factors, 10% 102, 107, and 10° are the digit weights in Eq. (9-1).
Similarly, the six-bit binary number 101101 is equal to decimal 45 as
shown by

(1-25)+(0~24)+(1-23)+(1-22)+(0-21)+(1-2°)
=32+8+4+1=45. (9-2)

Using subscripts to signify the base of a number, we can write Eq. (9-2) as
101101, = 45,,. Equation (9-2) shows us that, like decimal numbers, binary
numbers use the place value system where the position of a digit signifies
its weight. If we use B to denote a number system’s base, the place value
representation of the four-digit number a,a,a,4, is

(a3 B%) + (a,- B?) + (a, - BY) + (a, - BY) . (9-3)

In Eq. (9-3), B" is the weight multiplier for the digit 4, where 0<g, < B-1.
(This place value system of representing numbers is very old—so old, in
fact, that it’s origin is obscure. However, with its inherent positioning of the
decimal or binary point, this number system is so convenient and powerful
that its importance has been compared to that of the alphabet[1].)

t Binary numbers are used because early electronic computer pioneers quickly realized that it
was much more practical and reliable to use electrical devices (relays, vacuum tubes, transis-
tors, etc.) that had only two states, on or off. Thus, the on/off state of a device could represent
a single binary digit.

Fixed-Point Binary Formats

9.1.1. Octal Numbers

As the use of minicomputers and microprocessors rapidly expanded in the
1960s, people grew tired of manipulating long strings of ones and zeros on
paper and began to use more convenient ways to represent binary num-
bers. One way to express a binary number is an octal format with its base
of eight. Converting from binary to octal is as simple as separating the
binary number into three-bit groups starting from the right. For example,
the binary number 10101001, can be converted to octal format as

10101001, » 1) | 101 | 001 = 251,.

Each of the three groups of bits above are easily converted from their
binary formats to a single octal digit because, for three-bit words, the octal
and decimal formats are the same. That is, starting with the left group of
bits, 10,=2,,= 2,101, = 5,0="5g and 001,=1,,= 1;. The octal format also
uses the place value system meaning that 2513=(2-82+5-81+1.8%
Octal format enables us to represent the eight-digit 10101001, with the
three-digit 251;. Of course, the only valid digits in the octal format are 0
to 7—the digits 8 and 9 have no meaning in octal representation.

9.1.2. Hexadecimal Numbers

Another popular binary format is the hexadecimal number format
using 16 as its base. Converting from binary to hexadecimal is done,
this time, by separating the binary number into four-bit groups start-
ing from the right. The binary number 10101001, is converted to hexa-
decimal format as

10101001, » 1010 | 1001 = A9, .

If you haven’t seen the hexadecimal format used before, don’t let the A9
digits confuse you. In this format, the characters A,B,C,D,E,and F rep-
resent the digits whose decimal values are 10, 11, 12, 13, 14, and 15
respectively. We convert the two groups of bits above to two hexadeci-
mal digits by starting with the left group of bits, 1010, = 10,, = A, and
1001, = 9, = 9,,. Hexadecimal format numbers also use the place value
system, meaning that A9, = (A - 16! + 9 . 16°). For convenience, then, we
can represent the eight-digit 10101001, with the two-digit number A9, .
Table 9-1 lists the permissible digit representations in the number sys-
tems discussed thus far.

351

352

Digital Data Formats and Their Effects

Table 9-1 Allowable Digit Representations vs. Number System Base

Decimal

Binary Octal Decimal Hexadecimal Equivalent

0
1

NN G b W N = o
o0 N U e W RO
0N N U e W e O

L r T o B R o T~ T Y- R N T NE* T S 7R RN
— —
O ol Tl =i

—
w

9.1.3. Fractional Binary Numbers

Fractions (numbers whose magnitudes are greater than zero and less than
one) can also be represented by binary numbers if we use a binary point
identical in function to our familiar decimal point. In the binary numbers
we’ve discussed so far, the binary point is assumed to be fixed just to the
right of the rightmost digit. Using the symbol ¢ to denote the binary point,
the six-bit binary fraction 11,0101 is equal to decimal 3.3125 as shown by

12 +(1-29+0-27H)+(1-22)+(0-23)+(1-27Y
1 1 1 1

=2+1+0+025+0+0.0625=3.3125 . 9-9)

Fixed-Point Binary Formats

For the example in Eq. (9-4), the binary point is set between the second
and third most significant bits. Having a stationary position for the binary
point is why binary numbers are often called fixed-point binary.

For some binary number formats (like the floating-point formats that
we'll cover shortly), the binary point is fixed just to the left of the most sig-
nificant bit. This forces the number values to be restricted to the range
between zero and one. In this format, the largest and smallest values pos-
sible for a b-bit fractional word are 1-2- and 2, respectively. Taking a six-
bit binary fraction, for example, the largest value is 0111111, or

0(1-2-’)+(1-2-2)+(1-2*3)+(1.2“*)+(1-2-5)+(1-24)
Y@ Y e@hra Yy Lyaq L
=1 2)+(1 4)+(1 8)+(1 16)+(1 32)+(1 64)

=0.5+0.25+0.125+0.0625 + 0.03125 + 0.015625 = 0.984375 , (9-5)

which is 1-26 = 1- 1, in decimal. The smallest nonzero value is 0,000001,,
equaling a decimal Y, = 0.015625,,,.

9.1.4. Sign-Magnitude Binary Format

For binary numbers to be at all useful in practice, they must be able to rep-
resent negative values. Binary numbers do this by dedicating one of the
bits in a binary word to indicate the sign of a number. Let’s consider a
popular binary format known as sign-magnitude. Here, we assume that a
binary word’s leftmost bit is a sign bit and the remaining bits represent
the magnitude of a number which is always positive. For example, we can
say that the four-bit number 0011, is +3,, and the binary number 1011, is
equal to =3, Or

magnitude bits magnitude bits
Wl il
00112=310, and 10112=_310-
b T
sign bit of zero sign bit of one
signifies positive signifies negative

353

354

Digltal Data Formats and Their Effects

Of course, using one of the bits as a sign bit reduces the magnitude of the
numbers we can represent. If an unsigned binary number’s word length is
b bits, the number of different values that can be represented is 2°. An
eight-bit word, for example, can represent 28 = 256 different integral val-
ues. With zero being one of the values we have to express, a b-bit unsigned
binary word can represent integers from 0 to 2°-1. The largest value repre-
sented by an unsigned eight-bit word is 25-1 = 255, = 11111111, In the
sign-magnitude binary format a b-bit word can represent only a magni-
tude of £2%1-1, so the largest positive or negative value we can represent
by an eight-bit sign-magnitude word, then, is £28-1-1 = +127,

9.1.5 Two’s Complement Format

Another common binary number scheme, known as the two’s complement
format, also uses the leftmost bit as a sign bit. The two’s complement for-
mat is the most convenient numbering scheme from a hardware design
standpoint and has been used for decades. It enables computers to per-
form both addition and subtraction using the same hardware adder logic.
To get the negative version of a positive two’s complement number, we
merely complement (change a one to a zero and change a zero to a one)
each bit and add a one to the complemented word. For example, with
0011, representing a decimal 3 in two’s complement format, we obtain a
negative decimal 3 through the following steps:

+3in two’s complement - 0011

complementof+3 - 1100
addone —» Y0001

-3in two’s complement - 1101 .

In the two's complement format, a b-bit word can represent positive
amplitudes as great as 2°1-1, and negative amplitudes as large as -2>1.
Table 9-2 shows four-bit word examples of sign-magnitude and two’s
complement binary formats.

While using two’s complement numbers, we have to be careful when
adding two numbers of different word lengths. Consider the case where
a four-bit number is added to a eight-bit number:

+15 in two’s complement - 00001111
add +3 in two's complement - t0011
+18 in two’s complement - 00010010

Fixed-Point Binary Formats

Table 9-2 Examples of Binary Number Formats

Sign- Two's Offset Decimal
Magnitude Complement Binary Equivalent

0111 0111 1111 7
0110 0110 1110 6
0101 0101 1101 5
0100 0160 1100 4
0011 0011 won 3
0010 0010 1010 2
0001 0001 1001 1
0000 0000 1000 0
1001 1111 0111 -1
1010 1110 0110 -2
1011 1101 0101 -3
1100 1100 0100 -4
1101 1011 0011 ~5
1110 1010 0010 -6
1111 1001 0001 -7

- 1000 0000 -8

No problem so far. The trouble occurs when our four-bit number is nega-
tive. Instead of adding a +3 to the +15, let’s try to add a -3 to the +15:

+15 in two’s complement » 00001111
add a-3 in two’s complement — *1101
+28 in two’s complement - 00011100 . Wrong answer

The above arithmetic error can be avoided by performing what's called a
sign-extend operation on the four-bit number. This process, typically per-
formed automatically in hardware, extends the sign bit of the four-bit neg-
ative number to the left, making it an eight-bit negative number. If we
sign-extend the -3 and, then perform the addition, we’ll get the correct
answer:

+15 in two's complement » 00001111
add a sign-extended -3 in two's complement »*] 1 111101

+12in two’s complement 51 00001100 . « That's better
T

overflow bit is ignored

355

356

Digital Data Formats and Their Effects

9.1.6. Offset Binary Format

Another useful binary number scheme is known as the offset binary format.
While this format is not as common as two’s complement, it still shows up
in some hardware devices. Table 9-2 shows offset binary format examples
for four-bit words. Offset binary represents negative numbers by subtract-
ing 2%! from an unsigned binary value. For example, in the second row of
Table 9-2, the offset binary number is 1110,. When this number is treated as
an unsigned binary number it’s equivalent to 14,,. For four-bit words b = 4
and 251 =8, 50 14, - 810 = 6,9 which is the decimal equivalent of 1110, in
offset binary. The difference between the unsigned binary equivalent and
the actual decimal equivalent of the offset binary numbers in Table 9-2 is
always 8. This kind of offset is sometimes referred to as a bizs when the
offset binary format is used. (It may interest the reader that we can convert
back and forth between the two’s complement and offset binary formats
merely by complementing a word'’s most significant bit.)

The history, arithmetic, and utility of the many available number for-
mats is a very broad field of study. A thorough and very readable discus-
sion of the subject is given by Knuth in reference [2].

9.2 Binary Number Precision and Dynamic Range

As we implied before, for any binary number format, the number of bits
in a data word is a key consideration. The more bits used in the word, the
better the resolution of the number, and the larger the maximum value
that can be represented. Assuming that a binary word represents the
amplitude of a signal, digital signal processing practitioners find it useful
to quantify the dynamic range of various binary number schemes. For a
signed integer binary word length of b+1 bits (one sign bit and b magni-
tude bits), the dynamic range in decibels is defined by

largest possible word value]

d i =20-1
ynamic range qp Oglo(smallest possible word value

2% 1

=20- logm(] =20-log;,(2° -1) . (9-6)

* Some computers use 64-bit words. Now 264 is approximately equal to 1.8 - 10Y—that's a
pretty large number. So large, in fact, that if we started incrementing a 64-bit counter once
per second at the beginning of the universe (=20 billion years ago), the most significant four
bits of this counter would still be all zeros today.

Effects of Finite Fixed-Point Binary Word Length

When 2! is much larger than 1, we can ignore the ~1 in Eq. (9-6) and state
that

dynamic range g = 20- logy4(2%)
=20-logy,(2)-b=6.02-bdB. (9-6)

Equation (9-6'), dimensioned in dB, tells us that the dynamic range of our
number system is directly proportional to the word length. Thus, an
eight-bit two’s complement word, with seven bits available to represent
signal magnitude, has a dynamic range of 6.02 - 7 = 42.14 dB. Most people
simplify Eq. (9-6') by using the rule of thumb that the dynamic range is
equal to “six dB per bit.”

9.3 Effects of Finite Fixed-Point Binary Word Length

The effects of finite binary word lengths touches all aspects of digital signal
processing. Using finite word lengths prevents us from representing values
with infinite precision, increases the background noise in our spectral esti-
mation techniques, creates nonideal digital filter responses, induces noise in
analog-to-digital (A /D) converter outputs, and can (if we're not careful) lead
to wildly inaccurate arithmetic results. The smaller the word lengths, the
greater these problems will be. Fortunately, these finite, word-length effects
are rather well understood. We can predict their consequences and take
steps to minimize any unpleasant surprises. The first finite, word-length
effect we'll cover is the errors that occur during the A/D conversion process.

9.3.1 A/D Converter Quantization Errors

Practical A/D converters are constrained to have binary output words of
finite length. Commercial A /D converters are categorized by their output
word lengths which are normally in the range from 8 to 16 bits. A typical
A/D converter input analog voltage range is from -1 to +1 volt. If we used
such an A/D converter having eight-bit output words, the least signifi-
cant bit would represent

full voltage range _ 2 volts

Isb value = Swordlength === 7.81 millivolts. (9-7)

What this means is that we can represent continuous (analog) voltages
perfectly as long as they're integral multiples of 7.81 millivolts—any

357

358

Digital Data Formats and Their Effects

intermediate input voltage will cause the A/D converter to output a best
estirmate digital data value. The inaccuracies in this process are called quan-
tization errors because an A /D output least significant bit is an indivisible
quantity. We illustrate this situation in Figure 9-1(a) where the continuous
waveform is being digitized by an eight-bit A /D converter whose output
is in the sign-magnitude format. When we start sampling at time ¢ = 0, the
continuous waveform happens to have a value of 31.25 millivolts (mv),
and our A/D output data word will be exactly correct for sample x(0). At
time T when we get the second A/D output word for sample (1), the con-
tinuous voltage is between 0 and -7.81 mv. In this case, the A /D converter
outputs a sample value of 10000001 representing -7.81 mv, even though
the continuous input was not quite as negative as ~7.81mv. The 10000001

A/D output values
Signal amplitude in millivolts

X(0)

31.25° 00000100
23.43 \ 00000011
15.62 \ TN,) 00000010

\ /1N
7.81 \ 00000001
, \
(a) 0 / @ \
L) 10000001

-7.81
\ x{2) / x(6)
-15.62 10000010

00000000

N

-23.43 \~ 10000011
-31.25 10000100

0 T 2T 3T 4T 5T 6T Time —

A/D quantization error in millivolts
7.81 00000001
. . B Quantization
(b) 0 a . [error range

-7.81 10000001

0 T 2T 3T 47 5T 6T Time —

Figure 9-1 Quantization errors: (@) digitized x(n) values of a continuous signal;
(b) quantization error between the actual analog signal values
and the digifized signat values.

Effects of Finite Fixed-Point Binary Word Length

A/D output word contains some quantization error. Each successive
sample contains quantization error because the A /D’s digitized output
values must lie on a horizontal dashed line in Figure 9-1(a). The differ-
ence between the actual continuous input voltage and the A/D con-
verter’s representation of the input is shown as the quantization error in
Figure 9-1(b). For an ideal A/D converter, the quantization error, a kind
of roundoff noise, can never be greater than +1/2 an Isb, or +3.905 mv.

While Figure 9-1(b) shows A/D quantization noise in the time domain,
we can also illustrate this noise in the frequency domain. Figure 9-2(a)
depicts a continuous sinewave of one cycle over the sample interval shown
as the dotted line and a quantized version of the time-domain samples of
that wave as the dots. Notice how the quantized version of the wave is
constrained to have only integral values, giving it a stair step effect oscil-
lating above and below the true unquantized sinewave. The quantization
here is 4 bits, meaning that we have a sign bit and three bits to represent
the magnitude of the wave. With three bits, the maximum peak values for
the wave are £7. Figure 9-2(b) shows the discrete Fourier transform (DFT)
of a discrete version of the sinewave whose time-domain sample values
are not forced to be integers, but have high precision. Notice in this case
that the DFT has a nonzero value only at m = 1. On the other hand, Figure
9-2(c) shows the spectrum of the 4-bit quantized samples in Figure 9-2(a)
where quantization effects have induced noise components across the
entire spectral band. If the quantization noise depictions in Figures 9-1(b)
and 9-2(c) look random, that's because they are. As it turns out, even
though A /D quantization noise is random, we can still quantify its effects
in a useful way.

In the field of communications, people often use the notion of output sig-
nal-to-noise ratio, or SNR = (signal power)/ (noise power), to judge the use-
fulness of a process or device. We can do likewise and obtain an important
expression for the output SNR of an ideal A /D converter, SNR, ., account-
ing for finite word-length quantization effects. Because quantization noise
is random, we can't explicitly represent its power level, but we can use its
statistical equivalent of variance to define SNR a/p Measured in decibels as

SNR,p =10- logw[input signal variance J

A/D quantization noise variance

2
=10-10g10(Sl J (9-8)

¢ A/D noise

359

360

Digital Data Formats and Their Effects

) Sinewave amplitude
84

. M~ Continuous sinewave

64

l‘ |\I

: /i N
4 4 P -
ol \

244 MH” N - S
--{rg“!i #% 33 36 39 42 45 48 51 545760613
o el il

@) 0 BHHHHH et i
0 3 6 9 12 15 18 21 24 27 30 ™| i}
<2 4 .
[
-4 4 L -
L L L
ST ~ e

DFT of unquantized sinewave (dB)
0+ m— .

i
20T 1

(b)

i et el fkt B et Bt bt s i e Rl R s S

m
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
DFT of quantized sinewave (dB)
0
-20 ;
(© .
-40 .
L
-60 .
L) | ™
8o) CE B | R v DR | T R m

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 9-2 Quantization nolse effects: (a) input sinewave applied to a 64-point DFT;
(b) theoretical DFT magnitude of high-precision sinewave samples: (¢)
DFT magnitude of a sinewave quantized to 4 bits.

Next, we’ll determine an A/D converter’s quantization noise variance rel-
ative to the converter’s maximum input peak voltage V . If the full scale
(-V}, to +V, volts) continuous input range of a b-bit A/D converter is 2Vp,
a single quantization level g is that voltage range divided by the number
of possible A/D output binary values, or g = 2v,/ 2%, (In Figure 9-}, for
example, the quantization level g is the Isb value of 7.81 mv.) A depiction
of the likelihood of encountering any given quantization error value,
called the probability density function p(e) of the quantization error, is
shown in Figure 9-3.

Effects of Finite Fixed-Point Binary Word Length

| A/D quantization error probability
1 \ density function p(e)

|

e (Error value)

-qi2 0 92

Figure 9-3 Probability density function of A/D conversion roundoff error (noise).

This simple rectangular function has much to tell us. It indicates that
there’s an equal chance that any error value between —4/2 and +4/2 can
occur. By definition, because probability density functions have an area of
unity (i.e., the probability is 100 percent that the error will be somewhere
under the curve), the amplitude of the p(e) density function must be the
area divided by the width, or p(e) = 1/4. From Figure D-4 and Eq. (D-12)
in Appendix D, the variance of our uniform ple) is

q/2 4/2
1 2
62 A/Dnoise = J' e*ple)de = o J. e%de = %) (9-9)

-4/2 -q/2

We can now express the A/D noise error variance in terms of A/D para-
meters by replacing 4 in Eq. (9-9) with g = 2V,/2 to get

2 2
@, v

2 — —
(o} A/Dnoise—m—m .

(9-10)

OK, we're halfway to our goal—with Eq. (9-10) giving us the denomina-
tor of Eq. (9-8), we need the numerator. To arrive at a general result, let’s
express the input signal in terms of its root mean square (rms), the A/D
converter’s peak voltage, and a loading factor LF defined as

LF = Ims of the input signal _ Ogignay 4

Ve Yy

(9-11)

t Recall from Section D.2 that, although the variance 62 is associated with the power of a
signal, the standard deviation o is associated with the rms value of a signal,

361

362

Digital Data Formats and Their Effects

With the loading factor defined as the input rms voltage over the A/D
converter’s peak input voltage, we square and rearrange Eq. (9-11) to
show the signal variance 62, as

Caignat = (LF)V? . . (9-12)
Substituting Egs. (9-10) and (9-12) in Eq. (9-8),

2172
(LF)?V;

—=7 " |=10-1 LF)?.(3-2%)]
sz/(3-22b)] 10-logul(En)-(:25)

SNRA/D =10- logm{

=6.02-b+4.77 + 20 -log,,(LF) . (9-13)

Eq. (9-13) gives us the SNR, , of an ideal b-bit A/D converter in terms
of the loading factor and the number of bits b. Figure 9-4 plots Eq. (9-1'3)
for various A/D word lengths as a function of the loading factor. Notice
that the loading factor in Figure 9-4 is never greater than -3dB, because
the maximum continuous A/D input peak value must not be greater v,
volts. Thus, for a sinusoid input, its rms value must not be greater than

V, /2 volts (3 dB below V).

A :S‘NHND
%0 ___——14-bit
80 -l
— ___—12-bit
70 B —
_// ____-110-bit
60 R
/ /
8-bit
/ /
40 ——— S —
ob— o
/
/
20 fome
10 >
-21 -18 -15 -12 -9 -6 =3 Loading
factor (dB)

Figure 9-4 SNR),, of ideal A/D converters as a function of loading factor in dB.

Effects of Finite Fixed-Point Binary Word Length

When the input sinewave’s peak amplitude is equal to the A/D con-
verter’s full-scale voltage V,, the full-scale LF is

| 2
LFfullscale= P‘ﬁf:% .
f) 2

(9-14)

Under this condition, the maximum A/D output SNR from Eq. (9-13) is
SNRA/D-max = 6.02-b+4.77 +20-log,,(1/+/2)

=6.02:b+4.77~3.01=6.02-b+1.76 dB . (9-15)

This discussion of SNR relative to A /D converters means three important
things to us:

* Anideal A/D converter will have an SNR, /p defined by Eq. (9-13), so0
any continuous signal we’re trying to digitize with a b-bit A/D con-
verter will never have an SNR, /b greater than Eq. (9-13) after A/D
conversion. For example, let’s say we want to digitize a continuous
signal whose SNR is 55 dB. Using an ideal eight-bit A/D converter
with its full-scale SNR A/p0f6.02 -8 +1.76 = 49.9 dB from Eq. (9-15),
the quantization noise will contaminate the digitized values, and the
resultant digital signal’s SNR can be no better than 49.9 dB. We'll have
lost signal SNR through the A/D conversion process. (A ten-bit A/D,
with its ideal SNR,, /p = 62 dB, could be used to digitize a 55 dB SNR
continuous signal to reduce the SNR degradation caused by quanti-
zation noise.) Equations (9-13) and (9-15) apply to ideal A/D convert-
ers and don’t take into account such additional A /D noise sources as
aperture jitter error, missing output bit patterns, and other nonlinear-
ities. So actual A/D converters are likely to have SNRs that are lower
than that indicated by theoretical Eq. (9-13). To be safe in practice, it's
sensible to assume that SNR A/D-max 15 3 t0 6 dB lower than that indi-
cated by Eq. (9-15).

* Equation (9-15) is often expressed in the literature, but it can be a lit-
tle misleading because it’s imprudent to force an A/D converter’s
input to full scale. It's wise to drive an A/D converter to some level
below full scale because inadvertent overdriving will lead to signal
clipping and will induce distortion in the A/D’s output. So Eq. (9-15)
is overly optimistic, and, in practice, A/D converter SNRs will be less

363

364

Digital Data Formats and Their Effects

than that indicated by Eq. (9-15). The best approximation for an
A/D’s SNR is to determine the input signal’s rms value that will
never (or rarely) overdrive the converter input, and plug that value in
Eq. (9-11) to get the loading factor value for use in Eq. (9-13)." Again,
using an A/D converter with a wider word length will alleviate this
problem by increasing the available SNR, .

* Remember now, real-world continuous signals always have their
own inherent continuous SNR, so using an A/D converter, whose
SNR, p is a great deal larger than the continuous signal’s SNR
serves no purpose. In this case, we'd be using the A/D converter’s
extra bits to digitize the continuous signal’s noise to a greater degree
of accuracy.

A word of caution is appropriate here concerning our analysis of A/D
converter quantization errors. The derivations of Eqs. (9-13) and (9-15) are
based upon three assumptions:

* The cause of A/D quantization errors is a stationary random
process; that is, the performance of the A/D converter does not
change over time. Given the same continuous input voltage, we
always expect an A/D converter to provide exactly the same output
binary code.

* The probability density function of the A/D quantization error is
uniform. We're assuming that the A/D converter is ideal in its oper-
ation and all possible errors between —4/2 and +4/2 are equally
Likely. An A/D converter having stuck bits or missing output codes
would violate this assumption. High-quality A/D converters being
driven by continuous signals that cross many quantization levels
will result in our desired uniform quantization noise probability
density function.

The A/D quantization errors are uncorrelated with the continuous
input signal. If we were to digitize a single continuous sinewave
whose frequency was harmonically related to the A/D sample rate,
we'd end up sampling the same input voltage repeatedly and the
quantization error sequence would not be random. The quantization

* By the way, some folks use the term crest factor to describe how hard an A/D converter’s
input is being driven. The crest factor is the reciprocal of the loading factor, or CF = V,/(rms
of the input signal).

Effects of Finite Fixed-Point Binary Word Length

error would be predictable and repetitive, and our quantization noise
variance derivation would be invalid. In practice, complicated con-
tinuous signals such as music or speech, with their rich spectral con-
tent, avoid this problem.

To conclude our discussion of A/D converters, let’s consider one last
topic. In the literature the reader is likely to encounter the expression

_SNR-1.76
ff = .
© 6.02 (9-16)

Equation (9-16) is used by test equipment manufacturers to specify the
sensitivity of test instruments using a by parameter known as the num-
ber of effective bits, or effective number of bits (ENOB) {3-8]. Equation
(9-16) is merely Eq. (9-15) solved for b. Test equipment manufacturers
measure the actual SNR of their product indicating its ability to capture
continuous input signals relative to the instrument’s inherent noise char-
acteristics. Given this true SNR, they use Eq. (9-16) to determine the by
value for advertisement in their product literature. The larger b, the
greater the continuous voltage that can be accurately digitized relative to
the equipment’s intrinsic quantization noise.

9.3.2 Data Overflow

The next finite, word-length effect we’ll consider is called overflow.
Overflow is what happens when the result of an arithmetic operation has
too many bits, or digits, to be represented in the hardware registers
designed to contain that result. We can demonstrate this situation to our-
selves rather easily using a simple four-function, eight-digit pocket calcu-
lator. The sum of a decimal 9.9999999 plus 1.0 is 10.9999999, but on an
eight-digit calculator the sum is 10.999999 as

9.9999999
*1.0000000
10.9999999.

T
this digit gets discarded

The hardware registers, which contain the arithmetic result, and drive the
calculator’s display, can hold only eight decimal digits; so the least sig-
nificant (of course) digit is discarded. Although the above error is less

365

366

Digital Data Formats and Their Effects

than one part in ten million, overflow effects can be striking when we
work with large numbers. If we use our calculator to add 99,999,999 plus
1, instead of getting the correct result of 100 million, we’ll get a result of
1. Now that’s an authentic overflow error!

Let’s illustrate overflow effects with examples more closely related to
our discussion of binary number formats. First, adding two unsigned
binary numbers is as straightforward as adding two decimal numbers.
The sum of 42 plus 39 is 81, or '

111 - carry bits
+42 in unsigned binary — 101010

+39in unsigned binary - +100111
+81in unsigned binary - 1010001 .

In this case, two 6-bit binary numbers required 7 bits to represent the
results. The general rule is the sum of m individual b-bit binary numbers can
require as many as [b + log,(m)] bits to represent the results. So, for example,
a 24-bit result register (accumulator) is needed to accumulate the sum of
sixteen 20-bit binary numbers, or 20 + log,(16) = 24. The sum of 256 eight-
bit words requires an accumulator whose word length is [8 + log,(256)],
or 16 bits, to ensure that no overflow errors occur.

In the preceding example, if our accumulator word length was 6 bits,
an overflow error occurs as

111 «canybiss
+42in unsignedbinary - 101010
+39 in unsigned binary —» *1007111
+17in unsignedbinary > 1010001 . « Overflow error
)

an overflow out of the sign bit is ignored, causing an overflow error

Here, the most significant bit of the result overflowed the 6-bit accu-~
mulator, and an error occurred.

With regard to overflow errors, the two’s complement binary format
has two interesting characteristics. First, under certain conditions, over-
flow during the summation of two numbers causes no error. Second, with
multiple summations, intermediate overflow errors cause no problems if
the final magnitude of the sum of the b-bit two’s complement numbers is
less than 2. Let’s illustrate these properties by considering the four-bit
two’s complement format in Figure 9-5, whose binary values are taken
from Table 9-2.

e,]

Effects of Finite Fixed-Point Binary Word Length

decimal

equivalent
0111 0111

0110
0101

L

Figure 9-5 Four-bit two’s complement binary numbers.

The first property of two’s complement overflow, which sometimes
causes no errors, can be shown by the following examples:

010 & carry bits
-5 in two’s complement — 1011
+2in two’s complement — +(001]Q
-3 in two’s complement — (01101 « valid negative result
T

2zero overflow out of the sign bit

110 + carry bits
-2in two's complement -» 1110

+6in two’s complement — +(0110
+4in two's complement — 1 (1 (0 (¢ valid positive result
1

overflow out of the sign bit ignored, no harm done

Then again, the following examples show how two’s complement over-
flow sometimes does cause errors:

Digital Data Formats and Their Effects

000 « carry bits
=7in two’s complement - 1001
~6 in two’s complement » 1010
+3in two's complement » 10011 « invalid positive result
1

overflow out of the sign bit ignored, causing overflow error

111 « carry bits
+7in two’s complement - (0111
+7in two’s complement —» (01711
-2intwos complement - 01110 < invalid negative result
T

zero overflow out of the sign bit

The rule with two’s complement addition is if the carry bit into the sign bit
is the same as the overflow bit out of the sign bit, the overflow bit can be ignored
causing no errors; if the carry bit into the sign bit is different from the overflow
bit out of the sign bit, the result is invalid. An even more interesting property
of two’s complement numbers is that a series of b-bit word summations
can be performed where intermediate sums are invalid, but the final sum
will be correct if its magnitude is less than 2>, We show this by the fol-
lowing example. If we add a +6 to a +7, and then add a -7, we’ll encounter
an intermediate overflow error but our final sum will be correct as

+7 in two's complement -» (0111

+6 in two's complement » * (0110

-3intwo’s complement - 1101 < overflow error here

-7 in two’s complement - * 1001

+6in two's complement > 10110 « valid positive result
1

overflow ignored, with no harm done

The magnitude of the sum of the three four-bit numbers was less than 2+
(<8), so our result was valid. If we add a +6 to a +7, and next add a -5,
we’ll encounter an intermediate overflow error, and our final sum will
also be in error because its magnitude is not less than 8.

+7 in two's complement » (0111

+6 in two's complement —» * (0110

~3in two’s complement > 1101 « overflow error here

-5 in two's complement - *10]11

—8intwo's complement - 11000 « invalid negative result

Effects of Finite Fixed-Point Binary Word Length

X o— X'

k
yo—W -1 y'

L N

Figure 9-6 Singie decimation-in-time EFT butterfly.

Another situation where overflow problems are conspicuous is dur-
ing the calculation of the fast Fourier transform (FFT). It's difficult at
first to imagine that multiplying complex numbers by sines and cosines
can lead to excessive data word growth—particularly, because sines and
cosines are never greater than unity. Well, we can show how FFT data
word growth occurs by considering a decimation-in-time FFT butterfly
from Figure 4-14(c) repeated here as Figure 9-6, and grinding through a

little algebra. The expression for the x' output of this FFT butterfly, from
Eq. (4-26), is

X=x+Wk.y . (9-17)

Breaking up the butterfly’s x and y inputs into their real and imaginary
parts and remembering that Wk = e 2%/ | we can express Eq. (9-17) as

x' = xreal + jximag + (e—sz) : (yrea] + jyin\ag) * (9-18)

If we let a be the twiddle factor angle of 2mk/N, and recall that
€7% = cos(ar) - jsin(ar), we can simplify Eq. (9-18) as

* = Xrea ¥ Fimag +[008(0) = jSIN(O)]- (Vreas + Yipnag)
= Xreal T COS(0)Yyeq) + SIN(O) iy, + HXigag + COS(C)Yimag = SIN(0)Yyeyy) - (9-19)

If we look, for example, at just the real part of the x' output, x'__, it com-
prises the three terms

¥'real = Treal + COS(00Y e + SIN(0)Y (9-20)

369

370

Digital Data Formats and Their Effects

If X eaps Yrear AN Yirn,p are of unity value when they enter the butterfly and
the twiddle factor angle o. = 2rk/N happens to be n/4 = 45°, then, x'_,, can
be greater than 2 as

X' real = 14 €08(45°) 1+ sin(45°) - 1
=1+0.707 +0.707 = 2.414 . (9-21)

So we see that the real part of a complex number can more than double in
magnitude in a single stage of an FFT. The imaginary part of a complex
number is equally likely to more than double in magnitude in a single FFT
stage. Without mitigating this word growth problem, overflow errors
could render an FFT algorithm useless.

OK, overflow problems are handled in one of two ways: by truncation
or rounding—each inducing its own individual kind of quantization
errors as we shall see.

9.3.3 Truncation

Truncation is the process where a data value is represented by the largest
quantization level that is less than or equal to that data value. If we're
quantizing to integral values, for example, the real value 1.2 would be
quantized to 1. An example of truncation to integral values is shown in
Figure 9-7(a), where all values of x in the range of 0 < x < 1 are set equal
to 0, values of x in the range of 1 < x < 2 are set equal to 1, x values in the
range of 2 < x < 3 are set equal to 2, and so on.

Aswe did with A/D converter quantization errors, we can call upon the
concept of probability density functions to characterize the errors induced
by truncation. The probability density function of truncation errors, in
terms of the quantization level, is shown in Figure 9-7(b). In Figure 9-7(a)
the quantization level g is 1, so, in this case, we can have truncation errors
as great as —1. Drawing upon our results from Egs. (D-11) and (D-12) in
Appendix D, the mean and variance of our uniform truncation probability
density function are expressed as

Hiruncation = —ii (9-22)

and

Effects of Finite Fixed-Point Binary Word Length

// o*)
Quantized x A P
2
/“-_
1 Truncation
-3 2 -1
a {1 1 Lo [N -
(@) I B v B
Ly 2 3 4 X
. -2
3
L]
[]
[]
Truncation error
1 A probability density function
+
(b) -
-q 0 Error value

Figure 9-7 Truncation: (a) quantization nonlinearities: (©) error probability
density function.

2

O'Ztruncation = Z_Z . (9-23)

In a sense, truncation error is the price we pay for the privilege of
using integer binary arithmetic. One aspect of this is the error introduced
when we use truncation to implement division by some integral power
of 2. We often speak of a quick way of dividing a binary value by 2T is to
shift that binary word T bits to the right; that is, we’re truncating the data
value (not the data word) by lopping off the rightmost T bits after the
shift. For example, let's say we have the value 31 represented by the five-
bit binary number 11111,, and we want to divide it by 16 through shift-
ing the bits T = 4 places to the right and ignoring (truncating) those
shifted bits. After the right shift and truncation, we’d have a binary quo-
tient of 31/16 = 00001,. Well, we see the significance of the problem
because our quick division gave us an answer of one instead of the

372

Digital Data Formats and Their Effects

correct 31/16 = 1.9375. Our division-by-truncation error here is almost 50
percent of the correct answer. Had our original dividend been a 63 rep-
resented by the six-bit binary number 111111,, dividing it by 16 through
a four-bit shift would give us an answer of binary 000011,, or decimal
three. The correct answer, of course, is 63/16 = 3.9375. In this case the
percentage error is 0.9375/3.9375, or about 23.8 percent. So, the larger the
dividend, the lower the truncation error.

If we study these kinds of errors, we'll find that the resulting trunca-
tion error depends on three things: the number of value bits shifted and
truncated, the values of the truncated bits (were those dropped bits ones
or zeros), and the magnitude of the binary number left over after trunca-
tion. Although a complete analysis of these truncation errors is beyond
the scope of this book, we can quantify the maximum error that can occur
with our division-by-truncation scheme when using binary integer arith-
metic. The worst case scenario is when all of the T bits to be truncated are
ones. For binary integral numbers the value of T bits, all ones, to the right
of the binary point is 1 - 2. If the resulting quotient N is small, the sig-
nificance of those truncated ones aggravates the error. We can normalize
the maximum division error by comparing it to the correct quotient using
a percentage. So the maximum percentage error of the binary quotient N
after truncation for a T-bit right shift, when the truncated bits are all
ones, is

Correct quotient — Quotient after truncation
Correct quotient

%truncation error,,,, =100+

. Truncation error ~100- 1-277 —. (9-24)
Correct quotient N+(1-27")

Let’s plug a few numbers into Eq. (9-24) to understand its significance. In the
first example above, 31/16, where T = 4 and the resulting binary quotient
was N = 1, the percentage error is

100 - (1-0.0625)/(1 + 1 - 0.0625) = 100 - (0.9375/1.9375) = 48.4%.

Plotting Eq. (9-24) for three different shift values as functions of the quotient,
N, after truncation results in Figure 9-8.

So, to minimize this type of division error, we need to keep the result-
ing binary quotient N, after the division, as large as possible. Remember,
Eq. (9-24) was a worst case condition where all of the truncated bits

Effects of_ Finite Fixed-Foint Binary Word Length

Maximum % error

-+ RARBRRRERRE
1.3 5 7 9 11 1315 17 19 21 23 25 27 29 31 3335 3733 N
Figure 9-8 Maximum error when data shifting and fruncation are used to

implement division by 27 T= 1 s division by 2; T= 2 s divisi ,
and T=8 is division by 256, y & T'=21s division by 4;

were ones. On the other hand, if all of the truncated bits happened to
be zeros, the error will be zero. In practice, the errors will be some-
where between these two extremes. A practical example of how divi-

sion-by-truncation can cause serious numerical errors is given in
reference [9].

9.3.4 Data Rounding

Rounding is an alternate process of dealing with overflow errors where a
data value is represented by, or rounded off to, its nearest quantization
level. If we're quantizing to integral values, the number 1.2 would be
quantized to 1, and the number 1.6 would be quantized to 2. This is
shown in Figure 9-9(a) where all values of x in the range of ~0.5< x < 0.5
are set equal to 0, values of x in the range of 0.5 < x < 1.5 are set equal ';o
1 ' X values in the range of 1.5 < x < 2.5 are set equal to 2, etc. The proba-
bility density function of the error induced by rounding, in terms of the
quantization level, is shown in Figure 9-9(b). In Figure 9-9(a), the quanti-
zation level g is 1, so, in this case, we can have truncation error magni-
tudes no greater than 4/2, or 1/2. Again, using our Egs. (D-11) and (D-12)
results from Appendix D, the mean and variance of our uniform roundoff
probability density function are expressed as

Hsoundot = 0/ (9-25)

and

373

Digital Data Formats and Their Effects

Quantized x A 3.

_7/|2 _512 -3/|2 e
(a) A A Y N
-1

———

<Y

A Roundoff error probability
1 density function

® ~g/2 0 g/2 Error value

Figure 9-9 Roundoff: (a) quantization nonlinearities; (b) error probability
density function.

2

O'zroundoff = 2_2 . (9-26)

Because the mean (average) and maximum error possibly induced b'y
roundoff is less than that of truncation, rounding is generally preferred, in
practice, to minimize overflow errors. . o

In digital signal processing, statistical analysis of quantization error
effects is exceedingly complicated. Analytical results depend on the types
of quantization errors, the magnitude of the data being .re.pres.ented, the
numerical format used, and which of the many FFT or digital fllter struc-
tures we happen to use. Be that as it may, digital signal processing experts
have developed simplified error models whose analysis has Rroved use-
ful. Although discussion of these analysis techniques and their restflts is
beyond the scope of this introductory text, many references are available
for the energetic reader{10-18]. (Reference [11] has an gxtenswe reference
list of its own on the topic of quantization error analysis.)

Floating-Point Binary Formats

Again, the overflow problems using fixed-point binary formats—that
we try to alleviate with truncation or roundoff—arise because so many
digital signal processing algorithms comprise large numbers of additions
or multiplications. This obstacle, particularly in hardware implementa-
tions of digital filters and the FFT, is avoided by hardware designers
through the use of floating-point binary formats.

9.4 Floating-Point Binary Formats

Floating-point binary formats allow us to overcome most of the limita-
tions of precision and dynamic range mandated by fixed-point binary for-
mats, particularly in reducing the ill effects of overflow [19].
Floating-point formats segment a data word into two parts: a mantissa m
and an exponent e. Using these parts, the value of a binary floating-point
number 7 is evaluated as

n=m.2e, 9-27)

that is, the number s value is the product of the mantissa and 2 raised
to the power of the exponent. (Mantissa is a somewhat unfortunate
choice of terms because it has a meaning here very different from that
in the mathematics of logarithms—mantissa originally meant the deci-
mal fraction of a logarithm.! However, due to its abundance in the lit-
erature we’ll continue using the term mantissa here.) Of course, both the
mantissa and the exponent in Eq. (9-27) can be either positive or nega-
tive numbers.

Let’s assume that a b-bit floating-point number will use b, bits for the
fixed-point signed exponent and b,, bits for the fixed-point signed man-
tissa. The greater the number of b . bits used, the larger the dynamic
range of the number. The more bits used for b, the better the resolution,
or precision, of the number. Early computer simulations conducted by
the developers of b-bit floating-point formats indicated that the best
trade-off occurred with b, = b/4 and b,, = 3b/4. We'll see that, for typical
32-bit floating-point formats used today, b, = 8 bits and b, ~ 24 bits. To
take advantage of a mantissa’s full dynamic range, most implementa-
tions of floating-point numbers treat the mantissa as a fractional fixed-

* For example, the common logarithm (log to the base 10} of 256 is 2.4082. The 2 to the left
of the decimal point is called the characteristic of the logarithm and the 4082 digits are called
the mantissa. The 2 in 2.4082 does not mean that we multiply 4082 by 102. The 2 means that
we take the antilog of .4082 to get 2.56 and multiply that by 10%to get 256.

37!

376

Digital Data Formats and Their Effects

point binary number, shift the mantissa bits to the right or left, so that
its most significant bit is a one, and adjust the exponent accordingly.
This convention is called normalization. When normalized, the mantissa
bits are typically called the fraction of the floating-point number, instead
of the mantissa. For example, the decimal value 3.6875,, can be repre-
sented by the fractional binary number 11.1011,. If we use a two-bit
exponent with a six-bit fraction floating-point word, we can just as well
represent 11.1011, by shifting it to the right two places and setting the
exponent to two as

exponent fraction

{ 1

10[,111011]. (9-28)
T
binary point

111011, =

The floating-point word above can be evaluated to retrieve our decimal
number again as

LA-21)+@-22)+@-23)+(0-27)+(1-28)+(1-279)].2?
rrHeabiahioLea Lysa.Ly.o2
=[o(1 2)+(1 4)+(1 8)+(0 16)+(1 32)+(1 64)] 2

=[0.5+0.25 +0.125 + 0.0625 + 003125 + 0.015625] - 22
=0.921875-4=3.6875 . (9-29)

After some experience using floating-point normalization, users soon
realized that always having a one in the most significant bit of the fraction
was wasteful. That redundant one was taking up a single bit position in
all data words and serving no purpose. So practical implementations of
floating-point formats discard that one, assume its existence, and increase
the useful number of fraction bits by one. This is why the term hidden bit
is used to describe some floating-point formats. While increasing the frac-
tion’s precision, this scheme uses less memory because the hidden bit is
merely accounted for in the hardware arithmetic logic. Using a hidden bit,
the fraction in Eq. (9-28)'s floating point number is shifted to the left one
place and would now be

Floating-Point Binary Formats

exponent fraction

i {

- 0
)

binary point

111011, =

Recall that the exponent and mantissa bits were fixed-point signed
binary numbers, and we’ve discussed several formats for representing
signed binary numbers, i.e., sign magnitude, two’s complement, and off-
set binary. As it turns out, all three signed binary formats are used in
industry-standard floating-point formats. The most common floating-
point formats, all using 32-bit words, are listed in Table 9-3.

Table 9-3 Floating-Point Number Formats

IEEE Standard P754 Format
Bit 31 30 29 28 27 26 25 24 23 22 21 20 ... 2 1 ¢
[S 27 26 25 24 93 2 91 20 1ol 92 93 ... pm g Z-B—l
Sign (s) “ Exponent () “ Fraction (f) ™
IBM Format
Bit 31 30 29 28 27 26 25 24 23 22 21 20 .- 2 1 0

[S 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 .o 2-23 2—24'

Sign (s) “ Exponent () = < Fraction (f) ™

DEC (Digital Equipment Corp.) Format

Bit 31 30 29 28 27 26 25 24 23 2 21 20 ... 2 1 0
Ls Y 2 25 2 23 2 91 20 (22 23 4 ... gn B 2-;]

< Fraction (f) =

Sign (s) € Exponent (¢) >
MIL-STD 1750A Format

Bit 31 30 29 .- 11 10 9 8 7 6 5 4 3 2 1 0

Ii 2-1 92

. 2720 - 2722 -23| 97 26 25 24 23 22 21 20]

€ Fraction (f) = € Exponent (¢)

377

378

Digital Data Formats and Thelr Effects

The IEEE P754 floating-point format is the most popular because so many
manufacturers of floating-point integrated circuits comply with this stan-
dard [8, 20-22]. Its exponent e is offset binary (biased exponent), and its frac-
tion is a sign-magnitude binary number with a hidden bit that’s assumed to
be 29, The decimal value of a normalized IEEE P754 floating-point number
is evaluated as

valuepgg, = (-1)° - 1,f - 267177, (9-31)
)
hidden bit

The IBM floating point format differs somewhat from the other float-
ing-point formats because it uses a base of 16 rather than 2. Its exponent
is offset binary, and its fraction is sign magnitude with no hidden bit.
The decimal value of a normalized IBM floating-point number is eval-
uated as :

valuepy = (-1)° - 0,f - 165~ 6. (9-32)

The DEC floating-point format uses an offset binary exponent, and its
fraction is sign magnitude with a hidden bit that’s assumed to be 2-1. The
decimal value of a normalized DEC floating-point number is evaluated as

valuepp. = (<1)° - 0,1f - 2¢0-1%8, (9-33)

1
hidden bit

MIL-STD 1750A is a United States Military Airborne floating-point
standard. Its exponent ¢ is a two’s complement binary number residing in
the least significant eight bits. MIL-STD 1750A's fraction is also a twof s
complement number (with no hidden bit), and that’s why no sign bit is
specifically indicated in Table 9-3. The decimal value of a MIL-STD 1750A
floating-point number is evaluated as

value, . =f- 2°. (9-34)

Notice how the floating-point formats in Table 9-3 all have word
lengths of 32 bits—this was not accidental. Using 32-bit words makes
these formats easier to handle using 8-, 16, and 32-bit hardware proces-
sors. That fact not withstanding and given the advantages afforded by
floating-point number formats, these formats do require a significant

Floating-Point Binary Formarts

amount of logical comparisons and branching to correctly perform arith-
metic operations. Reference [23] provides useful flow charts showing
what procedural steps must be taken when floating-point numbers are
added and multiplied.

9.4.1 Floating-Point Dynamic Range

Attempting to determine the dynamic range of an arbitrary floating-point
number format is a challenging exercise. We start by repeating the expres-
sion for a number system’s dynamic range from Eq. (9-6) as

largest possible word value
smallest possible word value

dynamic rangegg = 20- logm[] .
(9-35)

When we attempt to determine the largest and smallest possible values

for a floating-point number format, we quickly see that they depend on
such factors as

* the position of the binary point

* whether a hidden bit is used or not (If used, its position relative to the
binary point is important.)

* the base value of the floating-point number format

* the signed binary format used for the exponent and the fraction (For
example, recall from Table 9-2 that the binary two’s complement for-

mat can represent larger negative numbers than the sign-magnitude
format.)

* how unnormalized fractions are handled, if at all. (Unnormalized,
also called gradual underflow, means a nonzero number that's less
than the minimum normalized format but can still be represented
when the exponent and hidden bit are both zero.)

* how exponents are handled when they’re either all ones or all zeros.
(For example, the IEEE P754 format treats a number having an all
ones exponent and a nonzero fraction as an invalid number, whereas
the DEC format handles a number having a sign = 1 and a zero expo-
nent as a special instruction instead of a valid number.)

Trying to develop a dynamic range expression that accounts for all the
possible combinations of the above factors is impractical. What we can do

379

380

Digital Data Formats and Their Effects

is derive a rule of thumb expression for dynamic range that’s often used
in practice[8,22,24].

Let’s assume the following for our derivation: the exponent is a b,-bit
offset binary number, the fraction is a normalized sign-magnitude num-
ber having a sign bit and b,, magnitude bits, and a hidden bit is used just
left of the binary point. Our hypothetical floating-point word takes the
following form:

Bit Bytbl bb2 o B2 b, bl B2 o 10
S | owe o2 ... 21 90 | 1 92 obmil g-bm |
Sign (s) + Exponent (¢) = € Praction (f) =

First we'll determine what the largest value can be for our floating-point
word. The largest fraction is a one in the hidden bit, and the remaining b,
fraction bits are all ones. This would make fraction f = [1 + (1 — 27m)]. The
first 1 in this expression is the hidden bit to the left of the binary point,
and the value in parenthesis is all b, bits equal to ones to the right of the
binary point. The greatest positive value we can have for the b,-bit offset
binary exponent is 20%7-1), o the largest value that can be represented
with the floating-point number is the largest fraction raised to the largest
positive exponent or

largest possible word value = [1+ (1~ 27bm NE 2(2','—‘ o

(9-36)
The smallest value we can represent with our floating-point word is a one

in the hidden bit times two raised to the exponent’s most negative value,
242N or

smallest possible word value =1-2"2") | (9-37)
Plugging Egs. (9-36) and (9-37) into Eq. (9-35),
-b (k1o
- m . 2
dynamic rangegg = 20-logyg (-2 —(2):1-1)
12 (9-38)

Now here’s where the thumb comes in—when b, is large, say over seven,
the 27 value approaches zero; that is, as b,, increases, the all ones fraction

Block Floating-Point Binary Format

(1 - 2°%m) value in the numerator approaches 1. Assuming this, Eq. (9-38)
becomes

[1+1]-26""-D

dynamic rangegz = 20- loglo[
5.9@%7 -1 9(2%™)
=20 10810 (W =20- lOgm _2—:_(;:‘_;
be-1 be
=2010g5(2:2%) =20-10g,o(2?")) = 6.02+ 2 . (9-39)

Using Eq. (9-39) we can estimate, for example, the dynamic range of the
single-precision IEEE P754 standard floating-point format with its eight-
bit exponent:

dynamic range . s, = 6.02 - 28 = 1529 dB. (9-40)

Although we’ve introduced the major features of the most common
floating-point formats, there are still more details to learn about floating-
point numbers. For the interested reader the references given in this sec-
tion provide a good place to start.

9.5 Block Floating-Point Binary Format

A marriage of fixed-point and floating-point binary formats is known as
block floating point. This scheme is used, particularly in dedicated FFT inte-
grated circuits, when large arrays, or blocks, of associated data are to be
manipulated mathematically. Block floating-point schemes begin by
examining all the words in a block of data, normalizing the largest-valued
word’s fraction, and establishing the correct exponent. This normalization
takes advantage of the fraction’s full dynamic range. Next, the fractions of
the remaining data words are shifted appropriately, so that they can use
the exponent of the largest word. In this way, all of the data words use the
same exponent value to conserve hardware memory.

In FFT implementations, the arithmetic is performed treating the block
normalized data values as fixed-point binary. However, when an addi-
tion causes an overflow condition, all of the data words are shifted one
bit to the right (division by two), and the exponent is incremented by

382

Digital Data Formats and Their Effects

one. As the reader may have guessed, block floating-point formats have
increased dynamic range and avoid the overflow problems inherent in
fixed-point formats but do not reach the performance level of true float-
ing-point formats[8,25,26].

References

[1] Neugebauer, O. “The History of Ancient Astronomy,” Journal of Near Eastern
Studies, Vol. 4, 1945, pp. 12.

[2] Knuth, D. E. The Art of Computer Programming: Seminumerical Methods, Vol. 2,
Section 4.1, Addison-Wesley Publishing, Reading, Massachusetts, 1981, pp-179.

[3] Kester, W. “Peripheral Circuits Can Make or Break Sampling-ADC Systems,”
EDN Magazine, October 1, 1992,

f4] Grove, M. ."Measuring Frequency Response and Effective Bits Using Digital
Signal Processing Techniques,” Hewlett-Packard Journal, February 1992.

{51 Tektronix. “Effective Bits Testing Evaluates Dynamic Range Performance of
Digitizing Instruments,” Tektronix Application Note, No. 45W-7527, December
1989.

{6] Ushani, R. “Subranging ADCs Operate at High Speed with High Resolution,”
EDN Magazine, April 11, 1991.

{7] Demler, M. “Time-domain Techniques Enhance Testing of High-speed
ADCs,” EDN Magazine, March 30, 1992

[8] Hilton, H. “A 10-MHz Analog-to-Digital Converter with 110-dB Linearity,”
Hewlett-Packard Journal, October 1993.

[9] Lyons, R. G. “Providing Software Flexibility for Optical Processor Noise
Analysis,” Computer Design, July 1978, pp. 95.

(10} Knuth, D. E. The Art of Computer Programming: Seminumerical Methods, Vol. 2,
Section 4.2, Addison-Wesley Publishing, Reading, Massachusetts, 1981, pp. 198.

(11] Rabiner, L. R., and Gold, B. Theory and Application of Digital Signal Processing,
Chapter 5, Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp- 353.

[12] Jackson, L. B. “An Analysis of Limit Cycles Due to Multiplicative Rounding
in Recursive Digital Filters,” Proc. 7th Allerton Conf. Circuit System Theory,
1969, pp. 69-78.

[13] Kan, E.P.E and Aggarwal,]. K. “Error Analysis of Digital Filters Employing
Floating Point Arithmetic,” IEEE Trans. Circuit Theory, Vol. CT-18, November
1971, pp. 678-86.

[14] Crochiere, R. E. “Digital Ladder Structures and Coefficient Sensitivity,” IEEE
Trans. Audio Electroacoustics, Vol. AU-20, October 1972, pp. 240-46.

References

[15] Jackson, L. B. “On the Interaction of Roundoff Noise and Dynamic Range in
Digital Filters,” Bell System Technical Journal, Vol. 49, February 1970, pp. 159-84.

[16] Roberts, R. A., and Mullis, C. T. Digital Signal Processing, Addison-Wesley
Publishing, Reading, Massachusetts, 1987, pp. 277.

{17] Jackson, L. B. “Roundoff Noise Analysis for Fixed-Point Digital Filters
Realized in Cascade or Parallel Form,” IEEE Trans. Audio Electroacoustics, Vol.
AU-18, June 1970, pp. 107-22.

[18] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal Processing, Sections
6.8 and 9.8, Prentice-Hall, Englewood Cliffs, New Jersey, 1989, pp. 335.

[19] Larimer, J., and D. Chen. “Fixed or Floating? A Pointed Question in DSPs,”
EDN Maguazine, August 3, 1995,

[20] Ashton, C. “Floating Point Math Handles Iterative and Recursive
Algorithms,” EDN Magazine, January 9, 1986.

[21] Windsor, B., and Wilson, J. “Arithmetic Duo Excels in Computing Floating
Point Products,” Electronic Design, May 17, 1984,

[22] Windsor, W. A. “IEEE Floating Point Chips Implement DSP Architectures,”
Computer Design, January 1985.

[23] Texas Instruments Inc., Digital Signal Processing Applications with the TMS320
Family: Theory, Algorithms, and Implementations, SPRA012A, Texas Instruments,
Dallas, TX, 1986.

[24] Strauss, W. I. “Integer or Floating Point? Making the Choice,” Computer Design
Magazine, April 1, 1990, pp. 85.

[25] Oppenheim and Weinstein. “Effects of Finite Register Length in Digital
Filtering and the Fast Fourier Transform,” Proc. IEEE, August 1972, pp. 957-76.

[26] Woods, R. E. “Transform-based Processing: “How Much Precision Is Needed,”
ESD: The Electronic System Design Magazine, February 1987.

383

CHAPTER TEN

Digital Signal
Processing Tricks

As we study the literature of digital signal processing, we'll encounter
some creative techniques that professionals use to make their algorithms
more efficient. These techniques are straightforward examples of the phi-
losophy “don’t work hard, work smart” and studying them will give us a
deeper understanding of the underlying mathematical subtleties of digital
signal processing. In this chapter, we present a collection of these clever
tricks of the trade and explore several of them in detail, because doing so
reinforces some of the lessons we've learned in previous chapters.

10.1 Frequency Translation without Multiplication

Frequency translation is often called for in digital signal processing algo-
rithms. A filtering scheme called transmultiplexing (using the FFT to effi-
ciently implement a bank of bandpass filters) requires spectral shifting by
half the sample rate, or f,/2[1]. Inverting bandpass sampled spectra and
converting low-pass FIR filters to highpass filters both call for frequency
translation by half the sample rate. Conventional quadrature bandpass
sampling uses spectral translation by one quarter of the sample rate, or
f;/4, to reduce unnecessary computations[2,3). There are a couple of tricks
used to perform discrete frequency translation, or mixing, by fi/2andf,/4
without actually having to perform any multiplications. Let’s take a look
at these mixing schemes in detail.

First, we'll consider a slick technique for frequency translating an input
sequence by f./2 by merely multiplying that sequence by (-1)", or (~1)°,
(-1), (-1)?, (1), etc. Better yet, this requires only changing the sign of
every other input sample value because (-1)" = 1, -1, 1, -1, etc. This
process may seem a bit mysterious at first, but it can be explained in a
straightforward way if we review Figure 10-1. The figure shows us that

385

386

Digital Signal Processing Tricks

L L

—o-
=
[]

-1

Figure 10-1 Mixing sequence comprising (-1)™; 1,-1, 1, -1, etc.

multiplying a time-domain signal sequence by the (-1)" mixing sequence
is equivalent to multiplying the signal sequence by a sampled cosinusoid
where the mixing sequence values are shown as the dots in Figure 10-1.
Because the mixing sequence’s cosine repeats every two sample values, its
frequency is f,/2. Let’s look at this situation in detail, not only to under-
stand mixing sequences, but to illustrate the DFT equation’s analysis
capabilities, to reiterate the nature of complex signals, and to reconfirm
the important equivalence of shifting in the time domain and phase shift-
ing in the frequency domain.

We can verify the (~1)" mixing sequence’s frequency translation of f,/2
by taking the DFT of the mixing sequence expressed as Fi 114, (m)
where

N-1

B ogpo.(m)= 3 (1,-1,1,-1,..)e/2mm/N (10-1)

n=0
Using a 4-point DFT, we expand the sum in Eq. (10-1), with N = 4, to

E 1141 (m) = j2n0m/4 _ g=j2mlm/4 | oj2mdm/4 _ gj2n3m/4 (10-2)

1

Notice that the mixing sequence is embedded in the signs of the terms of
Eq. (10-2) that we evaluate from m = 0 to m = 3 to get

m=0: F _, 10)=eP-eP+eP-eP=1-1+1-1=0, (10-3)
m=1: Fy ;o (1)=eM— WAL gin/d_gior/A=1 4 j1-1-j1=0, (10-4)

m=2: F 11 1(2)=el—etn/dy gfr/d_o12n/4-1,141+1=4, (10-5)

Frequency Transiation Without Multiplication

Magnitude of (-1)" sequence

N B N=32 100 Phase of (—1)" sequence

50

ORgEERENERNRRRREN{RL SRR RN RAN R RRY ORNERNNAANSARA NN NN NN NTRI AR AN
0 2 4 8 8 1012 14 18 18 20 22 24 26 28 30 0 2 4 6 8 1012 14 g 18 20 22 24 26 28 30

Figure 10-2 Frequency-domain magnitude and phase of an N-point (-1)" sequence.

and
m=3: F 11,1 (B) = e — gfon/4 4 gl2n/a _ ojt8n/a 1 —1-1+j1=0. (10-6)

See how the 1, -1, 1, -1 mixing sequence has a nonzero frequency compo-
nent only when m = 2 corresponding to a frequency of mf,/N =2f,/4=f./2.
So, in the frequency domain the four-sample 1, -1, 1, -1 mixing sequence
is an f,/2 sinusoid with a magnitude of 4 and a phase angle of 0°. Had our
mixing sequence contained eight separate values, the results of an 8-point
DFT would have been all zeros with the exception of the m = 4 frequency
sample with its magnitude of 8 and phase angle of 0°. In fact, the DFT of
N (1)"has a magnitude of N at a frequency £,/2. When N = 32, for exam-
ple, the magnitude and phase of a 32-point (-1)" sequence is shown in
Figure 10-2.

Let’s demonstrate this (-1)* mixing with an example. Consider the 32
discrete samples of the sum of 3 sinusoids comprising a real time-domain
sequence x() shown in Figure 10-3(a) where

2n10n 2rlln = 2r12n 3n
= 5. e -4 025. -2 . (10-
x(n) = cos(2)+0.5- cos() 4)+0 5 - cos(2 8) (10-7)

The frequencies of the three sinusoids are 10 /32Hz,11/32Hz, and 12/32
Hz, and they each have an integral number of cycles (10, 11, and 12) over
32 samples of x(n). To show the magnitude and phase shifting effect of
using the 1,-1,1,-1 mixing sequence, we've added arbitrary phase shifts
of -1t/4 (-45°) and -3n/8 (-67.5°) to the second and third tones. Using a
32-point DFT results in the magnitude and phase of X(m) shown in
Figure 10-3(b).

Let’s notice something about Figure 10-3(b) before we proceed. The
magnitude of the m = 10 frequency sample | X(10)! is 16. Remember why
this is s0? Recall Eq. (3-17) from Chapter 3 where we learned that, if a real
input signal contains a sinewave component of peak amplitude A with

387

388

Digital Signal Processing Tricks

(a)

Negative fraquancy

components Phase of X(m) in degrees, @(m}
Magnitude of X(m) —— 100

16 = . .

| 50 i

: 2 4 6 8 10 12 i
b) @ in L 0 SesynaERYRE{ERn-sran-H NnRRRRAR Y
() 41 im s o/:5141e132:)2224282930

.

OmunesmRasytitrnnannni-ianannnnny '“f S om
0 2 4 -45 /

67.5

6 B 10 12 14 16 18 20 22 24 26 28 30 100

Figure 10-3 Discrete signal sequence x(n): (a) time-domain representation of x(n);
(o) frequency-domain magnitude and phase of X(m).

an integral number of cycles over N input samples, the output magnitude
of the DFT for that particular sinewave is A N/2. In our case, then,
IX(10)1 =1.32/2 =16, 1 X(11)| =8, and |1X(12)| = 4.

If we multiply x(n), sample by sample, by the (~1)” mixing sequence, our
new time-domain sequence x;_,(n) is shown in Figure 10-4(a), and the
DFT of the frequency translated x, ; is provided in Figure 10-4(b).
(Remember now, we didn’t really perform any explicit multiplications—
the whole idea here is to avoid multiplications—we merely changed the
sign of alternating x(n) samples to get x, (n).) Notice that the magnitude
and phase of X, ;(m) are the magnitude and phase of X(m) shifted by f./2,
or 16 sample shifts, from Figure 10-3(b) to Figure 10-4(b). The negative fre-
quency components of X(m) are shifted downward in frequency, and the
positive frequency components of X(m) are shifted upward in frequency
resulting in X, ,(m). It's a good idea for the reader to be energetic and
prove that the magnitude of X, 4(m) is the convolution of the (-1)"
sequence’s spectral magnitude in Figure 10-2 and the magnitude of X(m)
in Figure 10-3(b). Another way to look at the Xl__l(m) magnitudes in Figure
10-4(b) is to see that multiplication by the (-1)" mixing sequence flips the
positive frequency band of X(m) from zero to +f,/2 Hz about f,/4 Hz and
flips the negative frequency band of X(m) from —f,/2 to zero Hz, about

Frequency Translation Without Multiplication

Xy ~(n) = (=1)" x(n)
‘.54' 1,~1

@

100 Phase of X,‘_,(m) in degrees, B,._| (m)
a
50 in
s 26 28
L LELE S L2 s --inen

P HE Pl
Ouarntilangnannunsnnvananneiiinns 50{ 2e6s0RUGBNZA o N

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 [}
~100

Figure 10-4 Frequency translation by f,/2: (@) mixed sequence X, () = DN x(ny:
(b) magnitude and phase of frequency-translated X, 4(m).

~/,/4 Hz. This process can be used to invert spectra when bandpass sam-
pling is used, as described in Section 2.4.

Another useful mixing sequence is 1,-1,-1,1, etc. It's used to translate
spectra by f,/4 in quadrature sampling schemes and is illustrated in
Figure 10-5(a). In digital quadrature mixing, we can multiply an input
data sequence x(1) by the cosine mixing sequence 1,-1,-1,1 to get the in-
phase component of x(n)—what we’ll call i(n). To get the quadrature-
phase product sequence g(n), we multiply the original input data
sequence by the sine mixing sequence of 1,1,-1,-1. This sine mixing
sequence is out of phase with the cosine mixing sequence by 90°, as
shown in Figure 10-5(b).

If we multiply the 1,-1,-1,1 cosine mixing sequence and an input
sequence x(1), we'll find that the i(n) product has a DFT magnitude that’s
related to the input’s DFT magnitude X(n) by

N I(m)ly .y q = % : (10-8)

To see why, let’s explore the cosine mixing sequence 1,-1,~1,1 in the fre-
quency domain. We know that the DFT of the cosine mixing sequence,
represented by Fl,—l,-l,l (m), is expressed by

389

390

Digital Signal Processing Tricks

Figure 10-5 Quadrature mixing sequences for downconversion by £./4:
(@) cosine mixing sequence using 1,-1,-1,1,.... (b) sine mixing
sequence using 1,1,-1,-1,....

N-1
Faa(m)= Y (1,-1,-1,1, ..) /2mm/N (10-9)

n=0
Because a 4-point DFT is sufficient to evaluate Eq. (10-9), with N = 4,

PI ia 1(m) - e—j2n0m/4 _e—j21t1m/4 _e—j21|:2m/4 + e-j21:3m/4 . (10_10)

Notice, again, that the cosine mixing sequence is embedded in the signs
of the terms of Eq. (10-10). Evaluating Eq. (10-10) for m = 1, correspond-
ing to a frequency of 1-£,/N, or £,/4, we find

m=1: F_; 1,(1) = e IO _gmIm/2 _gmim mj3n/2

=14 1414+ /1224]2 = —= £45°. (10-11)

A

Frequency Transiation Without Multiplication

So, in the frequency domain, the cosine mixing sequence has an f,/4 mag-
nitude of 4/+/2 ata phase angle of 45°. Similarly, evaluating Eq. (10-10)
for m = 3, corresponding to a frequency of -f,/4, we find

m=3: K 5 1,(3) = e IO~ i3n/2 _ pmjdn | =j9m/2

4

V2

=1-jl+1-jl=2~j2=-/-45°. (10-12)

The energetic reader should evaluate Eq. (10-10) form=0and m = 2, to
confirm that the 1,-1,-1,1 sequence’s DFT coefficients are zero for the fre-
quencies of 0 and f,/2.

Because the 4-point DFT magnitude of an all positive ones mixing
sequence (1,1, 1, 1) is 4!, we see that the frequency-domain scale factor for
the 1,-1,~1,1 cosine mixing sequence is expressed as

cosine sequence DFT magnitude
all ones sequence DFT magnitude

I(m),,_y 1,1 scale factor =

4/42_ 1 (10-13)

4 2’

which confirms the relationship in Eq. (10-8) and Figure 10-5(a). Likewise,
the DFT scale factor for the quadrature-phase mixing sequence (1,1,-1,~1) is

1
m), 11 -1 scale factor = — ,
QM) 1,21, 5
thus
1 X(m))
| m) | 1= . 10-14
Q() 1,1,-1,-1 ,_2 ()

S0 what this all means is that an input signal’s spectral magnitude,
after frequency translation, will be reduced by a factor of 2. There’s
really no harm done, however—when the in-phase and quadrature-phase
components are combined to find the magnitude of a complex frequency

¥ We can show this by letting K = N = 4 in Eq. (3-44) for a four-sample all ones sequence in
Chapter 3.

391

392

Digital Signal Processing Tricks

sample X(m), the V2 scale factor is eliminated, and there’s no overall
magnitude loss because

I scale factor | = \/ (I(m) scale factor)? + (Q(m) scale factor)*

=/ +(1/N2) =1/ D+ (/2 =1. (10-15)

We can demonstrate this quadrature mixing process using the x(n)
sequence from Eq. (10-7) whose spectrum is shown in Figure 10-3(b). If
we multiply that 32-sample x(n) by 32 samples of the quadrature mixing
sequences 1,-1,-1,1 and 1,1,-1,-1, whose DFT magnitudes are shown in
Figure 10-6(a) and (b), the new quadrature sequences will have the

Magnitude of 1,-1,-1, 1 & Phase of 1,-1,-1,1
vz " . w©
: 20 2
@ : Ommae !!l!!+Q!!l.!~l.l.!!!l.!!l.l.-f!l!ﬂ'ﬂll
oRguEENNA{NARRERRY N R NN R NNLINDRIRY 20 4 6 810 12 1416 182022 ¢ 2628 30
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 -40 /,.
. 5
Magnitude of 1, -1, -1, 1 50 Phase of 1, -1, -1, 1
20]
(b) 0 l-;l-l+---q;l-qqq'q|-§+nqll-qq

(LA TR IR T T TP YT Y TRRTTN TN -eo 2 4 6 | 10 12 14 16 18 20 22 24 26 28 30
0245810121416!8202224282530_40 ’

BAE

15 4 Magnitude of {m)

a
o1 ¥ "

© 5 - -§

a
"
- 20 1.

[} AN E LN R R AR ANy
PR O R S £ i 4 ' . ,2'.-* PASAL M

1 Phase of {m) in degrees

150
100
50
]
0 2 4 6 B 1012 14 16 18 20 22 24 26 28 30

15 1 Magnitude of Q(m)

-150
. . .
|

o1 ®
@ sy g

0 ---H-(.-- 'YTY -q-Q-H-l ITINEPFTTY qq--LH-l -soi

im 18 20
I-'-l-l-ll!ll.'—‘-}-{-lvll-H-f! ll!!..—‘vl-rl
il 22242628 m

; Phase of Q(m) in degrees

6 8 101214 16 m
0 2 4 6§ 8 1012 14 16 18 20 22 24 26 28 30 _yq0

~180

Figure 10-6 Frequency translation by f,/4: (a) normalized magnitude and phase of
cosine 1,-1,-1,1 sequence; (b) normalized magnitude and phase of
sine 1,1,-1,-1 sequence; (¢) magnitude and phase of frequency-
franslated, in-phase Kmy); (d) magniiude and phase of frequency-
transtated, quadrature-phase €X(m).

Frequency Transiation Without Multiplication

frequency-translated I(m) and Q(m) spectra shown in Figure 10-6(c) and
(d). (Remember now, we don’t actually perform any multiplications; we
merely change the sign of appropriate x(n) samples to get the i(n) and
g(n) sequences.)

There’s a lot to learn from Figure 10-6. First, the positive frequency com-
ponents of X(m) from Figure 10-3(b) are indeed shifted downward by f./4
in Figure 10-6(c). Because our total discrete frequency span (f, Hz) is
divided into 32 samples, £,/4 is equal to eight. So, for example, the X(10)
component in Figure 10-3(b) corresponds to the [(10-8) = I(2) component
in Figure 10-6(c). Likewise, X(11) corresponds to I(11-8) = I(3), and so on.
Notice, however, that the positive and negative components of X(m) have
each been repeated twice in the frequency span in Figure 10-6(c). This
effect is inherent in the process of mixing any discrete time-domain signal
with a sinusoid of frequency £, /4. Verifying this gives us a good opportu-
nity to pull convolution out of our toolbox and use it to see why the I(m)
spectral replication period is reduced by a factor of 2 from that of X(m).
Recall, from the convolution theorem, that the DFT of the time-domain
product of x(n) and the 1,-1,-1,1 mixing sequence I{m) is the convolution
of their individual DFTs, or I(m) is equal to the convolution of X(m) and the
1,-1,-1,1 mixing sequence’s magnitude spectrum in Figure 10-6(a). If, for
convenience, we denote the 1,-1,-1,1 cosine mixing sequence’s magnitude
spectrum as S (m), we can say that I(m) = X(m)*S (m) where the “*” symbol
denotes convolution.

Let’s look at that particular convolution to make sure we get the I(m)
spectrum in Figure 10-6(c). Redrawing X(m) from Figure 10-3(b) to show
its positive and negative frequency replications gives us Figure 10-7(a).
We also redraw S (m) from Figure 10-6(a) showing its positive and nega-
tive frequency components in Figure 10-7(b). Before we perform the con-
volution’s shift and multiply, we realize that we don’t have to flip S (m)
about the zero frequency axis because, due to its symmetry, that would
have no effect. So now our convolution comprises the shifting of S (m) in
Figure 10-7(b), relative to the stationary X(m), and taking the product of
that shifted sequence and the X(m) spectrum in Figure 10-7(a) to arrive at
I(m). No shift of § (m) corresponds to the m = 0 sample of I(m). The sums
of the products for this zero shift is zero, so I(0) = 0. If we shift S (m) to
the right by two samples, we’d have an overlap of S (8) and X(10), and
that product gives us I(2). One more S (m) shift to the right results in an
overlap of S (8) and X(11), and that product gives us I(3), and so on. So
shifting 5 (m) to the right and summing the products of § Am) and X(m)
results in I(1) to I(14). If we return S (m) to its unshifted position in Figure
10-7(b), and then shift it to the left two samples in the negative frequency

393

394

Digital Signal Processing Tricks

Negative frequency Positive frequency
N components components
Magnitude of X(m) —m et

[LTTIYRSRTT Y TS
282624 -22-20-18-16 -14-12-10-8 6 4 2 O 2 4 6 8 10 12 14 1618 20 22 24 28 M
!

~f,/2 fyf2
Sc(m) = Spectral magnitude U

of1,-1,-1,1 .

@ LI L T SR TN LY T TN P IR)

-<—
(b) ' T TN CRT R TR PR P
-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 m

Magnitude of {m)
l l L n
() naftunannyniii

~16-14-12-10-8 6 4 -20 2 4 6 8 1012 14 16 M

; f
T T

These rasult from shifting These result from shifting

S,(m) to the left 5,(m) to the right

Figuse 10-7 Frequency-domain convolution resulting in {m): (a) magnitude of
X(m); (b) spectral magnitude of the cosine’s 1,-1,-1,1 time-domain
sequence, S(m): this Is the sequence we'll shift to the leﬁ.cnd right to
perform the convolution; (¢) convolution result: the magnitude of
frequency-transiated, in-phase Km).

direction, we’d have an overlap of S (-8) and X(~10), and that product
gives us I(-2). One more S (m) shift to the left results in an overlap of
5.(-8) and X(~11), and that product gives us I(-3), and so on. Continuing
to shift S (m) to the left determines the remaining negative frequency
components I(~4) to I(-~14). Figure 10-7(c) shows which I(m) samples
resulted from the left and right shifting of 5 (m). By using the convolu-
tion theorem, we can see, now, that the magnitudes in Figure 10-7(c) and
Figure 10-6(c) really are the spectral magnitudes of the in-phase compo-
nent I(m) with its reduced spectral replication period.

The upshot of all of this is that we can change the signs of appropriate
x(n) samples to shift x(n)’s spectrum by one quarter of the sample rate

Frequency Transiation Without Multiplication

without having to perform any explicit multiplications. Moreover, if we
change the signs of appropriate x(n) samples in accordance with the mix-
ing sequences in Figure 10-5, we can get the in-phase i(n) and quadrature-
phase g(n) components of the original x(n). One important effect of this
digital mixing by f,/4 is that the spectral replication periods of I(m) and
Q(m) are half the replication period of the original X(m).* So we must be
aware of the potential frequency aliasing problems that may occur with
this frequency-translation method if the signal bandwidth is too wide rel-
ative to the sample rate, as discussed in Section 7.3.

Before we leave this particular frequency-translation scheme, let's
review two more issues, magnitude and phase. Notice that the untrans-
lated X(10) magnitude is equal to 16 in Figure 10-3(b), and that the trans-
lated I(2) and Q(2) magnitudes are 16/+/2 = 11.314 in Figure 10-6. This
validates Eq. (10-8) and Eq. (10-14). If we use those quadrature compo-
nents I(2) and Q(2) to determine the magnitude of the corresponding fre-
quency-translated, complex spectral component from the square root of
the sum of the squares relationship, we’d find that the magnitude of the
peak spectral component is

peak component magnitude = /(16 /v2)% + (16 /4/2)% =256 = 16, (10-16)

verifying Eq. (10-15). So combining the quadrature components I(m) and
Q(m) does not result in any loss in spectral amplitude due to the fre-
quency translation. Finally, in performing the above convolution process,
the phase angle samples of X(m) in Figure 10-3(b) and the phase samples
of the 1,~1,-1,1 sequence in Figure 10-6(a) add algebraically. So the resul-
tant I(m) phase angle samples in Figure 10-6(c) result from either adding
or subtracting 45° from the phase samples of X(m) in Figure 10-3(b).

Another easily implemented mixing sequence used for f,/4 frequency
translations to obtain I(m) is the 1, 0, -1, 0, etc., cosine sequence shown in
Figure 10-8(a). This mixing sequence’s quadrature companion 0, 1, 0, -1,
Figure 10-8(b), is used to produce Q(m). To determine the spectra of these
sequences, let’s, again, use a 4-point DFT to state that

N-1
B 9,-1,0(m) = 2(1, 0,-1,0,..)¢7/2mm/N (10-17)

n=0

*Recall that we saw this reduction in spectral replication period in the quadrature sampling
results shown in Figures 7-2(g) and 7-3(d).

395

396

Digital Signal Processing Tricks

4 |
e
a s
v 2 Y
(a) 04 Ll L -
0 1 -3 Time
L
-1 - .
1 -m
,// : \\
// \\ 3
by o= . . -
0 1 2. | /" Time
. py
4[\\\
-1 B

Figure 10-8 Quadrature mixing sequences for downconversion by f./4. (0
cosine mixing sequence using 1,0,-1,0,.. .; (b) sine mixing
sequence using 0,1,0,-1, ...

When N =4,
Fl,o,—-l,o(m) = e—j21:0m/4 _ e-j21|:2m/4 . (10-18)

Again, the cosine mixing sequence is embedded in the signs of the terms
of Eq. (10-18), and there are only two terms for our 4-point DFT. We eval-
uate Eq. (10-18) for m = 1, corresponding to a frequency of f,/4, to find that

Fo0)=e®-em=141=240° . (10-19)

Evaluating Eq. (10-18) for m = 3, corresponding to a frequency of /4,
shows that

Fio103)=e-e P =141=2.0° . (10-20)

Using the approach in Eq. (10-13), we can show that the scaling factor for
the 1, 0, -1, 0 cosine mixing sequence is given as

Frequency Translation Without Multiplication

2 1
I le factor==== .
(m); 0,10 scale factor -3
So
), 10= 20 (1021)

Likewise, if we went through the same exercise as above, we’d find that
the scaling factor for the 0, 1, 0, -1 sine mixing sequence is given by

Q(m)g 10,1 scale factor = % .
So
1 X(m)!
! Q(m) '0,1,0,—1= (zm) . (10_22)

So these mixing sequences induce a loss in the frequency-translated sig-
nal amplitude by a factor of 2.

By way of example, let’s show this scale factor loss again by frequency
translating the x() sequence from Eq. (10-7), whose spectrum is shown in
Figure 10-3(b). If we multiply that 32-sample x(1) by 32 samples of the
quadrature mixing sequences 1, 0, -1, 0 and 0, 1, 0, -1, whose DFT mag-
nitudes are shown in Figure 10-9(a) and (b), the resulting quadrature
sequences will have the frequency-translated I(m) and Q(m) spectra
shown in Figure 10-9(c) and (d).

Notice that the untranslated X(10) magnitude is equal to 16 in Figure
10-3(b) and that the translated I(2) and Q(2) magnitudes are 16/2 = 8 in
Figure 10-6. This validates Eq. (10-21) and Eq. (10-22). If we use those
quadrature components (2) and Q(2) to determine the magnitude of the
corresponding frequency-translated, complex spectral component from
the square root of the sum of the squares relationship, we’d find that the
magnitude of the peak spectral component is

peak component magnitude = \/(16 /22 +(16/2)* = «/(16)2 /2= —% . (10-23)

When the in-phase and quadrature-phase components are combined to
get the magnitude of a complex value, a resultant /2 scale factor, for the
1,0,-1,0and 0, 1, 0, -1 sequences, is not eliminated. An overall 3 dB loss
remains because we eliminated some of the signal power when we multi-
plied half of the data samples by zero.

397

398

Digital Signal Processing Tricks

Magnm.nde of1,0,-1,0

L Phase of 1,0,~1,0
100
m [[}
50
/ \
» - e Osssynnsnaman LILelloll)
o ea|01214|s15202224262030 oa4eaw1zu|e1azozzg4zszsso

Magnitude of 0, 1, 0, -1
[) [100 Phase of 0, 1, 0, -1
(o) "
14 50 :
18 H 8
[LZYTXTT X l+l EIIR LY XTI N Y TR T RET T P A "!!'!!-!!-!'!'!l.'!!-!l.~l.','!l-l!-..!+!'!!'l.!'!!
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 2 4 6 | 101214 16 18 20 22 24 26 28 30

~100 LR S

©

2 4

[LI

Magnitude of Km) .
] Phase of {m) in degrees
; i 100
50
-

H a -ER00-80-19
sHanananalesaHanannnniie | o
0 2 4 68 B 10 12 14 16 18 20 22 24 26 28 30 L] . -
~100:

L4 Phase of Q(m) in degress

i 200

i []
100

‘m 18 20 28 30

osn-Tnannnnn-tilnantiinanannniiie

2 4 68 10121416 i 222426)
-I

I Magnitude of Q(m)
- "
[L

TYTXTY]
02 4 6 8 1012 1418 18202224262830-100

~200

Figure 10-9 Frequency translation by f,/4: (@) normalized magnitude and phase of
cosine 1,0, -1, 0 sequence; (b) normalized magnitude and phase of
sine 0, 1,0, -1 sequence: (c) magnifude and phase of frequency-
fransiated in-phase {m); (d) magnitude and phase of frequency-
franslated quadrature-phase &(m).

The question is “Why would the sequences 1,0,-1,0and 0, 1,0, -1 ever
be used if they induce a signal amplitude loss in i(n) and g(n)?” The
answer is that the alternating zero-valued samples reduce the amount of
follow-on processing performed on i(n) and g(n). Let’s say, for example,
that an application requires both i(n) and g(n) to be low-pass filtered.
When alternating samples of i(n) and g(r) are zeros, the digital filters have
only half as many multiplications to perform because multiplications by
Zero are unnecessary.

Another way to look at this situation is that i(n) and g(n), in a sense, have
been decimated by a factor of 2, and the necessary follow-on processing
rates (operations/second) are also being reduced by a factor of 2. If i(n) and
g(n) are, indeed, applied to two separate FIR digital filters, we can be clever
and embed the mixing sequences’ plus and minus ones and zeros into the

Frequency Translation Without Multiplication

i Even
DemultlplexegA san"’iples ‘? in)
x(n) 5 cos=1,-1,1,-1..,
Odd
\ samples ;? q(n) .
sin=1,-1,1,-1...

Figure 10-10 Quadrature downconversion by f,/4 using a demultiplexer
(demux) and the sequence 1,-1,1,-1,....

filters” coefficient values and avoid actually performing any multiplica-
tions. Because some coefficients are zero, they need not be used at all, and
the number of actual multipliers used can be reduced. In that way, we'll
have performed quadrature mixing and FIR filtering in the same process
with a simpler filter. This technique also forces us to be aware of the poten-
tial frequency aliasing problems that may occur if the input signal is not
sufficiently bandwidth limited relative to the original sample rate.

Figure 10-10 illustrates an interesting hybrid technique using the /2
mixing sequence (1, -1, 1, -1) to perform quadrature mixing and down-
conversion by £,/4. This scheme uses a demultiplexing process of routing
alternate input samples to one of the two mixer paths[3-6]. Although both
digital mixers use the same mixing sequence, this process is equivalent to
multiplying the input by the two quadrature mixing sequences shown in
Figure 10-8(a) and 10-8(b) with their frequency-domain magnitudes indi-
cated in Figure 10-9(a) and 10-9(b). That’s because alternate samples are
routed to the two mixers. Although this scheme can be used for the quad-
rature sampling and demodulation described in Section 7.2, interpolation
filters must be used to remove the inherent half sample time delay
between i(n) and g(n) caused by using the single mixing sequence of
1-1,1-1.

Table 10-1 summarizes the effect of multiplying time-domain signal sam-
ples by various digital mixing sequences of ones, zeros, and minus ones.

A “yes” in the last column in Table 10-1 indicates that alternating sam-
ples of i(n) and g(n) can be discarded with no adverse impact on their
spectra, allowing a follow-on processing data rate that’s half the original
x(n) data rate.

Digital Signal Processing Tricks

Table 10-1 Digital Mixing Sequences

In-phase Quadrature Frequency Scale Final signal | Decimation
sequence sequence translation by Sfactor power loss can occur
1,-1,1,4,... - £/2 1 0dB no
L-1,-11,...0 1,1,-,-1,... f,/4 /42 0dB yes
4,0,-1,0,... | 0,1,0,-1,... fi/4 1/2 3dB yes
L-L1-,...1-1,1,-11,... f/4 1/2 3dB no
(with demux) (with demux)

10.2 High-Speed Vector-Magnitude Approximation

The quadrature processing techniques employed in spectrum analysis,
computer graphics, and digital communications routinely require high-
speed determination of the magnitude of a complex vector V given its real
and imaginary parts; i.e., the in-phase part I and the quadrature-phase
part Q[4]. This magnitude calculation requires a square root operation
because the magnitude of V is

IVi={12+Q? . (10-24)

Assuming that the sum 2 + Q? is available, the problem is to efficiently
perform the square root operation.

There are several ways to obtain square roots, but the optimum tech-
nique depends on the capabilities of the available hardware and software.
For example, when performing a square root using a high-level software
language, we employ whatever software square root function is available.
Although accurate, software routines can be very slow. In contrast, if a
system must accomplish a square root operation in 50 nanoseconds, high-
speed magnitude approximations are required[7,8]. Let’s look at a neat
magnitude approximation scheme that's particularly efficient.

10.2.1 oMax+8Min Algorithm

There is a technique called the aMax+BMin (read as “alpha max plus beta
min”) algorithm for calculating the magnitude of a complex vector." It's a

t A “Max+BMin” algorithm had been in use, but in 1988 this author suggested expanding it
to the aMax+BMin form, where o could be a value other than unity[9].

High-Speed Viector-Magnitude Approximation

linear approximation to the vector-magnitude problem that requi
determining which orthogonal vector, I or , has the greater absolu

o
value. If the maximum absolute value of I or Q is designated by Max and N

the minimum absolute value of either I or Q is Min, an approximation of
| V1, using the aMax+BMin algorithm, is expressed as

IV =~ aMax + BMin . (10-25)

There are several pairs for the o and B constants that provide varying
degrees of vector-magnitude approximation accuracy to within
0.1dB[7,10]. The oMax+BMin algorithms in reference [10] determine a vec-
tor magnitude at whatever speed it takes a system to perform a magnitude
comparison, two multiplications, and one addition. But, as a minimum,
those algorithms require a 16-bit multiplier to achieve reasonably accurate
results. However, if hardware multipliers are not available, all is not lost.
By restricting the o and B constants to reciprocals of integral powers of 2,
Eq. (10-25) lends itself well to implementation in binary integral arith-
metic. A prevailing application of the aMax+BMin algorithm uses a= 1.0
and § = 0.5[11,12]. The 0.5 multiplication operation is performed by shift-
ing the minimum quadrature vector magnitude, Min, to the right by 1 bit.
We can gauge the accuracy of any vector magnitude estimation by plotting
its error as a function of vector phase angle. Let’s do that. The aMax+BMin
estimate for a complex vector of unity magnitude, using

IV 1= Max + —Mzm , (10-26)

over the vector angular range of 0 to 90°, is shown as the solid curve in
Figure 10-11. (The curves in Figure 10-11, of course, repeat every 90°.)

An ideal estimation curve for a unity magnitude vector would have an
average value of one and an error standard deviation (0,) of zero; that is,
having 6, = 0 means that the ideal curve is flat—because the curve’s value
is one for all vector angles and its average error is zero. We'll use this ideal
estimation curve as a yardstick to measure the merit of various
aMax+BMin algorithms. Let’s make sure we know what the solid curve
in Figure 10-11 is telling us. It indicates that a unity magnitude vector ori-
ented at an angle of approximately 26° will be estimated by Eq. (10-26) to
have a magnitude of 1.118 instead of the correct magnitude of one. The
error then, at 26°, is 11.8 percent, or 0.97 dB. Analyzing the entire solid
curve in Figure 10-11 results in o, = 0.032 and an average error, over the 0
to 90° range, of 8.6 percent (0.71 dB).

402

Digital Signal Processing Tricks

ﬂ Vector-magnitude estimate
/ Max + Min/2
1.10 / \/ \
105 et 22 S a amie T
(ol — .\rsfax»faw\nf/. //,_.\\\.\
~ AN)
1.00 .y ~ - re
\ N e i
‘ s/ Ideal estimate curve
N /.. .
0.95 /\ Vi
Max + Min/4 \\ 7
0.90 Nt
Ne
0.85 -ttt ettt bt
0 10 20 30 40 50 60 70 80 90
Vector phase angle (degrees)

Figure 10-11 Normalized oMax+BMin estimates for e = 1,8 = 1/2, and 8 = 1/4.

To reduce the average error introduced by Eq. (10-26), it is equally con-
venient to use a B value of 0.25, such as

Vi~ Max+-1‘%“l . (10-27)

Equation (10-27), whose B multiplication is realized by shifting the digital
value Min 2 bits to the right, results in the normalized magnitude approx-
imation shown as the dashed curve in Figure 10-11. Although the largest
error of 11.6 percent at 45° is similar in magnitude to that realized from
Eq. (10-26), Eq. (10-27) has reduced the average error to —0.64 percent
(-0.06 dB) and produced a slightly larger standard deviation of G, = 0.041.
Though not as convenient to implement as Eqs. (10-26) and (10-27), a [‘}
value of 3/8 has been used to provide even more accurate vector magni-
tude estimates[13]. Using

|V i=Max + (10-27")

provides the normalized magnitude approximation shown as the dotted
curve in Figure 10-11. Equation (10-27") results in magnitude estimates,
whose largest error is only 6.8 percent, and a reduced standard devia-
tion of o, = 0.026.

High-Speed Vector-Magnitude Approximation

A Vector-magnitude estimate

1.10
15(Max + Min/2)/16

0.85 t t 1 f t 1 1
1] 10 20 30 40 50 60 70 80 90

Vector phase angle (degrees)

Figure 10-12 aMax+B8Min estimates for o = 7/8,8 = 7/16 and o = 15/16.8 = 15/32,

Although the values for o and B in Figure 10-11 yield rather accurate
vector-magnitude estimates, there are other values for o and B that
deserve our attention because they result in smaller error standard devia-
tions. Consider . = 7/8 and B = 7/16 where

V= ZMax+Z-Mm=Z(Max+—M—mJ . (10-28)
8 16 8 2

Equation (10-28), whose normalized results are shown as the solid curve in
Figure 10-12, provides an average error of -5.01 percent and o, = 0.028. The
7/8ths factor applied to Eq. (10-26) produces both a smaller 0,and a reduced
average error—it lowers and flattens out the error curve from Eq. (10-26).

A further improvement can be obtained with o = 15/16 and B=15/32
where

IV|=EMax+—Min=— Max + —

15 15 Min
. 10-29
16 32 16(2) (10-29)

Equation (10-29), whose normalized results are shown as the dashed curve
in Figure 10-12, provides an average error of 1.79 percent and ¢, = 0.030. At
the expense of a slightly larger o,, Eq. (10-29) provides an average error
that is reduced below that provided by Eq. (10-28).

Although Eq. (10-29) appears to require two multiplications and one
addition, its digital hardware implementation can be straightforward, as

403

404

Digital Signal Processing Tricks

Max + Min/2

17
J»-| Register

3
y i / + m 5
+] la) + Subtract ~—
i-al [4 -

1
11 -

®
A o] \
{ Reg:
o1 —4] q Max + Min/2
N 16
Quz | 1Qu2

Figure 10-13 Hardware implementation of Eq. (10-29).

shown in Figure 10-13. The diagonal lines, \1 for example, denote a hard-
wired shift of 1 bit to the right to implement a divide-by-two operation by
truncation. Likewise, the \4 symbol indicates a right shift by 4 bits to real-
ize a divide-by-16 operation. The |I1>1Q! control line is TRUE when the
magnitude of I is greater than the magnitude of Q, so that Max = || and
Min = | Q1. This condition enables the registers to apply the values I} and
Q1 /2 to the adder. When II! > | Q1 is FALSE, the registers apply the val-
ues |Q1 and |I1/2 to the adder. Notice that the output of the adder, Max
+Min/2, is the result of Eq. (10-26). Equation (10-29) is implemented via the
subtraction of (Max + Min/2)/16 from Max + Min/2.

In Figure 10-13, all implied multiplications from Eq. (10-29) are per-
formed by hardwired bit shifting, and the total execution time is limited
only by the delay times associated with the hardware components.

10.2.2 Overflow Errors

In Figures 10-11 and 10-12, notice that we have a potential overflow problem
with the results of Eqs. (10-26), (10-27), and (10-29) because the estimates can
exceed the correct normalized vector-magnitude values; i.e., some magni-
tude estimates are greater than one. This means that, although the correct
magnitude value may be within the system’s full-scale word width, the
algorithm result may exceed the word width of the system and cause over-
flow errors. With cMax+BMin algorithms, the user must be certain that no
true vector magnitude exceeds the value that will produce an estimated
magnitude greater than the maximum allowable word width. For example,

High-Speed Vector-Magnitude Approximation

when using Eq. (10-26), we must ensure that no true vector magnitude
exceeds 89.4 percent (1/1.118) of the maximum allowable work width.

10.2.3 Truncation Errors

The penalty we pay for the convenience of having o and B as powers of
two is the error induced by the division-by-truncation process; and, thus
far, we haven’t taken that error into account. The error curves in Figure
10-11 and Figure 10-12 were obtained using a software simulation with its
floating-point accuracy and are useful in evaluating different o and p val-
ues. However, the true error introduced by the aMax+BMin algorithm
will be somewhat different from that shown in Figures 10-11 and 10-12
due to division errors when truncation is used with finite word widths.
For aMax+BMin schemes, the truncation errors are a function of the
data’s word width, the algorithm used, the values of both | | and 1QI,
and the vector’s phase angle. (These errors due to truncation compound
the errors already inherent in our Max+BMin algorithms.) Thus, a com-
plete analysis of the truncation errors is beyond the scope of this book.
What we can do, however, is illustrate a few truncation error examples.
Figure 10-14 shows the percent truncation errors using Eq. (10-29) for
vector magnitudes of 4 to 512. Two vector phase angles were chosen to

A % Error
8
<
"
4
2 x‘v
% 0 .%M9,6—9$8_9—0-0-0_6_9-9-0_0—0-0-0_0-—0_0
-2
- [¢ 26°
o
- o0
—8 p
_10 n L i " L n i n n i i i i 1 1 i i n " i i 4 n >
4 85 165 245 325 405 485 v

Figure 10-14 Equation (10-29) truncation error vs. vector magnitude | V|.

+ . T
Errors associated with division-by-truncation are covered in more detail in Section 9.3.

405

406

Digltal Signat Proéessing Tricks

Table 10-2 o Max+B8Min Algorithm Comparisons

Largest Largest | Average | Average |Standard | Max

Algorithm error error error error deviation VI
IVi= (%) (dB) (%) (dB) G, (% ES.)
Max + Min/2 11.8% 097dB 8.6% 0.71dB 0.032 89.4%
Max + Min/4 -116% | -1.07dB | -0.64% | -0.06 dB 0.041 97.0%
Max + 3Min/8 6.8% 057 dB 3.97% 0.34 dB 0.026 93.6%

7(Max + Min/2)/8 -125% | -116dB | -499% | -0.45dB 0.028 100%
15(Max + Min/2)/16 | -6.25% | ~0.56 dB 1.79% 0.15dB 0.030 95.4%

illustrate these truncation errors. The first is 26° because this is the
phase angle where the most positive algorithm error occurs, and the
second is 0° because this is the phase angle that introduces the greatest
negative algorithm error. Notice that, at small vector magnitudes, the
truncation errors are as great as 9 percent, but for an eight-bit system
(maximum vector magnitude = 255) the truncation error is less than 1
percent. As the system word width increases, the truncation errors
approach 0 percent. This means that truncation errors add very little to
the inherent aMax+BMin algorithm errors.

The relative performance of the various algorithms is summarized in
Table 10-2. The last column in Table 10-2 illustrates the maximum allow-
able true vector magnitude as a function of the system’s full-scale (ES.)
word width to avoid overflow errors.

So, the eMax+BMin algorithm enables high-speed, vector-magnitude
computation without the need for math coprocessor or hardware multi-
plier chips. Of course with the recent availability of high-speed, floating-
point multiplier integrated circuits—with their ability to multiply or
divide by nonintegral numbers in one or two clock cycles—o: and B may
not always need to be restricted to reciprocals of integral powers of two.
It's also worth mentioning that this algorithm can be nicely implemented
in a single hardware integrated circuit (for example, a field programma-
ble gate array) affording high-speed operation.

10.3 Data Windowing Tricks

There are two useful schemes associated with using window functions on
input data applied to a DFT or an FFT. The first technique is an efficient
implementation of the Hanning (raised cosine) and Hamming windows

Data Windowing Tricks

to reduce leakage in the FFT. The second scheme is related to minimizing
the amplitude loss associated with using windows.

10.3.1 Windowing in the Frequency Domain

There’s a clever technique for minimizing the calculations necessary to
implement FFT input data windowing to reduce spectral leakage. There
are times when we need the FFT of unwindowed time-domain data, and
at the same time, we also want the FFT of that same time data with a win-
dow function applied. In this situation, we don’t have to perform two sep-
arate FFTs. We can perform the FFT of the unwindowed data, and then we
can perform frequency-domain windowing on that FFT result to reduce
leakage. Let’s see how.

Recall from Section 3.9 that the expressions for the Hanning and the
Hamming windows were Wyan{?) = 0.5-0.5cos(2nn/N), and
Wiam(1) = 0.54 ~0.46cos(2mn/N), respectively. They both have the gen-
eral cosine function form of

w(n) = o. - Peos(2rn/N), (10-30)

forn=0,1,2,... N-1. Looking at the frequency response of the general
cosine window function, using the definition of the DFT, the transform of
Eq. (10-30) is expressed by

N-1
W(m)= Y [~ Beos(2nn / N)le72m/N (10-31)

n=0
e]'21m/N e—j21m/N

Because cos(2nn/N)= +
2 2

» Eq. (10-31) can be rewritten as

N-1) ﬁN_l . N-1
W(m) = E e~ j2mnm /N __ze/2nn/Ne—j21mm/N _ﬁze~j2nn/Ne—j2nnm/N
2 2
n=0 n=0

n=0
Ny BN g

= ~jemmm /N _ 2 -j2rn(m-1)/ N -2
zae 5 ze j2mn(m-1) _Eze j2rn(m+1)/ N) (10_32)
n=0 n=0 n=0

Equation (10-32) looks pretty complicated, but, using the derivation from
Section 3.13 for expressions like those summations, we find that Eq. (10-32)
merely results in the superposition of three sin(x)/x functions in the fre-
quency domain. Their amplitudes are shown in Figure 10-15.

407

408

Digital Signal Processing Tricks

— ']

—T

EVANVANSS
N WM 7\/\/\/ boet

m—1 m m

/|

—

Figure 10-15 General cosine window frequency-response amplitude.

Notice that the two translated sin(x)/x functions have sidelobes with
phase opposite from that of the center sin(x)/x function. This means that
o times the mth bin output, minus B/2 times the (m-1)th bin output,
minus B/2 times the (m+1)th bin output will minimize the sidelobes of the
mth bin. This frequency-domain convolution process is equivalent to m‘ul-
tiplying the input time data sequence by the N-valued window function
w(n) in Eq. (10-30)[14,15]. '

For example, let’s say the output of the mth FFT bin is X(m) = Ayt Jbs
and the outputs of its two neighboring bins are X(m-1) = a_ +]b_l‘and
X(m~+1) =a,; +jb,;. Then frequency-domain windowing for the mth bin of
the unwindowed X(m) is as follows:

Xuingousa(m) = aX(m) =B X -1) B xm 1)
~aay + o) - B0 4o - B 4 o)

=oa,, —g(a-l +a,)+ jlob, - §<”-1 *ba)l - (10-33)

To get a windowed N-point FFT, then, we can apply Eq. (10-33), requiring
4N additions and 3N multiplications, to the unwindowed FFT result @d
avoid having to perform the N multiplications of time-domain windowing
and a second FFT with its Nlog,N additions and 2Nlog,N multiplications.

e e T —

Data Windowing Tricks

The neat situation here is the o, and B values for the Hanning window.
They’re both 0.5, and the products in Eq. (10-33) can be obtained in hard-
ware with binary shifts by a single bit for o and two shifts for B/2. Thus,
no multiplications are necessary to implement the Hanning frequency-
domain windowing scheme. The issues that we need to consider are the
window function best for the application and the efficiency of available
hardware in performing the frequency-domain multiplications.

Along with the Hanning and Hamming windows, reference [15]
describes a family of windows known as Blackman and Blackman-
Harris windows that are also very useful for performing frequency-
domain windowing. (Be aware that reference [15] has two typographical
errors in the 4-Term (-74 dB) window coefficients column on its page 65.
Reference [16] specifies that those coefficients should be 0.40217,
0.49703, 0.09892, and 0.00188.) Let’s finish our discussion of frequency-
domain windowing by saying that this scheme can be efficient because
we don’t have to window the entire set of FFT data. Frequency-domain
windowing need be performed only on those FFT bins that are of inter-
est to us.

10.3.2 Minimizing Window-Processing Loss

In Section 3.9, we stated that nonrectangular window functions reduce
the overall signal levels applied to the FET. Recalling Figure 3-16(a), we
see that the peak response of the Hanning window function, for example,
is half that obtained with the rectangular window because the input sig-
nal is attenuated at the beginning and end edges of the window sample
interval, as shown in Figure 10-16(a). In terms of signal power, this atten-
uation results in a 6 dB loss. Going beyond the signal-power loss, window
edge effects can be a problem when we're trying to detect short-duration
signals that may occur right when the window function is at its edges.
Well, some early digital signal processing practitioners tried to get around
this problem by using dual window functions.

The first step in the dual window process is windowing the input data
with a Hanning window function and taking the FFT of the windowed
data. Then the same input data sequence is windowed against the inverse
of the Hanning, and another FFT is performed. (The inverse of the
Hanning window is depicted in Figure 10-16(b).) The two FFT results are
then averaged. Using the dual window functions shown in Figure 10-16
enables signal energy attenuated by one window to be multiplied by the
full gain of the other window. This technique seemed like a reasonable
idea at the time, but, depending on the original signal, there could be

409

410

Digital Signal Processing Tricks

Hanning window:

Wiggn (1) = 0.5 - 0.5c0s(2n/N)
(a)

0

[[E—

Time
Window edge Window edge

Inverse of the
(b) Hanning window:
Wian (M) = 0.5 + 0.5cos(2rn/N)

0 -

— — Time
Window edge Window edge

Figure 10-16 Dual windows used to reduce windowed-signal loss.

excessive leakage from the inverse window in Figure 10-16(b). Remember,
the purpose of windowing was to ensure that the first and last data
sequence samples, applied to an FFT, had the same value. The Hanning
window guaranteed this, but the inverse window could not. Although
this dual window technique made its way into the literature, it quickly fell
out of favor. The most common technique used today to minimize signal
loss due to window edge effects is known as overlapped windows.

The use of overlapped windows is depicted in Figure 10-17. It’s a
straightforward technique where a single good window function is
applied multiple times to an input data sequence. Figure 10-17 shows an
N-point window function applied to the input time series data four times
resulting in four separate N-point data sequences. Next, four separate N-
point FFTs are performed, and their outputs averaged. Notice that any
input sample value that’s fully attenuated by one window will be multi-
plied by the full gain of the following window. Thus, all input samples
will contribute to the final averaged FFT results, and the window function
keeps leakage to a minimum. (Of course, the user has to decide which
particular window function is best for the application.} Figure 10-17
shows a window overlap of 50 percent where each input data sample con-
tributes to the results of two FFTs. It’s not uncommon to see an overlap of

Fast Multiplication of Complex Numbers

Input 2.5 N samples >
time | {

series
IZHH:FTxl
lZ?n;FFTXl
m
m

L }

Tlme.

[
N samples

Figure 10-17 Windows overlapped by 50 percent to reduce
windowed-signal loss.

75 percent being used where each input data sample would contribute to
the results of the three individual FFTs. Of course the 50 percent and 75
percent overlap techniques increase the amount of total signal processing
required, but, depending on the application, the improved signal sensi-
tivity may justify the extra number crunching,

10.4 Fast Multiplication of Complex Numbers

The multiplication of two complex numbers is one of the most common
functions performed in digital signal processing. It’s mandatory in all dis-
crete and fast Fourier transformation algorithms, necessary for graphics
transformations, and used in processing digital communications signals.
Be it in hardware or software, it’s always to our benefit to streamline the
processing necessary to perform a complex multiplication whenever we
can. If the available hardware can perform three additions faster than a
single multiplication, there’s a way to speed up a complex multiplication
operation[17].

The multiplication of two complex numbers 4 + jb and ¢ + jd, results in
the complex product

R+jl=(a+jb) - (c+jd) = (ac - bd) + j(bc + ad) . (10-34)

We can see that Eq. (10-34) required four multiplications and two addi-
tions. (From a computational standpoint, we’ll assume that a subtraction

412

Digital Signal Processing Tricks

is equivalent to an addition.) Instead of using Eq. (10-34), we can calculate
the following intermediate values:

ky=alc+4d),
ky=d(a+b),
and
ky=cb-a). . (10-35)

Then we perform the following operations to get the final R and I:

R=k -k,
and
I=k +k,. (10-36)

The reader is invited to plug the k values from Eq. (10-35) into Eq.
(10-36) to verify that the expressions in Eq. (10-36) are equivalent to Eq.
(10-34). The intermediate values in Eq. (10-35) required three additions
and three multiplications, whereas the results in Eq. (10-36) required two
more additions. So we traded one of the multiplications required in Eq.
(10-34) for three addition operations needed by Eq. (10-35) and Eq.
(10-36). If our hardware uses fewer clock cycles to perform three additions
than a single multiplication, we may well gain overall processing speed
by using Eq. (10-35) and Eq. (10-36) for complex multiplication, instead of
Eq. (10-34).

10.5 Efficiently Performing the FFT of Real Sequences

Upon recognizing its linearity property and understanding the odd and
even symmetries of the transform'’s output, the early investigators of the
fast Fourier transform (FFT) realized that two separate, real N-point
input data sequences could be transformed using a single N-point com-
plex FFT. They also developed a technique using a single N-point com-
plex FFT to transform a 2N-point real input sequence. Let’s see how these
two techniques work.

10.5.1 Performing Two N-Point Real FFTs

The standard FFT algorithms were developed to accept complex inputs;
that is, the FFI’s normal input x(n) sequence is assumed to comprise real
and imaginary parts, such as

Efficiently Performing the FFT of Real Sequences

x(0) =x,(0) + jx,(0),
x(1) =x,(1) + jx(1),
x(2) =x,(2) + jx(2),

*(N-1) = x,(N-1) + jx(N-1) . (10-37)

In typical signal processing schemes, FFT input data sequences are
usually real. The most common example of this is the FFT input samples
coming from an A/D converter that provides real integer values of some
continuous (analog) signal. In this case the FFT's imaginary x/(n)’s
inputs are all zero. So initial FFT computations performed on the x(n)
inputs represent wasted operations. Early FFT pioneers recognized this
inefficiency, studied the problem, and developed a technique where two
independent N-point, real input data sequences could be transformed by
a single N-point complex FFT. We call this scheme the Two
N-Point Real FFTs algorithm. The derivation of this technique is
straightforward and described in the literature[18-20]. If two N-point,
real input sequences are a(n) and b(n), they'll have discrete Fourier
transforms represented by X ,(m) and X, (m). If we treat the a(n) sequence
as the real part of an FFT input and the b(n) sequence as the imaginary
part of the FFT input, then

x(0) = a(0) + jb(0),
x(1)=a(1) +jb(1) ,
x(2)=a(2) +jb(2),

*(N-1) = a(N-1) + jb(N-1) . (10-38)

Applying the x(n) values from Eq. (10-38) to the standard DFT,

N-1
X(m)=Y x(m)eimm/N | (10-39)

n=0

we'll get an DFT output X(m) where m goes from 0 to N-1. (We're assum-
ing, of course, that the DFT is implemented by way of an FFT algorithm.)
Using the superscript * symbol to represent the complex conjugate, we
can extract the two desired FFT outputs X, (m) and X,(m) from X(m) by
using the following:

413

414

Digital Signal Processing Tricks

X" (N-m)+ X(m)

X (m)= 5 (10-40)
and
[X* (N -m)-
X, (m) = X ;")= X(m) (10-41)

Let's break Eqs. (10-40) and (10-41) into their real and imaginary parts
to get expressions for X (m) and X,(m) that are easier to understand and
implement. Using the notation showing X(m)’s real and imaginary parts,
where X(m) = X (m) + jX(m), we can rewrite Eq. (10-40) as

= X (N -m)+ X, (m) + jIX;(m) - X;(N —m)]
2

X, (m) (10-42)

wherem =1, 2,3, ..., N-1. What about the first X (m), when m = 0? Well,
this is where we run into a bind if we actually try to implement Eq.
(10-40) directly. Letting m = 0 in Eq. (10-40), we quickly realize that the
first term in the numerator, X*(N-0) = X*(N), isn’t available because the
X(N) sample does not exist in the output of an N-point FFT! We resolve
this problem by remembering that X(m) is periodic with a period N, so
X(N) = X(0).f When m = 0, Eq. (10-40) becomes

X,(0) - jX;(0)+ X, (0) + jX;(0)
2

X,(0)= =X,(0) . (10-43)

Next, simplifying Eq. (10-41),

_ X (N —m) - jX{(N —m) - X, (m) - jX;(m)]

Xy (m) 2

_ XN —m)+ X;(m) + X, (N = m) - X, (m)]

] (10-44)

where, again, m = 1,2, 3, . . ., N-1. By the same argument used for Eq.
(10-43), when m = 0, X,(0) in Eq. (10-44) becomes

* This fact is illustrated in Section 3.8 during the discussion of spectral leakage in DFTs.

Efficiently Performing the FFT of Real Sequences

Xi(0)+X,(0) +1X,(0) - X,(0)]
2

X,(0) = =X,(0) . (10-45)

This discussion brings up a good point for beginners to keep in mind.
In the literature Egs. (10-40) and (10-41) are often presented without any
discussion of the m = 0 problem. So, whenever you're grinding through
an algebraic derivation or have some equations tossed out at you, be a lit-
tle skeptical. Try the equations out on an example—see if they're true.
(After all, both authors and book typesetters are human and sometimes
make mistakes. We had an old saying in Ohio for this situation: “Trust
everybody, but cut the cards.”) Following this advice, let’s prove that this
Two N-Point Real FFTs algorithm really does work by applying the
8-point data sequences from Chapter 3’s DFT Examples to Eqgs. (10-42)
through (10-45). Taking the 8-point input data sequence from Section 3.1’s
DFT Example 1 and denoting it a(n),

a(0) = 0.3535,
a(2) = 0.6464, a(3) = 1.0607,

a(4) = 03535, a(5) = -1.0607,

a(6) =-1.3535, a(7) = -0.3535 . (10-46)

a(1) = 0.3535,

Taking the 8-point input data sequence from Section 3.6’s DFT Example 2
and calling it b(n),

b(0) = 1.0607,
b(2) = -1.0607,
b(4) = -0.3535,
b(6) = 0.3535,

b(1) = 0.3535,

b(3) = -1.3535,

b(5) = 0.3535,

b(7) = 0.6464 . (10-47)

Combining the sequences in Egs. (10-46) and (10-47) into a single complex
sequence x(n),

a(n) b(x)
{ {
x(n) = 0.3535 +j 1.0607
+0.3535 +j0.3535
+0.6464 -j 1.0607
+ 1.0607 -7 1.3535
+0.3535 -7 0.3535
-1.0607 +70.3535
~1.3535 +j0.3535
-0.3535 +70.6464 . (10-48)

415

‘416

Digital Signal Processing Tricks

Now, taking the 8-point FFT of the complex sequence in Eq. (10-48) we get

X (m) X,(m)
! {
X(m) = 0.0000 +j 0.0000 & m =0 term
-2.8283 —j 1.1717 ¢ m=1term
+2.8282 +] 2.8282 €« m =2 term
+ 0.0000 +7 0.0000 « m=3term
+ 0.0000 + 0.0000 «m=4term
+ 0.0000 +] 0.0000 «m=5term
+ 0.0000 +70.0000 «m = 6term
+2.8283 +]6.8282 em=7tem. (10-49)

So from Eq. (10-43),
X, 0)=X(0)=0.

To get the rest of X (m), we have to plug the FFT output’s X(m) and
X(N-m) values into Eq. (10-42)." Doing so,

X, (1) = XeD+ X, O+ G = X,7)] _ 28283 -2.8283+ j[-11717 - 6.8282]

2 2
=9i2‘999—9=0—j4.0=44-90",
X,(2)= X0 X+ 1X,2) - X6)] _ 0.0+2.8282+ /128282 -0.0]
asr 2 2
= w =1414+/1.414 =2245°
%,(3) = KO L@+ X -X(E)]_00+00+/00-00] (o
2 2
X, ()= XD+ X @+ IO - X(H]_00+00+100-00] o o

2 2

* Remember, when the FFT's input is complex, the FFT outputs may not be conjugate sym-
metric; that is, we can’t assume that F(m) is equal to F*(N-m) when the FFT input sequence’s
real and imaginary parts are both nonzero.

Efficlently Performing the FFT of Real Sequences 417

X,(5)= X,(3)+X,(5) +2j[X,»(5) ~Xi(3)] _0.0+0.0+ 2j[o.o =001 _ o o , -~

X, (6) = Ze@+ X/ (6) + IX(6) - X,(2)] _ 2.8282+0.0+ j[0.0- 2.8282]
a 2 = 2

_ 2.8282-2.8282

3 =1414-j1414=2/-45°, and

X,(7)= X, D+ X, () +1X:(7)- X,()] -2.8282+2.8282 + j16.8282 +1.1717]
a 2 = 2

.0+ /7.
=0—+]2L99ﬂ=0+j4.0=4z90° .
So Eq. (10-42) really does extract X,(m) from the X(m) sequence in Eq.
(10-49). We can see that we need not solve Eq. (10-42) when m is greater
than 4 (or N/2) because X,(m) will always be conjugate symmetric.
Because X (7) = X(1), X (6) = X,(2), etc., only the first N/2 elements in
X (m) are independent and need be calculated.

OK, let’s keep going and use Egs. (10-44) and (10-45) to extract X, (m)
from the FFT output. From Eq. (10-45)

X,(0) = X(0) = 0.

Plugging the FFT’s output values into Eq. (10-44) to get the next four
X,(m)s, we have

x,(1) = D+ X+ jIX,(7) - X, ()] _ 6.8282~1.1717 + j{2.8283 +2.8283]
2 - 2

_ 5.656+j5.656

5 =2.828+;2.828 = 4.£45° ,

X,(2)= X+ Xi@2)+ 2]'[Xr (6)-X,(2)] _0.0+2.8282+ 2j[o.o —2.8282]

- 2.8282 - j2.8282

3 =1414-j1414=2£-45°, and

418

Digital Signal Processing Tricks

=0£0°, and

%,(3)= KO+ X@)+ é'[X,(S) ~X,(3)] _0.0+00+ 2]'[0..0 ~0.0]
9+ X4 +X,(4) - X,(4)] _ 0.0+00+1{0.0-0.]
2 2

X, (4)= i =040° .

The question arises “With the additional processing required by Egs.
(10-42) and (10-44) after the initial FFT, how much computational saving
(or loss) is to be had by this Two N-Point Real FFTs algorithm?” We can
estimate the efficiency of this algorithm by considering the number of
arithmetic operations required relative to two separate N-point radix-2
FFTs. First, we estimate the number of arithmetic operations in two sepa-
rate N-point complex FFTs.

From Section 4.2, we know that a standard radix-2 N-point complex
FFT comprises (N/2)-log,N butterfly operations. If we use the optimized
butterfly structure, each butterfly requires one complex multiplication
and two complex additions. Now, one complex multiplication requires
two real additions and four real multiplications, and one complex addi-
tion requires two real additions.” So a single FFT butterfly operation com-
prises four real multiplications and six real additions. This means that a
single N-point complex FFT requires (4N/2)-log,N real multiplications,
and (6N/2)-log,N real additions. Finally, we can say that two separate
N-point complex radix-2 FFTs require
4N - log,N real multiplications, and (10-50)

two N-point complex FFTs —
6N - log,N real additions. (10-50"

Next, we need to determine the computational workload of the Two
N-Point Real FFTs algorithm. If we add up the number of real multiplica-
tions and real additions required by the algorithm’s N-point complex FFT,
plus those required by Eq. (10-42) to get X (m), and those required by Eq.
(10-44) to get X, (m), the Two N-Point Real FFTs algorithm requires

two N-Point Real FFTs algorithm —» 2N - log,N + N real multiplications, and (10-51)

3N-log,N + 2N real additions. (10-51")

*The complex addition (2+jb) + (c+jd) = (a+c) + j(b+d) requires two real additions. A complex
multiplication (a+jb) - (c+jd) = ac-bd + j(ad+bc) requires two real additions and four real
multiplications.

Efficiently Performing the FFT of Req! Sequences

Equations (10-51) and (10-51') assume that we're calculating only the first
N/2 independent elements of X, (m) and X,(m). The single N term in Eq.
(10-51) accounts for the N/2 divide by 2 operations in Eq. (10-42) and the
N/2 divide by 2 operations in Eq. (10-44).

OK, now we can find out how efficient the Two N-Point Real FFTs algo-
rithm is compared to two separate complex N-point radix-2 FFTs. This
comparison, however, depends on the hardware used for the calculations.
If our arithmetic hardware takes many more clock cycles to perform a
multiplication than an addition, then the difference between multiplica-
tions in Egs. (10-50) and (10-51) is the most important comparison. In this
case, the percentage gain in computational saving of the Two N-Point Real
FFTs algorithm relative to two separate N-point complex FFTs is the dif-
ference in their necessary multiplications over the number of multiplica-
tions needed for two separate N-point complex FFTs, or

4N -logy, N-(2N -log, N + N) 2-log, N-1
-100% =
4N -log, N 4-log, N

-100% . (10-52)

The computational (multiplications only) saving from Eq. (10-52) is plot-
ted as the top curve of Figure 10-18. In terms of multiplications, for N232,

ﬂ % Computational saving of the Two A-point Real FFTs algorithm
50 — — — -
48 s [. 2t . e
. : LT
Muttiplications only)‘/«*’j‘:"" £
46 et g - / T
% ol »
40
S
38 :/ N e P
Muitiplications and additions
36 : :
34 i i i H { H i H S .
0 1
10 10 10° 10° 10" 10 N

Figure 10-18 Computational saving of the Two N-Point Real FFTs algorithm
over that of two separate N-point complex FFTs. The top curve
indicates the saving when only multiplications are considered.
The bottom curve is the saving when both additions and
multiplications are used in the comparison.,

419

420

Digital Signal Processing Tricks

the Two N-Point Real FFTs algorithm saves us over 45 percent in compu-
tational workload compared to two separate N-point complex FFTs.

For hardware using high-speed multiplier integrated circuits, multipli-
cation and addition can take roughly equivalent clock cycles. This makes
addition operations just as important and time consuming as multiplica-
tions. Thus the difference between those combined arithmetic operations
in Egs. (10-50) plus (10-50") and Egs. (10-51) plus (10-51') is the appropri-
ate comparison. In this case, the percentage gain in computational saving
of our algorithm over two FFTs is their total arithmetic operational differ-
ence over the total arithmetic operations in two separate N-point complex
FFTs, or

(4N -log, N + 6N -logy N)- (2N -log, N+ N+ 3N -log, N + 2N)
4N -log, N +6N -log, N

-100%

5-log, N-3
=2282 72 100% . 10-53
10-log, N ()

The full computational (multiplications and additions) saving from Eq.
(10-53) is plotted as the bottom curve of Figure 10-18. OK, that con-
cludes our discussion and illustration of how a single N-point complex
FFT can be used to transform two separate N-point real input data
sequences.

10.5.2 Performing a 2N-Point Real FFT

Similar to the scheme above where two separate N-point real data
sequences are transformed using a single N-point FFT, a technique
exists where a 2N-point real sequence can be transformed with a single
complex N-point FFT. This 2N-Point Real FFT algorithm, whose deriva-
tion is also described in the literature, requires that the 2N-sample real
input sequence be separated into two parts[20,21]. Not broken in two,
but unzipped-—separating the even and odd sequence samples. The N
even-indexed input samples are loaded into the real part of a complex
N-point input sequence x(n). Likewise, the input’s N odd-indexed sam-
ples are loaded into x(n)’s imaginary parts. To illustrate this process,
let’s say we have a 2N-sample real input data sequence a(n) where
0 <7 < 2N-1. We want a(n)’s 2N-point transform X (m). Loading a(n)’s
odd /even sequence values appropriately into an N-point complex
FFT’s input sequence, x(n),

Efficiently Performing the FFT of Real Sequences 421

x(0) = a(0) + ja(1),
x(1) =a(2) +ja(3),
x(2) =a(4) +ja(5),

*(N-1) = a(2N-2) + ja(2N-1) (10-54)

Applying the N complex values in Eq. (10-54) to an N-point complex FFT,
we'll get an FFT output X(m) = X (m) + jX{(m), where m goes from 0 to N-1.

To extract the desired 2N-Point Real FFT algorithm output X (m) =X, reall™)
+J X, imag(M) from X(m), let’s define the following relationships

X () = 2 X Qo) (10-55)

X; (my= XM= ’;'(N —m, (10-56)

X (m)= w , and (10-57)

X7 (m)= XM= XN -m) - (10-58)

2

The values resulting from Egs. (10-55) through (10-58) are, then, used as
factors in the following expressions to obtain the real and imaginary parts
of our final X (m):

X4 reat(m) = X (m) + COS(%) X (m)- Sin(%—) - X7 (m), (10-59)
and

X,,,mg(m>=x,-‘(m>—sm(%‘>-X:<m)—cos<“§>-X;(m) . (10-60)

Remember now, the original a(n) input index n goes from 0 to 2N-1, and
our N-point FFT output index m goes from 0 to N-1. We apply 2N real
input time-domain samples to this algorithm and get back N complex
frequency-domain samples representing the first half of the equivalent
2N-point complex FFT, X (0) through X (N-1). Because this algorithm’s

422

Digital Signal Processing Tricks

Unzip the Calculate the four Calculats the finat
a(n) | 2N-point real a(n) x(n) Calculate the X(m) [N-point sequences N-point complex | x o(m)
sequence and point X2(m), X; (m), sequence Xa(m) =
establish the complex FFT of Xa,real (M)
N-point complex x(n) to get X(m). I(m) and X; (m). + X g jmag(™).
x(n) sequence. 17 2 mag{(T):

Figure 10-19 Computational fiow of the 2N-Point Real FFT algorithm,

a(n) input is constrained to be real, X ,(N) through X (2N-1) are merely
the complex conjugates of their X,(0) through X (N-1) counterparts and
need not be calculated. To help us keep all of this straight, Figure 10-19
depicts the computational steps of the 2N-Point Real FFT algorithm.

To demonstrate this process by way of example, let’s apply the 8-point
data sequence from Eq. (10-46) to the 2N-Point Real FFT algorithm.
Partitioning those Eq. (10-46) samples as dictated by Eq. (10-54), we have
our new FFT input sequence:

x(0) = 0.3535 + j 0.3535,

x(1) = 0.6464 + j 1.0607,

x(2) =0.3535 - § 1.0607,

x(3) =-1.3535 - 0.3535 . (10-61)

With N = 4 in this example, taking the 4-point FFT of the complex
sequence in Eq. (10-61) we get

X, (m) X(m)
! d
X(m) = 0.0000 + 7 0.0000 =0 term
+1.4142 —j 0.5857 —m=1term
+1.4141 ~j1.4141 «m=2term
-1.4142 +73.4141 em=sterm. (10-62)

Using these values, we now get the intermediate factors from Egs.
(10-55) through (10-58). Calculating our first X*(0) value, again we're
reminded that X(m) is periodic with a period N, so X(4) = X(0), and
X;(0) =[X, (0) + X, (0)]/2 = 0. Continuing to use Eqgs. (10-55) through (10-58),

XH(0)=0, X7 (0)=0, X7 (0)=0, X;7(0)=0,
X (1)=0, X;(1)=14142, X;(1)=14142, X;(1)=-1.9999,
X;(2)=14141, X;(2)=0, X7 (2)=-14144, X7 (2) =0,

X7 (3)=0, X;(3)=-14142, X;(3)=14142, X;(3)=19999. (10-63)

Efficiently Performing the FFT of Real Sequences 423

Using the intermediate values from Eq. (10-63) in Eqs. (10-59) and (10-60),

Xurea(0)=(0)cos 2. (0)-sin %0 =)o

Xesmag @)= 0)=sin Z2). 0~ oy Z2)-0

X, rea(D) = (0)+cos(-) -(1.4142)— sm() .(1.4142)

X, mag (1) = (~1.9999) - sm()(1 4142) - cos(n)(1 4142)
X, (@ =(1 4141)+cos()(14144) sm()(0)
Xeinss @)= O)=sin 2. -1.4109) - wof 2]
Xoreal(3) = (0)+COS() (1.4142) - sm(J (-1.4142)

X, imag (3) = (1.9999) - sm()(1 4142)- cos()(14142) (10-64)

Evaluating the sine and cosine terms in Eq. (10-64),

X reat0) = (0) + (1)~ (0) - (0)-(0) =

X imag(0) = (0) = (0)- (0) - (1)-(0) = 0,

X, real(l) = (0) + (0.7071) - (1.4142) - (0.7071) - (1.4142) =

Xameg(l) = (-1.9999) - (0.7071) - (1.4142) - (0.7071)- (1.4142) = -3.9999,

X, real(2) = (1.4141) + (0)- (-1.4144) — (1)- (0) = 14141,

Xa,imag(Z) =(0) - (1)- (-1.4144) - (0)- (0) = 1.4144,

X, real3) = (0) + (<0.7071) - (1.4142) — (0.7071) - (-1 4142) =0, and

X, imag(3) = (1.9999) - (0.7071) - (1.4142) — (~0.7071) - (-1.4142) = 0. (10-65)
Combining the results of the terms in Eq. (10-65), we have our final cor-
rect answer of

X[0) =X, (0) +f “mag(O) =0+j0=0 £0°,

X (1) =X, (D) +f amag(l) =0-j3.999 =4 £-90°,

X(2) = X, eal(2) + “mag(Z) =1.4141 +j1.4144 = 2 £45°, and

X,3) =X, a3 + “mag(S) =0+j0=0 40°. (10-66)

424

Digital Signal Processing Tricks

After going through all the steps required by Eqs. (10-55) through
(10-60), the reader might question the efficiency of this 2N-Point Real
FFT algorithm. Using the same process as the above Two N-Point Real
FFTs algorithm analysis, let’s show that the 2N-Point Real FFT algo-
rithm does provide some modest computational saving. First, we know
that a single 2N-Point radix-2 FFT has (2N/2)-log,2N = N - (log,N+1)
butterflies and requires

2N-point complex FFT - 4N (log,N+1) real multiplications (10-67)

and

6N - (log,N+1) real additions. (10-67")
If we add up the number of real multiplications and real additions
required by the algorithm’s N-point complex FFT, plus those required by
Egs. (10-55) through (10-58) and those required by Egs. (10-59) and
(10-60), the complete 2N-Point Real FFT algorithm requires
2N-Point Real FFT algorithm —» 2N -log,N + 8N real multiplications (10-68)
and

3N-log,N + 8N real additions. (10-68")

OK, using the same hardware considerations (multiplications only) we
used to arrive at Eq. (10-52), the percentage gain in multiplication saving
of the 2N-Point Real FFT algorithm relative to a 2N-point complex FFT is

4N -(log, N +1)-(2N -log, N +8N)

-100%
4N -(log; N +1) °
_2N-log, N+2N-N-log,N-4N .
2N-log, N +2N
- _logaN-2 o0 (10-69)
2-log, N+2

The computational (multiplications only) saving from Eq. (10-69) is plot-
ted as the bottom curve of Figure 10-20. In terms of multiplications, the
2N-Point Real FFT algorithm provides a saving of >30% when N2128 or
whenever we transform input data sequences whose lengths are >256.

Calculating the Inverse FFT Using the Forward FFT

[% Computational saving of the 2N-point Real FFT algorithm
50 - -
Multiplications and additions '
40 ¢ e e R
o . Vi
Y (—
) /B/‘/ % e
% 20 R ‘ /
I
10 | i /‘ L
o N
i - Muittiplications only
10 KB - o
10° 10! 10° 10° 10! 10° N

Figure 10-20 Computational saving of the 2N-Point Real FFT algorithm over
that of a single 2N-point complex FFT. The top curve is the
saving when both additions and multiplications are used in the
comparison. The bottom curve indicates the saving when only
multiplications are considered.

Again, for hardware using high-speed multipliers, we consider both
multiplication and addition operations. The difference between those com-
bined arithmetic operations in Eqs. (10-67) plus (10-67) and Egs. (10-68)
plus (10-68') is the appropriate comparison. In this case, the percentage
gain in computational saving of our algorithm is

4N -(log, N+l)+6N-(log2N+1)—(2N-log2N+8N+3N-log2N+8N)

4N -(log, N +1)+6N -(log, N + 1) +100%
10-(log, N +1)-5- -
_10-(og, N+1)-5-log, N 16'100%
10-(log, N +1)
5.1 -
= 2108 N6 00 (10-70)

" 10-(log, N+1)

The full computational (multiplications and additions) saving from Eq.
(10-70) is plotted as a function of N in the top curve of Figure 10-20.

10.6 Cailculating the Inverse FFT Using the
Forward FFT

There are many signal processing applications where the capability to
perform the inverse FFT is necessary. This can be a problem if available

—

426

Digrtal Signal Processing Tricks

hardware or software routines have the capability to perform only the for-
ward FFT. Fortunately, there are two slick ways to perform the inverse FFT
using the forward FFT algorithm.

10.6.1 First Inverse FFT Method

The first inverse FFT calculation scheme is implemented following the
processes shown in Figure 10-21. To see how this works, consider the
expressions for the forward and inverse DFTs:

N-1
Forward DFT - X(m)= Y x(ne~imm/N (10-71)
n=0
and
1 N .
Inverse DFT — x(n) = Y X(myel2mm/N (10-72)
m=0

To reiterate our goal, we want to use the process in Eq. (10-71) to imple-
ment Eq. (10-72).

The first step of our approach is to use complex conjugation. Remember,
conjugation (represented by the superscript * symbol) is the reversal of the
sign of a complex number’s imaginary exponent—if x = ¢/2, then, x* = ¢/,
So, as a first step, we take the complex conjugate of both sides of Eq.
(10-72) to give us

N-1 *
x* (n)= _;T[Zx(m)eﬁnmn/N:l (10-73)
m=0

Y

Xrga (M) ————> +N P X oa (1)

Xinag (M) —>(%_> -»(%-» N P Xy ()

-1 -1

Forward

Figure 10-21 Processing diagram of first inverse FFT calculation method.

Calculating the Inverse FFT Using the Forward FFT

One of the properties of complex numbers, discussed in Appendix A, is
that the conjugate of a product is equal to the product of the conjugates;
that is, if ¢ = ab, then ¢* = (ab)* = a*b*. Using this fact, we can show that the
conjugate of the right side of Eq. (10-73) is given by

* _ _1_ & * ¢ j2nmn/N
x* (m) == X X(m)* (e)
m=0

N-1
1 E: * —j2rnmn/N _
m=

Hold on, we’re almost there. Notice the similarity of Eq. (10-74) to our orig-
inal forward DFT expression Eq. (10-71). If we perform a forward DFT on
the conjugate of the X(m) in Eq. (10-74) and divide the results by N, we get
the conjugate of our desired time samples x(n). Taking the conjugate of
both sides of Eq. (10-74), we get a more straightforward expression for x(n):

x(n) = L [NZ_IX(m) * g=j2mmn/N } (10-75)
N

m=0

So, to get the inverse FFT of a sequence X(m) using the first inverse FFT
algorithm,

Step 1: Conjugate the X(m) input sequence.
Step 2: Calculate the forward FFT of the conjugated sequence.

Step 3: Conjugate the forward FFT’s results.
Step 4: Divide each term of the conjugated results by N to get x(n).

10.6.2 Second Inverse FFT Method

The second inverse FFT calculation technique is implemented following
the interesting data flow shown in Figure 10-22. In this clever inverse FFT
scheme, we don’t bother with conjugation. Instead, we merely swap the
real and imaginary parts of sequences of complex data[22]. To see why
this process works, let’s look at the inverse DFT equation again while sep-
arating the input X(m) term into its real and imaginary parts and remem-
bering that ¢/° = cos(e) + jsin(e):

427

428

Digital Signal Processing Tricks

) N
Inverse DFT —» x(n) = X(m)eﬂ""‘”/

MZ

1 1
N 0

3
]

N-1
D X eat (M) + X g (m)]
m=0

z|=

‘[cos(2rmn / N)+ jsin2rmn/N)] . (10-76)

Multiplying the complex terms in Eq. (10-76) gives us

N-1
x(n) = =" [Xeat (1) OS2 / N) = Xy (m)sin(27omn / N)]
m=0

z|=

+ j[X ea (m)sin(2uemn / N) + Ximag(m)cos2rmn/N)] . (10-77)

Equation (10-77) is the general expression for the inverse DFT, and we’ll
now quickly show that the process in Figure 10-22 implements this equa-
tion. With X(m) = X ,(m) + inmag(m) and, swapping these terms,

Xorap(M) = Xigpoo) + X, (m) (10-78)
The forward DFT of our X, (m) is
N-1
Forwatd DFT > 3 [Ximag (1) + X e ()]
n=0 (10-79)

-[cos(2rmn / N) - jsin2nmn /N)] .

X + N [—P X (N)
rou (7) /\ Forward /\
/ FT /
Ximag (m) \> F \-—> +N —> ximng (n)

Figure 10-22 Processing diagram of second inverse FFT calculation method.

Fast FFT Averaging
Multiplying the complex terms in Eq. (10-79) gives us
N-1
Forward DFT 3" [X,.... (m)cos(2mmn / N) + X, (m) sin(2mmn / N)]
n=0

+ J[X e (M) cos(2rmn / N) - Ximag (M) sin2emn / N)] . (10-80)

Swapping the real and imaginary parts of the results of this forward DFT
gives us what we're after:

N-1
Forward DFTums > 3 [X,y (m) cos(2mmn / N) - Xipnag (M) sin(2mmn / N)]

n=0

+]'[Xim_.ig (m)cos2rmn / N+ X oy (m) sin(2rmn/ N)] (10-81)

If we divide Eq. (10-81) by N it would be equal to the inverse DFT expres-
sion in Eq. (10-77), and that’s what we set out to show. To reiterate, we cal-
culate the inverse FFT of a sequence X(m) using this second inverse FFT
algorithm in Figure 10-22:

Step 1: Swap the real and imaginary parts of the X(m) input sequence.
Step 2: Calculate the forward FFT of the swapped sequence.

Step 3: Swap the real and imaginary parts of the forward FFT’s results.
Step 4: Divide each term of the swapped sequence by N to get x(n).

10.7 Fast FFT Averaging

Section 8.3 discussed the integration gain possible when averaging
multiple FFT outputs to enhance signal-detection sensitivity. Well,
there’s a smart way to do this if we recall the linearity property of the
DFT (which of course applies to the FFT) introduced in Section 3.3.Ifan
input sequence x,(n) has an FFT of X,(m) and another input sequence
x,(n) has an FFT of X,(m), then the FFT of the sum of these sequences
Xsum(M) = X,(n) + x,(n) is the sum of the individual FFTs, or

Xoun(m) = X, (m) + X, (m) . (10-82)

429

430

Digital Signal Processing Tricks

So, if we want to average multiple FFT outputs, we can save considerable
processing effort by averaging the individual FFT input sample sequences
(frames), first, and then take a single FFT. Say, for example, that we
wanted to average 20 FFTs to improve our FFT output signal-to-noise
ratio. Instead of taking 20 FFTs of 20 frames of input signal data, we
should average the 20 frames of input data, first, and then take a single
FFT of that average. This avoids the number crunching necessary for 19
FFTs. By the way, for this technique to improve an FFT's signal-detection
sensitivity, the original signal sampling must meet the criterion of coher-
ent integration as described in Section 3.12.

That’s the good news. The bad news is that this technique only works
for periodic signals whose initial samples, x,(0), are collected synchro-
nously. That is, the beginning of each new block of time-domain data is
collected at a constant phase relative to the periodic signal.

10.8 Simplified FIR Filter Structure

If we need to implement an FIR digital filter using the standard structure
in Figure 10-23(a), there’s a way to simplify the necessary calculations
when the filter has an odd number of taps. Let’s look at the top of Figure
10-23(a) example where the 5-tap filter coefficients are h(0) through h(4)
and the y(n) output is given by

y(n) = k(@)x(n-4) + h(3)x(n-3) + h(2)x(n-2) + h(1)x(n-1) + K(0)x(n). (10-83)

If the FIR filter’s coefficients are symumetrical, we can reduce the number
of necessary multipliers; that is, if h(4) = h(0), and h(3) = k(1), we can
implement Eq. (10-83) by

y(n) = h(4)[x(n-4)+x(n)] + h(3)[x(n-3)+x(n~1)] + h(2)- x(n-2) , (10-84)

where only three multiplications are necessary, as shown at the bottom of
Figure 10-23(a). In our 5-tap filter case, we've eliminated two multipliers
at the expense of implementing two additional adders.

In the general case of symmetrical-coefficient FIR filters with S taps, we
can trade (5-1)/2 multipliers for (5-1)/2 adders when S is an odd num-
ber. So, in the case of an odd number of taps, we need perform only
(5-1)/2 + 1 multiplications for each filter output sample. For an even
number of symmetrical taps as shown in Figure 10-23(b), the saving
afforded by this technique reduces the necessary number of multiplica-
tions to §/2. For the half-band filters discussed in Section 5.7, with their

Simplified FIR Filter Structure

M0} = W(5) h(1) = h4)

)

Figure 10-23 Simpilified FIR filter implementations: (a) conventional and
simplified, structures of an FIR filter with an odd number of taps;

(b) conventional and simplified structures of an FIR filter with an
even number of taps.

431

432

Digital Signal Processing Tricks

alternating zero-valued coefficients, the simplified FIR structure in Figure
10-23(b) allows us to get away with only (S+1)/4 + 1 multiplications for
each filter output sample when S is odd and the first filter coefficient h(0)
is not zero.

We always benefit whenever we can exchange multipliers for adders.
Because multiplication often takes a longer time to perform than addition,
this symmetrical FIR filter simplification scheme may speed filter calcula-
tions performed in software. For a hardware FIR filter, this scheme can
either reduce the number of necessary multiplier circuits or increase the
effective number of taps for a given number of available hardware multi-
pliers. Of course, whenever we increase the effective number of filter taps,
we improve our filter performance for a given input signal sample rate.

10.9 Accurate A/D Converter Testing Technique

The manufacturers of A/D converters have recently begun to take advan-
tage of digital signal processing techniques to facilitate the testing of their
products. A traditional test method involves applying a sinusoidal analog
voltage to an A/D converter and using the FFT to obtain spectrum of the
digitized samples. Converter dynamic range, missing bits, harmonic dis-
tortion, and other nonlinearities can be characterized by analyzing the
spectral content of the converter output. These nonlinearities are easy to
recognize because they show up as spurious spectral components and
increased background noise levels in the FFT spectra.

To enhance the accuracy of the spectral measurements, window func-
tions were originally used on the time-domain converter output samples
to reduce the spectral leakage inherent in the FFT, This was fine until the
advent of 12- and 14-bit A/D converters. These converters have dynamic
ranges so large that their small nonlinearities, evident in their spectra,
were being swamped by the sidelobe levels of even the best window func-
tions. (From Figure 9-4 we know that a 14-bit A/D converter can have an
SNR ratio of well over 80 dB.) The clever technique that circumvents this
problem is to use an analog sinusoidal input voltage whose frequency is
an integral fraction of the A/D converter’s sample frequency as shown in
Figure 10-24(a). That frequency is mf,/N where m is an integer, f, is the
sample frequency, and N is the FFT size. Figure 10-24(a) shows the x(n)
time-domain output of an ideal A/D converter under the condition that
its analog input is a sinewave having exactly eight cycles over 128 output
samples. In this case, the input frequency normalized to the sample ratef,
is 8f,/128 Hz. Recall, from Chapter 3, that the expression mf, /N defined
the analysis frequencies, or bin centers, of the DFT; and a DFT input
whose frequency is at a bin center results in no leakage even without the

Accurate A/D Converter Testing Technique

1“")
+5 " o (] ”
oy NN A R R & &
t N § | I | | N | an ae l’ y & ,‘I
o B O R I S O I A R A
@ OL\ILI\ILI_IL_ILI\‘
ST YT
J l"l l‘, l‘, an | N | ‘III ll’ l
PR A A T
Fm)indB
0 L}
20 |
-40
®
-80 }
0 3 6 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 M

Figure 10-24 Ideal A/D converter output whose input is an analog 8£,/128 Hz
sinusoid: (a) time-domain sampies; (b) frequency-domain
spectrum in dB.

use of a window function. Another way to look at this situation is to real-
ize that the analog mf,/N frequency sinusoid will have exactly m complete
cycles over the N FFT input samples, as indicated by Figure 3-7(b) in
Chapter 3.

The first half of a 128-point FFT of x(n) is shown in the logarithmic plot
in Figure 10-24(b) where the input tone lies exactly at the m = 8 bin center,
and DFT leakage has been avoided altogether. Specifically, if the sample
rate were 1 MHz, then the A/D’s input analog tone would have to be
exactly 8-10%/128 = 62.5 kHz. To implement this scheme, we need to
ensure that the analog test generator be synchronized, exactly, with the
A/D converter’s clock frequency of f, Hz. Achieving this synchronization
is why this A/D converter testing procedure is referred to as coherent sam-
pling[23-25]. The analog signal generator and the A/D clock generator
providing f. must not drift in frequency relative to each other—they must
remain coherent. (We must take care here from a semantic viewpoint
because the quadrature sampling schemes described in Sections 7.1 and
7.2 are also sometimes called coherent sampling, but they are unrelated to
this A/D converter testing procedure.)

As it turns out, some values of m are more advantageous than oth-
ers. Notice in Figure 10-24(a), when m = 8, only nine different ampli-
tude values are put out by the A/D converter. Those values are

e e e O

434

Digital Signal Processing Tricks

Dropped bits

FAm)indB
0]

(b)

0 3 6 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 M

Figure 10-26 Nonideal A/D converter output showing severql dropped bifs:
(@) time-domain samples; (b) frequency-domain spectrum in dB.

repeated over and over. As shown in Figure 10-25, whenm =7, we ex.ef-
cise many more than nine different A/D output values. B-ecause ‘1t s
best to test as many A/D output binary words as possible, in practice,
users of this A/D testing scheme have found that making m an odd
prime number (3, 5, 7, 11, etc.) minimizes the number of redundant

A/D output word values.

Fast FIR Fitering Using the FFT

Figure 10-26(a) illustrates an extreme example of nonlinear A/D con-
verter operation with several discrete output samples having dropped
bits in the time domain x(n) with m = 8. The FET of this distorted x(n) is
shown in Figure 10-26(b) where we can see the greatly increased back-
ground noise level due to the A /D converter’s nonlinearities compared to
Figure 10-24(b).

To fully characterize the dynamic performance of an A/D converter,
we'd need to perform this testing technique at many different input fre-
quencies and amplitudes.’ In addition, applying two analog tones to the
A/D converter’s input is often done to quantify the intermodulation dis-
tortion performance of a converter, which, in turn, characterizes the con-
verter’s dynamic range. In doing so, both input tones must comply with
the mf, /N restriction. The key issue here is that, when any input frequency
is mf./N, we can take full advantage of the FFT’s processing sensitivity
while completely avoiding spectral leakage.

10.10 Fast FIR Filtering Using the FFT

While contemplating the convolution relationships in Eq. (5-31) and
Figure 5-41, digital signal processing practitioners realized that convolu-
tion could sometimes be performed more efficiently using FFT algorithms
than it could be using the direct convolution method[26,27]. This FFT-
based convolution scheme, called fast convolution, is diagrammed in
Figure 10-27. The standard convolution equation, for an M-tap FIR filter,
given in Eq. (5-6) is repeated here for reference as

M-1
ym =" kx(n—k) = hk)» x(n) . (10-85)
k=0

where h(k) is the impulse response sequence (coefficients) of the FIR filter
and the “»” symbol indicates convolution. It has been shown that, when the
final y(n) output sequence has a length greater than 30, the process in Figure
10-27 requires fewer multiplications than implementing the convolution
expression in Eq. (10-85) directly. Consequently, this fast convolution tech-
nique is a very powerful signal processing tool, particularly, when used for

t The analog sinewave applied to an A/D converter must, of course, be as pure as possible.
Any distortion inherent in the analog signal will show up in the final FFT output and could
be mistaken for A/D nonlinearity.

435

436

Digital Signal Processing Tricks

x(n)
—

FFT X(m)
\ Hm): X(m) e YN} = hK)=x(n)

FFT
h(k) S
—_— FFT H(m)

Figure 10-27 Processing diagram of fast convolution.

digital filtering. Very efficient FIR filters can be designed using this tech-
nique because, if their impulse response h(k) is constant, then we don’t have
to bother recalculating H(m) each time a new x(n) sequence is filtered. In
this case, the H(m) sequence can be precalculated and stored in memory.

The necessary forward and inverse FFT sizes must, of course, be equal
and are dependent on the length of the original h(k) and x(n) sequences.
Recall from Eq. (5-29) that, if h(k) is of length P and x(n) is of length Q, the
length of the final y(n) sequence will be (P+Q-1). For valid results from this
fast convolution technique, the forward and inverse FFT sizes must be
equal and greater than (P+Q-1). This means that (k) and x(n) must both be
padded (or stuffed) with zero-valued samples at the end of their respective
sequences, to make their lengths identical and greater than (P+Q-1). This
zero padding will not invalidate the fast convolution results. So, to use fast
convolution, we must choose an N-point FFT size such that N > (P+Q-1)
and zero pad h(k) and x(n), so that they have new lengths equal to N.

An interesting aspect of fast convolution, from a hardware standpoint,
is that the FFT indexing bit-reversal problem discussed in Sections 4.5 and
4.6 is not an issue here. If the identical FFT structures used in Figure 10-27
result in X(m) and H(m) having bit-reversed indices, the multiplication
can still be performed directly on the scrambled H(m) and X(m)
sequences. Then, an appropriate inverse FFT structure can be used that
expects bit-reversed input data. That inverse FFT then provides an output
y(n) whose data index is in the correct order!

10.11 Calculation of Sines and Cosines
of Consecutive Angles

There are times in digital signal processing when we need our software to
calculate lots of sine and cosine values, particularly in implementing cer-
tain FFT algorithms[28,29]. Because trigonometric calculations are time
consuming to perform, a clever idea has been used to calculate the sines

Calculation of SInes and Cosines of Consecutive Angles

and cosines of consecutive angles without having to actually call upon
standard trigonometric functions.t Ilustrating this scheme by way of
example, let’s say we want to calculate the sines and cosines of all angles
from 0° to 90° in 1 degree increments. Instead of performing those 91 sine
and 91 cosine trigonometric operations, we can use the following identi-
ties found in our trusty math reference book,

sin{A+B) = sin(A)- cos(B) + cos(A) - sin(B) (10-86)
and
€0s(A+B) = cos(A) - cos(B) - sin(A) - sin(B) , (10-87)

to reduce our computational burden. To see how, lets make A = a and
B =no, where a=1°and n is an integral index 0< n< 89. Equati

. < n< 89. Equations (10-86
and (10-87) now become ! ()

sin +na) = sinf [1+n]) = sin(or) -cos(na) + cos(@) - sin(nex), (10-88)
and
coso +na) = coso [1+n]) = cos(x) - cos(na) - sinfo - sin(na) . (10-89)

OK, her'e’s how we calculate the sines and cosines. First, we know the sine
and cosine for the first angle of 0°; i.e., sin(0°) = 0, and cosine(0°) = 1. Next
we need to use a standard trigonometric function call to calculate and
store, for later use, the sine and cosine of 1°; that is, sin(1°) = 0.017452 and
cos(1°) =.0.9?9848. Now we're ready to calculate the sine and cosine of 2°
by substituting 7 = 1 and o = 1° into Egs. (10-88) and (10-89) giving us
sin(1°[1+1]) = sin(1°) - cos(1 - 1°) + cos(1°)-sin(1-1°),
or
sin(2°) = (0.017452) - (0.999848) + (0.999848) - (0.017452) = 0.034899, (10-90)
and
cos(1°[1+1]) = cos(1°) - cos(1-1°) - sin(1°)-sin(1-1°),

or

cos(2°) = (0.999848) - (0.999848) + (0.017452) - (0.017452) = 0.999391. (10-91)

t We” ; ‘o s -
We.re assuming here that there’s insufficient memory space available to store all the
required sine and cosine values for later recall.

43;

438

Digital Signal Processing Tricks

Because we've already calculated sin(1°) and cos(1°), Egs. (10-90) and
(10-91) each required only two multiplies and an add. No trigonometric
function needed to be called by software.

Next we're able to calculate the sine and cosine of 3° by substituting
n =2 and a = 1° in Eqgs. (10-88) and (10-89); that is,

sin(1°[1+2]) = sin(1°) - cos(2 - 1°) + cos(1°) - sin(2- 1°),
or
sin(3°) = (0.017452) - (0.999391) + (0.999848) - (0.034899) = 0.052336, (10-92)
and
cos(1°[1+2]) = cos(1°) - cos(2- 1°) - sin(1°) - sin(2- 1°),
or

0s(3°) = (0.999848) - (0.999391) + (0.017452) - (0.034899) = 0.998629. (10-93)

Again, because we previously calculated sin(2°) and cos(2°), Egs. (10-92)
and (10-93) only require us to perform four multiplications and two addi-
tions. The pattern of our calculations is clear now. For successive angles,
we merely use the sine and cosine of 1° and the sine and cosine values
obtained during the previous angle calculation. In our example, the angle
increment was o= 1°, but it's good to know that Egs. (10-88) and (10-89)
apply for any fixed angle increment.

10.12 Generating Normally Distributed
Random Data

Section D.4 in Appendix D discusses the normal distribution curve as it
relates to random data. A problem we may encounter is how to actually
generate random data samples whose distribution follows that normal
curve. There's a slick way to solve this problem using any software
package that can generate uniformly distributed random data, as most
of them do[30]. Figure 10-28 shows our situation pictorially where we
require random data that’s distributed normally with a mean (average)
of u' and a standard deviation of ¢, as in Figure 10-28(a), and all we
have available is a software routine that generates random data that’s
uniformly distributed between zero and one as in Figure 10-28(b). As it
turns out, there’s a principle in advanced probability theory, known as
the Central Limit Theorem, that says, when random data from an arbi-
trary distribution is summed over M samples, the probability distribu-

Generating Normally Distributed Random Data

Normal probability distribution “ Uniform probability distribution

- -
_— L

-3¢' 2¢' ~0' W +0' +20' +3¢' Y 1

(a) (b)

Figure 10-28 Probability distribution functions: (a) normal distribution with
mean = ', and standard deviation ¢'; (b) uniform distribution
between zero and one.

Probability distribution of set Yeum

(=]

This distance is
assumaed 1o be to ¢,

Figure 10-29 Probability distribution of the summed set of random data
derived from uniformly distributed data.

tion of the sum begins to approach a normal distribution, as M
increases[31,32]. In other words, if we generate a set of N random sam-
ples that are uniformly distributed between zero and one, we can begin
adding other sets of N samples to the first set. As we continue summing
additional sets, the distribution of the N-element set of sums becomes
more and more normal. We can sound impressive and state that “the
sum becomes asymptotically normal.” Experience has shown that, for
practical purposes, if we sum M 2 30 times, the summed data distribu-
tion is essentially normal. With this rule in mind, we're halfway to solv-
ing our problem.

After summing M sets of uniformly distributed samples, the summed
set Yo, Will have a distribution like that shown in Figure 10-29. Because
we've summed M sets, the mean of Ysum 18 = M/2. To determine y, s

standard deviation o, we assume that the six sigma point is equal to M-y;
that is

66=M-p. (10-94)

Digital Signal Processing Tricks

That assumption is valid because we know that the probability of an ele-
ment in ... being greater than M is zero, and the probability of having
a normal data sample at six sigma is one change in 6 billion, or essen-
tially zero. Because p = M/2, then from Eq. (10-94), Yeum'S standard devi-
ation is set to

_M-p_M-M/2
6 6

(o

=M/12 . (10-95)

To convert the y,,. data set to our desired data set having a mean of '
and a standard deviation of &',

* subtract M/2 from each element of y,_ to shift its mean to zero,

* next, ensure that 66" is equal to M/2 by multiplying each element in
the shifted data set by 126 '/M, and

* finally, center the new data set about the desired p' by adding ' to
each element of the new data,

The steps in our algorithm are shown in Figure 10-30. If we call our
desired normally distributed random data set y,; _,, then the nth element
of that set is described mathematically as

' M
Ydesirea(n) = 1270 [; xk(n)J - %’I— +u' . (10-96)

Our discussion thus far has had a decidedly software algorithmic fla-
vor, but hardware designers also occasionally need to generate normally
distributed (Gaussian) random data at high speeds in their designs. For
your hardware designers, reference [33] presents an efficient hardware
design technique to generate normally distributed random data using
fixed-point arithmetic integrated circuits.

Generate M sets Sum the M sets, .
of random data. element for Subtract M2 Multiply each Add 1t to each
with each set element, to get from each element in the oin u :’ 7“1
containing N the summed set element of shifted set by sr:“ﬂ;’; :m:
slements. Yaum Containing Youm - 120'/M. cet
N elements. .

Figure 10-30 Processing steps required to generate normaily distributed random
data from uniformly distributed data.

References

References

[1] Freeny, S. “TDM/FDM Translation as an Application of Digital Signal
Processing,” IEEE Communications Magazine, January 1980.

[2] Considine, V. “Digital Complex Sampling,” Electronics Letters, 19, 4 August
1983.

[3] Harris Semiconductor Corp. “A Digital, 16-Bit, 52 Msps Halfband Filter,”
Microwave Journal, September 1993.

[4] Hack, T. “IQ Sampling Yields Flexible Demodulators,” RF Design Magazine,
April 1991.

[5] Pellon, L. E. “A Double Nyquist Digital Product detector for Quadrature
Sampling,” IEEE Trans. on Signal Processing, Vol. 40, No. 7, July 1992.

[6] Waters, W. M., and Jarrett, B. R. “Bandpass Signal Sampling and Coherent
Detection,” IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-18, No. 4,
November 1982.

[7] Palacherls, A. “DSP-mP Routine Computes Magnitude,” EDN, October 26, 1989.

[8] Mikami, N., Kobayashi, M., and Yokoyama, Y. “A New DSP-Oriented
Algorithm for Calculation of the Square Root Using a Nonlinear Digital
Filter,” IEEE Trans. on Signal Processing, Vol. 40, No. 7, July 1992.

[9] Lyons, R. G. “Turbocharge Your Graphics Algorithm,” ESD: The Electronic
System Design Magazine, October 1988.

[10] Adams, W. T., and Brady, J. “Magnitude Approximations for Microprocessor
Implementation,” IEEE Micro, Vol. 3, No. 5, October 1983.

[11] Eldon, J. “Digital Correlator Defends Signal Integrity with Multibit
Precision,” Electronic Design, May 17, 1984.

[12] Smith, W. W. “DSP Adds Performance to Pulse Compression Radar,” DSP
Applications, October 1993.

[13] Harris Semiconductor Corp. HSP50110 Digital Quadrature Tuner Data Sheet,
File Number 3651, February 1994.

[14] Bingham, C., Godfrey, M., and Tukey, J. “Modern Techniques for Power
Spectrum Estimation,” IEEE Trans. on Audio and Electroacoust., Vol. AU-15, No.
2, June 1967.

{15] Harris, E. J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978.

[16] Nuttall, A. H. “Some Windows with Very Good Sidelobe Behavior,” IEEE
Trans. on Acoust. Speech, and Signal Proc., Vol. ASSP-29, No. 1, February 1981.

[17] Cox, R. “Complex-Multiply Code Saves Clocks Cycles,” EDN, June 25, 1987.

[18] Rabiner, L. R., and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 356.

441

442

Digital Signal Processing Tricks

[19] Sorenson, H. V., Jones, D. L., Heideman, M. T,, and Burrus, C. S. “Real-Valued
Fast Fourier Transform Algorithms,” IEEE Trans. on Acoust. Speech, and Signal
Proc., Vol. ASSP-35, No. 6, June 1987.

[20] Cooley, J. W., Lewis, P. A., and Welch, P. D. “The Fast Fourier Transform
Algorithm: Programming Considerations in the Calculation of Sine, Cosine
and Laplace Transforms,” Journal Sound Vib., Vol. 12, July 1970.

{21] Brigham, E. O. The Fast Fourier Transform and Its Applications, Prentice-Hall,
Englewood Cliffs, New Jersey, 1974, pp. 167.

[22] Burrus, C. S,, et al. Computer-Based Exercises for Signal Processing, Prentice-
Hall, Englewood Cliffs, New Jersey, 1994, pp. 53.

[23] Coleman, B., Meehan, P, Reidy, J., and Weeks, P. “Coherent Sampling Helps
When Specifying DSP A/D Converters,” EDN, October 1987.

[24] Ushani, R. “Classical Tests Are Inadequate for Modern High-Speed
Converters,” EDN Magazine, May 9, 1991.

[25] Meehan, P, and Reidy, J. “FFT Techniques Give Birth to Digital Spectrum
Analyzer,” Electronic Design, August 11, 1988, pp. 120.

[26] Stockham, T. G. “High-speed Convolution and Correlation,” in Digital Signal
Processing, Ed. by L. Rabiner and C. Rader, IEEE Press, New Jersey, 1972, pp. 330.

[27] Stockham, T. G. “High-Speed Convolution and Correlation with Applications
to Digital Filtering,” Chapter 7 in Digital Processing of Signals, by B. Gold et al.,
McGraw-Hill, New York, 1969, pp. 203.

[28] Dobbe, J. G. G. “Faster FFTs,” Dr. Dobb’s Journal, February 1995, pp. 125. (Be
careful here. The last equation in Example 5 is incorrect on page 133 of this
reference, so be sure and use our Eq. (10-86) above.)

[29] Crenshaw, J. W. “All About Fourier Analysis,” Embedded Systems Programming,
October 1994, pp. 70.

[30] Beadle, E. “Algorithm Converts Random Variables to Normal,” EDN
Magazine, May 11, 1995.

[31] Spiegel, M. R. Theory and Problems of Statistics, Shaum’s Outline Series,
McGraw-Hill Book Co., New York, 1961, pp. 142.

[32] Davenport, W. B., Jr., and Root, W. L. Random Signals and Noise, McGraw-Hill
Book Co., New York, 1958, pp. 81.

[33] Salibrici, B. “Fixed-point DSP Chip Can Generate Real-time Random Noise,”
EDN Magazine, April 29, 1993.

gAPPENDIX Ag)

The Arithmetic of
Complex Numbers

To understand digital signal processing, we have to get comfortable using
complex numbers. The first step toward this goal is learning to manipu-
late complex numbers arithmetically. Fortunately, we can take advantage
of our knowledge of real numbers to make this job easier. Although the
physical significance of complex numbers is discussed in Appendix C, the
following discussion provides the arithmetic rules governing complex
numbers.

A.1 Graphical Representation of Real and
Complex Numbers

To get started, real numbers are those positive or negative numbers we’re
used to thinking about in our daily lives. Examples of real numbers are
0.3,-2.2,5.1, etc. Keeping this in mind, we see how a real number can be
represented by a point on a one-dimensional axis, called the real axis, as
shown in Figure A-1.

We can, in fact, consider that all real numbers correspond to all of the
points on the real axis line on a one-to-one basis.

This point represents the
real number —2.2

o

-7-6-5-4-3-2-10 12 3 4 5 ¢ 7 Realaxis

Figure A-1 The representation of a rea! number as a point on the one-
dimensional real axis.

443

Appendix A: The Arithmetic of Complex Numbers

Imaginary axis ())

; \ This point represents the
‘ complex number C= R + ji

0 R Real axis

Figure A-2 The phasor representation of the complex number C =R+ jlon
the complex plane.

A complex number, unlike a real number, has two parts: a real partand
an imaginary part. Just as a real number can be considered to be a point
on the one-dimensional real axis, a complex number can be treated as a
point on a complex plane as shown in Figure A-2. We'll use this geomet-
rical concept to help us understand the arithmetic of complex numbers.’

A.2 Arithmefic Representation of Complex Numbers

A complex number C is represented in a number of different ways in the
literature, such as

Rectangular form: — C=R+jl, (A-1)
Trigonometric form: — C = Mlcos() + jsin(a)], (A1)
Exponential form: — C=Mé?, (A-1")
Magnitude and angle form: > C =M £ & . (A-1")

Equations (A-1") and (A-1") remind us that the complex number C can
also be considered the tip of a phasor on the complex plane, with magni-
tude M, in the direction of @ degrees relative to the positive real axis as
shown in Figure A-2. (We'll avoid calling phasor M a vector because the
term vector means different things in different contexts. In linear algebra,
vector is the term used to signify a one-dimensional matrix. On the other
hand, in mechanical engineering and field theory, vectors are used to sig-
nify magnitudes and directions, but there are vector operations (scalar or

¥ The complex plane representation of a complex number is sometimes called an Argand dia-
gram—named after the French mathematician Jean Robert Argand (1768-1825).

Arithmetic Representation of Complex Numbers

dot product, and vector or cross-product) that don’t apply to our definition
of a phasor.) The relationships between the variables in this figure follow
the standard trigonometry of right triangles. Keep in mind that C is a
complex number, and the variables R,1, M, and o are all real numbers. The
magnitude of C, sometimes called the modulus of C, is

M=ICI=yR2+17 , (A-2)

and, by definition, the phase angle, or argument, of C is the arctangent of
I/R, or

o=tan™! (%) . (A-3)

The variable & in Eq. (A-3) is a general angle term. It can have dimensions
of degrees or radians. Of course, we can convert back and forth between
degrees and radians using n radians = 180", So, if 2, is in radians and e, is
in degrees, then we can convert 2, to degrees by the expression

180
0, =—2 . (A-9)
n
Likewise, we can convert o, to radians by the expression
=12 -
= T80 (8-5)

The exponential form of a complex number has an interesting charac-
teristic that we need to keep in mind. Whereas only a single expression in
rectangular form can describe a single complex number, an infinite num-
ber of exponential expressions can describe a single complex number; that
is, while, in the exponential form, a complex number C can be represented
by C= Me”, it can also be represented by

C = Me/® = M@+ 2 (A-6)

where n=+1, +2, +3, . . . and o is in radians. When ¢ is in degrees, Eq.
(A-6) is in the form

C = Me/® = Mel@*+ 360 (A-7)

44¢

Appendix A: The Arithmetic of Complex Numbers

Equations (A-6) and (A-7) are almost self-explanatory. They indicate that
the point on the complex plane represented by the tip of the phasor C
remains unchanged if we rotate the phasor some integral multiple of 2
radians or an integral multiple of 360 . So, for example, if C = Mé/ 200), then

C = M@ = MO8 _ pgpf7407) (A-8)

The variable g, the angle of the phasor in Figure A-2, need not be constant.
We'll often encounter expressions containing a complex sinusoid that
takes the form

C =M™, (A-9)

Equation (A-9) represents a phasor of magnitude M whose angle in Figure
A-2 is increasing linearly with time at a rate of @ radians each second. If
® = 27, the phasor described by Eq. (A-9) is rotating counterclockwise at
a rate of 2n radians per second—one revolution per second—and that's
why © is called the radian frequency. In terms of frequency, Eq. (A-9)’s
phasor is rotating counterclockwise at ® = 2xf radians per second, where
fis the cyclic frequency in cycles per second (Hz). If the cyclic frequency
is f = 10 Hz, the phasor is rotating 20r radians per second. Likewise, the
expression

C = M (4-9)

represents a phasor of magnitude M that rotates in a clockwise direction
about the origin of the complex plane at a negative radian frequency of -
radians per second.

A.3 Arithmetic Operations of Complex Numbers
A.3.1 Addition and Subtraction of Complex Numbers

Which of the above forms for C in Eq. (A-1) is the best to use? It depends
on the arithmetic operation we want to perform. For example, if we're
adding two complex numbers, the rectangular form in Eq. (A-1) is the eas-
iest to use. The addition of two complex numbers, C, =R, +jl, and
C, =R, +jl,, is merely the sum of the real parts plus j times the sum of the
imaginary parts as

Ci+Cy=Ry+jl, + Ry+jl, =R, + Ry + (I, + 1) . (A-10)

Arithmetic Operations of Complex Numbers

| i i
) Ipegiary) Imegary

(@ (b)

Figure A-3 Geometrical representation of the sum of two complex numbers.

Figure A-3 is a graphical depiction of the sum of two complex numbers
using the concept of phasors. Here the sum phasor C, + C, in Figure A-3(a)
is the new phasor from the beginning of phasor C; to the end of phasor C,
in Figure A-3(b). Remember, the Rs and the Is can be either positive or neg-
ative numbers. Subtracting one complex number from the other is straight-
forward as long as we find the differences between the two real parts and
the two imaginary parts separately. Thus

Ci=Cy =R +jL) - (Ry+jL) =R, ~ R, +(I, - L,) . (A-11)

An example of complex number addition is discussed in Section 8.3
where we covered the topic of averaging fast Fourier transform outputs,

A.3.2 Multiplication of Complex Numbers

We can use the rectangular form to multiply two complex numbers as
GG =Ry +jL) Ry +jI) = (RR, -1, L) + JRL+R L. (A-12)

However, if we represent the two complex numbers in exponential form,
their product takes the simpler form

C,C, = Mye/® Myel® = M M, ef®o) (A-13)

because multiplication results in the addition of the exponents.

447

448

Appendix A: The Arithmetic of Complex Numbers

As a special case of multiplication of two complex numbers, scaling is
multiplying a complex number by another complex number whose imag-
inary part is zero. We can use the rectangular or exponential forms with
equal ease as follows:

kC = k(R +jI) =kR + jkI, (A-14)
or in exponential form,

kC = k(Me®) = kMe® . (A-15)

A.3.3 Conjugation of a Complex Number

The complex conjugate of a complex number is obtained by merely chang-
ing the sign of the number’s imaginary part. So, if we denote C as the com-
plex conjugate of the number C = R + jI = M¢®, then, C is expressed as

C'=R-jl=Me. (A-16)
There are two characteristics of conjugates that occasionally come in

handy. First, the conjugate of a product is equal to the product of the con-
jugates. That is, if C = C,C,, then from Eq. (A-13),

C*=(C,Cy)* = (Mleei(eﬁﬂz))* = Mlee‘j(”‘ +23)

=M Mye = CJC; . (A-17)

Second, the product of a complex number and its conjugate is the complex
number’s magnitude squared. It's easy to show this in exponential form as

CC =Mé® - MeT® = M%° = M?. (A-18)

(This property is often used in digital signal processing to determine the
relative power of a complex sinusoidal phasor represented by Me'®".)

A.3.4 Division of Complex Numbers

The division of two complex numbers is also convenient using the expo-
nential and magnitude and angle forms, such as

Arithmetic Operations of Complex Numbers

C _ M M

L. (o, -
= =3 (%19
and
Cl Ml
—=—=Z(g,-9,). A-19'
c, Mm% ()

Although not nearly so handy, we can perform complex division in rec-
tangular notation by multiplying the numerator and the denominator by
the complex conjugate of the denominator as

G _R+jh
G R+jl

_R+j R~ jI,
Ry+jl, Ry-jl,

_ RR + L)+ j(R 1, - R 1)

R+ 1 (A-20)

A.3.5 Inverse of a Complex Number
A special form of division is the inverse, or reciprocal, of a complex num-
ber. If C = M¢'®, its inverse is given by

.

1 -jo
C MeP Mm% (A-21)

In rectangular form, the inverse of C = R + jlis given by

1
C R+jI RE+D%° (A-22)

We get Eq. (A-22) by substituting R, =1, I;=0,R,=R,and I, =I in Eq. (A-20).

449

450

Appendix A: The Arithmetic of Complex Numbers

A.3.6 Complex Numbers Raised to a Power

Raising a complex number to some power is easily done in the exponen-
tial form. If C = Me’®, then

ct = Mk (P = ME e (A-23)
For example, if C= 3¢/'*", then C cubed is
(C) = 331y = 2767 = 27615 (A-24)

We conclude this appendix with four final complex arithmetic opera-
tions that are not very common in digital signal processing—but you may
need them sometime.

A.3.7 Roots of a Complex Number

The kth root of a complex number C is the number that, multiplied by
itself k times, results in C. The exponential form of C is the best way to
explore this process. When a complex number is represented by C = Me”®,
remember that it can also be represented by

C = Me/®@+ 7360 (A-25)

In this case, the variable g in Eq. (A-25) is in degrees. There are k dis-
tinct roots when we're finding the kth root of C. By distinct, we mean
roots whose exponents are less than 360". We find those roots by using
the following:

}{/E - kaej(a+n360° - Wej(a+n360°)/k . (A-26)

Next, we assign the values 0,1,2,3,.. ., k1tonin Eq. (A-26) to get the k
roots of C. OK, we need an example here! Let’s say we're looking for the
cube (3rd) root of C = 125¢/™". We proceed as follows:

YT = 1256175 = 31256175 +1360°) _ 355" +n360*)/3 (A-27)

Next we assign the valuesn=0,n=1,and n=2 to Eq. (A-27) to get the
three roots of C. So the three distinct roots are

Arithmetic Operations of Complex Numbers

3/~ _ j(75° +0-360°) /3 j(25°
1st root — .\/E_Sel(+ i = 5¢/(25%) ;

ndroot— 3T = 5p/(75°+1360°)/3 5/(435°)/3 _ 5,j(145°) .
and

3rd root — %/E - 56j(75°+2-3600)/3 - 56,‘(7950)/3 - Sej(ZGSO) ‘
A.3.8 Natural Logarithms of a Complex Number

Taking the natural logarithm of a complex number C = Me/® is straightfor-
ward using exponential notation; that is

InC = In(Me®) = InM + In(¢®)= InM + o , (A-28)

where 0 < < 2r. By way of example, if C = 12¢™* the natural logarithm
of Cis

InC = In(12e™%) = In(12) + jrc/4 = 2.485 + j0.785 . (A-29)
This means that 2485 +/0785) _ 2485 jo785 _ 1274

A.3.9 Logarithm to the Base 10 of a Complex Number

We can calculate the base 10 logarithm of the complex number C = Me/®
using

log,,C = logy(Me’®) = log;M + log,q(e/”) = log,,M + jor - log,(e) . (A-30)
Of course e is the irrational number, approximately equal to 2.71828,

whose log to the base 10 is approximately 0.43429. Keeping this in mind,
we can simplify Eq. (A-30) as

log,,C = log,,M +(0.43429 - o) . (A-31)

Repeating the above example with C = 12¢™* and using the Eq. (A-31)
approximation, the base 10 logarithm of C is

" For the second term of the result in Eq. (A-30) we used log u(xn) = n-log x according to the
law of logarithms.

451

452

Appendix A: The Arithmetic of Complex Numbers

log,, C= log,,(12e™%) = log,(12) + j(0.43429 - 1/ 4)
= 1.079 + j(0.43429 - 0.785) = 1.079 + j0.341 . (A-32)
The result from Eq. (A-32) means that
10(1.079+j0.341) — 101‘079 . 10j0.341 =12. (e2.302)j0.341

= 1223027 0341) _ 15,0785 _ 5, jn/4 (A-33)

A.3.10 Log to the Base 10 of a Complex Number Using
Natural Logarithms

Unfortunately, some software mathematics packages have no base 10 log-
arithmic function and can calculate only natural logarithms. In this situa-

tion, we just use

In(x) (A-39)

log10() = 1110y

to calculate the base 10 logarithm of x. Using this change of base ‘formul.a,
we can find the base 10 logarithm of a complex number C = Me/®; that is,

InC }
log,, C= o (logyp e)(InC). (A-35)

Because log,(e) is approximately equal to 0.43429, we use Eq. (A-35) to
state that

log,,C = 0.43429 - (InC) = 0.43429 - (InM + jo) . (A-36)

Repeating, again, the example above of C = 12¢/™4, the Eq. (A-36) approx-
imation allows us to take the base 10 logarithm of C using natural logs as

log,, C= 0.43429 - (In(12) + jm/4)
= 0.43429 - (2.485 + j0.785) = 1.079 + j0.341, (A-37)

giving us the same result as Eq. (A-32).

Some Practical Impilications of Using Complex Numbers

A.4 Some Practical Implications of Using
Complex Numbers

At the beginning of Section A.3, we said that the choice of using the rec-
tangular versus the polar form of representing complex numbers
depends on the type of arithmetic operations we intend to perform. It's
interesting to note that the rectangular form has a practical advantage
over the polar form when we consider how numbers are represented in
a computer. For example, let’s say we must represent our complex num-
bers using a four-bit sign-magnitude binary number format. This means
that we can have integral numbers ranging from -7 to +7, and our range
of complex numbers covers a square on the complex plane as shown in
Figure A-4(a) when we use the rectangular form. On the other hand, if
we used 4-bit numbers to represent the magnitude of a complex number
in polar form, those numbers must reside on or within a circle whose
radius is 7 as shown in Figure A-4(b). Notice how the four shaded cor-
ners in Figure A-4(b) represent locations of valid complex values using
the rectangular form, but are out of bounds if we use the polar form. Put
another way, a complex number calculation, yielding an acceptable result
in rectangular form, could result in an overflow error if we used polar
notation in our computer. We could accommodate the complex value
7 +j7 in rectangular form but not its polar equivalent because the mag-
nitude of that polar number is greater than 7.

=

I i .
haxso) Imegiary

R B B I B W

8800

900 ua.

o

-a Real axis

Real axis

[25 58 Y S N Y

(a) ()

Figure A-4 Complex integral numbers represented as points on the complex plane
using a four-bit sign-magnitude data format: (@) using rectanguiar
notation; (b) using polar notation.

T — A—— ‘-_,4. — ”. i e ARG,

453

454

Appendix A: The Arithmetic of Complex Numbers

Although we avoid any further discussion here of the practical impli-
cations of performing complex arithmetic using standard digital data for-
mats, it is an intricate and interesting subject. To explore this topic further,
the inquisitive reader is encouraged to start with the references.

References
[1] Plauger, P. J. “Complex Math Functions,” Embedded Systems Programming,
August 1994,

[2] Kahan, W. “Branch Cuts for Complex Elementary Functions or Much Ado
About Nothing’s Sign Bit,” Proceedings of the Joint IMA/SIAM Conference on the
State of the Art in Numerical Analysis, Clarendon Press, 1987.

[3] Plauger, P. J. “Complex Made Simple,” Embedded Systems Programming, July
1994.

APPENDIX B ——

Closed Form of a
Geometric Series

Il'l the literature of digital signal processing, we often encounter geomet-
ric series expressions like

N-1
o 1P-r
o1~ (B-1)
n=p
or
N-1 ,
Ze—jZan/N _ 1-pj2mm
T amm/N (B-2)

n=

Unfortunately, many authors make a statement like “and we know that,”
and drop Egs. (B-1) or (B-2) on the unsuspecting reader who's expected i:o
accept these expressions on faith. Assuming that you don’t have a Ph.D.
In mathematics, you may wonder exactly what arithmetic sleight of hand
a.llows us to arrive at Egs. (B-1) or (B-2). To answer this question, let’s con-
sider a general expression for a geometric series such as

N-1
- n
S= E ar® =arP +arP* 4 gt o 4 g NA , (B-3)
n=p

where 7, N, and p are integers and 4 and r are an iplyi
f y constants. Multiplyin
Eq. (B-3) by r, gives us Py

N-1

_ n+l 1 -
Sr—zar =arP™ +arP? ¢ eVl p N (B-4)
n=p

455

456

Appendix B: Closed Form of a Geometric Series

Subtracting Eq. (B-4) from Egq. (B-3) gives the expression

S-Sr=S8(1~r)=arP-arN,

or
7 N
P —r
S=a-: (B-5)
l-r
So here’s what we're after. The closed form of the series is
Closed form of a general N-1 P~ TN
geometric series: — ar"=a-. 1 (B'6)
-r

(By closed form, we mean taking an infinite series and converting it to a
simpler mathematical form without the summation.) When a = 1, Eq. (B-6)
validates Eq. (B-1). We can quickly verify Eq. (B-6) with an example.
Letting N =5, p = 0, a = 2, and r = 3, for example, we can create the fol-
lowing list:

n art=2.3"

.30-7
.3l=p
+32=18
33 =54
<34t =162

=W N RO
N NN NN

The sum of this column is

i2'3”=242 .

n=0

Plugging our example N, p, 4, and r values into Eq. (B-6),

N-1 p_.N 0 _ 45
. rP—r 37-3 1-243
=7 =2- =2- =242, B'
Zp‘" 5 1-3 2 ®-7)

Appendix B: Closed Form of a Geometric Series 457

which equals the sum of the rightmost column in the list above.

As a final step, the terms of our earlier Eq. (B-2) are in the form of Eq. -
(B-6)asp=0,a=1,andr = ef2mm/Nt g4 plugging those terms from Eq.
(B-2) into Eq. (B-6) gives us

g f2mmO/N _ -j2ammN /N 1— g-j2nm

(B-8)

N-1
ze_Jznnm/N =1 “i2mm/ N
n=0 1-¢”/

= 1_ g 12mm/N

confirming Eq. (B-2).

+ : . oy i y y
From the math identity ¥ = (4%}, we can say g72mm/N o (gj2mm/Nin ooy o gj2mm/N.

APPENDIX C

Complex Signals and
Negative Frequency

Complex numbers are used in just about every field of science and engi-
neering.! For us, complex signal notation is necessary to describe the
effects of quadrature and Fourier processing. It may be fair to say that no
other topic in digital signal processing causes more initial discomfort for
the beginner than complex numbers with their real and imaginary parts.
Why, even the terminology is bizarre. So here’s where we review the fun-
damentals of complex numbers, get comfortable with how they're used to
represent complex signals, and examine the notion of negative frequency
as it relates to complex signal notation.

To start this discussion, it’s important for us to be comfortable with the
concept of negative frequency because it’s essential in understanding the
spectral replication effects of periodic sampling, discrete Fourier trans-
forms, and the various quadrature signal processing techniques discussed
in Chapter 7. The convention of negative frequency serves as a consistent
and powerful mathematical tool in our analysis of signals. In fact, the use
of negative frequency is mandatory when we represent real signals, such
as a sine or cosine wave, in complex notation.

The difficulty in grasping the idea of negative frequency may be, for
some, similar to the consternation felt in the parlors of mathematicians
in the Middle Ages when they first encountered negative numbers.
Until the thirteenth century, negative numbers were considered fictitious
because numbers were normally used for counting and measuring. So
up to that time, negative numbers just didn’t make sense [1,2]. In those
days, it was valid to ask, “How can you hold something in your hand
that is less than nothing?” The idea of subtracting six from four must
have seemed meaningless. Math historians suggest that negative num-

¥ That's because complex sinusoids are solutions to the second-order linear differential equa-
tions used to describe so much of nature.

458

Complex Signals and Negative Frequency

bers were first analyzed in Italy. As the story goes, around the year 1200
the Italian mathematician Leonardo da Pisa (known as Fibonacci) was,
working on a financial problem whose only valid solution involved a
negative number. Undaunted, Leo wrote, “This problem, I have shown
to be insoluble unless it is conceded that the first man had a debt.” Thus
negative numbers arrived on the mathematics scene, never again to be
disregarded.

Modern men and women can now appreciate that negative numbers
have a direction associated with them. The direction is backward from
zero in the context that positive numbers point forward from zero. For
example, negative numbers can represent temperatures measured in
degrees below zero, minutes before the present if the present is consid-
ered as zero time, or money we owe the tax collector when our income
is considered positive dollars. So the notion of negative quantities is
perfectly valid if we just define it properly. As comfortable as we now
are with negative numbers, negative frequency remains a troublesome
and controversial concept for many engineers [1,2]. This author once

cos(2nff) sin(2rff
1
3 .
Time
(@) o (]) v » >~
) "
3n/2 (@)

0 1 2 3

cos(-2nf) sin(~2nf)

-1

Figure C-1 Positive and negative frequency sinusoids: (a) sine and cosine
waves at a positive radian frequency (2zft); (b) sine and cosine
waves whose arguments are a negative frequency (-2rf).

459

460

Appendix C: Complex Signais and Negative Frequency

encountered a paper in a technical journal which stated: “since negative
frequencies cannot exist—.” Well, like negative numbers, negative fre-
quency is a perfectly valid concept as long as we define it properly rel-
ative to what we're used to thinking of as positive frequency. In radians,
a negative frequency sinusoid is merely one whose angular argument is
negative, as shown in Figure C-1(b).t

(O | Developmént of Imaginary Numbers

Before we go further in our discussion of negative frequency by way of
complex notation, we must first take a deep breath and enter the Twilight
Zone of the “j” operator and imaginary numbers. You've seen the defini-
tion j = 4/-1 before. Stated in words, we say that j represents a number
which, when multiplied by itself, results in a negative one. Well, this def-
inition causes initial difficulty for the beginner because we know that any
number multiplied by itself always results in a positive number.
(Unfortunately digital signal processing textbooks typically define j and,
then, with justified haste, swiftly carry on with all the ways that the j
operator can be used to analyze sinusoidal signals. Readers soon forget
about the question: What does j = /-1 actually mean? Well, v~1 had
been on the mathematical scene for some time but wasn’t taken seriously
until it had to be used in the sixteenth century to solve cubic equations
[3, 4]. Mathematicians reluctantly began to accept the abstract concept of
V-1 without having to visualize it, as long as its mathematical properties
were consistent with the arithmetic of normal real numbers. It was Euler’s
introduction of the complex plane, used to solve second-order differential
equations, that further legitimized the notion of Y~1 to Europe’s mathe-
maticians in the eighteenth century.’ Euler showed how complex num-
bers using the /-1 operator had a clean, consistent relationship to the
well-known trigonometric functions of sines and cosines [3].

We can get more comfortable with the complex plane representation
of imaginary numbers by examining the mathematical properties of the
j = ~/-1 operator as shown in Figure C-2(a). Multiplying any number on

t Shortly, we'll represent negative frequency sinusoids graphically using phasor notation
and see that the negative frequency phasors are merely rotating in the direction opposite
from an arbitrary positive reference direction.

t Leonhard Euler, born in Switzerland in 1707, is considered by many historians as the
world'’s greatest mathematician. By the way, in case you don’t speak German, the name Euler
is pronounced as “oiler.”

Development of Imaginary Numbers

Imagina
i

R

-8 R the +a line
8 a)?lgl the +/b line
a Real
Je axis

(a) (b)

Figure C-2 Numb_ers on the complex plane: (a) the 90° rotations when a number Is
mulﬂphed by J; (b) a complex number, ¢ = a+jb, having both real and
Imaginary parts on the complex plane.

the real axis by j results in an imaginary product that lies on the imagi-
nary axis. The example in Figure C-2(a) shows that if +8 is represented
by .the dot lying on the positive real axis, multiplying +8 by j results in
an imaginary number, +/8, whose position has been rotated 90° counter-
clockwise from +8, putting it on the positive imaginary axis. Similarly,
multiplying +78 by j results in another 90° rotation yielding the -8 lying,
on the negative real axis because =-1. Multiplying -8 by j results in a
further 90° rotation giving the 8 lying on the negative imaginary axis.
Whenever any number represented by a dot is multiplied by j, the result
1s a counterclockwise rotation of 90° on the complex plane. (Conversely,
multiplication by j results in a clockwise rotation of -90° on the com-
plex plane.) The complex plane enables us to represent complex num-
bers having both real and imaginary parts. For example in Figure
C-2(b), the complex number ¢ = a+jb is a point lying on the complex
pléne on neither the real nor the imaginary axis. We locate point ¢ by
going +a units along the real axis and up +b units along the imaginary
axis. (Just to refresh the reader’s memory, Appendix A provides a dis-
cussion of the arithmetic of complex numbers.) We can, if we care to
think of all numbers as being complex. Thus, real numbers are comple>2
numbers with no imaginary part, and imaginary numbers are complex
numbers with no real part.

. Let’s pause for a moment here to catch our breath. Don't worry if the
1c.1eas of imaginary numbers and the complex plane seem a little myste-
rious. It’s that way for everyone at first—you’ll get comfortable with

461

462

Appendix C: Complex Signais and Negative Frequency

them the more you use them. (Remember, the V-1 operator puzzled
Europe’s heavyweight mathematicians for hundreds of years.) Not only
is the mathematics of complex numbers a bit strange at first, but the ter-
minology is unfortunate. Although the term imaginary is an unfortunate
one to use, the term complex is downright weird. When first encountered,
the phrase complex numbers makes one think “complicated numbers.”
This is regrettable because the concept of complex numbers is not really
all that complicated.

C.2 Representing Real Signals Using
Complex Phasors

OK, now we can turn our attention back to the original discussion of
understanding negative frequency when using the mathematics of com-
plex numbers. We start by representing a real sinusoid in the context of
the complex plane. To see how this is done, consider the waveform in
Figure C-3. Think of a cosine wave defined by 2cos(w?) oscillating back
and forth on the real axis as time passes. (Here the ® term is frequency in
radians/s, and it corresponds to a frequency of 2af cycles/s where fis a
single cycle/s or 1 Hz.) Now, consider two complex phasors rotating in
opposite directions about the time axis, one rotating counterclockwise
with a positive angular change ot and the other phasor rotating with a
negative angle, —wt. The angles, of course, change as a function of time
making the e/ and ¢7® phasors rotate. Figure C-4 attempts to show, as
time passes, one complete rotation of the e/®* phasor, for example. That
phasor’s tip follows a corkscrew path spiraling along and centered about
the time axis.

Let’s show how the cosine wave is the phasor sum of the two complex
phasors. We can visualize the phasors’ ®t and -0t angles better if we ori-
ent the three-dimensional view in Figure C-3 so that we're looking right
straight down the time axis in the negative time direction as shown in
Figure C-5. The time arrow is coming straight out of the page toward the
reader and the two complex phasors, frozen in time, are represented by
the bold arrows. Figure C-5 looks reasonably simple, but it contains a
wealth of information. Let’s first consider the e/’ phasor. Using the real
and imaginary axis, we can see why the ¢/®! phasor is defined by

* The brilliant American engineer Charles P. Steinmetz, who pioneered the use of real and
imaginary numbers in electrical circuit analysis in the early twentieth century, refrained
from using the term complex numbers—he called them “general numbers.”

Representing Real Signals Using Compiex Phasors

Euler’s equation: —» efot = cos(wt) + jsin(wt) . (C-1)
Nar.ned in his honor, Eq. (C-1) is now called Euler’s
defines the position of the tip of the /!
:{:S(O-) t) term in Eq (C-1) is the phasor’s component along the real axis, and
ItIe sm(co't) term is the phasor’s component along the imaginary, or j, axis.
It’s very lmpc.>rt'ant to realize that the phasor’s component projected on the
Imaginary axis is the real number sin(®¢), and rof Jsin(w#). The +j in the sec-
ond term of Eq. (C-1) merely means that the phasor has a component along

equation. This expression
arrow in the complex plane. The

Imaginary
axis (/)

Real
axis

t=0 2cos(wf)

Time

e—jot

Figure C-3 Cosine fepresented by two rotating complex phasors.

A Imaginary axis (f) ‘I

Real axis

L

Figure C-4 The rotation of the e/et phasor about the time axis.

463

Appendix C: Complex Signals and Negative Frequency

Imaginary
f axis (/)
¢— cos(of) 7
sin(wt) iof
Tip of the e o
time arrow
Real axis

—iot
‘— cos(mo&

Figure C-5 Complex phasors representing a cosine wave in the complex
plane.

the positive j axis whose magnitude is sin(wt). Likewise, the e.'"‘” Phasor has
a component along the negative j axis whose magnitude is sin(wt). We
describe the ¢7®* phasor with the expression

Another version of Euler’s equation: - e‘j“" = cos(® t) - jsin(co t) A (C-2)

The positive angle @t is (arbitrarily) defined as the counterclockwise
angle between the real axis and the phasor. As time ¢ increases, etngle ot
increases and the ¢/®* phasor rotates counterclockwise. The e7*/ phasor
rotates in the clockwise direction at the same angular frequency as the e/®*
phasor; that is, when ot is zero radians, both phasprs are at C"xOO o’clock,
along the real axis. As times passes, when the e/ phasox: is at twc?lve
o’clock, the e 7! phasor is at six o’clock. As the phasors continue rotating,
they pass each other, again, exactly at nine o’clock. .

Let’s look further and see how the sum of the ¢/** and ¢7** phasors rep-
resents a real cosine wave. In Figure C-6(a), the phasor angle is ot =m / 4 (45
degrees). The bold arrow representing the real cosine wave, 2cos(® f), is the
phasor sum of the ¢/* and ¢ 7' phasors. Notice how the cosine wave’s arrow

t Other versions of Euler’s equation, which we can derive from Egs. (C-1) and (C-2), are
singot) = (¢ — ¢7*)/2f, and cos(wt) = (¢/*f + 7Y /2.

Representing Real Signals Using Complex Phasors

\maginary Imaginary ’
s) b petyid
™~ cos(m7f<— cos(w) > * \ :
o ot efot / \ ot l o
U cafor D = or=n 2 N
(w0
~f Real Real cos(wh Real
axis axis -t axls
o3 oot o ot
(a) (b (c)
|

Figure C-6 Complex phasors representing a cosine wave: (@) when ot = n/4;
(b) when et = 1/2; (¢) when ot = 3r/4.

tip is along the real axis. At a later time, when wf = 7/2 radians, the e/®* pha-
sor has rotated counterclockwise, the e 7¢ phasor has rotated clockwise, and
the 2cos(w¢t) wave’s arrow tip has moved to the left and sits exactly at the
zero point on the real axis as shown in Figure C-6(b). We know this is correct
because 2cos(n/2) = 0. As time passes and @+ = 3n/4 radians, the ¢/ and
e7®* phasors and their resulting 2cos(w) phasor are shown in Figure C-6(c),
which is real and negative. As the complex phasors continue rotating, the
2cos(wt) phasor tip merely slides back and forth always remaining on the
real axis. Figure C-3 attempts to illustrate this by showing the 2cos(w#) wave
always lying in the plane of the real axis in our three-dimensional depiction.

Thinking about these phasors, it’s clear, now, why the cosine wave can
be equated to the sum of two complex phasors by

joor —jot
cos(an) = =X — (C-3)

which is half the sum of Egs. (C-1) and (C-2). (The example in Figure C-3
used a cosine wave with a peak amplitude of 2 merely to avoid cluttering
Figures C-3 through C-6 with a denominator of 2 below each of the ¢/®!
and e7°* terms.) If Eq. (C-3) describes a real cosine wave in the complex
plane, how do we represent a real sinewave? Well, we can combine Egs.
(C-1) and (C-2) and solve for sin(w?) to get the following standard expres-
sion for a sinewave in complex notation:

jot __ —jot
sin(ot) = ¢ ,e .
g (C-4)

465

Appendix C: Complex Signals and Negative Frequency

To investigate the meaning of this expression, we can multi'ply both
sides of Eq. (C-4) by 2 to get the following alternate expression for a
sinewave in terms of complex exponentials:

2sin(et) = Gl i (e — ety . (©5)
j

Equation (C-5) looks a little strange, doesn’t it? It states t}:at a11 real
sinewave is equal to —j times the sum of two cc?mplex numbers! Well, we
can decipher Eq. (C-5) by graphically illustrating the c?n}plex e)fponflr:-
tials as phasors just as we did in Figure C-5. A d.ep@tlon of just Te
(e/®t - ¢7°%) factor from Eq. (C-5) is the phasors in Flgurej C-7(a). To
account for the —j term in Eq. (C-5), we rotate the phagorz 1tn Fl_;gut;ltre C-7(a)
by ®/2, or 90°,in the clockwise direction. So the full —j(e/** —e7*") expr:-
sion on the right side of Eq. (C-5) is shown in Figure C-7(b). Because ke
-e7®! phasor rotates clockwise and the &/*f phaéor rotates .counterclocai
wise, their phasor sum representing 2sin(w¢) will glways %1e on the ez
axis. We know this is true because the 2sin(wt) sinewave in Eq. (C-5) is
—Ilike a cosine wave, it has no imaginary part.
rea"i"o belabor this point a bit further, consider Figure C'-8. Whe:n the angl‘e
ot =0, both the je7° and —je/*! phasors lie on the imaginary axis, 'and'thelr
phasor sum sits exactly at the zero point of both axes, as shown' in Flg;.‘xre
C-8(a). We know this is correct because 2sin(0) = 0. At a later .tljl‘nt:e when
ot = n/4 radians, the je7®* phasor has rotated clockwise, the —j¢/** phasor

—— ‘ -
na
Imaginary * amXiasg(l i)ry
; axis (/) ‘
\e-mt o Jot - —eH jgfot
ot - e -—l
ot Real : o
) axis -ot] of \ ¢ iof
o—jat et -j-eRl=-
@ (b)

: t —Joty,
Figure C-7 Complex phasors: (a) phasor representation of (e/“’ - e]i) }) (b) phasor
representation of ~j(e/®! - 1), or 2singw) = -je 2! + jo ¢!,

Representing Real Signals Using Negative Frequencies

4 lmpg(im;ry ’ L’:;Q(if}‘;fy 4 Im.ag(ir@:;\ry —’
; axis (f : axis (f
sin{ot) 7‘“ sin(ot) —>z /

J8H0= jeos(0) + sin(0) ja ot ~jefot
=j1

2sin(ot) 2sin(ct) -R:al
axis

ot=0 Real axis

—jefot . ~jcos(0) + sin0)

) of ~jgot
==

=4 \

(a) (b) (c)

Figure C-8 Complex phasors representing a 2sin@?) sinewave: (a) when ot = (X (o))}
when ot = n/4; (¢) when ot = 3r/4.

has rotated counterclockwise, and the 2sin{wt) wave’s arrow tip has
moved to the right to a positive point on the real axis, as shown in Figure
C-8(b). As time passes and wt = 3n/4 radians, the —je/®! phasor is now in
the northeast quadrant, and je7®* phasor is directed southeast. They and
their 2sin(w¢) phasor sum are shown in Figure C-8(c). As the complex
phasors continue rotating, the 2sin(wt) phasor oscillates back and forth,
always remaining on the real axis.

To keep the reader’s mind from spinning like our complex phasors,
please realize that the sole purpose of Figures C-6 through C-8 is to vali-

date the complex expressions of the cosine and sinewave given in Egs.
(C-3) and (C-4).

C.3 Representing Real Signals Using
Negative Frequencies

OK, let’s keep in mind one of the goals of this discussion—why the concept
of negative frequency is valid when real signals are represented in complex
notation. We can do this by comparing the relationship between a cos{a,t)
wave and a sin(w t) wave, using Eqgs. (C-3) and (C-4) and combining them
graphically on a three-dimensional complex frequency axis as shown in
Figure C-9. If we say that the angular frequency is o, radians/second = 2nf,
Hz, the time-varying composite angle is @t radians = 2rf 't cycles at time f.
Look at Figure C9 very carefully—it's a snapshot of the complex phasors
that comprise a real cosine wave (solid arrows) from Eq. (C-3) and a real
sinewave (shaded arrows) from Eq. (C-4) when time equals zero, or wt=0

46i

468

Appendix C: Cofnplex Signals and Negative Frequency

Imaginary | Real
axis (/) axis je'j")" I t=0, 80 wofm 0

Freq

—jej“’° fo

f the

C-9 Relationship of the complex representations o

owe cos(o) =?ej“’°'+ e7%y/2 (solid arrows) and the
dn(w P = (619" - e7@eyjo = (_jeMe! 4 jg !y 12 (shaded
orrovss), when wt=0.

This figure shows that, when we use complex notation, e/t and ¢7* are the
fundamental constituents of a sinusoid, not sin(g) f) or cos(w?) because both
sin(wt) and cos(wt) are made up of e/** and' ¢7®* components. On fne frz—
quency axis, the notion of negative frequency is seen as those Rhasors ocat'e
at-o radians on the frequency axis. (If we were to take the discrete Fourier
transzorm of a cosine wave and plot the complex results, we"d get exactly
those bold phasors in Figure C-9. Likewise, the discrete Foul'*ler transform
of a sinewave results in the shaded phasors in Figure C-9.) lflgure.: C-.9 also
reiterates the fact that a cosine wave is merely a sinevs./ave shifted in time. If
we let the phasors in Figure C-9 rotate 90° (r/2 radlans,‘ ora qu'artf;r gf 3
cycle), they’re oriented as shown in Figure C-10. So t}'le smewalve ; shade
phasors, in Figure C-10, are oriented exactly as the cosine wave'sp asorsth in
Figure C-9. The relationship between Figures C-9 and C-10 illustrates the
two following trigonometric identities:

sin(g) = cos(g - 1/2) , (C-6)

and

cos() = -sin(e - /2) . (C-7)

Representing Real Signals Using Negative Frequencies

Imaginary

axis (/) Real

axis t=n20, = 1/4f,, or 0 t=mn2

et
Y gl

Freq

Figure C-10 Reiationship of the complex representations of cos(w, 1) (solid arrows)
and sin(w,t) (shaded arrows) when ot =1/2.

Putting Egs. (C-6) and (C-7) into words relative to the two figures above,
we can say that the sine phasors in Figure C-10 are equal to the cosine
phasors in Figure C-9, and the cosine phasors in Figure C-10 are equal to
the negative of the sine phasors in Figure C-9. This tells us that a sinu-
soidal wave can be described as a sinewave or a cosine wave depending
on the time we start looking at it; that is, a delay in the time domain man-
ifests itself as a phase shift in the frequency domain. This effect is very
important in digital signal processing, so remember it.

If we use the same axis as before, we can illustrate a sinusoidal wave
at an arbitrary phase angle g, Acos(a,t + @), as shown by the bold pha-
sors in Figure C-11(a). The magnitude of the two bold phasors is, of
course, A/2, so they’ll sum to A when they’re aligned along the real axis.
Figure C-11(a) shows that the phasors are the phasor sum of their real and
imaginary parts. Figure C-11(b) shows the real and imaginary compo-
nents aligned with the real and imaginary axis. Why bother showing the
real and imaginary parts as in Figure C-11(b)? Because this signal repre-
sentation leads us to the graphical form used so often in the digital signal
processing literature of quadrature signal processing.

Think for a moment of a real signal comprising seven sinusoids over a
bandwidth B centered about a carrier frequency of @,. We could represent
that signal’s spectrum by the bold phasors in the complex frequency
domain of Figure C-12(a). If we had another signal with an unlimited
number of sinusoids over the bandwidth B, we could forego drawing

¥ For additional examples of this shifting property, check out Section 3.6,

470

Appendix C: Complex Signals and Negative Frequency

Imaginary
axis (/)

Imaginary
axis (/)

Real

> Real
axis

axis

Freq

@ (®)

Figure C-11 Two depictions of the complex representation of Acos(w,t + @)
indicated by the bold phasors. The thin solid arrows are the real parts,
and the thin shaded arrows are the imaginary parts.

individual phasors and merely show the spectrum by joining the tips of
the phasors with the bold lines in Figure C-12(b). This signal has a con-
tinuous spectral envelope over the bandwidth B, and that’s the typical
signal spectrum representation used in the literature of quadrature pro-
cessing. Figure C-12(b) shows the projection of the signal’s constant-
amplitude rectangular spectrum on both the real and the imaginary axis.

In quadrature processing, by convention, the real part of the spec-
trum is called the in-phase component, and the imaginary part of the
spectrum is called the quadrature-phase component. The signal in Figure
C-12(b) is real, and, in the time domain, it can be represented digitally
by a series of amplitude values that have nonzero real parts and zero-
valued imaginary parts. We’re not forced to use complex notation to rep-
resent it in the time domain—the signal is real. (If it was a continuous
physical signal, it could be transmitted over a single conductor.) Real
signals always have positive and negative frequency spectral compo-
nents. For any real signal, the positive and negative frequency compo-
nents of its in-phase (real) spectrum always have even symmetry about
the zero frequency point; that is, the in-phase part’s positive and nega-
tive frequency components are mirror images of each other. Conversely,
the positive and negative frequency components of its quadrature
(imaginary) spectrum are always complex conjugates of each other [5].
This means that the phase angle of any given positive quadrature fre-
quency component is the negative of the phase angle of the correspond-

Complex Signais and Quadrature Mixing

Imaginary

axis (/)
Real
axis

(a)

imaginary
axis (f) = Original signal Freq

In-phase (real) part
—~ Quadrature phase (imaginary) part

Real
axis

(b)

imaginary

axis { f)
‘l/ Real Freq
axis

(©

Figure C-12 Quadrature representation of bandpass signals: (@) real signal
containing seven sinusoids over bandwidth B; (b) real signal
containing an infinite number of sinusoids over bandwidth B;
(c) complex signal of bandwidth B.

ing quadrature negative frequency component, as shown by the dashed
arrows in Figure C-12(b). This is the invariant nature of real signals
when their spectra are represented using complex notation.

C.4 Complex Signals and Quadrature Mixing

Complex signals, on the other hand, are a different story. Figure C-12(c)
shows the spectrum of an arbitrary complex signal of bandwidth B. In

472

Appendix C: Complex Signals and Negative Frequency

the time domain, it can only be represented by amplitude values that
have nonzero real and nonzero imaginary parts. We're forced to use
complex notation to represent it in the time domain—the signal is com-
plex. (As a continuous physical signal, a complex signal could only be
transmitted using two conductors.) Complex signals aren’t forced to
have the symmetric real and the conjugate symmetric imaginary spec-
tral components characteristic of real signals—complex signals can have
just positive (or just negative) frequency components, as shown in
Figure C-12(c).

We can summarize all that we've covered in this chapter by consider-
ing an interesting topic—the spectrum translation effects of quadrature
mixing [7]. Figure C-13(a) shows the triangular spectrum of an arbitrary
real signal centered about ®, radians/s. In quadrature mixing, we trans-
late the original signal’s spectrum down to the zero frequency point
before digitization. This is typically done by multiplying the original sig-
nal by a cosine wave of @, radians/s, in the time domain, to get the in-
phase spectral component of the input signal as shown in Figure C-13(b).
It’s important to see that Figure C-13(b) is the product of Figure C-13(a)
and the solid cosine phasors in Figure C-9. The e7*/2 complex cosine
phasor from Figure C-9 translates both Figure C-13(a)’s original input sig-
nal spectral bandwidths toward the negative frequency direction, as
shown in Figure C-13(b). Likewise, the e/*!/2 complex cosine phasor
from Figure C-9 translates both original input signal spectral bandwidths
toward the positive frequency direction, also shown in Figure C-13(b).
Although not obvious in the figure, the magnitude in Figure C-13(b) is
half the magnitude of that in Figure C-13(a) because of the 1/2 scale fac-
tors in the cosine expressions in Eq. (C-3) and Figure C-9.

To get the quadrature-phase spectral components of our input signal,
we multiply the input signal by a sinewave of @, radians/s to get the
spectrum shown in Figure C-13(c). Again, Figure C-13(c) is the product of
Figure C-13(a) and the dashed sine phasors in Figure C-9. The je7®/2
dashed complex sine phasor from Figure C-9 translates both Figure C-
13(a)’s original input signal spectral bandwidths toward the negative fre-
quency direction, but aligned with the imaginary +j axis as shown in
Figure C-13(c). The —j¢'/2 dashed complex sine phasor from Figure C-9
translates both original input signal spectral bandwidths toward the pos-
itive frequency direction aligned with the imaginary -j axis, also shown in
Figure C-13(c). Figure C-13(d) shows both the in-phase and quadrature
spectral bands combined on the complex frequency plane axis. (Examples
of this quadrature mixing scheme are discussed in Sections 7.1 and 7.2.)

Complex Signals and Quaarature Mixing

Imaginary

axis (1) Real
axis

(a)

Imaginary

s (/) Real
axis B~
v Freq

(b)

_20)0
Imaginary
w' Real
axis +20,
©] Fred
—2a
Imaginary
eal
axis \ i
(@ \ﬁ Freq

-2,

+20¢

7
~d Freq

Figure C-13 Quadrature mixing of a real bandpass signal with even symmetric
spectral components: () original real input signal of bandwidth 8:
(b) in-phase spectral components of the input signal: (€) quadrature-
phase spectral components of the input signal; (d) combined in-
phase and quadrature-phase components.

Providing another example to demonstrate the frequency translation
that takes place in complex signal mixing, Figure C-14 shows the spectral
results of quadrature mixing when the input signal is real and has conju-
gate positive and negative frequency components. Section 10.1, with its dis-
cussion of digital mixing sequences, provides several practical examples of

473

474

Complex Signals and Quadrature Mixing

Imagina"ry
axis
@ 4
Imapingry
axis Freq
(b)
20,
lmagingw
axis
© -2
lmaginqry
axis
Fre
Freq

Figure C-14 Quadrature mixing of a real bandpass signal with complex conjugate
symmetric spectral components: (a) original real input signal of
bandwidth B; (b) in-phase spectral components of the input signal;
(¢) quadrature-phase spectral components of the input signal;

(d) combined In-phase and quadrature-phase components.

the spectral translation effects of quadrature mixing. That concludes our
introduction to complex signals and negative frequency. For further mater-
ial on these topics, the reader is encouraged to review reference [7], a terrific
series of papers detailing how complex signals and negative frequencies
relate to modern-day digital communications signals.

References

References

[1] Lewis, L.]., et al. Linear Systems Analysis, McGraw-Hill Inc., New York, 1969,
pp- 193.

[2] Schwartz, M. Information, Transmission, Modulation, and Noise, McGraw-Hill
Inc., New York, 1970, pp. 35.

{3] Struik, D. A Concise History of Mathematics, Dover Publications Inc., New
York, 1967, pp. 92.

[4] Bergamini, D. Mathematics, Life Science Library, Time Inc., New York, 1963, pp.
152.

[51 Hsu, H. Fourier Analysis, Simon and Schuster, New York, 1970, pp. 75.

[6] Chester, D. B., and Phillips, G. “Single Chip Digital Down Converter
Simplifies RF DSP Applications,” RF Design, November 1992.

[71 Boutin, N., “Complex Signals,” RF Design, December 1989.

475

APPENDIX D

Mean, Variance, and
Standard Deviation

In our studies, we're often forced to consider noise functions. These are
descriptions of noise signals that we cannot explicitly describe with a
time-domain equation. Noise functions can be quantified, however, in a
worthwhile way using the statistical measures of mean, variance, and
standard deviation. Although we only touch, here, on the very broad and
important field of statistics, we will describe why, how, and when to use
these statistical indicators, so that we can add them to our collection of
signal analysis tools. First we’'ll determine how to calculate these statisti-
cal values for a series of discrete data samples, cover an example using a
continuous analytical function, and conclude this appendix with a dis-
cussion of the probability density functions of several random variables
that are common in the field of digital signal processing. So let’s proceec.
by sticking our toes in the chilly waters of the mathematics of statistics to
obtain a few definitions.

D.1 Statistical Measures
Consider a continuous sinusoid having a frequency of f, Hz with a peak
amplitude of A, expressed by the equation

x(t) = Apsin(anat) . (D-1)

Equation (D-1) completely specifies x(t}—that is, we can determine x(t)'s
exact value at any given instant. For example, when time t = 1/4f,, we know
that x(t)’s amplitude will be A and, at the later time ¢ = 1/2f,, x()’s ampli-
tude will be zero. On the other hand, we have no definite way to express

476

Statistical Measures

the successive values of a random function or of random noise.! There’s no
equation like Eq. (D-1) available to predict future noise-amplitude values
for example. (That's why they call it random noise.) Statisticians have, how-
ever, developed powerful mathematical tools to characterize several prop-
erties of random functions. The most important of these properties have
been given the names mean, variance, and standard deviation.
Mathematically, the mean, or average, of N separate values of a sequence

x, denoted ¥,y is defined as [1]

1 ix(n)= x(1) + %(2) + x(3) +... + x(N)

Xaye = —
ave N N

(D-2)

n=1

Equation (D-2), already familiar to most people, merely states that the
average of a sequence of N numbers is the sum of those numbers divided
by N. Graphically, the average can be depicted as that value about which
a series of sample values cluster, or congregate, as shown in Figure D-1. If
the eight values depicted by the dots in Figure D-1 represent some mea-
sured quantity and we applied those values to Eq. (D-2), the average of the
series is 5.17, as shown by the dotted line.

A}x(n)
6.0
Xoo=5.17 = "
-1 \

551 \ .

50T .

451

40+

35 } f } } t
1 2 3 4 5 6 7 g 7

.v_

Figure D-1 Average of a sequence of eight values.

* We define random noise to be unwanted, unpredictable, disturbances contaminating a sig-
nal or a data sequence of interest.

477

Appendix D: Mean, Varlance, and Standard Deviation

Now that we've defined average, another key definition is the variance of a
sequence, 0 2, defined as

o2 1
= N—zl x(1) = X,y]2

_ () -2y P H1(2) - 2 P+ (3) = Xy P+ + [H(N) = 2, [
N

. (D-3)

Sometimes, in the literature, we'll see o2 defined with a 1/(N-1) factor
before the summation instead of the 1/N factor in Eq. (D-3). There are
subtle statistical reasons why the 1/(N-1) factor sometimes gives more
accurate results [2]. However, when N is greater than, say 20, as it will be
for our purposes, the difference between the two factors will have no
practical significance.

Variance is a very important concept because it’s the yardstick with
which we measure, for example, the effect of quantization errors and the
usefulness of signal-averaging algorithms. It gives us an idea how the
aggregate values in a sequence fluctuate about the sequence’s average
and provides us with a well-defined quantitative measure of those fluc-
tuations. (Because the positive square root of the variance, the standard
deviation, is typically denoted as & in the literature, we’ll use the conven-
tional notation of o2 for the variance.) Equation (D-3) looks a bit perplex-
ing if you haven’t seen it before. Its meaning becomes clear if we examine
it carefully. The x(1) — x, _ value in the bracket, for example, is the differ-
ence between the x(1) value and the sequence average x, . For any
sequence value x(n), the x(n) - x,,, difference, which we denote as A(n),
can be either positive or negative, as shown in Figure D-2. Specifically, the
differences A(1), A(2), A(3), and A(8) are negative because their corre-
sponding sequence values are below the sequence average shown by the
dotted line. If we replace the x(n) - x, , difference terms in Eq. (D-3) with
A(n) terms, the variance can be expressed as

N
2= -;72_; [A(M)]?, where A(n) = x(n) - x,, . (D-4)

The reader might wonder why the squares of the differences are
summed, instead of just the differences themselves. If we just add the dif-
ferences, some of the negative A(n)s will cancel some of the positive A(n)s

Statistical Measures
x(n)
6.0
A -y A
5.5 a4) am
Yoo vV eV O Y o
5.0 L - A N
45 } -A@3)
Xave = 5.17
40 .
3.5+ } t } + t } i~
1 2 3 4 5 6 7 g "

Figure D-2 Difference values A(n) of the sequence in Figure D-1.

resulting in a sum that may be too small. For example, if we add the A(n)s
in Figure D-2, the positive A(6) and A(7) values and the negative A(3)
value will just about cancel each other out and we don’t want that.
Because we need an unsigned measure of each difference, we use the dif-
ference-squared terms as indicated by Eq. (D-4). In that way, individual
A(n) difference terms will contribute to the overall variance regardless of
whether the difference is positive or negative. Plugging the A(n) values
from the example sequence in Figure D-2 into Eq. (D-4), we get a variance
value of 0.34. Another useful measure of a signal sequence is the square
root of the variance known as the standard deviation. Taking the square
root of Eq. (D-3) to get the standard deviation o,

o=+o? = J 2[x<n> Xovol? (D-5)

So far, we have three measurements to use in evaluating a sequence
of values: the average x, , the variance 62, and the standard deviation
o. Where x, . indicates about what constant level the individual
sequence values vary, 62 is a measure of the magnitude of the noise fluc-
tuations about the average x,,,. If the sequence represents a series of
random signal samples, we can say that X,, Specifies the average, or
constant, value of the signal. The variance ¢ 2 is the magnitude squared,
or power, of the fluctuating component of the signal. The standard devi-
ation, then, is an indication of the magnitude of the fluctuating compo-
nent of the signal.

479

480

Appendix D: Mean, Variance, and Standard Deviation

D.2 Standard Deviation, or RMS, of a Continuous
Sinewave

For sinewaves, electrical engineers have taken the square root of Eq.
(D-3), with x, , = 0, and defined a useful parameter, called the rms value,
that's equal to the standard deviation. For discrete samples, that parame-
ter, x ., is defined as

x(n) 2 (D-6)

i
Xms = W

u MZ

The x__ in Eq. (D-6), obtained by setting x, . = 0 in Eq. (D-5), is the square
root of the mean (average) of the squares of the sequence x(n). For a con-
tinuous sinusoid x(t) = Apsin(21tft) = Apsin(co t) whose average value is

zero, X(t), e 15 X(B) s sinewave defined as

2n

- [14, sin()Pd(s)

x(t)rms-sinewave =

2
Z—Pj [1- cos(a¥)] d(wf)

=—r£ . (D-7)

This x(t) . sinewave = Ap /N2 expression is a lot easier to use for calculating
average power dissipation in circuit elements than taking the integral of
more complicated expressions for instantaneous power dissipation. The
variance of a sinewave is, of course, the square of Eq. (D-7), or Apz/ 2.
We've provided the equations for the mean (average) and variance of a
sequence of discrete values, introduced an expression for the standard

The Mean and Variance of Random Functions

deviation or rms of a sequence, and given an expression for the rms of a
continuous sinewave. The next question is “How can we characterize ran-
dom functions for which there are no equations to predict their values and
we have no discrete sample values with which to work?” The answer is
that we must use probability density functions.

D.3 The Mean and Variance of Random Functions

To determine the mean or variance of a random function, we use what’s
called the probability density function. The probability density function
(PDF) is a measure of the likelihood of a particular value occurring in
some function. We can explain this concept with simple examples of flip-
ping a coin or throwing dice as illustrated in Figure D-3(a) and (b). The
result of flipping a coin can only be one of two possibilities: heads or tails.
Figure D-3(a) indicates this PDF and shows that the probability (likeli-
hood) is equal to one-half for both heads and tails. That is, we have an
equal chance that the coin side facing up will be heads or tails. The sum
of those two probability values is one, meaning that there’s a 100% prob-
ability that either a head or a tail will occur.

Figure D-3(b) shows the probability of a particular sum of the upper
faces when we throw a pair of dice. This probability function is not uni-
form because, for example, we're six times more likely to have the die
faces add to seven than add to two (snake eyes). We can say that after toss-
ing the dice a large number of times, we should expect that 6/36 = 16.7
percent of those tosses would result in sevens, and 1/36 = 2.8 percent of
the time we’ll get snake eyes. The sum of those eleven probability values

Coin face PDF A Sum of dice PDF Order of birth POF
12 88 — 13
Ny ’
% . R
- 2/38 4 - N SR N O ,// N
Y N ’ /] - NN A NN
- L o - hY -
mi 2345678 8101112 gMboy girl,
\ Coin Die then then then Cionder
Heads Tails face face boy gn gt order

count

(@) (b} (©)

Figure D-3 Simple probability density functions: (a) the probability of fipping a
single coin; (b) the probability of a particutar sum of the upper
faces of two die; (c) the probabillity of the order of birth of the girl
and her sibling.

481

482

Appendix D: Mean, Variance, and Standard Deviation

in Figure D-3(b) is also one, telling us that this PDF accounts for all (100%)
of the possible outcomes of throwing the dice.

The fact that PDFs must account for all possible results is emphasized
in an interesting way in Figure D-3(c). If a woman says, “Of my two chil-
dren, one is a girl. What's the probability that she has a sister?” Be careful
now-—curiously enough, the answer to this controversial question is not a
50-50 chance. There are more possibilities to consider than just the girl
having a brother or a sister. We can think of all the possible combinations
of birth order of two children such that one child is a girl. Because we
don’t know the gender of the first-born child, there are three gender order
possibilities: girl, then boy; boy, then girl; and girl, then girl as shown in
Figure D-3(c). So the possibility of the daughter having a sister is 1/3
instead of 1/2! (Believe it.) Again, the sum of those three 1/3rd probabil-
ity values is one.

Two important features of PDFs are illustrated by the examples in
Figure D-3: PDFs are always positive, and the areas under their curves
must be equal to unity. The very concept of PDFs make them a positive
likelihood that a particular result will occur, and the fact that some result
must occur is equivalent to saying that there’s a probability of one (100%
chance) that we’ll have a result. For continuous probability density func-
tions, p(f), we indicate these two characteristics by

PDF values are never negative: — P(f) 20, (D-8)
and
The sum of all the PDF values is one: — Jp(f)df: 1. (D-S')

In Section D.1 we illustrated how to calculate the average (mean) and
variance of discrete samples. We can also determine these statistical mea-
sures for a random function if we know the PDF of the function. Using j,
to denote the average of a random function of f, then, Hy is defined as

ne= [£p(Hdf, (D-9)

and the variance of fis defined as [3]

e]

The Mean and Variance of Random Functions

Continous p(f)
1 - 1
b-(-a)~ b+a
-a 0 b f
L

Figure D-4 Continuous, uniform probability density function.

of = ,[(f‘”f)z'P(ﬂdf=Jf2-p(f)df—u}. (D-10)

In digital signal processing, we'll encounter continuous probability
density functions that are uniform in value similar to the examples in
Figure D-3. In these cases, it's easy to use Eqgs. (D-9) and (D-10) to deter-
mine their average and variance. Figure D-4 illustrates a uniform, contin-
uous PDF indicating a random function whose values have an equal
probability of being anywhere in the range from -4 to b. From Eq. (D-8),
we know that the area under the curve must be unity (i.e., the probability
is 100% that the value will be somewhere under the curve). So the ampli-
tude of p(f) must be the area divided by the width, or p(f) = 1/(b + a). From
Eq. (D-9), the average of this p(f) is given by

M= If- p(Ndf = If-ﬁdf

2b+a) 2 (D-11)

which happens to be the midpoint in the range from -a to b. The variance
of the PDF in Figure D-4 is given by

———— |
!

484 Appendix D: Mean, Variance, and Standard Deviation References 485

_(-a?

oo b
oh= [ppar-uy = [1 g - O

37 2 2
=_1_.[f_] a1 s s (b-a)
b+a | 3 4 3(b+a) 4

_ (b+a)(b? —ab+a2)_b2 -2ab+a?

3b+a) 4 H H H -
Xave— 3G Xave ~ 20 Xave~ G Xave X.v.l+0 Xave + 20 Xave|+35 X
b% +2ab + a* (b—a)2 -— ::’Z:
= 5 =5 . (D-12) P a— 99.73%

Figure D-5 A normal PDF with mean = x_ . and standard deviation = o.
We use the results of Egs. (D-11) and (D-12) in Chapter 9 to analyze the o e ceviten=e

errors induced by quantization from analog-to-digital converters and the

effects of finite word lengths of hardware registers. References

. . . (1] Papoulis, A. Probability Random Variables, and Stochastic Processes, McGraw-Hill
D.4 The Normal Probability Density Function New York, 1965, pp. 266-68. e
A probability density function that’s so often encountered in nature [2] Miller, I, and Freund, J. Probability and Statistics for Engineers, 2nd Ed.,
deserves our attention. This function is so common that it’s actually called Prentice-Hall, Englewood Cliffs, New Jersey, 1977, pp. 118.
the normal probability density function.t This function, whose shape is [3] Bendat, J., and Piersol, A. Measurement and Analysis of Random Data, John
shown in Figure D-5, is important because random data having this dis- Wiley and Sons, New York, 1972, pp. 61.

tribution is very useful in testing both software algorithms and hardware
processors. The normal PDF is defined mathematically by

1 —(x-%,,.)% /207
x)= e ave . D-13
PO= (B-13)

The area under the curve equals one, and the percentages at the bottom of
Figure D-5 tell us that, for random functions having a normal distribution,
there’s a 68.27 percent chance that any particular value of x will differ
from the mean by <o. Likewise, 99.73 percent of all the x data values will
be within 3¢ of the mean Xover

t The normal probability density function is sometimes called the Gaussian function. A scheme
for generating data to fit this function is discussed in Section 10.12.

APPENDIX E

Decibels
(dB and dBm)

This appendix introduces the logarithmic function used to improve the
magnitude resolution of frequency-domain plots when we evaluate signal
spectrums, digital filter magnitude responses, and window function mag-
nitude responses. When we use a logarithmic function to plot signal lev-
els in the frequency domain, the vertical axis unit of measure is decibels.

E.1 Using Logqrithms to Determine Relative
Signal Power

In discussing decibels, it's interesting to see how this unit of measure
evolved. When comparing continuous (analog) signal levels, early spe-
cialists in electronic communications found it useful to define a measure
of the difference in powers of two signals. If that difference was treated as
the logarithm of a ratio of powers, it could be used as a simple additive
measure to determine the overall gain or loss of cascaded electronic cir-
cuits. The positive logarithms associated with system components having
gain could be added to the negative logarithms of those components hav-
ing loss to quickly determine the overall gain or loss of the system. With
this in mind, the difference between two signal power levels (P, and P,),
measured in bels, was defined as the base 10 logarithm of the ratio of
those powers, or

Power difference = logy, [%—] bels." (E-1)
2

t The dimensionless unit of measure bel was named in honor of Alexander Graham Bell.

486

Using Logarithms to Determine Relative Signal Power

The use of Eq. (E-1) led to another evolutionary step because the unit of
bel was soon found to be inconveniently large. For example, it was dis-
covered that the human ear could detect audio power level differences of
one-tenth of a bel. Measured power differences smaller than one bel were
so common that it led to the use of the decibel (bel/ 10), effectively mak-
ing the unit of bel obsolete. The decibel (dB), then, is a unit of measure of
the relative power difference of two signals defined as

Power difference =10- logm[%] dB . (E-2)
2

The logarithmic function 10-log,,, plotted in Figure E-1, doesn’t seem too
beneficial at first glance, but its application turns out to be very useful.
Notice the large change in the function’s value, when the power ratio
(P,/P,) is small, and the gradual change when the ratio is large. The effect
of this nonlinearity is to provide greater resolution when the ratio P,/P,
is small, giving us a good way to recognize very small differences in the
power levels of signal spectrums, digital filter responses, and window
function frequency responses.

Let’s demonstrate the utility of the logarithmic function’s variable res-
olution. First, remember that the power of any frequency-domain
sequence representing signal magnitude |X(m)| is proportional to

10-log(P, /Py), in dB

Figure E-1 Logarithmic decibel function of Eq. (E-2).

487

488

Appendix E: Declbels (dB and dBm)

|X(m)! squared. For convenience, the proportionality constant is
assumed to be one, so we say the power of | X(m)| is

discrete power spectrum of X(m) = | X(m) 2. (E-3)

Although equation (E-3) may not actually represent power (in watts) in
the classical sense, it's the squaring operation that's important here,
because it’s analogous to the traditional magnitude squaring operatio.n
used to determine the power of continuous signals. (Of course, if X(m? is
complex, we can calculate the power spectrum sequence using
IX(m)12 = X, (m)? + Ximag(m)z.) Taking 10 times the log of Eq. (E-3)
allows us to express a power spectrum sequence X,5(m) in dB as

X 45(m) = 10-log,, (1 X(m)|?) dB. (E-4)

Because log(x?) = log(x) + log(x) = 2log(x), we can eliminate the squaring
operation in Eq. (E-4) by doubling the factor of 10 and represent the
power spectrum sequence by the expression

X 5(m) = 20-log,o (1 X(m)1) dB. (E-5)

Without the need for the squaring operation, Eq. (E-5) is a more conve-
nient way, than Eq. (E-4), to calculate the X ;(m) power spectrum
sequence from the X(m) sequence.

Equations (E-4) and (E-5), then, are the expressions used to convert ‘a
linear magnitude axis to a logarithmic magnitude-squared, or power, axis
measured in dB. What we most often see in the literature are normalized
log magnitude spectral plots where each value of | X(m)12 is divided by
the first 1X(0) |2 power value (for m = 0) as

| X(m)
IX(0)]

| X(m) 12
normalized XdB(m)=10~log10[(m)]:20-10;;10()dB. (E-6)

| X(0) 12

The division by the | X(0)|? or | X(0)! value always forces the first.value in
the normalized log magnitude sequence X ;(m) equal to 0 dB." This n'fakes
it easy for us to compare multiple log magnitude spectral plots. To 111}15-
trate, let’s look at the frequency-domain representations of the Hanning

¥ That's because log,(1X(0) 1 /1X(0)1) = log, (1) = 0.

e

Using Logarithms to Determine Relative Signal Power

and triangular window functions. The magnitudes of those frequency-
domain functions are plotted on a linear scale in Figure E-2(a) where we've
arbitrarily assigned their peak values to be two. Comparing the two linear
scale magnitude sequences, Wng(m) and ngum(m), we can see some
minor differences between their magnitude values. If we’re interested in the
power associated with the two window functions, we square the two mag-
nitude functions and plot them on a linear scale as in Figure E-2(b). The dif-
ference between the two window function’s power sequences is impossible
to see above the frequency of, say, m = 8 in Figure E-2(b). Here’s where the
dB scale helps us out. If we plot the normalized log magnitude versions of
the two magnitude-squared sequences on a logarithmic dB scale using Eq.
(E-6), the difference between the two functions will become obvious.
Normalization, in the case of the Hanning window, amounts to calcu-
lating the log magnitude sequence normalized over | W. 0)1 as

Hanning

[Wiganni 2 | Wigrs [
Wi (m)=10- loglo[ﬁ%] =20-logy, [#w%J dB. (E-7)
Hanning Hanning

The normalized log magnitude sequences are plotted in Figure E-2(c). We
can now clearly see the difference in the magnitude-squared window
functions in Figure E-2(c) as compared to the linear plots in Figure E-2(b).
Notice how normalization forced the peak values for both log magnitude
functions in Figure E-2(c) to be zero dB. (The dots in Figure E-2 are con-
nected by lines to emphasize the sidelobe features of the two log magni-
tude sequences.)

Although we’ve shown the utility of dB plots using window function
frequency responses as examples, the dB scale is equally useful when
we're plotting signal-power spectrums or digital filter frequency
responses. We can further demonstrate the dB scale using a simple digital
filter example. Let’s say we're designing an 11-tap highpass FIR filter
whose coefficients are shown in Figure E-3(a). If the center coefficient h(5)
is -0.48, the filter’s frequency magnitude response | H ,4(m)| can be plot-
ted as the white dots on the linear scale in Figure E-3(b). Should we change
h(5) from —0.48 to ~0.5, the new frequency magnitude response | H 5(m) |
would be the black dots in Figure E-3(b). It's difficult to see much of a dif-
ference between I|H_,4(m)| and !H_s(m)| on a linear scale. If we used
Eq. (E-6) to calculate two normalized log magnitude sequences, they could
be plotted as shown in Figure E-3(c) where the filter sidelobe effects of
changing h(5) from —0.48 to -0.5 are now easy to see.

489

490

Appendix E: Declbels (dB and dBm)

©

Window function magnitude responses
on a linear scale

/ {Whianning (M)]

w, (m)l

triangular

8 10 12 14 16 18 20 22 24 26 28 30 Fretzue)ncy
m

Window function magnitude squared

4.0 responses on a linear scale
3.6
3.2
2.8 2
Im mjl
24 / Hannlng()

2
| wtn'angular (m)l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Frequency

_1 0 g
—-20 4
-30 1
-40 4
=50 -
604
-70 4

(m)

Window function magnitude squared responses
on a normalized logarithmic scale (dB)

) W (m), Hanning
\l A/

We(m), triangular
EN T
3 \ . N A/

u N
n m-S-g

L

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Ffeq(ue)“cy
mj

Figure E-2 Hanning (white squares) and triangular (black squares) window functions

In the frequency domain: (@) magnitude responses using a linear scale;
(b) magnitude-squared responses using a linear scale; (¢) log magnitude
responses using a normalized dB scale.

Using Logarithms to D

etermine Relative Signal Power 491

(a)

(b)

(©

FIR filter coefficients, h(k)
0.4
[] n
0.2
Y 3 8 .

f . 4 —t — -
022 1V " 3 4 ; 6 " 10 K
4.4{

[Jp—
-06 o4
FIR fitter magnitude responses
on a linear scale
1.2
9 S —— & Sl © 2 SR
I1H_g 5(m)l
0.8 - (black)
0 -4
044 . Fx
02 P H g 4gm)l wnite)
0 I::::T'I::llllljljlll|||‘

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3¢ Frequency

f FIR filter magnitude responses
on a logarithmic scale (dB)

10 IH_o5(m)l ol =

LA B B B B B S s ma a et

(m)

IH g 4g(m)))a

6 8 10 12 14 16 18 20 22 24 26 28 30 Frequency

VI U T W T S T T
et

(m)

Figure E-3 FIR filter magnitude responses: (@) FIR fitter time-domain coefficients:

(b) magnitude responses using a linear scale. |

H_.46(m | Is shown by

the white squares and | H,(m) 1 Is shown b
magnitude responses using the dB scale.

y the black squares; (c) log

492

Appendix E: Declbels (d8 and aBm)

E.2 Some Useful Decibel Numbers

If the reader finds him- or herself using dB scales on a regular basis, there
are a few constants worth committing to memory. A power difference of
3 dB corresponds to a power factor of 2; that is, if the magnitude-squared
ratio of two different frequency components is 2, then from Eq. (E-2),

power difference = 10-log;, (%) =10-log,4(2)=3.01=3dB. (E-8)

Likewise, if the magnitude-squared ratio of two different frequency com-
ponents is 1/2, then the relative power difference is -3 dB because

power difference =10- loglo(—;-) =10-log;(0.5)=-3.01=-3dB. (E-9)

Table E-1 lists several magnitude and power ratios vs. dB val‘ues worth
remembering. Keep in mind that decibels indicate only relative power

Table E-1 Some Useful Logarithmic Relationships

Magnitude-
Magnitude Squared Power Relative dB
Ratio (P,/P,) Ratio (approximate)
107172 10! -10 <P, is one-tenth P,
2t 22=1/4 -6 P, is one-fourth P,
2172 2l=1/2 -3 P, is one-half P,
20 =1 0 “P,isequal to P,
2172 21=2 3 P, is twice P,
21 R2=4 6 P, is four times P,
10172 10! = 10 10 P, is ten times P,
10! 102 = 100 20 P, 15 one hundred times P,
10372 108 = 1000 30 © P, is one thousand times P,

]

Absolute Power Using Decibels

relationships. For example, if we're told that signal A is 6 dB above signal
B, we know that the power of signal A is four times that of signal B, and
that the magnitude of signal A is twice the magnitude of signal B. We may
not know the absolute power of signals A and B in watts, but we do know
that the power ratio is P W/ Py =4

E.3 Absolute Power Using Decibels

Let’s discuss another use of decibels that the reader may encounter in the
literature. It's convenient for practitioners in the electronic communica-
tions field to measure continuous signal-power levels referenced to a spe-
cific absolute power level. In this way, they can speak of absolute power
levels in watts while taking advantage of the convenience of decibels. The
most common absolute power reference level used is the milliwatt. For
example, if P, in Eq. (E-2) is a reference power level of one milliwatt, then

P, in watts
1 milliwatt

absolute power of P, = 10- logm(%] =10- logw()dBm.(E-lO)
2

The dBm unit of measure in Eq. (E-10) is read as “dB relative to a milli-
watt.” Thus, if a continuous signal is specified as having a power of 3
dBm, we know that the signal’s absolute power level is 2 times one milli-
watt, or 2 milliwatts. Likewise, a ~10 dBm signal has an absolute power of
0.1 milliwatts.

The reader should take care and not inadvertently use dB and dBm
interchangeably. They mean very different things. Again, dB is a relative
power level relationship, and dBm is an absolute power level in milliwatts.

* Other absolute reference power levels can be used. People involved with high-power trans-
mitters sometimes use a single watt as their reference power level. Their unit of power using
decibels is the dBW, read as “dB relative to a watt.” In this case, for example, 3 dBW is equal
to a 2 watt power level.

493

%APPENDlX F=

Digital Filter Terminology

The first step in becoming familiar with digital filters is to learn to spea'k .the
language used in the filter business. Fortunately, the vocabulary of .dlgltal
filters corresponds very well with the mother tongue 'used for continuous
(analog) filters—so we don’t have to unlearn anythmg that we alr'eady
know. This appendix is an introduction to the terminology of digital filters.

Allpass filter — an IIR filter whose magnitude response is 1‘mity over its
entire frequency range, but whose phase response is variable. Al%pass
filters are typically appended in a cascade arrangement following a
standard IIR filter, H,(z), as shown in Figure F-1.

x(n) Original lIR Filter: Allpass |IR Filter: y
H,(2) ™ Hap(2) >

Combined |IR Filter: Heombined (2)

Figure F-1 Typical use of an allpass fitter.

An allpass filter, H,(z), can be designed so that its phase Tesponse
compensates for, or equalizes, the nonlinear phase response f’f an orig-
inal IIR filter [1-3]. Thus, the phase response of the con}b{ned ﬁ%ter,
H_, 1bined (2), is more linear than the original H,(z), and this is particu-
larly desirable in communications systems. In this context, an allpass

filter is sometimes called a phase equalizer.

494

Allpass filter-Bandwidth

Attenuation — an amplitude loss, usually measured in dB, incurred by
a signal after passing through a digital filter. Filter attenuation is the
ratio, at a given frequency, of the signal amplitude at the output of

the filter divided by the signal amplitude at the input of the filter,
defined as

attenuation = 20 - logm(Zout J dB. (F-1)
a

in

For a given frequency, if the output amplitude of the filter is smaller
than the input amplitude, the ratio in Eq. (F-1) is less than one, and
the attenuation is a negative number.

Band Reject Filter — a filter that rejects (attenuates) one frequency band
and passes both a lower and a higher frequency band. Figure F-2(a)
depicts the frequency response of an ideal band reject filter. This filter
type is sometimes called a notch filter.

o X j
n n) n, n,
ol | Wl L 117,
Y, X
Band reject filter response Bandpass filter response
1 L —
—— ———-~ —— + : l -
1,12) /2 Freq g2 % 0 fo /2 Freq
(a) (b)

Figure F-2 Filter symbols and frequency responses; (0) band reject filter:
(b) bandpass filter,

Bandpass Filter — a filter, as shown in Figure F-2(b), that passes one fre-
quency band and attenuates frequencies above and below that band.

Bandwidth — the frequency width of the passband of a filter. For a low-
pass filter, the bandwidth is equal to the cutoff frequency. For a band-

495

496

Appendix F: Digital Filter Terminology

pass filter,. the bandwidth is typically defined as the frequency differ-
ence between the upper and lower 3 dB points.

Bessel function — a mathematical function used to produce the most lin-
ear phase response of all IIR filters with no consideration of the fre-
quency magnitude response. Specifically, filter designs based on
Bessel functions have maximally constant group delay.

Butterworth function — a mathematical function used to produce maxi-
mally flat filter magnitude responses with no consideration of phase
linearity or group delay variations. Filter designs based on a
Butterworth function have no amplitude ripple in either the passband
or the stopband. Unfortunately, for a given filter order, Butterworth
designs have the widest transition region of the most popular filter
design functions.

Cascaded filters — a filtering system where multiple individual filters are
connected in series; that is, the output of one filter drives the input of
the following filter as illustrated in Figures F-1 and 6-38(a).

Center Frequency (f,) — the frequency lying at the midpoint of a band-
pass filter. Figure F-2(b) shows the f, center frequency of a bandpass
filter.

Chebyshev function — a mathematical function used to produce pass-
band or stopband ripples constrained within fixed bounds. There are
families of Chebyshev functions based on the amount of ripple, such
as 1 dB, 2 dB, and 3 dB of ripple. Chebyshev filters can be designed to
have a frequency response with ripples in the passband and flat pass-
bands (Chebyshev Type 1), or flat passbands and ripples in the stop-
band (Chebyshev Type II). Chebyshev filters cannot have ripples in
both the passband and the stopband. Digital filters based upon
Chebyshev functions have steeper transition region roll-off but more
nonlinear-phase response characteristics than, say, Butterworth filters.

Cutoff Frequency — the upper passband frequency for low-pass filters,
and the lower passband frequency for highpass filters. A cutoff fre-
quency is determined by the -3 dB point of a filter magnitude
response relative to a peak passband value. Figure F-3 illustrates the
f, cutoff frequency of a low-pass filter.

Bessel function-Elliptic function

+ Frequency magnitude response (dB)
0K

!\/\/\/

}
Fr Freq
§<- Passband > Transition b

L ' region

Figure F-3 A low-pass digital filter fre
quency response. The st i
amplitude is -20 dB. P Flopband elafive

Stopband >

Decibels (dB) — a unit of attenuation, or gain, used to express the relative
voltage or power between two signals. For filters, we use decibels to indi-
f:ate cutoff frequencies (-3 dB) and stopband signal levels (—20 dB) as
illustrated in Figure F-3. Appendix E discusses decibels in more detail,

Decimation filter — a low-pass digital FIR filter where the output sam-
ple rate is less than the filter’s input sample rate. As discussed in

Sectic?n 7.3, to avoid aliasing problems, the output sample rate must
not violate the Nyquist criterion.

Digital filter — computational process, or algorithm, transforming a dis-
crete sequence of numbers (the input) into another discrete sequence
of numbers (the output) having a modified frequency-domain spec-
trum. Digital filtering can be in the form of a software routine operat-

ing on data stored in computer memory or can be i i
(mplemented with
dedicated hardware. ’

Elliptic function — a mathematical function used to produce the sharpest
roll-off for a given number of filter taps. However, filters designed by
using elliptic functions, also called Cauer filters, have the poorest
p'hase linearity of the most common IIR filter design functions. The
ripple in the passband and stopband are equal with elliptic filters.

497

498

Appendix F: Digital Filter Terminology

Envelope delay - see group delay.

Filter coefficients — the set of constants, also called tap weights, used to
multiply against delayed signal sample values within a digital filter
structure. Digital filter design is an exercise in determining the filter
coefficients that will yield the desired filter frequency response. For
an FIR filter, by definition, the filter coefficients are the impulse
response of the filter.

Filter order — a number describing the highest exponent in the numera-
tor or denominator of the z-domain transfer function of a digital filter.
For FIR filters, there is no denominator in the transfer function, and
the filter order is merely the number of taps used in the filter struc-
ture. For IIR filters, the filter order is equal to the number of delay ele-
ments in the filter structure. Generally, the larger the filter order, the
better the frequency magnitude response performance of the filter.

Finite impulse response (FIR) filter — a class of digital filters that has
only zeros on the z-plane. The key implications of this are that FIR fil-
ters are always stable and have linear phase responses (as long as the
filter’s coefficients are symmetrical). For a given filter order, FIR fil-
ters have a much more gradual transition region roll-off than digital
IR filters.

Frequency magnitude response — a frequency-domain description of how
a filter interacts with input signals. The frequency magnitude response
in Figure F-3 is a curve of filter attenuation (in dB) vs. frequency.
Associated with a filter’s magnitude response is a phase response.

Group delay — the derivative of a filter’s phase with respect to frequency,
G = ~Aa/ Af, or the slope of a filter’s H,(m) phase response curve. The
concept of group delay deserves additional explanation beyond a
simple definition. For an ideal filter, the phase will be linear and the
group delay would be constant. Group delay, whose unit of measure
is time in seconds, can also be thought of as the propagation time
delay of the envelope of an amplitude-modulated signal as it passes
through a digital filter. (In this context, group delay is often called
envelope delay.) Group delay distortion occurs when signals at differ-
ent frequencies take different amounts of time to pass through a filter.
If the group delay is denoted G, then the relationship between group
delay, a Ae increment of phase, and a Af increment of frequency is

Envelope delay-Group delay

G= -A¢dcgrees /360 = -Aﬁradians /2n
Af Af

seconds. (F-2)

If we know a linear phase filter’s phase shift (Ag) in degrees/Hz, or
radians/Hz, we can determine the group delay in seconds using

-Ag -Ag .
G- A=G-1=G= degrees/Hz _ radians/H;
\f G 0 - ;;:"s Z seconds. (F-3)

To 'demonstrate Eq. (F-3) and illustrate the effect of a nonlinear
phase fll'ter, let’s assume that we’ve digitized a continuous waveform
comprising four frequency components defined by

X(t)=sin(2m-1-t)+sin(2n-3-1) /3+sin(2m-5-1) /5+sin(2m-7-1) /7. (F-4)

'I.'he x(f) input comprises the sum of 1-Hz, 3-Hz, 5-Hz, and 7-Hz
sinewaves, and its discrete representation is shown in Figulre F-4(a). If
we applied the discrete sequence representing x(¢) to the input of an
ideal 4-tap linear-phase low-pass digital FIR filter with a cutoff fre-
quency of greater than 7 Hz, and whose phase shift is -0.25 radi-
an:(/b I;Iz, the filter’s output sequence would be that shown in Figure

Because the filter’s phase shift is -0.25 radians/Hz, Eq. (F-3) tells
us that the filter’s constant group delay G in seconds is

A Bragi 0.25
G= radians/Hz - . _
o m 0.04 seconds. (F-5)

Wlth a constant group delay of 0.04 seconds, the 1-Hz input sinewave
is delayed at the filter output by 0.25 radians, the 3-Hz sinewave is
delayed by 0.75 radians, the 5-Hz sinewave by 1.25 radians, and the
7-Hz sinewave by 1.75 radians. Notice how a linear-phase (relative to
ffequency) filter results in an output that’s merely a time shifted ver-
sion of the input as seen in Figure F-4(b). The amount of time shift is
the group delay of 0.04 seconds. Figure F-4(c), on the other hand
shows the distorted output waveform if the filter’s phase was nonlin:
fear, for whatever reason, such that the phase shift was 3.5 radians
mst‘ead of the ideal 1.75 radians at 7 Hz. Notice the distortion of the
beginning of the output waveform envelope in Figure F-4(c) com-

49

500

Appendix F: Digital Filter Terminology

A Filter input
14

051a

14

054

(c) 0

-0.5 +

44

Figure F-4 Filter time-domain response exampiles: () filter inpuf sequence; () Iineccj:r-
phase filter oufput sequence that's time shifted by 0.04 seconds,
duplicating the input sequence; (c) distorted output sequence due to a
fiter with a nonlinear phase.

tion is contained in the envelope of a signal that we're pa‘ssing through
a filter, we’'d like that filter's passband phase to be as linear as possi-
ble with respect to frequency. In other words, we’d prefer the filter’s

Half-Band filter-impuise

group delay to vary as little as possible in the passband. (Adgisinr; o g WY
aspects of nonlinear-phase filters are discussed in Section 58.)™ 4
v

Half-Band filter — a type of FIR filter whose transition region is centered
at one quarter of the sampling rate, or f;/4. Specifically, the end of the
passband and the beginning of the stopband are equally spaced about
fi/4. Due to their frequency-domain symmetry, half-band filters are
often used in decimation filtering schemes because half of their time-
domain coefficients are zero. This reduces the number of necessary
filter multiplications, as described in Section 5.7.

xn | "X | #n) x| X | mn
> X O
Highpass filter response ﬂ Low-pass filter response
—_— e 1 —
—+ ' s e o
—fs/2 0 f/2 Freq —fg/2 0 f,/2 Freq
(@ (b}

Figure F-5 Filter symbols and frequency responses: () highpass filter; (b) low-pass
filter.

Highpass filter — a filter that passes high frequencies and attenuates low
frequencies, as shown in Figure F-5(a). We’ve all experienced a kind
of highpass filtering in our living rooms. Notice what happens when
we turn up the treble control (or turn down the bass control) on our
home stereo systems. The audio amplifier’s normally flat frequency
response changes to a kind of analog highpass filter giving us that
sharp and tinny sound as the high-frequency components of the
music are being accentuated.

Impulse response — a digital filter’s time-domain output sequence when
the input is a single unity-valued sample (impulse) preceded and fol-
lowed by zero-valued samples. A digital filter’s frequency-domain

502

Appendix F: Digital Filter Terminology

response can be calculated by taking the discrete Fourier transform of
the filter's time-domain impulse response [4].

Infinite impulse response (IIR) filter — a class of digital filters that may
have both zeros and poles on the z-plane. As such, IIR filters are not
guaranteed to be stable and almost always have nonlinear phase
responses. For a given filter order (number of IIR feedback taps), IIR
filters have a much steeper transition region roll-off than digital FIR
filters.

Linear-phase filter — a filter that exhibits a constant change in phase
angle (degrees) as a function of frequency. The resultant filter phase
plot vs. frequency is a straight line. As such, a linear-phase filter’s
group delay is a constant. To preserve the integrity of their informa-
tion-carrying signals, linear phase is an important criteria for filters
used in communication systems.

Low-pass filter — a filter that passes low frequencies and attenuates high
frequencies as shown in Figure F-5(b). By way of example, we experi-
ence low-pass filtering when we turn up the bass control (or turn
down the treble control) on our home stereo systems giving us that
dull, muffled sound as the low-frequency components of the music
are being intensified.

Notch filter — see band reject filter.

‘ Frequency magnitude response (dB)

QPassband ripple

Stopband
attenuation

=15

\NAVAV-VAVAVEVN

f;/2 Freq

0

Figure F-6 Low-pass digital filtter frequency response showing passband rippie
and stopband attenuation.

Infinite Impulse response (IIR) filter-Relative attenuation

Passband — the frequency range over which a filter passes signal energy.
Usually defined as the frequency range where the filter’s frequency
response is equal to or greater than -3 dB, as depicted in Figure F-3.

Passband ripple — fluctuations, or variations, in the frequency magni-
tude response within the passband of a filter. Passband ripple, mea-
sured in dB, is illustrated in Figure F-6.

Phase response — the difference in phase, at a particular frequency,
between an input sinewave and the output sinewave at that fre-
quency. The phase response, sometimes called phase delay, is usu-
ally depicted by a curve showing the filter’s phase shift vs.
frequency. Section 5.8 discusses digital filter phase response in
more detail.

Phase wrapping — an artifact of arctangent software routines, used to
calculate phase angles, that causes apparent phase discontinuities.
When a true phase angle is in the range of ~180° to -360°, some soft-
ware routines automatically convert those angles to their equiva-
lent positive angles in the range of 0° to +180°. Section 5.8 illustrates
an example of phase wrapping when the phase of an FIR filter is
calculated.

Quadrature filter — a dual-path digital filter operating on complex
signals, as shown in Figure F-7. One filter operates on the in-phase
i(n) data, and the other filter processes the quadrature-phase g(n)
signal data. Quadrature filtering is normally performed with
low-pass filters.

R) I Low-pass | /) .
Filter
Input x(n)

Cosine sequence
n y
an_ | Low-pass | i(ﬂ»
Filter
Sine sequence

Figure F-7 Two low-pass filters used to implement quadrature filttering.

503

504

Appendix F: Digital Filter Terminology

Relative attenuation — attenuation measured relative to the largest mag-
nitude value. The largest signal level (minimum attenuation) is typi-
cally assigned the reference level of zero dB, as depicted in Figures F-3
and F-6, making all other magnitude points on a frequency-response
curve negative dB values.

Ripple — refers to fluctuations (measured in dB) in the passband, or stop-
band, of a filter’s frequency-response curve. Elliptic and Chebyshev-
based filters have equiripple characteristics in that their ripple is
constant across their passbands. Bessel and Butterworth derived fil-
ters have no ripple in their passband responses. Ripples in the stop-
band response are sometimes called out-of-band ripple.

Roll-off — a term used to describe the steepness, or slope, of the filter
response in the transition region from the passband to the stopband.
A particular digital filter may be said to have a roll-off of 12
dB/octave, meaning that the second-octave frequency would be
attenuated by 24 dB, and the third-octave frequency would be atten-
uated by 36 dB, and so on.

Shape factor — a term used to indicate the steepness of a filter’s roll-off.
Shape factor is normally defined as the ratio of a filter’s passband
width divided by the passband width plus the transition region width.
The smaller the shape factor value, the steeper the filter’s roll-off, For
an ideal filter with a transition region of zero width, the shape factor is
unity. The term shape factor is also used to describe analog filters.

Stopband — that band of frequencies attenuated by a digital filter. Figure
F-3 shows the stopband of a low-pass filter. Although the stopband
attenuation in Figure F-3 is 20 dB, not all filters have stopband lobes
of equal amplitude. Figure F-6 shows that stopband attenuation is
measured between the peak passband amplitude and the largest stop-
band lobe amplitude.

Structure — refers to the block diagram showing how a digital filter is
implemented. A recursive filter structure is one in which feedback
takes place and past filter output samples are used, along with past
input samples, in calculating the present filter output. IIR filters are
almost always implemented with recursive filter structures. A nonre-
cursive filter structure is one in which only past input samples are
used in calculating the present filter output. FIR filters are almost

Y A

References

always implemented with nonrecursive filter structures. See Chapter
6 for examples of various digital filter structures.

Tap weights — see filter coefficients.
Tchebyschev function — see Chebyshev.

Transfer function — a mathematical expression of the ratio of the output
of a digital filter divided by the input of the filter. Given the transfer
function, we can determine the filter’s frequency magnitude and
phase responses.

Transition region — the frequency range over which a filter transitions
from the passband to the stopband. Figure F-3 illustrates the transi-
tion region of a low-pass filter. The transition region is sometimes
called the transition band.

Transversal filter — in the field of digital filtering, transversal filter is
another name for FIR filters implemented with the nonrecursive
structures described in Chapter 5.

References

[1] Rabiner, L. R., and Gold, B. The Theory and Application of Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1975, pp. 206, 273,
and 288.

[2] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989, PP 236 and 441.

[3] Laakso, T.I, etal. “Splitting the Unit Delay,” IEEE Signal Processing Magazine,
January 1972, pp. 46.

[4] Pickerd, J. “Impulse-Response Testing Lets a Single Test Do the Work of
Thousands,” EDN, April 27, 1995.

505

A

Absolute value, 9
A/D converters. See Analog-to-
digital (A/D) converters
Addition process, 10
for complex numbers, 446-47
in finite impulse response filters,
15863
Aliased sinc function, 101
Aliasing, 23-29
in infinite impulse response
filters, 255-56
All ones rectangular function,
108-11, 113-15
Allpass filter, 494
aMax+BMin algorithm, 400-404
Amplitude, defined, 8-9
Amplitude response, discrete Fourier
transform
complex input, 119-23
real cosine input, 125
Analog, use of term, 2
Analog filters, use of term, 253
Analog signal processing, examples
of, 2
Analog-to-digital (A /D) converters
coherent sampling, 297n, 433
crest factor, 364n
quantization errors, 357-65
testing technique, 432-35
Anti~aliasing filters, 32
Argand diagram, 444n
Attenuation
defined, 495
relative, 503
stopband, 189
Averaging
applications, 319
coherent, 320-27
exponential, 341-48
filtering aspects of time-domain,
340-41

in finite impulse response filters,
158-63

incoherent, 327-30

multiple fast Fourier transforms,

133, 330-40, 429-30

Band-limited signal, 29
Bandpass design, for finite impulse
response filters, 191-93
Bandpass filter, 495
Bandpass sampling, 32-42
spectral inversion in, 43-46
summary of, 46
Band reject filter, 495
Bandwidth, 495-96
Bartlett windows, 82
Bessel functions, 189, 496
Bias, 356
Bilinear transform design, of
infinite impulse response
filters, 223, 272-84
Binary data formats
defined, 349
fixed-point, 349-56
fixed-point effects on word length,
357-75
floating-point, 375-82
fractional, 352-53
hexadecimal, 351
octal, 351
offset, 356
place value system for, 350
precision and dynamic range,
356-57
sign-magnitude, 353
two’s complement, 356, 36668
Bits
defined, 349-50
effective number of, 365
Bit reversal, fast Fourier transform
input/output data index, 145-46

507

508

Index

Blackman-Harris windows, 409
Blackman windows, 184-87, 409

Block diagrams, use of, 10, 161

Block floating-point, 381-82

Boxcar windows, 82

Butterfly structures, radix-2 FFT, 146-54
Butterworth function, 496

Carrier frequency, 34
Cascade filters, 290-92, 496
Cauer filters, 497
Causal systems, 225
Center frequency, 496
Central Limit Theorem, 438-39
Chebyshev function, 496
Chebyshev windows, 87, 187-91
Coefficient quantization, 286-87
Coefficients, for finite impulse
response filters, 166
constant, 173, 498
Coherent averaging, 320-27
Coherent sampling, 297n, 433
Commutative property, 20
Complex conjugate, 6364
Complex demodulation, 297n
Complex down-conversion, 297n
Complex frequency, 225
for Mth-order infinite impulse
response filter, 245-46
Complex input, discrete Fourier
transform frequency response
to, 119-23
Complex numbers
addition and subtraction of, 446-47
applications of, 453-54
arithmetic representation of, 444-46
conjugation of, 427, 448
division of, 448-49
fast multiplication of, 411-12
graphical representation of, 443-44
inverse of, 449
logarithm to the base 10 of, 451-52
multiplication of, 411-12, 447-48
natural logarithms of, 451
negative frequency and, 458-74
raised to a power, 450
roots of, 450-51

Complex plane, 460-61
Complex signals
quadrature mixing and, 471-74
without multiplication, 385-400
Conditional stability, 236
Conjugate/conjugation, 63-64
of complex numbers, 427, 448
Constant-coefficient transversal finite
impulse response filters, 173
Constant-geometry algorithm, 154
Continuous signal processing
frequency in, 5-6
use of term, 2
Convolution, 20
discrete, 20416
equation, 165
fast, 435-36
in finite impulse response filters,
163-74
theorem, 209-16
in time-domain, 206-9
Cooley, J., 129
Cosines of consecutive angles, calcula-
tion of, 436-38
Crest factor, 364n
Critical Nyquist, 28
Cutoff frequency, 496

D]

Data formats
binary precision/dynamic range,
356-57
defined, 349
fixed-point binary, 349-56
floating-point, 375-82
dB. See Decibels
dBm. See Decibels
Deadband effects, 288
DEC floating-point, 378
Decibels
absolute power using, 493
defined, 486, 497
magnitude and power ratios, 492-93
signal power determined by loga-
rithms, 486-91
Decimation
combined with interpolation, 314-16
filters, 306, 497

resampling by, 304-9
use of term, 304
Decimation-in-frequency algorithm,
148-53, 154
Decimation-in-time, 145, 149-53
Demodulation, I/Q or Weaver, 299-301
Difference equation, 221, 222
Digital filters. See Finite impulse
response filters; Infinite impulse
response (IIR) filters
Digital mixing, quadrature sampling
and, 301-3, 389-93
Direct Form I structure, 244
Direct Form II structure, 252
Dirichlet, Peter, 101
Dirichlet kernel, 100-103
all ones, 108-11, 114
symmetrical, 105-8
Discrete convolution, 204-16
Discrete Fourier transform (DFT), 21
defined, 50
equation, description of, 50-63
example using, 5463
frequency axis, 67-68
frequency response to complex
input, 119-23
frequency response to real cosine
input, 123-25
inverse, 70-71
leakage, 71-80
linearity, 65
magnitudes, 66—67
processing gain, 93-97
purpose of, 49
rectangular functions, 97-119
relationship of fast Fourier trans-
form to, 130-31
scalloping loss, 88-89
shifting theorem, 68-70
single-bin frequency response to
real cosine input, 125-27
symmetry, 63—65
windows, 80-87
zero stuffing, 89-93
Discrete linear systems, 1318
Discrete-time expression, 4
Discrete-time Fourier transform
(DTFT), defined, 93
Discrete-time signal

Index 50¢

connecting dots in, problem with, 3
example of, 2-3
frequency in, 6
input and output shown, 5
use of term, 2
Discrete-time waveform, methods for
describing, 8
Dither sequence, 288
Division of complex numbers, 44849
Dolph-Chebyshev windows, 187
Double-memory algorithm, 153-54
Down-conversion, complex, 297n
Downsampling, resampling by, 304-9
Dynamic range
fixed-point binary data format,
356-57
floating-point, 379-81

(E]

Effective number of bits (ENOB), 365

Elliptic function, 497

Envelope delay, 202, 204, 498

Euler, Leonhard, 460

Euler’s equation, 50, 100, 249, 267, 275,
298, 463, 464

Even symmetry, 64

Exponential averaging, 341-48

[F]

Fast convolution, 435-36
Fast Fourier transform (FFT)
averaging multiple, 133, 330-40,
429-30
calculating the inverse of, using the
forward, 425-29
constant-geometry algorithm, 154
decimation-in-frequency, 148-53, 154
decimation-in-time, 145, 149-53
development of, 129
double-memory algorithm, 153-54
fast finite impulse response filtering
using, 435-36
hints for using, 131-36
in-place algorithm, 153
input/output data index bit rever-
sal, 145—-46
interpreting results, 134-36

510 index

overflow errors, 369-70
performing two N-point real,
412-20
performing 2N-point real, 420-25
radix-2 FFT algorithm, 136-45
radix-2 FFT butterfly structures,
146-54
relationship to discrete Fourier
transform, 130-31
software programs, 136
Fibonacci, 459
Filtering/filters
See also Finite impulse response
(FIR) filters; Infinite impulse
response (IIR) filters
allpass, 494
aspects of time-domain averaging,
340-41
background of, 157
bandpass, 495
band reject, 495
cascade, 290-92, 496
Cauer, 497
coefficients, 498
decimation, 306, 497
description of process, 157-58
interpolation, 310, 314
multirate, 314
nonrecursive, 158, 253
notch, 495
order, 498
parallel, 290-92
polyphase, 313
prototype, 254
recursive, 253
structure, 161
time-varying, 313
transversal, 162
Finite impulse response (FIR) filters
averaging with, 158-63
bandpass design, 191-93
coefficients, 166
convolution in, 163-74
defined, 498
fast Fourier transform used for fast,
435-36
5-tap, 162-63
Fourier series design of, 175-91

frequency response in, 163, 181
half-band, 197-98
highpass design, 193-94
impulse response, 165-66
infinite impulse response filters
compared to, 292-93
low-pass design, 174-91
nonrecursive filters, 158, 253
nonzero input values in, 158
optimal design method, 194
other names for, 158
Parks-McClellan design, 194
phase response in, 199-204
Remez Exchange design, 194-97
structure simplified, 430-32
window design of, 175-91
First-order sampling, 35
S-tap finite impulse response filters,
162-63
Fixed-point binary data formats
defined, 349
effects on word length, 357-75
fractional, 352-53
hexadecimal, 351
octal, 351
offset, 356
place value system for, 350
precision and dynamic range,
356-57
sign-magnitude, 353
two’s complement, 356
Floating-point binary data format
block, 381-82
DEC, 378
description of, 375-82
dynamic range, 379-81
fraction of, 376
hidden bit, 376
IBM, 378
IEEE P754, 378
MIL-STD 1750A, 378
overflow oscillations/limit cycles
and, 289
Folding frequency, 28, 30
Fourier series design of finite impulse
response filters, 175-91
Fractional binary data format, 352-53
Frequency

center, 496
cutoff, 496
differences between continuous and
discrete systems, 5-6
Frequency axis, 67-68
inHz, 112
normalized angle variable
and, 113
in radians/seconds, 113
rectangular function and, 111-13
Frequency domain
defined, 6
listing of sequences, 8
windowing in, 407-9
Frequency response, 21
discrete Fourier transform, to com-
plex input, 119-23
discrete Fourier transform, to real
cosine input, 123-25
in finite impulse response filters,
163, 181
for Mth-order infinite impulse
response filter, 245-46
for N-stage infinite impulse
response filter, 251
single-bin, to real cosine input,
125-27
Frequency translation
sampling and, 33
without multiplication, 385-400

6]

Gain. See Processing gain or loss
Gaussian distribution, 325

General rectangular function, 98-105
Geometric series, 99, 455-57

Gibb’s phenomenon, 184

Gradual underflow, 379

Group delay, 201-2, 204, 498-500

[H]

Half-band finite impulse response fil-
ters, 197-98, 501

Half Nyquist, 28

Hamming windows, 81, 82, 83, 84,
407-9

Index 51

Hanning/Hann windows, 81, 82, 83,
84-86, 407-9)
Harmonic sampling, 33
Heaviside, Oliver, 223
Hertz, 3
Hexadecimal binary data
format, 351
Hidden bit, floating-point, 376
Highpass design, for finite impulse
response filters, 193-94
Homogeneity property, 13

(1]

IBM floating-point, 378
IEEE P754, 378
IF sampling, 33
Imaginary numbers, development of,
460-62
Impulse invariance design, for infinite
impulse response filters, 223,
254-55
Design Method 1 example, 262-65
Design Method 1 steps, 256-58
Design Method 2 example, 265-72
Design Method 2 steps, 25962
Impulse response
defined, 501
for finite impulse response filters,
165-66
Incoherent averaging, 327-30
Infinite impulse response (IIR)
filters, 26
aliasing, 255-56
bilinear transform design, 223,
272-84
cascade/parallel combinations,
290-92
defined, 502
Direct Form I structure, 244
Direct Form II structure, 252
finite impulse response filters
compared to, 292-93
impulse invariance design, 223,
254-72
Laplace transform, 223-38
nonzero input values in, 220-21
optimized design, 223, 284-86

512

Index

pitfalls in building, 286-89
reasons for using, 219-20
recursive filters, 253
structure, 221-23, 251-54
z-transform, 238-51
In-place algorithm, 153
Input/output data index bit reversal,
145-46
Integration processing gain, 93, 97, 325,
331
coherent, 334-37
incoherent, 331-33
Intermodulation distortion, 18
Interpolation
combined with decimation, 314-16
filter, 310, 314
resampling by, 309-13
Inverse discrete Fourier transform
(IDFT), 70-71
Inverse fast Fourier transform, calculat-
ing the, 425-29
Inverse of complex numbers, 449
Inverse of general rectangular function,
115-17
Inverse of symmetrical rectangular
function, 117-19
1/Q demodulation, 299-301
Iterative optimization, 284

j operator, 46062

(K]

Kaiser windows, 87, 187-91
Kelvin, Lord, 50

Laplace transform
bilateral/two-sided, 225
for continuous time-domain, 224-25
description of, 223-30
development of, 223
one-sided/causal, 225
tables, 224

Laplace transform transfer function,

229-30

in bilinear transform design, 272-73,
280
in cascade filters, 290
in impulse invariance design
Method 1, 262-65
in impulse invariance design
Method 2, 265-66
in parallel filters, 290
second-order, 233
used to determine stability and
frequency response in continu-
ous systems, 230-38
Leakage
discrete Fourier transform, 71-80
wraparound, 78-79
Least significant bit (Isb), 350
L'Hospital's rule, 101
Limit cycles, 288
Linear, use of term, 13
Linear averaging, 320
Linearity, discrete Fourier
transform, 65
Linear-phase filter, 502
Linear time-invariant (LTI) systems, 12
analyzing, 20-21
commutative property, 20
discrete, 13-18
example of a linear system, 14-15
example of a nonlinear system,
15-18
homogeneity property, 13
time-invariant systems, 18-19
Loading factor, 361-63
Logarithms, signal power determined
by, 486-91
Logarithms and complex numbers
to base 10, 451-52
to base 10 using natural, 452
natural, 451
Loss. See Processing gain or loss
Low-pass finite impulse response filter
design, 174-91, 502
Low-pass signals, sampling, 29-32

[M]

Magnitude(s)
approximation (vector), 400-406
of C (modulus of C), 445

defined, 8,9
discrete Fourier transform, 66-67
Mantissa, use of term, 375
Mean
defined, 319, 477
of random functions, 481-84
MIL~STD 1750A floating-point, 378
Mixing
complex signals and quadrature,
471-74
complex signals without
multiplication, 385-400
convolution and, 393-95
cosine mixing sequence, 389-91
magnitude and phase and, 395
quadrature-phase mixing sequence,
391
quadrature sampling and digital,
301-3, 389-93
summary of, 400
Modulus of C, 445
Most significant bit (msb), 350
Mth-order infinite impulse response
filter
frequency response for, 245-46
time domain expression for, 244
2-domain expression for, 244-45
z-domain transfer expression
for, 245
Multiplication
of complex numbers, 411-12, 447-48
frequency translation without,
385-400
process, 12
Multirate filter, 314

[N]

Negative frequency, 299, 300
complex numbers and, 458-74
real signals represented by, 467-71

Noise, 319
definition of random, 477

Nonlinear system, example of, 15-18

Nonrecursive filters, 158, 253

Normal distribution, 325
of random data, 438-40

Normalization, 376

Normalized angle variable, 113

Index 513

Normal probability density function,
484-85 -
Notch filters, 495
N-stage infinite impulse response filter,
frequency response for, 251
Nyquist criterion, 30, 301

o]

Octal binary data format, 351
Odd symmpetry, 64
Offset binary data format, 356
One-sided/causal system, 225
Optimal design, for finite impulse
response filters, 194
Optimization design, for infinite
impulse response filters, 223,
284-86
Out-of-band ripple, 504
Overflow errors, 286, 287-88
fast Fourier transform, 369-70
fixed-point effects on, 365-70
rounding, 373-75
truncation, 370-73
two’s complement, 356, 36668
vector-magnitude approximation
and, 404-5
Overflow oscillations, 288-89
Overlapped windows, 410-11

[P]

Parallel filters, 290-92
Parks-McClellan design, for finite
impulse response filters, 194
Parzen windows, 82
Passband, defined, 502
Passband phase angle resolution, 202-3
Passband ripple, 195, 503
Phase angle/argument of C, 445
Phase delay, 503
Phase equalizer, 494
Phase response
defined, 503
in finite impulse response filters,
199-204
Phase wrapping, 201, 503
Phasor outputs of fast Fourier trans-
form, 337-38

514

Index

Phasors for representing real signals,
complex, 46267
Picket fence effect, 88
Place value system, 350
Polyphase filters, 313
Postd etection averaging, 327
Power, signal
absolute power using decibels, 493
defined, 9-10
determined by logarithms, 486-91
Power spectrum, 54
Predetection averaging, 320
Prewarp, 283
Probability density function (PDF)
A/ D converter quantization errors
and, 360-61
mean and variance of random func-
tions and, 481-84
normal, 484-85
rounding and, 373-74
truncation and, 370-71
Processing gain or loss
discrete Fourier transform, 93-97
integration, 93, 97, 325, 331-37
window, 83, 409-11
Prototype filter, 254

Quadratic factorization formula, 234
Quadrature filter, 503
Quadrature heterodyning, 297n
Quadrature mixing, complex signals
and, 471-74
Quadrature sampling
description of, 297-301
digital mixing and, 301-3, 389-93
otheer names for, 297n
Quantization, coefficient/errors,
28687, 292
fixed-point effects on A/D
converter, 357-65

Radian, negative frequency and, 460
Radix-2 FFT algorithm, derivation of,
136-45

Radix-2 FFT butterfly structures,
146-54
Raised to a power, complex
numbers, 450
Random data, normally distributed,
438-40
Random functions, mean and
variance of, 481-84
Real cosine input, discrete Fourier
transform frequency response to,
123-25
single-bin, 125-27
Real discrete Fourier transform inputs,
63
Real numbers, graphical representation
of, 443-44
Real sampling, 35
Real signals
complex phasors for representing,
462-67
negative frequencies for represent-
ing, 467-71
Rectangular functions
all ones, 108-11, 113-15
definition of general, 98-105
forms of, 97
inverse of general, 115-17
inverse of symmetrical, 117-19
symmetrical, 105-8
time and frequency axes and, 111-13
Rectangular windows, 80, 82, 83
Recursive filters, 253
Relative attenuation, 503
Remez Exchange design, for finite
impulse response filters, 194-97
Replications, spectral, 29-32
Resampling, 303-16
applications, 303
decimation, 304-9
decimation combined with
interpolation, 314-16
defined, 304
interpolation, 309-13
Ripples
Blackman window and, 184-87
defined, 504
finite impulse response filters and,
173

low-pass finite impulse response fil-
ters and, 179-91
out-of-band, 504
passband, 195
stopband, 195
rms averaging, 327
of a sinewave, 480-81
Roll-off, 504
Roots of complex numbers, 450-51
Roundoff errors, 286, 288
fixed-point effects on, 373-75
Roundoff noise, 359

[s]

Sample rate converter, 314
Sampling
coherent, 297n, 433
digital resampling, 303-16
quadrature, 297-303
Sampling, periodic
aliasing, 23-29
bandpass, 32~42
low-pass, 29-32
spectral inversion in bandpass,
43-46
summary of bandpass, 46
translation, 33
under-, 30-31, 33
Scalar averaging, 327
Scalloping loss, 88-89
Shape factor, 504
Shark’s tooth pattern, 28
Shifting theorem, discrete Fourier
transform, 68-70
Shift-invariant systems, 19
Sidelobes, 74, 103
Blackman window and, 184-87
finite impulse response filters and,
173
low-pass finite impulse response fil-
ters and, 179-91
Signal processing
analog, 2
digital, 2
operational symbols, 10-12
use of term, 2
Signal-to-noise ratio (SNR)

Index

coherent averaging, 324-25
incoherent averaging, 329-30
word length and A/D converters,
359-64
Sign-magnitude binary data format,
353
Sinc function, 73-74, 108-10, 123
Sines of consecutive angles, calculation
of, 436-38
Single-bin frequency response to real
cosine input, 125-27
Software programs, fast Fourier trans-
form, 136
Spectral inversion in bandpass sam-
pling, 43-46
Spectral replications, 29-32
Square roots, obtaining, 400
Stability
conditional, 236
Laplace transfer function and,
230-38
z-transform and, 240-42
Standard deviation, 320, 479
of a sinewave, 480-81
Starburst pattern, 145
Statistical measures, 476~79
Step response, 343
Stopband, defined, 504
Stopband attenuation, 189
Stopband ripple, 195
Structure
defined, 504
Direct Form I, 244
Direct Form II, 252
filtering, 161
infinite impulse response filter,
221-23, 251-54
simplified finite impulse response
filter, 430-32
Sub-Nyquist sampling, 33
Subtraction process, 10
for complex numbers, 446-47
Summation process, 10-12, 322-23
Symbols, in signal processing, 10-12
Symmetrical rectangular function,
105-8
Symmetry
discrete Fourier transform, 63-65

5U

516

Index

even, 64
odd, 64

Tap weights, 498
Tchebyschev windows, 187
Time delay, z-transform and, 242-45
Time-domain averaging, filtering,
340-41
Time domain expression for Mth-order
infinite impulse response filter,
244
Time-domain signals, 5
discrete convolution in, 206-9
Laplace transform for continuous,
224-25
Time-invariant systems
analyzing, 20-21
commutative property, 20
example of, 18-19
Time-varying filters, 313
Transfer function, 229--30
in bilinear transform design, 272-73,
280
in cascade filters, 290
defined, 505
in impulse invariance design
Method 1, 262-65
in impulse invariance design
Method 2, 265-66
in parallel filters, 290
second-order, 233
stability and frequency response in
continuous systems using,
230-38
Transition region/band, 505
Translation without multiplication, fre-
quency, 385-400
Transmultiplexing, 385
Transversal filter, 162, 505
Triangular windows, 80, 82, 83
Truncation errors, 370-73
vector-magnitude approximation
and, 405-6
Tukey, J., 129

Two N-point real FFTs algorithm,
412-20

2N-point real FFTs algorithm, 420-25

Two’s complement, 356, 366-68

U]

Underflow, gradual, 379
Undersampling, 30-31, 33
Unit circle, 239

Unit delay, 12

Unit impulse response, 20

Variance, 319-20

defined, 478 -

of random functions, 481-84
Vector, use of term, 44445
Vector averaging, 320
Vector demodulation, 297n
Vector-magnitude approximation,

400-406

Video averaging, 327

Warping, frequency, 276~77, 278
Weaver demodulation, 299-301
Weighting factor, 341, 343
Windows
Bartlett, 82
Bessel functions, 189
Blackman, 184-87, 409
Blackman~Harris, 409
boxcar, 82
Chebyshev, 87, 187-91
discrete Fourier transform, 80-87
Dolph-Chebyshev, 187
dual window functions, 409~-10
for finite impulse response filters,
175-91
frequency domain and, 407-9
Hamming, 81, 82, 83, 84, 407-9
Hanning/Hann, 81, 82, 83, 84-86,
407-9

Kaiser, 87, 187-91
overlapped, 410-11
Parzen, 82
processing gain or loss, 83, 409-11
purpose of, 86
raised cosine, 82
rectangular, 80, 82, 83
selection of, 86
Tchebyschev, 187
triangular, 80, 82, 83
tricks for using, 406-11
Word length, defined, 350
Word length, fixed-point effects on
A/D converter quantization errors,
357-65
overflow, 365-70
rounding, 373-75
truncation, 370-73
Word length errors, infinite impulse
response filters and finite, 286
Wrapping, phase, 201

Index

(2]

2—-domain expression for Mth-order
infinite impulse response filter,
244-45
z-domain transfer expression for Mth-
order infinite impulse response
filter, 245
Zero-frequency IF format, 300
Zero padding, 310
Zero stuffing, discrete Fourier trans-
form, 89-93
z-transform
background of, 238
defined, 238
description of, 238-40
infinite impulse response filters and,
242-51
polar form, 239
stability and, 240-42
time delay, 24245

51

