The Scientist and Engineer's Guide to
Digital Signal Processing

Second Edition

Be sure to visit the book’ s website at:

www.DSPguide.com

The Scientist and Engineer's Guide to
Digital Signal Processing

Second Edition

by
Steven W. Smith

California Technical Publishing
San Diego, California

The Scientist and Engineer's Guide to

Digital Signal Processing
Second Edition

by
Steven W. Smith

copyright © 1997-1999 by California Technical Publishing

All rights reserved. No portion of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
without written permission of the publisher.

ISBN 0-9660176-7-6 hardcover
ISBN 0-9660176-4-1 paperback
ISBN 0-9660176-6-8 electronic
LCCN 97-80293

California Technical Publishing
P.O. Box 502407
San Diego, CA 92150-2407

To contact the author or publisher through the internet:
website: DSPguide.com
email: Smith@DSPguide.com

Printed in the United States of America
First Edition, 1997
Second Edition, 1999

Important Legal Information: Warning and Disclaimer

This book presents the fundamentals of Digital Signal Processing using examples from common science and
engineering problems. While the author believes that the concepts and data contained in this book are accurate and
correct, they should not be used in any application without proper verification by the person making the application.
Extensive and detailed testing is essential where incorrect functioning could result in personal injury or damage to
property. Thematerial in thisbook isintended solely asateaching aid, and is not represented to be an appropriate
or safe solution to any particular problem. For this reason, the author, publisher, and distributors make no
warranties, express or implied, that the concepts, examples, data, algorithms, techniques, or programs contained
in thisbook are free from error, conform to any industry standard, or are suitable for any application. The author,
publisher, and distributors disclaim all liability and responsibility to any person or entity with respect to any loss
or damage caused, or alleged to be caused, directly or indirectly, by theinformation contained in thisbook. If you
do not wish to be bound by the above, you may return this book to the publisher for afull refund.

Contents at a Glance

FOUNDATIONS
Chapter 1. TheBreadthand Depthof DSP
Chapter 2. Statistics, Probability and Noise
Chapter 3. ADCandDAC ...t
Chapter 4. DSPSoftware.o i

FUNDAMENTALS
Chapter 5. Linear Systems. ...,
Chapter 6. Convolution
Chapter 7. Propertiesof Convolution
Chapter 8. The Discrete Fourier Transform
Chapter 9. Applicationsof theDFT
Chapter 10. Fourier Transform Properties
Chapter 11. Fourier Transform Pairs
Chapter 12. The Fast Fourier Transform
Chapter 13. Continuous Signal Processing

DIGITAL FILTERS

Chapter 14.
Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.
Chapter 19.
Chapter 20.
Chapter 21.

Introduction to Digital Filters
Moving AverageFilters
Windowed-SincFilters
CustomFilters
FFT Convolution i,
RecursiveFilters i
Chebyshev Filters i,
Filter Comparison cviiivnnn..

APPLICATIONS

Chapter 22.
Chapter 23.
Chapter 24.
Chapter 25.
Chapter 26.
Chapter 27.
Chapter 28.
Chapter 29.

AUudioProcessingoovviii i
Image Formationand Display
Linear ImageProcessingcoovuvnvnn..
Special Imaging Techniques
Neural Networks(andmore!)
Data Compression ...,
Digital Signal Processorso,
Getting Started withDSPs

COMPLEX TECHNIQUES

Chapter 30.
Chapter 31.
Chapter 32.
Chapter 33.

Complex NUmberscooviiiii i
The Complex Fourier Transform
ThelLaplace Transform
Thez-Transform

Table of Contents

FOUNDATIONS

Chapter 1. The Breadth and Depth of DSP
The Rootsof DSP 1
Telecommunications 4
Audio Processing 5
Echo Location 7
Imaging Processing 9

Chapter 2. Statistics, Probability and Noise

Signal and Graph Terminology 11
Mean and Standard Deviation 13
Signal vs. Underlying Process 17
The Histogram, Pmf and Pdf 19
The Normal Distribution 26
Digital Noise Generation 29
Precision and Accuracy 32

Chapter 3. ADC and DAC

Quantization 35

The Sampling Theorem 39
Digital-to-Analog Conversion 44
Analog Filters for Data Conversion 48
Selecting the Antialias Filter 55
Multirate Data Conversion 58

Single Bit Data Conversion 60

Chapter 4. DSP Software,

Computer Numbers 67

Fixed Point (Integers) 68

Floating Point (Real Numbers) 70
Number Precision 72

Execution Speed: Program Language 76
Execution Speed: Hardware 80
Execution Speed: Programming Tips 84

vi

FUNDAMENTALS

Chapter 5. Linear Systems. 87

Signals and Systems 87

Requirements for Linearity 89

Static Linearity and Sinusoidal Fidelity 92
Examples of Linear and Nonlinear Systems 94
Special Properties of Linearity 96
Superposition: the Foundation of DSP 98
Common Decompositions 100

Alternativesto Linearity 104

Chapter 6. Convolution 107

The Delta Function and Impulse Response 107
Convolution 108

The Input Side Algorithm 112

The Output Side Algorithm 116

The Sum of Weighted Inputs 122

Chapter 7. Propertiesof Convolution 123

Common Impulse Responses 123
Mathematical Properties 132
Correlation 136

Speed 140

Chapter 8. TheDiscrete Fourier Transform 141
The Family of Fourier Transforms 141
Notation and Format of thereal DFT 146
The Frequency Domain's Independent Variable 148
DFT Basis Functions 150
Synthesis, Calculating the Inverse DFT 152
Analysis, Calculating the DFT 156
Duality 161
Polar Notation 161
Polar Nuisances 164

Chapter 9. Applicationsof theDFT 169

Spectral Analysis of Signals 169
Frequency Response of Systems 177
Convolution viathe Frequency Domain 180

Chapter 10. Fourier Transform Properties 185

Linearity of the Fourier Transform 185
Characteristics of the Phase 188

Periodic Nature of the DFT 194

Compression and Expansion, Multirate methods 200

Vii

Multiplying Signals (Amplitude Modulation) 204
The Discrete Time Fourier Transform 206
Parseval's Relation 208

Chapter 11. Fourier TransformPairs 209

Delta Function Pairs 209
The Sinc Function 212
Other Transform Pairs 215
Gibbs Effect 218
Harmonics 220

Chirp Signals 222

Chapter 12. The Fast Fourier Transform 225

Real DFT Using the Complex DFT 225
How the FFT Works 228

FFT Programs 233

Speed and Precision Comparisons 237
Further Speed Increases 238

Chapter 13. Continuous Signal Processing 243

The Delta Function 243
Convolution 246

The Fourier Transform 252
The Fourier Series 255

DIGITAL FILTERS

Chapter 14. Introduction to Digital Filters.............. 261

Filter Basics 261

How Information is Represented in Signals 265
Time Domain Parameters 266

Frequency Domain Parameters 268

High-Pass, Band-Pass and Band-Reject Filters 271
Filter Classification 274

Chapter 15. Moving AverageFilters................... 277

Implementation by Convolution 277

Noise Reduction vs. Step Response 278
Frequency Response 280

Relatives of the Moving Average Filter 280
Recursive Implementation 282

Chapter 16. Windowed-SincFilters 285
Strategy of the Windowed-Sinc 285
Designing the Filter 288
Examples of Windowed-Sinc Filters 292
Pushing it to the Limit 293

viii

Chapter 17. Custom Filters

Arbitrary Frequency Response 297
Deconvolution 300
Optimal Filters 307

Chapter 18. FFT Convolution

The Overlap-Add Method 311
FFT Convolution 312
Speed Improvements 316

Chapter 19. RecursiveFilters

The Recursive Method 319
Single Pole Recursive Filters 322
Narrow-band Filters 326

Phase Response 328

Using Integers 332

Chapter 20. Chebyshev Filters

The Chebyshev and Butterworth Responses 333
Designing the Filter 334

Step Response Overshoot 338

Stability 339

Chapter 21. Filter Comparison

Match #1. Analog vs. Digital Filters 343
Match #2: Windowed-Sinc vs. Chebyshev 346
Match #3: Moving Average vs. Single Pole 348

APPLICATIONS

Chapter 22. AudioProcessing

Human Hearing 351

Timbre 355

Sound Quality vs. Data Rate 358

High Fidelity Audio 359

Companding 362

Speech Synthesis and Recognition 364
Nonlinear Audio Processing 368

Chapter 23. Image Formation and Display

Digital Image Structure 373

Cameras and Eyes 376

Television Video Signals 384

Other Image Acquisition and Display 386
Brightness and Contrast Adjustments 387
Grayscale Transforms 390

Warping 394

Chapter 24. Linear ImageProcessing 397

Convolution 397

3x3 Edge Modification 402

Convolution by Separability 404

Example of aLarge PSF: Illumination Flattening 407
Fourier Image Analysis 410

FFT Convolution 416

A Closer Look at Image Convolution 418

Chapter 25. Special Imaging Techniques 423

Spatial Resolution 423

Sample Spacing and Sampling Aperture 430
Signal-to-Noise Ratio 432

Morphological Image Processing 436
Computed Tomography 442

Chapter 26. Neural Networks(and more!) 451

Target Detection 451

Neural Network Architecture 458
Why Does it Work? 463
Training the Neural Network 465
Evaluating the Results 473
Recursive Filter Design 476

Chapter 27. Data Compressionc.uevu... 4381

Data Compression Strategies 481
Run-Length Encoding 483

Huffman Encoding 484
DeltaEncoding 486

LZW Compression 488

JPEG (Transform Compression) 494
MPEG 501

Chapter 28. Digital Signal Processors 503
How DSPs are different 503
Circular Buffering 506
Architecture of the Digital Signal Processor 509
Fixed versus Floating Point 514
C versus Assembly 520
How Fast are DSPs? 526
The Digital Signal Processor Market 531

Chapter 29. Getting Started withDSPs 535

The ADSP-2106x family 535

The SHARC EZ-KIT Lite 537

Design Example: An FIR Audio Filter 538
Analog Measurements on a DSP System 542

Another Look at Fixed versus Floating Point 544
Advanced Software Tools 546

COMPLEX TECHNIQUES
Chapter 30. Complex Numbers 551

The Complex Number System 551

Polar Notation 555

Using Complex Numbers by Substitution 557
Complex Representation of Sinusoids 559
Complex Representation of Systems 561
Electrical Circuit Analysis 563

Chapter 31. The Complex Fourier Transform 567

The Real DFT 567

Mathematical Equivalence 569

The Complex DFT 570

The Family of Fourier Transforms 575

Why the Complex Fourier TransformisUsed 577

Chapter 32. TheLaplaceTransform................... 581

The Nature of the s-Domain 581
Strategy of the Laplace Transform 588
Analysis of Electric Circuits 592

The Importance of Poles and Zeros 597
Filter Design in the ssDomain 600

Chapter 33. Thez-Transform 605

The Nature of the z-Domain 605
Analysis of Recursive Systems 610
Cascade and Parallel Stages 616

Spectral Inversion 619

Gain Changes 621
Chebyshev-Butterworth Filter Design 623
The Best and Worst of DSP 630

Xi

Preface

Goals and Strategies of this Book

The technical world is changing very rapidly. Inonly 15 years, the power of personal
computers has increased by afactor of nearly one-thousand. By all accounts, it will
increase by another factor of one-thousand in the next 15 years. This tremendous
power has changed the way science and engineering is done, and there is no better
example of this than Digital Signal Processing.

In the early 1980s, DSP was taught as a graduate level coursein electrical engineering.
A decade later, DSP had become a standard part of the undergraduate curriculum.
Today, DSP is a basic skill needed by scientists and engineers in many fields.
Unfortunately, DSP education has been slow to adapt to this change. Nearly all DSP
textbooks are still written in the traditional electrical engineering style of detailed and
rigorous mathematics. DSPisincredibly powerful, but if you can't understand it, you
can't useit!

This book was written for scientists and engineersin awide variety of fields. physics,
bioengineering, geology, oceanography, mechanical and electrical engineering, to name
just afew. The goal isto present practical techniques while avoiding the barriers of
detailed mathematics and abstract theory. To achieve this goal, three strategies were
employed in writing this book:

First, the techniques are explained, not simply proven to be true through mathematical
derivations. While much of the mathematicsisincluded, it is not used as the primary
means of conveying the information. Nothing beats a few well written paragraphs
supported by good illustrations.

Second, complex numbers are treated as an advanced topic, something to be learned
after the fundamental principles are understood. Chapters 1-29 explain all the basic
techniques using only algebra, and in rare cases, a small amount of elementary
calculus. Chapters 30-33 show how complex math extends the power of DSP,
presenting techniques that cannot be implemented with real numbers alone. Many
would view this approach as heresy! Traditional DSP textbooks are full of complex
math, often starting right from the first chapter.

Xii

Third, very simple computer programs are used. Most DSP programs are written in
C, Fortran, or asimilar language. However, learning DSP has different requirements
than using DSP. The student needs to concentrate on the algorithms and techniques,
without being distracted by the quirks of a particular language. Power and flexibility
aren't important; simplicity iscritical. The programsin thisbook are written to teach
DSP in the most straightforward way, with all other factors being treated as secondary.
Good programming styleis disregarded if it makes the program logic more clear. For
instance:

1 asimplified version of BASIC is used

A line numbers are included

[the only control structure used isthe FOR-NEXT loop
[there are no /O statements

Thisisthe simplest programming style | could find. Some may think that this book
would be better if the programs had been writtenin C. | couldn't disagree more.

The Intended Audience

This book is primarily intended for a one year course in practical DSP, with the
students being drawn from a wide variety of science and engineering fields. The
suggested prerequisites are:

[A coursein practical electronics: (op amps, RC circuits, etc.)
[A course in computer programming (Fortran or similar)
[Oneyear of calculus

This book was also written with the practicing professional in mind. Many everyday
DSP applications are discussed: digital filters, neural networks, data compression,
audio and image processing, etc. As much as possible, these chapters stand on their
own, not requiring the reader to review the entire book to solve a specific problem.

Support by Analog Devices

The Second Edition of this book includes two new chapters on Digital Signal
Processors, microprocessors specifically designed to carry out DSP tasks. Much of
the information for these chapters was generously provided by Analog Devices, Inc.,
aworld leader in the development and manufacturing of electronic components for
signal processing. ADI's encouragement and support has significantly expanded the
scope of this book, showing that DSP algorithms are only useful in conjunction with
the appropriate hardware.

Xiii

Acknowledgements

A specia thanks to the many reviewers who provided comments and suggestions on
this book. Their generous donation of time and skill has made this a better work:
Magnus Aronsson (Department of Electrical Engineering, University of Utah);
Bruce B. Azimi (U.S. Navy); Vernon L. Chi (Department of Computer Science,
University of North Carolina); Manohar Das, Ph.D. (Department of Electrical and
Systems Engineering, Oakland University); Carol A. Dean (Analog Devices, Inc.);
Fred DePiero, Ph.D. (Department of Electrical Engineering, CalPoly State
University); Jose Fridman, Ph.D. (Analog Devices, Inc.); Frederick K.
Duennebier, Ph. D. (Department of Geology and Geophysics, University of Hawaii,
Manoa); D. Lee Fugal (Space & Signals Technologies); Filson H. Glanz, Ph.D.
(Department of Electrical and Computer Engineering, University of New Hampshire);
Kenneth H. Jacker, (Department of Computer Science, Appalachian State
University); Rajiv Kapadia, Ph.D. (Department of Electrical Engineering, Mankato
State University); Dan King (Analog Devices, Inc.); Kevin Leary (Analog
Devices, Inc.); A. Dale Magoun, Ph.D. (Department of Computer Science,
Northeast Louisiana University); Ben Mbugua (Analog Devices, Inc.); Bernard
J. Maxum, Ph.D. (Department of Electrical Engineering, Lamar University); Paul
Morgan, Ph.D. (Department of Geology, Northern Arizona University); Dale H.
Mugler, Ph.D. (Department of Mathematical Science, University of Akron);
Christopher L. Mullen, Ph.D. (Department of Civil Engineering, University of
Mississippi); Cynthia L. Nelson, Ph.D. (Sandia National Laboratories);
Branislava Perunicic-Drazenovic, Ph.D. (Department of Electrical Engineering,
Lamar University); John Schmeelk, Ph.D. (Department of Mathematical Science,
Virginia Commonwealth University); Richard R. Schultz, Ph.D. (Department of
Electrical Engineering, University of North Dakota); David Skolnick (Analog
Devices, Inc.); Jay L. Smith, Ph.D. (Center for Aerospace Technology, Weber
State University); Jeffrey Smith, Ph.D. (Department of Computer Science,
University of Georgia); Oscar Yanez Suarez, Ph.D. (Department of Electrical
Engineering, Metropolitan University, |ztapalapa campus, Mexico City); and other
reviewers who wish to remain anonymous.

This book is now in the hands of the final reviewer, you. Please take the time to
give me your comments and suggestions. This will alow future reprints and editions
to serve your needs even better. All it takes is a two minute e-mail message to:
Smith@DSPguide.com. Thanks; | hope you enjoy the book.

Steve Smith
January 1999

Xiv

CHAPTER

1

The Breadth and Depth of DSP

Digital Signal Processing is one of the most powerful technologies that will shape science and
engineering in the twenty-first century. Revolutionary changes have already been made in a broad
range of fields: communications, medical imaging, radar & sonar, high fidelity music
reproduction, and oil prospecting, to name just afew. Each of these areas has developed a deep
DSP technology, with its own algorithms, mathematics, and specialized techniques. This
combination of breath and depth makes it impossible for any one individual to master all of the
DSP technology that has been developed. DSP education involves two tasks. learning general
concepts that apply to the field as a whole, and learning specialized techniques for your particular
area of interest. This chapter starts our journey into the world of Digital Signal Processing by
describing the dramatic effect that DSP has made in several diverse fields. The revolution has
begun.

The Roots of DSP

Digital Signal Processing is distinguished from other areas in computer science
by the unique type of data it uses: signals. In most cases, these signals
originate as sensory data from the real world: seismic vibrations, visual images,
sound waves, etc. DSP is the mathematics, the algorithms, and the techniques
used to manipulate these signals after they have been converted into a digital
form. Thisincludes a wide variety of goals, such as. enhancement of visual
images, recognition and generation of speech, compression of data for storage
and transmission, etc. Suppose we attach an analog-to-digital converter to a
computer and use it to acquire a chunk of real world data. DSP answers the
guestion: What next?

The roots of DSP are in the 1960s and 1970s when digital computers first
became available. Computers were expensive during this era, and DSP was
limited to only a few critical applications. Pioneering efforts were made in four
key areas. radar & sonar, where national security was at risk; oil exploration,
where large amounts of money could be made; space exploration, where the

The Scientist and Engineer's Guide to Digital Sgnal Processing

data are irreplaceable; and medical imaging, where lives could be saved.
The personal computer revolution of the 1980s and 1990s caused DSP to
explode with new applications. Rather than being motivated by military and
government needs, DSP was suddenly driven by the commercial marketplace.
Anyone who thought they could make money in the rapidly expanding field was
suddenly a DSP vender. DSP reached the public in such products as. mobile
telephones, compact disc players, and electronic voice mail. Figure 1-1
illustrates a few of these varied applications.

This technological revolution occurred from the top-down. In the early
1980s, DSP was taught as a graduate level course in electrical engineering.
A decade later, DSP had become a standard part of the undergraduate
curriculum. Today, DSP is a basic skill needed by scientists and engineers

-Space photograph enhancement
—> Space -Data compression
-Intelligent sensory analysis by
remote space probes

. -Diagnostic imaging (CT, MR,
—> M ed| Ca| ultrasound, and others)
-Electrocardiogram analysis
-Medical image storage/retrieval

. -Image and sound compression
—> Commerc| a| for multimedia presentation
-Movie specia effects

-Video conference calling

D SP — -Voice and data compression
—> Td ephone -Echo reduction

-Signal multiplexing
-Filtering

|\/| . | . -Radar

—> -Sonar

I Itary -Ordnance guidance
-Secure communication

| d a| -Oil and mineral prospecting
L— -Process monitoring & control
n UStrI -Nondestructive testing
-CAD and design tools

. . -Earthquake recording & analysis
—> Scientific Ddazauisiion
-Simulation and modeling

FIGURE 1-1
DSP hasrevolutionized many areasin science and engineering. A
few of these diverse applications are shown here.

Chapter 1- The Breadth and Depth of DSP 3

in many fields. As an analogy, DSP can be compared to a previous
technological revolution: electronics. While still the realm of electrical
engineering, nearly every scientist and engineer has some background in basic
circuit design. Without it, they would be lost in the technological world. DSP
has the same future.

This recent history is more than a curiosity; it has a tremendous impact on your
ability to learn and use DSP. Suppose you encounter a DSP problem, and turn
to textbooks or other publications to find a solution. What you will typically
find is page after page of equations, obscure mathematical symbols, and
unfamiliar terminology. It's a nightmare! Much of the DSP literature is
baffling even to those experienced in the field. It's not that there is anything
wrong with this material, it is just intended for a very specialized audience.
State-of-the-art researchers need this kind of detailed mathematics to
understand the theoretical implications of the work.

A basic premise of this book is that most practical DSP techniques can be
learned and used without the traditional barriers of detailed mathematics and
theory. The Scientist and Engineer’s Guide to Digital Signal Processing is
written for those who want to use DSP as a tool, not a new career.

The remainder of this chapter illustrates areas where DSP has produced
revolutionary changes. As you go through each application, notice that DSP
is very interdisciplinary, relying on the technical work in many adjacent
fields. As Fig. 1-2 suggests, the borders between DSP and other technical
disciplines are not sharp and well defined, but rather fuzzy and overlapping.
If you want to specialize in DSP, these are the allied areas you will also
need to study.

Communication
Theory

Digital .
Signal Analyds.
Processing Probability

and Statistics

Anaog
Signd
Processing
Andog Digital Decision
Electronics | Electronics \ Theory

FIGURE 1-2
Digital Signal Processing has fuzzy and overlapping borders with many other
areas of science, engineering and mathematics.

4 The Scientist and Engineer's Guide to Digital Sgnal Processing

Telecommunications

Telecommunications is about transferring information from one location to
another. This includes many forms of information: telephone conversations,
television signals, computer files, and other types of data. To transfer the
information, you need a channel between the two locations. This may be
awire pair, radio signal, optical fiber, etc. Telecommunications companies
receive payment for transferring their customer's information, while they
must pay to establish and maintain the channel. The financial bottom line
is simple: the more information they can pass through a single channel, the
more money they make. DSP has revolutionized the telecommunications
industry in many areas. signaling tone generation and detection, frequency
band shifting, filtering to remove power line hum, etc. Three specific
examples from the telephone network will be discussed here: multiplexing,
compression, and echo control.

Multiplexing

There are approximately one billion telephones in the world. At the press of
a few buttons, switching networks allow any one of these to be connected to
any other in only afew seconds. The immensity of this task is mind boggling!
Until the 1960s, a connection between two telephones required passing the
analog voice signals through mechanical switches and amplifiers. One
connection required one pair of wires. In comparison, DSP converts audio
signals into a stream of serial digital data. Since bits can be easily
intertwined and later separated, many telephone conversations can be
transmitted on a single channel. For example, atelephone standard known
as the T-carrier system can simultaneously transmit 24 voice signals. Each
voice signal is sampled 8000 times per second using an 8 bit companded
(logarithmic compressed) analog-to-digital conversion. This results in each
voice signal being represented as 64,000 bits/sec, and all 24 channels being
contained in 1.544 megabits/sec. This signal can be transmitted about 6000
feet using ordinary telephone lines of 22 gauge copper wire, a typical
interconnection distance. The financial advantage of digital transmission
is enormous. Wire and analog switches are expensive; digital logic gates
are cheap.

Compression

When a voice signal is digitized at 8000 samples/sec, most of the digital
information is redundant. That is, the information carried by any one
sample is largely duplicated by the neighboring samples. Dozens of DSP
algorithms have been developed to convert digitized voice signals into data
streams that require fewer bits/sec. These are called data compression
algorithms. Matching uncompression algorithms are used to restore the
signal to its original form. These algorithms vary in the amount of
compression achieved and the resulting sound quality. In general, reducing the
data rate from 64 kilobits/sec to 32 kilobits/sec results in no loss of sound
quality. When compressed to a data rate of 8 kilobits/sec, the sound is
noticeably affected, but still usable for long distance telephone networks.
The highest achievable compression is about 2 kilobits/sec, resulting in

Chapter 1- The Breadth and Depth of DSP 5

sound that is highly distorted, but usable for some applications such as military
and undersea communications.

Echo control

Echoes are a serious problem in long distance telephone connections.
When you speak into a telephone, a signal representing your voice travels
to the connecting receiver, where a portion of it returns as an echo. If the
connection is within a few hundred miles, the elapsed time for receiving the
echo is only a few milliseconds. The human ear is accustomed to hearing
echoes with these small time delays, and the connection sounds quite
normal. As the distance becomes larger, the echo becomes increasingly
noticeable and irritating. The delay can be several hundred milliseconds
for intercontinental communications, and is particularity objectionable.
Digital Signal Processing attacks this type of problem by measuring the
returned signal and generating an appropriate antisignal to cancel the
offending echo. This same technique allows speakerphone users to hear
and speak at the same time without fighting audio feedback (squealing).
It can also be used to reduce environmental noise by canceling it with
digitally generated antinoise.

Audio Processing

The two principal human senses are vision and hearing. Correspondingly,
much of DSP is related to image and audio processing. People listen to
both music and speech. DSP has made revolutionary changes in both
these areas.

Music

The path leading from the musician's microphone to the audiophile's speaker is
remarkably long. Digital data representation is important to prevent the
degradation commonly associated with analog storage and manipulation. This
is very familiar to anyone who has compared the musical quality of cassette
tapes with compact disks. In atypical scenario, amusical pieceis recorded in
a sound studio on multiple channels or tracks. In some cases, this even involves
recording individual instruments and singers separately. This is done to give
the sound engineer greater flexibility in creating the final product. The
complex process of combining the individual tracks into a final product is
called mix down. DSP can provide several important functions during mix
down, including: filtering, signal addition and subtraction, signal editing, etc.

One of the most interesting DSP applications in music preparation is
artificial reverberation. If the individua channels are simply added together,
the resulting piece sounds frail and diluted, much as if the musicians were
playing outdoors. This is because listeners are greatly influenced by the echo
or reverberation content of the music, which is usually minimized in the sound
studio. DSP allows artificial echoes and reverberation to be added during
mix down to simulate various ideal listening environments. Echoes with
delays of a few hundred milliseconds give the impression of cathedral like

The Scientist and Engineer's Guide to Digital Sgnal Processing

locations. Adding echoes with delays of 10-20 milliseconds provide the
perception of more modest size listening rooms.

Speech generation

Speech generation and recognition are used to communicate between humans
and machines. Rather than using your hands and eyes, you use your mouth and
ears. This is very convenient when your hands and eyes should be doing
something else, such as: driving a car, performing surgery, or (unfortunately)
firing your weapons at the enemy. Two approaches are used for computer
generated speech: digital recording and vocal tract simulation. In digital
recording, the voice of a human speaker is digitized and stored, usually in a
compressed form. During playback, the stored data are uncompressed and
converted back into an analog signal. An entire hour of recorded speech
requires only about three megabytes of storage, well within the capabilities of
even small computer systems. This is the most common method of digital
speech generation used today.

Vocal tract simulators are more complicated, trying to mimic the physical
mechanisms by which humans create speech. The human vocal tract is an
acoustic cavity with resonate frequencies determined by the size and shape of
the chambers. Sound originates in the vocal tract in one of two basic ways,
called voiced and fricative sounds. With voiced sounds, vocal cord vibration
produces near periodic pulses of air into the vocal cavities. In comparison,
fricative sounds originate from the noisy air turbulence at narrow constrictions,
such as the teeth and lips. Vocal tract simulators operate by generating digital
signals that resemble these two types of excitation. The characteristics of the
resonate chamber are simulated by passing the excitation signal through a
digital filter with similar resonances. This approach was used in one of the
very early DSP success stories, the Speak & Spell, a widely sold electronic
learning aid for children.

Speech recognition

The automated recognition of human speech is immensely more difficult
than speech generation. Speech recognition is a classic example of things
that the human brain does well, but digital computers do poorly. Digital
computers can store and recall vast amounts of data, perform mathematical
calculations at blazing speeds, and do repetitive tasks without becoming
bored or inefficient. Unfortunately, present day computers perform very
poorly when faced with raw sensory data. Teaching a computer to send you
a monthly electric bill is easy. Teaching the same computer to understand
your voice is a mgjor undertaking.

Digital Signal Processing generally approaches the problem of voice
recognition in two steps. feature extraction followed by feature matching.
Each word in the incoming audio signal is isolated and then analyzed to
identify the type of excitation and resonate frequencies. These parameters are
then compared with previous examples of spoken words to identify the closest
match. Often, these systems are limited to only a few hundred words; can
only accept speech with distinct pauses between words; and must be retrained
for each individual speaker. While this is adequate for many commercial

Chapter 1- The Breadth and Depth of DSP 7

applications, these limitations are humbling when compared to the abilities of
human hearing. There is a great deal of work to be done in this area, with
tremendous financial rewards for those that produce successful commercial
products.

Echo Location

A common method of obtaining information about a remote object is to bounce
a wave off of it. For example, radar operates by transmitting pulses of radio
waves, and examining the received signal for echoes from aircraft. In sonar,
sound waves are transmitted through the water to detect submarines and other
submerged objects. Geophysicists have long probed the earth by setting off
explosions and listening for the echoes from deeply buried layers of rock.
While these applications have a common thread, each has its own specific
problems and needs. Digital Signal Processing has produced revolutionary
changes in al three areas.

Radar

Radar is an acronym for RAdio Detection And Ranging. In the simplest
radar system, a radio transmitter produces a pulse of radio frequency
energy a few microseconds long. This pulse is fed into a highly directional
antenna, where the resulting radio wave propagates away at the speed of
light. Aircraft in the path of this wave will reflect a small portion of the
energy back toward a receiving antenna, situated near the transmission site.
The distance to the object is calculated from the elapsed time between the
transmitted pulse and the received echo. The direction to the object is
found more simply; you know where you pointed the directional antenna
when the echo was received.

The operating range of a radar system is determined by two parameters:. how
much energy is in the initial pulse, and the noise level of the radio receiver.
Unfortunately, increasing the energy in the pulse usually requires making the
pulse longer. In turn, the longer pulse reduces the accuracy and precision of
the elapsed time measurement. This results in a conflict between two important
parameters: the ability to detect objects at long range, and the ability to
accurately determine an object's distance.

DSP has revolutionized radar in three areas, all of which relate to this basic
problem. First, DSP can compress the pulse after it is received, providing
better distance determination without reducing the operating range. Second,
DSP can filter the received signal to decrease the noise. This increases the
range, without degrading the distance determination. Third, DSP enables the
rapid selection and generation of different pulse shapes and lengths. Among
other things, this allows the pulse to be optimized for a particular detection
problem. Now the impressive part: much of this is done at a sampling rate
comparable to the radio frequency used, at high as several hundred megahertz!
When it comes to radar, DSP is as much about high-speed hardware design as
it is about algorithms.

The Scientist and Engineer's Guide to Digital Sgnal Processing

Sonar

Sonar is an acronym for SOund NAvigation and Ranging. It isdivided into
two categories, active and passive. In active sonar, sound pulses between
2 kHz and 40 kHz are transmitted into the water, and the resulting echoes
detected and analyzed. Uses of active sonar include: detection &
localization of undersea bodies, navigation, communication, and mapping
the sea floor. A maximum operating range of 10 to 100 kilometers is
typical. In comparison, passive sonar simply listens to underwater sounds,
which includes: natural turbulence, marine life, and mechanical sounds from
submarines and surface vessels. Since passive sonar emits no energy, it is
ideal for covert operations. You want to detect the other guy, without him
detecting you. The most important application of passive sonar is in
military surveillance systems that detect and track submarines. Passive
sonar typically uses lower frequencies than active sonar because they
propagate through the water with less absorption. Detection ranges can be
thousands of kilometers.

DSP has revolutionized sonar in many of the same areas as radar: pulse
generation, pulse compression, and filtering of detected signals. In one
view, sonar is simpler than radar because of the lower frequencies involved.
In another view, sonar is more difficult than radar because the environment
is much less uniform and stable. Sonar systems usually employ extensive
arrays of transmitting and receiving elements, rather than just a single
channel. By properly controlling and mixing the signals in these many
elements, the sonar system can steer the emitted pulse to the desired
location and determine the direction that echoes are received from. To
handle these multiple channels, sonar systems require the same massive
DSP computing power as radar.

Reflection seismology

As early as the 1920s, geophysicists discovered that the structure of the earth's
crust could be probed with sound. Prospectors could set off an explosion and
record the echoes from boundary layers more than ten kilometers below the
surface. These echo seismograms were interpreted by the raw eye to map the
subsurface structure. The reflection seismic method rapidly became the
primary method for locating petroleum and mineral deposits, and remains so
today.

In the ideal case, a sound pulse sent into the ground produces a single echo for
each boundary layer the pulse passes through. Unfortunately, the situation is
not usually this simple. Each echo returning to the surface must pass through
all the other boundary layers above where it originated. This can result in the
echo bouncing between layers, giving rise to echoes of echoes being detected
at the surface. These secondary echoes can make the detected signal very
complicated and difficult to interpret. Digital Signal Processing has been
widely used since the 1960s to isolate the primary from the secondary echoes
in reflection seismograms. How did the early geophysicists manage without
DSP? The answer is simple: they looked in easy places, where multiple
reflections were minimized. DSP allows oil to be found in difficult locations,
such as under the ocean.

Chapter 1- The Breadth and Depth of DSP 9

Image Processing

Images are signals with special characteristics. First, they are a measure of a
parameter over space (distance), while most signals are a measure of a
parameter over time. Second, they contain a great deal of information. For
example, more than 10 megabytes can be required to store one second of
television video. Thisis more than a thousand times greater than for a similar
length voice signal. Third, the final judge of quality is often a subjective
human evaluation, rather than an objective criteria. These special
characteristics have made image processing a distinct subgroup within DSP.

M edical

In 1895, Wilhelm Conrad Rontgen discovered that x-rays could pass through
substantial amounts of matter. Medicine was revolutionized by the ability to
look inside the living human body. Medical x-ray systems spread throughout
the world in only a few years. In spite of its obvious success, medical x-ray
imaging was limited by four problems until DSP and related technigues came
along in the 1970s. First, overlapping structures in the body can hide behind
each other. For example, portions of the heart might not be visible behind the
ribs. Second, it is not always possible to distinguish between similar tissues.
For example, it may be able to separate bone from soft tissue, but not
distinguish a tumor from the liver. Third, x-ray images show anatomy, the
body's structure, and not physiology, the body's operation. The x-ray image of
aliving person looks exactly like the x-ray image of a dead one! Fourth, x-ray
exposure can cause cancer, requiring it to be used sparingly and only with
proper justification.

The problem of overlapping structures was solved in 1971 with the introduction
of the first computed tomography scanner (formerly called computed axial
tomography, or CAT scanner). Computed tomography (CT) is a classic
example of Digital Signal Processing. X-rays from many directions are passed
through the section of the patient's body being examined. Instead of simply
forming images with the detected x-rays, the signals are converted into digital
data and stored in a computer. The information is then used to calculate
images that appear to be slices through the body. These images show much
greater detail than conventional techniques, allowing significantly better
diagnosis and treatment. The impact of CT was nearly as large as the original
introduction of x-ray imaging itself. Within only a few years, every major
hospital in the world had access to a CT scanner. In 1979, two of CT's
principle contributors, Godfrey N. Hounsfield and Allan M. Cormack, shared
the Nobel Prize in Medicine. That's good DSP!

The last three x-ray problems have been solved by using penetrating energy
other than x-rays, such as radio and sound waves. DSP plays akey rolein all
these techniques. For example, Magnetic Resonance Imaging (MRI) uses
magnetic fields in conjunction with radio waves to probe the interior of the
human body. Properly adjusting the strength and frequency of the fields cause
the atomic nuclei in alocalized region of the body to resonate between quantum
energy states. This resonance results in the emission of a secondary radio

10

The Scientist and Engineer's Guide to Digital Sgnal Processing

wave, detected with an antenna placed near the body. The strength and other
characteristics of this detected signal provide information about the localized
region in resonance. Adjustment of the magnetic field allows the resonance
region to be scanned throughout the body, mapping the internal structure. This
information is usually presented as images, just as in computed tomography.
Besides providing excellent discrimination between different types of soft
tissue, MRI can provide information about physiology, such as blood flow
through arteries. MRI relies totally on Digital Signal Processing techniques,
and could not be implemented without them.

Space

Sometimes, you just have to make the most out of a bad picture. This is
frequently the case with images taken from unmanned satellites and space
exploration vehicles. No one is going to send a repairman to Mars just to
tweak the knobs on a cameral DSP can improve the quality of images taken
under extremely unfavorable conditions in several ways: brightness and
contrast adjustment, edge detection, noise reduction, focus adjustment, motion
blur reduction, etc. Images that have spatial distortion, such as encountered
when a flat image is taken of a spherical planet, can also be warped into a
correct representation. Many individual images can also be combined into a
single database, alowing the information to be displayed in unique ways. For
example, a video sequence simulating an aerial flight over the surface of a
distant planet.

Commercial Imaging Products

The large information content in images is a problem for systems sold in mass
guantity to the general public. Commercial systems must be cheap, and this
doesn't mesh well with large memories and high data transfer rates. One
answer to this dilemma is image compression. Just as with voice signals,
images contain a tremendous amount of redundant information, and can be run
through algorithms that reduce the number of bits needed to represent them.
Television and other moving pictures are especially suitable for compression,
since most of the image remain the same from frame-to-frame. Commercial
imaging products that take advantage of this technology include: video
telephones, computer programs that display moving pictures, and digital
television.

CHAPTER

2

Statistics, Probability and Noise

Statistics and probability are used in Digital Signal Processing to characterize signals and the
processes that generate them. For example, a primary use of DSP is to reduce interference, noise,
and other undesirable components in acquired data. These may be an inherent part of the signal
being measured, arise from imperfections in the data acquisition system, or be introduced as an
unavoidable byproduct of some DSP operation. Statistics and probability allow these disruptive
features to be measured and classified, the first step in developing strategies to remove the
offending components. This chapter introduces the most important concepts in statistics and
probability, with emphasis on how they apply to acquired signals.

Signal and Graph Terminology

A signal is a description of how one parameter is related to another parameter.
For example, the most common type of signal in analog electronics is a voltage
that varies with time. Since both parameters can assume a continuous range
of values, we will call this a continuous signal. In comparison, passing this
signal through an anal og-to-digital converter forces each of the two parameters
to be quantized. For instance, imagine the conversion being done with 12 bits
at a sampling rate of 1000 samples per second. The voltage is curtailed to 4096
(2*%) possible binary levels, and the time is only defined at one millisecond
increments. Signals formed from parameters that are quantized in this manner
are said to be discrete signals or digitized signals. For the most part,
continuous signals exist in nature, while discrete signals exist inside computers
(although you can find exceptions to both cases). It is aso possible to have
signals where one parameter is continuous and the other is discrete. Since
these mixed signals are quite uncommon, they do not have special names given
to them, and the nature of the two parameters must be explicitly stated.

Figure 2-1 shows two discrete signals, such as might be acquired with a
digital data acquisition system. The vertical axis may represent voltage, light

11

12

The Scientist and Engineer's Guide to Digital Sgnal Processing

intensity, sound pressure, or an infinite number of other parameters. Since we
don't know what it represents in this particular case, we will give it the generic
label: amplitude. This parameter is also called several other names:. the y-
axis, the dependent variable, the range, and the ordinate.

The horizontal axis represents the other parameter of the signal, going by
such names as: the x-axis, the independent variable, the domain, and the
abscissa. Time is the most common parameter to appear on the horizontal axis
of acquired signals; however, other parameters are used in specific applications.
For example, a geophysicist might acquire measurements of rock density at
equally spaced distances along the surface of the earth. To keep things
general, we will simply label the horizontal axis: sample number. If this
were a continuous signal, another label would have to be used, such as: time,
distance, x, etc.

The two parameters that form a signal are generally not interchangeable. The
parameter on the y-axis (the dependent variable) is said to be a function of the
parameter on the x-axis (the independent variable). In other words, the
independent variable describes how or when each sample is taken, while the
dependent variable is the actual measurement. Given a specific value on the
x-axis, we can always find the corresponding value on the y-axis, but usually
not the other way around.

Pay particular attention to the word: domain, a very widely used term in DSP.
For instance, a signal that uses time as the independent variable (i.e., the
parameter on the horizontal axis), is said to be in the time domain. Another
common signal in DSP uses frequency as the independent variable, resulting in
the term, frequency domain. Likewise, signals that use distance as the
independent parameter are said to be in the spatial domain (distance is a
measure of space). The type of parameter on the horizontal axis is the domain
of the signal; it's that simple. What if the x-axis is labeled with something
very generic, such as sample number? Authors commonly refer to these signals
as being in the time domain. This is because sampling at equal intervals of
time is the most common way of obtaining signals, and they don't have anything
more specific to call it.

Although the signals in Fig. 2-1 are discrete, they are displayed in this figure
as continuous lines. This is because there are too many samples to be
distinguishable if they were displayed as individual markers. In graphs that
portray shorter signals, say less than 100 samples, the individual markers are
usually shown. Continuous lines may or may not be drawn to connect the
markers, depending on how the author wants you to view the data. For
instance, a continuous line could imply what is happening between samples, or
simply be an aid to help the reader's eye follow atrend in noisy data. The
point is, examine the labeling of the horizontal axis to find if you are working
with a discrete or continuous signal. Don't rely on an illustrator's ability to
draw dots.

The variable, N, is widely used in DSP to represent the total number of
samples in a signal. For example, N =512 for the signals in Fig. 2-1. To

Chapter 2- Statistics, Probability and Noise 13

8 T T T T T T T 8 T T T T T T T
L L I I I L L L L I I I
a Men=050=1 | | | | |b. Mean=30,0=02 | | | |
6T ——=—F——==f-——=F-———9——--- Il SeE e ER 6——--—- | e Ikt Ikt e e EEE
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
P e e e it S P s EEEEE e it EEEE
g I I I | I I g I I I I
g 27~ ' i et g 2T-—--- kRt EEb R F====f====f===-1
E ‘ | |' ' 1 LA | | E I I I I I I I
< il ‘ i < IR
0t ag ‘ Tk (il im0 0 -=--t---—t-mmd-— == i Ay
I I I I I I I I I I
I I I I I I I I I I I I
I I I I I I I I I I I I I
i Rl Rty Rl I Y e [l Rt Rl e
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
-4 f t t t t t t \ -4 f t t t t t t
0 64 128 192 256 320 384 448 511 0 64 128 192 256 320 384 448 511
Sample number Sample number
FIGURE 2-1

Examples of two digitized signals with different means and standard deviations.

keep the data organized, each sample is assigned a sample number or
index. These are the numbers that appear along the horizontal axis. Two
notations for assigning sample numbers are commonly used. In the first
notation, the sample indexes run from 1 to N (e.g., 1 to 512). In the second
notation, the sample indexes run from 0 to N-1 (e.g., 0 to 511).
Mathematicians often use the first method (1 to N), while those in DSP
commonly uses the second (0to N-1). In this book, we will use the second
notation. Don't dismiss this as a trivial problem. It will confuse you
sometime during your career. Look out for it!

Mean and Standard Deviation
The mean, indicated by u (alower case Greek mu), is the statistician's jargon

for the average value of asignal. It isfound just as you would expect: add all
of the samples together, and divide by N. It looks like this in mathematical

form:
EQUATION 2-1
Calculation of asignal'smean. Thesignal is 1 N-1
contained in X, through X4, i isan index that H o= = X.
runsthrough these values, and pisthe mean. N 5o !

In words, sum the values in the signal, x , by letting the index, i, run from 0
to N-1. Then finish the calculation by dividing the sum by N. This is
identical to the equation: p = (x,+ X+ X+ -+ X,_,)/N . If you are not already
familiar with = (upper case Greek sigma) being used to indicate summation,
study these equations carefully, and compare them with the computer program
in Table 2-1. Summations of this type are abundant in DSP, and you need to
understand this notation fully.

14 The Scientist and Engineer's Guide to Digital Sgnal Processing

In electronics, the mean is commonly called the DC (direct current) value.
Likewise, AC (alternating current) refers to how the signal fluctuates around
the mean value. If the signal is a simple repetitive waveform, such as a sine
or square wave, its excursions can be described by its peak-to-peak amplitude.
Unfortunately, most acquired signals do not show a well defined peak-to-peak
value, but have a random nature, such as the signals in Fig. 2-1. A more
generalized method must be used in these cases, called the standard
deviation, denoted by ¢ (alower case Greek sigma).

As a starting point, the expression, |x - p|, describes how far the i " sample
deviates (differs) from the mean. The average deviation of a signal is found
by summing the deviations of all the individual samples, and then dividing by
the number of samples, N. Notice that we take the absolute value of each
deviation before the summation; otherwise the positive and negative terms
would average to zero. The average deviation provides a single number
representing the typical distance that the samples are from the mean. While
convenient and straightforward, the average deviation is almost never used in
statistics. This is because it doesn't fit well with the physics of how signals
operate. In most cases, the important parameter is not the deviation from the
mean, but the power represented by the deviation from the mean. For example,
when random noise signals combine in an electronic circuit, the resultant noise
is equal to the combined power of the individual signals, not their combined
amplitude.

The standard deviation is similar to the average deviation, except the
averaging is done with power instead of amplitude. This is achieved by
squaring each of the deviations before taking the average (remember, power «
voltage®). To finish, the square root is taken to compensate for the initial
squaring. In equation form, the standard deviation is calculated:

EQUATION 2-2

Calculation of the standard deviation of a 2 1 N-1 2
signal. The signal is stored in x, W is the o° = — Z(xi - W)
mean found from Eg. 2-1, N isthe number of N-1i-0

samples, and s isthe standard deviation.

In the alternative notation: o= /(x,~ W)®+ (x,~ B)*+ =+ (xy ;= W?/(N-1).
Notice that the average is carried out by dividing by N- 1 instead of N. This
is a subtle feature of the equation that will be discussed in the next section.
The term, o2, occurs frequently in statistics and is given the name variance.
The standard deviation is a measure of how far the signal fluctuates from the
mean. The variance represents the power of this fluctuation. Another term
you should become familiar with is the rms (root-mean-square) value,
frequently used in electronics. By definition, the standard deviation only
measures the AC portion of asignal, while the rms value measures both the AC
and DC components. If a signal has no DC component, its rms value is
identical to its standard deviation. Figure 2-2 shows the relationship between
the standard deviation and the peak-to-peak value of several common
waveforms.

Chapter 2- Statistics, Probability and Noise 15

a. Square Wave, Vpp = 20 b. Trianglewave, Vpp = y120

VIp } v]); {o

c. Sinewave, Vpp = 2/20 d. Random noise, Vpp = 6-8 o

1 To

Vpp

i

FIGURE 2-2

Ratio of the peak-to-peak amplitude to the standard deviation for several common waveforms. For the square
wave, thisratio is 2; for thetriangle wave it is /12 = 3.46; for the sinewave it is 2/2 = 2.83. While random
noise has no exact peak-to-peak value, it is approximately 6 to 8 times the standard deviation.

Table 2-1 lists a computer routine for calculating the mean and standard
deviation using Egs. 2-1 and 2-2. The programs in this book are intended to
convey algorithms in the most straightforward way; all other factors are
treated as secondary. Good programming techniques are disregarded if it
makes the program logic more clear. For instance: a simplified version of
BASIC is used, line numbers are included, the only control structure allowed
is the FOR-NEXT loop, there are no 1/O statements, etc. Think of these
programs as an alternative way of understanding the equations used

100 CALCULATION OF THE MEAN AND STANDARD DEVIATION

110

120 DIM X[511] '"The signal is held in X[0] to X[511]

130 N% =512 'N% is the number of pointsin the signal

140

150 GOSUB X XXX 'Mythical subroutine that loads the signal into X[]
160"

170MEAN =0 'Find the mean via Eq. 2-1

180 FOR 1% =0TO N%-1
190 MEAN = MEAN + X[1%]
200 NEXT 1%
210 MEAN = MEAN/N%
220"
230 VARIANCE =0 'Find the standard deviation via Eq. 2-2
240 FOR 1% =0 TO N%-1
250 VARIANCE = VARIANCE + (X[1%] - MEAN)"2
260 NEXT 1%
270 VARIANCE = VARIANCE/(N%-1)
280 SD = SQR(VARIANCE)
290"
300 PRINT MEAN SD 'Print the calculated mean and standard deviation
310"
320 END
TABLE 2-1

16 The Scientist and Engineer's Guide to Digital Sgnal Processing

in DSP. If you can't grasp one, maybe the other will help. In BASIC, the
% character at the end of a variable name indicates it is an integer. All
other variables are floating point. Chapter 4 discusses these variable types
in detail.

This method of calculating the mean and standard deviation is adequate for
many applications; however, it has two limitations. First, if the mean is
much larger than the standard deviation, Eq. 2-2 involves subtracting two
numbers that are very close in value. This can result in excessive round-off
error in the calculations, a topic discussed in more detail in Chapter 4.
Second, it is often desirable to recal culate the mean and standard deviation
as new samples are acquired and added to the signal. We will call this type
of calculation: running statistics. While the method of Egs. 2-1 and 2-2
can be used for running statistics, it requires that all of the samples be
involved in each new calculation. This is a very inefficient use of
computational power and memory.

A solution to these problems can be found by manipulating Egs. 2-1 and 2-2 to
provide another equation for calculating the standard deviation:

EQUATION 2-3 N-1 N-1 2
Calculation of the standard deviation using 2 1 2 1

running statistics. This equation providesthe o X - N Z X;
same result as Eq. 2-2, but with less round- N-1]i-o0

off noise and greater computational

efficiency. The signal is expressed in terms

of three accumulated parameters: N, the total

number of samples; sum, the sum of these

samples; and sum of squares, the sum of the

squares of the samples. The mean and

standard deviation are then calculated from 2 1

2
sum
these three accumul ated parameters. o = N-1 sumof Squares - N

i=0

or using a simpler notation,

While moving through the signal, a running tally is kept of three parameters:
(1) the number of samples already processed, (2) the sum of these samples,
and (3) the sum of the squares of the samples (that is, square the value of
each sample and add the result to the accumulated value). After any number
of samples have been processed, the mean and standard deviation can be
efficiently calculated using only the current value of the three parameters.
Table 2-2 shows a program that reports the mean and standard deviation in
this manner as each new sample is taken into account. This is the method
used in hand calculators to find the statistics of a sequence of numbers.
Every time you enter a number and press the = (summation) key, the three
parameters are updated. The mean and standard deviation can then be found
whenever desired, without having to recal culate the entire sequence.

Chapter 2- Statistics, Probability and Noise 17

100 'MEAN AND STANDARD DEVIATION USING RUNNING STATISTICS

110°

120 DIM X[511] '"The signal is held in X[0] to X[511]

130*

140 GOSUB X XXX 'Mythical subroutine that loads the signal into X[]

150"
160 N% =0
170 SUM =0

'Zero the three running parameters

180 SUMSQUARES =0

190*

200 FOR 1% =0TO 511 'Loop through each sample in the signal

210

220 N% = N%+1 'Update the three parameters
230 SUM = SUM + X(1%)
240 SUMSQUARES = SUMSQUARES + X (1%)"2

250

260 MEAN = SUM/N% 'Calculate mean and standard deviation via Eq. 2-3
270 VARIANCE = (SUMSQUARES - SUM72/N%) / (N%-1)
280 SD = SQR(VARIANCE)

290
300 PRINT
310

MEAN SD 'Print the running mean and standard deviation

320 NEXT 1%

330°
340 END

TABLE 2-2

Before ending this discussion on the mean and standard deviation, two other
terms need to be mentioned. In some situations, the mean describes what is
being measured, while the standard deviation represents noise and other
interference. In these cases, the standard deviation is not important in itself, but
only in comparison to the mean. This givesrise to the term: signal-to-noise
ratio (SNR), which is equal to the mean divided by the standard deviation.
Another term is also used, the coefficient of variation (CV). Thisis defined
as the standard deviation divided by the mean, multiplied by 100 percent. For
example, asignal (or other group of measure values) with a CV of 2%, has an
SNR of 50. Better data means a higher value for the SNR and a lower value
for the CV.

Signal vs. Underlying Process

Statistics is the science of interpreting numerical data, such as acquired
signals. In comparison, probability is used in DSP to understand the
processes that generate signals. Although they are closely related, the
distinction between the acquired signal and the underlying process is key
to many DSP techniques.

For example, imagine creating a 1000 point signal by flipping a coin 1000
times. If the coin flip is heads, the corresponding sample is made a value of
one. On tails, the sample is set to zero. The process that created this signal
has a mean of exactly 0.5, determined by the relative probability of each
possible outcome: 50% heads, 50% tails. However, it is unlikely that the
actual 1000 point signal will have a mean of exactly 0.5. Random chance

18 The Scientist and Engineer's Guide to Digital Sgnal Processing

will make the number of ones and zeros dlightly different each time the signal
is generated. The probabilities of the underlying process are constant, but the
statistics of the acquired signal change each time the experiment is repeated.
This random irregularity found in actual data is called by such names as:
statistical variation, statistical fluctuation, and statistical noise.

This presents a bit of a dilemma. When you see the terms:. mean and standard
deviation, how do you know if the author is referring to the statistics of an
actual signal, or the probabilities of the underlying process that created the
signal? Unfortunately, the only way you can tell is by the context. Thisis not
so for all terms used in statistics and probability. For example, the histogram
and probability mass function (discussed in the next section) are matching
concepts that are given separate hames.

Now, back to Eq. 2-2, calculation of the standard deviation. As previously
mentioned, this equation divides by N-1 in calculating the average of the squared
deviations, rather than simply by N. To understand why thisis so, imagine that
you want to find the mean and standard deviation of some process that generates
signals. Toward this end, you acquire a signal of N samples from the process,
and calculate the mean of the signal via Eq. 2.1. You can then use this as an
estimate of the mean of the underlying process; however, you know there will
be an error due to statistical noise. In particular, for random signals, the
typical error between the mean of the N points, and the mean of the underlying
process, is given by:

EQUATION 2-4

Typical error in calculating the mean of an . o
underlying process by using afinite number Typl cal error = —
of samples, N. The parameter, s , isthe Nll2

standard deviation.

If N issmall, the statistical noise in the calculated mean will be very large.
In other words, you do not have access to enough data to properly
characterize the process. The larger the value of N, the smaller the expected
error will become. A milestone in probability theory, the Strong Law of
Large Numbers, guarantees that the error becomes zero as N approaches
infinity.

In the next step, we would like to calculate the standard deviation of the
acquired signal, and use it as an estimate of the standard deviation of the
underlying process. Herein lies the problem. Before you can calculate the
standard deviation using Eq. 2-2, you need to already know the mean, L.
However, you don't know the mean of the underlying process, only the mean
of the N point signal, which contains an error due to statistical noise. This
error tends to reduce the calculated value of the standard deviation. To
compensate for this, N is replaced by N-1. If N is large, the difference
doesn't matter. If N is small, this replacement provides a more accurate

Chapter 2- Statistics, Probability and Noise 19

8 T T T T T T T 8 T T T T T T T
a. Changing mean and standard deviation ‘ ‘ b. Changing mean, constant standard deviation ‘
61-——- R e S F———T————T-———1 6 ————T————f————q———————— Fe———r-——-T-——=
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
AN R S N N AN R S U O N N
R N A A e AN
8 | | | | | 8 | | | |
= | | | | | = | | | I
B 27 1" “‘Ir““I ““““ + “““ B2 I I N wl | |‘ 1) 1N
£ s ! g 0 b A, (kWA L
< i I < ‘ | | N ‘ |
0 ARG R LR | t 1L b L R R i B
I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I
T S s e e e A s e e e A
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
-4 t t t t t t t -4 t t t t t t t \
0 64 128 192 256 320 384 448 511 0 64 128 192 256 320 384 448 511
Sample number Sample number

FIGURE 2-3

Examples of signals generated from nonstationary processes. In (@), both the mean and standard deviation
change. In (b), the standard deviation remains a constant value of one, while the mean changes from avalue
of zerototwo. Itisacommon analysis technique to break these signals into short segments, and calculate
the statistics of each segment individually.

estimate of the standard deviation of the underlying process. In other words, Eq.
2-2 is an estimate of the standard deviation of the underlying process. If we
divided by N in the equation, it would provide the standard deviation of the
acquired signal.

As anillustration of these ideas, look at the signalsin Fig. 2-3, and ask: are the
variations in these signals a result of statistical noise, or is the underlying
process changing? It probably isn't hard to convince yourself that these changes
are too large for random chance, and must be related to the underlying process.
Processes that change their characteristics in this manner are called
nonstationary. In comparison, the signals previously presented in Fig. 2-1
were generated from a stationary process, and the variations result completely
from statistical noise. Figure 2-3b illustrates a common problem with
nonstationary signals: the slowly changing mean interferes with the calculation
of the standard deviation. In this example, the standard deviation of the signal,
over a short interval, is one. However, the standard deviation of the entire
signal is 1.16. This error can be nearly eliminated by breaking the signal into
short sections, and calculating the statistics for each section individually. If
needed, the standard deviations for each of the sections can be averaged to
produce a single value.

The Histogram, Pmf and Pdf

Suppose we attach an 8 bit analog-to-digital converter to a computer, and
acquire 256,000 samples of some signal. As an example, Fig. 2-4a shows
128 samples that might be a part of this data set. The value of each sample
will be one of 256 possibilities, 0 through 255. The histogram displays the
number of samples there are in the signal that have each of these possible
values. Figure (b) shows the histogram for the 128 samples in (a). For

20 The Scientist and Engineer's Guide to Digital Sgnal Processing

255

192+

Amplitude
2
-

64—

Sample number

FIGURE 2-4

Examples of histograms. Figure (a) shows
128 samples from a very long signal, with
each sample being an integer between 0 and
255. Figures (b) and (c) shows histograms
using 128 and 256,000 samples from the
signal, respectively. As shown, the histogram
is smoother when more samples are used.

374 b. 128 point histogram }—

Number of occurences

100 110

90

120 130 140 150 160 170
Value of sample

10000

c. 256,000 point histogram ‘

8000

Number of occurences
2
(=]
(=]
|

120 130 140 150 160 170
Value of sample

example, there are 2 samples that have a value of 110, 8 samples that have a
value of 131, 0 samples that have a value of 170, etc. We will represent the
histogram by H;, where i is an index that runs from 0 to M-1, and M is the
number of possible values that each sample can take on. For instance, H, is the
number of samples that have a value of 50. Figure (c) shows the histogram of
the signal using the full data set, all 256k points. As can be seen, the larger
number of samples results in a much smoother appearance. Just as with the
mean, the statistical noise (roughness) of the histogram is inversely proportional
to the square root of the number of samples used.

From the way it is defined, the sum of al of the values in the histogram must be
equal to the number of points in the signal:

EQUATION 2-5

The sum of all of the values in the histogram is
equal to the number of pointsin the signal. In
this equation, H; is the histogram, N is the
number of points in the signal, and M is the
number of pointsin the histogram.

M
N=Y H,

=

o

The histogram can be used to efficiently calculate the mean and standard
deviation of very large data sets. This is especially important for images,
which can contain millions of samples. The histogram groups samples

Chapter 2- Statistics, Probability and Noise 21

together that have the same value. This allows the statistics to be calculated by
working with a few groups, rather than a large number of individual samples.
Using this approach, the mean and standard deviation are calculated from the
histogram by the equations:

EQUATION 2-6
Calculation of the mean from the histogram. M-1
This can be viewed as combining all samples b= i Z iH
having the same value into groups, and then N & !

; i=0
using Eq. 2-1 on each group.
EQUATION 2-7
Calculation of the standard deviation from 2 1 M-1 . 2
the histogram. This is the same concept as 0° = — Z (i-p)H,
Eq. 2-2, except that all samples having the N-1i-0

same value are operated on at once.

Table 2-3 contains a program for calculating the histogram, mean, and
standard deviation using these equations. Calculation of the histogram is
very fast, since it only requires indexing and incrementing. In comparison,

100 'CALCULATION OF THE HISTOGRAM, MEAN, AND STANDARD DEVIATION

110

120 DIM X9%[25000] "X %[0] to X%[25000] holds the signal being processed
130 DIM H%[255] 'H%[0] to H%[255] holds the histogram

140 N% = 25001 'Set the number of pointsin the signal

150

160 FOR 1% =0 TO 255 'Zero the histogram, so it can be used as an accumulator

170 H%[1%] = 0
180 NEXT 1%
190
200 GOSUB XXXX 'Mythical subroutine that loads the signal into X%]
210"
220 FOR 1% = 0 TO 25000 'Calculate the histogram for 25001 points
230 HY%[X%[1%]] = H%[X%][1%]] + 1
240 NEXT 1%
250"
260 MEAN =0 'Calculate the mean via Eq. 2-6
270 FOR 1% =0TO 255
280 MEAN = MEAN + 1% * H%[1%)]
290 NEXT 1%
300 MEAN = MEAN / N%
310"
320 VARIANCE =0 'Calculate the standard deviation via Eq. 2-7
330 FOR 1% =0TO 255
340 VARIANCE = VARIANCE + H[1%] * (1%-MEAN)"2
350 NEXT 1%
360 VARIANCE = VARIANCE / (N%-1)
370 SD = SQR(VARIANCE)
380"
390 PRINT MEAN SD 'Print the cal culated mean and standard deviation.
400"
410 END
TABLE 2-3

22

The Scientist and Engineer's Guide to Digital Sgnal Processing

calculating the mean and standard deviation requires the time consuming
operations of addition and multiplication. The strategy of this algorithm is
to use these slow operations only on the few numbers in the histogram, not
the many samples in the signal. This makes the algorithm much faster than
the previously described methods. Think a factor of ten for very long signals
with the calculations being performed on a general purpose computer.

The notion that the acquired signal is a noisy version of the underlying
process is very important; so important that some of the concepts are given
different names. The histogram is what is formed from an acquired signal.
The corresponding curve for the underlying process is called the probability
mass function (pmf). A histogram is always calculated using a finite
number of samples, while the pmf is what would be obtained with an infinite
number of samples. The pmf can be estimated (inferred) from the histogram,
or it may be deduced by some mathematical technique, such as in the coin
flipping example.

Figure 2-5 shows an example pmf, and one of the possible histograms that could
be associated with it. The key to understanding these concepts rests in the units
of the vertical axis. As previously described, the vertical axis of the histogram
is the number of times that a particular value occurs in the signal. The vertical
axis of the pmf contains similar information, except expressed on a fractional
basis. In other words, each value in the histogram is divided by the total
number of samples to approximate the pmf. This means that each value in the
pmf must be between zero and one, and that the sum of all of the values in the
pmf will be equal to one.

The pmf is important because it describes the probability that a certain value
will be generated. For example, imagine a signal with the pmf of Fig. 2-5b,
such as previously shown in Fig. 2-4a. What is the probability that a sample
taken from this signal will have a value of 120? Figure 2-5b provides the
answer, 0.03, or about 1 chance in 34. What is the probability that a
randomly chosen sample will have a value greater than 150? Adding up the
values in the pmf for: 151, 152, 153, -+, 255, provides the answer, 0.0122,
or about 1 chance in 82. Thus, the signal would be expected to have a value
exceeding 150 on an average of every 82 points. What is the probability that
any one sample will be between 0 and 255? Summing all of the valuesin
the histogram produces the probability of 1.00, a certainty that this will
occur.

The histogram and pmf can only be used with discrete data, such as a
digitized signal residing in a computer. A similar concept applies to
continuous signals, such as voltages appearing in analog electronics. The
probability density function (pdf), also called the probability distribution
function, is to continuous signals what the probability mass function is to
discrete signals. For example, imagine an analog signal passing through an
analog-to-digital converter, resulting in the digitized signal of Fig. 2-4a. For
simplicity, we will assume that voltages between 0 and 255 millivolts become
digitized into digital numbers between 0 and 255. The pmf of this digital

Chapter 2- Statistics, Probability and Noise

10000
a. Histogram
8000
8 o
5] L.
8 6000 X =
u
B - -
u
& 4000 - .
[S - [
> u
z "
2000 - =
4 S
0 ' \ \ \ \ \ ‘
90 100 110 120 130 140 150 160 170
Value of sample
FIGURE 2-5

The relationship between (a) the histogram, (b) the
probability mass function (pmf), and (c) the
probability density function (pdf). The histogramis
calculated from afinite number of samples. The pmf
describes the probabilities of the underlying process.
The pdf is similar to the pmf, but is used with
continuous rather than discrete signals. Even though
the vertical axis of (b) and (c) have the same values
(0to 0.06), thisis only acoincidence of thisexample.
The amplitude of these three curvesis determined by:
(a) the sum of the valuesin the histogram being equal
to the number of samplesin the signal; (b) the sum of
the values in the pmf being equal to one, and (c) the
area under the pdf curve being equal to one.

0.060

‘b. Probability Mass Function (pmf) ‘

170

¢ 0.050
o
3 0.040
8)
o [] []
S0.030 . .
? N .I I.
= u n
§ 0.020 L -~
] .I I.
T u Y
0.010 o ™
0.000 ! T T T T T "
90 100 110 120 130 140 150 160
Value of sample
0.060
‘c. Probability Density Function (pdf) ‘
0.050
%0 040
e /\
©
20.030
80.020
T

0.010

\

/
_

0.000

90

T
100

T T T T T 1
110 120 130 140 150 160
Signal level (millivolts)

170

23

signal is shown by the markers in Fig. 2-5b. Similarly, the pdf of the analog
signal is shown by the continuous line in (c), indicating the signal can take on

a continuous range of values, such as the voltage in an electronic circuit.

The vertical axis of the pdf isin units of probability density, rather than just
probability. For example, a pdf of 0.03 at 120.5 does not mean that the a
voltage of 120.5 millivolts will occur 3% of the time. In fact, the probability
of the continuous signal being exactly 120.5 millivolts is infinitesimally small.
This is because there are an infinite number of possible values that the signal
needs to divide its time between: 120.49997, 120.49998, 120.49999, etc. The

chance that the signal happens to be exactly 120.50000.-

indeed!

is very remote

To calculate a probability, the probability density is multiplied by a range of
values. For example, the probability that the signal, at any given instant, will
be between the values of 120 and 121 is: 121-120 x 0.03 = 0.03. The
probability that the signal will be between 120.4 and 120.5 is:
120.5-120.4 x 0.03 = 0.003, etc. If the pdf is not constant over the range of
interest, the multiplication becomes the integral of the pdf over that range. In
other words, the area under the pdf bounded by the specified values. Since the
value of the signal must always be something, the total area under the pdf

24 The Scientist and Engineer's Guide to Digital Sgnal Processing

curve, the integral from -« to +~, will always be equal to one. Thisis
analogous to the sum of al of the pmf values being equal to one, and the sum
of al of the histogram values being equal to N.

The histogram, pmf, and pdf are very similar concepts. Mathematicians
always keep them straight, but you will frequently find them used
interchangeably (and therefore, incorrectly) by many scientists and

2 T T T pdf
a. Square wave
1
[}
°
=]
=0
o
£
<
1
2
FIGURE 2-6) 0 16 32 48 64 80 96 112 127
Three common waveforms and their Time (or other variable)

probability density functions. As in
these examples, the pdf graph is often
rotated one-quarter turn and placed at

the side of the signal it describes. The z —— pdf
pdf of a square wave, shown in (a), b. Triangle wave
consists of two infinitesimally narrow
spikes, corresponding to the signal only !
having two possible values. The pdf of o
the triangle wave, (b), has a constant E
value over arange, and is often called a 50
uniform distribution. The pdf of random E
noise, asin (c), isthe most interesting of
all, a bell shaped curve known as a -1
Gaussian.
2
0 16 32 48 64 80 9 112 127
Time (or other variable)
2 T T T pdf
c. Random noise
! I
8
2
= 0 M_
£
<
-1
2

0 16 32 48 64 80 9 112 127
Time (or other variable)

Chapter 2- Statistics, Probability and Noise 25

engineers. Figure 2-6 shows three continuous waveforms and their pdfs. If
these were discrete signals, signified by changing the horizontal axis labeling
to "sample number," pmfs would be used.

A problem occurs in calculating the histogram when the number of levels
each sample can take on is much larger than the number of samples in the
signal. This is always true for signals represented in floating point
notation, where each sample is stored as a fractional value. For example,
integer representation might require the sample value to be 3 or 4, while
floating point allows millions of possible fractional values between 3 and
4. The previously described approach for calculating the histogram involves
counting the number of samples that have each of the possible quantization
levels. This is not possible with floating point data because there are
billions of possible levels that would have to be taken into account. Even
worse, nearly all of these possible levels would have no samples that
correspond to them. For example, imagine a 10,000 sample signal, with
each sample having one billion possible values. The conventional histogram
would consist of one billion data points, with all but about 10,000 of them
having a value of zero.

The solution to these problems is a technique called binning. Thisis done
by arbitrarily selecting the length of the histogram to be some convenient
number, such as 1000 points, often called bins. The value of each bin
represent the total number of samples in the signal that have a value within
a certain range. For example, imagine a floating point signal that contains
values from 0.0 to 10.0, and a histogram with 1000 bins. Bin 0 in the
histogram is the number of samples in the signal with a value between 0 and
0.01, bin 1 is the number of samples with a value between 0.01 and 0.02,
and so forth, up to bin 999 containing the number of samples with a value
between 9.99 and 10.0. Table 2-4 presents a program for calculating a
binned histogram in this manner.

100 'CALCULATION OF BINNED HISTOGRAM

110

120 DIM X[25000] 'X[0] to X[25000] holds the floating point signal,
130 'with each sample being in the range: 0.0 to 10.0

140 DIM H%[999] 'H%[0] to H%[999] holds the binned histogram

150

160 FOR 1% = 0 TO 999 'Zero the binned histogram for use as an accumulator

170 H%[1%] = 0
180 NEXT 1%

190°

200 GOSUB XXXX 'Mythical subroutine that loads the signal into X%]

210"

220 FOR 1% = 0 TO 25000 'Calculate the binned histogram for 25001 points
230 BINNUM% = INT(X[1%] * .01)

240 H%[BINNUM%] = H%[BINNUM%)] + 1

250 NEXT 1%

260"

270 END

TABLE 2-4

26 The Scientist and Engineer's Guide to Digital Sgnal Processing

4 , , , , 8 . . .
‘a Example signal ‘ i i i ‘ b. Histogram of 601 bins ‘ i
CrEEI
el A ¢
2_2’ il'il ‘ “"{'J!l |L1 f }" "} ’lt E 4 'i' ______ : ______ : __________
E ‘ W H! l'\l‘ I !h ‘1' . % i i
1F-—-t2 R S I S LA .t N S R A ’ b o R
AR n’»l I
N N T T N | INWUETmE
0 50 100 150 200 250 300 0 150 300 450 600
Sample number Bin number in histogram
FIGURE 2-7 0 ' ' !
Example of binned histograms. As shown in & Hlstogfram or blnls i
(a), the signal used in this example is 300 80l . e R L
sampleslong, with each sample afloating point o i i i
number uniformly distributed between 1 and 3. 3 i i i
Figures (b) and (c) show binned histograms of S P o e e
this signal, using 601 and 9 bins, respectively. S i M r
Asshown, alarge number of bins resultsin poor g i i
resolution along the vertical axis, whileasmall g | .
number of bins provides poor resolution along Z W= i N
the horizontal axis. Using more samples makes ;
the resolution better in both directions. |
T
4 6 8

1
1
1
:

2

B

in number in histogram

How many bins should be used? Thisis a compromise between two problems.
As shown in Fig. 2-7, too many bins makes it difficult to estimate the
amplitude of the underlying pmf. Thisis because only afew samples fal into
each bin, making the statistical noise very high. At the other extreme, too few
of bins makes it difficult to estimate the underlying pmf in the horizontal
direction. In other words, the number of bins controls a tradeoff between
resolution in along the y-axis, and resolution along the x-axis.

The Normal Distribution

Signals formed from random processes usually have a bell shaped pdf. Thisis
called a normal distribution, a Gauss distribution, or a Gaussian, after
the great German mathematician, Karl Friedrich Gauss (1777-1855). The
reason why this curve occurs so frequently in nature will be discussed shortly
in conjunction with digital noise generation. The basic shape of the curve is
generated from a negative squared exponent:

y(x) =

Chapter 2- Statistics, Probability and Noise 27

This raw curve can be converted into the complete Gaussian by adding an
adjustable mean, y, and standard deviation, . In addition, the equation must
be normalized so that the total area under the curve is equal to one, a
requirement of all probability distribution functions. This results in the general
form of the normal distribution, one of the most important relations in statistics

and probability:
EQUATION 2-8
Equation for the normal distribution, also 1 (X - 2252
called the Gauss distribution, or simply a P (X) = —28 X1
Gaussian. In thisrelation, P(x) is the V2T o

probability distribution function, pisthe
mean, and s isthe standard deviation.

Figure 2-8 shows several examples of Gaussian curves with various means and
standard deviations. The mean centers the curve over a particular value, while
the standard deviation controls the width of the bell shape.

An interesting characteristic of the Gaussian is that the tails drop toward
zero very rapidly, much faster than with other common functions such as
decaying exponentials or 1/x. For example, at two, four, and six standard

1.5 —— 0.6 ———
1 1 1 1 1 1 1]] 1 1 1 1 1]]]]
a. Raw shape, no normalization ‘ b ‘b. Mean=0,0=1 A T A
T R R R B N A e T
A T x2 A A
e e 4 yeg=e | e et e S s e
I I I I I I T I I I I I I I I I
I I I I I I I I I I I I I I I I I I
—_ I I I I I I I I I —~ I I I I I I I I I
é I I I I I I I I I \></ I I I I I I I I I
> R R 1 A T U N R A [a A A VN
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
0.5F--—f---f--—t-——dAf-—-—-\-- k- L i e ety i et e
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I 1 I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I J I I I | I I I I I I I I I I I
0.0 t t j t t t i \ t 0.0 t t t t t t t ? t
S5 4 3 2 -1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5
X X
03
c. Mean=20,0=3
46 -30 -20 -1lc K 1o 20 30 4o
FIGURE 2-8
Examples of Gaussian curves. Figure (a) R R EE s e A R
shows the shape of the raw curve without -
normalization or the addition of adjustable o
parameters. In (b) and (c), the complete
Gaussian curveisshown for various means 0.1 —p-mmmmnoos R N7 AN ot VSCOR S BEE (EEEEREEEEe,
and standard deviations.
0.0 T T T T T T

28

The Scientist and Engineer's Guide to Digital Sgnal Processing

deviations from the mean, the value of the Gaussian curve has dropped to about
1/19, 1/7563, and 1/166,666,666, respectively. This is why normally
distributed signals, such as illustrated in Fig. 2-6¢, appear to have an
approximate peak-to-peak value. In principle, signals of this type can
experience excursions of unlimited amplitude. In practice, the sharp drop of the
Gaussian pdf dictates that these extremes almost never occur. This resultsin
the waveform having arelatively bounded appearance with an apparent peak-
to-peak amplitude of about 6-8o.

As previously shown, the integral of the pdf is used to find the probability that
asignal will be within a certain range of values. This makes the integral of the
pdf important enough that it is given its own name, the cumulative
distribution function (cdf). An especially obnoxious problem with the
Gaussian is that it cannot be integrated using elementary methods. To get
around this, the integral of the Gaussian can be calculated by numerical
integration. This involves sampling the continuous Gaussian curve very finely,
say, afew million points between -100 and +100. The samples in this discrete
signal are then added to simulate integration. The discrete curve resulting from
this simulated integration is then stored in a table for use in calculating
probabilities.

The cdf of the normal distribution is shown in Fig. 2-9, with its numeric
values listed in Table 2-5. Since this curve is used so frequently in
probability, it is given its own symbol: ®(x) (upper case Greek phi). For
example, ®(-2) has a value of 0.0228. Thisindicates that there is a 2.28%
probability that the value of the signal will be between -~ and two standard
deviations below the mean, at any randomly chosen time. Likewise, the
value: ®(1) = 0.8413, means there is an 84.13% chance that the value of the
signal, at arandomly selected instant, will be between -« and one standard
deviation above the mean. To calculate the probability that the signal will
be will be between two values, it is necessary to subtract the appropriate
numbers found in the ®&Xx) table. For example, the probability that the
value of the signal, at some randomly chosen time, will be between two
standard deviations below the mean and one standard deviation above the
mean, is given by: 1) - ®(-2) = 0.8185, or 81.85%

Using this method, samples taken from a normally distributed signal will be
within £10 of the mean about 68% of the time. They will be within £20 about
95% of the time, and within £3c about 99.75% of the time. The probability
of the signal being more than 10 standard deviations from the mean is so
minuscule, it would be expected to occur for only a few microseconds since the
beginning of the universe, about 10 billion years!

Equation 2-8 can also be used to express the probability mass function of
normally distributed discrete signals. In this case, x is restricted to be one of
the quantized levels that the signal can take on, such as one of the 4096
binary values exiting a 12 bit analog-to-digital converter. Ignore the 1//2no
term, it is only used to make the total area under the pdf curve equal to
one. Instead, you must include whatever term is needed to make the sum
of all the values in the pmf equal to one. In most cases, this is done by

®(X)

Chapter 2- Statistics, Probability and Noise 29
X | ¥™x) X | ¥™x)
-3.4 | .0003 0.0 .5000
-3.3 .0005 0.1 .5398
-3.2 .0007 0.2 .5793
-3.1 .0010 0.3 .6179
-3.0 | .0013 0.4 .6554
-2.9 .0019 0.5 .6915
-2.8 .0026 0.6 7257
-2.7 .0035 0.7 .7580
-2.6 .0047 0.8 .7881
-2.5 .0062 0.9 .8159
-2.4 | .0082 1.0 .8413
-2.3 .0107 1.1 .8643
-2.2 .0139 1.2 .8849
-2.1 .0179 1.3 .9032
-2.0 | .0228 1.4 .9192
-1.9 .0287 15 .9332
-1.8 .0359 1.6 .9452
-1.7 .0446 1.7 .9554
-1.6 .0548 1.8 .9641
-1.5 .0668 1.9 9713
-1.4 | .0808 2.0 9772
-1.3 .0968 2.1 .9821
FIGURE 2-9 & TABLE2-5 -1.2 | .1151 2.2 | .9861
@(x), the cumulative distribution function of -11 | 1357 2.3 | .9893
the normal distribution (mean = 0O, standard -1.0) .1587 24 | .918
L -0.9 .1841 2.5 .9938
deviation = 1). Thesevaluesare calculated by .0.8 | 2119 26 | 9953
numerically integrating the normal distribution -0.7 | .2420 2.7 | .9965
shown in Fig. 2-8b. In words, ®(x) is the -0.6 | .2743 28 | .9974
probability that the value of a normally :8-2 gggg %8 ggg%
distributed signal, at some randomly chosen 0.3 | 3821 31 | ‘9990
time, will be less than x. In this table, the -0.2 | .4207 3.2 | .9993
value of x is expressed in units of standard -0.1 | .4602 3.3 | .9995
deviations referenced to the mean. 0.0 | .5000 3.4 | .9997

generating the curve without worrying about normalization, summing all of the
unnormalized values, and then dividing all of the values by the sum.

Digital Noise Generation

Random noise is an important topic in both electronics and DSP. For example,
it limits how small of a signal an instrument can measure, the distance a radio
system can communicate, and how much radiation is required to produce an x-
ray image. A common need in DSP is to generate signals that resemble various
types of random noise. This is required to test the performance of algorithms
that must work in the presence of noise.

The heart of digital noise generation isthe random number generator. Most
programming languages have this as a standard function. The BASIC
statement: X = RND, loads the variable, X, with a new random number each
time the command is encountered. Each random number has a value between
zero and one, with an equal probability of being anywhere between these two
extremes. Figure 2-10a shows a signal formed by taking 128 samples from this
type of random number generator. The mean of the underlying process that
generated this signal is 0.5, the standard deviation is 1/\/ﬁ = 0.29, and the
distribution is uniform between zero and one.

30 The Scientist and Engineer's Guide to Digital Sgnal Processing

Algorithms need to be tested using the same kind of data they will
encounter in actual operation. This creates the need to generate digital
noise with a Gaussian pdf. There are two methods for generating such
signals using a random number generator. Figure 2-10 illustrates the first
method. Figure (b) shows a signal obtained by adding two random numbers
to form each sample, i.e., X = RND+RND. Since each of the random
numbers can run from zero to one, the sum can run from zero to two. The
mean is now one, and the standard deviation is 1/\/6 (remember, when
independent random signals are added, the variances also add). As shown,
the pdf has changed from a uniform distribution to a triangular
distribution. That is, the signal spends more of its time around a value of
one, with less time spent near zero or two.

Figure (c) takes this idea a step further by adding twelve random numbers
to produce each sample. The mean is now six, and the standard deviation
is one. What is most important, the pdf has virtually become a Gaussian.
This procedure can be used to create a normally distributed noise signal
with an arbitrary mean and standard deviation. For each sample in the
signal: (1) add twelve random numbers, (2) subtract six to make the mean
equal to zero, (3) multiply by the standard deviation desired, and (4) add
the desired mean.

The mathematical basis for this algorithm is contained in the Central Limit
Theorem, one of the most important concepts in probability. Inits simplest
form, the Central Limit Theorem states that a sum of random numbers
becomes normally distributed as more and more of the random numbers are
added together. The Central Limit Theorem does not require the individual
random numbers be from any particular distribution, or even that the
random numbers be from the same distribution. The Central Limit Theorem
provides the reason why normally distributed signals are seen so widely in
nature. Whenever many different random forces are interacting, the
resulting pdf becomes a Gaussian.

In the second method for generating normally distributed random numbers, the
random number generator isinvoked twice, to obtain R, and R,. A normally
distributed random number, X, can then be found:

EQUATION 2-9

Generation of normally distributed random

numbers. R; and R, are random numbers

with auniform distribution between zero and _ (_ 1/2

one. This results in X being normally X (2 Iog Rl) COS(ZTERz)
distributed with a mean of zero, and a

standard deviation of one. Thelogisbase e,

and the cosineisin radians.

Just as before, this approach can generate normally distributed random signals
with an arbitrary mean and standard deviation. Take each number generated
by this equation, multiply it by the desired standard deviation, and add the
desired mean.

Chapter 2- Statistics, Probability and Noise 31

12
i i i i i i i
I I I I ___;______: _____ :_ _____ df
a. X = RND i i | p
10+---1mean = 0.5, 0 = 1/V12|-—-t--—-4--——- k-
9L ——— [HE— A S . I
|] | | | | |
O N S S S R SR SN S—
o) I I I I I I I
T T4+ [———— ISR S P [E——
=] | | | | | | |
k= | | | | | | I
£ T O A A
€5l ____ A [Lo ___ LA __ [
S O N
4———- A== f=——== Fomm Fo———t————— F———=7
I I I I I I I
s e T e
I I I I I I I
24+———- N ——— F S [P —— [I
| | | | | | |
AN A T s ol]

0 16 32 48 64 80 96 112 127
Sample number

ol I N S N N R T
U ===Tp. X =RND+RND [7 I pdf
10+---1mean = 1.0, 0 = 1/V6 |--—-t--——4--——- k-
9t ———- HE— R N S . I
| | | | | | |
O N S S S R SR SN S—
[} | | | | | | |
S T+—-—- [— [S [S [
=} | | | | | I I
<=2 A N T S SO S N
[=3 | | | | | | |
Es5l____ Q] _____ Lo __a_____ Lo __d_____ [
< i i i i i i i
4——— 4———— ———= fo———H————— Fo— A ——— F————
| | | | | | |
e S T
| | | | | | |
24 g] — [F b gl [Epp——
1 g : : y >
|
0 T f T f T T f 1
0 16 32 48 64 80 9% 112 127
Sample number
12
| | | | | | |
119===9¢ X = RND+RND+ ... +RND (12 times) |~ pdf
10+--4mean = 6.0, 0 =1 -

[}
°
2
=
£
< i
I
|
39 | I | [[| I
1 1 1 1 1 1 1
2+—-——= R ——— o —— R e
1 1 1 1 1 1 1
1L~ [[[[S
T I T bl T T r
1 1 1 1 1 1 1
0 t t t t t f t
0 16 32 48 64 80 96 112 127

Sample number

FIGURE 2-10

Converting auniform distribution to a Gaussian distribution. Figure (a) shows asignal where each sampleisgenerated
by arandom number generator. Asindicated by the pdf, the value of each sampleisuniformly distributed between zero
and one. Each samplein (b) isformed by adding two values from the random number generator. In (c), each sample
is created by adding twelve values from the random number generator. The pdf of (c) is very nearly Gaussian, with a
mean of six, and a standard deviation of one.

32 The Scientist and Engineer's Guide to Digital Sgnal Processing

Random number generators operate by starting with a seed, a number between
zero and one. When the random number generator is invoked, the seed is
passed through a fixed algorithm, resulting in a new number between zero and
one. This new number is reported as the random number, and is then
internally stored to be used as the seed the next time the random number
generator is called. The algorithm that transforms the seed into the new
random number is often of the form:

EQUATION 2-10

Common algorithm for generating uniformly

distributed random numbers between zero

and one. In this method, Sisthe seed, Ris R = (aS+ b) modulo ¢
the new random number, and a,b,& c are

appropriately chosen constants. In words,

the quantity aS+b is divided by c, and the

remainder istaken asR.

In this manner, a continuous sequence of random numbers can be generated, all
starting from the same seed. This allows a program to be run multiple times
using exactly the same random number sequences. If you want the random
number sequence to change, most languages have a provision for r eseeding the
random number generator, allowing you to choose the number first used as the
seed. A common technique is to use the time (as indicated by the system's
clock) as the seed, thus providing a new segquence each time the program is run.

From a pure mathematical view, the numbers generated in this way cannot be
absolutely random since each number is fully determined by the previous
number. The term pseudo-random is often used to describe this situation.
However, this is not something you should be concerned with. The sequences
generated by random number generators are statistically random to an
exceedingly high degree. It isvery unlikely that you will encounter a situation
where they are not adequate.

Precision and Accuracy

Precision and accuracy are terms used to describe systems and methods that
measure, estimate, or predict. In all these cases, there is some parameter you
wish to know the value of. Thisis called the true value, or simply, truth.
The method provides a measured value, that you want to be as close to the
true value as possible. Precision and accuracy are ways of describing the
error that can exist between these two values.

Unfortunately, precision and accuracy are used interchangeably in non-technical
settings. In fact, dictionaries define them by referring to each other! In spite
of this, science and engineering have very specific definitions for each. You
should make a point of using the terms correctly, and quietly tolerate others
when they used them incorrectly.

FIGURE 2-11

Definitions of accuracy and precision.
Accuracy is the difference between the
true value and the mean of the under-lying
processthat generates the data. Precision
is the spread of the values, specified by
the standard deviation, the signal-to-noise

ratio, or the CV.

Chapter 2- Statistics, Probability and Noise 33

As an example, consider an oceanographer measuring water depth using a
sonar system. Short bursts of sound are transmitted from the ship, reflected
from the ocean floor, and received at the surface as an echo. Sound waves
travel at arelatively constant velocity in water, allowing the depth to be found
from the elapsed time between the transmitted and received pulses. Aswith all
empirical measurements, a certain amount of error exists between the measured
and true values. This particular measurement could be affected by many
factors: random noise in the electronics, waves on the ocean surface, plant
growth on the ocean floor, variations in the water temperature causing the
sound velocity to change, etc.

To investigate these effects, the oceanographer takes many successive readings
at a location known to be exactly 1000 meters deep (the true value). These
measurements are then arranged as the histogram shown in Fig. 2-11. As
would be expected from the Central Limit Theorem, the acquired data are
normally distributed. The mean occurs at the center of the distribution, and
represents the best estimate of the depth based on all of the measured data.
The standard deviation defines the width of the distribution, describing how
much variation occurs between successive measurements.

This situation results in two general types of error that the system can
experience. First, the mean may be shifted from the true value. The amount of
this shift is called the accuracy of the measurement. Second, individual
measurements may not agree well with each other, as indicated by the width of
the distribution. This is called the precision of the measurement, and is
expressed by quoting the standard deviation, the signal-to-noise ratio, or the
CV.

Consider a measurement that has good accuracy, but poor precision; the
histogram is centered over the true value, but is very broad. Although the
measurements are correct as a group, each individua reading is a poor measure
of the true value. This situation is said to have poor repeatability;
measurements taken in succession don't agree well. Poor precision results
from random errors. This is the name given to errors that change each

mean N true value

1207 i i Accuracy
~

80+

Precision

Number of occurences

O —prrrrrrrerrrrrrrrrrrrrrrrrrrrrTCCTEEY TT

500 600 700 800 900 1000 1100 1200 1300 1400 1500
Ocean depth (meters)

34

The Scientist and Engineer's Guide to Digital Sgnal Processing

time the measurement is repeated. Averaging several measurements will
always improve the precision. In short, precision is a measure of random
noise.

Now, imagine a measurement that is very precise, but has poor accuracy. This
makes the histogram very slender, but not centered over the true value.
Successive readings are close in value; however, they all have a large error.
Poor accuracy results from systematic errors. These are errors that become
repeated in exactly the same manner each time the measurement is conducted.
Accuracy is usualy dependent on how you calibrate the system. For example,
in the ocean depth measurement, the parameter directly measured is elapsed
time. This is converted into depth by a calibration procedure that relates
milliseconds to meters. This may be as simple as multiplying by a fixed
velocity, or as complicated as dozens of second order corrections. Averaging
individual measurements does nothing to improve the accuracy. In short,
accuracy is a measure of calibration.

In actual practice there are many ways that precision and accuracy can become
intertwined. For example, imagine building an electronic amplifier from 1%
resistors. This tolerance indicates that the value of each resistor will be within
1% of the stated value over a wide range of conditions, such as temperature,
humidity, age, etc. This error in the resistance will produce a corresponding
error in the gain of the amplifier. Is this error a problem of accuracy or
precision?

The answer depends on how you take the measurements. For example,
suppose you build one amplifier and test it several times over a few minutes.
The error in gain remains constant with each test, and you conclude the
problem is accuracy. In comparison, suppose you build one thousand of the
amplifiers. The gain from device to device will fluctuate randomly, and the
problem appears to be one of precision. Likewise, any one of these amplifiers
will show gain fluctuations in response to temperature and other environmental
changes. Again, the problem would be called precision.

When deciding which name to call the problem, ask yourself two questions.
First: Will averaging successive readings provide a better measurement? |f
yes, call the error precision; if no, call it accuracy. Second: Will calibration
correct the error? If yes, call it accuracy; if no, call it precision. This may
require some thought, especially related to how the device will be calibrated,
and how often it will be done.

CHAPTER

3

ADC and DAC

Most of the signals directly encountered in science and engineering are continuous:. light intensity
that changes with distance; voltage that varies over time; a chemical reaction rate that depends
on temperature, etc. Analog-to-Digital Conversion (ADC) and Digital-to-Analog Conversion
(DAC) are the processes that allow digital computers to interact with these everyday signals.
Digital information is different from its continuous counterpart in two important respects: it is
sampled, and it is quantized. Both of these restrict how much information a digital signal can
contain. This chapter is about information management: understanding what information you
need to retain, and what information you can afford to lose. In turn, this dictates the selection
of the sampling frequency, number of bits, and type of analog filtering needed for converting
between the analog and digital reams.

Quantization

First, a bit of trivia. As you know, it is a digital computer, not a digit
computer. The information processed is called digital data, not digit data.
Why then, is analog-to-digital conversion generally called: digitize and
digitization, rather than digitalize and digitalization? The answer is nothing
you would expect. When electronics got around to inventing digital techniques,
the preferred names had already been snatched up by the medical community
nearly a century before. Digitalize and digitalization mean to administer the
heart stimulant digitalis.

Figure 3-1 shows the electronic waveforms of a typical analog-to-digital
conversion. Figure (a) is the analog signal to be digitized. As shown by the
labels on the graph, this signal is a voltage that varies over time. To make
the numbers easier, we will assume that the voltage can vary from 0 to 4.095
volts, corresponding to the digital numbers between 0 and 4095 that will be
produced by a 12 hit digitizer. Notice that the block diagram is broken into
two sections, the sample-and-hold (S/H), and the analog-to-digital converter
(ADC). Asyou probably learned in electronics classes, the sample-and-hold
is required to keep the voltage entering the ADC constant while the

35

36

The Scientist and Engineer's Guide to Digital Sgnal Processing

conversion is taking place. However, this is not the reason it is shown here;
breaking the digitization into these two stages is an important theoretical model
for understanding digitization. The fact that it happens to look like common
electronicsis just a fortunate bonus.

As shown by the difference between (a) and (b), the output of the sample-and-
hold is allowed to change only at periodic intervals, at which time it is made
identical to the instantaneous value of the input signal. Changes in the input
signal that occur between these sampling times are completely ignored. That
is, sampling converts the independent variable (time in this example) from
continuous to discrete.

As shown by the difference between (b) and (c), the ADC produces an integer
value between 0 and 4095 for each of the flat regionsin (b). This introduces
an error, since each plateau can be any voltage between 0 and 4.095 volts. For
example, both 2.56000 volts and 2.56001 volts will be converted into digital
number 2560. In other words, quantization converts the dependent variable
(voltage in this example) from continuous to discrete.

Notice that we carefully avoid comparing (a) and (c), as this would lump the
sampling and quantization together. It is important that we analyze them
separately because they degrade the signal in different ways, as well as being
controlled by different parameters in the electronics. There are also cases
where one is used without the other. For instance, sampling without
guantization is used in switched capacitor filters.

First we will look at the effects of quantization. Any one sample in the
digitized signal can have a maximum error of £% L SB (Least Significant
Bit, jargon for the distance between adjacent quantization levels). Figure (d)
shows the quantization error for this particular example, found by subtracting
(b) from (c), with the appropriate conversions. In other words, the digital
output (c), is equivalent to the continuous input (b), plus a quantization error
(d). Animportant feature of this analysis is that the quantization error appears
very much like random noise.

This sets the stage for an important model of quantization error. In most cases,
guantization results in nothing more than the addition of a specific amount
of random noise to the signal. The additive noise is uniformly distributed
between +% LSB, has a mean of zero, and a standard deviation of ﬂ\/ﬁ LSB
(~0.29 LSB). For example, passing an analog signal through an 8 bit digitizer
adds an rms noise of: 0.29/256, or about 1/900 of the full scale value. A 12
bit conversion adds a noise of: 0.29/4096 ~ 1/14,000, while a 16 bit
conversion adds: 0.29/65536 ~ 1/227,000. Since quantization error is a
random noise, the number of bits determines the precision of the data. For
example, you might make the statement: "We increased the precision of the
measurement from 8 to 12 hits."

This model is extremely powerful, because the random noise generated by
guantization will simply add to whatever noise is already present in the

Chapter 3- ADC and DAC

3.025 FIGURE 3-1
'a Original andlog signal | Waveforms illustrating the digitization process. The
3 3:020 conversion is broken into two stages to allow the
5 effects of sampling to be separated from the effects of
2 3.015) i\ quantization. The first stage is the sample-and-hold
< (S/H), where the only information retained is the
S om0 n AN / instantaneous value of the signal when the periodic
= v sampling takes place. In the second stage, the ADC
g converts the voltage to the nearest integer number.
< 3.005 \ A This results in each sample in the digitized signal
having an error of up to +%2 L SB, asshownin (d). As
3.000 aresult, quantization can usually be modeled as
0 5 10 15 20 25 30 35 40 45 50 simply adding noise to the signal .
Time
analog digital
input output
—> S5H ——> ADC
3.025 i i i i i i 3025 i i i i i
‘ b. Sampled analog signal ‘ c. Digitized signal
—3.020 3020
@
S
Z 301540 » %3015 = el
= >
3 2 r .
2 3.010 LL' r -‘_‘_,ﬂ -+ l—r T 3010 Lf T Tr
£ ERNWEE 8 [k
< 3.005 Al 3005
Lr - LT s
3.000 3000
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time Sample number
1.0 i i i i i i
\d. Quantization error \ pdf
0.5

e
AR

0 5 10 15 20 25 30 35 40 45 50
Sample number

_Error (inLSBs)
(=}
o

<
w

I
Il

38

The Scientist and Engineer's Guide to Digital Sgnal Processing

analog signal. For example, imagine an analog signal with a maximum
amplitude of 1.0 volt, and arandom noise of 1.0 millivolt rms. Digitizing this
signal to 8 bits results in 1.0 volt becoming digital number 255, and 1.0
millivolt becoming 0.255 LSB. As discussed in the last chapter, random noise
signals are combined by adding their variances. That is, the signals are added
in quadrature: yA2+B2 =C. The total noise on the digitized signal is
therefore given by: /0.255% + 0.29% = 0.386 LSB. Thisis an increase of about
50% over the noise already in the analog signal. Digitizing this same signal
to 12 bits would produce virtually no increase in the noise, and nothing would
be lost due to quantization. When faced with the decision of how many bits
are needed in a system, ask two questions. (1) How much noise is already
present in the analog signal? (2) How much noise can be tolerated in the
digital signal?

When isn't this model of quantization valid? Only when the quantization
error cannot be treated as random. The only common occurrence of this
is when the analog signal remains at about the same value for many
consecutive samples, as is illustrated in Fig. 3-2a. The output remains
stuck on the same digital number for many samples in a row, even though
the analog signal may be changing up to +% LSB. Instead of being an
additive random noise, the quantization error now looks like a thresholding
effect or weird distortion.

Dithering is a common technique for improving the digitization of these
slowly varying signals. As shown in Fig. 3-2b, a small amount of random
noise is added to the analog signal. In this example, the added noise is
normally distributed with a standard deviation of 2/3 LSB, resulting in a peak-
to-peak amplitude of about 3 LSB. Figure (c) shows how the addition of this
dithering noise has affected the digitized signal. Even when the origina analog
signal is changing by less than +%2 LSB, the added noise causes the digital
output to randomly toggle between adjacent levels.

To understand how this improves the situation, imagine that the input signal
is a constant analog voltage of 3.0001 volts, making it one-tenth of the way
between the digital levels 3000 and 3001. Without dithering, taking
10,000 samples of this signal would produce 10,000 identical numbers, all
having the value of 3000. Next, repeat the thought experiment with a small
amount of dithering noise added. The 10,000 values will now oscillate
between two (or more) levels, with about 90% having a value of 3000, and
10% having a value of 3001. Taking the average of all 10,000 values
results in something close to 3000.1. Even though a single measurement
has the inherent £%2 L SB limitation, the statistics of alarge number of the
samples can do much better. This is quite a strange situation: adding
noise provides more information.

Circuits for dithering can be quite sophisticated, such as using a computer
to generate random numbers, and then passing them through a DAC to
produce the added noise. After digitization, the computer can subtract

Chapter 3- ADC and DAC 39

3005 3005
- a. Digitization of asmall amplitude signal ‘ ‘b. Dithering noise added ‘
& 3004 3004
% original analog signal r\ ‘\ A
= 3003 {analog signal | 2 3003 / A A | i
(=] o
E N S /ﬂ \ h / | NMWM
8 3002 AN = 3002 [:
7 ~ N\
g [M T
= 3001 3001 Wb
= s B R R N .

digital signal with added noise
3000 — 3000 i
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (or sample number) Time
3005 H H H H H H H

FIGURE 3-2 S S R T R N

Illustration of dithering. Figure (a) shows how T | . Digitization of dithered signal |

an analog signal that varieslessthan +%2 L SB can £ 3004

become stuck on the same quantization level 3 original analog signal

during digitization. Dithering improves this B 3003 \

situation by adding a small amount of random S

noise to the analog signal, such as shown in (b). ° 4

In this example, the added noise is normally %3002 0

distributed with astandard deviation of 2/3 L SB. 5 \\/J _\

As shown in (c), the added noise causes the 2

> >] . = 3001

digitized signal to toggle between adjacent s .

quantization levels, providing more information [digital signal |

about the original signal. 3000 [g : g :

0 5 10 15 20 25 30 35 40 45 50
Time (or sample number)

the random numbers from the digital signal using floating point arithmetic.
This elegant technique is called subtractive dither, but is only used in the
most elaborate systems. The simplest method, although not always possible,
is to use the noise already present in the analog signal for dithering.

The Sampling Theorem

The definition of proper sampling is quite simple. Suppose you sample a
continuous signal in some manner. If you can exactly reconstruct the analog
signal from the samples, you must have done the sampling properly. Even if
the sampled data appears confusing or incomplete, the key information has been
captured if you can reverse the process.

Figure 3-3 shows several sinusoids before and after digitization. The
continious line represents the analog signal entering the ADC, while the square
markers are the digital signal leaving the ADC. In (a), the analog signal is a
constant DC value, a cosine wave of zero frequency. Since the analog signal
is a series of straight lines between each of the samples, all of the information
needed to reconstruct the analog signal is contained in the digital data.
According to our definition, thisis proper sampling.

40

The Scientist and Engineer's Guide to Digital Sgnal Processing

The sine wave shown in (b) has a frequency of 0.09 of the sampling rate. This
might represent, for example, a 90 cycle/second sine wave being sampled at
1000 samples/second. Expressed in another way, there are 11.1 samples taken
over each complete cycle of the sinusoid. This situation is more complicated
than the previous case, because the analog signal cannot be reconstructed by
simply drawing straight lines between the data points. Do these samples
properly represent the analog signal? The answer is yes, because no other
sinusoid, or combination of sinusoids, will produce this pattern of samples
(within the reasonable constraints listed below). These samples correspond to
only one analog signal, and therefore the analog signal can be exactly
reconstructed. Again, an instance of proper sampling.

In (c), the situation is made more difficult by increasing the sine wave's
frequency to 0.31 of the sampling rate. This results in only 3.2 samples per
sine wave cycle. Here the samples are so sparse that they don't even appear
to follow the general trend of the analog signal. Do these samples properly
represent the analog waveform? Again, the answer is yes, and for exactly the
same reason. The samples are a unique representation of the analog signal.
All of the information needed to reconstruct the continuous waveform is
contained in the digital data. How you go about doing this will be discussed
later in this chapter. Obviously, it must be more sophisticated than just
drawing straight lines between the data points. As strange as it seems, thisis
proper sampling according to our definition.

In (d), the analog frequency is pushed even higher to 0.95 of the sampling rate,
with a mere 1.05 samples per sine wave cycle. Do these samples properly
represent the data? No, they don't! The samples represent a different sine wave
from the one contained in the analog signal. In particular, the original sine
wave of 0.95 frequency misrepresents itself as a sine wave of 0.05 frequency
in the digital signal. This phenomenon of sinusoids changing frequency during
sampling is called aliasing. Just as a criminal might take on an assumed name
or identity (an alias), the sinusoid assumes another frequency that is not its
own. Since the digital datais no longer uniquely related to a particular analog
signal, an unambiguous reconstruction is impossible. There is nothing in the
sampled data to suggest that the original analog signal had a frequency of 0.95
rather than 0.05. The sine wave has hidden its true identity completely; the
perfect crime has been committed! According to our definition, this is an
example of improper sampling.

This line of reasoning leads to a milestone in DSP, the sampling theorem.
Frequently this is called the Shannon sampling theorem, or the Nyquist
sampling theorem, after the authors of 1940s papers on the topic. The sampling
theorem indicates that a continuous signal can be properly sampled, only if it
does not contain frequency components above one-half of the sampling rate.
For instance, a sampling rate of 2,000 samples/second requires the analog
signal to be composed of frequencies below 1000 cycles/second. |f frequencies
above this limit are present in the signal, they will be aliased to frequencies
between 0 and 1000 cycles/second, combining with whatever information that
was legitimately there.

Chapter 3- ADC and DAC 41

3 3
a. Anaog frequency = 0.0 (i.e,, DC) ‘ ‘ b. Analog frequency = 0.09 of sampling rate ‘

2 24

1 1
[} [}
° °
2 2
S 0+ = 0+
IS IS
< <

-1+ 14

2+ 2+

3 3

Time (or sample number) Time (or sample number)
3 3
c. Analog frequency = 0.31 of sampling rate ‘ d. Analog frequency = 0.95 of sampling rate ‘
24 24 !
| i

1 1 ’
[} [}
° =] J
2 2
= 0-# = 0
IS IS
< <

1 1

2, 2, U U U U U

3 3

Time (or sample number) Time (or sample number)
FIGURE 3-3

Illustration of proper and improper sampling. A continuous signal is sampled properly if the samples contain all the
information needed to recreated the original waveform. Figures (@), (b), and (c) illustrate proper sampling of three
sinusoidal waves. Thisis certainly not obvious, since the samplesin (c) do not even appear to capture the shape of the
waveform. Nevertheless, each of these continuous signals forms a unique one-to-one pair with its pattern of samples.
This guarantees that reconstruction can take place. In (d), the frequency of the analog sine wave is greater than the
Nyquist frequency (one-half of the sampling rate). Thisresultsin aliasing, where the frequency of the sampled datais
different from the frequency of the continuoussignal. Since aliasing has corrupted the information, the original signal
cannot be reconstructed from the samples.

Two terms are widely used when discussing the sampling theorem: the
Nyquist frequency and the Nyquist rate. Unfortunately, their meaning is
not standardized. To understand this, consider an analog signal composed of
frequencies between DC and 3 kHz. To properly digitize this signal it must
be sampled at 6,000 samples/sec (6 kHz) or higher. Suppose we choose to
sample at 8,000 samples/sec (8 kHz), allowing frequencies between DC and 4
kHz to be properly represented. In this situation their are four important
frequencies: (1) the highest frequency in the signal, 3 kHz; (2) twice this
frequency, 6 kHz; (3) the sampling rate, 8 kHz; and (4) one-half the sampling
rate, 4 kHz. Which of these four is the Nyquist frequency and which is the
Nyquist rate? It depends who you ask! All of the possible combinations are

42

The Scientist and Engineer's Guide to Digital Sgnal Processing

used. Fortunately, most authors are careful to define how they are using the
terms. In this book, they are both used to mean one-half the sampling rate.

Figure 3-4 shows how frequencies are changed during aliasing. The key
point to remember is that a digital signal cannot contain frequencies above
one-half the sampling rate (i.e., the Nyquist frequency/rate). When the
frequency of the continuous wave is below the Nyquist rate, the frequency
of the sampled data is a match. However, when the continuous signal's
frequency is above the Nyquist rate, aliasing changes the frequency into
something that can be represented in the sampled data. As shown by the
zigzagging line in Fig. 3-4, every continuous frequency above the Nyquist
rate has a corresponding digital frequency between zero and one-half the
sampling rate. If there happens to be a sinusoid already at this lower
frequency, the aliased signal will add to it, resulting in a loss of
information. Aliasing is a double curse; information can be lost about the
higher and the lower frequency. Suppose you are given a digital signal
containing a frequency of 0.2 of the sampling rate. If this signal were
obtained by proper sampling, the original analog signal must have had a
frequency of 0.2. If aliasing took place during sampling, the digital
frequency of 0.2 could have come from any one of an infinite number of
frequencies in the analog signal: 0.2, 0.8, 1.2, 1.8, 2.2, .

Just as aliasing can change the frequency during sampling, it can also change
the phase. For example, look back at the aliased signal in Fig. 3-3d. The
aliased digital signal is inverted from the original analog signal; oneis a sine
wave while the other is a negative sine wave. In other words, aliasing has
changed the frequency and introduced a 180° phase shift. Only two phase
shifts are possible: 0° (no phase shift) and 180° (inversion). The zero phase
shift occurs for analog frequencies of 0to 0.5, 1.0to 1.5, 2.0 to 2.5, etc. An
inverted phase occurs for analog frequencies of 0.5 to 1.0, 1.5 to 2.0, 2.5 to
3.0, and so on.

Now we will dive into a more detailed analysis of sampling and how aliasing
occurs. Our overall goa is to understand what happens to the information
when a signal is converted from a continuous to a discrete form. The problem
is, these are very different things; one is a continuous waveform while the
other is an array of numbers. This "apples-to-oranges’ comparison makes the
analysis very difficult. The solution is to introduce a theoretical concept called
the impulse train.

Figure 3-5a shows an example analog signal. Figure (c) shows the signal
sampled by using an impulse train. The impulse train is a continuous signal
consisting of a series of narrow spikes (impulses) that match the original signal
at the sampling instants. Each impulse is infinitesimally narrow, a concept that
will be discussed in Chapter 13. Between these sampling times the vaue of the
waveform is zero. Keep in mind that the impulse train is a theoretical concept,
not a waveform that can exist in an electronic circuit. Since both the original
analog signal and the impulse train are continuous waveforms, we can make an
"apples-apples’ comparison between the two.

Chapter 3- ADC and DAC 43

Nyquist
DC Frequency
: ALIASED >
0.5 , . .
5 | | | | |
0o AN N _12
5 H D i | T
> | | | | |
godp-——r7~rn N A TN A I
=] | | | I I
A RN A [N A
=)
gor X /X .
0.0 f Y f Y f
0.0 0.5 1.0 1.5 2.0 2.5

270

1804 —————————-

o

Digital phase (degrees)
: 8
|

©

o
o
o

FIGURE 3-4

Conversion of analog frequency into digital frequency during sampling. Continuous signals with
a frequency less than one-half of the sampling rate are directly converted into the corresponding
digital frequency. Above one-half of the sampling rate, aliasing takes place, resulting in the frequency
being misrepresented in the digital data. Aliasing always changes a higher frequency into alower
frequency between 0 and 0.5. In addition, aliasing may also change the phase of the signal by 180
degrees.

Now we need to examine the relationship between the impulse train and the
discrete signal (an array of numbers). Thisoneis easy; in terms of information
content, they areidentical. If oneisknown, it istrivial to calculate the other.
Think of these as different ends of a bridge crossing between the analog and
digital worlds. This means we have achieved our overall goal once we
understand the consequences of changing the waveform in Fig. 3-5a into the
waveform in Fig. 3.5c.

Three continuous waveforms are shown in the left-hand column in Fig. 3-5. The
corresponding frequency spectra of these signals are displayed in the right-
hand column. This should be a familiar concept from your knowledge of
electronics; every waveform can be viewed as being composed of sinusoids of
varying amplitude and frequency. Later chapters will discuss the frequency
domain in detail. (Y ou may want to revisit this discussion after becoming more
familiar with frequency spectra).

Figure (a) shows an analog signal we wish to sample. As indicated by its
frequency spectrum in (b), it is composed only of frequency components
between 0 and about 0.33 f, where f, is the sampling frequency we intend to

44 The Scientist and Engineer's Guide to Digital Sgnal Processing

use. For example, this might be a speech signal that has been filtered to
remove al frequencies above 3.3 kHz. Correspondingly, fs would be 10 kHz
(10,000 samples/second), our intended sampling rate.

Sampling the signal in (@) by using an impulse train produces the signal
shown in (c), and its frequency spectrum shown in (d). This spectrumis a
duplication of the spectrum of the original signal. Each multiple of the
sampling frequency, f,, 2f,, 3f, 4f,, etc., has received a copy and a left-for-
right flipped copy of the original frequency spectrum. The copy is called
the upper sideband, while the flipped copy is called the lower sideband.
Sampling has generated new frequencies. |s this proper sampling? The
answer is yes, because the signal in (c) can be transformed back into the
signal in (a) by eliminating all frequencies above %f. That is, an analog
low-pass filter will convert the impulse train, (b), back into the original
analog signal, (a).

If you are already familiar with the basics of DSP, here is a more technical
explanation of why this spectral duplication occurs. (Ignore this paragraph
if you are new to DSP). In the time domain, sampling is achieved by
multiplying the original signal by an impulse train of unity amplitude
spikes. The frequency spectrum of this unity amplitude impulse train is
also a unity amplitude impulse train, with the spikes occurring at multiples
of the sampling frequency, f., 2f, 3f, 4f, etc. When two time domain
signals are multiplied, their frequency spectra are convolved. This results
in the original spectrum being duplicated to the location of each spike in
the impulse train's spectrum. Viewing the original signal as composed of
both positive and negative frequencies accounts for the upper and lower
sidebands, respectively. This is the same as amplitude modulation,
discussed in Chapter 10.

Figure (e) shows an example of improper sampling, resulting from too low
of sampling rate. The analog signal still contains frequencies up to 3.3
kHz, but the sampling rate has been lowered to 5 kHz. Notice that
fg, 2f, 3f5 .- along the horizontal axis are spaced closer in (f) than in (d).
The frequency spectrum, (f), shows the problem: the duplicated portions of
the spectrum have invaded the band between zero and one-half of the
sampling frequency. Although (f) shows these overlapping frequencies as
retaining their separate identity, in actual practice they add together forming
a single confused mess. Since there is no way to separate the overlapping
frequencies, information is lost, and the original signal cannot be
reconstructed. This overlap occurs when the analog signal contains
frequencies greater than one-half the sampling rate, that is, we have proven
the sampling theorem.

Digital-to-Analog Conversion

In theory, the simplest method for digital-to-analog conversion is to pull the
samples from memory and convert them into an impulse train. This is

Chapter 3- ADC and DAC

Time Domain Frequency Domain
3 } ! ! ! !
) ‘a_ Original analog signal ‘ ‘ b. Original signal's spectrum ‘
£ N oaf) e
> >
E \/V VYR
< <
-1 1+
24
-3 \ \ \ \ 0
0 1 2 3 4 5 0 fg 2 3fg
Time Frequency
3 3 I I I I I
. e Sampling at 3 times highest frequency d. Duplicated spectrum from sampling
lower upper
original signal sideband | sideband
14 " . . I 2 N
[0} impulse train) L
° °
2 i 2
50 T =
£ £
< <
-1 14
2+
-3 T T T T 0
0 1 2 3 4 5 0 fg 2 3fg
Time Frequency
3 3 I I I I I
,. e Sampling at 1.5 times highest frequency f. Overlapping spectra causing aliasing
. original signal
o ! impulse train 02 ~
° °
2 i 2
50 T =
£ £
< <
-1 1+
2+
-3 T T T T 0
0 1 2 3 4 5 0 fg 2 3 4fg Sfg 6fg
Time Frequency
FIGURE 3-5

The sampling theorem in the time and frequency domains. Figures(a) and (b) show an analog signal composed
of frequency components between zero and 0.33 of the sampling frequency, f.. In (c), the analog signal is
sampled by converting it to an impulsetrain. Inthe frequency domain, (d), thisresultsin the spectrum being
duplicated into an infinite number of upper and lower sidebands. Since the original frequenciesin (b) exist
undistorted in (d), proper sampling hastaken place. In comparison, the analog signal in (€) is sampled at 0.66
of the sampling frequency, a value exceeding the Nyquist rate. This results in aliasing, indicated by the
sidebandsin (f) overlapping.

45

46 The Scientist and Engineer's Guide to Digital Sgnal Processing

illustrated in Fig. 3-6a, with the corresponding frequency spectrum in (b). As
just described, the original analog signal can be perfectly reconstructed by
passing this impulse train through a low-pass filter, with the cutoff frequency
equal to one-half of the sampling rate. In other words, the original signal and
the impulse train have identical frequency spectra below the Nyquist frequency
(one-half the sampling rate). At higher frequencies, the impulse train contains
a duplication of this information, while the original analog signal contains
nothing (assuming aliasing did not occur).

While this method is mathematically pure, it is difficult to generate the required
narrow pulses in electronics. To get around this, nearly all DACs operate by
holding the last value until another sample is received. This is called a
zeroth-order hold, the DAC equivalent of the sample-and-hold used during
ADC. (A first-order hold is straight lines between the points, a second-order
hold uses parabolas, etc.). The zeroth-order hold produces the staircase
appearance shown in (c).

In the frequency domain, the zeroth-order hold results in the spectrum of the
impulse train being multiplied by the dark curve shown in (d), given by the

eguation:
EQUATION 3-1 _
High frequency amplitude reduction due to sn(rf/f,)
the zeroth-order hold. This curve s plotted H(f) = |——————
in Fig. 3-6d. The sampling frequency is nf/f

represented by fg. For f= 0, H(f) = 1.

Thisis of the general form: sin(nx)/(nx), called the sinc function or sinc(x).
The sinc function is very common in DSP, and will be discussed in more detail
in later chapters. If you already have a background in this material, the zeroth-
order hold can be understood as the convolution of the impulse train with a
rectangular pulse, having a width equal to the sampling period. Thisresultsin
the frequency domain being multiplied by the Fourier transform of the
rectangular pulse, i.e., the sinc function. In Fig. (d), the light line shows the
frequency spectrum of the impulse train (the "correct" spectrum), while the dark
line shows the sinc. The frequency spectrum of the zeroth order hold signal is
equal to the product of these two curves.

The analog filter used to convert the zeroth-order hold signal, (c), into the
reconstructed signal, (f), needs to do two things: (1) remove al frequencies
above one-half of the sampling rate, and (2) boost the frequencies by the
reciprocal of the zeroth-order hold's effect, i.e., 1/sinc(x). This amounts to an
amplification of about 36% at one-half of the sampling frequency. Figure (€)
shows the ideal frequency response of this analog filter.

This 1/sinc(x) frequency boost can be handled in four ways: (1) ignore it and
accept the consegquences, (2) design an analog filter to include the 1/sinc(X)

Chapter 3- ADC and DAC

Time Domain

3
. a. Impulsetrain
o 1
: L |
=] 1, .
50 TTT T
g ‘ || T || |
<
1,
,2,
-3 T T T T
0 1 2 3 4 5
Time
3
) c. Zeroth-order hold
(]
=]
2
£
£
<_
'3 T T T T
0 1 2 3 4 5
Time
FIGURE 3-6

Analysis of digital-to-analog conversion. In (a), the digital
data are converted into an impulsetrain, with the spectrum
in (b). Thisischanged into the reconstructed signal, (f), by
using an electronic low-pass filter to remove frequencies
above one-half the sampling rate [compare (b) and (g)].
However, most electronic DACs create a zeroth-order hold
waveform, (c), instead of an impulsetrain. The spectrum
of the zeroth-order hold is equal to the spectrum of the
impulse train multiplied by the sinc function shown in (d).
To convert the zeroth-order hold into the reconstructed
signal, the anal og filter must remove al frequencies above
the Nyquist rate, and correct for the sinc, asshownin (€).

f. Reconstructed analog signal

Amplitude

Frequency Domain

I I I I
‘ b. Spectrum of impulse train ‘
o i~
°
2
319
£
<
0
0 fg 2 3
Frequency
2
I I I I
‘ d. Spectrum multiplied by sinc
I I
@ i I
° .
2 sinc
B 1 |
= |
< I
I
I
I
I
i
I
0 t
0 fg 2 3
Frequency
2
I I I I
“ﬂ e. ldeal reconstruction filter i
g ./
2
=1
£
<
0
0 fg 2 3
Frequency
2
I I I I
g. Reconstructed spectrum
[}
°
2
5 1
£
<
0
0 fg 2 3

Frequency

47

48

The Scientist and Engineer's Guide to Digital Sgnal Processing

response, (3) use afancy multirate technique described later in this chapter,
or (4) make the correction in software before the DAC (see Chapter 24).

Before leaving this section on sampling, we need to dispel a common myth
about analog versus digital signals. As this chapter has shown, the amount of
information carried in adigital signal islimited in two ways: First, the number
of bits per sample limits the resolution of the dependent variable. That is,
small changes in the signal's amplitude may be lost in the quantization noise.
Second, the sampling rate limits the resolution of the independent variable, i.e.,
closely spaced events in the analog signal may be lost between the samples.
Thisis another way of saying that frequencies above one-half the sampling rate
are lost.

Here is the myth: "Since analog signals use continuous parameters, they have
infinitely good resolution in both the independent and the dependent variables.”
Not true! Analog signals are limited by the same two problems as digital
signals: noise and bandwidth (the highest frequency allowed in the signal). The
noise in an analog signal limits the measurement of the waveform's amplitude,
just as quantization noise does in a digital signal. Likewise, the ability to
separate closely spaced events in an analog signal depends on the highest
frequency alowed in the waveform. To understand this, imagine an analog
signal containing two closely spaced pulses. If we place the signal through a
low-pass filter (removing the high frequencies), the pulses will blur into a
single blob. For instance, an analog signal formed from frequencies between
DC and 10 kHz will have exactly the same resolution as a digital signal
sampled at 20 kHz. It must, since the sampling theorem guarantees that the
two contain the same information.

Analog Filters for Data Conversion

Figure 3-7 shows a block diagram of a DSP system, as the sampling theorem
dictates it should be. Before encountering the analog-to-digital converter,

antialias filter reconstruction filter
3 Analog Digital ; Analog
Filter ADC =2 Processing —>| DAC Filter

T

Anaog
Input

FIGURE 3-7

Filtered Digitized Digitized Analog
Analog Input Output And og Output
Input Qutput

Analog electronic filters used to comply with the sampling theorem. The electronic filter placed before an ADC is
cdled an antialiasfilter. Itisused to remove frequency components above one-half of the sampling rate that would
alias during the sampling. The electronic filter placed after aDAC iscalled areconstruction filter. It also eliminates
frequencies above the Nyquist rate, and may include a correction for the zeroth-order hold.

Chapter 3- ADC and DAC 49

the input signal is processed with an electronic low-pass filter to remove all
frequencies above the Nyquist frequency (one-half the sampling rate). Thisis
done to prevent aliasing during sampling, and is correspondingly called an
antialias filter. On the other end, the digitized signal is passed through a
digital-to-analog converter and another low-pass filter set to the Nyquist
frequency. This output filter is called areconstruction filter, and may include
the previously described zeroth-order-hold frequency boost. Unfortunately,
there is a serious problem with this simple model: the limitations of electronic
filters can be as bad as the problems they are trying to prevent.

If your main interest is in software, you are probably thinking that you don't
need to read this section. Wrong! Even if you have vowed never to touch an
oscilloscope, an understanding of the properties of analog filters is important
for successful DSP. First, the characteristics of every digitized signal you
encounter will depend on what type of antialias filter was used when it was
acquired. If you don't understand the nature of the antialias filter, you cannot
understand the nature of the digital signal. Second, the future of DSP is to
replace hardware with software. For example, the multirate techniques
presented later in this chapter reduce the need for antialias and reconstruction
filters by fancy software tricks. If you don't understand the hardware, you
cannot design software to replace it. Third, much of DSP is related to digital
filter design. A common strategy is to start with an equivalent analog filter,
and convert it into software. Later chapters assume you have a basic
knowledge of analog filter techniques.

Three types of analog filters are commonly used: Chebyshev, Butterworth,
and Bessel (also called a Thompson filter). Each of these is designed to
optimize a different performance parameter. The complexity of each filter
can be adjusted by selecting the number of poles and zer os, mathematical
terms that will be discussed in later chapters. The more poles in a filter,
the more electronics it requires, and the better it performs. Each of these
names describe what the filter does, not a particular arrangement of
resistors and capacitors. For example, a six pole Bessel filter can be
implemented by many different types of circuits, all of which have the same
overall characteristics. For DSP purposes, the characteristics of these
filters are more important than how they are constructed. Nevertheless, we
will start with a short segment on the electronic design of these filters to
provide an overall framework.

Figure 3-8 shows a common building block for analog filter design, the
modified Sallen-Key circuit. Thisis named after the authors of a 1950s paper
describing the technique. The circuit shown is a two pole low-pass filter that
can be configured as any of the three basic types. Table 3-1 provides the
necessary information to select the appropriate resistors and capacitors. For
example, to design a 1 kHz, 2 pole Butterworth filter, Table 3-1 provides the
parameters: k; = 0.1592 and k, = 0.586. Arbitrarily selecting R, = 10K and
C = 0.01uF (common values for op amp circuits), R and R; can be calculated
as 15.95K and 5.86K, respectively. Rounding these last two values to the
nearest 1% standard resistors, resultsin R = 15.8K and R; = 5.90K All of the
components should be 1% precision or better.

50

The Scientist and Engineer's Guide to Digital Sgnal Processing

C
Il
FIGURE 3-8 "
The modified Sallen-Key circuit, a building R R
block for active filter design. The circuit >— MMM +
shown implements a 2 pole low-pass filter. J_ 5
Higher order filters (more poles) can be C
formed by cascading stages. Find k; and k, 1; - R¢
from Table 3-1, arbitrarily select R, and C
(try 10K and 0.01pF), and then calculate R K
and R; from the equationsin the figure. The R = 1 R
parameter, f, is the cutoff frequency of the Cf 1
filter, in hertz. ¢
R = Rk,
TABLE 3-1
Parameters for designing Bessel, Butterworth, and Chebyshev (6% ripple) filters.
Bessel Butterworth Chebyshev
#poles K, k, K, K, K, K,
stage 1 0.1251 0.268 0.1592 0.586 0.1293 0.842
4 stagel 0.1111 0.084 0.1592 0.152 0.2666 0.582
stage 2 0.0991 0.759 0.1592 1.235 0.1544 1.660
6 stagel 0.0990 0.040 0.1592 0.068 0.4019 0.537
stage 2 0.0941 0.364 0.1592 0.586 0.2072 1.448
stage 3 0.0834 1.023 0.1592 1.483 0.1574 1.846
8 stagel 0.0894 0.024 0.1592 0.038 0.5359 0.522
stage 2 0.0867 0.213 0.1592 0.337 0.2657 1.379
stage 3 0.0814 0.593 0.1592 0.889 0.1848 1.711
stage 4 0.0726 1.184 0.1592 1.610 0.1582 1.913

The particular op amp used isn't critical, as long as the unity gain frequency is
more than 30 to 100 times higher than the filter's cutoff frequency. Thisisan
easy requirement as long as the filter's cutoff frequency is below about 100
kHz.

Four, six, and eight pole filters are formed by cascading 2,3, and 4 of these
circuits, respectively. For example, Fig. 3-9 shows the schematic of a 6 pole

0.01pF
1l

10K

825k | 825K
AAAA AAAA +
YVVY VVVVJ_ I\ -
3365 0.014F L
S l 102K
1 > 10K >
k, = 0.0990 > stage 2 10K
k, = 0.040 k, = 0.0941 > stage 3 S10K
k, = 0.364 < k =008 =
k=103 <
FIGURE 3-9

A six pole Bessel filter formed by cascading three Sallen-Key circuits. Thisisalow-passfilter with

a cutoff frequency of 1 kHz.

Chapter 3- ADC and DAC 51

Bessel filter created by cascading three stages. Each stage has different values
for k; and k, as provided by Table 3-1, resulting in different resistors and
capacitors being used. Need a high-pass filter? Simply swap the R and C
components in the circuits (leaving R; and R, alone).

This type of circuit is very common for small quantity manufacturing and R& D
applications; however, serious production requires the filter to be made as an
integrated circuit. The problem is, it is difficult to make resistors directly in
silicon. The answer is the switched capacitor filter. Figure 3-10 illustrates
its operation by comparing it to a simple RC network. If a step function is fed
into an RC low-pass filter, the output rises exponentially until it matches the
input. The voltage on the capacitor doesn't change instantaneously, because the
resistor restricts the flow of electrical charge.

The switched capacitor filter operates by replacing the basic resistor-
capacitor network with two capacitors and an electronic switch. The newly
added capacitor is much smaller in value than the already existing
capacitor, say, 1% of its value. The switch alternately connects the small
capacitor between the input and the output at a very high frequency,
typically 100 times faster than the cutoff frequency of the filter. When the
switch is connected to the input, the small capacitor rapidly charges to
whatever voltage is presently on the input. When the switch is connected
to the output, the charge on the small capacitor is transferred to the large
capacitor. In aresistor, the rate of charge transfer is determined by its
resistance. In a switched capacitor circuit, the rate of charge transfer is
determined by the value of the small capacitor and by the switching
frequency. This results in a very useful feature of switched capacitor

Resi stor-Capacitor

g R
S MW T

time I C time
Switched Capacitor
3 ¢ 3 high f
g ~ b 2 low f
> Y1 ¢

time I C/100 I C time

FIGURE 3-10

Switched capacitor filter operation. Switched capacitor filters use switches and capacitorsto mimic
resistors. Asshown by the equivalent step responses, two capacitors and one switch can perform the
same function as aresistor-capacitor network.

52

The Scientist and Engineer's Guide to Digital Sgnal Processing

filters: the cutoff frequency of the filter is directly proportional to the clock
frequency used to drive the switches. This makes the switched capacitor filter
ideal for data acquisition systems that operate with more than one sampling
rate. These are easy-to-use devices; pay ten bucks and have the performance
of an eight pole filter inside a single 8 pin IC.

Now for the important part: the characteristics of the three classic filter types.
The first performance parameter we want to explore is cutoff frequency
sharpness. A low-pass filter is designed to block all frequencies above the
cutoff frequency (the stopband), while passing all frequencies below (the
passband). Figure 3-11 shows the frequency response of these three filters on
alogarithmic (dB) scale. These graphs are shown for filters with a one hertz
cutoff frequency, but they can be directly scaled to whatever cutoff frequency
you need to use. How do these filters rate? The Chebyshev is clearly the best,
the Butterworth is worse, and the Bessel is absolutely ghastly! As you
probably surmised, this is what the Chebyshev is designed to do, roll-off (drop
in amplitude) as rapidly as possible.

Unfortunately, even an 8 pole Chebyshev isn't as good as you would like for
an antialias filter. For example, imagine a 12 bit system sampling at 10,000
samples per second. The sampling theorem dictates that any frequency above
5 kHz will be aliased, something you want to avoid. With a little guess work,
you decide that all frequencies above 5 kHz must be reduced in amplitude by
afactor of 100, insuring that any aliased frequencies will have an amplitude of
less than one percent. Looking at Fig. 3-11c, you find that an 8 pole
Chebyshev filter, with a cutoff frequency of 1 hertz, doesn't reach an
attenuation (signal reduction) of 100 until about 1.35 hertz. Scaling this to the
example, the filter's cutoff frequency must be set to 3.7 kHz so that everything
above 5 kHz will have the required attenuation. This results in the frequency
band between 3.7 kHz and 5 kHz being wasted on the inadequate roll-off of the
analog filter.

A subtle point: the attenuation factor of 100 in this example is probably
sufficient even though there are 4096 steps in 12 bits. From Fig. 3-4, 5100
hertz will alias to 4900 hertz, 6000 hertz will alias to 4000 hertz, etc. You
don't care what the amplitudes of the signals between 5000 and 6300 hertz are,
because they dias into the unusable region between 3700 hertz and 5000 hertz.
In order for a frequency to alias into the filter's passband (0 to 3.7 kHz), it
must be greater than 6300 hertz, or 1.7 times the filter's cutoff frequency of
3700 hertz. As shown in Fig. 3-11c, the attenuation provided by an 8 pole
Chebyshev filter at 1.7 times the cutoff frequency is about 1300, much more
adeguate than the 100 we started the analysis with. The moral to this story: In
most systems, the frequency band between about 0.4 and 0.5 of the sampling
frequency is an unusable wasteland of filter roll-off and aliased signals. This
is adirect result of the limitations of analog filters.

The frequency response of the perfect low-pass filter is flat across the entire
passband. All of the filters look great in this respect in Fig. 3-11, but only
because the vertical axis is displayed on alogarithmic scale. Another story is
told when the graphs are converted to a linear vertical scale, as is shown

Chapter 3- ADC and DAC 53

Log scale Linear scale
10 ; 1.6 T
a. Bessd 141__|a Bess
1 \\ 12
° \\ 2 pole o
ER g § 2 E N
g ideal 8 \\ g 08 N
< 001 e < 0.6 N
\ 0A4 \
0.001 AN ‘ \\ 2 pole
o 02 4 pO\
0.0001 0 8 —
0 1 2 3 4 5 0 1 2 3 4 5
Frequency (hertz) Frequency (hertz)
10 ; ; 1.6 ; ;
b. Butterworth 1.4-L__|b. Butterworth |
! - 1.2
:ng 0.1 < 2pole :ng 1
= \ ~ T 2 o8
E 0.01 ™ E 0.6
8\ \ : 1
\ \ 0.4
0.001 \
\ 0.2 \\ ~2pole
A
0.0001 N 0
0 1 2 3 4 5 0 1 2 3 4 5
Frequency (hertz) Frequency (hertz)
10 : ! ! 1.6 ! ! !
‘c. Chebyshev (6% ripple) ‘ 1.4-L__| c. Chebyshev (6% ripple) 1
! 1.2
€ o1 e L 1=
2 \ 2
= 4 7 08
E 01 \ = \ \
< 8\ \\ < 06 \
0.001 \ M 04 \ 2pole
0.2
4 I ———
0.0001 A 0 k\ —
0 1 2 3 4 5 0 1 2 3 4 5
Frequency (hertz) Frequency (hertz)
FIGURE 3-11 FIGURE 3-12
Freguency response of the three filterson a Freguency response of the three filterson a
logarithmic scale. The Chebyshev filter has linear scale. The Butterworth filter provides
the sharpest roll-off. the flattest passband.

in Fig. 3-12. Passband ripple can now be seen in the Chebyshev filter
(wavy variations in the amplitude of the passed frequencies). In fact, the
Chebyshev filter obtains its excellent roll-off by allowing this passband
ripple. When more passband ripple is allowed in afilter, a faster roll-off

54

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing
can be achieved. All the Chebyshev filters designed by using Table 3-1 have
a passhand ripple of about 6% (0.5 dB), a good compromise, and a common
choice. A similar design, the elliptic filter, allows ripple in both the passband
and the stopband. Although harder to design, elliptic filters can achieve an
even better tradeoff between roll-off and passband ripple.
In comparison, the Butterworth filter is optimized to provide the sharpest roll-
off possible without allowing ripple in the passband. It is commonly called the
maximally flat filter, and is identical to a Chebyshev designed for zero
passband ripple. The Bessel filter has no ripple in the passband, but the roll-
off far worse than the Butterworth.
The last parameter to evaluate is the step response, how the filter responds
when the input rapidly changes from one value to another. Figure 3-13 shows
the step response of each of the three filters. The horizontal axis is shown for
filters with a 1 hertz cutoff frequency, but can be scaled (inversely) for higher
cutoff frequencies. For example, a 1000 hertz cutoff frequency would show a
step response in milliseconds, rather than seconds. The Butterworth and
Chebyshev filters overshoot and show ringing (oscillations that slowly
decreasing in amplitude). In comparison, the Bessel filter has neither of these
nasty problems.
1.6 : ! ! L6 : ! !
o2 Bea | 14— b. Bultenworth |
12 S R R 12 S R R
L0 ———— : : : L0 ———— /7~ | :
277 | | ST |
R o ot =S 084-—f- i__' __________ o ot
SRR .1 — — IR A Ay L. S S— —
0.4+4f- Ef?c—"ﬂi ---------- i ---------- »ir ---------- 0.4+-f-f-—-f +i ---------- i ---------- »ir ----------
IRRY 19— S — RSN A N S —
0.0 ; ; ; 0.0 ; ; ;
0 1 2 3 4 0 1 2 3 4
Time (seconds) Time (seconds)
1.6 : : :
1.4-+-- c. Chebyshev (6% ripple) F--:T ----------
FIGURE 3-13 P o o |
Step response of the three filters. The times | I i
shown on the horizontal axis correspond to a 8 L0F-—=Af-- : : .
one hertz cutoff frequency. The Bessel isthe 2 0.8 2 ! ! !
optimum filter when overshoot and ringing [B VR T T
must be minimized. < 0.6F-f-—f-—- Ao R H——
PRI D A AL S]
AN Y S A— I
0.0 ; ; ;
0 1 2 3 4

Time (seconds)

Chapter 3- ADC and DAC 55

L5 . ; . . L5 ; ; . .
a Pulse waveform i i b. After Bessel filter i i
| | | | | | | |
10—~ i i i Rl T L.07------ | . S Rl T
i i i i i i i i
E I E o
5 05 -—-f---F------- I pom----- To=----- 5 05F----f-- po=-=m-- F-=--1-- pom----- To=-----
£ | i i i = | i i |
< i i i i < i i i i
I I I I I I I I
0.0 SR S I ! ! 0.0 SR S . ! !
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
i i i i i i i i
0.5 ! ! ! ! 0.5 ! ! ! !
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
FIGURE 3-14 LS ' S— ;
Pulse response of the Bessel and Chebyshev c. After Chebyshev filter |
filters. A key property of the Bessel filter is that) i i i
the rising and falling edges in the filter's output L0F--—-—- , b o
looking similar. In the jargon of the field, thisis © i i |
called linear phase. Figure (b) showsthe result < i i i
of passing the pulse waveformin (&) through a4 S 054 fpomm- [[I
pole Bessel filter. Both edges are smoothed in a £ i i |
similar manner. Figure (c) shows the result of < i i i
passing (a) through a 4 pole Chebyshev filter. 00 —A L | L '
The left edge overshoots on the top, while the i i ' |
right edge overshoots on the bottom. Many i i ! i
applications cannot tolerate this distortion. 05 ; ; ; ;
0 100 200 300 400 500

Figure 3-14 further illustrates this very favorable characteristic of the Bessel
filter. Figure (@) shows a pulse waveform, which can be viewed as a rising
step followed by afalling step. Figures (b) and (c) show how this waveform

would appear after Bessel and Chebyshev filters, respectively. [f this were a
video signal, for instance, the distortion introduced by the Chebyshev filter
would be devastating! The overshoot would change the brightness of the edges
of objects compared to their centers. Worse yet, the left side of objects would
look bright, while the right side of objects would look dark. Many applications
cannot tolerate poor performance in the step response. This is where the Bessel
filter shines; no overshoot and symmetrical edges.

Selecting The Antialias Filter

Table 3-2 summarizes the characteristics of these three filters, showing how
each optimizes a particular parameter at the expense of everything else. The
Chebyshev optimizes the roll-off, the Butterworth optimizes the passband
flatness, and the Bessel optimizes the step response.

The selection of the antialias filter depends almost entirely on one issue: how
information is represented in the signals you intend to process. While

56 The Scientist and Engineer's Guide to Digital Sgnal Processing
Step Response Frequency Response
; Timeto Timeto ; ; Frequency Frequenc
Voltagegain | oyerghoot settleto 1% settleto Ripplein for x100 for x100i
at b ’ 0.1% passband attenuation attenuation
Bessel
2 pole 1.27 0.4% 0.60 112 0% 12.74 40.4
4 pole 191 0.9% 0.66 1.20 0% 4.74 8.45
6 pole 2.87 0.7% 0.74 1.18 0% 3.65 5.43
8 pole 4.32 0.4% 0.80 1.16 0% 3.35 4.53
Butterworth
2 pole 1.59 4.3% 1.06 1.66 0% 10.0 31.6
4 pole 2.58 10.9% 1.68 2.74 0% 3.17 5.62
6 pole 4.21 14.3% 2.74 3.92 0% 2.16 3.17
8 pole 6.84 16.4% 3.50 5.12 0% 1.78 2.38
Chebyshev
2 pole 1.84 10.8% 1.10 1.62 6% 12.33 38.9
4 pole 4.21 18.2% 3.04 5.42 6% 2.59 4.47
6 pole 10.71 21.3% 5.86 10.4 6% 1.63 2.26
8 pole 28.58 23.0% 8.34 16.4 6% 1.34 1.66
TABLE 3-2

Characteristics of thethree classic filters. The Bessel filter providesthe best step response, making it the choice for
time domain encoded signals. The Chebyshev and Butterworth filters are used to eliminate frequencies in the
stopband, making them ideal for frequency domain encoded signals. Valuesin thistable are in the units of seconds
and hertz, for aone hertz cutoff frequency.

there are many ways for information to be encoded in an analog waveform,
only two methods are common, time domain encoding, and frequency
domain encoding. The difference between these two is critical in DSP, and
will be a reoccurring theme throughout this book.

In frequency domain encoding, the information is contained in sinusoidal
waves that combine to form the signal. Audio signals are an excellent example
of this. When a person hears speech or music, the perceived sound depends on
the frequencies present, and not on the particular shape of the waveform. This
can be shown by passing an audio signal through a circuit that changes the
phase of the various sinusoids, but retains their frequency and amplitude. The
resulting signal looks completely different on an oscilloscope, but sounds
identical. The pertinent information has been left intact, even though the
waveform has been significantly altered. Since aliasing misplaces and overlaps
frequency components, it directly destroys information encoded in the frequency
domain. Consequently, digitization of these signals usually involves an
antialias filter with a sharp cutoff, such as a Chebyshev, Elliptic, or
Butterworth. What about the nasty step response of these filters? It doesn't
matter; the encoded information isn't affected by this type of distortion.

In contrast, time domain encoding uses the shape of the waveform to store
information. For example, physicians can monitor the electrical activity of a

Chapter 3- ADC and DAC 57

person's heart by attaching electrodes to their chest and arms (an
electrocardiogram or EKG). The shape of the EKG waveform provides the
information being sought, such as when the various chambers contract during
a heartbeat. Images are another example of this type of signal. Rather than a
waveform that varies over time, images encode information in the shape of a
waveform that varies over distance. Pictures are formed from regions of
brightness and color, and how they relate to other regions of brightness and
color. You don't look at the Mona Lisa and say, "My, what an interesting
collection of sinusoids."

Here's the problem: The sampling theorem is an analysis of what happens in
the frequency domain during digitization. This makes it ideal to under-stand
the anal og-to-digital conversion of signals having their information encoded in
the frequency domain. However, the sampling theorem is little help in
understanding how time domain encoded signals should be digitized. Let's take
a closer look.

Figure 3-15 illustrates the choices for digitizing a time domain encoded signal.
Figure (a) is an example analog signal to be digitized. In this case, the
information we want to capture is the shape of the rectangular pulses. A short
burst of a high frequency sine wave is also included in this example signal.
This represents wideband noise, interference, and similar junk that always
appears on analog signals. The other figures show how the digitized signal
would appear with different antialias filter options: a Chebyshev filter, a Bessel
filter, and no filter.

It isimportant to understand that none of these options will allow the original
signal to be reconstructed from the sampled data. Thisis because the original
signal inherently contains frequency components greater than one-half of the
sampling rate. Since these frequencies cannot exist in the digitized signal, the
reconstructed signal cannot contain them either. These high frequencies result
from two sources: (1) noise and interference, which you would like to
eliminate, and (2) sharp edges in the waveform, which probably contain
information you want to retain.

The Chebyshev filter, shown in (b), attacks the problem by aggressively
removing all high frequency components. This results in a filtered analog
signal that can be sampled and later perfectly reconstructed. However, the
reconstructed analog signal is identical to the filtered signal, not the original
signal. Although nothing is lost in sampling, the waveform has been severely
distorted by the antialias filter. As shown in (b), the cure is worse than the
disease! Don't do it!

The Bessel filter, (c), is designed for just this problem. Its output closely
resembles the original waveform, with only a gentle rounding of the edges.
By adjusting the filter's cutoff frequency, the smoothness of the edges can
be traded for elimination of high frequency components in the signal.
Using more poles in the filter allows a better tradeoff between these two
parameters. A common guideline is to set the cutoff frequency at about
one-quarter of the sampling frequency. This results in about two samples

58

The Scientist and Engineer's Guide to Digital Sgnal Processing

along the rising portion of each edge. Notice that both the Bessel and the
Chebyshev filter have removed the burst of high frequency noise present in
the original signal.

The last choice is to use no antialias filter at all, asis shown in (d). This
has the strong advantage that the value of each sample is identical to the
value of the original analog signal. In other words, it has perfect edge
sharpness; a change in the original signal is immediately mirrored in the
digital data. The disadvantage is that aliasing can distort the signal. This
takes two different forms. First, high frequency interference and noise,
such as the example sinusoidal burst, will turn into meaningless samples,
as shown in (d). That is, any high frequency noise present in the analog
signal will appear as aliased noise in the digital signal. In a more general
sense, thisis not a problem of the sampling, but a problem of the upstream
analog electronics. It is not the ADC's purpose to reduce noise and
interference; this is the responsibility of the analog electronics before the
digitization takes place. It may turn out that a Bessel filter should be
placed before the digitizer to control this problem. However, this means the
filter should be viewed as part of the analog processing, not something that
is being done for the sake of the digitizer.

The second manifestation of aliasing is more subtle. When an event occurs
in the analog signal (such as an edge), the digital signal in (d) detects the
change on the next sample. There is no information in the digital data to
indicate what happens between samples. Now, compare using no filter with
using a Bessel filter for this problem. For example, imagine drawing
straight lines between the samples in (c). The time when this constructed
line crosses one-half the amplitude of the step provides a subsample
estimate of when the edge occurred in the analog signal. When no filter is
used, this subsample information is completely lost. Y ou don't need a fancy
theorem to evaluate how this will affect your particular situation, just a
good understanding of what you plan to do with the data once is it acquired.

Multirate Data Conversion

There is a strong trend in electronics to replace analog circuitry with
digital algorithms. Data conversion is an excellent example of this.
Consider the design of a digital voice recorder, a system that will digitize
a voice signal, store the data in digital form, and later reconstruct the
signal for playback. To recreate intelligible speech, the system must
capture the frequencies between about 100 and 3000 hertz. However, the
analog signal produced by the microphone also contains much higher
frequencies, say to 40 kHz. The brute force approach is to pass the analog
signal through an eight pole low-pass Chebyshev filter at 3 kHz, and then
sample at 8 kHz. On the other end, the DAC reconstructs the analog signal
at 8 kHz with a zeroth order hold. Another Chebyshev filter at 3 kHz is
used to produce the final voice signal.

Chapter 3- ADC and DAC

59

3 3
a Anaog waveform ‘ ‘ b. With Chebyshev filter
waveform to .
2+ be captured 2
e
[} [}
° °
2 2
3 17 3 17
£ £
< <
0 ﬂwj‘l‘ O fesssmmnnmnmee ® R EE, aEE
high-frequency —
no‘?se toeq be re(j:)écted
-1 \ \ \ \ \ -1 \ \ \ \ \
0 100 200 300 400 500 600 0 10 20 30 40 50 60
Time Sample number
3 3
c. With Bessel filter d. No analog filter
24 aesamanam 24 memmemsmnes
[} [}
° °
2 2
F 14 e S 14 ereseeeeeaa
£ £
< <
O—tamssssamsmses epssssssssssssssss 4
-1 \ \ \ \ \ -1 \ \ \ \ \
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Sample number Sample number
FIGURE 3-15

Three antialiasfilter options for time domain encoded signals. The goal isto eliminate high frequencies (that will alias
during sampling), while simultaneously retaining edge sharpness (that carriesinformation). Figure (a) shows an example
analog signal containing both sharp edges and a high frequency noise burst. Figure (b) showsthe digitized signal using
a Chebyshev filter. While the high frequencies have been effectively removed, the edges have been grossly distorted.
Thisisusually aterrible solution. The Bessel filter, shownin (c), provides agentle edge smoothing while removing the
high frequencies. Figure (d) shows the digitized signal using no antialias filter. In this case, the edges have retained
perfect sharpness; however, the high frequency burst has aliased into several meaningless samples.

There are many useful benefits in sampling faster than this direct analysis. For
example, imagine redesigning the digital voice recorder using a 64 kHz
sampling rate. The antialias filter now has an easier task: pass all freg-uencies
below 3 kHz, while rejecting all frequencies above 32 kHz. A similar
simplification occurs for the reconstruction filter. In short, the higher sampling
rate allows the eight pole filters to be replaced with simple resistor-capacitor
(RC) networks. The problem is, the digital system is now swamped with data
from the higher sampling rate.

The next level of sophistication involves multirate techniques, using more
than one sampling rate in the same system. It works like this for the digital
voice recorder example. First, pass the voice signal through a simple RC low-

60

The Scientist and Engineer's Guide to Digital Sgnal Processing

pass filter and sample the data at 64 kHz. The resulting digital data contains
the desired voice band between 100 and 3000 hertz, but also has an unusable
band between 3 kHz and 32 kHz. Second, remove these unusable frequencies
in software, by using a digital low-pass filter at 3 kHz. Third, resample the
digital signal from 64 kHz to 8 kHz by simply discarding every seven out of
eight samples, a procedure called decimation. The resulting digital data is
equivalent to that produced by aggressive analog filtering and direct 8 kHz
sampling.

Multirate techniques can also be used in the output portion of our example
system. The 8 kHz data is pulled from memory and converted to a 64 kHz
sampling rate, a procedure called interpolation. This involves placing seven
samples, with a value of zero, between each of the samples obtained from
memory. The resulting signal is a digital impulse train, containing the desired
voice band between 100 and 3000 hertz, plus spectral duplications between 3
kHz and 32 kHz. Refer back to Figs. 3-6 a&b to understand why this it true.
Everything above 3 kHz is then removed with a digital low-pass filter. After
conversion to an analog signal through a DAC, asimple RC network is al that
is required to produce the final voice signal.

Multirate data conversion is valuable for two reasons. (1) it replaces
analog components with software, a clear economic advantage in mass-
produced products, and (2) it can achieve higher levels of performance in
critical applications. For example, compact disc audio systems use
techniques of this type to achieve the best possible sound quality. This
increased performance is a result of replacing analog components (1%
precision), with digital algorithms (0.0001% precision from round-off
error). As discussed in upcoming chapters, digital filters outperform analog
filters by hundreds of times in key areas.

Single Bit Data Conversion

A popular technique in telecommunications and high fidelity music reproduction
issingle bit ADC and DAC. These are multirate techniques where a higher
sampling rate is traded for a lower number of bits. In the extreme, only a
single bit is needed for each sample. While there are many different circuit
configurations, most are based on the use of delta modulation. Three
example circuits will be presented to give you a flavor of the field. All of
these circuits are implemented in IC's, so don't worry where all of the
individual transistors and op amps should go. No one is going to ask you to
build one of these circuits from basic components.

Figure 3-16 shows the block diagram of a typical delta modulator. The
analog input is a voice signal with an amplitude of a few volts, while the
output signal is a stream of digital ones and zeros. A comparator decides
which has the greater voltage, the incoming analog signal, or the voltage
stored on the capacitor. This decision, in the form of a digital one or zero,
is applied to the input of the latch. At each clock pulse, typically at afew
hundred kilohertz, the latch transfers whatever digital state appears on its

Chapter 3- ADC and DAC

l clock
andlog delta
modulated
digital output
comparator latch
ositive
(F:)harge clock
injector

e negative
= | cﬁg\rge clock
J_ injector

FIGURE 3-16

Block diagram of a delta modulation circuit. The input voltage is compared with the voltage
stored on the capacitor, resulting in adigital zero or one being applied to the input of the latch.
The output of the latch is updated in synchronization with the clock, and used in afeedback
loop to cause the capacitor voltage to track the input voltage.

61

input, to its output. This latch insures that the output is synchronized with the
clock, thereby defining the sampling rate, i.e., the rate at which the 1 bit output
can update itself.

A feedback loop is formed by taking the digital output and using it to drive an
electronic switch. If the output is a digital one, the switch connects the
capacitor to a positive charge injector. Thisis avery loose term for a circuit
that increases the voltage on the capacitor by a fixed amount, say 1 millivolt
per clock cycle. This may be nothing more than a resistor connected to a large
positive voltage. If the output is a digital zero, the switch is connected to a
negative charge injector. This decreases the voltage on the capacitor by the
same fixed amount.

Figure 3-17 illustrates the signals produced by this circuit. At time equal
zero, the analog input and the voltage on the capacitor both start with a
voltage of zero. Asshown in (@), the input signal suddenly increases to 9.5
volts on the eighth clock cycle. Since the input signal is now more positive
than the voltage on the capacitor, the digital output changes to a one, as
shown in (b). This results in the switch being connected to the positive
charge injector, and the voltage on the capacitor increasing by a small
amount on each clock cycle. Although an increment of 1 volt per clock
cycleisshownin (a), thisisonly for illustration, and a value of 1 millivolt
ismore typical. This staircase increase in the capacitor voltage continues
until it exceeds the voltage of the input signal. Here the system reached an
equilibrium with the output oscillating between a digital one and zero,
causing the voltage on the capacitor to oscillate between 9 volts and 10

62

The Scientist and Engineer's Guide to Digital Sgnal Processing

volts. In this manner, the feedback of the circuit forces the capacitor
voltage to track the voltage of the input signal. If the input signal changes
very rapidly, the voltage on the capacitor changes at a constant rate until a
match is obtained. This constant rate of change is called the slew rate, just
as in other electronic devices such as op amps.

Now, consider the characteristics of the delta modulated output signal. If the
analog input is increasing in value, the output signal will consist of more ones
than zeros. Likewise, if the analog input is decreasing in vaue, the output will
consist of more zeros than ones. If the analog input is constant, the digital
output will alternate between zero and one with an equal number of each. Put
in more general terms, the relative number of ones versus zeros is directly
proportional to the slope (derivative) of the analog input.

This circuit is a cheap method of transforming an analog signal into a serial
stream of ones and zeros for transmission or digital storage. An especialy
attractive feature is that all the bits have the same meaning, unlike the
conventional serial format: start bit, LSB,--- ,MSB, stop bit. The circuit at
the receiver isidentical to the feedback portion of the transmitting circuit. Just
as the voltage on the capacitor in the transmitting circuit follows the analog
input, so does the voltage on the capacitor in the receiving circuit. That is, the
capacitor voltage shown in (a) also represents how the reconstructed signal
would appear.

A critical limitation of this circuit is the unavoidable tradeoff between (1)
maximum slew rate, (2) quantization size, and (3) data rate. In particular, if
the maximum slew rate and quantization size are adjusted to acceptable values
for voice communication, the data rate ends up in the MHz range. Thisis too
high to be of commercial value. For instance, conventional sampling of a voice
signal requires only about 64,000 bits per second.

A solution to this problem is shown in Fig. 3-18, the Continuously Variable
Slope Delta (CVSD) modulator, a technigue implemented in the Motorola
MC3518 family. In this approach, the clock rate and the quantization size are
set to something acceptable, say 30 kHz, and 2000 levels. This resultsin a
terrible slew rate, which you correct with additional circuitry. In operation, a
shift resister continually looks at the last four bits that the system has produced.
If the circuit isin a slew rate limited condition, the last four bits will be all
ones (positive slope) or al zeros (negative slope). A logic circuit detects this
situation and produces an analog signal that increase the level of charge
produced by the charge injectors. This boosts the slew rate by increasing the
size of the voltage steps being applied to the capacitor.

An analog filter is usually placed between the logic circuitry and the charge
injectors. This allows the step size to depend on how long the circuit has
been in a slew limited condition. Aslong as the circuit is slew limited, the
step size keeps getting larger and larger. This is often called a syllabic
filter, since its characteristics depend on the average length of the syllables
making up speech. With proper optimization (from the chip manufacturer's

Chapter 3- ADC and DAC 63
N S T
a. Anaog signals ! ! !

10 , , | capacitor voltage |
_ oo oo oo oo Toooo /
2 7
g IIJ | signal voltage | < ﬁmm
8 %\QL
=]
=S odoan - fg
£
g \C% a

5 A

D ANLTAVA gl
-10
0 10 20 30 40 50 60 70 80 90 100 110 120
Time (clock cycles)
T T T
b. Digital output
o
% | Slew rate limited |
o
8 . s
8
=)
o]
0 10 20 30 40 50 60 70 80 90 100 110 120
Time (clock cycles)
FIGURE 3-17

Example of signals produced by the delta modulator in Fig. 3-16. Figure (a) showsthe analog
input signal, and the corresponding voltage on the capacitor. Figure (b) shows the delta
modulated output, adigital stream of ones and zeros.

spec sheet, not your own work), data rates of 16 to 32 kHz produce acceptable
quality speech. The continually changing step size makes the digital data
difficult to understand, but fortunately, you don't need to. At the receiver, the
analog signal is reconstructed by incorporating a syllabic filter that is identical
to the one in the transmission circuit. |If the two filters are matched, little
distortion results from the CVSD modulation. CVSD is probably the easiest
way to digitally transmit a voice signal.

While CVSD modulation is great for encoding voice signals, it cannot be used
for general purpose analog-to-digital conversion. Even if you get around the
fact that the digital data is related to the derivative of the input signal, the
changing step size will confuse things beyond repair. In addition, the DC level
of the analog signal is usually not captured in the digital data.

The delta-sigma converter, shown in Fig. 3-19, eliminates these problems
by cleverly combining analog electronics with DSP algorithms. Notice that
the voltage on the capacitor is now being compared with ground potential.
The feedback loop has also been modified so that the voltage on the

The Scientist and Engineer's Guide to Digital Sgnal Processing

lcl ock

analog

: delta

Snput modulated
+ digital output
comparator latch

positive | ClOCK 7T
charge

injector %)ﬁlearbic
..... : logic
i negative i

T charge ;
0 [imector [<gock | all 1's, 4 bit

— all 0's shift
- detect register .

CVSD Modifications

FIGURE 3-18
CVSD modulation block diagram. A logic circuit is added to the basic deltamodulator to
improve the slew rate.

capacitor is decreased when the circuit's output is a digital one, and
increased when it is a digital zero. As the input signal increases and
decreases in voltage, it tries to raise and lower the voltage on the capacitor.
This change in voltage is detected by the comparator, resulting in the charge
injectors producing a counteracting charge to keep the capacitor at zero
volts.

If the input voltage is positive, the digital output will be composed of more
ones than zeros. The excess number of ones being needed to generate the
negative charge that cancels with the positive input signal. Likewise, if the
input voltage is negative, the digital output will be composed of more zeros
than ones, providing a net positive charge injection. If the input signal is equal
to zero volts, an equal number of ones and zeros will be generated in the
output, providing an overall charge injection of zero.

The relative number of ones and zeros in the output is now related to the level
of the input voltage, not the slope as in the previous circuit. This is much
simpler. For instance, you could form a 12 bit ADC by feeding the digital
output into a counter, and counting the number of ones over 4096 clock cycles.
A digital number of 4095 would correspond to the maximum positive input
voltage. Likewise, digital number O would correspond to the maximum
negative input voltage, and 2048 would correspond to an input voltage of zero.
This aso shows the origin of the name, delta-sigma: delta modulation followed
by summation (sigma).

The ones and zeros produced by this type of delta modulator are very easy to
transform back into an analog signal. All that is required is an analog |ow-
pass filter, which might be as simple as a single RC network. The high

Chapter 3- ADC and DAC 65

lclock
analog
input delta i
A T—]+ modyiated aipt
igi sign
comparator ?_'agt'éﬁl g Counter :> Latch
- i
1
1
] I
pr— 1
- 1
: RESET to LATCH to
0 positive 1 begin ADC end ADC
charge clock ! cycle cycle
injector e
_°ﬁr F !
Pl o
. . i digital
T_ Charge |k B Sidital oitput |
I 1 injector | demeo Iowg-lpass :> Decimate :> i
- I filter I
: :
| |
FIGURE 3-19

Block diagram of a delta-sigma analog-to-digital converter. In the simplest case, the pulses from a delta
modulator are counted for a predetermined number of clock cycles. The output of the counter isthen latched
to complete the conversion. In a more sophisticated circuit, the pul ses are passed through a digital low-pass
filter and then resampled (decimated) to alower sampling rate.

and low voltages corresponding to the digital ones and zeros average out to
form the correct analog voltage. For example, suppose that the ones and zeros
are represented by 5 volts and 0 volts, respectively. If 80% of the bitsin the
data stream are ones, and 20% are zeros, the output of the low-pass filter will
be 4 volts.

This method of transforming the single bit data stream back into the original
waveform is important for several reasons. First, it describes a slick way to
replace the counter in the delta-sigma ADC circuit. Instead of simply counting
the pulses from the delta modulator, the binary signal is passed through a
digital low-pass filter, and then decimated to reduce the sampling rate. For
example, this procedure might start by changing each of the ones and zerosin
the digital stream into a 12 bit sample; ones become a value of 4095, while
zeros become a value of 0. Using a digital low-pass filter on this signal
produces a digitized version of the original waveform, just as an analog low-
pass filter would form an analog recreation. Decimation then reduces the
sampling rate by discarding most of the samples. This results in a digital
signal that is equivalent to direct sampling of the original waveform.

This approach is used in many commercial ADC's for digitizing voice and other
audio signals. An example is the National Semiconductor ADC16071, which
provides 16 bit analog-to-digital conversion at sampling rates up to 192 kHz.
At a sampling rate of 100 kHz, the delta modulator operates with a clock
frequency of 6.4 MHz. The low-pass digital filter is a 246 point FIR, such as
described in Chapter 16. This removes all frequencies in the digital data
above 50 kHz, ¥z of the eventual sampling rate. Conceptually, this can be

66

The Scientist and Engineer's Guide to Digital Sgnal Processing

viewed as forming a digital signal at 6.4 MHz, with each sample represented
by 16 bits. The signal is then decimated from 6.4 MHz to 100 kHz,
accomplished by deleting every 63 out of 64 samples. In actual operation,
much more goes on inside of this device than described by this simple
discussion.

Delta-sigma converters can also be used for digital-to-analog conversion of
voice and audio signals. The digital signal is retrieved from memory, and
converted into a delta modulated stream of ones and zeros. As mentioned
above, this single bit signal can easily be changed into the reconstructed analog
signal with asimple low-pass analog filter. Aswith the antialias filter, usually
only a single RC network is required. This is because the majority of the
filtration is handled by the high-performance digital filters.

Delta-sigma ADC's have several quirks that limit their use to specific
applications. For example, it is difficult to multiplex their inputs. When the
input is switched from one signal to another, proper operation is not established
until the digital filter can clear itself of data from the previous signal. Delta-
sigma converters are also limited in another respect: you don't know exactly
when each sample was taken. Each acquired sample is a composite of the one
bit information taken over a segment of the input signal. Thisis not a problem
for signals encoded in the frequency domain, such as audio, but it is a
significant limitation for time domain encoded signals. To understand the shape
of asignal's waveform, you often need to know the precise instant each sample
was taken. Lastly, most of these devices are specifically designed for audio
applications, and their performance specifications are quoted accordingly. For
example, a 16 bit ADC used for voice signals does not necessarily mean that
each sample has 16 bits of precision. Much more likely, the manufacturer is
stating that voice signals can be digitized to 16 bits of dynamic range. Don't
expect to get a full 16 bits of useful information from this device for general
purpose data acquisition.

While these explanations and examples provide an introduction to single bit
ADC and DAC, it must be emphasized that they are simplified descriptions of
sophisticated DSP and integrated circuit technology. Y ou wouldn't expect the
manufacturer to tell their competitors all the internal workings of their chips,
so don't expect them to tell you.

CHAPTER

A

DSP Software

DSP applications are usually programmed in the same languages as other science and engineering
tasks, such as: C, BASIC and assembly. The power and versatility of C makes it the language
of choice for computer scientists and other professional programmers. On the other hand, the
simplicity of BASIC makes it ideal for scientists and engineers who only occasionally visit the
programming world. Regardless of the language you use, most of the important DSP software
issues are buried far below in the realm of whirling ones and zeros. This includes such topics as:
how numbers are represented by bit patterns, round-off error in computer arithmetic, the
computational speed of different types of processors, etc. This chapter is about the things you
can do at the high level to avoid being trampled by the low level internal workings of your
computer.

Computer Numbers

Digital computers are very proficient at storing and recalling numbers;
unfortunately, this process isn't without error. For example, you instruct your
computer to store the number: 1.41421356. The computer does its best, storing
the closest number it can represent: 1.41421354. In some cases this error is
quite insignificant, while in other cases it is disastrous. As another illustration,
a classic computational error results from the addition of two numbers with
very different values, for example, 1 and 0.00000001. We would like the
answer to be 1.00000001, but the computer replies with 1. An understanding
of how computers store and manipulate numbers allows you to anticipate and
correct these problems before your program spits out meaningless data.

These problems arise because a fixed number of bits are allocated to store each
number, usually 8, 16, 32 or 64. For example, consider the case where eight
bits are used to store the value of a variable. Since there are 28 = 256
possible bit patterns, the variable can only take on 256 different values. This
is a fundamental limitation of the situation, and there is nothing we can do
about it. The part we can control is what value we declare each bit pattern

67

68

The Scientist and Engineer's Guide to Digital Sgnal Processing

to represent. In the simplest cases, the 256 bit patterns might represent the
integers from 0 to 255, 1 to 256, -127 to 128, etc. In a more unusual scheme,
the 256 bit patterns might represent 256 exponentially related numbers:
1, 10, 100, 1000, --, 10%%% 10?5, Everyone accessing the data must understand
what value each bit pattern represents. This is usually provided by an
algorithm or formula for converting between the represented value and the
corresponding bit pattern, and back again.

While many encoding schemes are possible, only two general formats have
become common, fixed point (also called integer numbers) and floating point
(also called real numbers). In this book's BASIC programs, fixed point
variables are indicated by the % symbol as the last character in the name, such
as: 1%, N%, SUM%, etc. All other variables are floating point, for example:
X, Y, MEAN, etc. When you evaluate the formats presented in the next few
pages, try to understand them in terms of their range (the largest and smallest
numbers they can represent) and their precision (the size of the gaps between
numbers).

Fixed Point (Integers)

Fixed point representation is used to store integers, the positive and negative
whole numbers: - -3,-2,-1, 0, 1, 2, 3,--. High level programs, such as C and
BASIC, usually allocate 16 bits to store each integer. In the simplest case, the
216 = 65,536 possible bit patterns are assigned to the numbers O through 65,535.
Thisis called unsigned integer format, and a simplified example is shown in
Fig. 4-1 (using only 4 bits per number). Conversion between the bit pattern
and the number being represented is nothing more than changing between base
2 (binary) and base 10 (decimal). The disadvantage of unsigned integer is that
negative numbers cannot be represented.

Offset binary is similar to unsigned integer, except the decimal values are
shifted to allow for negative numbers. In the 4 bit example of Fig. 4-1, the
decimal numbers are offset by seven, resulting in the 16 bit patterns
corresponding to the integer numbers -7 through 8. In this same manner,
a 16 bit representation would use 32,767 as an offset, resulting in a range
between -32,767 and 32,768. Offset binary is not a standardized format,
and you will find other offsets used, such 32,768. The most important use
of offset binary isin ADC and DAC. For example, the input voltage range
of -5v to 5v might be mapped to the digital numbers 0 to 4095, for a 12 bit
conversion.

Sign and magnitude is another simple way of representing negative integers.
The far left bit is called the sign bit, and is made a zero for positive numbers,
and a one for negative numbers. The other bits are a standard binary
representation of the absolute value of the number. This results in one wasted
bit pattern, since there are two representations for zero, 0000 (positive zero)
and 1000 (negative zero). This encoding scheme results in 16 bit numbers
having a range of -32,767 to 32,767.

UNSIGNED
INTEGER
Decima | Bit Pattern
15 1111
14 1110
13 1101
12 1100
11 1011
10 1010
9 1001
8 1000
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
16 bit range:
0to 65,535
FIGURE 4-1

Chapter 4- DSP Software 69

OFFSET SIGN AND TWO'S
BINARY MAGNITUDE COMPLEMENT
Decima | Bit Pattern Decima | Bit Pattern Decima | Bit Pattern

8 1111 7 0111 7 0111

7 1110 6 0110 6 0110

6 1101 5 0101 5 0101

5 1100 4 0100 4 0100

4 1011 3 0011 3 0011

3 1010 2 0010 2 0010

2 1001 1 0001 1 0001

1 1000 0 0000 0 0000

0 0111 0 1000 -1 1111
-1 0110 -1 1001 -2 1110
-2 0101 -2 1010 -3 1101
-3 0100 -3 1011 -4 1100
-4 0011 -4 1100 -5 1011
-5 0010 -5 1101 -6 1010
-6 0001 -6 1110 -7 1001
-7 0000 -7 1111 -8 1000
16 bit range 16 bit range 16 bit range

-32,767 to 32,768 -32,767 to 32,767 -32,768 to 32,767

Common formats for fixed point (integer) representation. Unsigned integer is a simple binary format, but
cannot represent negative numbers. Offset binary and sign & magnitude allow negative numbers, but they are
difficult to implement in hardware. Two's complement isthe easiest to design hardware for, and is the most
common format for general purpose computing.

These first three representations are conceptually simple, but difficult to
implement in hardware. Remember, when A=B+C is entered into a computer
program, some hardware engineer had to figure out how to make the bit pattern
representing B, combine with the bit pattern representing C, to form the bit
pattern representing A.

Two's complement is the format loved by hardware engineers, and is how
integers are usually represented in computers. To understand the encoding
pattern, look first at decimal number zero in Fig. 4-1, which corresponds to a
binary zero, 0000. As we count upward, the decimal number is simply the
binary equivalent (0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011, etc.). Now,
remember that these four bits are stored in aregister consisting of 4 flip-flops.
If we again start at 0000 and begin subtracting, the digital hardware
automatically counts in two's complement: 0 = 0000, -1 = 1111, -2 = 1110, -3
= 1101, etc. Thisis analogous to the odometer in a new automobile. If driven
forward, it changes. 00000, 00001, 00002, 00003, and so on. When driven
backwards, the odometer changes: 00000, 99999, 99998, 99997, etc.

Using 16 bits, two's complement can represent numbers from -32,768 to
32,767. The left most bit isa 0 if the number is positive or zero, and a 1 if the
number is negative. Consequently, the left most bit is called the sign bit, just
asin sign & magnitude representation. Converting between decimal and two's
complement is straightforward for positive numbers, a simple decimal to binary

70

The Scientist and Engineer's Guide to Digital Sgnal Processing

conversion. For negative numbers, the following algorithm is often used:
(1) take the absolute value of the decimal number, (2) convert it to binary,
(3) complement all of the bits (ones become zeros and zeros become ones),
(4) add 1 to the binary number. For example: -5 - 5 - 0101 - 1010 -
1011. Two's complement is hard for humans, but easy for digital
electronics.

Floating Point (Real Numbers)

EQUATION 4-1

The encoding scheme for floating point numbers is more complicated than for
fixed point. The basic ideais the same as used in scientific notation, where a
mantissa is multiplied by ten raised to some exponent. For instance,
5.4321 x 108, where 5.4321 is the mantissa and 6 is the exponent. Scientific
notation is exceptional at representing very large and very small numbers. For
example: 1.2 x10%, the number of atoms in the earth, or 2.6 x 10 %, the
distance a turtle crawls in one second, compared to the diameter of our galaxy.
Notice that numbers represented in scientific notation are normalized so that
there is only a single nonzero digit left of the decimal point. Thisis achieved
by adjusting the exponent as needed.

Floating point representation is similar to scientific notation, except
everything is carried out in base two, rather than base ten. While several
similar formats are in use, the most common is ANSI/IEEE Std. 754-1985.
This standard defines the format for 32 bit numbers called single precision,
as well as 64 bit numbers called double precision. Asshownin Fig. 4-2,
the 32 bits used in single precision are divided into three separate groups:
bits 0 through 22 form the mantissa, bits 23 through 30 form the exponent,
and bit 31 isthe sign bit. These bits form the floating point number, v, by
the following relation:

Equation for converting a bit pattern into a S E_127
floating point number. The number is VvV = (— 1) x M x 2~
represented by v, Sis the value of the sign

bit, M isthe value of the mantissa, and E is

the value of the exponent.

The term: (-1)S, simply means that the sign bit, S, is O for a positive number
and 1 for a negative number. The variable, E, is the number between 0 and
255 represented by the eight exponent bits. Subtracting 127 from this number
allows the exponent term to run from 272" to 2'? In other words, the
exponent is stored in offset binary with an offset of 127.

The mantissa, M, is formed from the 23 bits as a binary fraction. For
example, the decimal fraction: 2.783, isinterpreted: 2 + 7/10 + 8/100 + 3/1000 .
The binary fraction: 1.0101, means. 1 + 0/2 + 1/4 + 0/8 + 1/16. Floating point
numbers are normalized in the same way as scientific notation, that is, there
is only one nonzero digit left of the decimal point (called a binary point in

Chapter 4- DSP Software 71

31]30[20] 28] 27] 26| 25] 24] 23] 22] 21 20[19] 18] 17] 16[15[14] 13[12 11]10] 0 [8] 7| 6[5[4] 3] 2] 1] 0]
MSB LSB MSB LSB

\/ \/
SIGN EXPONENT MANTISSA
1 bit 8 bits 23 bits

Example 1
0 00000111 11000000000000000000000
[| +1.75x 2012 = 1316554 x 10 3
+ 7 0.75
Example 2
1 10000001 01100000000000000000000
| ! - 1.375 x 2(129-127) _ _ 5500000
- 129 0.375
FIGURE 4-2

Single precision floating point storage format. The 32 bits are broken into three separate parts, the
sign bit, the exponent and the mantissa. Equations 4-1 and 4-2 shows how the represented number
isfound from these three parts. MSB and L SB refer to “most significant bit” and “least significant
bit,” respectively.

base 2). Since the only nonzero number that exists in base two is 1, the
leading digit in the mantissa will always be a 1, and therefore does not need to
be stored. Removing this redundancy allows the number to have an additional
one bit of precision. The 23 stored bits, referred to by the notation:
m,,, m,, m,,,--, m,, form the mantissa according to:

EQUATION 4-2

Algorithm for converting the bit pattern into _
the mantissa, M, used in Eq. 4-1. M 1'm22m21m20m19 mzmlmo

In other words, M = 1 +m,,2°* + m, 22+ m,2 3. If bitsO through 22 are
all zeros, M takes on the value of one. If bits 0 through 22 are al ones, M is
just a hair under two, i.e., 2 -2°%,

Using this encoding scheme, the largest number that can be represented is:
£#(2-2) x 212 = +68x10%. Likewise, the smallest number that can be
represented is; +1.0x 2% = +59x10 %, The |IEEE standard reduces this
range slightly to free bit patterns that are assigned special meanings. In
particular, the largest and smallest numbers allowed in the standard are

72

The Scientist and Engineer's Guide to Digital Sgnal Processing

+3.4x10% and +1.2 x 10" %, respectively. The freed bit patterns allow three
special classes of numbers: (1) £0 is defined as all of the mantissa and
exponent bits being zero. (2) £~ is defined as all of the mantissa bits being
zero, and all of the exponent bits being one. (3) A group of very small
unnormalized numbers between+1.2 x 10 % and +1.4 x 10 **. These are lower
precision numbers obtained by removing the requirement that the leading digit
in the mantissa be a one. Besides these three special classes, there are bit
patterns that are not assigned a meaning, commonly referred to as NANs (Not
A Number).

The IEEE standard for double precision simply adds more bits to both the
mantissa and exponent. Of the 64 bits used to store a double precision number,
bits 0 through 51 are the mantissa, bits 52 through 62 are the exponent, and bit
63 isthe sign bit. As before, the mantissa is between one and just under two,
e, M=1+m,2'+m,2%+my2 3. The 1l exponent bits form a number
between 0 and 2047, with an offset of 1023, allowing exponents from 21023
to 212 The largest and smallest numbers allowed are +1.8 x 10°® and
+2.2x 10 %% respectively. These areincredibly large and small numbers! It
is quite uncommon to find an application where single precision is not
adequate. You will probably never find a case where double precision limits
what you want to accomplish.

Number Precision

The errors associated with number representation are very similar to
guantization errors during ADC. You want to store a continuous range of
values; however, you can represent only a finite number of quantized levels.
Every time a new number is generated, after a math calculation for example,
it must be rounded to the nearest value that can be stored in the format you are
using.

As an example, imagine that you allocate 32 bits to store a number. Since
there are exactly 2% = 4,294,967,296 different bit patterns possible, you can
represent exactly 4,294,967,296 different numbers. Some programming
languages allow a variable called a long integer, stored as 32 hits, fixed
point, two's complement. This means that the 4,294,967,296 possible bit
patterns represent the integers between -2,147,483,648 and 2,147,483,647. In
comparison, single precision floating point spreads these 4,294,967,296 bit
patterns over the much larger range: -3.4 x 10® to 3.4 x 10%,

With fixed point variables, the gaps between adjacent numbers are always
exactly one. In floating point notation, the gaps between adjacent numbers
vary over the represented number range. |If we randomly pick a floating
point number, the gap next to that number is approximately ten million
times smaller than the number itself (to be exact, 272 to 2°2 times the
number). This is a key concept of floating point notation: large numbers
have large gaps between them, while small numbers have small gaps.
Figure 4-3 illustrates this by showing consecutive floating point numbers,
and the gaps that separate them.

FIGURE 4-3

Examples of the spacing between single
precision floating point numbers. The
spacing between adjacent numbers is
always between about 1 part in 8 million
and 1 part in 17 million of the value of the
number.

Chapter 4- DSP Software 73

0.00001233862713 o
0.00001233862800 PaciNg = 0.00000000000091
0.00001233862805 (1 partin 13 million)
0.00001233862986

1000000009 spacing = 0.000000119
1.000000238 (1 part in 8 million)
1.000000358

PR spacing = 0.000000119
1.996093988 (L partin 17 million)
1.996094108

636.0312500 .

636.0313110 spacing = 0.0000610
636.0313720 (1 partin 10 million)
636.0314331

217063424.0 _

217063440.0 spacing = 16.0

217063456.0 (1 partin 14 million)
217063472.0

The program in Table 4-1 illustrates how r ound-off error (quantization error
in math calculations) causes problems in DSP. Within the program loop, two
random numbers are added to the floating point variable X, and then subtracted
back out again. Ideally, this should do nothing. In readlity, the round-off error
from each of the arithmetic operations causes the value of X to gradually drift
away from itsinitial value. This drift can take one of two forms depending on
how the errors add together. If the round-off errors are randomly positive and
negative, the value of the variable will randomly increase and decrease. If the
errors are predominately of the same sign, the value of the variable will drift
away much more rapidly and uniformly.

TABLE 4-1

Program for demonstrating floating point
error accumulation. This program initially
sets the value of X to 1.000000, and then
runs through a loop that should ideally do
nothing. During each loop, two random
numbers, A and B, are added to X, and then
subtracted back out. The accumulated error
from these additions and subtraction causes
X towander fromitsinitial value. AsFig. 4-
4 shows, the error may be random or
additive.

100 X =1 'initialize X
110
120 FOR 1% =0 TO 2000

130 A=RND 'load random numbers
140 B =RND 'into A and B

150

160 X=X +A '‘add A and B to X
170 X=X +B

180 X=X-A 'undo the additions
190 X=X-B

200

210 PRINT X 'ideally, X should be 1

220 NEXT 1%
230 END

74 The Scientist and Engineer's Guide to Digital Sgnal Processing

1.0002

FIGURE 4-4
Accumulation of round-off error in floating
point variables. These curves are generated

by the program shown in Table 4-1. When a 1.0001 =======~~ >, cii e E—
floating point variable is repeatedly used in
arithmetic operations, accumulated round-off
error causesthe variable'svalueto drift. If the
errors are both positive and negative, the
value will increase and decrease in arandom
fashion. If the round-off errors are
predominately of the same sign, the value
will change in a much more rapid and
uniform manner. 0.9999 | ________

Value of X
n

B

|
|
|
|
|
|
|
|
|
|
I

0.9998

0 500 1000 1500 2000
Number of loops

Figure 4-4 shows how the variable, X, in this example program drifts in
value. An obvious concern is that additive error is much worse than
random error. This is because random errors tend to cancel with each
other, while the additive errors simply accumulate. The additive error is
roughly equal to the round-off error from a single operation, multiplied by
the total number of operations. In comparison, the random error only
increases in proportion to the square root of the number of operations. As
shown by this example, additive error can be hundreds of times worse than
random error for common DSP algorithms.

Unfortunately, it is nearly impossible to control or predict which of these
two behaviors a particular algorithm will experience. For example, the
program in Table 4-1 generates an additive error. This can be changed to
arandom error by merely making a slight modification to the numbers being
added and subtracted. In particular, the random error curve in Fig. 4-4 was
generated by defining: A= EXP(RND) and B = EXP(RND), rather than:
A=RND and B= RND. Instead of A and B being randomly distributed
numbers between 0 and 1, they become exponentially distributed values
between 1 and 2.718. Even this small change is sufficient to toggle the
mode of error accumulation.

Since we can't control which way the round-off errors accumulate, keep in mind
the worse case scenario. Expect that every single precision number will have
an error of about one part in forty million, multiplied by the number of
operations it has been through. This is based on the assumption of additive
error, and the average error from a single operation being one-quarter of a
guantization level. Through the same analysis, every double precision number
has an error of about one part in forty quadrillion, multiplied by the number
of operations.

Chapter 4- DSP Software 75

100 'Floating Point Loop Control 100 ‘'Integer Loop Control
110 FOR X =0TO 10 STEP 0.01 110 FOR 1% = 0 TO 1000
120 PRINT X 120 X =1%/100
130 NEXT X 130 PRINT X
140 NEXT 1%
Program Output: Program Output:
0.00 0.00
0.01 0.01
0.02 0.02
0.03 0.03
9.960132 9.96
9.970133 9.97
9.980133 9.98
9.990133 9.99
10.00
TABLE 4-2

Comparison of floating point and integer variablesfor loop control. Theleft hand program controls
the FOR-NEXT loop with afloating point variable, X. Thisresultsin an accumulated round-off error
of 0.000133 by the end of the program, causing the last loop value, X = 10.0, to be omitted. In
comparison, the right hand program uses an integer, 1%, for the loop index. This provides perfect
precision, and guarantees that the proper number of loop cycles will be completed.

Table 4-2 illustrates a particularly annoying problem of round-off error.
Each of the two programs in this table perform the same task: printing 1001
numbers equally spaced between 0 and 10. The left-hand program uses the
floating point variable, X, as the loop index. When instructed to execute a
loop, the computer begins by setting the index variable to the starting value
of the loop (0 in this example). At the end of each loop cycle, the step size
(0.01 in the case) is added to the index. A decision is then made: are more
loops cycles required, or is the loop completed? The loop ends when the
computer finds that the value of the index is greater than the termination
value (in this example, 10.0). As shown by the generated output, round-off
error in the additions cause the value of X to accumulate a significant
discrepancy over the course of the loop. In fact, the accumulated error
prevents the execution of the last loop cycle. Instead of X having a value
of 10.0 on the last cycle, the error makes the last value of X equal to
10.000133. Since X is greater than the termination value, the computer
thinks its work is done, and the loop prematurely ends. This missing last
value is a common bug in many computer programs.

In comparison, the program on the right uses an integer variable, 1%, to
control the loop. The addition, subtraction, or multiplication of two integers
always produces another integer. This means that fixed point notation has
absolutely no round-off error with these operations. Integers are ideal for
controlling loops, as well as other variables that undergo multiple
mathematical operations. The last loop cycle is guaranteed to execute!
Unless you have some strong motivation to do otherwise, always use
integers for loop indexes and counters.

76

The Scientist and Engineer's Guide to Digital Sgnal Processing

If you must use a floating point variable as a loop index, try to use fractions
that are a power of two (such as. 1/2, 1/4, 3/8, 27/16), instead of a power of ten
(such as: 0.1,0.6, 1.4, 2.3, etc.). For instance, it would be better to use: FOR
X =1 TO 10 STEP 0.125, rather than: FOR X = 1 to 10 STEP 0.1. This
allows the index to always have an exact binary representation, thereby
reducing round-off error. For example, the decimal number: 1.125, can be
represented exactly in binary notation: 1.001000000000000000000000x2°. In
comparison, the decimal number: 1.1, falls between two floating point numbers:
1.0999999046 and 1.1000000238 (in binary these numbers are:
1.00011001100110011001100%2° and 1.00011001100110011001101x2°%). This
results in an inherent error each time 1.1 is encountered in a program.

A useful fact to remember: single precision floating point has an exact binary
representation for every whole number between +16.8 million (to be exact,
+2%). Above this value, the gaps between the levels are larger than one,
causing some whole number values to be missed. This allows floating point
whole numbers (between +£16.8 million) to be added, subtracted and multiplied,
with no round-off error.

Execution Speed: Program Language

DSP programming can be loosely divided into three levels of sophistication:
Assembly, Compiled, and Application Specific. To understand the
difference between these three, we need to start with the very basics of
digital electronics. All microprocessors are based around a set of internal
binary registers, that is, a group of flip-flops that can store a series of ones
and zeros. For example, the 8088 microprocessor, the core of the original
IBM PC, has four general purpose registers, each consisting of 16 bits.
These are identified by the names: AX, BX, CX, and DX. There are also
nine additional registers with special purposes, called: SI, DI, SP, BP, CS,
DS, SS, ES, and IP. For example, IP, the Instruction Pointer, keeps track
of where in memory the next instruction resides.

Suppose you write a program to add the numbers: 1234 and 4321. When
the program begins, IP contains the address of a section of memory that
contains a pattern of ones and zeros, as shown in Table 4-3. Although it
looks meaningless to most humans, this pattern of ones and zeros contains
all of the commands and data required to complete the task. For example,
when the microprocessor encounters the bit pattern: 00000011 11000011,
it interpreters it as a command to take the 16 bits stored in the BX register,
add them in binary to the 16 bits stored in the AX register, and store the
result in the AX register. This level of programming is called machine
code, and is only a hair above working with the actual electronic circuits.

Since working in binary will eventually drive even the most patient engineer
crazy, these patterns of ones and zeros are assigned names according to the
function they perform. This level of programming is called assembly, and
an example is shown in Table 4-4. Although an assembly program is much
easier to understand, it is fundamentally the same as programming in

TABLE 4-3

A machine code program for adding 1234
and 4321. This is the lowest level of
programming: direct manipulation of the
digital electronics. (Theright columnisa
continuation of the left column).

Chapter 4- DSP Software 77
10111001 00000000
11010010 10100001
00000100 00000000
10001001 00000000
00001110 10001011
00000000 00011110
00000000 00000010
10111001 00000000
11100001 00000011
00010000 11000011
10001001 10100011
00001110 00000100
00000010 00000000

machine code, since there is a one-to-one correspondence between the
program commands and the action taken in the microprocessor. For
example: ADD AX, BX translates to: 00000011 11000011. A program
called an assembler is used to convert the assembly code in Table 4-4
(called the sour ce code) into the patterns of ones and zeros shown in Table
4-3 (called the object code or executable code). This executable code can
be directly run on the microprocessor. Obviously, assembly programming
requires an extensive understanding of the internal construction of the
particular microprocessor you intend to use.

TABLE 4-4

An assembly program for adding
1234 and 4321. Anassembler isa
program that converts an assembly
program into machine code.

MQV CX,1234 ;store 1234 in register CX, and then
MOV DS:[0],CX ;transfer it to memory location DS:[0]
MQV CX,4321 ;store 4321 in register CX, and then
MOV DS:[2],CX ;transfer it to memory location DS:[0]
MOV AX,DS:[0] ;move variables stored in memory at
MOV BX,DS:[2] ;DS:[0] and DS:[2] into AX & BX
ADD AX,BX :add AX and BX, store sumin AX
MOV DS:[4],AX ;move the sum into memory at DS:[4]

Assembly programming involves the direct manipulation of the digital
electronics; registers, memory locations, status bits, etc. The next level of
sophistication can manipulate abstract variables without any reference to the
particular hardware. These are called compiled or high-level languages. A
dozen or so are in common use, such as: C, BASIC, FORTRAN, PASCAL,
APL, COBOL, LISP, etc. Table 4-5 shows a BASIC program for adding 1234
and 4321. The programmer only knows about the variables A, B, and C, and
nothing about the hardware.

TABLE 4-5

A BASIC program for adding 1234
and 4321. A compiler isaprogram
that convertsthistype of high-level
source code into machine code.

100 A =1234
110 B =4321
120 C=A+B

130 END

78

The Scientist and Engineer's Guide to Digital Sgnal Processing

A program called a compiler is used to transform the high-level source code
directly into machine code. This requires the compiler to assign hardware
memory locations to each of the abstract variables being referenced. For
example, the first time the compiler encounters the variable A in Table 4-5
(line 100), it understands that the programmer is using this symbol to mean a
single precision floating point variable. Correspondingly, the compiler
designates four bytes of memory that will be used for nothing but to hold the
value of this variable. Each subsequent time that an A appears in the program,
the computer knows to update the value of the four bytes as needed. The
compiler also breaks complicated mathematical expressions, such as; Y =
LOG(X %), into more basic arithmetic. Microprocessors only know how to
add, subtract, multiply and divide. Anything more complicated must be done
as a series of these four elementary operations.

High-level languages isolate the programmer from the hardware. This makes
the programming much easier and allows the source code to be transported
between different types of microprocessors. Most important, the programmer
who uses a compiled language needs to know nothing about the internal
workings of the computer. Another programmer has assumed this
responsibility, the one who wrote the compiler.

Most compilers operate by converting the entire program into machine code
before it is executed. An exception to this is a type of compiler called an
interpreter, of which interpreter BASIC isthe most common example. An
interpreter converts a single line of source code into machine code, executes
that machine code, and then goes on to the next line of source code. This
provides an interactive environment for simple programs, although the
execution speed is extremely slow (think a factor of 100).

The highest level of programming sophistication is found in applications
packages for DSP. These come in a variety of forms, and are often provided
to support specific hardware. Suppose you buy a newly developed DSP
microprocessor to embed in your current project. These devices often have lots
of built-in features for DSP: analog inputs, analog outputs, digital 1/O, antialias
and reconstruction filters, etc. The question is. how do you program it? In the
worst case, the manufacturer will give you an assembler, and expect you to
learn the internal architecture of the device. In a more typical scenario, a C
compiler will be provided, allowing you to program without being bothered by
how the microprocessor actually operates.

In the best case, the manufacturer will provide a sophisticated software
package to help in the programming: libraries of algorithms, prewritten
routines for 1/0, debugging tools, etc. You might simply connect icons to
form the desired system in an easy-to-use graphical display. The things
you manipulate are signal pathways, algorithms for processing signals,
analog 1/0 parameters, etc. When you are satisfied with the design, it is
transformed into suitable machine code for execution in the hardware. Other
types of applications packages are used with image processing, spectral
analysis, instrumentation and control, digital filter design, etc. Thisisthe
shape of the future.

Chapter 4- DSP Software 79

The distinction between these three levels can be very fuzzy. For example,
most complied languages allow you to directly manipulate the hardware.
Likewise, a high-level language with a well stocked library of DSP functions
is very close to being an applications package. The point of these three
catagories is understand what you are manipulating: (1) hardware, (2) abstract
variables, or (3) entire procedures and algorithms.

There is also another important concept behind these classifications. When
you use a high-level language, you are relying on the programmer who
wrote the compiler to understand the best techniques for hardware
manipulation. Similarly, when you use an applications package, you are
relying on the programmer who wrote the package to understand the best
DSP techniques. Here's the rub: these programmers have never seen the
particular problem you are dealing with. Therefore, they cannot always
provide you with an optimal solution. As you operate on a higher level,
expect that the final machine code will be less efficient in terms of memory
usage, speed, and precision.

Which programming language should you use? That depends on who you are
and what you plan to do. Most computer scientists and programmers use C (or
the more advanced C++). Power, flexibility, modularity; C hasit all. Cisso
popular, the question becomes. Why would anyone program their DSP
application in something other than C? Three answers come to mind. First,
DSP has grown so rapidly that some organizations and individuals are stuck in
the mode of other languages, such as FORTRAN and PASCAL. Thisis
especially true of military and government agencies that are notoriously slow
to change. Second, some applications require the utmost efficiency, only
achievable by assembly programming. This falls into the category of "alittle
more speed for alot more work." Third, C is not an especially easy language
to master, especialy for part time programmers. This includes a wide range of
engineers and scientists who occasionally need DSP techniques to assist in their
research or design activities. This group often turns to BASIC because of its
simplicity.

Why was BASIC chosen for this book? This book is about algorithms, not
programming style. Y ou should be concentrating on DSP techniques, and not
be distracted by the quirks of a particular language. For instance, all the
programs in this book have line numbers. This makes it easy to describe how
the program operates: "line 100 does such-and-such, line 110 does this-and
that," etc. Of course, you will probably never use line numbers in your actual
programs. The point is, learning DSP has different requirements than using
DSP. There are many books on the market that provide exquisite source code
for DSP algorithms. If you are simply looking for prewritten code to copy into
your program, you are in the wrong place.

Comparing the execution speed of hardware or software is a thankless task; no
matter what the result, the loser will cry that the match was unfair!
Programmers who like high-level languages (such as traditional computer
scientists), will argue that assembly is only 50% faster than compiled code, but
five times more trouble. Those who like assembly (typically, scientists and

80

The Scientist and Engineer's Guide to Digital Sgnal Processing

hardware engineers) will claim the reverse: assembly is five times faster, but
only 50% more difficult to use. As in most controversies, both sides can
provide selective data to support their claims.

As a rule-of-thumb, expect that a subroutine written in assembly will be
between 1.5 and 3.0 times faster than the comparable high-level program. The
only way to know the exact value is to write the code and conduct speed tests.
Since personal computers are increasing in speed about 40% every year,
writing a routine in assembly is equivalent to about a two year jump in
hardware technol ogy.

Most professional programmers are rather offended at the idea of using
assembly, and gag if you suggest BASIC. Their rational is quite simple:
assembly and BASIC discourage the use of good software practices. Good
code should be portable (able to move from one type of computer to another),
modular (broken into a well defined subroutine structure), and easy to
understand (lots of comments and descriptive variable names). The weak
structure of assembly and BASIC makes it difficult to achieve these standards.
This is compounded by the fact that the people who are attracted to assembly
and BASIC often have little formal training in proper software structure and
documentation.

Assembly lovers respond to this attack with a zinger of their own. Suppose you
write a program in C, and your competitor writes the same program in
assembly. The end user's first impression will be that your program is junk
because it is twice as slow. No one would suggest that you write large
programs in assembly, only those portions of the program that need rapid
execution. For example, many functions in DSP software libraries are written
in assembly, and then accessed from larger programs written in C. Even the
staunchest software purist will use assembly code, as long as they don't have
to write it.

Execution Speed: Hardware

Computing power is increasing so rapidly, any book on the subject will be
obsolete before it is published. It's an author's nightmare! The original I1BM
PC was introduced in 1981, based around the 8088 microprocessor with a 4.77
MHz clock and an 8 bit data bus. This was followed by a new generation of
persona computers being introduced every 3-4 years. 8088 — 80286 — 80386
— 80486 — 80586 (Pentium). Each of these new systems boosted the
computing speed by a factor of about five over the previous technology. By
1996, the clock speed had increased to 200 MHz, and the data bus to 32 bits.
With other improvements, this resulted in an increase in computing power of
nearly one thousand in only 15 years! Y ou should expect another factor of
one thousand in the next 15 years.

The only way to obtain up-to-date information in this rapidly changing field is
directly from the manufacturers. advertisements, specification sheets, price
lists, etc. Forget books for performance data, look in magazines and your daily

Chapter 4- DSP Software 81

newspaper. Expect that raw computational speed will more than double each
two years. Learning about the current state of computer power is simply not
enough; you need to understand and track how it is evolving.

Keeping this in mind, we can jump into an overview of how execution speed
is limited by computer hardware. Since computers are composed of many
subsystems, the time required to execute a particular task will depend on two
primary factors: (1) the speed of the individual subsystems, and (2) the time it
takes to transfer data between these blocks. Figure 4-5 shows a simplified
diagram of the most important speed limiting componentsin atypical personnel
computer. The Central Processing Unit (CPU) is the heart of the system.
As previously described, it consists of a dozen or so registers, each capable of
holding 32 bits (in present generation personnel computers). Also included in
the CPU is the digital electronics needed for rudimentary operations, such as
moving bits around and fixed point arithmetic.

More involved mathematics is handled by transferring the data to a special
hardware circuit called amath coprocessor (also called an arithmetic logic
unit, or ALU). The math coprocessor may be contained in the same chip
as the CPU, or it may be a separate electronic device. For example, the
addition of two floating point numbers would require the CPU to transfer 8
bytes (4 for each number) to the math coprocessor, and several bytes that
describe what to do with the data. After a short computational time, the math
coprocessor would pass four bytes back to the CPU, containing the
floating point number that is the sum. The most inexpensive computer
systems don't have a math coprocessor, or provide it only as an option. For
example, the 80486DX microprocessor has an internal math coprocessor,
while the 80486SX does not. These lower performance systems replace
hardware with software. Each of the mathematical functions is broken into

FIGURE 4-5

Architecture of atypical computer system.
The computational speed is limited by: (1)
the speed of the individual subsystems, and
(2) the rate at which data can be transferred
between these subsystems.

Math Central
ey K= Processing
Coprocessor Unit (CPU)
Cache
Memory

Main Memory
(program and data)

82

The Scientist and Engineer's Guide to Digital Sgnal Processing

elementary binary operations that can be handled directly within the CPU.
While this provides the same result, the execution time is much slower, say, a
factor of 10 to 20.

Most personal computer software can be used with or without a math
coprocessor. This is accomplished by having the compiler generate machine
code to handle both cases, all stored in the final executable program. If a math
coprocessor is present on the particular computer being used, one section of the
code will be run. If amath coprocessor is not present, the other section of the
code will be used. The compiler can aso be directed to generate code for only
one of these situations. For example, you will occasionally find a program that
requires that a math coprocessor be present, and will crash if run on a computer
that does not have one. Applications such as word processing usually do not
benefit from a math coprocessor. This is because they involve moving data
around in memory, not the calculation of mathematical expressions. Likewise,
calculations involving fixed point variables (integers) are unaffected by the
presence of a math coprocessor, since they are handled within the CPU. On the
other hand, the execution speed of DSP and other computational programs using
floating point calculations can be an order of magnitude different with and
without a math coprocessor.

The CPU and main memory are contained in separate chips in most
computer systems. For obvious reasons, you would like the main memory
to be very large and very fast. Unfortunately, this makes the memory very
expensive. The transfer of data between the main memory and the CPU is
a very common bottleneck for speed. The CPU asks the main memory for
the binary information at a particular memory address, and then must wait
to receive the information. A common technique to get around this problem
is to use a memory cache. Thisis a small amount of very fast memory
used as a buffer between the CPU and the main memory. A few hundred
kilobytes is typical. When the CPU requests the main memory to provide
the binary data at a particular address, high speed digital electronics copies
a section of the main memory around this address into the memory cache.
The next time that the CPU requests memory information, it is very likely
that it will already be contained in the memory cache, making the retrieval
very rapid. Thisis based on the fact that programs tend to access memory
locations that are nearby neighbors of previously accessed data. In typical
personnel computer applications, the addition of a memory cache can
improve the overall speed by several times. The memory cache may be in
the same chip as the CPU, or it may be an external electronic device.

The rate at which data can be transferred between subsystems depends on the
number of parallel data lines provided, and the maximum rate that digital
signals that can be passed along each line. Digital data can generally be
transferred at a much higher rate within a single chip as compared to
transferring data between chips. Likewise, data paths that must pass through
electrical connectors to other printed circuit boards (i.e., a bus structure) will
be slower still. Thisis a strong motivation for stuffing as much electronics as
possible inside the CPU.

Chapter 4- DSP Software 83

A particularly nasty problem for computer speed is backward compatibility.
When a computer company introduces a new product, say a data acquisition
card or a software program, they want to sell it into the largest possible market.
This means that it must be compatible with most of the computers currently in
use, which could span several generations of technology. This frequently limits
the performance of the hardware or software to that of a much older system.
For example, suppose you buy an /O card that plugs into the bus of your 200
MHz Pentium personal computer, providing you with eight digital lines that can
transmit and receive data one byte at a time. You then write an assembly
program to rapidly transfer data between your computer and some external
device, such as a scientific experiment or another computer. Much to your
surprise, the maximum data transfer rate is only about 100,000 bytes per
second, more than one thousand times slower than the microprocessor clock
rate! The villain is the ISA bus, atechnology that is backward compatible to
the computers of the early 1980s.

Table 4-6 provides execution times for several generations of computers.
Obviously, you should treat these as very rough approximations. |If you want
to understand your system, take measurements on your system. It's quite easy;
write a loop that executes a million of some operation, and use your watch to
time how long it takes. The first three systems, the 80286, 80486, and
Pentium, are the standard desk-top personal computers of 1986, 1993 and 1996,
respectively. The fourth is a 1994 microprocessor designed especially for DSP
tasks, the Texas Instruments TM S320C40.

80286 80486 PENTIUM | TMS320C40
(12MHz) | (33MHz) | (100MHz) | (40 MHz2)
INTEGER
A% =B%+C% 1.6 0.12 0.04
A% =B%-C% 1.6 0.12 0.04
A% = B%xC% 2.7 0.59 0.13
A% = B%+C% 64 9.2 1.5
FLOATING POINT
A =B+C 33 2.5 0.50 0.10
A=B-C 35 2.5 0.50 0.10
A =BxC 35 2.5 0.50 0.10
A=B+C 49 4.5 0.87 0.80
A =SQR(B) 45 5.3 1.3 0.90
A =LOG(B) 186 19 34 1.7
A = EXP(B) 246 25 55 1.7
A=B"C 311 31 5.3 2.4
A =SIN(B) 262 30 6.6 1.1
A =ARCTAN(B) 168 21 4.4 2.2

TABLE 4-6

Measured execution times for various computers. Times are in microseconds. The 80286, 80486,
and Pentium are three generations of personal computers, while the TM S320C40 is a micro-
processor specifically designed for DSP tasks. All of the personal computers include a math
coprocessor. Use these times only as ageneral estimate; times on your computer will vary according
to the particular hardware and software used.

84

The Scientist and Engineer's Guide to Digital Sgnal Processing

The Pentium is faster than the 80286 system for four reasons, (1) the greater
clock speed, (2) more lines in the data bus, (3) the addition of a memory cache,
and (4) a more efficient internal design, requiring fewer clock cycles per
instruction.

If the Pentium was a Cadillac, the TMS320C40 would be a Ferrari: less
comfort, but blinding speed. This chip is representative of several micro-
processors specifically designed to decrease the execution time of DSP
algorithms. Others in this category are the Intel 1860, AT& T DSP3210,
Motorola DSP96002, and the Analog Devices ADSP-2171. These often go by
the names. DSP microprocessor, Digital Signal Processor, and RISC
(Reduced Instruction Set Computer). This last name reflects that the increased
speed results from fewer assembly level instructions being made available to
the programmer. In comparison, more traditional microprocessors, such as
the Pentium, are called CI SC (Complex Instruction Set Computer).

DSP microprocessors are used in two ways. as slave modules under the control
of a more conventional computer, or as an imbedded processor in a dedicated
application, such as a cellular telephone. Some maodels only handle fixed point
numbers, while others can work with floating point. The internal architecture
used to obtain the increased speed includes: (1) lots of very fast cache memory
contained within the chip, (2) separate buses for the program and data,
allowing the two to be accessed simultaneously (called a Harvard
Architecture), (3) fast hardware for math calculations contained directly in
the microprocessor, and (4) a pipeline design.

A pipeline architecture breaks the hardware required for a certain task into
several successive stages. For example, the addition of two numbers may
be done in three pipeline stages. The first stage of the pipeline does nothing
but fetch the numbers to be added from memory. The only task of the
second stage is to add the two numbers together. The third stage does
nothing but store the result in memory. If each stage can complete its task
in asingle clock cycle, the entire procedure will take three clock cycles to
execute. The key feature of the pipeline structure is that another task can
be started before the previous task is completed. In this example, we could
begin the addition of another two numbers as soon as the first stage is idle,
at the end of the first clock cycle. For alarge number of operations, the
speed of the system will be quoted as one addition per clock cycle, even
though the addition of any two numbers requires three clock cycles to
complete. Pipelines are great for speed, but they can be difficult to
program. The algorithm must allow a new calculation to begin, even though
the results of previous calculations are unavailable (because they are still
in the pipeline).

Chapters 28 and 29 discuss DSP microprocessors in much more detail. These
are amazing devices; their high-power and low-cost will bring DSP to a wide
range of consumer and scientific applications. Thisis one of the technologies
that will shape the twenty-first century.

Chapter 4- DSP Software 85

Execution Speed: Programming Tips

While computer hardware and programming languages are important for
maximizing execution speed, they are not something you change on a day-to
day basis. In comparison, how you program can be changed at any time, and
will drastically affect how long the program will require to execute. Here are
three suggestions.

First, use integers instead of floating point variables whenever
possible. Conventional microprocessors, such as used in personal computers,
process integers 10 to 20 times faster than floating point numbers. On systems
without a math coprocessor, the difference can be 200 to 1. An exception to
this is integer division, which is often accomplished by converting the values
into floating point. This makes the operation ghastly slow compared to other
integer calculations. See Table 4-6 for details.

Second, avoid using functions such as: sin(x), log(x), y*, etc. These
transcendental functions are calculated as a series of additions, subtractions
and multiplications. For example, the Maclaurin power series provides:

SN(X) = X-—=+—- —+—- —+
3! Sl 7! o 11
EQUATION 4-3
Maclaurin power series expansion for
three transcendental functions. Thisis 2 4 6 8 10
how computers cal culate functions of _ X X _X X _X
this type, and why they execute so cos(x) = 1 o1 " 4 6l " 8 10! "
dowy. ! ! ! ! !
2 3 4 5
eX = 1+X+X_+X_+X_+X_+

While these relations are infinite in length, the terms rapidly become small
enough to be ignored. For example:

sin(1) = 1- 0.166666 + 0.008333 - 0.000198 + 0.000002 - --

These functions require about ten times longer to calculate than a single
addition or multiplication (see Table 4-6). Several tricks can be used to bypass
these calculations, such as: x3=x-x-x; sin(x)=x, when x is very small;
sin(-x) = sin(x), where you already know one of the values and need to find
the other, etc. Most languages only provide a few transcendental functions, and
expect you to derive the others by means of the relations in Table 4-7. Not
surprisingly, these derived calculations are even slower.

The Scientist and Engineer's Guide to Digital Sgnal Processing

FUNCTION EQUATION FOR CALCULATING
Secant (X) = 1/COS(X)
Cosecant (X) = 1/SIN(X)
Cotangent (X) = UTAN(X)
Arc Sine(X) = ATN(X/SQR(1-X* X))
Arc Cosine (X) = -ATN(X/SQR(1-X*X)) + PI/2
Arc Secant (X) = ATN(SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cosecant (X) = ATN(L/SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cotangent (X) = -ATN(X) + PI/2

Hyperbolic Sine (X) =
Hyperbolic Cosine (X) =
Hyperbolic Tangent (X) =
Hyperbolic Secant (X) =
Hyperbolic Cosecant (X) =
Hyperbolic Cotangent (X) =

Arc Hyperbolic Sine (X) =

Arc Hyperbolic Cosine (X) =
Arc Hyperbolic Tangent (X) =
Arc Hyperbolic Secant (X) =
Arc Hyperbolic Cosecant (X) =
Arc Hyperbolic Cotangent (X) =

LOGy(X) =
Pl =

TABLE 4-7

(EXP(X)-EXP(-X))/2
(EXP(X)+EXP(-X))/2
(EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
1/HY PERBOLIC COSINE

1/HY PERBOLIC SINE

1/HY PERBOLIC TANGENT

LOG(X+SQR(X*X+1))
LOG(X+SQR(X*X-1))
LOG((1+X) /(1-X))/2
LOG((SQR(1-X*X)+1)/X)
LOG(1+SGN(X)* SQR(1+X* X))/X
LOG((X+1)/(X-1))/2

LOG(X)/LOG(10) = 0.4342945 LOG(X)
4*ATN(1) = 3.141592653589794

Calculating rarely used functions from more common ones. All angles are in radians,
ATN(X) isthe arctangent, LOG(X) isthe natural logarithm, SGN(X) isthe sign of X (i.e.,
-1for X<0, 1 for X>0), EXP(X) is €.

Another option is to precalculate these slow functions, and store the values in
a look-up table (LUT). For example, imagine an 8 bit data acquisition
system used to continually monitor the voltage across a resistor. If the
parameter of interest is the power being dissipated in the resistor, the measured
voltage can be used to calculate: P =V ?R. As afaster aternative, the power
corresponding to each of the possible 256 voltage measurements can be
calculated beforehand, and stored in a LUT. When the system is running, the
measured voltage, a digital number between 0 and 255, becomes an index in
the LUT to find the corresponding power. Look-up tables can be hundreds of
times faster than direct calculation.

Third, learn what is fast and what is slow on your particular system.
This comes with experience and testing, and there will always be surprises. Pay
particular attention to graphics commands and I/O. There are usually severa
ways to handle these requirements, and the speeds can be tremendously
different. For example, the BASIC command: BLOAD, transfers a data file
directly into a section of memory. Reading the same file into memory byte-by-
byte (in a loop) can be 100 times as slow. As another example, the BASIC
command: LINE, can be used to draw a colored box on the video screen.
Drawing the same box pixel-by-pixel can also take 100 times as long. Even
putting a print statement within a loop (to keep track of what it is doing) can
slow the operation by thousands!

CHAPTER

5

Linear Systems

Most DSP techniques are based on a divide-and-conquer strategy called superposition. The
signal being processed is broken into simple components, each component is processed
individually, and the results reunited. This approach has the tremendous power of breaking a
single complicated problem into many easy ones. Superposition can only be used with linear
systems, a term meaning that certain mathematical rules apply. Fortunately, most of the
applications encountered in science and engineering fall into this category. This chapter presents
the foundation of DSP: what it means for a system to be linear, various ways for breaking signals
into simpler components, and how superposition provides a variety of signal processing
techniques.

Signals and Systems

A signal is a description of how one parameter varies with another parameter.
For instance, voltage changing over time in an electronic circuit, or brightness
varying with distance in an image. A system is any process that produces an
output signal in response to an input signal. This is illustrated by the block
diagram in Fig. 5-1. Continuous systems input and output continuous signals,
such as in analog electronics. Discrete systems input and output discrete
signals, such as computer programs that manipulate the values stored in arrays.

Several rules are used for naming signals. These aren't always followed in
DSP, but they are very common and you should memorize them. The
mathematics is difficult enough without a clear notation. First, continuous
signals use parentheses, such as. x(t) and y(t), while discrete signals use
brackets, asin: x[n] and y[n]. Second, signals use lower case letters. Upper
case letters are reserved for the frequency domain, discussed in later chapters.
Third, the name given to a signal is usually descriptive of the parameters it
represents. For example, a voltage depending on time might be caled: v(t), or
a stock market price measured each day could be: p[d].

87

88

The Scientist and Engineer's Guide to Digital Sgnal Processing

I

~

Continuous
x(t) System > y(t)
Discrete)
x[n] System > y[n]

FIGURE 5-1

Terminology for signals and systems. A system is any process that generates an output signal in
response to an input signal. Continuous signals are usually represented with parentheses, while
discrete signals use brackets. All signals use lower case letters, reserving the upper case for the
frequency domain (presented in later chapters). Unlessthere is a better name available, the input
signal iscalled: x(t) or x[n], while the output is called: y(t) or y[n].

Signals and systems are frequently discussed without knowing the exact
parameters being represented. This is the same as using x and y in algebra,
without assigning a physical meaning to the variables. This brings in afourth
rule for naming signals. If a more descriptive hame is not available, the input
signal to a discrete system is usually called: x[n], and the output signal: y[n].
For continuous systems, the signals: x(t) and y(t) are used.

There are many reasons for wanting to understand a system. For example, you
may want to design a system to remove noise in an electrocardiogram, sharpen
an out-of-focus image, or remove echoes in an audio recording. In other cases,
the system might have a distortion or interfering effect that you need to
characterize or measure. For instance, when you speak into a telephone, you
expect the other person to hear something that resembles your voice.
Unfortunately, the input signal to atransmission line is seldom identical to the
output signal. If you understand how the transmission line (the system) is
changing the signal, maybe you can compensate for its effect. In still other
cases, the system may represent some physical process that you want to study
or analyze. Radar and sonar are good examples of this. These methods
operate by comparing the transmitted and reflected signals to find the
characteristics of a remote object. In terms of system theory, the problem isto
find the system that changes the transmitted signal into the received signal.

At first glance, it may seem an overwhelming task to understand all of the
possible systems in the world. Fortunately, most useful systems fall into a
category called linear systems. This fact is extremely important. Without the
linear system concept, we would be forced to examine the individual

Chapter 5- Linear Systems 89

characteristics of many unrelated systems. With this approach, we can focus
on the traits of the linear system category as a whole. Our first task is to
identify what properties make a system linear, and how they fit into the
everyday notion of electronics, software, and other signal processing systems.

Requirements for Linearity

A systemis called linear if it has two mathematical properties. homogeneity
(homa-gen-a-ity) and additivity. If you can show that a system has both
properties, then you have proven that the system is linear. Likewise, if you can
show that a system doesn't have one or both properties, you have proven that
itisn't linear. A third property, shift invariance, is not a strict requirement
for linearity, but it is a mandatory property for most DSP techniques. When
you see the term linear system used in DSP, you should assume it includes shift
invariance unless you have reason to believe otherwise. These three properties
form the mathematics of how linear system theory is defined and used. Later
in this chapter we will look at more intuitive ways of understanding linearity.
For now, let's go through these formal mathematical properties.

Asiillustrated in Fig. 5-2, homogeneity means that a change in the input signal's
amplitude results in a corresponding change in the output signal's amplitude.
In mathematical terms, if an input signal of x[n] results in an output signal of
y[n], an input of kx[n] results in an output of ky[n], for any input signal and
constant, k.

IF

— —

—> System —>

x[n] y[n]
THEN
—> System ——>)
kx[n] ky[n]

FIGURE 5-2

Definition of homogeneity. A system issaid to be homogeneous if an amplitude changein
the input resultsin an identical amplitude change in the output. That is, if x[n] resultsin
y[n], then kx[n] resultsin ky[n], for any signal, x[n], and any constant, k.

The Scientist and Engineer's Guide to Digital Sgnal Processing

A simple resistor provides a good example of both homogenous and non-
homogeneous systems. If the input to the system is the voltage across the
resistor, v(t), and the output from the system is the current through the resistor,
i(t), the system is homogeneous. Ohm's law guarantees this; if the voltage is
increased or decreased, there will be a corresponding increase or decrease in
the current. Now, consider another system where the input signal is the voltage
across the resistor, v(t), but the output signal is the power being dissipated in
the resistor, p(t). Since power is proportional to the square of the voltage, if
the input signal is increased by afactor of two, the output signal is increase by
a factor of four. This system is not homogeneous and therefore cannot be
linear.

The property of additivity isillustrated in Fig. 5-3. Consider a system where
an input of x,[n] produces an output of y,[n]. Further suppose that a different
input, x,[n], produces another output, y,[n]. The system is said to be additive,
if aninput of x,[n] + x,[n] resultsin an output of y,[n] +y,[n], for al possible
input signals. In words, signals added at the input produce signals that are
added at the output.

IF

—> System —>
X[n] y,[n]

AND IF

- -

—> System ——>
X,[n] y.[n]

THEN

- -

—> System —>
X;[n]+x,[n] yi[n]+y,[n]

FIGURE 5-3

Definition of additivity. A system is said to be additive if added signals pass through it
without interacting. Formally, if x,[n] resultsin y,[n], and if x,[n] resultsin y,[n], then
X[N]+x,[N] resultsin y,[n]+y,[n].

Chapter 5- Linear Systems 91

The important point is that added signals pass through the system without
interacting. As an example, think about a telephone conversation with your
Aunt Edna and Uncle Bernie. Aunt Edna begins a rather lengthy story about
how well her radishes are doing this year. In the background, Uncle Bernieis
yelling at the dog for having an accident in his favorite chair. The two voice
signals are added and electronically transmitted through the telephone network.
Since this system is additive, the sound you hear is the sum of the two voices
as they would sound if transmitted individually. You hear Edna and Bernie,
not the creature, Ednabernie.

A good example of a nonadditive circuit is the mixer stage in a radio
transmitter. Two signals are present: an audio signal that contains the voice
or music, and a carrier wave that can propagate through space when applied
to an antenna. The two signals are added and applied to a nonlinearity,
such as a pn junction diode. This results in the signals merging to form a
third signal, a modulated radio wave capable of carrying the information
over great distances.

As shown in Fig. 5-4, shift invariance means that a shift in the input signal will
result in nothing more than an identical shift in the output signal. In more
formal terms, if an input signal of Xx[n] results in an output of y[n], an input
signal of x[n+] results in an output of y[n~+ 5], for any input signal and any
constant, s. Pay particular notice to how the mathematics of this shift is
written, it will be used in upcoming chapters. By adding a constant, s, to the
independent variable, n, the waveform can be advanced or retarded in the
horizontal direction. For example, when s= 2, the signal is shifted left by two
samples; when s= -2, the signal is shifted right by two samples.
IF

—> System ——>

x[n] y[n]

THEN

- —

—> System —>
X[n+s] y[n+s]

FIGURE 5-4

Definition of shift invariance. A system issaid to be shift invariant if ashift in the input
signal causes an identical shift in the output signal. In mathematical terms, if x[n]
produces y[n], then x[n+s] produces y[n+s], for any signal, x[n], and any constant, s.

92

The Scientist and Engineer's Guide to Digital Sgnal Processing

Shift invariance is important because it means the characteristics of the
system do not change with time (or whatever the independent variable
happens to be). If ablip in the input causes a blop in the output, you can
be assured that another blip will cause an identical blop. Most of the
systems you encounter will be shift invariant. Thisis fortunate, because it
is difficult to deal with systems that change their characteristics while in
operation. For example, imagine that you have designed a digital filter to
compensate for the degrading effects of atelephone transmission line. Y our
filter makes the voices sound more natural and easier to understand. Much
to your surprise, along comes winter and you find the characteristics of the
telephone line have changed with temperature. Y our compensation filter is
now mismatched and doesn't work especially well. This situation may
require a more sophisticated algorithm that can adapt to changing
conditions.

Why do homogeneity and additivity play a critical role in linearity, while shift
invariance is something on the side? Thisis because linearity is a very broad
concept, encompassing much more than just signals and systems. For example,
consider afarmer selling oranges for $2 per crate and apples for $5 per crate.
If the farmer sells only oranges, he will receive $20 for 10 crates, and $40 for
20 crates, making the exchange homogenous. If he sells 20 crates of oranges
and 10 crates of apples, the farmer will receive: 20x$2 + 10x$5 = $90. This
is the same amount as if the two had been sold individually, making the
transaction additive. Being both homogenous and additive, this sale of goods
isalinear process. However, since there are no signals involved, this is not
a system, and shift invariance has no meaning. Shift invariance can be thought
of as an additional aspect of linearity needed when signals and systems are
involved.

Static Linearity and Sinusoidal Fidelity

Homogeneity, additivity, and shift invariance are important because they
provide the mathematical basis for defining linear systems. Unfortunately,
these properties alone don't provide most scientists and engineers with an
intuitive feeling of what linear systems are about. The properties of static
linearity and sinusoidal fidelity are often of help here. These are not
especialy important from a mathematical standpoint, but relate to how humans
think about and understand linear systems. Y ou should pay special attention
to this section.

Static linearity defines how a linear system reacts when the signals aren't
changing, i.e., when they are DC or static. The static response of alinear
system is very simple: the output is the input multiplied by a constant. That
is, a graph of the possible input values plotted against the corresponding
output values is a straight line that passes through the origin. Thisis shown
in Fig. 5-5 for two common linear systems. Ohm's law for resistors, and
Hooke's law for springs. For comparison, Fig. 5-6 shows the static
relationship for two nonlinear systems: a pn junction diode, and the
magnetic properties of iron.

Chapter 5- Linear Systems 93

c
"8' o weak
3] low w spring
S resistance gj
O o
m
high strong
resistance Spring
Voltage Force
a Ohm'slaw |b. Hooke's law |

FIGURE 5-5
Two examples of static linearity. In (a), Ohm's law: the current through aresistor is equal to the

voltage across the resistor divided by the resistance. In (b), Hooke'slaw: The elongation of aspring
isequal to the applied force multiplied by the spring stiffness coefficient.

All linear systems have the property of static linearity. The opposite is
usually true, but not always. There are systems that show static linearity,
but are not linear with respect to changing signals. However, a very
common class of systems can be completely understood with static linearity
alone. In these systems it doesn't matter if the input signal is static or
changing. These are called memoryless systems, because the output
depends only on the present state of the input, and not on its history. For
example, the instantaneous current in a resistor depends only on the
instantaneous voltage across it, and not on how the signals came to be the
value they are. If a system has static linearity, and is memoryless, then the
system must be linear. This provides an important way to understand (and
prove) the linearity of these simple systems.

Current

06v Voltage) / B
¥

'a_Silicon diode |

FIGURE 5-6
Two examples of DC nonlinearity. In (a), asilicon diode has an exponential relationship between

voltage and current. In (b), the relationship between magnetic intensity, H, and flux density, B, in
iron depends on the history of the sample, abehavior called hysteresis.

94

The Scientist and Engineer's Guide to Digital Sgnal Processing

An important characteristic of linear systems is how they behave with
sinusoids, a property we will call sinusoidal fidelity: If the input to a
linear system is a sinusoidal wave, the output will also be a sinusoidal
wave, and at exactly the same frequency as the input. Sinusoids are the
only waveform that have this property. For instance, there is no reason to
expect that a square wave entering a linear system will produce a square
wave on the output. Although a sinusoid on the input guarantees a sinusoid
on the output, the two may be different in amplitude and phase. This
should be familiar from your knowledge of electronics. a circuit can be
described by its frequency response, graphs of how the circuit's gain and
phase vary with frequency.

Now for the reverse question: If a system always produces a sinusoidal output
in response to a sinusoidal input, is the system guaranteed to be linear? The
answer is no, but the exceptions are rare and usually obvious. For example,
imagine an evil demon hiding inside a system, with the goal of trying to
mislead you. The demon has an oscilloscope to observe the input signal, and
a sine wave generator to produce an output signal. When you feed a sine
wave into the input, the demon quickly measures the frequency and adjusts his
signal generator to produce a corresponding output. Of course, this system is
not linear, because it is not additive. To show this, place the sum of two sine
waves into the system. The demon can only respond with a single sine wave
for the output. This example is not as contrived as you might think; phase lock
loops operate in much this way.

To get a better feeling for linearity, think about a technician trying to determine
if an electronic device is linear. The technician would attach a sine wave
generator to the input of the device, and an oscilloscope to the output. With a
sine wave input, the technician would look to see if the output is also a sine
wave. For example, the output cannot be clipped on the top or bottom, the top
half cannot look different from the bottom half, there must be no distortion
where the signal crosses zero, etc. Next, the technician would vary the
amplitude of the input and observe the effect on the output signal. If the system
is linear, the amplitude of the output must track the amplitude of the input.
Lastly, the technician would vary the input signal's frequency, and verify that
the output signal's frequency changes accordingly. As the frequency is
changed, there will likely be amplitude and phase changes seen in the output,
but these are perfectly permissible in alinear system. At some frequencies, the
output may even be zero, that is, a sinusoid with zero amplitude. If the
technician sees all these things, he will conclude that the system is linear.
While this conclusion is not a rigorous mathematical proof, the level of
confidence is justifiably high.

Examples of Linear and Nonlinear Systems

Table 5-1 provides examples of common linear and nonlinear systems. Asyou
go through the lists, keep in mind the mathematician's view of linearity
(homogeneity, additivity, and shift invariance), as well as the informal way
most scientists and engineers use (static linearity and sinusoidal fidelity).

Chapter 5- Linear Systems

Examples of Linear Systems

W ave propagation such as sound and el ectromagnetic waves

Electrical circuits composed of resistors, capacitors, and inductors

Electronic cir cuits, such as amplifiers and filters

M echanical motion from the interaction of masses, springs, and dashpots (dampeners)

Systems described by differential equations such as resistor-capacitor-inductor
networks

Multiplication by a constant, that is, amplification or attenuation of the signal
Signal changes, such as echoes, resonances, and image blurring

The unity system where the output is always equal to the input

Thenull system where the output is always equal to the zero, regardless of the input

Differentiation and integration, and the analogous operations of first difference and
running sum for discrete signals

Small perturbationsin an otherwise nonlinear system, for instance, asmall signal being
amplified by a properly biased transistor

Convolution, amathematical operation where each value in the output is expressed asthe
sum of valuesin the input multiplied by a set of weighing coefficients.

Recursion, atechnique similar to convolution, except previously calculated valuesin the
output are used in addition to values from the input

Examples of Nonlinear Systems

Systems that do not have static linearity, for instance, the voltage and power in a
resistor: P = V7R, the radiant energy emission of ahot object depending on itstemperature:
R = kT4, the intensity of light transmitted through a thickness of translucent material:
| = e etc.

Systems that do not have sinusoidal fidelity, such as electronics circuits for: peak
detection, squaring, sine wave to square wave conversion, frequency doubling, etc.

Common electronic distortion, such as clipping, crossover distortion and slewing

Multiplication of one signal by another signal, such as in amplitude modulation and
automatic gain controls

Hyster esis phenomena, such as magnetic flux density versus magnetic intensity iniron,
or mechanical stress versus strain in vulcanized rubber

Saturation, such as electronic amplifiers and transformers driven too hard

Systemswith athreshold, for example, digital logic gates, or seismic vibrationsthat are
strong enough to pulverize the intervening rock

Table 5-1

Examples of linear and nonlinear systems. Formally, linear systems are defined by the properties
of homogeneity, additivity, and shift invariance. Informally, most scientists and engineersthink
of linear systemsin terms of static linearity and sinusoidal fidelity.

96

The Scientist and Engineer's Guide to Digital Sgnal Processing

Special Properties of Linearity

Linearity is commutative, a property involving the combination of two or
more systems. Figure 5-10 shows the general idea. Imagine two systems
combined in a cascade, that is, the output of one system is the input to the
next. If each system islinear, then the overall combination will also be linear.
The commutative property states that the order of the systems in the cascade
can be rearranged without affecting the characteristics of the overall
combination. You probably have used this principle in electronic circuits. For
example, imagine a circuit composed of two stages, one for amplification, and
one for filtering. Which is best, amplify and then filter, or filter and then
amplify? If both stages are linear, the order doesn't make any difference and
the overall result is the same. Keep in mind that actual electronics has
nonlinear effects that may make the order important, for instance: interference,
DC offsets, internal noise, slew rate distortion, etc.

IF
FIGURE 5-7 x[n] System| | System _ yin]
The commutative property for linear 1A ~1 B i
systems. When two or more linear systems
arearranged in acascade, the order of the
systems does not affect the characteristics
of the overall combination.

THEN

X[n] | System | | System _ yin]

\
w

Figure 5-8 shows the next step in linear system theory: multiple inputs and
outputs. A system with multiple inputs and/or outputs will be linear if it is
composed of linear subsystems and additions of signals. The complexity does
not matter, only that nothing nonlinear is allowed inside of the system.

To understand what linearity means for systems with multiple inputs and/or
outputs, consider the following thought experiment. Start by placing a signal
on one input while the other inputs are held at zero. This will cause the
multiple outputs to respond with some pattern of signals. Next, repeat the
procedure by placing another signal on a different input. Just as before, keep
al of the other inputs at zero. This second input signal will result in another
pattern of signals appearing on the multiple outputs. To finish the experiment,
place both signals on their respective inputs simultaneously. The signals
appearing on the outputs will simply be the superposition (sum) of the output
signals produced when the input signals were applied separately.

Chapter 5- Linear Systems 97

Xl [n] > SyStem > Syaen] " > yl [n]
>N B >
FIGURE 5-8
Any system with multiple inputs and/or
outputs will be linear if it is composed
of linear systems and signal additions. %[n] > Sy?t:em —> y[n]

X[n]_|

Xs[n]__|J System | System _)@_) y5[n]

The use of multiplication in linear systems is frequently misunderstood. This
is because multiplication can be either linear or nonlinear, depending on what
the signal is multiplied by. Figure 5-9 illustrates the two cases. A system that
multiplies the input signal by a constant, islinear. This system is an amplifier
or an attenuator, depending if the constant is greater or less than one,
respectively. In contrast, multiplying a signal by another signal is nonlinear.
Imagine a sinusoid multiplied by another sinusoid of a different frequency; the
resulting waveform is clearly not sinusoidal.

Another commonly misunderstood situation relates to parasitic signals added
in electronics, such as DC offsets and thermal noise. |s the addition of these
extraneous signals linear or nonlinear? The answer depends on where the
contaminating signals are viewed as originating. If they are viewed as coming
from within the system, the processis nonlinear. This is because a sinusoidal
input does not produce a pure sinusoidal output. Conversely, the extraneous
signal can be viewed as externally entering the system on a separate input of
a multiple input system. This makes the process linear, since only a signal
addition is required within the system.

xy[n]
constant X,[n]
Linear Nonlinear
a. Multiplication by a constant b. Multiplication of two signals
FIGURE 5-9

Linearity of multiplication. Multiplying a signal by a constant is a linear operation. In
contrast, the multiplication of two signalsis nonlinear.

98

The Scientist and Engineer's Guide to Digital Sgnal Processing

Superposition: the Foundation of DSP

x[n]

FIGURE 5-10

Illustration of synthesis and decomposition of
signals. In synthesis, two or more signals are
added to form another signal. Decomposition is
the opposite process, breaking one signal into
two or more additive component signals.

When we are dealing with linear systems, the only way signals can be
combined is by scaling (multiplication of the signals by constants) followed by
addition. For instance, a signal cannot be multiplied by another signal. Figure
5-10 shows an example: three signals: x,[n], x;[n], and x,[n] are added to form
afourth signal, x[n]. This process of combining signals through scaling and
addition is called synthesis.

Decomposition is the inverse operation of synthesis, where asingle signal is
broken into two or more additive components. This is more involved than
synthesis, because there are infinite possible decompositions for any given
signal. For example, the numbers 15 and 25 can only be synthesized (added)
into the number 40. In comparison, the number 40 can be decomposed into:
1+39 or 2+38 or -30.5+ 60+ 10.5, etc.

Now we come to the heart of DSP: super position, the overall strategy for
understanding how signals and systems can be analyzed. Consider an input

X,[n]

X;[n],

X,[n]

Chapter 5- Linear Systems 99

x[n]
- The Fundamental
Concept of DSP
g
g
Xl[n] R EEEEEEEEE s System | yl[n] [T T T ———
X[n] T 5 System —> y.Lnl e
FIGURE 5-11

The fundamental concept in DSP. Any
signal, such as x[n], can be decomposed into
a group of additive components, shown here
by the signals: x;[n], x,[n], and x,[n]. Passing
these components through a linear system
produces the signals, y,[n], y,[n], and y,n].
The synthesis (addition) of these output
signals forms y[n], the same signal produced
when x[n] is passed through the system.

signal, called x[n], passing through a linear system, resulting in an output
signal, y[n]. Asillustrated in Fig. 5-11, the input signal can be decomposed
into agroup of simpler signals: x,[n], x,[n], x,[n], etc. We will call these the
input signal components. Next, each input signal component is individually
passed through the system, resulting in a set of output signal components:
Yo[nl, y,[nl, y,[n], etc. These output signal components are then synthesized
into the output signal, y[n].

100

The Scientist and Engineer's Guide to Digital Sgnal Processing

Here is the important part: the output signal obtained by this method is
identical to the one produced by directly passing the input signal through the
system. Thisis avery powerful idea. Instead of trying to understanding how
complicated signals are changed by a system, all we need to know is how
simple signals are modified. In the jargon of signal processing, the input and
output signals are viewed as a superposition (sum) of simpler waveforms. This
is the basis of nearly all signal processing techniques.

As a simple example of how superposition is used, multiply the number 2041
by the number 4, in your head. How did you do it? You might have imagined
2041 match sticks floating in your mind, quadrupled the mental image, and
started counting. Much more likely, you used superposition to simplify the
problem. The number 2041 can be decomposed into: 2000 + 40 + 1. Each of
these components can be multiplied by 4 and then synthesized to find the final
answer, i.e., 8000 + 160 + 4 = 8164.

Common Decompositions

Keep in mind that the goal of this method is to replace a complicated problem
with several easy ones. If the decomposition doesn't simplify the situation in
some way, then nothing has been gained. There are two main ways to
decompose signals in signal processing: impulse decomposition and Fourier
decomposition. They are described in detail in the next several chapters. In
addition, several minor decompositions are occasionally used. Here are brief
descriptions of the two major decompositions, along with three of the minor
ones.

Impulse Decomposition

As shown in Fig. 5-12, impulse decomposition breaks an N samples signal into
N component signals, each containing N samples. Each of the component
signals contains one point from the original signal, with the remainder of the
values being zero. A single nonzero point in a string of zeros is called an
impulse. Impulse decomposition is important because it allows signals to be
examined one sample at atime. Similarly, systems are characterized by how
they respond to impulses. By knowing how a system responds to an impulse,
the system's output can be calculated for any given input. This approach is
called convolution, and is the topic of the next two chapters.

Step Decomposition

Step decomposition, shown in Fig. 5-13, also breaks an N sample signal into
N component signals, each composed of N samples. Each component signal
is astep, that is, the first samples have a value of zero, while the last samples
are some constant value. Consider the decomposition of an N point signal,
x[n], into the components: x.[n], x,[n], x,[n], X ;[n]. The k™ component
signal, x[n], is composed of zeros for points O through k-1, while the
remaining points have a value of: x[k] - x[lk-1]. For example, the 5™
component signal, x[n], is composed of zeros for points O through 4, while
the remaining samples have a value of: X[5] - x[4] (the difference between

Chapter 5- Linear Systems 101

x[n] X[n]

Impulse Step

Decomposition Decomposition
Xo[n] XO[II] ---------------------------------

|
Xy[n] \-/ Xq[N] et
X,[n] -\/ Xo[n] g
Xg[n] /\.... Xo7[n] /""'
FIGURE 5-12 FIGURE 5-13

Example of impulse decomposition. An N
point signal is broken into N components,
each consisting of a single nonzero point.

Example of step decomposition. An N point
signal isbroken into N signals, each consisting
of astep function

sample 4 and 5 of the original signal). As a special case, xj[n] has all of its
samples equal to x[0] . Just as impulse decomposition looks at signals one point
at atime, step decomposition characterizes signals by the difference between
adjacent samples. Likewise, systems are characterized by how they respond to
a change in the input signal.

102 The Scientist and Engineer's Guide to Digital Sgnal Processing

Even/Odd Decomposition

The even/odd decomposition, shown in Fig. 5-14, breaks a signal into two
component signals, one having even symmetry and the other having odd
symmetry. An N point signal is said to have even symmetry if it isamirror
image around point N/2. That is, sample x[N/2+ 1] must equal x[N/2- 1],
sample X[N/2 + 2] must equal x[N/2 - 2], etc. Similarly, odd symmetry occurs
when the matching points have equal magnitudes but are opposite in sign, such
as: x[N/2+1] = -x[N/2-1], x[N/2+2] = -x[N/2-2], etc. These definitions
assume that the signal is composed of an even number of samples, and that the
indexes run from 0 to N-1. The decomposition is calculated from the

relations:
EQUATION 5-1
Equations for even/odd decomposition. x[n] + Xx[N-n]
These equations separate a signal, x[n], Xg [n] = 2

into itseven part, x_[n], and its odd part,
X, [N]. Since this decomposition is based
on circularly symmetry, the zeroth

samples in the even and odd signals are x[n] - Xx[N-n]
calculated: x.[0] = x[0], and x,[0] = O. Xo[N] =
All of the signals are N samples long, 2

with indexes running from O to N-1

This may seem a strange definition of left-right symmetry, since N/2-%
(between two samples) is the exact center of the signal, not N/2. Likewise,
this off-center symmetry means that sample zero needs special handling.
What's this all about?

This decomposition is part of an important concept in DSP called circular
symmetry. It is based on viewing the end of the signal as connected to the
beginning of the signal. Just as point x[4] is next to point x[5], point X[N-1]
is next to point x[0]. Picture a snake biting its own tail. When even and odd
signals are viewed in this circular manner, there are actually two lines of
symmetry, one at point X{N/2] and another at point x[0]. For example, in an
even signal, this symmetry around x[0] means that point X[1] equals point
X[N-1], point X[2] equals point x[N-2], etc. In an odd signal, point O and
point N/2 always have a value of zero. In an even signal, point 0O and point
N/2 are equal to the corresponding points in the original signal.

What is the motivation for viewing the last sample in a signal as being next to
the first sample? There is nothing in conventional data acquisition to support
this circular notion. In fact, the first and last samples generally have less in
common than any other two points in the sequence. It's common sense! The
missing piece to this puzzle is a DSP technique called Fourier analysis. The
mathematics of Fourier analysis inherently views the signal as being circular,
although it usually has no physical meaning in terms of where the data came
from. We will look at this in more detail in Chapter 10. For now, the
important thing to understand is that Eq. 5-1 provides a valid decomposition,
simply because the even and odd parts can be added together to reconstruct the
original signal.

Chapter 5- Linear Systems

x[n]

Even/Odd
Decomposition

even symmetry

ol o e o

Xo[n]

odd é}/mmary

0 N/2 N

FIGURE 5-14
Example of even/odd decomposition. An N
point signal isbroken into two N point signals,
one with even symmetry, and the other with
odd symmetry.

x[n]
Interlaced
Decomposition
Wl fopbner fop i
odd samples
Xo[n]
FIGURE 5-15

Example of interlaced decomposition. An N
point signal isbroken into two N point signals,
one with the odd samples set to zero, the other
with the even samples set to zero.

103

I nterlaced Decomposition

As shown in Fig. 5-15, the interlaced decomposition breaks the signal into two
component signals, the even sample signal and the odd sample signal (not to
be confused with even and odd symmetry signals). To find the even sample
signal, start with the original signal and set all of the odd numbered samples
to zero. To find the odd sample signal, start with the original signal and set all
of the even numbered samples to zero. It's that simple.

At first glance, this decomposition might seem trivial and uninteresting. This
is ironic, because the interlaced decomposition is the basis for an extremely
important algorithm in DSP, the Fast Fourier Transform (FFT). The procedure
for calculating the Fourier decomposition has been known for several hundred
years. Unfortunately, it is frustratingly slow, often requiring minutes or hours
to execute on present day computers. The FFT is a family of algorithms
developed in the 1960s to reduce this computation time. The strategy is an
exquisite example of DSP: reduce the signal to elementary components by
repeated use of the interlace transform; calculate the Fourier decomposition of
the individual components; synthesize the results into the final answer. The

104 The Scientist and Engineer's Guide to Digital Sgnal Processing

results are dramatic; it is common for the speed to be improved by a factor of
hundreds or thousands.

Fourier Decomposition

Fourier decomposition is very mathematical and not at all obvious. Figure
5-16 shows an example of the technique. Any N point signal can be
decomposed into N+2 signals, half of them sine waves and half of them
cosine waves. The lowest frequency cosine wave (called x.,[n] in this
illustration), makes zero complete cycles over the N samples, i.e., itisaDC
signal. The next cosine components: x.,[n], X,[Nn], and x-,[n], make 1, 2,
and 3 complete cycles over the N samples, respectively. This pattern holds
for the remainder of the cosine waves, as well as for the sine wave
components. Since the frequency of each component is fixed, the only
thing that changes for different signals being decomposed is the amplitude
of each of the sine and cosine waves.

Fourier decomposition is important for three reasons. First, a wide variety
of signals are inherently created from superimposed sinusoids. Audio
signals are a good example of this. Fourier decomposition provides a direct
analysis of the information contained in these types of signals. Second,
linear systems respond to sinusoids in a unique way: a sinusoidal input
always results in a sinusoidal output. In this approach, systems are
characterized by how they change the amplitude and phase of sinusoids
passing through them. Since an input signal can be decomposed into
sinusoids, knowing how a system will react to sinusoids allows the output
of the system to be found. Third, the Fourier decomposition is the basis for
a broad and powerful area of mathematics called Fourier analysis, and the
even more advanced Laplace and z-transforms. Most cutting-edge DSP
algorithms are based on some aspect of these techniques.

Why is it even possible to decompose an arbitrary signal into sine and cosine
waves? How are the amplitudes of these sinusoids determined for a particular
signal? What kinds of systems can be designed with this technique? These are
the questions to be answered in later chapters. The details of the Fourier
decomposition are too involved to be presented in this brief overview. For
now, the important idea to understand is that when all of the component
sinusoids are added together, the original signal is exactly reconstructed. Much
more on this in Chapter 8.

Alternatives to Linearity

To appreciate the importance of linear systems, consider that there is only one
major strategy for analyzing systems that are nonlinear. That strategy is to
make the nonlinear system resemble a linear system. There are three common
ways of doing this:

First, ignore the nonlinearity. If the nonlinearity is small enough, the system
can be approximated as linear. Errors resulting from the original assumption
are tolerated as noise or simply ignored.

Fourier
Decomposition

Xcoln]

Xc[n]

Xco[n]

Xc3[n]

Xcg[n]

Chapter 5- Linear Systems

X[n]

4

cosine waves

FIGURE 5-16

Illustration of Fourier decomposition. An N point signal is decomposed into N+2 signals, each
having N points. Half of these signals are cosine waves, and half are sine waves. The frequencies

Xg[n]

Xg[n]

Xs [n]

Xg[n]

ng[n]

sine waves

of the sinusoids are fixed; only the amplitudes can change.

105

106

The Scientist and Engineer's Guide to Digital Sgnal Processing

Second, keep the signals very small. Many nonlinear systems appear linear if
the signals have a very small amplitude. For instance, transistors are very
nonlinear over their full range of operation, but provide accurate linear
amplification when the signals are kept under a few millivolts. Operational
amplifiers take this idea to the extreme. By using very high open-loop gain
together with negative feedback, the input signal to the op amp (i.e., the
difference between the inverting and noninverting inputs) is kept to only a few
microvolts. This minuscule input signal results in excellent linearity from an
otherwise ghastly nonlinear circuit.

Third, apply alinearizing transform. For example, consider two signals being
multiplied to make a third: a[n] = b[n] xc[n]. Taking the logarithm of the
signals changes the nonlinear process of multiplication into the linear process
of addition: log(a[n]) = log(b[n]) + log(c[n]). The fancy name for this
approach is homomor phic signal processing. For example, avisual image can
be modeled as the reflectivity of the scene (a two-dimensional signal) being
multiplied by the ambient illumination (another two-dimensional signal).
Homomorphic techniques enable the illumination signal to be made more
uniform, thereby improving the image.

In the next chapters we examine the two main techniques of signal processing:
convolution and Fourier analysis. Both are based on the strategy presented in
this chapter: (1) decompose signals into simple additive components, (2)
process the components in some useful manner, and (3) synthesize the
components into afinal result. Thisis DSP.

CHAPTER

6

Convolution

Convolution is a mathematical way of combining two signals to form a third signal. It is the
single most important technique in Digital Signal Processing. Using the strategy of impulse
decomposition, systems are described by a signal called the impulse response. Convolution is
important because it relates the three signals of interest: the input signal, the output signal, and
the impulse response. This chapter presents convolution from two different viewpoints, called
the input side algorithm and the output side algorithm. Convolution provides the mathematical
framework for DSP; there is nothing more important in this book.

The Delta Function and Impulse Response

The previous chapter describes how a signal can be decomposed into a group
of components called impulses. Animpulse is a signal composed of al zeros,
except a single nonzero point. In effect, impulse decomposition provides a way
to analyze signals one sample at atime. The previous chapter also presented
the fundamental concept of DSP: the input signal is decomposed into simple
additive components, each of these components is passed through a linear
system, and the resulting output components are synthesized (added). The
signal resulting from this divide-and-conquer procedure is identical to that
obtained by directly passing the original signal through the system. While
many different decompositions are possible, two form the backbone of signal
processing: impulse decomposition and Fourier decomposition. When impulse
decomposition is used, the procedure can be described by a mathematical
operation caled convolution. In this chapter (and most of the following ones)
we will only be dealing with discrete signals. Convolution also applies to
continuous signals, but the mathematics is more complicated. We will look at
how continious signals are processed in Chapter 13.

Figure 6-1 defines two important terms used in DSP. The first is the delta

function, symbolized by the Greek letter delta, d[n]. The delta function is
a normalized impulse, that is, sample number zero has a value of one, while

107

108 The Scientist and Engineer's Guide to Digital Sgnal Processing

Convolution

all other samples have a value of zero. For this reason, the delta function is
frequently called the unit impulse.

The second term defined in Fig. 6-1 is the impulse response. As the nhame
suggests, the impulse response is the signal that exits a system when a delta
function (unit impulse) is the input. If two systems are different in any way,
they will have different impulse responses. Just as the input and output signals
are often called x[n] and y[n], the impulse response is usualy given the
symbol, h[n]. Of course, this can be changed if a more descriptive name is
available, for instance, f[n] might be used to identify the impulse response of
afilter.

Any impulse can be represented as a shifted and scaled delta function.
Consider a signal, a[n], composed of all zeros except sample number 8,
which has a value of -3. This is the same as a delta function shifted to the
right by 8 samples, and multiplied by -3. In equation form:
a[n] = -39[n-8]. Make sure you understand this notation, it is used in
nearly all DSP equations.

If the input to a system is an impulse, such as - 3d[n-8], what is the system's
output? This is where the properties of homogeneity and shift invariance are
used. Scaling and shifting the input resultsin an identical scaling and shifting
of the output. If d[n] results in h[n], it follows that -3d[n-8] results in
-3h[n-8]. Inwords, the output is a version of the impulse response that has
been shifted and scaled by the same amount as the delta function on the input.
If you know a system's impulse response, you immediately know how it will
react to any impulse.

Let's summarize this way of understanding how a system changes an input
signal into an output signal. First, the input signal can be decomposed into a
set of impulses, each of which can be viewed as a scaled and shifted delta
function. Second, the output resulting from each impulse is a scaled and shifted
version of the impulse response. Third, the overall output signal can be found
by adding these scaled and shifted impulse responses. In other words, if we
know a system's impulse response, then we can calculate what the output will
be for any possible input signal. This means we know everything about the
system. There is nothing more that can be learned about a linear system's
characteristics. (However, in later chapters we will show that this information
can be represented in different forms).

The impulse response goes by a different name in some applications. If the
system being considered is a filter, the impulse response is called the filter
kernel, the convolution kernel, or simply, the kernel. Inimage processing,
the impulse response is called the point spread function. While these terms
are used in slightly different ways, they all mean the same thing, the signal
produced by a system when the input is a delta function.

Chapter 6- Convolution 109

Delta Impulse

Function Response

2

1.

0m-u
Al

FIGURE 6-1

ol — | Shoem | —> hin]

Definition of delta function and impulse response. The delta function isanormalized impulse. All of
its samples have avalue of zero, except for sample number zero, which has avalue of one. The Greek
letter delta, o[n], isused to identify the deltafunction. Theimpulse response of alinear system, usually
denoted by h[n], isthe output of the system when the input is a delta function.

Convolution is a formal mathematical operation, just as multiplication,
addition, and integration. Addition takes two numbers and produces a third
number, while convolution takes two signals and produces a third signal.
Convolution is used in the mathematics of many fields, such as probability and
statistics. In linear systems, convolution is used to describe the relationship
between three signals of interest: the input signal, the impulse response, and the
output signal.

Figure 6-2 shows the notation when convolution is used with linear systems.
An input signal, x[n], enters a linear system with an impulse response, h[n],
resulting in an output signal, y[n]. In equation form: x[n]* h[n] = y[n].
Expressed in words, the input signal convolved with the impulse response is
equal to the output signal. Just as addition is represented by the plus, +, and
multiplication by the cross, x, convolution is represented by the star, *. Itis
unfortunate that most programming languages also use the star to indicate
multiplication. A star in a computer program means multiplication, while a star
in an eguation means convolution.

FIGURE 6-2 ;

How convolutionisused in DSP. The Linear

output signal from a linear system is > stem >

equal to the input signal convolved X[n] S)I'/][n] y[n]
with the system's impulse response.

Convolution is denoted by a star when

writing equations.

x[n] = h[n] =y[n]

110

The Scientist and Engineer's Guide to Digital Sgnal Processing

a. Low-pass Filter

Amplitude

b. High-pass Filter

Amplitude

t—t—t—t 1
0O 10 20 30 40 50 60 70 80

008 4
0.06
8 8
S 004 s
sk = — £
g o002 g
< <
0.004 -
t t t T T T T 0.02 t t -2 t t t t t T T T T T
0 10 20 30 40 50 60 70 80 0 10 20 3 0 10 20 30 40 50 60 70 8 90 100 110
Sample number Sample number Sample number
125 4
100 - - r e -
8 omt.r.o 8
3 I =1
£ Lo =
% E_o.sof--,---,--- E_
OB bk <
0.00 g oot
0.25 T T -2 t t t t t t t t t t
0 10 20 30 0 10 20 30 40 50 60 70 8 90 100 110
Sample number Sample number Sample number

~ 0 v

Input Signal Impulse Response Output Signal

Examples of low-pass and high-pass filtering using convolution. In this example, the input signal
isafew cycles of asine wave plus a slowly rising ramp. These two components are separated by
using properly selected impul se responses.

Figure 6-3 shows convolution being used for low-pass and high-pass filtering.
The example input signal is the sum of two components: three cycles of asine
wave (representing a high frequency), plus a slowly rising ramp (composed of
low frequencies). In (@), the impulse response for the low-pass filter is a
smooth arch, resulting in only the slowly changing ramp waveform being
passed to the output. Similarly, the high-pass filter, (b), allows only the more
rapidly changing sinusoid to pass.

Figure 6-4 illustrates two additional examples of how convolution is used to
process signals. The inverting attenuator, (a), flips the signal top-for-bottom,
and reduces its amplitude. The discrete derivative (also called the first
difference), shown in (b), results in an output signal related to the slope of the
input signal.

Notice the lengths of the signalsin Figs. 6-3 and 6-4. The input signals are
81 samples long, while each impulse response is composed of 31 samples.
In most DSP applications, the input signal is hundreds, thousands, or even
millions of samples in length. The impulse response is usually much shorter,
say, a few points to a few hundred points. The mathematics behind
convolution doesn't restrict how long these signals are. It does, however,
specify the length of the output signal. The length of the output signal is

a. Inverting Attenuator

O

Amplitude

Amplitude

T T T T T T T
0 10 20 30 40 50 60 70 80
Sample number

. Discrete Derivative

T T T T T T T
0 10 20 30 40 50 60 70 80
Sample number

Input Signal

FIGURE 6-4

Chapter 6- Convolution

Amplitude

Sample number

5

8
Il

Amplitude
;

8
Il

-2,

8

Sample number

~ 0 v
Impulse Response

Amplitude

-2 t t t t t t t t

Amplitude

)

111

T T
0 10 20 30 40 50 60 70 8 90 100 110
Sample number

T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 110
Sample number

Output Signal

Examples of signals being processed using convolution. Many signal processing tasks use very
simpleimpulse responses. As shown in these examples, dramatic changes can be achieved with only

afew nonzero points.

equal to the length of the input signal, plus the length of the impulse
response, minus one. For the signals in Figs. 6-3 and 6-4, each output
signal is; 81+ 31- 1= 111 sampleslong. The input signal runs from sample
0 to 80, the impulse response from sample 0 to 30, and the output signal
from sample 0 to 110.

Now we come to the detailed mathematics of convolution. Asused in Digital
Signal Processing, convolution can be understood in two separate ways. The
first looks at convolution from the viewpoint of the input signal. This
involves analyzing how each sample in the input signal contributes to many
points in the output signal. The second way looks at convolution from the
viewpoint of the output signal. This examines how each sample in the
output signal has received information from many points in the input signal.

Keep in mind that these two perspectives are different ways of thinking
about the same mathematical operation. The first viewpoint is important
because it provides a conceptual understanding of how convolution pertains
to DSP. The second viewpoint describes the mathematics of convolution.
This typifies one of the most difficult tasks you will encounter in DSP:
making your conceptual understanding fit with the jumble of mathematics
used to communicate the ideas.

112

The Scientist and Engineer's Guide to Digital Sgnal Processing

The Input Side Algorithm

Figure 6-5 shows a simple convolution problem: a 9 point input signal, x[n],
is passed through a system with a 4 point impulse response, h[n], resulting
ina9+4-1= 12 point output signal, y[n]. In mathematical terms, x[n] is
convolved with h[n] to produce y[n]. This first viewpoint of convolutionis
based on the fundamental concept of DSP: decompose the input, pass the
components through the system, and synthesize the output. In this example,
each of the nine samples in the input signal will contribute a scaled and
shifted version of the impulse response to the output signal. These nine
signals are shown in Fig. 6-6. Adding these nine signals produces the
output signal, y[n].

Let'slook at several of these nine signals in detail. We will start with sample
number four in the input signal, i.e., X[4]. Thissampleis at index number four,
and has a value of 1.4. When the signal is decomposed, this turns into an
impulse represented as:. 1.48[n-4]. After passing through the system, the
resulting output component will be: 1.4h[n-4]. This signal is shown in the
center box of the nine signals in Fig. 6-6. Notice that this is the impulse
response, h[n], multiplied by 1.4, and shifted four samples to the right. Zeros
have been added at samples 0-3 and at samples 8-11 to serve as place holders.
To make this more clear, Fig. 6-6 uses squares to represent the data points that
come from the shifted and scaled impulse response, and diamonds for the added
zeros.

Now examine sample X[8], the last point in the input signal. This sampleis at
index number eight, and has a value of -0.5. As shown in the lower-right graph
of Fig. 6-6, x[8] results in an impulse response that has been shifted to the right
by eight points and multiplied by -0.5. Place holding zeros have been added at
points 0-7. Lastly, examine the effect of points x[0] and X[7]. Both these
samples have a value of zero, and therefore produce output components
consisting of all zeros.

FIGURE 6-5

Example convolution problem. A nine point input signal, convolved with afour point impul se response, results
in atwelve point output signal. Each point intheinput signal contributes a scaled and shifted impul se response
to the output signal. These nine scaled and shifted impul se responses are shown in Fig. 6-6.

Chapter 6- Convolution 113

3 — 3 3
P 2
T Ak A R 17--
R R = R R
A TR 0 0 P 0 o dedede] adedbd il
oo contribution o ibuti 2 contribution

] from x[0] h[n-q co0 T from x[1] hin-1] ~ v | from x[2] h(n-2
-3 — 11 B I s e S S R e B I e e S S L e

0 6 7 8 9 1011 012345678 91011 0123456 7891011
3 - 3 - 3

5 2ot
5 1yt "

IS NP AP O IR SR D SP O S A DR NI
D e B R] B R R L] - PR Attt
_27 contribution _27 contribution _27 contribution

CTTTTTTTTTT] from x[(3) hin-§ TrTTTTT T from (4] hin-4 YT from x[8) hin-g
-3 S S S S B S -3 S B B S S S S -3 S e S S S S S

0123456 78 91011 012345678 91011 0123456 7891011
3 - 3 - 3
R 5
R T A f o B T
044444 ¢t b oot HEREY 00 oot e oo WA
A e S -4
oLt .| contribution . .| contribution 2. contribution

DT from (6] hin-g] : "] from x[7] h[n-7] [Tt from x(gl hn-g
-3 S e B S B S -3 S B S S S S S -3 S S S S B S S

0123456 78 91011 0123456 78 91011 012345678 91011

FIGURE 6-6

Output signal components for the convolutionin Fig. 6-5. In these signals, each point that results from a scaled
and shifted impulse response is represented by a square marker. The remaining data points, represented by
diamonds, are zeros that have been added as place holders.

In this example, X[n] is a nine point signal and h[n] is afour point signal. In
our next example, shown in Fig. 6-7, we will reverse the situation by making x[n]
afour point signal, and h[n] anine point signal. The same two waveforms are
used, they are just swapped. As shown by the output signal components, the
four samplesin x[n] result in four shifted and scaled versions of the nine point
impulse response. Just as before, leading and trailing zeros are added as place
holders.

But wait just one moment! The output signal in Fig. 6-7 is identical to the
output signal in Fig. 6-5. Thisisn't a mistake, but an important property.
Convolution is commutative: a[n]*b[n] = b[n]*a[n]. The mathematics does
not care which is the input signal and which is the impulse response, only
that two signals are convolved with each other. Although the mathematics
may allow it, exchanging the two signals has no physical meaning in system
theory. The input signal and impulse response are two totally different
things and exchanging them doesn't make sense. What the commutative
property provides is a mathematical tool for manipulating equations to
achieve various results.

114

The Scientist and Engineer's Guide to Digital Sgnal Processing

A program for calculating convolutions using the input side algorithm is shown
in Table 6-1. Remember, the programs in this book are meant to convey
algorithms in the simplest form, even at the expense of good programming
style. For instance, all of the input and output is handled in mythical
subroutines (lines 160 and 280), meaning we do not define how these
operations are conducted. Do not skip over these programs; they are a key
part of the material and you need to understand them in detail.

The program convolves an 81 point input signal, held in array X[], witha 31
point impulse response, held in array H[], resulting in a 111 point output
signal, held in array Y[]. These are the same lengths shown in Figs. 6-3 and
6-4. Notice that the names of these arrays use upper case letters. Thisis a
violation of the naming conventions previously discussed, because upper case
letters are reserved for frequency domain signals. Unfortunately, the simple
BASIC used in this book does not alow lower case variable names. Also
notice that line 240 uses a star for multiplication. Remember, a star in a
program means multiplication, while a star in an equation means convolution.
A star in text (such as documentation or program comments) can mean either.

The mythical subroutine in line 160 places the input signal into X[] and the
impulse response into H[]. Lines 180-200 set all of the values in Y[] to
zero. This is necessary because Y[] is used as an accumulator to sum the
output components as they are calculated. Lines 220 to 260 are the heart of
the program. The FOR statement in line 220 controls a loop that steps through
each point in the input signal, X[]. For each sample in the input signal, an
inner loop (lines 230-250) calculates a scaled and shifted version of the
impulse response, and adds it to the array accumulating the output signal,
Y[]. This nested loop structure (one loop within another loop) is a key
characteristic of convolution programs; become familiar with it.

100 'CONVOLUTION USING THE INPUT SIDE ALGORITHM

110

120 DIM X[80] 'The input signal, 81 points

130 DIM H[30] "The impulse response, 31 points

140 DIM Y[110] '"The output signal, 111 points

150 '

160 GOSUB XXXX 'Mythical subroutinetoload X[] and H[]
170 '

180 FOR 1% =0TO 110 'Zero the output array

190 Y(1%) =0

200 NEXT 1%

210 '

220FOR 1% =0TO 80 'Loop for each point in X[]
230 FORJ% =0TO 30 'Loop for each pointinHJ[]
240 Y[1%+3%] = Y[1%+J%)] + X[1%]*H[I%]

250 NEXT J%

260 NEXT 1% '(remember, * is multiplication in programs!)
270 '

280 GOSUB XXX X 'Mythical subroutineto store Y[]

290 '

300 END

TABLE6-1

Chapter 6- Convolution 115

. contribLIJtioﬁ I
"7 from x[0] h[n-d

_27 contribution _27 contribution
TTrTTrTTr i from x[(2 hin- 3 TOTTTTITTT T] from x[3] h[n-3

T T

i LA L 1
0123456 7891011

1 1 1
01 2345673891011

FIGURE 6-7

A second example of convolution. The waveforms for the input signal and impul se response
are exchanged from the example of Fig. 6-5. Since convolution is commutative, the output
signals for the two examples are identical.

Keeping the indexing straight in line 240 can drive you crazy! Let's say we
are halfway through the execution of this program, so that we have just
begun action on sample X[40], i.e., 1% = 40. The inner loop runs through
each point in the impulse response doing three things. First, the impulse
response is scaled by multiplying it by the value of the input sample. If this
were the only action taken by the inner loop, line 240 could be written,
Y [J%] = X[40]*¥H[J%]. Second, the scaled impulse is shifted 40 samples
to the right by adding this number to the index used in the output signal.
This second action would change line 240 to: Y[40+J%] = X[40]H[J%].
Third, Y[] must accumulate (synthesize) all the signals resulting from each
sample in the input signal. Therefore, the new information must be added
to the information that is already in the array. This results in the final
command: Y[40+J%] = Y[40+J%)] + X[40]*H[J%]. Study this carefully;
it is very confusing, but very important.

116 The Scientist and Engineer's Guide to Digital Sgnal Processing

The Output Side Algorithm

The first viewpoint of convolution analyzes how each sample in the input
signal affects many samples in the output signal. In this second viewpoint,
we reverse this by looking at individual samples in the output signal, and
finding the contributing points from the input. Thisisimportant from both
mathematical and practical standpoints. Suppose that we are given some
input signal and impulse response, and want to find the convolution of the
two. The most straightforward method would be to write a program that
loops through the output signal, calculating one sample on each loop cycle.
Likewise, equations are written in the form: y[n] = some combination of
other variables. That is, sample n in the output signal is equal to some
combination of the many values in the input signal and impulse response.
This requires a knowledge of how each sample in the output signal can be
calculated independently of all other samples in the output signal. The
output side algorithm provides this information.

Let's look at an example of how a single point in the output signal is influenced
by severa points from the input. The example point we will useis y[6] in Fig.
6-5. This point is equal to the sum of all the sixth points in the nine output
components, shown in Fig. 6-6. Now, look closely at these nine output
components and identify which can affect y[6]. That is, find which of these
nine signals contains a nonzero sample at the sixth position. Five of the output
components only have added zeros (the diamond markers) at the sixth sample,
and can therefore be ignored. Only four of the output components are capable
of having a nonzero value in the sixth position. These are the output
components generated from the input samples: X[3], X[4], X[5], and x[6]. By
adding the sixth sample from each of these output components, y[6] is
determined as. y[6] = X[3]h[3] + x[4]h[2] + X[5]h[1] + x[6]h[O]. That is, four
samples from the input signal are multiplied by the four samples in the impulse
response, and the products added.

Figure 6-8 illustrates the output side algorithm as a convolution machine, a
flow diagram of how convolution occurs. Think of the input signal, x[n], and
the output signal, y[n], as fixed on the page. The convolution machine,
everything inside the dashed box, is free to move left and right as needed. The
convolution machine is positioned so that its output is aligned with the output
sample being calculated. Four samples from the input signal fall into the inputs
of the convolution machine. These values are multiplied by the indicated
samples in the impulse response, and the products are added. This produces the
value for the output signal, which drops into its proper place. For example,
y[6] is shown being calculated from the four input samples:
X[3], X[4], X[5], and X[6].

To calculate y[7], the convolution machine moves one sample to the right. This
results in another four samples entering the machine, x[4] through x[7], and the
value for y[7] dropping into the proper place. This processis repeated for all
points in the output signal needing to be calculated.

Chapter 6- Convolution 117

- hin
(flipped)

y

FIGURE 6-8
The convolution machine. Thisisaflow diagram showing how each samplein the output signal
isinfluenced by the input signal and impulse response. See the text for details.

The arrangement of the impulse response inside the convolution machine is
very important. The impulse response is flipped left-for-right. This places
sample number zero on the right, and increasingly positive sample numbers
running to the left. Compare this to the normal impulse response in Fig. 6-5
to understand the geometry of this flip. Why is this flip needed? It simply
falls out of the mathematics. The impulse response describes how each point
in the input signal affects the output signal. This results in each point in the
output signal being affected by points in the input signal weighted by a flipped
impulse response.

118

h[n]
(flipped)

The Scientist and Engineer's Guide to Digital Sgnal Processing

h[n]

(flipped)

y[n] o»

‘ a. Set to calculate y[0] ‘ ‘ b. Set to calculate y[3]

FIGURE 6-9
The convolution machinein action. Figures (a) through (d) show the convolution machine
set to calculate four different output signal samples, y[0], y[3], y[8], and y[11].

Figure 6-9 shows the convolution machine being used to calculate several
samples in the output signal. This diagram also illustrates a real nuisance in
convolution. In (a), the convolution machine is located fully to the left with its
output aimed at y[0]. In this position, it is trying to receive input from
samples: X[- 3], X[- 2], X[- 1], and x[0]. The problem is, three of these samples:
X[-3], X[-2], and X[-1], do not exist! This same dilemma arisesin (d), where
the convolution machine tries to accept samples to the right of the defined input
signal, points x[9], x[10], and x[11].

One way to handle this problem is by inventing the nonexistent samples. This
involves adding samples to the ends of the input signal, with each of the added
samples having avalue of zero. Thisis called padding the signal with zeros.
Instead of trying to access a nonexistent value, the convolution machine
receives a sample that has a value of zero. Since this zero is eliminated
during the multiplication, the result is mathematically the same as ignoring the
nonexistent inputs.

Chapter 6- Convolution 119

3 - 3

x[n] X[n]

2

1

0
14

2

3

O Y]
Ly R

T - T i
012345678 012345678

. hin]
| (flipped)

—> b

; (flipped)

__

y[n] y[n] i»

‘ c. Set to calculate y[8] ‘ d. Set to calculate y[11]

Figure 6-9 (continued)

The important part is that the far left and far right samples in the output signal
are based on incomplete information. In DSP jargon, the impulse response
is not fully immersed in the input signal. If the impulse response is M
points in length, the first and last M- 1 samples in the output signal are based
on less information than the samples between. This is analogous to an
electronic circuit requiring a certain amount of time to stabilize after the power
is applied. The difference is that this transient is easy to ignore in electronics,
but very prominent in DSP.

Figure 6-10 shows an example of the trouble these end effects can cause. The
input signal is a sine wave plus a DC component. The desire is to remove the
DC part of the signal, while leaving the sine wave intact. This cals for a high-
pass filter, such as the impulse response shown in the figure. The problem is,
the first and last 30 points are amess! The shape of these end regions can be
understood by imagining the input signal padded with 30 zeros on the left side,
samples x[-1] through x[-30], and 30 zeros on the right, samples x[81]

through x[110]. The output signal can then be viewed as a filtered version
of this longer waveform. These "end effect” problems are widespread in

120

EQUATION 6-1

The Scientist and Engineer's Guide to Digital Sgnal Processing

DSP. As ageneral rule, expect that the beginning and ending samples in
processed signals will be quite useless.

Now the math. Using the convolution machine as a guideline, we can write the
standard equation for convolution. If x[n] isan N point signal running from O
to N-1, and h[n] isan M point signal running from 0 to M-1, the convolution
of the two: y[n] = x[n] * h[n], is an N+M-1 point signal running from 0 to
N+M-2, given by:

The convolution summation. This is the

the shorthand: y[n] = x[n] * h[n]. In this
equation, h[n] is an M point signal with
indexes running from 0 to M-1.

M-1
formal definition of convolution, written in y[i] _ Z h[]] X[i _j]
j=0

This equation is called the convolution sum. It allows each point in the
output signal to be calculated independently of all other points in the output
signal. Theindex, i, determines which sample in the output signal is being
calculated, and therefore corresponds to the left-right position of the
convolution machine. In computer programs performing convolution, aloop
makes this index run through each sample in the output signal. To
calculate one of the output samples, the index, j, is used inside of the
convolution machine. As j runs through 0 to M-1, each sample in the
impulse response, h[j], is multiplied by the proper sample from the input
signal, x[i-j]. All these products are added to produce the output sample
being calculated. Study Eq. 6-1 until you fully understand how it is
implemented by the convolution machine. Much of DSP is based on this
equation. (Don't be confused by the nin y[n] = x[n] * h[n]. Thisis merely
a place holder to indicate that some variable is the index into the array.
Sometimes the equations are written: y[] = x[] h[], just to avoid having
to bring in a meaningless symbol).

Table 6-2 shows a program for performing convolutions using the output side
algorithm, a direct use of Eq. 6-1. This program produces the same output
signal as the program for the input side algorithm, shown previously in Table
6-1. Notice the main difference between these two programs: the input side
algorithm loops through each sample in the input signal (line 220 of Table 6-
1), while the output side algorithm loops through each sample in the output
signal (line 180 of Table 6-2).

Here is a detailed operation of this program. The FOR-NEXT loop in lines 180
to 250 steps through each sample in the output signal, using 1% as the index.
For each of these values, an inner loop, composed of lines 200 to 230,
calculates the value of the output sample, Y[1%]. The value of Y[1%] is set
to zero in line 190, allowing it to accumulate the products inside of the
convolution machine. The FOR-NEXT loop in lines 200 to 240 provide a
direct implementation of Eq. 6-1. The index, J%, steps through each

Input signal

Chapter 6- Convolution

Amplitude

o
|

4

Sample number

FIGURE 6-10

T T T T T T T T T
0 10 20 30 40 50 60 70 &0 0 10 20 30

Sample number

121

Impul se response Output signal
1. 4
Lo unusable : usable : unusable
@ 10—+~ d--- L e R D
g E A A A A
=054 --aa o R T O . A= B a .
* £ g ™ v{ WOW W 1, W
< oo Lo Jmmm e Qommmen e
]]
-0.. -4 T T

o

T T T T T T T T T
0 20 30 40 50 60 70 80 90 100 110
Sample number

End effects in convolution. When an input signal is convolved with an M point impul se response,
the first and last M-1 points in the output signal may not be usable. In this example, the impulse
response is a high-pass filter used to remove the DC component from the input signal.

sample in the impulse response. Line 230 provides the multiplication of each
sample in the impulse response, H[J%)], with the appropriate sample from the
input signal, X[1%-J%)], and adds the result to the accumulator.

In line 230, the sample taken from the input signal is: X[1%-J%]. Lines 210
and 220 prevent this from being outside the defined array, X[0] to X[80]. In
other words, this program handles undefined samples in the input signal by
ignoring them. Another alternative would be to define the input signal's array
from X[-30] to X[110], allowing 30 zeros to be padded on each side of the true
data. Asathird alternative, the FOR-NEXT loop in line 180 could be changed
to run from 30 to 80, rather than 0 to 110. That is, the program would only
calculate the samples in the output signal where the impulse response is fully
immersed in the input signal. The important thing is that you must use one of
these three techniques. If you don't, the program will crash when it tries to read
the out-of-bounds data.

100 'CONVOLUTION USING THE OUTPUT SIDE ALGORITHM
110 '

120 DIM X[80]
130 DIM H[30]
140 DIM Y[110]

'The input signal, 81 points
"The impulse response, 31 points
"The output signal, 111 points

150

160 GOSUB X XXX 'Mythical subroutineto load X[] and HJ]
170 '

180 FOR 1% =0TO 110 'Loop for each pointin Y[]

190 Y[I%] =0 'Zero the sample in the output array

200 FORJ%=0TO 30 'Loop for each point in H[]

210 IF(1%-3%<0) THEN GOTO 240

220 IF (1%-J% > 80) THEN GOTO 240

230 Y(1%) = Y (1%) + H(3%) * X(1%-J%)
240 NEXT J%
250 NEXT 1%

260

270 GOSUB X XXX
280

290 END

'Mythical subroutine to store Y[]

TABLE6-2

122 The Scientist and Engineer's Guide to Digital Sgnal Processing

The Sum of Weighted Inputs

The characteristics of alinear system are completely described by its impulse
response. Thisis the basis of the input side algorithm: each point in the input
signal contributes a scaled and shifted version of the impulse response to the
output signal. The mathematical consequences of this lead to the output side
algorithm: each point in the output signal receives a contribution from many
points in the input signal, multiplied by a flipped impulse response. While this
isal true, it doesn't provide the full story on why convolution is important in
signal processing.

Look back at the convolution machine in Fig. 6-8, and ignore that the signal
inside the dotted box is an impulse response. Think of it as a set of weighing
coefficients that happen to be embedded in the flow diagram. In this view,
each sample in the output signal is equal to a sum of weighted inputs. Each
sample in the output is influenced by a region of samples in the input signal,
as determined by what the weighing coefficients are chosen to be. For
example, imagine there are ten weighing coefficients, each with a value of one-
tenth. This makes each sample in the output signal the average of ten samples
from the input.

Taking this further, the weighing coefficients do not need to be restricted to the
left side of the output sample being calculated. For instance, Fig. 6-8 shows y[6]
being calculated from: X[3], X[4], X[5], and x[6]. Viewing the convolution
machine as a sum of weighted inputs, the weighing coefficients could be chosen
symmetrically around the output sample. For example, y[6] might receive
contributions from: x[4], x[5], x[6], X[7], and x[8]. Using the same indexing
notation as in Fig. 6-8, the weighing coefficients for these five inputs would be
held in: h[2], h[1], h[Q], h[-1], and h[-2]. In other words, the impulse
response that corresponds to our selection of symmetrical weighing coefficients
requires the use of negative indexes. We will return to this in the next chapter.

Mathematically, there is only one concept here: convolution as defined by Eq.
6-1. However, science and engineering problems approach this single concept
from two distinct directions. Sometimes you will want to think of a system in
terms of what its impulse response looks like. Other times you will understand
the system as a set of weighing coefficients. Y ou need to become familiar with
both views, and how to toggle between them.

CHAPTER

v

Properties of Convolution

A linear system's characteristics are completely specified by the system's impulse response, as
governed by the mathematics of convolution. This is the basis of many signal processing
techniques. For example: Digital filters are created by designing an appropriate impulse
response. Enemy aircraft are detected with radar by analyzing a measured impulse response.
Echo suppression in long distance telephone calls is accomplished by creating an impulse
response that counteracts the impulse response of the reverberation. The list goes on and on.
This chapter expands on the properties and usage of convolution in several areas. First, several
common impulse responses are discussed. Second, methods are presented for dealing with
cascade and parallel combinations of linear systems. Third, the technique of correlation is
introduced. Fourth, a nasty problem with convolution is examined, the computation time can be
unacceptably long using conventional algorithms and computers.

Common Impulse Responses

Delta Function

The simplest impulse response is nothing more that a delta function, as shown
in Fig. 7-1a. That is, an impulse on the input produces an identical impulse on
the output. This means that all signals are passed through the system without
change. Convolving any signal with a delta function results in exactly the
same signal. Mathematically, this is written:

EQUATION 7-1

The delta function is the identity for

convolution. Any signal convolved with X[n] * 6[[’]]
adeltafunction isleft unchanged.

= x[n]

This property makes the delta function the identity for convolution. Thisis
analogous to zero being the identity for addition (a+ 0 = a), and one being the
identity for multiplication (ax1=a). At first glance, this type of system

123

124

The Scientist and Engineer's Guide to Digital Sgnal Processing

may seem trivial and uninteresting. Not so! Such systems are the ideal for
data storage, communication and measurement. Much of DSP is concerned
with passing information through systems without change or degradation.

Figure 7-1b shows a slight modification to the delta function impulse
response. If the delta function is made larger or smaller in amplitude, the
resulting system is an amplifier or attenuator, respectively. In equation
form, amplification results if k is greater than one, and attenuation results

if kislessthan one;

EQUATION 7-2

A system that amplifies or attenuates has

a scaled delta function for an impulse x[n] * kd[n] = kx[n]
response. In this equation, k determines

the amplification or attenuation.

The impulse response in Fig. 7-1c is a delta function with a shift. This results
in a system that introduces an identical shift between the input and output
signals. This could be described as a signal delay, or a signal advance,
depending on the direction of the shift. Letting the shift be represented by the

parameter, s, this can be written as the equation:

EQUATION 7-3

A relative shift between the input and

output signals corresponds to an impulse XInl * &[n+s] = x[n+s
response that is a shifted delta function. [] [] []
The variable, s, determinesthe amount of

shift in this equation.

Science and engineering are filled with cases where one signal is a shifted
version of another. For example, consider a radio signal transmitted from
a remote space probe, and the corresponding signal received on the earth.
The time it takes the radio wave to propagate over the distance causes a
delay between the transmitted and received signals. In biology, the
electrical signals in adjacent nerve cells are shifted versions of each other,
as determined by the time it takes an action potential to cross the synaptic
junction that connects the two.

Figure 7-1d shows an impulse response composed of a delta function plus a
shifted and scaled delta function. By superposition, the output of this system
is the input signal plus a delayed version of the input signal, i.e., an echo.
Echoes are important in many DSP applications. The addition of echoesis a
key part in making audio recordings sound natural and pleasant. Radar and
sonar analyze echoes to detect aircraft and submarines. Geophysicists use
echoes to find oil. Echoes are also very important in telephone networks,
because you want to avoid them.

Chapter 7- Properties of Convolution

a. ldentity

The delta function is the identity for
convolution. Convolving a signal with
the delta function leaves the signal
unchanged. Thisisthe goal of systems
that transmit or store signals.

b. Amplification & Attenuation
Increasing or decreasing the amplitude
of the delta function forms an impulse
response that amplifies or attenuates,
respectively. Thisimpulse response will
amplify the signal by 1.6.

c. Shift

Shifting the delta function produces a
corresponding shift between the input
and output signals. Depending on the
direction, this can be called a delay or
an advance. This impulse response
delays the signal by four samples.

d. Echo

A delta function plus a shifted and
scaled delta function results in an echo
being added to the original signal. In
this example, the echo is delayed by four
samples and has an amplitude of 60% of
the original signal.

FIGURE 7-1

Amplitude

Amplitude

Amplitude

, Amplitude

Sample number

Simple impul se responses using shifted and scaled delta functions.

Calculus-like Operations

125

Convolution can change discrete signals in ways that resemble integration and
differentiation. Since the terms "derivative" and "integral” specifically refer
to operations on continuous signals, other names are given to their discrete
counterparts. The discrete operation that mimics the first derivative is called
thefirst difference. Likewise, the discrete form of the integral is called the

126

EQUATION 7-4

The Scientist and Engineer's Guide to Digital Sgnal Processing

running sum. It isalso common to hear these operations called the discrete
derivative and the discrete integral, although mathematicians frown when
they hear these informal terms used.

Figure 7-2 shows the impulse responses that implement the first difference and
the running sum. Figure 7-3 shows an example using these operations. In 7-
3a, the original signal is composed of several sections with varying slopes.
Convolving this signal with the first difference impulse response produces the
signal in Fig. 7-3b. Just as with the first derivative, the amplitude of each
point in the first difference signal is equal to the slope at the corresponding
location in the original signal. The running sum is the inverse operation of the
first difference. That is, convolving the signal in (b), with the running sum's
impulse response, produces the signal in (a).

These impulse responses are simple enough that a full convolution program is
usually not needed to implement them. Rather, think of them in the alternative
mode: each sample in the output signal is a sum of weighted samples from the
input. For instance, the first difference can be calculated:

Calculation of the first difference. In _ 1
this relation, x[n] is the original signal, y[n] = x[n] - x[n-1]
and y[n] isthefirst difference.

a. First Difference

This is the discrete version of the first
derivative. Each sample in the output
signal isequal to the difference between
adjacent samplesin the input signal. In
other words, the output signal is the
slope of the input signal.

b. Running Sum

That is, each sample in the output signal is equal to the difference between two
adjacent samples in the input signal. For instance, y[40] = x[40] - x[39]. It
should be mentioned that this is not the only way to define a discrete
derivative. Another common method is to define the slope symmetrically
around the point being examined, such as: y[n] = (x[n+1] - X[n-1])/2.

Amplitude

2 -1 0 1 2 3 4 5 6
Sample number

Therunning sum isthe discrete version 1 .__.__.'__.__.___ﬁ___L

of the integral. Each sample in the
output signal is equal to the sum of all
samples in the input signal to the left.
Note that the impul se response extends
to infinity, arather nasty feature.

, Amplitude
[=}
"
"

2 -1 0 1 2 3 4 5 6
Sample number

FIGURE 7-2
Impul se responses that mimic cal culus operations.

Chapter 7- Properties of Convolution

FIGURE 7-3

Example of calculus-like operations. The
signal in (b) is the first difference of the
signal in (a). Correspondingly, the signal is
(@) is the running sum of the signal in (b).
These processing methods are used with
discrete signals the same as differentiation
and integration are used with continuous
signals.

2.0

Amplitude

| | | |
| | | |
]]]]
I I I I

10

20

30 40 50
Sample number

127

First Running
Difference Sum

0.2 T T T T T T T
I I I
b. First difference :. : :
01+ ——— At — — i~ — |~ — |
° I — I |- I
n
° I I I I I I I
2 |o— I I I HH.' I
3500 b — R R .y .
£ I I I I | | |
I I I I I I I
< I I I I I I I
Y5 N R S Y ISR A S M
| | | | | | |
I I I I I I I
I I I | I I
IS

T T
0 10 20 30 40 50 60 70 80
Sample number

Using this same approach, each sample in the running sum can be calculated
by summing all pointsin the original signal to the left of the sample's location.
For instance, if y[n] isthe running sum of x[n], then sample y[40] is found by
adding samples x[0] through x[40]. Likewise, sample y[41] isfound by adding
samples x[0] through x[41]. Of course, it would be very inefficient to calculate
the running sum in this manner. For example, if y[40] has aready been
calculated, y[41] can be calculated with only a single addition:
y[41] = X[41] +y[40Q]. In equation form:

EQUATION 7-5

Calculation of therunning sum. Inthis
relaion, x[n] istheorigind sgnd, and y[n]
isthe running sum.

y[n] = x[n] +y[n-1]

Relations of this type are called recursion equations or difference
equations. We will revisit them in Chapter 19. For now, the important idea
to understand is that these relations are identical to convolution using the
impulse responses of Fig. 7-2. Table 7-1 provides computer programs that
implement these calculus-like operations.

128 The Scientist and Engineer's Guide to Digital Sgnal Processing

100 'Calculation of the First Difference 100 'Calculation of the running sum
110 Y[0] =0 110 Y[0] = X[0]
110 FOR 1% =1TO N%-1 120 FOR 1% =1TO N%-1
120 Y[1%] = X[19%] - Y[1%-1] 120 Y[1%] = Y[1%-1] + X[1%)]
130 NEXT 1% 130 NEXT 1%
Table7-1

Programs for calculating the first difference and running sum. The original signal is held in X[], and the
processed signal (the first difference or running sum) isheldin Y[]. Both arrays run from 0to N%-1.

L ow-pass and High-pass Filters

The design of digital filtersis covered in detail in later chapters. For now, be
satisfied to understand the general shape of low-pass and high-pass filter
kernels (another name for a filter's impulse response). Figure 7-4 shows
several common low-pass filter kernels. In general, low-pass filter kernels are
composed of a group of adjacent positive points. This results in each sample
in the output signal being a weighted average of many adjacent points from the
input signal. This averaging smoothes the signal, thereby removing high-
frequency components. As shown by the sinc function in (c), some low-pass
filter kernels include a few negative valued samples in the tails. Just as in
analog electronics, digital low-pass filters are used for noise reduction, signal
separation, wave shaping, €tc.

0.4 . . . : : : : 0.4 ; ; ; : : : :

o b Squaepdse | | | ||
03— R T R R R 03— R T R R B

’ I R ’ I R

I I I I I I I I I I I I I I

® | | | ' | | | ® | | | | | | |
e s S A O B A e S R A S R

g L g o veebees |
S e e e A aletatt et Bttt Bt G U I R s e B

I I I I .* I I I I I I I I I

I I I I I I I I I I I I I

I I I | L i I I I | | I I
0.0 * * * JI_____JI.____$!!!.IIIIII-I 0.0 * * * JI-————JI-———I*IIII*IIII—I

| | | | | | | | | | | | | |

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

-0.1 R S S B B -0.1 R S S B B
20 -5 -0 5 0 5 10 15 20 20 -5 -0 5 0 5 10 15 20

Sample number Sample number

0.4 —— : : : : :

FIGURE 7-4 .
Typical low-pass filter kernels. Low-pass 0.3b———-]

filter kernels are formed from a group of i i i i | | |

adjacent positive points that provide an o i i i i i i i
averaging (smoothing) of the signal. As 8029 ---- R it Sniiet il St S S

discussed in later chapters, each of thesefilter = i | Pom o ow : :
kernels is best for a particular purpose. The LS N T NN SO U SR S

exponential, (a), is the simplest recursive : : . : :

filter. The rectangular pulse, (b), is best at T i i i R
reducing noise while maintaining edge R e et L B

sharpness. Thesinc functionin (c), acurve of : PR : P :

the form: sn(x)/(x), is used to separate one 01]]]]]]]
band of frequencies from another. 20 -15 -10 -5 0 5 10 15 20

Sample number

Amplitude

Chapter 7- Properties of Convolution 129

L5 . . . : : : : 1.50 ; ; ; : : : :

a. Exponential ! ! ! ! b. Squarepulse | ! ! ! !

i i i | | | | i i i | | | |

I I I I I I I I I I I I I I
1.07----- T e e Bl Ay I B 1.00—F---- e i R R

| | | ‘ | | | ® | | | P | |

| | | i | | i E i i | | | i i

I I I I I I I = I I I I I I I
0.51---- i e N St A S 0.504---- R B sl SRS B e

| | | | | | | E | | | | | | |

I I I I I I I < I I I I I I I

N A A e I R e

0.0 » » » to———t - ppuEEEEEEEEEE 0.00 - - - —————— - »

| | | L | | | | LLLLIL LLL Y |

| | | | | | | | | | | | | |

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

-0.5 —t 0.50 ettt
20 -5 -0 5 0 5 10 15 20 20 15 -0 5 0 5 10 15 20

Sample number Sample number

1.50 —— : : : : :

I R

FIGURE 7-5 oL
Typical high-pass filter kernels. These are R e AN it T i

formed by subtracting the corresponding low- o i A i

. . . o I I I I I I I

pass filter kernels in Fig. 7-4 from a delta Ei : : : : : : :
function. The distinguishing characteristic of B 0.50----~ e Eiate st mt it = === - === H-- -

high-pass filter kernels is a spike surrounded g i i i i i i i

by many adjacent negative samples. : : : : : : :
0.00 4|“|.:|m.n:l-'—' : . —i— - —.—.-+l-'—'l-:n...|+.|||-|

| | L I | |

I I I I I I I

I I I I I I I

I I I I I I I

0.50 t t t t t t t
20 -5 -0 5 0 5 10 15 20

Sample number

The cutoff frequency of the filter is changed by making filter kernel wider or
narrower. If alow-pass filter has a gain of one at DC (zero frequency), then
the sum of all of the points in the impulse response must be equal to one. As
illustrated in (a) and (c), some filter kernels theoretically extend to infinity
without dropping to a value of zero. In actual practice, the tails are truncated
after a certain number of samples, allowing it to be represented by a finite
number of points. How else could it be stored in a computer?

Figure 7-5 shows three common high-pass filter kernels, derived from the
corresponding low-pass filter kernels in Fig. 7-4. This is a common strategy
in filter design: first devise alow-pass filter and then transform it to what you
need, high-pass, band-pass, band-reject, etc. To understand the low-pass to
high-pass transform, remember that a delta function impulse response passes
the entire signal, while a low-pass impulse response passes only the low-
frequency components. By superposition, a filter kernel consisting of a delta
function minus the low-pass filter kernel will pass the entire signal minus the
low-frequency components. A high-passfilter isborn! As shown in Fig. 7-5,
the delta function is usually added at the center of symmetry, or sample zero
if the filter kernel is not symmetrical. High-pass filters have zero gain at DC
(zero frequency), achieved by making the sum of all the points in the filter
kernel equal to zero.

130

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing

04 N N S 04 N S N
a Causa | | : ! ! : b. Causa | | | | | |
I I I I I I I I I I
0.34+---- S e e e it 0.34+---- S e e e it
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
| | | + | | | o | | | | | | |
0.2----- T E e e e S 0.2 ---- T E e e e
| | | i | i = i i i i | |
| | | L | | g | | | P | |
L R R e Bt B Rty R B e Rt Bt e N it
I I I I .* I I I I I I I I I
I I I I n I I I I I I m! I I
I I I I [| I I I I I I I I I
I I I I I .IE.. I I I I I | I am I
0.0 * * * e L TTEET] 0.0 * * ¥ et el it PP Y
1 1 1 1 1 1 1 1 1 1 1 [T | 1
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
-0.1 A -0.1 Attt
20 <15 <10 -5 0 5 10 15 20 20 <15 <10 -5 0 5 10 15 20
Sample number Sample number
0.4 . | . : : : :
¢. Noncausal ! ! ! !
I I I I
FIGURE 7-6) _ 0.34+---- S e e e it
Examples of causal signals. An impulse i i i i | | |
. . . .] I I I I I I
response, or any signal, is said to be causal if) ! ! ! ! ! ! !
_ T 024+——ov | I NN [N I (DR SUEUN SN
all negative numbered samples have a val ue of 3 r r [— T T
zero. Three examples are shown here. Any = i | o ow i |
. . ..]] I I I I |
noncausal signal with a finite number of E)% £ NS SR I SO USRS SR SN S
points can be turned into a causal signal : : . : :
simply by shifting. i i i i i | |
0&}1[..!*15!‘*————%————+————$————*.!!!fllliq
1 T L 1 L 1
I I I I I I I
I I I I I I I
I I I I I I I
-0.1 Attt
20 <15 <10 -5 0 5 10 15 20

Sample number

Causal and Noncausal Signals

Imagine a simple analog electronic circuit. If you apply a short pulse to the
input, you will see a response on the output. This is the kind of cause and
effect that our universe is based on. One thing we definitely know: any effect
must happen after the cause. This is a basic characteristic of what we call
time. Now compare this to a DSP system that changes an input signal into an
output signal, both stored in arrays in a computer. If this mimics areal world
system, it must follow the same principle of causality as the real world does.
For example, the value at sample number eight in the input signal can only
affect sample number eight or greater in the output signal. Systems that
operate in this manner are said to be causal. Of course, digital processing
doesn't necessarily have to function thisway. Since both the input and output
signals are arrays of numbers stored in a computer, any of the input signal
values can affect any of the output signal values.

As shown by the examples in Fig. 7-6, the impulse response of a causal system
must have a value of zero for all negative numbered samples. Think of this
from the input side view of convolution. To be causal, an impulse in the input
signal at sample number n must only affect those points in the output signal
with a sample number of n or greater. In common usage, the term causal is
applied to any signal where all the negative numbered samples have a value of
zero, whether it is an impulse response or not.

Amplitude

Chapter 7- Properties of Convolution 131

0.4 . . . : : : : 0.4 —— ; : : : :

. b. Linearphase | | | | |

I I I I I I I I
0.34---- A S St ST 0.34---- A S St ST

i i i i i i i i i i i i i i

i i i i i i i @ i i i i i i i
0.2---- e e B e 8 02p---- T e e e e N

I I I LN I I I = I I I I LN I I

i i Pomom i i = i i i P i

i i i i i i i E i i i i i i i
0.1F-———p----p-—— BB oo O e e i Smtninial da Lot Rt Lok Bttt Sl

I I I I I I I I I I I I I I

P L A N R T Y
0.O4I-l.-.-l-|‘.—.—.—l*————I!————1—————%————*.!!!.'.--.4 0A04I-I-lll*-llll|‘.—.—!l*————%————1-————%————*.!!—.“

i | Smat i Ll i i i |t i Ll

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

0.1 —t 0.1 ettt
20 -5 -0 5 0 5 10 15 20 2 -5 -0 5 0 5 10 15 20

Sample number Sample number

04 N S S S S R

FIGURE 7-7 o) c. Nonlinear phase | | : :

Examples of phase linearity. Signalsthat have ; ; ; ; ; ; ;
a left-right symmetry are said to be linear 037 ---- N A

phase. If the axis of symmetry occurs at i i i | | | |
sample number zero, they are additionally said B 024 SR NS DR SR SR NN A

to be zero phase. Any linear phase signal can = | i i i | |

be transformed into azero phase signal simply g ! i i P i i
by shifting. Signals that do not have a |eft- < 0'1""":""‘:"‘":‘“":‘"'il""':""': """

right symmetry are said to be nonlinear i i | | "a 1 i
phase. Do not confuse these terms with the 0.0 ; ; ; :L____L__f#!!!n:.......

linear inlinear systems. They are completely : : : : : : :

different concepts. ol | i i i i i i
"2 45 o 5 0 5 10 15 20

Sample number

Zero Phase, Linear Phase, and Nonlinear Phase

As shown in Fig. 7-7, a signal is said to be zero phase if it has left-right
symmetry around sample number zero. A signal is said to be linear phase if
it has left-right symmetry, but around some point other than zero. This means
that any linear phase signal can be changed into a zero phase signal simply by
shifting left or right. Lastly, asignal is said to be nonlinear phase if it does
not have left-right symmetry.

You are probably thinking that these names don't seem to follow from their
definitions. What does phase have to do with symmetry? The answer liesin
the frequency spectrum, and will be discussed in more detail in later chapters.
Briefly, the frequency spectrum of any signal is composed of two parts, the
magnitude and the phase. The frequency spectrum of a signal that is
symmetrical around zero has a phase that is zero. Likewise, the frequency
spectrum of asignal that is symmetrical around some nonzero point has a phase
that is a straight line, i.e., alinear phase. Lastly, the frequency spectrum of a
signal that is not symmetrical has a phase that is not a straight line, i.e., it has
a nonlinear phase.

A specia note about the potentially confusing terms: linear and nonlinear
phase. What does this have to do the concept of system linearity discussed in
previous chapters? Absolutely nothing! System linearity is the broad concept

132 The Scientist and Engineer's Guide to Digital Sgnal Processing

that nearly all of DSP is based on (superposition, homogeneity, additivity, etc).
Linear and nonlinear phase mean that the phase is, or is not, a straight line.
In fact, a system must be linear even to say that the phase is zero, linear, or
nonlinear.

Mathematical Properties

Commutative Property
The commutative property for convolution is expressed in mathematical form:

EQUATION 7-6

The commutative property of convolution. _

This states that the order in which signals a[n] = b[n] = b[n]* a[n]
are convolved can be exchanged.

In words, the order in which two signals are convolved makes no difference;
the results are identical. As shown in Fig. 7-8, this has a strange meaning for
system theory. In any linear system, the input signal and the system's impulse
response can be exchanged without changing the output signal. This is
interesting, but usually doesn't have any physical meaning. The input signal
and the impulse response are very different things. Just because the
mathematics allows you to do something, doesn't mean that it makes sense to
do it. For example, suppose you make: $10/hour x 2,000 hours/year =
$20,000/year. The commutative property for multiplication provides that you
can make the same annual salary by only working 10 hours/year at $2000/hour.
Let's see you convince your boss that this is meaningful! In spite of this, the
commutative property sees great use in DSP for manipulating equations, just
as in ordinary algebra.

IF

a[n] — b[n] |—— yIn]

THEN

b[n] ——{ a[n] |——> yIn]

FIGURE 7-8

The commutative property in system theory. The commutative property of convolution allows the
input signal and the impulse response of a system to be exchanged without changing the output.
Whileinteresting, thisusually has no physical significance. (A signal appearing inside of abox, such
as b[n] and a[n] in thisfigure, represent the impul se response of the system).

Chapter 7- Properties of Convolution 133

Associative Property
Is it possible to convolve three or more signals? The answer is yes, and the
associative property describes how: convolve two of the signals to produce an
intermediate signal, then convolve the intermediate signal with the third signal.
The associative property provides that the order of the convolutions doesn't
matter. As an equation:

EQUATION 7-7

The associative property of con- (a[n] * b[n]) * c[n] = a[n] * (b[n] *c[n])
volution describes how three or

more signals are convolved.

The associative property is used in system theory to describe how cascaded
systems behave. Asshown in Fig. 7-9, two or more systems are said to be in
a cascade if the output of one system is used as the input for the next system.
From the associative property, the order of the systems can be rearranged
without changing the overall response of the cascade. Further, any number of
cascaded systems can be replaced with a single system. The impulse response
of the replacement system is found by convolving the impulse responses of all
of the original systems.

IF

Xx[n] ———{h,[n] > h,[n] ——> y[n]
THEN

x[n] ——{ hy[n] > h[n] ——> y[n]
ALSO

x[n] ——> hy[n] * hy[n] ———> y[n]

FIGURE 7-9

The associative property in system theory. The associative property provides two important
characteristics of cascaded linear systems. First, the order of the systems can be rearranged
without changing the overall operation of the cascade. Second, two or more systemsin a cascade
can bereplaced by asingle system. The impulse response of the replacement system isfound by
convolving the impul se responses of the stages being replaced.

134 The Scientist and Engineer's Guide to Digital Sgnal Processing

Distributive Property
In equation form, the distributive property is written:

EQUATION 7-8

The distributive property of con- a[n]xb[n] + a[n]xc[n] = a[n] * (b[n] +c[n])
volution describes how parallel

systems are analyzed.
The distributive property describes the operation of parallel systems with
added outputs. As shown in Fig. 7-10, two or more systems can share the
same input, x[n], and have their outputs added to produce y[n]. The
distributive property allows this combination of systems to be replaced with a
single system, having an impulse response equal to the sum of the impulse
responses of the original systems.
I
> h[n]
x[n] yin]
> hy[n]
THEN
X[n] ——> hy[n] + hy[n] ——> y[n]
FIGURE 7-10

The distributive property in system theory. The distributive property shows that parallel
systems with added outputs can be replaced with a single system. The impulse response

of the replacement system is equal to the sum of the impulse responses of all the original
systems.

Transference between the Input and Output

Rather than being a formal mathematical property, this is a way of thinking
about a common situation in signal processing. As illustrated in Fig. 7-11,
imagine a linear system receiving an input signal, x[n], and generating an
output signal, y[n]. Now suppose that the input signal is changed in some
linear way, resulting in a new input signal, which we will call xTn]. This
results in a new output signal, yIn]. The question is, how does the change in

Chapter 7- Properties of Convolution 135

the input signal relate to the change in the output signal? The answer is:
the output signal is changed in exactly the same linear way that the input
signal was changed. For example, if the input signal is amplified by a
factor of two, the output signal will also be amplified by a factor of two.
If the derivative is taken of the input signal, the derivative will also be
taken of the output signal. If the input is filtered in some way, the output
will be filtered in an identical manner. This can easily be proven by using
the associative property.

|-
x[n] —> h[n] |——> yIn]
dis
THEN
X [n]—> hin] |—> Y'[n]
FIGURE 7-11

Tranference between the input and output. Thisis away of thinking about a common
situation in signal processing. A linear change made to theinput signal resultsin the same
linear change being made to the output signal.

The Central Limit Theorem

The Central Limit Theorem is an important tool in probability theory because
it mathematically explains why the Gaussian probability distribution is
observed so commonly in nature. For example: the amplitude of thermal noise
in electronic circuits follows a Gaussian distribution; the cross-sectional
intensity of alaser beam is Gaussian; even the pattern of holes around a dart
board bull's eye is Gaussian. In its simplest form, the Central Limit Theorem
states that a Gaussian distribution results when the observed variable is the
sum of many random processes. Even if the component processes do not have
a Gaussian distribution, the sum of them will.

The Central Limit Theorem has an interesting implication for convolution. If
a pulse-like signal is convolved with itself many times, a Gaussian is
produced. Figure 7-12 shows an example of this. The signal in (a) is an

136 The Scientist and Engineer's Guide to Digital Sgnal Processing
S I S S R S R R H B BOr——7 7 7 T T T 1
BCIRE oomednl || 1L L
o Lo el o S
E A1 A A 5 e VS
- s ey, s s - s At A e
< AN O LI S R I A L
e e e T e
oo TS S S N —
-25 20 -15 -10 -5 0 5 10 15 20 25 25 20 -15 -10 5 0 5 10 15 20 25
Sample number Sample number
e R S S S S SN A R N
‘c. X[n]* X[n] * x[n] * x[n] i i i
FIGURE 7-12 S
Example of convolving a pulse waveform 1000 —-—-—-=—F-——F-——g [R N
with itself. The Central Limit Theorem shows o i oo
that a Gaussian waveform is produced when s : L
an arbitrary shaped pulse is convolved with B 500+---F---F---F R R ami et
itself many times. Figure (a) is an example g i A S
pulse. In (b), the pulse is convolved with : L T
itself once, and begins to appear smooth and 0 punnnt™ 1 Tamy
regular. In (c), the pulse is convolved with A
itself three times, and closely approximates a e e
Gaussian. N D S ——
-25 20 -15 -10 -5 0 5 10 15 20 25
Sample number
irregular pulse, purposely chosen to be very unlike a Gaussian. Figure (b)
shows the result of convolving this signal with itself one time. Figure (c)
shows the result of convolving this signal with itself three times. Even with
only three convolutions, the waveform looks very much like a Gaussian. In
mathematics jargon, the procedure converges to a Gaussian very quickly. The
width of the resulting Gaussian (i.e., o in Eq. 2-7 or 2-8) is equal to the width
of the original pulse (expressed as ¢ in Eq. 2-7) multiplied by the square root
of the number of convolutions.
Correlation

The concept of correlation can best be presented with an example. Figure 7-13
shows the key elements of a radar system. A specialy designed antenna
transmits a short burst of radio wave energy in a selected direction. If the
propagating wave strikes an object, such as the helicopter in this illustration,
a small fraction of the energy is reflected back toward a radio receiver located
near the transmitter. The transmitted pulse is a specific shape that we have
selected, such as the triangle shown in this example. The received signal will
consist of two parts; (1) a shifted and scaled version of the transmitted pulse,
and (2) random noise, resulting from interfering radio waves, thermal noisein
the electronics, etc. Since radio signals travel at a known rate, the speed of

Chapter 7- Properties of Convolution 137

light, the shift between the transmitted and received pulse is a direct measure
of the distance to the object being detected. This is the problem: given a
signal of some known shape, what is the best way to determine where (or if)
the signal occurs in another signal. Correlation is the answer.

Correlation is a mathematical operation that is very similar to convolution.
Just as with convolution, correlation uses two signals to produce a third
signal. This third signal is called the cross-correlation of the two input
signals. If a signal is correlated with itself, the resulting signal is instead
called the autocorrelation. The convolution machine was presented in the
last chapter to show how convolution is performed. Figure 7-14 is a similar

FIGURE 7-13
Key elements of aradar system. Like other
echo location systems, radar transmits a

short pulse of energy that is reflected by
objects being examined. This makes the
received waveform ashifted version of the @

transmitted waveform, plus random noise.
Detection of aknown waveform in anoisy
signal isthe fundamental problem in echo
location. The answer to this problem is
correlation.

TRANSMIT RECEIVE

200

100

Transmitted amplitude

-100

-10 0 10 20 30 40 50 60 70 80
Sample number (or time)

0.2

0.1

[K" D QS ELITCPITEOPRTEOPRTTERPPRERRRE :
0 A 'l-vi TH-I'HHI - -

-0.1

X.

Received amplitude

-10 0 10 20 30 40 50 60 70 80
Sample number (or time)

138

The Scientist and Engineer's Guide to Digital Sgnal Processing

illustration of a correlation machine. The received signal, x[n], and the
cross-correlation signal, y[n], are fixed on the page. The waveform we are
looking for, t[n], commonly called the target signal, is contained within the
correlation machine. Each sample in y[n] is calculated by moving the
correlation machine left or right until it points to the sample being worked on.
Next, the indicated samples from the received signal fall into the correlation
machine, and are multiplied by the corresponding points in the target signal.
The sum of these products then moves into the proper sample in the cross-
correlation signal.

The amplitude of each sample in the cross-correlation signal is a measure of
how much the received signal resembles the target signal, at that location. This
means that a peak will occur in the cross-correlation signal for every target
signal that is present in the received signal. In other words, the value of the
cross-correlation is maximized when the target signal is aligned with the same
features in the received signal.

What if the target signal contains samples with a negative value? Nothing
changes. Imagine that the correlation machine is positioned such that the target
signal is perfectly aligned with the matching waveform in the received signal.
As samples from the received signal fall into the correlation machine, they are
multiplied by their matching samples in the target signal. Neglecting noise, a
positive sample will be multiplied by itself, resulting in a positive number.
Likewise, a negative sample will be multiplied by itself, also resulting in a
positive number. Even if the target signal is completely negative, the peak in
the cross-correlation will still be positive.

If there is noise on the received signal, there will aso be noise on the cross-
correlation signal. It is an unavoidable fact that random noise looks a
certain amount like any target signal you can choose. The noise on the
cross-correlation signal is simply measuring this similarity. Except for this
noise, the peak generated in the cross-correlation signal is symmetrical
between its left and right. This is true even if the target signal isn't
symmetrical. In addition, the width of the peak is twice the width of the
target signal. Remember, the cross-correlation is trying to detect the target
signal, not recreate it. There is no reason to expect that the peak will even
look like the target signal.

Correlation is the optimal technique for detecting a known waveform in
random noise. That is, the peak is higher above the noise using correlation
than can be produced by any other linear system. (To be perfectly correct,
it is only optimal for random white noise). Using correlation to detect a
known waveform is frequently called matched filtering. More on thisin
Chapter 17.

The correlation machine and convolution machine are identical, except for
one small difference. As discussed in the last chapter, the signal inside of
the convolution machine is flipped left-for-right. This means that samples
numbers: 1,2, 3-- run from the right to the left. In the correlation machine
this flip doesn't take place, and the samples run in the normal direction.

Chapter 7- Properties of Convolution 139

0 10 20 30 40 50 60 70 80

B
R 1

o

L
i,
L
.
Gl
[1

o
5]

20 30 40 50 60 70 80

FIGURE 7-14

The correlation machine. Thisis a flowchart showing how the cross-correlation of two signalsis calculated. In this
example, y[n] isthe cross-correlation of x[n] and t[n]. The dashed box is moved |eft or right so that its output points at
the sample being calculated in y[n]. Theindicated samplesfrom x[n] are multiplied by the corresponding samplesin t[n],
and the products added. The correlation machineisidentical to the convolution machine (Figs. 6-8 and 6-9), except that
the signal inside of the dashed box isnot reversed. Inthisillustration, the only samples calculated in y[n] are where t[n]
isfully immersed in x[n].

Since this signal reversal is the only difference between the two operations, it
is possible to represent correlation using the same mathematics as convolution.
This requires preflipping one of the two signals being correlated, so that the
left-for-right flip inherent in convolution is canceled. For instance, when a[n]
and b[n], are convolved to produce c[n], the equation is written:
a[n]* b[n] = c[n]. In comparison, the cross-correlation of a[n] and b[n] can

140

Speed

The Scientist and Engineer's Guide to Digital Sgnal Processing

be written: a[n]*b[-n] =c[n]. That is, flipping b[n] left-for-right is
accomplished by reversing the sign of the index, i.e., b[-n].

Don't let the mathematical similarity between convolution and correlation fool
you; they represent very different DSP procedures. Convolution is the
relationship between a system's input signal, output signal, and impulse
response. Correlation is a way to detect a known waveform in a noisy
background. The similar mathematics is only a convenient coincidence.

Writing a program to convolve one signal by another is a simple task, only
requiring afew lines of code. Executing the program may be more painful. The
problem is the large number of additions and multiplications required by the
algorithm, resulting in long execution times. As shown by the programs in the
last chapter, the time-consuming operation is composed of multiplying two
numbers and adding the result to an accumulator. Other parts of the algorithm,
such asindexing the arrays, are very quick. The multiply-accumulateis abasic
building block in DSP, and we will see it repeated in several other important
algorithms. In fact, the speed of DSP computersis often specified by how long
it takes to preform a multiply-accumul ate operation.

If asignal composed of N samples is convolved with a signal composed of M
samples, NxM multiply-accumulations must be preformed. This can be seen
from the programs of the last chapter. Personal computers of the mid 1990's
requires about one microsecond per multiply-accumulation (100 MHz Pentium
using single precision floating point, see Table 4-6). Therefore, convolving a
10,000 sample signal with a 100 sample signal requires about one second. To
process a one million point signal with a 3000 point impulse response requires
nearly an hour. A decade earlier (80286 at 12 MHz), this calculation would
have required three days!

The problem of excessive execution time is commonly handled in one of three
ways. First, simply keep the signals as short as possible and use integers
instead of floating point. If you only need to run the convolution a few times,
this will probably be the best trade-off between execution time and
programming effort. Second, use a computer designed for DSP. DSP
microprocessors are available with multiply-accumulate times of only a few
tens of nanoseconds. This is the route to go if you plan to perform the
convolution many times, such as in the design of commercial products.

The third solution is to use a better algorithm for implementing the convolution.
Chapter 17 describes a very sophisticated algorithm called FFT convolution.
FFT convolution produces exactly the same result as the convolution algorithms
presented in the last chapter; however, the execution time is dramatically
reduced. For signals with thousands of samples, FFT convolution can be
hundreds of times faster. The disadvantage is program complexity. Even if
you are familiar with the technique, expect to spend several hours getting the
program to run.

CHAPTER

38

The Discrete Fourier Transform

Fourier analysis is a family of mathematical techniques, all based on decomposing signals into
sinusoids. The discrete Fourier transform (DFT) is the family member used with digitized
signals. This is the first of four chapters on the real DFT, a version of the discrete Fourier
transform that uses real numbers to represent the input and output signals. The complex DFT,
a more advanced technique that uses complex numbers, will be discussed in Chapter 31. In this
chapter we look at the mathematics and algorithms of the Fourier decomposition, the heart of the
DFT.

The Family of Fourier Transform

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830),
a French mathematician and physicist. (Fourier is pronounced: for-ea, and is
always capitalized). While many contributed to the field, Fourier is honored
for his mathematical discoveries and insight into the practical usefulness of the
techniques. Fourier was interested in heat propagation, and presented a paper
in 1807 to the Institut de France on the use of sinusoids to represent
temperature distributions. The paper contained the controversial claim that any
continuous periodic signal could be represented as the sum of properly chosen
sinusoidal waves. Among the reviewers were two of history's most famous
mathematicians, Joseph Louis Lagrange (1736-1813), and Pierre Simon de
Laplace (1749-1827).

While Laplace and the other reviewers voted to publish the paper, Lagrange
adamantly protested. For nearly 50 years, Lagrange had insisted that such an
approach could not be used to represent signals with corners, i.e.,
discontinuous slopes, such as in square waves. The Institut de France bowed
to the prestige of Lagrange, and rejected Fourier's work. It was only after
Lagrange died that the paper was finally published, some 15 years later.
Luckily, Fourier had other things to keep him busy, political activities,
expeditions to Egypt with Napoleon, and trying to avoid the guillotine after the
French Revolution (literally!).

141

142

FIGURE 8-1a
(see facing page)

The Scientist and Engineer's Guide to Digital Sgnal Processing

Who was right? It's a split decision. Lagrange was correct in his assertion that
a summation of sinusoids cannot form a signal with a corner. However, you
can get very close. So close that the difference between the two has zero
energy. In this sense, Fourier was right, although 18th century science knew
little about the concept of energy. This phenomenon now goes by the name:
Gibbs Effect, and will be discussed in Chapter 11.

Figure 8-1 illustrates how a signal can be decomposed into sine and cosine
waves. Figure (a) shows an example signal, 16 points long, running from
sample number 0 to 15. Figure (b) shows the Fourier decomposition of this
signal, nine cosine waves and nine sine waves, each with a different
frequency and amplitude. Although far from obvious, these 18 sinusoids

i | |
| | |
T A
g 40,____!_:______:_____:_ _____ DECOMPOSE
2 | | I
S 20 ———— [Ao Lo __
£ I I I
< oll-l-——:—a—.‘IF-I-l-l-FI—lI— w
| |
_207"""7 _____ T T
-40 ! F !
0 4 8 12 16

Sample number

add to produce the waveform in (a). It should be noted that the objection
made by Lagrange only applies to continuous signals. For discrete signals,
this decomposition is mathematically exact. There is no difference between the
signal in (@) and the sum of the signals in (b), just as there is no difference
between 7 and 3+4.

Why are sinusoids used instead of, for instance, square or triangular waves?
Remember, there are an infinite number of ways that a signal can be
decomposed. The goal of decomposition is to end up with something easier to
deal with than the original signal. For example, impulse decomposition allows
signals to be examined one point at a time, leading to the powerful technique
of convolution. The component sine and cosine waves are simpler than the
original signal because they have a property that the original signal does not
have: sinusoidal fidelity. As discussed in Chapter 5, a sinusoidal input to a
system is guaranteed to produce a sinusoidal output. Only the amplitude and
phase of the signal can change; the frequency and wave shape must remain the
same. Sinusoids are the only waveform that have this useful property. While
square and triangular decompositions are possible, there is no general reason
for them to be useful.

The general term: Fourier transform, can be broken into four categories,
resulting from the four basic types of signals that can be encountered.

Chapter 8- The Discrete Fourier Transform

Cosine Waves

I
6 8 10 12 14 16

-8 t Tt -8 Tt -8 T —
0 2 10 12 14 16 0 2 4 10 0 2 6 8 10 12 14 16
Sine Waves

8 8 8

7 S N NS S DU

8 i i i i i i i
erertea e
-8 T T E T E T E

0 2 4 6 8 10 12 14 16
8

1t
10 12 14 16

gl
[= N
0

1
12 14 16

10

T
2 4 6 8

FIGURE 8-1b

Example of Fourier decomposition. A 16 point signal (opposite page) is decomposed into 9 cosine
waves and 9 sine waves. The frequency of each sinusoid is fixed; only the amplitude is changed
depending on the shape of the waveform being decomposed.

143

144

The Scientist and Engineer's Guide to Digital Sgnal Processing

A signal can be either continuous or discrete, and it can be either periodic or
aperiodic. The combination of these two features generates the four categories,
described below and illustrated in Fig. 8-2.

Aperiodic-Continuous

This includes, for example, decaying exponentials and the Gaussian curve.
These signals extend to both positive and negative infinity without repeating in
a periodic pattern. The Fourier Transform for this type of signal is simply
called the Fourier Transform.

Periodic-Continuous

Here the examples include: sine waves, square waves, and any waveform that
repeats itself in a regular pattern from negative to positive infinity. This
version of the Fourier transform is called the Fourier Series.

Aperiodic-Discrete

These signals are only defined at discrete points between positive and negative
infinity, and do not repeat themselves in a periodic fashion. This type of
Fourier transform is called the Discrete Time Fourier Transform.

Periodic-Discrete

These are discrete signals that repeat themselves in a periodic fashion from
negative to positive infinity. This class of Fourier Transform is sometimes
called the Discrete Fourier Series, but is most often called the Discrete
Fourier Transform.

You might be thinking that the names given to these four types of Fourier
transforms are confusing and poorly organized. Y ou're right; the names have
evolved rather haphazardly over 200 years. There is nothing you can do but
memorize them and move on.

These four classes of signals all extend to positive and negative infinity. Hold
on, you say! What if you only have a finite number of samples stored in your
computer, say a signal formed from 1024 points. Isn't there a version of the
Fourier Transform that uses finite length signals? No, there isn't. Sine and
cosine waves are defined as extending from negative infinity to positive
infinity. You cannot use a group of infinitely long signals to synthesize
something finite in length. The way around this dilemma is to make the finite
data look like an infinite length signal. This is done by imagining that the
signal has an infinite number of samples on the left and right of the actual
points. If all these “imagined” samples have a value of zero, the signal looks
discrete and aperiodic, and the Discrete Time Fourier Transform applies. As
an aternative, the imagined samples can be a duplication of the actual 1024
points. In this case, the signal looks discrete and periodic, with a period of
1024 samples. This calls for the Discrete Fourier Transform to be used.

As it turns out, an infinite number of sinusoids are required to synthesize a
signal that is aperiodic. This makes it impossible to calculate the Discrete
Time Fourier Transform in a computer algorithm. By elimination, the only

Chapter 8- The Discrete Fourier Transform

Type of Transform

Example Signal

Fourier Transform

signals that are continious and aperiodic

Fourier Series o
signalsthat are continious and periodic

Discrete Time Fourier Transform
signalsthat are discrete and aperiodic

Discrete Fourier Transform
signalsthat are discrete and periodic

FIGURE 8-2

Illustration of the four Fourier transforms. A signal may be continuous or discrete, and it may be
periodic or aperiodic. Together these define four possible combinations, each having its own version
of the Fourier transform. The names are not well organized; simply memorize them.

145

type of Fourier transform that can be used in DSP isthe DFT. In other words,
digital computers can only work with information that is discrete and finite in
length. When you struggle with theoretical issues, grapple with homework
problems, and ponder mathematical mysteries, you may find yourself using the
first three members of the Fourier transform family. When you sit down to
your computer, you will only use the DFT. We will briefly look at these other
Fourier transforms in future chapters. For now, concentrate on understanding
the Discrete Fourier Transform.

Look back at the example DFT decomposition in Fig. 8-1. On the face of it,
it appears to be a 16 point signal being decomposed into 18 sinusoids, each
consisting of 16 points. In more formal terms, the 16 point signal, shown in
(a), must be viewed as a single period of an infinitely long periodic signal.
Likewise, each of the 18 sinusoids, shown in (b), represents a 16 point segment
from an infinitely long sinusoid. Does it really matter if we view thisas a 16
point signal being synthesized from 16 point sinusoids, or as an infinitely long
periodic signal being synthesized from infinitely long sinusoids? The answer
is: usually no, but sometimes, yes. In upcoming chapters we will encounter
properties of the DFT that seem baffling if the signals are viewed as finite, but
become obvious when the periodic nature is considered. The key point to
understand is that this periodicity is invoked in order to use a mathematical
tool, i.e.,, the DFT. It is usually meaningless in terms of where the signal
originated or how it was acquired.

146

The Scientist and Engineer's Guide to Digital Sgnal Processing

Each of the four Fourier Transforms can be subdivided into real and
complex versions. The real version is the simplest, using ordinary numbers
and algebra for the synthesis and decomposition. For instance, Fig. 8-1is
an example of the real DFT. The complex versions of the four Fourier
transforms are immensely more complicated, requiring the use of complex
numbers. These are numbers such as: 3+4j, where j is equal to /-1
(electrical engineers use the variable j, while mathematicians use the
variable, i). Complex mathematics can quickly become overwhelming, even
to those that specialize in DSP. In fact, a primary goal of this book is to
present the fundamentals of DSP without the use of complex math, allowing
the material to be understood by a wider range of scientists and engineers.
The complex Fourier transforms are the realm of those that specialize in
DSP, and are willing to sink to their necks in the swamp of mathematics.
If you are so inclined, Chapters 30-33 will take you there.

The mathematical term: transform, is extensively used in Digital Signal
Processing, such as: Fourier transform, Laplace transform, Z transform,
Hilbert transform, Discrete Cosine transform, etc. Just what is a transform?
To answer this question, remember what a function is. A function is an
algorithm or procedure that changes one value into another value. For
example, y = 2x+1 isafunction. You pick some value for X, plug it into the
equation, and out pops a value for y. Functions can also change several
values into a single value, such as. y = 2a + 3b + 4c, where a, b, and c are
changed into y.

Transforms are a direct extension of this, allowing both the input and output to
have multiple values. Suppose you have a signal composed of 100 samples.
If you devise some equation, algorithm, or procedure for changing these 100
samples into another 100 samples, you have yourself atransform. If you think
it is useful enough, you have the perfect right to attach your last name to it and
expound its merits to your colleagues. (This works best if you are an eminent
18th century French mathematician). Transforms are not limited to any specific
type or number of data. For example, you might have 100 samples of discrete
data for the input and 200 samples of discrete data for the output. Likewise,
you might have a continuous signal for the input and a continuous signal for the
output. Mixed signals are also allowed, discrete in and continuous out, and
vice versa. In short, atransform is any fixed procedure that changes one chunk
of data into another chunk of data. Let's see how this applies to the topic at
hand: the Discrete Fourier transform.

Notation and Format of the Real DFT

As shown in Fig. 8-3, the discrete Fourier transform changes an N point input
signal into two N/2+1 point output signals. The input signal contains the
signal being decomposed, while the two output signals contain the amplitudes
of the component sine and cosine waves (scaled in a way we will discuss
shortly). The input signal is said to be in the time domain. Thisis because
the most common type of signal entering the DFT is composed of

Chapter 8- The Discrete Fourier Transform 147

Time Domain Frequency Domain
F DFT
X[] orward Re X[] Im X[]
LI ITTTITITTIITITTIT CITTTTTITT) OOIITTIITTI]
0 N-1 0 N2 O N/2
N samples N/2+1 samples N/2+1 samples
Inverse DFT (cosine wave amplitudes) (sine wave amplitudes)
collectively referred to as X[]
FIGURE 8-3

DFT terminology. Inthetimedomain, x[] consistsof N pointsrunning from 0to N-1. Inthe frequency domain,
the DFT produces two signals, the real part, written: ReX[], and the imaginary part, written: ImX[]. Each of
these frequency domain signalsare N/2 + 1 pointslong, and run from 0to N/2. The Forward DFT transforms from
the time domain to the frequency domain, while the Inverse DFT transforms from the frequency domain to the
time domain. (Take note: this figure describes the real DFT. The complex DFT, discussed in Chapter 31,
changes N complex pointsinto another set of N complex points).

samples taken at regular intervals of time. Of course, any kind of sampled
data can be fed into the DFT, regardless of how it was acquired. When you
see the term "time domain" in Fourier analysis, it may actually refer to
samples taken over time, or it might be a general reference to any discrete
signal that is being decomposed. The term frequency domain is used to
describe the amplitudes of the sine and cosine waves (including the special
scaling we promised to explain).

The frequency domain contains exactly the same information as the time
domain, just in a different form. If you know one domain, you can calculate
the other. Given the time domain signal, the process of calculating the
frequency domain is called decomposition, analysis, the forward DFT, or
simply, the DFT. If you know the frequency domain, calculation of the time
domain is called synthesis, or theinverse DFT. Both synthesis and analysis
can be represented in equation form and computer algorithms.

The number of samples in the time domain is usually represented by the
variable N. While N can be any positive integer, a power of two is usually
chosen, i.e., 128, 256, 512, 1024, etc. There are two reasons for this. First,
digital data storage uses binary addressing, making powers of two a natural
signal length. Second, the most efficient algorithm for calculating the DFT, the
Fast Fourier Transform (FFT), usually operates with N that is a power of two.
Typically, N is selected between 32 and 4096. In most cases, the samples run
from O to N-1, rather than 1 to N.

Standard DSP notation uses lower case letters to represent time domain
signals, suchas x[], y[], and Z]. The corresponding upper case letters are

148 The Scientist and Engineer's Guide to Digital Sgnal Processing

used to represent their frequency domains, that is, X[], Y[], and Z[]. For
illustration, assume an N point time domain signal is contained in X[]. The
frequency domain of thissignal is called X[], and consists of two parts, each
an array of N/2+1 samples. These are called the Real part of X[], written
as: ReX[], and the Imaginary part of X[], written as: ImX[]. The values
in ReX[] are the amplitudes of the cosine waves, while the values in ImX]]
are the amplitudes of the sine waves (not worrying about the scaling factors for
the moment). Just as the time domain runs from x[0] to x[N-1], the frequency
domain signals run from ReX[0] to ReX[N/2], and from ImX][Q] to ImX[N/2].
Study these notations carefully; they are critical to understanding the equations
in DSP. Unfortunately, some computer languages don't distinguish between
lower and upper case, making the variable names up to the individual
programmer. The programs in this book use the array XX[] to hold the time
domain signal, and the arrays REX[] and IMX]] to hold the frequency domain
signals.

The names real part and imaginary part originate from the complex DFT,
where they are used to distinguish between real and imaginary numbers.
Nothing so complicated is required for the real DFT. Until you get to Chapter
31, simply think that "real part" means the cosine wave amplitudes, while
"imaginary part" means the sine wave amplitudes. Don't let these suggestive
names mislead you; everything here uses ordinary numbers.

Likewise, don't be misled by the lengths of the frequency domain signals. It
is common in the DSP literature to see statements such as: "The DFT changes
an N point time domain signal into an N point frequency domain signal." This
is referring to the complex DFT, where each "point" is a complex number
(consisting of real and imaginary parts). For now, focus on learning the real
DFT, the difficult math will come soon enough.

The Frequency Domain's Independent Variable

Figure 8-4 shows an example DFT with N =128. The time domain signal is
contained in the array: X[0] to x[127]. The frequency domain signals are
contained in the two arrays. ReX[0] to ReX[64], and ImX][Q] to ImX[64].
Notice that 128 points in the time domain corresponds to 65 points in each of
the frequency domain signals, with the frequency indexes running from O to 64.
That is, N points in the time domain corresponds to N/2+1 points in the
frequency domain (not N/2 points). Forgetting about this extra point is a
common bug in DFT programs.

The horizontal axis of the frequency domain can be referred to in four
different ways, all of which are common in DSP. In the first method, the
horizontal axis is labeled from 0 to 64, corresponding to the 0 to N/2
samples in the arrays. When this labeling is used, the index for the
frequency domain is an integer, for example, ReX[k] and ImX[k], where k
runs from 0 to N/2 in steps of one. Programmers like this method because
it is how they write code, using an index to access array locations. This
notation is used in Fig. 8-4b.

Amplitude

Chapter 8- The Discrete Fourier Transform

Time Domain

Frequency Domain

149

2]]]
a x|] b. ReX[]
1 4
[]
g |
A ﬁ * g I. - . - l‘h. | p-q
0 = E.O L W '. .- g g W g S
< - au

- 4 -

-8

0 16 32 48 64 8 9 112 127 16 32 48 64
Sample number Frequency (sample number)

FIGURE 8-4 8 i
Example of the DFT. The DFT converts the c. ImX[]
time domain signal, X 1, into the frequency
domain signals, ReX[] and ImX[]. The 4
horizontal axis of the frequency domain can be ° .u
labeled in one of three ways: (1) as an array B - . . .
index that runs between 0 and Ni2, (2) as a Zopmn o F "'l-.___.-"""‘-
fraction of the sampling frequency, running 3 = o
between 0 and 0.5, (3) as a natural frequency, < = = '..-
running between 0 and ©. In the example 4 -
shown here, (b) usesthe first method, while (c)
use the second method.

-8

0 0.1 0.2 0.3 0.4 0.5

Frequency (fraction of sampling rate)

In the second method, used in (c), the horizontal axis is labeled as a fraction
of the sampling rate. This means that the values along the horizonal axis
always run between 0 and 0.5, since discrete data can only contain frequencies
between DC and one-half the sampling rate. The index used with this notation
is f, for frequency. The real and imaginary parts are written: ReX[f] and
ImX[f], where f takes on N/2+1 equally spaced values between 0 and 0.5.
To convert from the first notation, k, to the second notation, f, divide the
horizontal axisby N. Thatis, f = k/N. Most of the graphs in this book use this
second method, reinforcing that discrete signals only contain frequencies
between 0 and 0.5 of the sampling rate.

The third style is similar to the second, except the horizontal axis is
multiplied by 2r. The index used with this labeling is », a lower case
Greek omega. In this notation, the real and imaginary parts are written:
ReX[w] and ImX[w], where » takes on N/2+1 equally spaced values
between 0 and =. The parameter, », is called the natural frequency, and
has the units of radians. This is based on the idea that there are 2r radians
in acircle. Mathematicians like this method because it makes the equations
shorter. For instance, consider how a cosine wave is written in each of
these first three notations: using k: c[n] =cos(2rnkn/N), using f:
c[n] =cos(2rnfn), and using w: c[n] = cos(wn).

150 The Scientist and Engineer's Guide to Digital Sgnal Processing

The fourth method is to label the horizontal axis in terms of the analog
frequencies used in a particular application. For instance, if the system being
examined has a sampling rate of 10 kHz (i.e., 10,000 samples per second),
graphs of the frequency domain would run from 0 to 5 kHz. This method has
the advantage of presenting the frequency data in terms of a real world
meaning. The disadvantage is that it is tied to a particular sasmpling rate, and
is therefore not applicable to general DSP algorithm development, such as
designing digital filters.

All of these four notations are used in DSP, and you need to become
comfortable with converting between them. This includes both graphs and
mathematical equations. To find which notation is being used, look at the
independent variable and its range of values. You should find one of four
notations; k (or some other integer index), running from 0 to N/2; f, running
from 0 to 0.5; », running from O to =; or a frequency expressed in hertz,
running from DC to one-half of an actual sampling rate.

DFT Basis Functions

The sine and cosine waves used in the DFT are commonly called the DFT
basis functions. In other words, the output of the DFT is a set of humbers
that represent amplitudes. The basis functions are a set of sine and cosine
waves with unity amplitude. If you assign each amplitude (the frequency
domain) to the proper sine or cosine wave (the basis functions), the result
is a set of scaled sine and cosine waves that can be added to form the time
domain signal.

The DFT basis functions are generated from the equations:

EQUATION 8-1 . .
Equations for the DFT basisfunctions. In c [i] = cos(2nki/N)
these equations, c[i] and s][i] are the

cosine and sine waves, each N pointsin

length, running from i = 0 to N-1. The .
parameter, k, determines the frequency of S [']
thewave. Inan N point DFT, k takes on

values between 0 andN/2.

sin(2nki/N)

where: ¢[] isthe cosine wave for the amplitude held in ReX[K], and s] is
the sine wave for the amplitude held in ImX[k]. For example, Fig. 8-5 shows
some of the 17 sine and 17 cosine waves used in an N = 32 point DFT. Since
these sinusoids add to form the input signal, they must be the same length as
the input signal. In this case, each has 32 points running from i =0 to 31. The
parameter, k, sets the frequency of each sinusoid. In particular, c|[] is the
cosine wave that makes one complete cycle in N points, ¢] is the cosine
wave that makes five complete cycles in N points, etc. This is an important
concept in understanding the basis functions; the frequency parameter, k, is
equal to the number of complete cycles that occur over the N points of the
signal.

Chapter 8- The Discrete Fourier Transform

—_

Amplitude
[=}

'
—

0 8 16 24 32
Sample number

¢ ol

Amplitude

0 8 16 24 32

Sample number

ﬁ ﬂ i

Amplitude
'-<

Amplitude

0 8 16 24 32
Sample number

FIGURE 8-5

—_

Amplitude

'
—

Amplitude

'
—

Amplitude

(=

. Amplitude

b. s[]

16 24 32
Sample number

—_
|
T
I
I

(=)

0 8

2

16 24 32
Sample number

Pl
4 _W S

0 8

16 24 32
Sample number

DFT basisfunctions. A 32 point DFT has 17 discrete cosine waves and 17 discrete sine waves for
itsbasisfunctions. Eight of these are shown in thisfigure. These are discrete signals; the continuous
lines are shown in these graphs only to help the reader's eye follow the waveforms.

151

152 The Scientist and Engineer's Guide to Digital Sgnal Processing

Let's look at several of these basis functions in detail. Figure (a) shows the
cosnewave cy[]. Thisisacosine wave of zero frequency, which is a constant
value of one. This meansthat ReX[0] holds the average value of al the points
in the time domain signal. In electronics, it would be said that ReX[0] holds
the DC offset. The sine wave of zero frequency, s], is shown in (b), a
signal composed of all zeros. Since this can not affect the time domain signal
being synthesized, the value of ImX[0] isirrelevant, and always set to zero.
More about this shortly.

Figures (c) & (d) show c,[] & s], the sinusoids that complete two cyclesin
the N points. These correspond to Re X[2] & ImX][2], respectively. Likewise,
(€) & (f) show ¢, [] & s,], the sinusoids that complete ten cyclesin the N
points. These sinusoids correspond to the amplitudes held in the arrays
ReX[10] & ImX[10]. The problem is, the samples in (e) and (f) no longer
look like sine and cosine waves. If the continuous curves were not present in
these graphs, you would have a difficult time even detecting the pattern of the
waveforms. This may make you a little uneasy, but don't worry about it. From
a mathematical point of view, these samples do form discrete sinusoids, even
if your eye cannot follow the pattern.

The highest frequencies in the basis functions are shown in (g) and (h). These
are ¢,[1 & sy [1, or inthis example, ¢, [] & s []. The discrete cosine
wave alternates in value between 1 and -1, which can be interpreted as
sampling a continuous sinusoid at the peaks. In contrast, the discrete sine wave
contains all zeros, resulting from sampling at the zero crossings. This makes
the value of ImX[N/2] the same as ImX[0], always equal to zero, and not
affecting the synthesis of the time domain signal.

Here's a puzzle: If there are N samples entering the DFT, and N+2 samples
exiting, where did the extra information come from? The answer: two of the
output samples contain no information, alowing the other N samples to be fully
independent. As you might have guessed, the points that carry no information
are ImX[0] and ImX[N/2], the samples that always have a value of zero.

Synthesis, Calculating the Inverse DFT

Pulling together everything said so far, we can write the synthesis equation:

x[i] = Nf ReX [k] cos(2nki/N) + Nf ImX [k] sin(2mki /N)
k=0 k=0

EQUATION 8-2

The synthesis equation. In thisrelation, x[i] isthe signal being
synthesized, with the index, i, running from 0 to N-1. ReX[Kk]
and ImX[k] hold the amplitudes of the cosine and sine waves,
respectively, with krunning from0to N/2. Equation 8-3 provides
the normalization to change this equation into the inverse DFT.

Chapter 8- The Discrete Fourier Transform 153

In words, any N point signal, x[i], can be created by adding N/2+ 1 cosine
waves and N/2 + 1 sine waves. The amplitudes of the cosine and sine waves
are held in the arrays ImX[k] and ReX][K], respectively. The synthesis
eguation multiplies these amplitudes by the basis functions to create a set of
scaled sine and cosine waves. Adding the scaled sine and cosine waves
produces the time domain signal, X[i].

In Eq. 8-2, the arrays are called ImX[k] and ReX[kK], rather than ImX[k] and
ReX[K]. This is because the amplitudes needed for synthesis (called in this
discussion: ImX[k] and ReXJ[K]), are slightly different from the frequency
domain of a signal (denoted by: ImX[k] and ReX[K]). Thisis the scaling
factor issue we referred to earlier. Although the conversion is only a simple
normalization, it is a common bug in computer programs. Look out for it! In
equation form, the conversion between the two is given by:

ReX [K] ReX [k]
EQUATIONS8-3 N/2
Conversion between the sinusoidal
amplitudes and the frequency domain vi ImX [k]
values. In these equations, ReX[K] ImX [k] I —
and ImX[k] hold the amplitudes of N/2

the cosine and sine waves needed for
synthesis, while ReX[k] and ImX[k]
hold the real and imaginary parts of

except for two special cases:
the frequency domain. As usual, N is P ®

th ber of points in the ti i ~ ReX|[0]
domain Signal, and K is an index that ReX[0] = N
runs from O to N/2.

ReX [N/2] = %[N/Z]

Suppose you are given a frequency domain representation, and asked to
synthesize the corresponding time domain signal. To start, you must find the
amplitudes of the sine and cosine waves. In other words, given ImX[K] and
Re X[k], you must find ImX[k] and ReX[k] Equation 8-3 shows thisin a
mathematical form. To do this in a computer program, three actions must be
taken. First, divide all the values in the frequency domain by N/2. Second,
change the sign of all the imaginary values. Third, divide the first and last
samples in the real part, ReX[0] and ReX[N/2], by two. This provides the
amplitudes needed for the synthesis described by Eq. 8-2. Taken together, Egs.
8-2 and 8-3 define the inverse DFT.

The entire Inverse DFT is shown in the computer program listed in Table
8-1. There are two ways that the synthesis (Eq. 8-2) can be programmed,
and both are shown. In the first method, each of the scaled sinusoids are
generated one at a time and added to an accumulation array, which ends
up becoming the time domain signal. In the second method, each sample in
the time domain signal is calculated one at a time, as the sum of all the

154 The Scientist and Engineer's Guide to Digital Sgnal Processing

100 'THE INVERSE DISCRETE FOURIER TRANSFORM
110 'The time domain signal, held in X X[], is calculated from the frequency domain signals,
120 'held in REX[] and IMX]].

130

140 DIM XX[511] 'XX[] holds the time domain signal

150 DIM REX[256] 'REX]] holds the real part of the frequency domain

160 DIM IMX[256] 'IMX[] holds the imaginary part of the frequency domain
170

180 PI = 3.14159265 'Set the constant, PI

190 N% = 512 'N% is the number of pointsin XX]]

200"

210 GOSUB XXXX 'Mythical subroutine to load datainto REX[] and IMX]]
220"

230

240" 'Find the cosine and sine wave amplitudes using Eq. 8-3

250 FOR K% =0 TO 256

260 REX[K%] = REX[K%] / (N%/2)
270 IMX[K%] =-IMX[K%] / (N%/2)
280 NEXT K%

290"

300 REX[0] = REX[0] / 2

310 REX[256] = REX[256] / 2

320"

330"

340 FOR 1% =0TO 511 'Zero XX[] so it can be used as an accumulator
350 XX[1%] =0

360 NEXT 1%

370

380" Eqg. 8-2 SYNTHESISMETHOD #1. Loop through each
390" frequency generating the entire length of the sine and cosine
400' waves, and add them to the accumulator signal, XX[]

410"

420 FOR K% =0 TO 256 'K% loops through each samplein REX[] and IMX]]

430 FOR 1% =0TO511 'l1% loops through each samplein XX|]

440

450 XX[1%)] = XX[1%] + REX[K%] * COS(2* PI* K%* |%/N%)
460 XX[1%] = XX[1%] + IMX[K%] * SIN(2* PI* K%* 1%/N%)
470

480 NEXT 1%

490 NEXT K%

500"
510 END

Alternate code for lines 380 to 510
380" Eqg. 8-2 SYNTHESISMETHOD #2. Loop through each
390" sample in the time domain, and sum the corresponding
400' samples from each cosine and sine wave
410"
420 FOR 1% =0TO 511 '1% loops through each samplein X X[]
430 FORK% =0TO 256 'K% loops through each samplein REX[] and IMX]]
440

450 XX[1%)] = XX[1%] + REX[K%] * COS(2* PI* K%* |9%/N%)
460 XX[1%] = XX[1%] + IMX[K%] * SIN(2* PI* K%* 1%/N%)
470

480 NEXT K%

490 NEXT 1%

500

510 END

TABLES8-1

Chapter 8- The Discrete Fourier Transform

155

16

Time Domain Frequency Domain
50 T T 50 T T T
‘ a Thetime domain signal ‘ ‘ b. ReX[] (thefrequency domain) ‘
40 40
§30I §3OIIIIIIIIIIIIIIIII
g I g
g2 Z20
10 10
0SSR R 0
0 8 16 24 32 0 4 8 12
Sample number Frequency sample number
Eq. 8.2‘ Eq. 8.3
3.0 T T T
‘ c. ReX[] (cosine wave amplitudes) ‘
o 2.0*——I——I——I—-L——I——I—I—L——I—-l—l——i—-l—l——.——
2
£
£
<iom '
0.0
0 4 8 12 16
Frequency sample number
FIGURE 8-6

Example of the Inverse DFT. Figure (@) shows an exampletime domain signal, an impulse at sample zero with
an amplitude of 32. Figure (b) showsthereal part of the frequency domain of thissignal, aconstant value of

32. Theimaginary part of the frequency domain (not shown) is composed of all zeros. Figure(c) showsthe

amplitudes of the cosine waves needed to reconstruct (a) using Eq. 8-2. Thevaluesin (c) are found from (b)

by using Eq. 8-3.

corresponding samples in the cosine and sine waves. Both methods produce the
same result. The difference between these two programs is very minor; the

inner and outer loops are swapped during the synthesis.

Figure 8-6 illustrates the operation of the Inverse DFT, and the slight
differences between the frequency domain and the amplitudes needed for
synthesis. Figure 8-6ais an example signal we wish to synthesize, an impulse
at sample zero with an amplitude of 32. Figure 8-6b shows the frequency
domain representation of thissignal. The real part of the frequency domain is
a constant value of 32. The imaginary part (not shown) is composed of all
zeros. As discussed in the next chapter, this is an important DFT pair: an
impulse in the time domain corresponds to a constant value in the frequency
domain. For now, the important point is that (b) isthe DFT of (a), and (a) is

the Inverse DFT of (b).

156

FIGURE 8-7

The bandwidth of frequency domain
samples. Each samplein the frequency
domain can be thought of as being
contained in afrequency band of width
2/N, expressed as a fraction of the total
bandwidth. An exception to this is the
first and last samples, which have a

The Scientist and Engineer's Guide to Digital Sgnal Processing

Equation 8-3 is used to convert the frequency domain signal, (b), into the
amplitudes of the cosine waves, (c). As shown, all of the cosine waves have
an amplitude of two, except for samples 0 and 16, which have a value of one.
The amplitudes of the sine waves are not shown in this example because they
have a value of zero, and therefore provide no contribution. The synthesis
equation, Eg. 8-2, is then used to convert the amplitudes of the cosine waves,
(b), into the time domain signal, (a).

This describes how the frequency domain is different from the sinusoidal
amplitudes, but it doesn't explain why it is different. The difference occurs
because the frequency domain is defined as a spectral density. Figure 8-7
shows how this works. The example in this figure is the real part of the
frequency domain of a 32 point signal. As you should expect, the samples run
from 0 to 16, representing 17 frequencies equally spaced between 0 and 1/2
of the sampling rate. Spectral density describes how much signal (amplitude)
is present per unit of bandwidth. To convert the sinusoidal amplitudes into a
spectral density, divide each amplitude by the bandwidth represented by each
amplitude. This brings up the next issue: how do we determine the bandwidth
of each of the discrete frequencies in the frequency domain?

As shown in the figure, the bandwidth can be defined by drawing dividing
lines between the samples. For instance, sample number 5 occurs in the
band between 4.5 and 5.5; sample number 6 occurs in the band between 5.5
and 6.5, etc. Expressed as a fraction of the total bandwidth (i.e., N/2), the
bandwidth of each sample is 2/N. An exception to this is the samples on
each end, which have one-half of this bandwidth, 1/N. This accounts for
the 2/N scaling factor between the sinusoidal amplitudes and frequency
domain, as well as the additional factor of two needed for the first and last
samples.

Why the negation of the imaginary part? This is done solely to make the real
DFT consistent with its big brother, the complex DFT. In Chapter 29 we will
show that it is necessary to make the mathematics of the complex DFT work.
When dealing only with the real DFT, many authors do not include this
negation. For that matter, many authors do not even include

I I I I I I I I I I I I I
0| T T T S T T R R A A
BERREERERREE
8,
el
g ot e e
gG* 1 [T A R |
= i o i mE o T idth:
g’ | : bl :
< 4- | P\ I I T T T R B A
I T T I I I I I I I
3 | T T T T A A
. O i T T T T A A
bandwidth only one-half thiswide, 1/N. 2 : e
1 | T T T T A A
I I I I I I I I I I
I I I I I I I I I I
0 ! T T I\I\I\I\I\I\ T T
5 6 8 9 10 11 12 13 14 15 16

T
7
uency sample number

e laalnl
—
[¢]
=)

Chapter 8- The Discrete Fourier Transform 157

the 2/N scaling factor. Be prepared to find both of these missing in some
discussions. They are included here for a tremendously important reason: The
most efficient way to calculate the DFT is through the Fast Fourier Transform
(FFT) agorithm, presented in Chapter 12. The FFT generates a frequency
domain defined according to Eqg. 8-2 and 8-3. If you start messing with these
normalization factors, your programs containing the FFT are not going to work
as expected.

Analysis, Calculating the DFT

The DFT can be calculated in three completely different ways. First, the
problem can be approached as a set of simultaneous equations. This
method is useful for understanding the DFT, but it is too inefficient to be
of practical use. The second method brings in an idea from the last chapter:
correlation. This is based on detecting a known waveform in another
signal. The third method, called the Fast Fourier Transform (FFT), is an
ingenious algorithm that decomposes a DFT with N points, into N DFTs
each with asingle point. The FFT istypically hundreds of times faster than
the other methods. The first two methods are discussed here, while the FFT
is the topic of Chapter 12. It is important to remember that all three of
these methods produce an identical output. Which should you use? In actual
practice, correlation is the preferred technique if the DFT has less than
about 32 points, otherwise the FFT is used.

DFT by Simultaneous Equations

Think about the DFT calculation in the following way. You are given N values
from the time domain, and asked to calculate the N values of the frequency
domain (ignoring the two frequency domain values that you know must be
zero). Basic algebra provides the answer: to solve for N unknowns, you must
be able to write N linearly independent equations. To do this, take the first
sample from each sinusoid and add them together. The sum must be equal to
the first sample in the time domain signal, thus providing the first equation.
Likewise, an equation can be written for each of the remaining points in the
time domain signal, resulting in the required N equations. The solution can
then be found by using established methods for solving simultaneous equations,
such as Gauss Elimination. Unfortunately, this method requires a tremendous
number of calculations, and is virtually never used in DSP. However, it is
important for another reason, it shows why it is possible to decompose a signal
into sinusoids, how many sinusoids are needed, and that the basis functions
must be linearly independent (more about this shortly).

DFT by Correlation

Let's move on to a better way, the standard way of calculating the DFT. An
example will show how this method works. Suppose we are trying to calculate
the DFT of a 64 point signal. This means we need to calculate the 33 points
in the real part, and the 33 points in the imaginary part of the frequency
domain. In this example we will only show how to calculate a single sample,
ImX][3], i.e., the amplitude of the sine wave that makes three complete cycles

158

EQUATION 8-4

The Scientist and Engineer's Guide to Digital Sgnal Processing

between point 0 and point 63. All of the other frequency domain values are
calculated in a similar manner.

Figure 8-8 illustrates using correlation to calculate ImX[3]. Figures (a) and
(b) show two example time domain signals, called: x1[] and x2[],
respectively. The first signal, x1]], is composed of nothing but a sine wave
that makes three cycles between points 0 and 63. In contrast, x2[] is
composed of several sine and cosine waves, none of which make three cycles
between points 0 and 63. These two signals illustrate what the algorithm for
calculating ImX[3] must do. When fed x1[], the algorithm must produce a
value of 32, the amplitude of the sine wave present in the signal (modified by
the scaling factors of Eq. 8-3). In comparison, when the algorithm is fed the
other signal, x2[], a value of zero must be produced, indicating that this
particular sine wave is not present in this signal.

The concept of correlation was introduced in Chapter 7. Asyou recall, to
detect a known waveform contained in another signal, multiply the two
signals and add all the points in the resulting signal. The single number
that results from this procedure is a measure of how similar the two signals
are. Figure 8-8 illustrates this approach. Figures (c) and (d) both display
the signal we are looking for, a sine wave that makes 3 cycles between
samples 0 and 63. Figure (€) shows the result of multiplying (a) and (c).
Likewise, (f) shows the result of multiplying (b) and (d). The sum of all
the pointsin (e) is 32, while the sum of all the pointsin (f) is zero, showing
we have found the desired algorithm.

The other samples in the frequency domain are calculated in the same way.

This procedure is formalized in the analysis equation, the mathematical way
to calculate the frequency domain from the time domain:

N

-1
The analysis equations for calculating ReX[k] = Z x[i] cos(2nki/N)
-0

the DFT. Inthese equations, x{i] isthe

time domain signal being analyzed, and
ReX[K & ImX[K are the frequency
domain signals being calculated. The N -

1
index i runs from O to N-1, while the ImXIkl = - X[il sn(2rki/N
index k runs from O toN/2. [] i:zo: [] ()

In words, each sample in the frequency domain is found by multiplying the time
domain signal by the sine or cosine wave being looked for, and adding the
resulting points. If someone asks you what you are doing, say with confidence:
"I am correlating the input signal with each basis function." Table 8-2 shows
a computer program for calculating the DFT in this way.

The analysis equation does not require special handling of the first and last
points, as did the synthesis equation. There is, however, a negative sign in the
imaginary part in Eq. 8-4. Just as before, this negative sign makes the real
DFT consistent with the complex DFT, and is not always included.

Chapter 8- The Discrete Fourier Transform

Example 1
2 1 1 1
‘ a x1[], signal being analyzed ‘
1r-amy L P
u n n u
% » - . » .I l.
E - L} L] "
%. 0 u [] - 5
£ .. - " - .
< L} L} = "
n u
1 L] u .-.
2
0 16 32 48 64
Sample number
2 1 1 1
‘ C. sy], basis function being sought
1y L e
L | s " - -
% " = = " L] L}
E [] = . []
%. 0 n n 5 5
E - . ™ L] L} -
< » » L} - L]
n u
1 L] u .-.
2
0 16 32 48 64
Sample number
2
e x1[]xs]]
I
! .-l -*I. I.-. .-I o
% - - I. .I - - " " I. .l
E L} n - - n L} L} n - - L]
= ., . L) ., . u
£
<
-1
2
0 16 32 48 64
Sample number
FIGURE 8-8

Example 2

159

—_

[b. x2[], signal being analyzed |

Amplitude
(e}

'
—_

—_

Amplitude
(=]

'
—_

Amplitude
(e}

'
—_

0 16 32 48

Sample number

64

d. sf], basis function being sought

0 16 32 48

Sample number

64

f. x2[]xs]]

0 16 32 48

Sample number

64

Two examplesignals, (a) and (b), are analyzed for containing the specific basis function shownin (c) and (d).
Figures (e) and (f) show theresult of multiplying each example signal by the basisfunction. Figure (e) hasan
average of 0.5, indicating that x1[] contains the basis function with an amplitude of 1.0. Conversely, (f) has
azero average, indicating that x2[] does not contain the basis function.

In order for this correlation algorithm to work, the basis functions must have
an interesting property: each of them must be completely uncorrelated with
all of the others. This means that if you multiply any two of the basis

functions, the sum of the resulting points will be equal to zero.
functions that have this property are called orthognal.

Basis

Many other

160

The Scientist and Engineer's Guide to Digital Sgnal Processing

100 'THE DISCRETE FOURIER TRANSFORM
110 'The frequency domain signals, held in REX[] and IMX]], are calculated from
120 'the time domain signal, held in XX[].

130

140 DIM XX[511] 'XX[] holds the time domain signal

150 DIM REX[256] 'REX]] holds the real part of the frequency domain

160 DIM IMX[256] 'IMX[] holds the imaginary part of the frequency domain
170

180 PI = 3.14159265 'Set the constant, PI

190 N% = 512
200"

'N% is the number of pointsin XX]]

210 GOSUB XXXX 'Mythical subroutine to load datainto X X[]

220"
230°

240 FORK% =0TO 256 'Zero REX[] & IMX][] so they can be used as accumulators
250 REX[K%] =0
260 IMX[K%] =0

270 NEXT K%

280"

290" 'Correlate X X[] with the cosine and sine waves, Eg. 8-4
300"

310 FORK% =0TO 256 'K% loops through each samplein REX[] and IMX]]

320 FOR 1% =0TO 511 'l1% loops through each samplein XX[]

330

340 REX[K%] = REX[K%] + XX[1%] * COS(2* PI* K%*1%/N%)
350 IMX[K%] = IMX[K%] - XX[1%] * SIN(2* PI* K% |%/N%)

360

370 NEXT 1%
380 NEXT K%

390"
400 END

TABLE8-2

orthognal basis functions exist, including: square waves, triangle waves,
impulses, etc. Signals can be decomposed into these other orthognal basis
functions using correlation, just as done here with sinusoids. This is not to
suggest that this is useful, only that it is possible.

As previously shown in Table 8-1, the Inverse DFT has two ways to be
implemented in a computer program. This difference involves swapping the
inner and outer loops during the synthesis. While this does not change the
output of the program, it makes a difference in how you view what is being
done. The DFT program in Table 8-2 can also be changed in this fashion, by
swapping the inner and outer loops in lines 310 to 380. Just as before, the
output of the program is the same, but the way you think about the calculation
is different. (These two different ways of viewing the DFT and inverse DFT
could be described as "input side" and "output side" algorithms, just as for
convolution).

As the program in Table 8-2 is written, it describes how an individual sample
in the frequency domain is affected by all of the samples in the time domain.
That is, the program calculates each of the values in the frequency domain in
succession, not as a group. When the inner and outer loops are exchanged,
the program loops through each sample in the time domain, calculating the

Duality

Chapter 8- The Discrete Fourier Transform 161

contribution of that point to the frequency domain. The overall frequency
domain is found by adding the contributions from the individual time
domain points. This brings up our next question: what kind of contribution
does an individual sample in the time domain provide to the frequency
domain? The answer is contained in an interesting aspect of Fourier
analysis called duality.

The synthesis and analysis equations (Egs. 8-2 and 8-4) are strikingly
similar. To move from one domain to the other, the known values are
multiplied by the basis functions, and the resulting products added. The
fact that the DFT and the Inverse DFT use this same mathematical
approach is really quite remarkable, considering the totally different way
we arrived at the two procedures. In fact, the only significant difference
between the two equations is a result of the time domain being one signal
of N points, while the frequency domain is two signals of N/2+ 1 points.
As discussed in later chapters, the complex DFT expresses both the time
and the frequency domains as complex signals of N points each. This
makes the two domains completely symmetrical, and the equations for
moving between them virtually identical.

This symmetry between the time and frequency domains is called duality,
and gives rise to many interesting properties. For example, a single point
in the frequency domain corresponds to a sinusoid in the time domain. By
duality, the inverse is also true, a single point in the time domain
corresponds to a sinusoid in the frequency domain. As another example,
convolution in the time domain corresponds to multiplication in the
frequency domain. By duality, the reverse is also true: convolution in the
frequency domain corresponds to multiplication in the time domain. These
and other duality relationships are discussed in more detail in Chapters 10
and 11.

Polar Notation

As it has been described so far, the frequency domain is a group of
amplitudes of cosine and sine waves (with slight scaling modifications).
Thisis called rectangular notation. Alternatively, the frequency domain
can be expressed in polar form. In this notation, ReX[] & ImX[] are
replaced with two other arrays, called the Magnitude of X[], written in
equations as: Mag X[], and the Phase of X[], written as: PhaseX]].
The magnitude and phase are a pair-for-pair replacement for the real and
imaginary parts. For example, Mag X[0] and PhaseX[0] are calculated
using only ReX[0] and ImX][0]. Likewise, MagX[14] and Phase X[14] are
calculated using only ReX[14] and ImX[14], and so forth. To understand
the conversion, consider what happens when you add a cosine wave and a
sine wave of the same frequency. The result is a cosine wave of the same

162 The Scientist and Engineer's Guide to Digital Sgnal Processing

frequency, but with a new amplitude and a new phase shift. In equation form,
the two representations are related:

EQUATION 8-5

The addition of a cosine and sine wave

results in a cosine wave with a different
amplitude and phase shift. The infor-

mation contained in A & Bistransferred to

two other variables, M and 6.

A cos(X) +

Bsn(x) = Mcos(x + 0)

The important point is that no information is lost in this process; given one
representation you can calculate the other. In other words, the information
contained in the amplitudes A and B, is also contained in the variables M and
8. Although this equation involves sine and cosine waves, it follows the same
conversion equations as do simple vectors. Figure 8-9 shows the analogous
vector representation of how the two variables, A and B, can be viewed in a
rectangular coordinate system, while M and 6 are parameters in polar

coordinates.

FIGURE 8-9

Rectangular-to-polar conversion. The
addition of a cosine wave and a sine
wave (of the same frequency) follows
the same mathemati cs as the addition of

simple vectors.

In polar notation, Mag X[] holds the amplitude of the cosine wave (M in Eq.
8-4 and Fig. 8-9), while Phase X[] holds the phase angle of the cosine wave
(6 in Eqg. 8-4 and Fig. 8-9). The following equations convert the frequency
domain from rectangular to polar notation, and vice versa:

EQUATION 8-6

Rectangular-to-polar conversion. The
rectangular representation of the freg-
uency domain, ReX[k] and ImXI[K], is
changed into the polar form, Mag X[k]
and Phase X[K].

EQUATION 8-7

Polar-to-rectangular conversion. The
two arrays, Mag X[k] and Phase X[K], are
converted into ReX[k] and ImX[K].

Mag X [K]

PhaseX [k]

ReX [K]

ImX [K]

= (ReX[k]? + ImX[k]?)Y?

Ctan[ImX[k]]
ReX [k]

MagX [K] cos(PhaseX[K])

MagX[k] sn(PhaseX[k])

Amplitude

Amplitude

Chapter 8- The Discrete Fourier Transform 163

Rectangular and polar notation allow you to think of the DFT in two different
ways. With rectangular notation, the DFT decomposes an N point sgnd into N/2 + 1
cosine waves and N/2+ 1 sine waves, each with a specified amplitude. In
polar notation, the DFT decomposes an N point signal into N/2+ 1 cosine
waves, each with a specified amplitude (called the magnitude) and phase shift.
Why does polar notation use cosine waves instead of sine waves? Sine waves
cannot represent the DC component of a signal, since a sine wave of zero
frequency is composed of all zeros (see Figs. 8-5 a&b).

Even though the polar and rectangular representations contain exactly the same
information, there are many instances where one is easier to use that the other.
For example, Fig. 8-10 shows a frequency domain signal in both rectangular
and polar form. Warning: Don't try to understand the shape of the real and
imaginary parts; your head will explode! In comparison, the polar curves are
straightforward: only frequencies below about 0.25 are present, and the phase
shift is approximately proportional to the frequency. This is the frequency
response of a low-pass filter.

Rectangular Polar
2] 2]
e VX[|
. i
a4 !
=
| \U/ v\"f é-
<
0
-1
2 -1
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
2] 6]
b. ImX[] d. Phase X[]
4
1
S O R R R
~
0 — go
- i, 5
. L I VA
4
2 6
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 8-10

Example of rectangular and polar frequency domains. Thisexample shows afrequency domain expressed
in both rectangular and polar notation. Asin thiscase, polar notation usually provides human observerswith
a better understanding of the characteristics of the signal. In comparison, the rectangular form is almost
always used when math computations are required. Pay special notice to the fact that the first and last
samplesin the phase must be zero, just asthey are in the imaginary part.

164

The Scientist and Engineer's Guide to Digital Sgnal Processing

When should you use rectangular notation and when should you use polar?
Rectangular notation is usually the best choice for calculations, such as in
eguations and computer programs. In comparison, graphs are almost always
in polar form. As shown by the previous example, it is nearly impossible for
humans to understand the characteristics of a frequency domain signal by
looking at the real and imaginary parts. In atypical program, the frequency
domain signals are kept in rectangular notation until an observer needs to look
at them, at which time a rectangular-to-polar conversion is done.

Why is it easier to understand the frequency domain in polar notation? This
guestion goes to the heart of why decomposing a signal into sinusoids is useful.
Recall the property of sinusoidal fidelity from Chapter 5: if a sinusoid enters
a linear system, the output will also be a sinusoid, and at exactly the same
frequency as the input. Only the amplitude and phase can change. Polar
notation directly represents signals in terms of the amplitude and phase of the
component cosine waves. In turn, systems can be represented by how they
modify the amplitude and phase of each of these cosine waves.

Now consider what happens if rectangular notation is used with this
scenario. A mixture of cosine and sine waves enter the linear system,
resulting in a mixture of cosine and sine waves leaving the system. The
problem is, a cosine wave on the input may result in both cosine and sine
waves on the output. Likewise, a sine wave on the input can result in both
cosine and sine waves on the output. While these cross-terms can be
straightened out, the overall method doesn't match with why we wanted to
use sinusoids in the first place.

Polar Nuisances

There are many nuisances associated with using polar notation. None of these
are overwhelming, just really annoying! Table 8-3 shows a computer program
for converting between rectangular and polar notation, and provides solutions
for some of these pests.

Nuisance 1: Radiansvs. Degrees

It is possible to express the phase in either degrees or radians. When
expressed in degrees, the values in the phase signal are between -180 and 180.
Using radians, each of the values will be between -rn and =, that is, between
-3.141592 to 3.141592. Most computer languages require the use radians for
their trigonometric functions, such as cosine, sine, arctangent, etc. It can be
irritating to work with these long decimal numbers, and difficult to interpret the
data you receive. For example, if you want to introduce a 90 degree phase
shift into a signal, you need to add 1.570796 to the phase. While it isn't going
to kill you to type this into your program, it does become tiresome. The best
way to handle this problem is to define the constant, Pl = 3.141592, at the
beginning of your program. A 90 degree phase shift can then be written as
PI/2. Degrees and radians are both widely used in DSP and you need to
become comfortable with both.

Chapter 8- The Discrete Fourier Transform 165

100 'RECTANGULAR-TO-POLAR & POLAR-TO-RECTANGULAR CONVERSION

110

120 DIM REX[256] 'REX[] holds the real part

130 DIM IMX[256] TMX]] holds the imaginary part

140 DIM MAG[256] 'MAG[] holdsthe magnitude

150 DIM PHASE[256] 'PHASE]] holds the phase

160"

170 PI = 3.14159265

180"

190 GOSUB X XXX 'Mythical subroutine to load datainto REX[] and IMX]]
200"

210"

220" 'Rectangular-to-polar conversion, Eq. 8-6

230 FOR K% =0TO 256

240 MAG[K%] = SQR(REX[K%]"2 + IMX[K%]"2) ‘from Eq. 8-6

250 IF REX[K%] =0 THEN REX[K%] = 1E-20 'prevent divide by 0 (nuisance 2)
260 PHASE[K%] = ATN(IMX[K%] / REX[K%]) ‘from Eq. 8-6

270 ' ‘correct the arctan (nuisance 3)
280 IF REX[K%] <0AND IMX[K%] < 0 THEN PHASE[K%] = PHASE[K%] - PI

290 |IF REX[K%] < 0 AND IMX[K%] >= 0 THEN PHASE[K%] = PHASE[K %] + PI

300 NEXT K%

310"
320"
330"

'Polar-to-rectangular conversion, Eq. 8-7

340 FOR K% =0 TO 256

350 REX[K%] = MAG[K%] * COS(PHASE[K%])
360 IMX[K%] = MAG[K%] * SIN(PHASE[K%])
370 NEXT K%

380"

390 END

TABLE8-3

Nuisance 2: Divide by zero error

When converting from rectangular to polar notation, it is very common to
find frequencies where the real part is zero and the imaginary part is some
nonzero value. This simply means that the phase is exactly 90 or -90
degrees. Try to tell your computer this! When your program tries to
calculate the phase from: Phase X[k] = arctan(ImX[k] /ReX[K]), adivide by
zero error occurs. Even if the program execution doesn't halt, the phase
you obtain for this frequency won't be correct. To avoid this problem, the
real part must be tested for being zero before the division. If it is zero, the
imaginary part must be tested for being positive or negative, to determine
whether to set the phase to =/2 or -n/2, respectively. Lastly, the division
needs to be bypassed. Nothing difficult in all these steps, just the potential
for aggravation. An alternative way to handle this problem is shown in
line 250 of Table 8-3. If the real part is zero, change it to a negligibly
small number to keep the math processor happy during the division.

Nuisance 3: Incorrect arctan

Consider a frequency domain sample where ReX[k] = 1 and ImX[K] = 1.
Equation 8-6 provides the corresponding polar values of Mag X[K] = 1.414 and
Phase X[K] = 45°. Now consider another sample where ReX[k] = -1 and

166 The Scientist and Engineer's Guide to Digital Sgnal Processing

ImX[K] = -1. Again, Eqg. 8-6 provides the values of Mag X[K] = 1.414 and
Phase X[K] = 45°. The problem is, the phase is wrong! It should be -135°.
This error occurs whenever the real part is negative. This problem can be
corrected by testing the real and imaginary parts after the phase has been
calculated. If both the real and imaginary parts are negative, subtract 180°
(or = radians) from the calculated phase. If the real part is negative and the
imaginary part is positive, add 180° (or = radians). Lines 340 and 350 of the
program in Table 8-3 show how thisis done. If you fail to catch this problem,
the calculated value of the phase will only run between -=/2 and =/2, rather
than between -= and =. Drill thisinto your mind. If you see the phase only
extending to £1.5708, you have forgotten to correct the ambiguity in the
arctangent calculation.

Nuisance 4: Phase of very small magnitudes

Imagine the following scenario. You are grinding away at some DSP task, and
suddenly notice that part of the phase doesn't look right. It might be noisy,
jumping all over, or just plain wrong. After spending the next hour looking
through hundreds of lines of computer code, you find the answer. The
corresponding values in the magnitude are so small that they are buried in
round-off noise. If the magnitude is negligibly small, the phase doesn't have
any meaning, and can assume unusual values. An example of thisis shownin
Fig. 8-11. It isusually obvious when an amplitude signal is lost in noise; the
values are so small that you are forced to suspect that the values are
meaningless. The phase is different. When a polar signal is contaminated
with noise, the values in the phase are random numbers between -n and .
Unfortunately, this often looks like a real signal, rather than the nonsense it
redly is.

Nuisance 5: 2= ambiguity of the phase

Look again at Fig. 8-10d, and notice the several discontinuities in the data.
Every time a point looks as if it is going to dip below -3.14592, it snaps
back to 3.141592. This is aresult of the periodic nature of sinusoids. For

T
I | | I
| | | 44 -1b. Phase X[] H---——---
I | | I
: : : E T N LA S
| | |) | |
I | | — I T 7 AT
_______________________)
© H 1 i S (4 L o
8 1 1 1 81 T 1
=] 1 1 1 '8 1 1
b= 1 1 ! = 0 ¥
g ! : : < ! :
< I R R
. 2 A [E 24— i N
I | | I |
I | | I |
! ! | | R fommmees Ao
I | | | I |
! ! | | e fommmees Ao
I | | | I |
0.0 t ‘ ‘ ‘ 5 f f
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2
Frequency Frequency

FIGURE 8-11
The phase of small magnitude signals. At frequencies where the magnitude drops to a very low value, round-off
noise can cause wild excursions of the phase. Don't make the mistake of thinking thisis a meaningful signal.

Chapter 8- The Discrete Fourier Transform 167

FIGURE 8-12

Example of phase unwrapping. The top curve
shows a typical phase signal obtained from a
rectangular-to-polar conversion routine. Each
value in the signal must be between -» and =
(i.e., -3.14159 and 3.14159). Asshown inthe
lower curve, the phase can be unwrapped by
adding or subtracting integer multiplies of 2=
from each sample, where the integer is chosen
to minimize the discontinuities between points.

10

Ompe—— iy W Tl .

Phase (radians)

R I

I
I
I
I
I

I
I
I
I
I
|
T

N S

0 0.1 0.2 0.3 0.4 0.5
Frequency

example, a phase shift of q isexadly thesamessaphase shiftof q +2p, q +4p,
q +6p, etc. Any sinusoid is unchanged when you add an integer multiple of
2n to the phase. The apparent discontinuities in the signal are a result of the
computer algorithm picking its favorite choice from an infinite number of
equivalent possihilities. The smallest possible value is always chosen, keeping
the phase between -n and .

It is often easier to understand the phase if it does not have these
discontinuities, even if it means that the phase extends above =, or below -x.
Thisis caled unwrapping the phase, and an example is shown in Fig. 8-12.
As shown by the program in Table 8-4, a multiple of 2 is added or subtracted
from each value of the phase. The exact value is determined by an algorithm
that minimizes the difference between adjacent samples.

Nuisance 6: The magnitudeisalways positive (= ambiguity of the phase)
Figure 8-13 shows a frequency domain signal in rectangular and polar form.
The real part is smooth and quite easy to understand, while the imaginary
part is entirely zero. In comparison, the polar signals contain abrupt

100 ' PHASE UNWRAPPING

110

120 DIM PHASE[256] 'PHASE[] holds the original phase

130 DIM UWPHASE[256] 'UWPHA SE[] holds the unwrapped phase
140

150 PI = 3.14159265

160"

170 GOSUB X XXX 'Mythical subroutine to load datainto PHASE]]
180"

190 UWPHASE[0] =0 "The first point of all phase signalsis zero
200"

210" 'Go through the unwrapping algorithm

220 FOR K% =1 TO 256

230 C% = CINT((UWPHASE[K%-1] - PHASE[K%]) / (2* PI))
240 UWPHASE[K%] = PHASE[K%] + C%* 2* Pl

250 NEXT K%

260"

270 END

TABLE 8-4

168

Amplitude

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing

Rectangular Polar

ik Ji

0 Lfﬁ‘_‘, _——__ 0 Wﬁm.
0 0.1 OFZrequenC(})/A 3 0.4 0.5 0 0.1 OFZrequenC(})/A 3 0.4 0.5
1 s
o — =

g

: B o A
; 1 | 1
0 0.1 OFZrequenC(})lﬁ 0.4 0.5 0 0.1 OFZrequenC(})lﬁ 0.4 0.5
FIGURE 8-13

Example signalsin rectangular and polar form. Since the magnitude must always be positive (by definition),
the magnitude and phase may contain abrupt discontinuities and sharp corners. Figure (d) also shows
another nuisance: random noise can cause the phase to rapidly oscillate between = or -=.

discontinuities and sharp corners. Thisis because the magnitude must always
be positive, by definition. Whenever the real part dips below zero, the
magnitude remains positive by changing the phase by = (or -=, which is the
same thing). While this is not a problem for the mathematics, the irregular
curves can be difficult to interpret.

One solution is to allow the magnitude to have negative values. In the example
of Fig. 8-13, this would make the magnitude appear the same as the real part,
while the phase would be entirely zero. There is nothing wrong with this if it
helps your understanding. Just be careful not to call a signal with negative
values the "magnitude” since this violates its formal definition. In this book we
use the weasel words: unwrapped magnitude to indicate a "magnitude” that is
allowed to have negative values.

Nuisance 7: Spikes between = and -=

Since = and -= represent the same phase shift, round-off noise can cause
adjacent points in the phase to rapidly switch between the two values. As
shown in Fig. 8-13d, this can produce sharp breaks and spikes in an otherwise
smooth curve. Don't be fooled, the phase isn't really this discontinuous.

CHAPTER

9

Applications of the DFT

The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal
Processing. This chapter discusses three common ways it is used. First, the DFT can calculate
a signal's frequency spectrum. This is a direct examination of information encoded in the
frequency, phase, and amplitude of the component sinusoids. For example, human speech and
hearing use signals with this type of encoding. Second, the DFT can find a system's frequency
response from the system's impulse response, and vice versa. This allows systems to be analyzed
in the frequency domain, just as convolution allows systems to be analyzed in the time domain.
Third, the DFT can be used as an intermediate step in more elaborate signal processing
techniques. The classic example of thisis FFT convolution, an agorithm for convolving signals
that is hundreds of times faster than conventional methods.

Spectral Analysis of Signals

It is very common for information to be encoded in the sinusoids that form
asignal. Thisis true of naturally occurring signals, as well as those that
have been created by humans. Many things oscillate in our universe. For
example, speech is a result of vibration of the human vocal cords; stars
and planets change their brightness as they rotate on their axes and revolve
around each other; ship's propellers generate periodic displacement of the
water, and so on. The shape of the time domain waveform is not important
in these signals; the key information is in the frequency, phase and
amplitude of the component sinusoids. The DFT is used to extract this
information.

An example will show how this works. Suppose we want to investigate the
sounds that travel through the ocean. To begin, a microphone is placed in the
water and the resulting electronic signal amplified to a reasonable level, say a
few volts. An analog low-pass filter is then used to remove al frequencies
above 80 hertz, so that the signal can be digitized at 160 samples per second.
After acquiring and storing several thousand samples, what next?

169

170

The Scientist and Engineer's Guide to Digital Sgnal Processing

The first thing is to simply look at the data. Figure 9-1a shows 256 samples
from our imaginary experiment. All that can be seen is a noisy waveform that
conveys little information to the human eye. For reasons explained shortly, the
next step is to multiply this signal by a smooth curve called a Hamming
window, shown in (b). (Chapter 16 provides the equations for the Hamming
and other windows; see Egs. 16-1 and 16-2, and Fig. 16-2a). Thisresultsin
a 256 point signal where the samples near the ends have been reduced in
amplitude, as shown in (c).

Taking the DFT, and converting to polar notation, results in the 129 point
frequency spectrum in (d). Unfortunately, this also looks like a noisy mess.
This is because there is not enough information in the original 256 points to
obtain a well behaved curve. Using alonger DFT does nothing to help this
problem. For example, if a 2048 point DFT is used, the frequency spectrum
becomes 1025 samples long. Even though the original 2048 points contain
more information, the greater number of samples in the spectrum dilutes the
information by the same factor. Longer DFTs provide better frequency
resolution, but the same noise level.

The answer is to use more of the original signal in a way that doesn't
increase the number of points in the frequency spectrum. This can be done
by breaking the input signal into many 256 point segments. Each of these
segments is multiplied by the Hamming window, run through a 256 point
DFT, and converted to polar notation. The resulting frequency spectra are
then averaged to form a single 129 point frequency spectrum. Figure (€)
shows an example of averaging 100 of the frequency spectratypified by (d).
The improvement is obvious; the noise has been reduced to a level that
allows interesting features of the signal to be observed. Only the
magnitude of the frequency domain is averaged in this manner; the phase
is usually discarded because it doesn't contain useful information. The
random noise reduces in proportion to the square-root of the number of
segments. While 100 segments is typical, some applications might average
millions of segments to bring out weak features.

There is also a second method for reducing spectral noise. Start by taking a
very long DFT, say 16,384 points. The resulting frequency spectrum is high
resolution (8193 samples), but very noisy. A low-pass digital filter is then
used to smooth the spectrum, reducing the noise at the expense of the
resolution. For example, the simplest digital filter might average 64 adjacent
samples in the original spectrum to produce each sample in the filtered
spectrum. Going through the calculations, this provides about the same noise
and resolution as the first method, where the 16,384 points would be broken
into 64 segments of 256 points each.

Which method should you use? The first method is easier, because the
digital filter isn't needed. The second method has the potential of better
performance, because the digital filter can be tailored to optimize the trade-
off between noise and resolution. However, this improved performance is
seldom worth the trouble. This is because both noise and resolution can
be improved by using more data from the input signal. For example,

Chapter 9- Applications of the DFT

Time Domain

1.0
1 1 1 1
\a_ Measured signal \
]
0.5 !!
© i
°
2
3 0.0 = 3
£
<
0.5+~ 1 H
1
1
-1.0 t
0 32 64 96 128 160 192 224 255
Sample number
1.5
1 1 1 1
b. Hamming window \
1.0
T
[0} / \
°
2
5 05 A
g/
/ \
0.0
0.5
0 32 64 96 128 160 192 224 255
Sample number
Lo 1 1 1 1
¢. Windowed signal
0.5
[}
B |
5 0.0
£
<
0.5
-1.0
0 32 64 9 128 160 192 224 255
Sample number
FIGURE 9-1

An example of spectral analysis. Figure (a) shows
256 samples taken from a (simulated) undersea
microphone at arate of 160 samples per second.
Thissignal is multiplied by the Hamming window
shown in (b), resulting in the windowed signal in
(c). The frequency spectrum of the windowed
signal isfound using the DFT, and isdisplayedin
(d) (magnitude only). Averaging 100 of these
spectrareduces the random noise, resulting in the
averaged frequency spectrum shown in (€).

Amplitude

Amplitude

Frequency Domain

171

9 7--J d. Single spectrum }

8
Sk
i
6
K
N I
3] 4 [}
21 1 ——

T
0 0.1 0.2
Frequency

I
0.3 0.4

97-4 e. Averaged spectrum

24— []

el v L,

(=1

0 0.1 0.2 0.

3 0.4

Frequency

0.5

172

The Scientist and Engineer's Guide to Digital Sgnal Processing

imagine breaking the acquired data into 10,000 segments of 16,384 samples
each. This resulting frequency spectrum is high resolution (8193 points) and
low noise (10,000 averages). Problem solved! For this reason, we will only
look at the averaged segment method in this discussion.

Figure 9-2 shows an example spectrum from our undersea microphone,
illustrating the features that commonly appear in the frequency spectra of
acquired signals. Ignore the sharp peaks for a moment. Between 10 and 70
hertz, the signal consists of arelatively flat region. Thisiscalled white noise
because it contains an equal amount of all frequencies, the same as white light.
It results from the noise on the time domain waveform being uncorrelated from
sample-to-sample. That is, knowing the noise value present on any one sample
provides no information on the noise value present on any other sasmple. For
example, the random motion of electrons in electronic circuits produces white
noise. As a more familiar example, the sound of the water spray hitting the
shower floor is white noise. The white noise shown in Fig. 9-2 could be
originating from any of several sources, including the analog electronics, or the
ocean itself.

Above 70 hertz, the white noise rapidly decreases in amplitude. Thisis aresult
of the roll-off of the antialias filter. An ideal filter would pass all frequencies
below 80 hertz, and block all frequencies above. In practice, a perfectly sharp
cutoff isn't possible, and you should expect to see this gradual drop. If you
don't, suspect that an aliasing problem is present.

Below about 10 hertz, the noise rapidly increases due to a curiosity called 1/f
noise (one-over-f noise). 1/f noiseis a mystery. It has been measured in very
diverse systems, such as traffic density on freeways and electronic noise in
transistors. It probably could be measured in all systems, if you look low
enough in frequency. In spite of its wide occurrence, a general theory and
understanding of 1/f noise has eluded researchers. The cause of this noise can
be identified in some specific systems; however, this doesn't answer the
guestion of why 1/f noise is everywhere. For common analog el ectronics and
most physical systems, the transition between white noise and 1/f noise occurs
between about 1 and 100 hertz.

Now we come to the sharp peaks in Fig. 9-2. The easiest to explain is at 60
hertz, a result of electromagnetic interference from commercial electrical
power. Also expect to see smaller peaks at multiples of this frequency (120,
180, 240 hertz, etc.) since the power line waveform is not a perfect sinusoid.
It is a'so common to find interfering peaks between 25-40 kHz, a favorite for
designers of switching power supplies. Nearby radio and television stations
produce interfering peaks in the megahertz range. Low frequency peaks can be
caused by components in the system vibrating when shaken. This is called
microphonics, and typically creates peaks at 10 to 100 hertz.

Now we come to the actual signals. There is a strong peak at 13 hertz, with
weaker peaks at 26 and 39 hertz. As discussed in the next chapter, thisis the
frequency spectrum of a nonsinusoidal periodic waveform. The peak at 13
hertz is called the fundamental frequency, while the peaks at 26 and 39

FIGURE 9-2 8
Example frequency spectrum. Three types of 7

features appear in the spectra of acquired °

signals: (1) random noise, such as white noise g 67

and U/f noise, (2) interfering signals from power s 5
lines, switching power supplies, radio and TV E A

stations, microphonics, etc., and (3) real signals, | | | |
usually appearing as a fundamental plus 3 39 Hz. 60 Hz.
harmonics. Thisexample spectrum (magnitude e

only) shows several of these features.

100

Chapter 9- Applications of the DFT 173

.Uantialiasfilter roll-off]~
I I I T T T T

0 10 20 30 40 50 60 70 80

Frequency (hertz)

hertz are referred to as the second and third harmonic respectively. You
would also expect to find peaks at other multiples of 13 hertz, such as 52,
65, 78 hertz, etc. You don't see these in Fig. 9-2 because they are buried
in the white noise. This 13 hertz signal might be generated, for example,
by a submarines's three bladed propeller turning at 4.33 revolutions per
second. Thisisthe basis of passive sonar, identifying undersea sounds by
their frequency and harmonic content.

Suppose there are peaks very close together, such as shown in Fig. 9-3. There
are two factors that limit the frequency resolution that can be obtained, that is,
how close the peaks can be without merging into a single entity. The first
factor is the length of the DFT. The frequency spectrum produced by an N
point DFT consists of N/2+1 samples equally spaced between zero and one-
half of the sampling frequency. To separate two closely spaced frequencies,
the sample spacing must be smaller than the distance between the two peaks.
For example, a 512 point DFT is sufficient to separate the peaks in Fig. 9-3,
while a 128 point DFT is not.

320 T

T T T T T
| I | | I
i i b. N =512 i i i
80 U L | ! ! !
1 1 240 4+ ——————— L I S P R —
| I | | I I
| I | | 9 I I
Y | | 9 | [|
60 ———mmm o
E T 1 S ! ! ! !
:] s 1 e
€ 40 N A R £ | | | |
< i i < i i i i
| I | | I I
i i 80-------- S R S - S T—
20 fommmees A=mmmmmmt | | : !
| I | | I I
| I | | I I
| I | | I I
| I | | I I
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 9-3

Frequency spectrum resolution. The longer the DFT, the better the ability to separate closely spaced features. In
these example magnitudes, a 128 point DFT cannot resolve the two peaks, while a512 point DFT can.

174 The Scientist and Engineer's Guide to Digital Sgnal Processing

200 T

The second factor limiting resolution is more subtle. Imagine a signal
created by adding two sine waves with only a slight difference in their
frequencies. Over a short segment of this signal, say a few periods, the
waveform will look like a single sine wave. The closer the frequencies, the
longer the segment must be to conclude that more than one frequency is
present. In other words, the length of the signal limits the frequency
resolution. Thisis distinct from the first factor, because the length of the
input signal does not have to be the same as the length of the DFT. For
example, a 256 point signal could be padded with zeros to make it 2048
points long. Taking a 2048 point DFT produces a frequency spectrum with
1025 samples. The added zeros don't change the shape of the spectrum,
they only provide more samples in the frequency domain. In spite of this
very close sampling, the ability to separate closely spaced peaks would be
only slightly better than using a 256 point DFT. When the DFT is the same
length as the input signal, the resolution is limited about equally by these
two factors. We will come back to this issue shortly.

Next question: What happens if the input signal contains a sinusoid with a
frequency between two of the basis functions? Figure 9-4a shows the answer.
This is the frequency spectrum of a signal composed of two sine waves, one
having a frequency matching a basis function, and the other with a frequency
between two of the basis functions. As you should expect, the first sine wave
is represented as a single point. The other peak is more difficult to understand.
Since it cannot be represented by a single sample, it becomes a peak with tails
that extend a significant distance away.

The solution? Multiply the signal by a Hamming window before taking the
DFT, as was previously discussed. Figure (b) shows that the spectrum is
changed in three ways by using the window. First, the two peaks are made
to look more alike. This is good. Second, the tails are greatly reduced.

100

i i 5 5 5 i
i i \ b. With Hamming window \ i
I I T T T I
160 ------- pomomme- Tom-mme- Tommme- qmmmmmm 80 -------- pomomme- Tom-mme- qmm-mmo- q-=-m-——
i i i i i i i i
on basis | | i on basis | | i
8 120+--— function |-F-4-—————_ +--Tbetween 8 60 -+---- function |-}-+-—————- +4-Tbetween
2 : ! 'T | basisfunctions 2 ! ! | |basis functions
E— i i i i E— i i i i
oy 4y __an]
< % ! ! ! ! < ¥ ! ! ! !
i - i
i bomoes ~pommoe- {pr==tailsf---—— o R b I — [A-mmmme
i i / i i i i i
i i i i i i i
0 ' ' \ 0 ; ; : ;
0 0.1 0.2 03 0.4 05 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 9-4

Example of using awindow in spectral analysis. Figure (a) showsthe frequency spectrum (magnitude only) of asignal
consisting of two sine waves. One sine wave has a frequency exactly equal to a basis function, allowing it to be
represented by asingle sample. The other sine wave has afrequency between two of the basis functions, resulting in
tailson the peak. Figure (b) showsthe frequency spectrum of the same signal, but with a Blackman window applied
before taking the DFT. The window makes the peaks ook the same and reduces the tails, but broadens the peaks.

Chapter 9- Applications of the DFT 175

Thisisalso good. Third, the window reduces the resolution in the spectrum by
making the peaks wider. Thisisbad. In DSP jargon, windows provide atrade-
off between resolution (the width of the peak) and spectral leakage (the
amplitude of the tails).

To explore the theoretical aspects of this in more detail, imagine an infinitely
long discrete sine wave at a frequency of 0.1 the sampling rate. The frequency
spectrum of this signal is an infinitesimally narrow peak, with all other
frequencies being zero. Of course, neither this signal nor its frequency
spectrum can be brought into a digital computer, because of their infinite and
infinitesimal nature. To get around this, we change the signal in two ways,
both of which distort the true frequency spectrum.

First, we truncate the information in the signal, by multiplying it by a window.
For example, a 256 point rectangular window would alow 256 points to retain
their correct value, while all the other samples in the infinitely long signal
would be set to avalue of zero. Likewise, the Hamming window would shape
the retained samples, besides setting all points outside the window to zero. The
signal is still infinitely long, but only a finite number of the samples have a
nonzero value.

How does this windowing affect the frequency domain? As discussed in
Chapter 10, when two time domain signals are multiplied, the corresponding
frequency domains are convolved. Since the original spectrum is an
infinitesimally narrow peak (i.e., a delta function), the spectrum of the
windowed signal is the spectrum of the window shifted to the location of the
peak. Figure 9-5 shows how the spectral peak would appear using four
different window options (If you need arefresher on dB, look ahead to Chapter
14). Figure 9-5a results from a rectangular window. Figures (b) and (c)
result from using two popular windows, the Hamming and the Blackman (as
previously mentioned, see Egs. 16-1 and 16-2, and Fig. 16-2a for information
on these windows).

As shown in Fig. 9-5, all these windows have degraded the original spectrum
by broadening the peak and adding tails composed of numerous side lobes.
This is an unavoidable result of using only a portion of the original time
domain signal. Here we can see the tradeoff between the three windows. The
Blackman has the widest main lobe (bad), but the lowest amplitude tails
(good). The rectangular window has the narrowest main lobe (good) but the
largest tails (bad). The Hamming window sits between these two.

Notice in Fig. 9-5 that the frequency spectra are continuous curves, not discrete
samples. After windowing, the time domain signal is still infinitely long, even
though most of the samples are zero. This means that the frequency spectrum
consists of «/2+1 samples between 0 and 0.5, the same as a continuous line.

This brings in the second way we need to modify the time domain signal to
allow it to be represented in a computer: select N points from the signal.
These N points must contain al the nonzero points identified by the window,
but may also include any number of the zeros. This has the effect

176 The Scientist and Engineer's Guide to Digital Sgnal Processing
20 — 77 20 7
\a_ Rectangular window \ b \b. Hamming window \ [
04 I 1 1 OF———F—F——F———F— |
= T = 0T e W e								
g ' g ! ! I T								
o - o - L L : : : I)								
3 s MY								
3 5								
S S i								
< . <. ;								
I								
t								
Frequency								
20 " 20 — 77								
c. Blackman window \ oo d. Flat-top window oo								
0 I 1 1 1 O+—F——F———F———L]								
i b N								
= 207 i el it R S v A Rty R R N B R								
%	%							
K 1 A 1 1 1 1 1 1								
@ -40	@ -40--—f---ko-fo- NS Rty i iy							
8 1 8 1 1 1 1 1 1								
= 1 = 1 1 1 1 1 1								
5 60 i 5 -60r---r O B an e SRS R								
£	£	A b						
< a Bl i e R v								
100 -100-{AYH T S S S HAAL								
i I i
-120 t t -120 Pttt
0.05 006 0.07 008 009 01 011 012 013 014 015 0.05 006 0.07 008 009 0.1 011 012 013 014 015
Frequency Frequency
FIGURE 9-5

Detailed view of a spectral peak using various windows. Each peak in the frequency spectrum is a central lobe
surrounded by tails formed from side lobes. By changing the window shape, the amplitude of the side lobes can be
reduced at the expense of making the main lobe wider. The rectangular window, (), has the narrowest main lobe but
the largest amplitude side lobes. The Hamming window, (b), and the Blackman window, (c), have lower amplitude side
lobes at the expense of awider main lobe. The flat-top window, (d), is used when the amplitude of a peak must be
accurately measured. These curves are for 255 point windows; longer windows produce proportionately narrower peaks.

of sampling the frequency spectrum'’s continuous curve. For example, if N is
chosen to be 1024, the spectrum's continuous curve will be sampled 513 times
between 0 and 0.5. If N ischosen to be much larger than the window length, the
samplesin the frequency domain will be close enough that the peaks and valleys
of the continuous curve will be preserved in the new spectrum. If N ismade the
same as the window length, the fewer number of samplesin the spectrum results
in the regular pattern of peaks and valleysturning into irregular tails, depending
on where the samples happen to fall. Thisexplainswhy the two peaksin Fig. 9-
4ado not look alike. Each peak in Fig 9-4aisasampling of the underlying curve
in Fig. 9-5a. The presence or absence of the tails depends on where the samples
are taken in relation to the peaks and valleys. |If the sine wave exactly matches
a basis function, the samples occur exactly at the valleys, eliminating the tails.
If the sine wave is between two basis functions, the samples occur somewhere
along the peaks and valleys, resulting in various patterns of tails.

Chapter 9- Applications of the DFT 177

This leads us to the flat-top window, shown in Fig. 9-5d. In some applications
the amplitude of a spectral peak must be measured very accurately. Since the
DFT’s frequency spectrum is formed from samples, there is nothing to
guarantee that a sample will occur exactly at the top of a peak. More than
likely, the nearest sample will be slightly off-center, giving a value lower than
the true amplitude. The solution is to use a window that produces a spectral
peak with aflat top, insuring that one or more of the samples will always have
the correct peak value. As shown in Fig. 9-5d, the penalty for this is a very
broad main lobe, resulting in poor frequency resolution.

As it turns out, the shape we want for a flat-top window is exactly the same
shape as the filter kernel of alow-pass filter. We will discuss the theoretical
reasons for this in later chapters; for now, here is a cookbook description of
how the technique is used. Chapter 16 discusses a low-pass filter called the
windowed-sinc. Equation 16-4 describes how to generate the filter kernel
(which we want to use as a window), and Fig. 16-4a illustrates the typical
shape of the curve. To use this equation, you will need to know the value of
two parameters: M and f_. These are found from the relations: M = N-2, and
f.=s/N, where N is the length of the DFT being used, and s is the number of
samples you want on the flat portion of the peak (usually between 3 and 5).
Table 16-1 shows a program for calculating the filter kernel (our window),
including two subtle features: the normalization constant, K, and how to avoid
adivide-by-zero error on the center sample. When using this method, remember
that a DC value of one in the time domain will produce a peak of amplitude
one in the frequency domain. However, a sinusoid of amplitude one in the time
domain will only produce a spectral peak of amplitude one-half. (Thisis
discussed in the last chapter: Synthesis, Calculating the Inverse DFT).

Frequency Response of Systems

Systems are analyzed in the time domain by using convolution. A similar
analysis can be done in the frequency domain. Using the Fourier transform,
every input signal can be represented as a group of cosine waves, each with a
specified amplitude and phase shift. Likewise, the DFT can be used to
represent every output signal in a similar form. This means that any linear
system can be completely described by how it changes the amplitude and phase
of cosine waves passing through it. This information is called the system's
frequency response. Since both the impulse response and the frequency
response contain complete information about the system, there must be a one-
to-one correspondence between the two. Given one, you can calculate the
other. The relationship between the impulse response and the frequency
response is one of the foundations of signal processing: A system's frequency
response is the Fourier Transform of its impulse response. Figure 9-6
illustrates these relationships.

Keeping with standard DSP notation, impulse responses use lower case
variables, while the corresponding frequency responses are upper case. Since h[]
is the common symbol for the impulse response, H[] is used for the frequency
response. Systems are described in the time domain by convolution, that is:

178

The Scientist and Engineer's Guide to Digital Sgnal Processing

x[n] * h[n] = y[n]. In the frequency domain, the input spectrum is multiplied
by the frequency response, resulting in the output spectrum. As an equation:
X[f]1xH[f] =Y[f]. Thatis, convolution in the time domain corresponds to
multiplication in the frequency domain.

Figure 9-7 shows an example of using the DFT to convert a system's impulse
response into its frequency response. Figure (a) is the impulse response of the
system. Looking at this curve isn't going to give you the slightest idea what
the system does. Taking a 64 point DFT of this impulse response produces the
frequency response of the system, shown in (b). Now the function of this
system becomes obvious, it passes frequencies between 0.2 and 0.3, and rejects
all others. Itisaband-passfilter. The phase of the frequency response could
also be examined; however, it is more difficult to interpret and less interesting.
It will be discussed in upcoming chapters.

Figure (b) is very jagged due to the low number of samples defining the curve.
This situation can be improved by padding the impulse response with zeros
before taking the DFT. For example, adding zeros to make the impulse
response 512 samples long, as shown in (c), results in the higher resolution
frequency response shown in (d).

How much resolution can you obtain in the frequency response? The answer
is: infinitely high, if you are willing to pad the impulse response with an
infinite number of zeros. In other words, there is nothing limiting the
frequency resolution except the length of the DFT. This leads to a very
important concept. Even though the impulse response is a discrete signal, the
corresponding frequency response is continuous. An N point DFT of the
impulse response provides N/2+1 samples of this continuous curve. |If you
make the DFT longer, the resolution improves, and you obtain a better idea of

x[n] —> h[n] |——> Yyin]

TIME

L

FREQUENCY
DOMAIN

X[f] —> HIfl |—> YIi]

FIGURE 9-6

Comparing system operation in the time and frequency domains. In the time domain, an input signal is
convolved with an impul se response, resulting in the output signal, that is, x[n] % h[n] = y[n]. Inthefrequency
domain, an input spectrum is multiplied by a frequency response, resulting in the output spectrum, that is,
X[fl x H[f] = Y[f]. The DFT and the Inverse DFT relate the signalsin the two domain.

Amplitude

Amplitude

Chapter 9- Applications of the DFT 179

Time Domain Frequency Domain
04 S B S 20 ! !
| a Impulse response | | b. Frequency response |
0.2] 15
>
oo J F‘. My E -
0 i .\ V% - g_1.0 /
<
0.2 i 0.5
0.4 0.0 “-/ L
0 8 16 24 32 40 48 56 63 0 0.1 02 03 0.4 05
Sample number Frequency
04 S SN SN S S R 20 ' ' ' '
c. Impulse response padded with zeros d. Frequency response (high resolution) ‘
0.2 15
%
0 < S10 ,,z g
£
-0.2 0.5 / \
0.4 0.0
0 64 128 192 256 320 384 448 511 0 0.1 0.2 03 0.4 05
Sample number Frequency
FIGURE 9-7

Finding the frequency response from the impulse response. By using the DFT, a system'simpul se response,
(a), can be transformed into the system'’s frequency response, (b). By padding the impul se response with zeros
(c), higher resolution can be obtained in the frequency response, (d). Only the magnitude of the frequency
response is shown in this example; discussion of the phase is postponed until the next chapter.

what the continuous curve looks like. Remember what the frequency response
represents. amplitude and phase changes experienced by cosine waves as they
pass through the system. Since the input signal can contain any frequency
between 0 and 0.5, the system'’s frequency response must be a continuous curve
over this range.

This can be better understood by bringing in another member of the Fourier
transform family, the Discrete Time Fourier Transform (DTFT).
Consider an N sample signal being run through an N point DFT, producing
an N/2+ 1 sample frequency domain. Remember from the last chapter that
the DFT considers the time domain signal to be infinitely long and periodic.
That is, the N points are repeated over and over from negative to positive
infinity. Now consider what happens when we start to pad the time domain
signal with an ever increasing number of zeros, to obtain a finer and finer
sampling in the frequency domain. Adding zeros makes the period of the
time domain longer, while simultaneously making the frequency domain
samples closer together.

180 The Scientist and Engineer's Guide to Digital Sgnal Processing

Convolution

Now we will take this to the extreme, by adding an infinite number of zerosto
the time domain signal. This produces a different situation in two respects.
First, the time domain signal now has an infinitely long period. In other words,
it has turned into an aperiodic signal. Second, the frequency domain has
achieved an infinitesimally small spacing between samples. That is, it has
become a continuous signal. Thisisthe DTFT, the procedure that changes a
discrete aperiodic signal in the time domain into a frequency domain that is a
continuous curve. In mathematical terms, a system's frequency response is
found by taking the DTFT of its impulse response. Since this cannot be done
in a computer, the DFT is used to calculate a sampling of the true frequency
response. Thisis the difference between what you do in a computer (the DFT)
and what you do with mathematical equations (the DTFT).

via the Frequency Domain

Suppose that you despise convolution. What are you going to do if given an
input signal and impulse response, and need to find the resulting output signal?
Figure 9-8 provides an answer: transform the two signals into the frequency
domain, multiply them, and then transform the result back into the time domain.
This replaces one convolution with two DFTs, a multiplication, and an Inverse
DFT. Even though the intermediate steps are very different, the output is
identical to the standard convolution algorithm.

Does anyone hate convolution enough to go to this trouble? The answer is yes.
Convolution is avoided for two reasons. First, convolution is mathematically
difficult to deal with. For instance, suppose you are given a system's impulse
response, and its output signal. How do you calculate what the input signal is?
Thisis called deconvolution, and is virtually impossible to understand in the
time domain. However, deconvolution can be carried out in the frequency
domain as a simple division, the inverse operation of multiplication. The
frequency domain becomes attractive whenever the complexity of the Fourier
Transform is less than the complexity of the convolution. Thisisn't a matter
of which you like better; it is a matter of which you hate less.

The second reason for avoiding convolution is computation speed. For
example, suppose you design a digital filter with a kernel (impulse response)
containing 512 samples. Using a 200 MHz personal computer with floating
point numbers, each sample in the output signal requires about one millisecond
to calculate, using the standard convolution algorithm. In other words, the
throughput of the system is only about 1,000 samples per second. Thisis 40
times too slow for high-fidelity audio, and 10,000 times too slow for television
quality video!

The standard convolution algorithm is slow because of the large number of
multiplications and additions that must be calculated. Unfortunately, simply
bringing the problem into the frequency domain viathe DFT doesn't help at all.
Just as many calculations are required to calculate the DFTSs, as are required
to directly calculate the convolution. A breakthrough was made in the problem
in the early 1960s when the Fast Fourier Transform (FFT) was developed.

Chapter 9- Applications of the DFT 181

2 : 2 . 30 .
a x[n] d. h[n] 2011 9 yInl
1
® o ! o 10 N N /\VI\ /\
LR : ERASVAVRAVZAN
30+ *¥ = = 30 o
AR : :
< <o <10
-1
20
2 -1 -30
0 128 256 384 511 0 128 256 384 511 0 128 256 384 511
Sample number Sample number Sample number
TIME
FREQUENCY
60 . . 60 . . 2000 : :
w] b ReXI[f] ol & ReH[f] h. Re Y[f]
1000
» 20 o 20 °
° ° °
2 2 2
50 " 50 5 0
£ g £
<0 I < 5 <
I -1000
40 -40
-60 -60 2000
0 64 128 192 256 0 64 128 192 256 0 64 128 192 256
Frequency X Frequency — Frequency
60 . . 60 . . 2000 . .
o] ImX(f] o LT M HT] i ImY[f]
1000
@ 20+ o 20 ©
o ° o
2 2 2
=0 Ak = 0N = 0
B 2 B l}
<20 <0 <
-1000
40} 40
-60 60 2000
0 64 128 192 256 0 64 128 192 256 0 64 128 192 256
Frequency Frequency Frequency
FIGURE 9-8

Frequency domain convolution. In the time domain, x[n] is convolved with h[n] resulting in y[n], asis shown in Figs.
(@), (d), and (g). This same procedure to be accomplished in the frequency domain. The DFT is used to find the
frequency spectrum of theinput signal, (b) & (c), and the system's frequency response, (€) & (f). Multiplying these two
frequency domain signals resultsin the frequency spectrum of the output signal, (h) & (i). TheInverse DFT isthen used
to find the output signal, (g).

The FFT isaclever algorithm for rapidly calculating the DFT. Using the FFT,
convolution by multiplication in the frequency domain can be hundreds of times
faster than conventional convolution. Problems that take hours of calculation
time are reduced to only minutes. This is why people get excited about the FFT,
and processing signals in the frequency domain. The FFT will be presented in

182

EQUATION 9-1

The Scientist and Engineer's Guide to Digital Sgnal Processing

Chapter 12, and the method of FFT convolution in Chapter 18. For now, focus
on how signals are convolved by frequency domain multiplication.

To start, we need to define how to multiply one frequency domain signa by
another, i.e., what it means to write: X[f] xH[f] = Y[f]. In polar form, the
magnitudes are multiplied: MagY[f] = MagX[f] x MagH[f], and the phases
are added: PhaseY[f] = PhaseX[f] + PhaseH[f]. To understand this, imagine
a cosine wave entering a system with some amplitude and phase. Likewise, the
output signal is also a cosine wave with some amplitude and phase. The polar
form of the frequency response directly describes how the two amplitudes are
related and how the two phases are related.

When frequency domain multiplication is carried out in rectangular form there
are cross terms between the real and imaginary parts. For example, a sine
wave entering the system can produce both cosine and sine waves in the output.
To multiply frequency domain signals in rectangular notation:

ReY[f] = ReX[f] ReH[f] - ImX[f] ImH[f]

Multiplication of frequency
domain signalsin rectangular

form: Y[f] = X[f] xH[f]. ImY|[f]

EQUATION 9-2

Division of frequency domain

ImX[f] ReH[f] + ReX[f] ImH[f]

Focus on understanding multiplication using polar notation, and the idea of
cosine waves passing through the system. Then simply accept that these more
elaborate equations result when the same operations are carried out in
rectangular form. For instance, let's look at the division of one frequency
domain signal by another. In polar form, the division of frequency domain
signals is achieved by the inverse operations we used for multiplication. To
calculate: H[f] = Y[f]/X][f], divide the magnitudes and subtract the phases,
i.e., MagH[f] = MagY[f]/MagX[f], PhaseH[f] = PhaseY[f] - PhaseX[f].
In rectangular form this becomes:

ReY[f] ReX[f]
ReX[f]2

+

ImY[f] ImX[f]

ReH[f] = e

+

signals in rectangular form,
where: H[f] = Y[f]/X][f].

ImY[f] ReX[f]
ReX[f]2

ReY[f] ImX[f]

ImH[f] = e

+

Now back to frequency domain convolution. You may have noticed that we
cheated dlightly in Fig. 9-8. Remember, the convolution of an N point signal
with an M point impulse response results in an N+M-1 point output signal.
We cheated by making the last part of the input signal all zeros to allow this
expansion to occur. Specifically, (a) contains 453 nonzero samples, and (b)
contains 60 nonzero samples. This means the convolution of the two, shown
in (c), can fit comfortably in the 512 points provided.

Amplitude
(=]

Chapter 9- Applications of the DFT

a Input signal

‘b. Impulse response ‘

‘J\»\/\\J\l\f'\/\ | A

N

A

*

Amplitude

T T
0 64 128
Sample number

T
192

T T T
64 128 192 255

Sample number

255 0

183

157_‘ c. Convolution of (a) and (Ib) L

VA NR

\ LY
%

N/

W

. Amplitude

: i

T T
64 128 192

Sample number

/
:

[
15 7___1 d. Overlap of adjecent periods 1

A

N\ A

[NN [
VvV

. Amplitude

W

FIGURE 9-9

256 512

Sample number

20
157_‘ e. Circular convolution L

JANA
WA A4
‘V

\./
] overlap

\J

. Amplitude
(=]

T T T
0 64 128 192 255
Sample number

767

255

305

Circular convolution. A 256 sample signal, (a), convolved with a51 sampleimpulse response, (b), resultsin
a 306 samplesignal, (c). If thisconvolution is performed in the frequency domain using 256 point DFTSs, the
306 pointsin the correct convolution cannot fit into the 256 samples provided. Asshownin (d), samples 256
through 305 of the output signal are pushed into the next period to the right, where they add to the beginning
of the next period's signal. Figure (€) isasingle period of the resulting signal.

Now consider the more general casein Fig. 9-9. The input signal, (a), is 256
points long, while the impulse response, (b), contains 51 nonzero points. This
makes the convolution of the two signals 306 samples long, as shown in (c).
The problem is, if we use frequency domain multiplication to perform the
In other

words, 256 point DFTs are used to move (@) and (b) into the frequency

convolution, there are only 256 samples allowed in the output signal.

184

The Scientist and Engineer's Guide to Digital Sgnal Processing

domain. After the multiplication, a 256 point Inverse DFT is used to find the
output signal. How do you sgqueeze 306 values of the correct signal into the
256 points provided by the frequency domain algorithm? The answer is, you
can't! The 256 points end up being a distorted version of the correct signal.
This processis called circular convolution. It isimportant because you want
to avoid it.

To understand circular convolution, remember that an N point DFT views the
time domain as being an infinitely long periodic signal, with N samples per
period. Figure (d) shows three periods of how the DFT views the output signal
in this example. Since N = 256, each period consists of 256 points; 0-255,
256-511, and 512-767. Frequency domain convolution tries to place the 306
point correct output signal, shown in (c), into each of these 256 point periods.
This results in 49 of the samples being pushed into the neighboring period to
the right, where they overlap with the samples that are legitimately there.
These overlapping sections add, resulting in each of the periods appearing as
shown in (e), the circular convolution.

Once the nature of circular convolution is understood, it is quite easy to avoid.
Simply pad each of the signals being convolved with enough zerosto allow the
output signal room to handle the N+ M-1 points in the correct convolution.
For example, the signals in (a) and (b) could be padded with zeros to make
them 512 points long, allowing the use of 512 point DFTs. After the frequency
domain convolution, the output signal would consist of 306 nonzero samples,
plus 206 samples with a value of zero. Chapter 18 explains this procedure in
detail.

Why isit called circular convolution? Look back at Fig. 9-9d and examine the
center period, samples 256 to 511. Since al of the periods are the same, the
portion of the signal that flows out of this period to the right, is the same that
flows into this period from the left. If you only consider a single period, such
asin (e), it appears that the right side of the signal is somehow connected to
the left side. Imagine a snake biting its own tail; sample 255 is located next
to sample 0, just as sample 100 is located next to sample 101. When a portion
of the signal exits to the right, it magically reappears on the left. In other
words, the N point time domain behaves as if it were circular.

In the last chapter we posed the question: does it really matter if the DFT's
time domain is viewed as being N points, rather than an infinitely long
periodic signal of period N? Circular convolution is an example where it
does matter. If the time domain signal is understood to be periodic, the
distortion encountered in circular convolution can be simply explained as
the signal expanding from one period to the next. In comparison, a rather
bizarre conclusion is reached if only N points of the time domain are
considered. That is, frequency domain convolution acts as if the time
domain is somehow wrapping into a circular ring with sample 0 being
positioned next to sample N-1.

CHAPTER

10

Fourier Transform Properties

The time and frequency domains are alternative ways of representing signals. The Fourier
transform is the mathematical relationship between these two representations. If a signal is
modified in one domain, it will also be changed in the other domain, although usually not in the
same way. For example, it was shown in the last chapter that convolving time domain signals
results in their frequency spectra being multiplied. Other mathematical operations, such as
addition, scaling and shifting, also have a matching operation in the opposite domain. These
relationships are called properties of the Fourier Transform, how a mathematical change in one
domain results in a mathematical change in the other domain.

Linearity of the Fourier Transform

The Fourier Transform is linear, that is, it possesses the properties of
homogeneity and additivity. Thisis true for all four members of the Fourier
transform family (Fourier transform, Fourier Series, DFT, and DTFT).

Figure 10-1 provides an example of how homogeneity is a property of the
Fourier transform. Figure (a) shows an arbitrary time domain signal, with the
corresponding frequency spectrum shown in (b). We will call these two
signals. x[] and X[], respectively. Homogeneity means that a change in
amplitude in one domain produces an identical change in amplitude in the other
domain. This should make intuitive sense: when the amplitude of a time
domain waveform is changed, the amplitude of the sine and cosine waves
making up that waveform must also change by an equal amount.

In mathematical form, if X[] and X[] are a Fourier Transform pair, then kx|]
and kX[] are also a Fourier Transform pair, for any constant k. If the
frequency domain is represented in rectangular notation, kX[] means that both
the real part and the imaginary part are multiplied by k. If the frequency
domain is represented in polar notation, kX[] means that the magnitude is
multiplied by k, while the phase remains unchanged.

185

186

The Scientist and Engineer's Guide to Digital Sgnal Processing

Amplitude

Time Domain Frequency Domain
50
o)
40
Avn “AAI\' @ %30
i1 £,
10 /\
L\
64 128 192 255 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency

50

c. kx[] d. kX[]

Amplitude

40
% 30 /\
A“A ﬂv,. %- I \
[j C €20
) l \
10
0
64 128 192 255 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 10-1

Homogeneity of the Fourier transform. If the amplitudeischanged in onedomain, it is changed by
the same amount in the other domain. In other words, scaling in one domain corresponds to scaling
in the other domain.

Additivity of the Fourier transform means that addition in one domain
corresponds to addition in the other domain. An example of this is shown
in Fig. 10-2. Inthisillustration, (a) and (b) are signals in the time domain
called x[] and x[], respectively. Adding these signals produces athird
time domain signal called x[], shown in (c). Each of these three signals
has a frequency spectrum consisting of areal and an imaginary part, shown
in (d) through (i). Since the two time domain signals add to produce the
third time domain signal, the two corresponding spectra add to produce the
third spectrum. Frequency spectra are added in rectangular notation by
adding the real parts to the real parts and the imaginary parts to the
imaginary parts. 1f: x[n] +x,[n] =x,[n], then: ReX[f] + ReX[f] = ReX][f]
and ImX[f] +ImX[f] = ImX][f]. Think of thisin terms of cosine and sine
waves. All the cosine waves add (the real parts) and all the sine waves add
(the imaginary parts) with no interaction between the two.

Frequency spectra in polar form cannot be directly added; they must be
converted into rectangular notation, added, and then reconverted back to

Time Domain

Chapter 10- Fourier Transform Properties

a X]

[N}

o

\ANAN

Amplitude

Y

A
VUV YV

64 128 192
Sample number

255

%

64 128 192
Sample number

255

()

C.);3[]

o

A ALY

Amplitude

%Y

RARA

0

64 128 192
Sample number

FIGURE 10-2

255

200

Amplitude

Amplitude

Amplitude

Frequency Domain

d. ReX[]

200

0.1 0.2 0.3 0.4
Frequency

0.5

200

0.1 0.2 0.3 0.4
Frequency

0.5

f. RIeX3[]

0.1 0.2 0.3 0.4
Frequency

0.5

200

187

00

g ImX[]

Amplitude

200

0.1 0.2 0.3 0.4
Frequency

0.5

00

Amplitude

200

0.1 0.2 0.3 0.4
Frequency

0.5

00

Amplitude

0.1 0.2 0.3 0.4
Frequency

Additivity of the Fourier transform. Adding two or more signals in one domain results in the
corresponding signal s being added in the other domain. Inthisillustration, thetime domain signals
in (a) and (b) are added to produce the signal in (c). This results in the corresponding real and
imaginary parts of the frequency spectra being added.

0.5

polar form. This can also be understood in terms of how sinusoids behave.
Imagine adding two sinusoids having the same frequency, but with different
amplitudes (A, and A,) and phases (¢, and ¢,). If the two phases happen to
be same (¢, = ¢,), the amplitudes will add (A, +A,) when the sinusoids are
added. However, if the two phases happen to be exactly opposite (¢, = -¢,),
the amplitudes will subtract (A, -A,) when the sinusoids are added. The point
is, when sinusoids (or spectra) are in polar form, they cannot be added by
simply adding the magnitudes and phases.

188 The Scientist and Engineer's Guide to Digital Sgnal Processing

In spite of being linear, the Fourier transform is not shift invariant. In other
words, a shift in the time domain does not correspond to a shift in the
frequency domain. Thisis the topic of the next section.

Characteristics of the Phase

In mathematical form: if x[n] - MagX[f] & PhaseX[f], then a shift in the
time domain results in: x[n+s] -~ MagX[f] & Phase X[f] +2nsf, (where f
is expressed as a fraction of the sampling rate, running between 0 and 0.5). In
words, a shift of s samplesin the time domain leaves the magnitude unchanged,
but adds a linear term to the phase, 2nsf. Let's look at an example of how
this works.

Figure 10-3 shows how the phase is affected when the time domain waveform
is shifted to the left or right. The magnitude has not been included in this
illustration because it isn't interesting; it is not changed by the time domain
shift. In Figs. (a) through (d), the waveform is gradually shifted from having
the peak centered on sample 128, to having it centered on sample 0. This
sequence of graphs takes into account that the DFT views the time domain as
circular; when portions of the waveform exit to the right, they reappear on the
left.

The time domain waveform in Fig. 10-3 is symmetrical around a vertical
axis, that is, the left and right sides are mirror images of each other. As
mentioned in Chapter 7, signals with this type of symmetry are called linear
phase, because the phase of their frequency spectrum is a straight line.
Likewise, signals that don't have this left-right symmetry are called
nonlinear phase, and have phases that are something other than a straight
line. Figures (e) through (h) show the phase of the signals in (a) through
(d). As described in Chapter 7, these phase signals are unwrapped,
allowing them to appear without the discontinuities associated with keeping
the value between = and -.

When the time domain waveform is shifted to the right, the phase remains a
straight line, but experiences a decrease in slope. When the time domain is
shifted to the left, there is an increase in the slope. This is the main property
you need to remember from this section; a shift in the time domain corresponds
to changing the slope of the phase.

Figures (b) and (f) display a unique case where the phase is entirely zero. This
occurs when the time domain signal is symmetrical around sample zero. At first
glance, this symmetry may not be obvious in (b); it may appear that the signal
is symmetrical around sample 256 (i.e., N/2) instead. Remember that the DFT
views the time domain as circular, with sample zero inherently connected to
sample N-1. Any signal that is symmetrical around sample zero will also be
symmetrical around sample N/2, and vice versa. When using members of the
Fourier Transform family that do not view the time domain as periodic (such
as the DTFT), the symmetry must be around sample zero to produces a zero
phase.

Amplitude Amplitude
o

Amplitude

Amplitude

—_

Chapter 10- Fourier Transform Properties 189

Time Domain
2l
i
—J P
64 128 192 256 320 384 448 511

Sample number

128 192 256 320 384 448 511
Sample number

128 192 256 320 384 448 511
Sample number

64

128 192 256 320 384 448 511
Sample number

FIGURE 10-3

Phase (radians)

Phase (radians)

Phase (radians)

Phase (radians)

o
=]
=]

=)
=
=]

)
=]
=]

=]

()
=3
(=]

-600

-900

900

600

300

-300

-600

-900

900

600

300

-300

-600

-900

900

600

300

-600

-900

Frequency Domain

//
0 0.1 0.2 0.3 0.4 0.5
Frequency
0 0.1 0.2 0.3 0.4 0.5
Frequency
\
\
0 0.1 0.2 0.3 0.4 0.5
Frequency
—
A
3
1
0 0.1 0.2 0.3 0.4 0.5

Frequency

Phase changes resulting from a time domain shift.

190

The Scientist and Engineer's Guide to Digital Sgnal Processing

Figures (d) and (h) shows something of ariddle. First imagine that (d) was
formed by shifting the waveform in (c) slightly more to the right. This means
that the phase in (h) would have a slightly more negative slope than in (g).
This phase is shown asline 1. Next, imagine that (d) was formed by starting
with (a) and shifting it to the left. In this case, the phase should have a
slightly more positive slope than (€), asisillustrated by line 2. Lastly, notice
that (d) is symmetrical around sample N/2, and should therefore have a zero
phase, asillustrated by line 3. Which of these three phases is correct? They
all are, depending on how the = and 2rn phase ambiguities (discussed in Chapter
8) are arranged. For instance, every sample in line 2 differs from the
corresponding sample in line 1 by an integer multiple of 2, making them
equal. Torelateline 3 tolines1 and 2, the = ambiguities must also be taken
into account.

To understand why the phase behaves as it does, imagine shifting a waveform
by one sample to the right. This means that all of the sinusoids that compose
the waveform must also be shifted by one sample to the right. Figure 10-4
shows two sinusoids that might be a part of the waveform. In (a), the sine
wave has a very low frequency, and a one sample shift is only a small fraction
of afull cycle. In (b), the sinusoid has a frequency of one-half of the sampling
rate, the highest frequency that can exist in sasmpled data. A one sample shift
at this frequency is equal to an entire 1/2 cycle, or = radians. That is, when a
shift is expressed in terms of a phase change, it becomes proportional to the
frequency of the sinusoid being shifted.

For example, consider a waveform that is symmetrical around sample zero,
and therefore has a zero phase. Figure 10-5a shows how the phase of this
signal changes when it is shifted left or right. At the highest frequency,
one-half of the sampling rate, the phase increases by = for each one sample
shift to the left, and decreases by = for each one sample shift to the right.
At zero frequency there is no phase shift, and all of the frequencies between
follow in a straight line.

2 T

: :
a. A low frequency “

b. 1/2 of sampling frequency

0-#

Amplitude

e ——

1 sample shift
=1/32 cycle
I I

I
I

I
I
I
I
I
I

Amplitude
—————— e ——— _—————]

T______
—
|
1
I
I
I
|
4
I
I
I
T
I
I
I
|
4
I
I
I

I
I
“ i
I

-]

1 sample shift
=12cycle
I

4
1.3

FIGURE 10-4

I
T

8

2 f
32 0 8

f f
16 24
Sample number

f
16 32
Sample number

N
i

The relationship between samples and phase. Figures (a) and (b) show low and high frequency sinusoids,
respectively. In (a), aone sample shift is equal to 1/32 of acycle. In (b), aone sample shift isequal to 1/2 of a
cycle. Thisiswhy ashift in the waveform changes the phase more at high frequencies than at low frequencies.

Chapter 10- Fourier Transform Properties 191

Sn : : : : 1om ! ! : :
: : : : : : : :
L ———— L — Tmmmns - P | | | ;
| L 8 ' 10 L i i '
— ! — 2 : - T T
[7) e — R g i [7)
s " T ¥ 1 : s i ! i
]]] I]
El 0 . + 9, - El R B R =T e
11 1 1 | 1
g . ' g ' . ! :
E - o __L__>= _1== 2___I ________ [———— E |]] I
: T 3 T : 0 1 I;__\ 0 : :
i LA - : AN Y B
21 ={ number of samples TS number of samples i i
shifted in time domain | | ! shifted in time domain i i
-3n | | | | -5n f f f f
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 10-5

Phases resulting from time domain shifting. For each sample that a time domain signal is shifted in the positive
direction (i.e., to theright), the phase at frequency 0.5 will decrease by = radians. For each sample shifted in the
negative direction (i.e., to the left), the phase at frequency 0.5 will increase by = radians. Figure (a) shows thisfor
alinear phase (astraight line), while (b) is an example using a nonlinear phase.

All of the examples we have used so far are linear phase. Figure 10-5b shows
that nonlinear phase signals react to shifting in the same way. In this example
the nonlinear phase is a straight line with two rectangular pulses. When the
time domain is shifted, these nonlinear features are simply superimposed on the
changing slope.

What happens in the real and imaginary parts when the time domain
waveform is shifted? Recall that frequency domain signals in rectangular
notation are nearly impossible for humans to understand. The real and
imaginary parts typically look like random oscillations with no apparent
pattern. When the time domain signal is shifted, the wiggly patterns of the
real and imaginary parts become even more oscillatory and difficult to
interpret. Don't waste your time trying to understand these signals, or how
they are changed by time domain shifting.

Figure 10-6 is an interesting demonstration of what information is contained in
the phase, and what information is contained in the magnitude. The waveform
in (a) has two very distinct features: a rising edge at sample number 55, and
a falling edge at sample number 110. Edges are very important when
information is encoded in the shape of a waveform. An edge indicates when
something happens, dividing whatever is on the left from whatever is on the
right. It istime domain encoded information in its purest form. To begin the
demonstration, the DFT is taken of the signal in (a), and the frequency
spectrum converted into polar notation. To find the signal in (b), the phase is
replaced with random numbers between -r and =, and the inverse DFT used to
reconstruct the time domain waveform. In other words, (b) is based only on the
information contained in the magnitude. In a similar manner, (c) is found by
replacing the magnitude with small random numbers before using the inverse
DFT. This makes the reconstruction of (c) based solely on the information
contained in the phase.

192

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing

a. Original signa
I

(=
(=
N

S) —_
|
1
i
i
i
i
i
i
i
i
i
-
1 |
i
i
i i
i i
i i
I
i
R
i
i
i
i
i
i
i
i
i
i
R R S S R

—_
)

255
Sample number

FIGURE 10-6

Information contained in the phase. Figure (a)
shows a pulse-like waveform. Thesignal in (b)
is created by taking the DFT of (a), replacing the
phase with random numbers, and taking the
Inverse DFT. The signal in (c) is found by
taking the DFT of (@), replacing the magnitude
with random numbers, and taking the Inverse
DFT. The location of the edges is retained in
(c), but not in (b). This shows that the phase
containsinformation on the location of eventsin

Amplitude

Amplitude

‘ b. Reconstructed from the magnitude

255
Sample number

¢. Reconstructed from the phase

the time domain signal.

Sample number

The result? The locations of the edges are clearly present in (c), but totally
absent in (b). Thisis because an edge is formed when many sinusoids rise at
the same location, possible only when their phases are coordinated. In short,
much of the information about the shape of the time domain waveform is
contained in the phase, rather than the magnitude. This can be contrasted with
signals that have their information encoded in the frequency domain, such as
audio signals. The magnitude is most important for these signals, with the
phase playing only a minor role. In later chapters we will see that this type
of understanding provides strategies for designing filters and other methods of
processing signals. Understanding how information is represented in signals
is always the first step in successful DSP.

Why does left-right symmetry correspond to a zero (or linear) phase? Figure
10-7 provides the answer. Such a signal can be decomposed into a left half
and a right half, as shown in (a), (b) and (c). The sample at the center of
symmetry (zero in this case) is divided equally between the left and right
halves, allowing the two sides to be perfect mirror images of each other. The
magnitudes of these two halves will be identical, as shown in (e) and (f), while
the phases will be opposite in sign, asin (h) and (i). Two important concepts
fall out of this. First, every signal that is symmetrical between the left and
right will have a linear phase because the nonlinear phase of the left half
exactly cancels the nonlinear phase of the right half.

Chapter 10- Fourier Transform Properties 193

Time Domain Frequency Domain
2 1 20 1 1 1 4 1 1 1
a X1 d. Mag X[] 34-] 9. Phase X[] |
15 2
1
8 8 \ g1
= = =
= L nd 510 50
£ £ £
<y < \ <-1
5 2
\ 5
-1 0 -4
-64 32 0 32 63 0 01 02 03 04 05 0 01 02 03 04 05
Sample number Frequency Frequency
1 Decompose
2 1 20 1 1 1 4 1 1 1
b. x[] e. Mag X[] 34-| h. Phase X[] |
15 2
[[[
° ° ol
= = =
= Lo g 3 10 30
£ £ £
<y < \ < -1 \C
5 2
\L 5
\
-1 0 -4
-64 32 0 32 63 0 01 02 03 04 05 0 01 02 03 04 05
Sample number Frequency Frequency
2 20 1 1 1 4 1 1 1
C. X[] f. Mag X[] 34- 0. Phase X [] |
15 2
g 3 g1/
2 E] 2
=3 L and 510 50
£ £ £
<y < \ <-1
5 2
\ ;
\
-1 0 -4
-64 32 0 32 63 0 01 02 03 04 05 0 01 02 03 04 05
Sample number Frequency Frequency
FIGURE 10-7

Phase characteristics of left-right symmetry. A signal with left-right symmetry, shown in (@), can be
decomposed into aright half, (b), and aleft half, (c). The magnitudes of thetwo halves areidentical, (e) and
(f), while the phases are the negative of each other, (h) and (i).

Second, imagine flipping (b) such that it becomes (c). This left-right flip in the
time domain does nothing to the magnitude, but changes the sign of every point
in the phase. Likewise, changing the sign of the phase flips the time domain
signal left-for-right. If the signals are continuous, the flip is around zero. If
the signals are discrete, the flip is around sample zero and sample N/2,
simultaneously.

Changing the sign of the phase is a common enough operation that it is given
its own name and symbol. The name is complex conjugation, and it is

194

The Scientist and Engineer's Guide to Digital Sgnal Processing

represented by placing a star to the upper-right of the variable. For example,
if X[f] consists of MagX[f] and PhaseX[f], then X*[f] is called the
complex conjugate and is composed of Mag X[f] and -PhaseX[f]. In
rectangular notation, the complex conjugate is found by leaving the real part
alone, and changing the sign of the imaginary part. In mathematica terms, if X[f]
is composed of ReX[f] and ImX[f], then X*[f] is made up of ReX[f] and
-ImX[f].

Here are several examples of how the complex conjugate is used in DSP. |f
x[n] has a Fourier transform of X[f], then x[-n] has a Fourier transform of
X*[f]. In words, flipping the time domain left-for-right corresponds to
changing the sign of the phase. As another example, recall from Chapter 7 that
correlation can be performed as a convolution. Thisis done by flipping one
of the signals left-for-right. In mathematical form, a[n] * b[n] is convolution,
while a[n] * b[- n] is correlation. In the frequency domain these operations
correspond to A[f] xB[f] and A[f]xB*[f], respectively. As the last
example, consider an arbitrary signal, x[n], and its frequency spectrum, X[f].
The frequency spectrum can be changed to zero phase by multiplying it by its
complex conjugate, that is, X[f]xX*[f]. In words, whatever phase X[f]
happens to have will be canceled by adding its opposite (remember, when
frequency spectra are multiplied, their phases are added). In the time domain,
this means that x[n]* x[-n] (a signal convolved with a left-right flipped
version of itself) will have left-right symmetry around sample zero, regardless
of what x[n] is.

To many engineers and mathematicians, this kind of manipulation is DSP. If
you want to be able to communicate with this group, get used to using their
language.

Periodic Nature of the DFT

Unlike the other three Fourier Transforms, the DFT views both the time domain
and the frequency domain as periodic. This can be confusing and inconvenient
since most of the signals used in DSP are not periodic. Nevertheless, if you
want to use the DFT, you must conform with the DFT's view of the world.

Figure 10-8 shows two different interpretations of the time domain signal. First,
look at the upper signal, the time domain viewed as N points. This represents
how digital signals are typically acquired in scientific experiments and
engineering applications. For instance, these 128 samples might have been
acquired by sampling some parameter at regular intervals of time. Sample 0
is distinct and separate from sample 127 because they were acquired at
different times. From the way this signal was formed, there is no reason to
think that the samples on the left of the signal are even related to the samples
on the right.

Unfortunately, the DFT doesn't see things this way. As shown in the lower
figure, the DFT views these 128 points to be a single period of an infinitely
long periodic signal. This means that the left side of the acquired signal is

The time domain
viewed as N points '::>

The time domain
viewed as periodic

Chapter 10- Fourier Transform Properties 195

connected to the right side of aduplicate signal. Likewise, the right side of the
acquired signal is connected to the left side of an identical period. This can
also be thought of as the right side of the acquired signal wrapping around and
connecting to its left side. In this view, sample 127 occurs next to sample 0,
just as sample 43 occurs next to sample 44. This is referred to as being
circular, and is identical to viewing the signal as being periodic.

The most serious conseguence of time domain periodicity is time domain
aliasing. To illustrate this, suppose we take a time domain signal and pass
it through the DFT to find its frequency spectrum. We could immediately
pass this frequency spectrum through an Inverse DFT to reconstruct the
original time domain signal, but the entire procedure wouldn't be very
interesting. Instead, we will modify the frequency spectrum in some manner
before using the Inverse DFT. For instance, selected frequencies might be
deleted, changed in amplitude or phase, shifted around, etc. These are the
kinds of things routinely done in DSP. Unfortunately, these changes in the
frequency domain can create a time domain signal that is too long to fit into

Amplitude

Sample number

N

N

AN

| | i | |
[P R . N . Y - R —— R
° |
EN BiE : L AN : 3
g‘ | | | | |
| | | | |
R B N AN B AR BN N -
| | | | |
-2 f t t t t
-384 -256 -128 0 128 256 384
Sample number
FIGURE 10-8

Periodicity of the DFT'stime domain signal. Thetime domain can be viewed as N samplesin length, shown
in the upper figure, or as an infinitely long periodic signal, shown in the lower figure.

196

The Scientist and Engineer's Guide to Digital Sgnal Processing

asingle period. This forces the signal to spill over from one period into the
adjacent periods. When the time domain is viewed as circular, portions of
the signal that overflow on the right suddenly seem to reappear on the |eft
side of the signal, and vice versa. That is, the overflowing portions of the
signal alias themselves to a new location in the time domain. If this new
location happens to already contain an existing signal, the whole mess adds,
resulting in a loss of information. Circular convolution resulting from
frequency domain multiplication (discussed in Chapter 9), is an excellent
example of this type of aliasing.

Periodicity in the frequency domain behaves in much the same way, but is
more complicated. Figure 10-9 shows an example. The upper figures show
the magnitude and phase of the frequency spectrum, viewed as being composed
of N/2 + 1 samples spread between 0 and 0.5 of the sampling rate. Thisisthe
simplest way of viewing the frequency spectrum, but it doesn't explain many
of the DFT's properties.

The lower two figures show how the DFT views this frequency spectrum as
being periodic. The key feature is that the frequency spectrum between 0 and
0.5 appears to have a mirror image of frequencies that run between 0 and -0.5.
This mirror image of negative frequencies is slightly different for the
magnitude and the phase signals. In the magnitude, the signal is flipped left-
for-right. In the phase, the signal is flipped left-for-right, and changed in sign.
As you recall, these two types of symmetry are given names. the magnitude is
said to be an even signal (it has even symmetry), while the phase is said to
be an odd signal (it has odd symmetry). If the frequency spectrum is
converted into the real and imaginary parts, the real part will always be even,
while the imaginary part will always be odd.

Taking these negative frequencies into account, the DFT views the frequency
domain as periodic, with a period of 1.0 times the sampling rate, such as -0.5
to 0.5, or 0 to 1.0. In terms of sample numbers, this makes the length of the
frequency domain period equal to N, the same as in the time domain.

The periodicity of the frequency domain makes it susceptible to frequency
domain aliasing, completely analogous to the previously described time
domain aliasing. Imagine a time domain signal that corresponds to some
frequency spectrum. If the time domain signal is modified, it is obvious that
the frequency spectrum will also be changed. If the modified frequency
spectrum cannot fit in the space provided, it will push into the adjacent periods.
Just as before, this aliasing causes two problems: frequencies aren't where they
should be, and overlapping frequencies from different periods add, destroying
information.

Frequency domain aliasing is more difficult to understand than time domain
aliasing, since the periodic pattern is more complicated in the frequency
domain. Consider a single frequency that is being forced to move from 0.01
to 0.49 in the frequency domain. The corresponding negative frequency is
therefore moving from -0.01 to -0.49. When the positive frequency moves

197

Chapter 10- Fourier Transform Properties

B e it it it ittt

T

0.4

T

0.3

T

0.2

apnydwy

0.5

Frequency

T

I
0.4

0.3

T

The frequency domain
viewed as 0to 0.5 of
the sampling rate

o™ —
(suey

(=] —

pel)oseud

0.5

0.2

The frequency domain
viewed as periodic

Frequency

i,

A\

1.5

0.5

T
0
Frequency

-0.5

-1.5

spnydwy sseud

the sampling rate (upper two figures), or an infinity long periodic signal with every other 0 to 0.5 segment

Periodicity of the DFT'sfrequency domain. The frequency domain can be viewed as running from 0to 0.5 of
flipped left-for-right (lower two figures).

FIGURE 10-9

198

a. Time domain aiasing

The Scientist and Engineer's Guide to Digital Sgnal Processing

across the 0.5 barrier, the negative frequency is pushed across the -0.5
barrier. Since the frequency domain is periodic, these same events are
occurring in the other periods, such as between 0.5 and 1.5. A clone of the
positive frequency is crossing frequency 1.5 from left to right, while a clone
of the negative frequency is crossing 0.5 from right to left. Now imagine
what this looks like if you can only see the frequency band of 0 to 0.5. It
appears that a frequency leaving to the right, reappears on the right, but
moving in the opposite direction.

Figure 10-10 illustrates how aliasing appears in the time and frequency
domains when only a single period is viewed. As shown in (a), if one end of
atime domain signal istoo long to fit inside a single period, the protruding end
will be cut off and pasted onto the other side. In comparison, (b) shows that
when a frequency domain signal overflows the period, the protruding end is
folded over. Regardless of where the aliased segment ends up, it adds to
whatever signal is already there, destroying information.

Let'stake a closer ook at these strange things called negative frequencies.
Are they just some bizarre artifact of the mathematics, or do they have a
real world meaning? Figure 10-11 shows what they are about. Figure (a)
is a discrete signal composed of 32 samples. Imagine that you are given
the task of finding the frequency spectrum that corresponds to these 32
points. To make your job easier, you are told that these points represent a
discrete cosine wave. In other words, you must find the frequency and
phase shift (f and 6) such that x[n] = cos(2rnf/N + 6) matches the given
samples. It isn't long before you come up with the solution shown in (b),
thatis, f= 3 and 6 = - /4.

If you stopped your analysis at this point, you only get 1/3 credit for the
problem. This is because there are two other solutions that you have
missed. As shown in (c), the second solutionis f = -3 and 6 = n/4. Even
if the idea of a negative frequency offends your sensibilities, it doesn't

b. Frequency domain aliasing

signal exiting
totheright

\ reappears

signal exiting
totheright

reappears
/ ontheleft . on theright \ .
Time N-1 0 Frequency 0.5
FIGURE 10-10

Examples of aliasing in the time and frequency domains, when only asingle period is considered. Inthetime
domain, shown in (@), portions of the signal that exits to the right, reappear on the left. In the frequency
domain, (b), portions of the signal that exit to the right, reappear on theright asif they had been folded over.

Chapter 10- Fourier Transform Properties 199

8 8
2 2
= =
£ £
< <
2 ! ! !
d. Solution #3 ! !
f=350=-n/4 ! !
R yr -
[© W J i | ' i l
E E JLRAR
=4 = o0+ I
£ £
- < LN ”!”H“
ILLY |
A - T T
2 | | |
0 8 16 24 32
Sample number Sample number
FIGURE 10-11

The meaning of negative frequencies. The problem isto find the frequency spectrum of the discrete signal shown
in (a). Thatis, we want to find the frequency and phase of the sinusoid that passed through all of the samples.
Figure (b) isasolution using a positive frequency, while (c) is a solution using a negative frequency. Figure (d)
represents afamily of solutions to the problem.

change the fact that it is a mathematically valid solution to the defined
problem. Every positive frequency sinusoid can alternately be expressed
as a negative frequency sinusoid. This applies to continuous as well as
discrete signals

The third solution is not a single answer, but an infinite family of solutions.
As shown in (d), the sinusoid with f = 35 and 0 = - /4 passes through all of
the discrete points, and is therefore a correct solution. The fact that it shows
oscillation between the samples may be confusing, but it doesn't disqualify it
from being an authentic answer. Likewise, f = £29, f = £35, f = 61, and
f = £67 are all solutions with multiple oscillations between the points.

Each of these three solutions corresponds to a different section of the
frequency spectrum. For discrete signals, the first solution corresponds to
frequencies between 0 and 0.5 of the sampling rate. The second solution

200

The Scientist and Engineer's Guide to Digital Sgnal Processing

results in frequencies between 0 and -0.5. Lastly, the third solution makes up
the infinite number of duplicated frequencies below -0.5 and above 0.5. If the
signal we are analyzing is continuous, the first solution results in frequencies
from zero to positive infinity, while the second solution results in frequencies
from zero to negative infinity. The third group of solutions does not exist for
continuous signals.

Many DSP techniques do not require the use of negative frequencies, or an
understanding of the DFT's periodicity. For example, two common ones were
described in the last chapter, spectral analysis, and the frequency response of
systems. For these applications, it is completely sufficient to view the time
domain as extending from sample 0 to N-1, and the frequency domain from
zero to one-half of the sampling frequency. These techniques can use a
simpler view of the world because they never result in portions of one period
moving into another period. In these cases, looking at a single period is just
as good as looking at the entire periodic signal.

However, certain procedures can only be analyzed by considering how signals
overflow between periods. Two examples of this have already been presented,
circular convolution and analog-to-digital conversion. In circular
convolution, multiplication of the frequency spectraresults in the time domain
signals being convolved. If the resulting time domain signal is too long to fit
inside a single period, it overflows into the adjacent periods, resulting in time
domain aliasing. In contrast, analog-to-digital conversion is an example of
frequency domain aliasing. A nonlinear action is taken in the time domain,
that is, changing a continuous signal into a discrete signal by sampling. The
problem is, the spectrum of the original analog signal may be too long to fit
inside the discrete signal's spectrum. When we force the situation, the ends of
the spectrum protrude into adjacent periods. Let's look at two more examples
where the periodic nature of the DFT is important, compression & expansion
of signals, and amplitude modulation.

Compression and Expansion, Multirate methods

As shown in Fig. 10-12, a compression of the signal in one domain results in
an expansion in the other, and vice versa. For continuous signals, if X(f) isthe
Fourier Transform of x(t), then 1/k x X(f/k) isthe Fourier Transform of x(kt),
where Kk is the parameter controlling the expansion or contraction. If an event
happens faster (it is compressed in time), it must be composed of higher
frequencies. If an event happens slower (it is expanded in time), it must be
composed of lower frequencies. This pattern holds if taken to either of the two
extremes. That is, if the time domain signal is compressed so far that it
becomes an impul se, the corresponding frequency spectrum is expanded so far
that it becomes a constant value. Likewise, if the time domain is expanded
until it becomes a constant value, the frequency domain becomes an impulse.

Discrete signals behave in a similar fashion, but there are a few more details.
The first issue with discrete signals is aliasing. Imagine that the

Amplitude

Amplitude

Amplitude

Chapter 10- Fourier Transform Properties

Time Domain

1
‘a. Signal compressed ‘

~ie

|

16 32 48 64 80 96
Sample number

112

127

c. Signal

=

1
underlying
continious

<"1 | waveform

16 32 48 64 80 96
Sample number

112

127

1 1 1 1
‘e. Signal expanded ‘

- -

fd

16 32 48 64 80 96
Sample number

FIGURE 10-12
Compression and expansion. Compressing a signal in one domain results in the signal being expanded in the
other domain, and vice versa. Figures (c) and (d) show adiscrete signal and its spectrum, respectively. In (a) and
(b), the time domain signal has been compressed, resulting in the frequency spectrum being expanded. Figures
(e) and (f) show the opposite process. Asshown in these figures, discrete signals are expanded or contracted by
expanding or contracting the underlying continuous waveform. This underlying waveform is then resampled
to find the new discrete signal.

112

127

Frequency Domain

201

20

1 1 1
‘b. Expanded frequency spectrum ‘

—_
=N

—
N

oo

™

Amplitude

ke
M

30

0.1 0.2 0.3 0.4
Frequency

1 1
‘ d. Frequency spectrum

S}
=

"&

—
oo

—
N

!

Amplitude

50

0.1 0.2 0.3 0.4
Frequency

0.5

'S
(=1

1 1
‘f. Compressed frequency spectrum

\

w
(=1

[
(=1

Amplitude

—_
(=1

\
|

04
0

0.1 0.2 0.3 0.4
Frequency

0.5

pulse in (a) is compressed several times more than is shown. The frequency
spectrum is expanded by an equal factor, and several of the humps in (b) are
pushed to frequencies beyond 0.5. The resulting aliasing breaks the simple
expansion/contraction relationship. This type of aliasing can also happen in the

202

The Scientist and Engineer's Guide to Digital Sgnal Processing

time domain. Imagine that the frequency spectrum in (f) is compressed much
harder, resulting in the time domain signal in (e) expanding into neighboring
periods.

A second issue is to define exactly what it means to compress or expand a
discrete signal. Asshown in Fig. 10-12a, a discrete signal is compressed by
compressing the underlying continuous curve that the samples lie on, and then
resampling the new continuous curve to find the new discrete signal. Likewise,
this same process for the expansion of discrete signals is shown in (€). When
a discrete signal is compressed, events in the signal (such as the width of the
pulse) happen over a fewer number of samples. Likewise, events in an
expanded signal happen over a greater number of samples.

An equivalent way of looking at this procedure is to keep the underlying
continuous waveform the same, but resample it at a different sampling rate.
For instance, look at Fig. 10-13a, a discrete Gaussian waveform composed of
50 samples. In (b), the same underlying curve is represented by 400 samples.
The change between (a) and (b) can be viewed in two ways: (1) the sampling
rate has been kept constant, but the underlying waveform has been expanded
to be eight times wider, or (2) the underlying waveform has been kept constant,
but the sampling rate has increased by a factor of eight. Methods for changing
the sampling rate in this way are called multirate techniques. If more samples
are added, it is called interpolation. If fewer samples are used to represent
the signal, it is called decimation. Chapter 3 describes how multirate
techniques are used in ADC and DAC.

Here is the problem: if we are given an arbitrary discrete signal, how do
we know what the underlying continuous curve is? It depends on if the
signal's information is encoded in the time domain or in the frequency
domain. For time domain encoded signals, we want the underlying
continuous waveform to be a smooth curve that passes through all the
samples. In the simplest case, we might draw straight lines between the
points and then round the rough corners. The next level of sophistication
is to use a curve fitting algorithm, such as a spline function or polynomial
fit. Thereisnot a single "correct" answer to this problem. This approach
is based on minimizing irregularities in the time domain waveform, and
completely ignores the frequency domain.

When a signal has information encoded in the frequency domain, we ignore
the time domain waveform and concentrate on the frequency spectrum. As
discussed in the last chapter, a finer sampling of a frequency spectrum (more
samples between frequency 0 and 0.5) can be obtained by padding the time
domain signal with zeros before taking the DFT. Duality allows this to work
in the opposite direction. If we want a finer sampling in the time domain
(interpolation), pad the frequency spectrum with zeros before taking the
Inverse DFT. Say we want to interpolate a 50 sample signal into a 400
sample signal. It's done like this: (1) Take the 50 samples and add zeros to
make the signal 64 samples long. (2) Use a 64 point DFT to find the
frequency spectrum, which will consist of a 33 point real part and a 33 point
imaginary part. (3) Pad the right side of the frequency spectrum

Chapter 10- Fourier Transform Properties 203

2 I I 2 I
a. Smooth waveform ‘ c. Sharp edges

® 1 o ° 1
=] L] =]
2 . - 2
= . . =
£ 3 £
< 0 _a" . < 0

-1 -1

0 10 20 30 40 50 0 10 20 30 40 50
Sample number Sample number
2 I I 2 I I
‘bA Fig. (a) interpolated ‘ ‘dA Fig. (c) interpolated
° °
2 2
g g
<, // \ <, ~AaAAA A S
'} vy
-1 -1
0 80 160 240 320 400 0 80 160 240 320 400
Sample number Sample number
FIGURE 10-13

Interpolation by padding the frequency domain. Figures (a) and (c) each consist of 50 samples. These are inter-
polated to 400 samples by padding the frequency domain with zeros, resulting in (b) and (d), respectively. (Figures
(b) and (d) are discrete signals, but are drawn as continuous lines because of the large number of samples).

(both the real and imaginary parts) with 224 zeros to make the frequency
spectrum 257 points long. (4) Use a 512 point Inverse DFT to transform the
data back into the time domain. Thiswill result in a 512 sample signal that is
a high resolution version of the 64 sample signal. The first 400 samples of this
signal are an interpolated version of the original 50 samples.

The key feature of this technique is that the interpolated signal is composed of
exactly the same frequencies as the original signal. This may or may not
provide a well-behaved fit in the time domain. For example, Figs. 10-13 (a)
and (b) show a 50 sample signal being interpolated into a 400 sample signal
by this method. The interpolation is a smooth fit between the original points,
much as if a curve fitting routine had been used. In comparison, (c) and (d)
show another example where the time domain is a mess! The oscillatory
behavior shown in (d) arises at edges or other discontinuities in the signal.
This also includes any discontinuity between sample zero and N-1, since the
time domain is viewed as being circular. This overshoot at discontinuities is
called the Gibbs effect, and is discussed in Chapter 11. Another frequency
domain interpolation technique is presented in Chapter 3, adding zeros between
the time domain samples and low-pass filtering.

204

The Scientist and Engineer's Guide to Digital Sgnal Processing

Multiplying Signals (Amplitude Modulation)

An important Fourier transform property is that convolution in one domain
corresponds to multiplication in the other domain. One side of this was
discussed in the last chapter: time domain signals can be convolved by
multiplying their frequency spectra. Amplitude modulation is an example of the
reverse situation, multiplication in the time domain corresponds to convolution
in the frequency domain. In addition, amplitude modulation provides an
excellent example of how the elusive negative frequencies enter into everyday
science and engineering problems.

Audio signals are great for short distance communication; when you speak,
someone across the room hears you. On the other hand, radio frequencies are
very good at propagating long distances. For instance, if a 100 volt, 1 MHz
sine wave is fed into an antenna, the resulting radio wave can be detected in
the next room, the next country, and even on the next planet. Modulation is
the process of merging two signals to form a third signal with desirable
characteristics of both. This always involves nonlinear processes such as
multiplication; you can't just add the two signals together. In radio
communication, modulation results in radio signals that can propagate long
distances and carry along audio or other information.

Radio communication is an extremely well developed discipline, and many
modulation schemes have been developed. One of the simplest is called
amplitude modulation. Figure 10-14 shows an example of how amplitude
modulation appears in both the time and frequency domains. Continuous
signals will be used in this example, since modulation is usually carried out in
analog electronics. However, the whole procedure could be carried out in
discrete form if needed (the shape of the future!).

Figure (a) shows an audio signal with a DC bias such that the signal always
has a positive value. Figure (b) shows that its frequency spectrum is composed
of frequencies from 300 Hz to 3 kHz, the range needed for voice
communication, plus a spike for the DC component. All other frequencies
have been removed by analog filtering. Figures (c) and (d) show the carrier
wave, a pure sinusoid of much higher frequency than the audio signal. In the
time domain, amplitude modulation consists of multiplying the audio signal by
the carrier wave. As shown in (€), this results in an oscillatory waveform that
has an instantaneous amplitude proportional to the original audio signal. Inthe
jargon of the field, the envel ope of the carrier wave is equal to the modulating
signal. This signal can be routed to an antenna, converted into a radio wave,
and then detected by areceiving antenna. This resultsin a signal identical to
(e) being generated in the radio receiver's electronics. A detector or
demodulator circuit is then used to convert the waveform in (€) back into the
waveform in (a).

Since the time domain signals are multiplied, the corresponding frequency
spectra are convolved. That is, (f) is found by convolving (b) & (d). Since the
spectrum of the carrier is a shifted delta function, the spectrum of the

Chapter 10- Fourier Transform Properties 205

Time Domain

2 I I
a. Audio signal
1
/\ /\ L
o)
S 0 \/— \/
©
>
-1
2
0.0 0.2 0.4 0.6 0.8
Time (milliseconds)
2 I I
c. Carrier signal
1
0] I
2 :
590]
> |
|
-1
2
0.0 0.2 0.4 0.6 0.8
Time (milliseconds)
2 I I
1 1
‘ e. Modulated signal ‘
1
o)
go h A ' AVAVAAMAMM
= W N
-1

0.0 0.2 0.4 0.6 0.8
Time (milliseconds)

FIGURE 10-14

Amplitude

Amplitude

Amplitude

Frequency Domain

w

¥}

b. Audio signal

h

5 0 15 20 25 30 35 40
Frequency (kHz)

w

¥}

w

¥}

d. Carrier signal

5 0 15 20 25 30 35 40
Frequency (kHz)

I
f. Modulated signal ‘

- upper
Lcarrier || | deband L

5 0 15 20 25 30 35 40
Frequency (kHz)

Amplitude modulation. In the time domain, amplitude modulation is achieved by multiplying the audio signal, (a),
by the carrier signal, (c), to produce the modulated signal, (€). Since multiplication in the time domain corresponds
to convolution in the frequency domain, the spectrum of the modulated signal is the spectrum of the audio signal

shifted to the frequency of the carrier.

modulated signal is equal to the audio spectrum shifted to the frequency of the
carrier. Thisresultsin a modulated spectrum composed of three components:
acarrier wave, an upper sideband, and a lower sideband.

These correspond to the three parts of the original audio signal: the DC
component, the positive frequencies between 0.3 and 3 kHz, and the negative

206 The Scientist and Engineer's Guide to Digital Sgnal Processing

frequencies between -0.3 and -3 kHz, respectively. Even though the negative
frequenciesin the original audio signal are somewhat elusive and abstract, the
resulting frequencies in the lower sideband are as real as you could want them
to be. The ghosts have taken human form!

Communication engineers live and die by this type of frequency domain
analysis. For example, consider the frequency spectrum for television
transmission. A standard TV signal has a frequency spectrum from DC to 6
MHz. By using these frequency shifting techniques, 82 of these 6 MHz wide
channels are stacked end-to-end. For instance, channel 3 is from 60 to 66
MHz, channel 4 is from 66 to 72 MHz, channel 83 is from 884 to 890 MHz,
etc. The television receiver moves the desired channel back to the DC to 6
MHz band for display on the screen. This scheme is called frequency
domain multiplexing.

The Discrete Time Fourier Transform

The Discrete Time Fourier Transform (DTFT) is the member of the Fourier
transform family that operates on aperiodic, discrete signals. The best way
to understand the DTFT is how it relates to the DFT. To start, imagine
that you acquire an N sample signal, and want to find its frequency
spectrum. By using the DFT, the signal can be decomposed into N/2+ 1
sine and cosine waves, with frequencies equally spaced between zero and
one-half of the sampling rate. As discussed in the last chapter, padding
the time domain signal with zeros makes the period of the time domain
longer, as well as making the spacing between samples in the frequency
domain narrower. As N approaches infinity, the time domain becomes
aperiodic, and the frequency domain becomes a continuous signal. Thisis
the DTFT, the Fourier transform that relates an aperiodic, discrete signal,
with a periodic, continuous frequency spectrum.

The mathematics of the DTFT can be understood by starting with the

synthesis and analysis equations for the DFT (Egs. 8-2, 8-3 and 8-4), and
taking N to infinity:

+ oo

EQUATION10-1 _ ReX(w) = Y x[n] cos(wn)
The DTFT analysis equation. In this P

relation, x[n] isthe time domain signal

with n running from 0 to N-1. The e

frequency spectrumisheld in: ReX(w) B .

and ImX(w), with « taking on values ImX(w) = - Z X[n] sin(wn)

EQUATION 10-2
The DTFT synthesis
equation.

n=-o

x[n] = %fReX(m) cos(wn) - ImX(w) sin(wn) do
0

Chapter 10- Fourier Transform Properties 207

There are many subtle details in these relations. First, the time domain signal,
x[n], is still discrete, and therefore is represented by brackets. In comparison,
the frequency domain signals, ReX(w) & ImX(w), are continuous, and are thus
written with parentheses. Since the frequency domain is continuous, the
synthesis equation must be written as an integral, rather than a summation.

As discussed in Chapter 8, frequency is represented in the DFT's frequency
domain by one of three variables: k, an index that runs from 0 to N/2; f, the
fraction of the sampling rate, running from 0 to 0.5; or w, the fraction of the
sampling rate expressed as a natural frequency, running from 0 to =. The
spectrum of the DTFT is continuous, so either f or » can be used. The
common choice is w, because it makes the equations shorter by eliminating the
always present factor of 2n. Remember, when » is used, the frequency
spectrum extends from O to =, which corresponds to DC to one-half of the
sampling rate. To make things even more complicated, many authors use Q (an
upper case omega) to represent this frequency in the DTFT, rather than » (a
lower case omega).

When calculating the inverse DFT, samples 0 and N/2 must be divided by
two (Eq. 8-3) before the synthesis can be carried out (Eq. 8-2). Thisis not
necessary with the DTFT. Asyou recall, this action in the DFT is related
to the frequency spectrum being defined as a spectral density, i.e.,
amplitude per unit of bandwidth. When the spectrum becomes continuous,
the special treatment of the end points disappear. However, there is still a
normalization factor that must be included, the 2/N in the DFT (Eq. 8-3)
becomes 1/n in the DTFT (Eq. 10-2). Some authors place these termsin
front of the synthesis equation, while others place them in front of the
analysis equation. Suppose you start with some time domain signal. After
taking the Fourier transform, and then the Inverse Fourier transform, you
want to end up with what you started. That is, the 1/= term (or the 2/N
term) must be encountered somewhere along the way, either in the forward
or in the inverse transform. Some authors even split the term between the
two transforms by placing 1/y/n in front of both.

Since the DTFT involves infinite summations and integrals, it cannot be
calculated with a digital computer. Its main use is in theoretical problems as
an alternative to the DFT. For instance, suppose you want to find the
frequency response of a system from its impulse response. If the impulse
response is known as an array of numbers, such as might be obtained from an
experimental measurement or computer simulation, a DFT program is run on
a computer. This provides the frequency spectrum as another array of
numbers, equally spaced between 0 and 0.5 of the sampling rate.

In other cases, the impulse response might be know as an equation, such as
a sinc function (described in the next chapter) or an exponentially decaying
sinusoid. The DTFT is used here to mathematically calculate the frequency
domain as another equation, specifying the entire continuous curve between
0 and 0.5. While the DFT could also be used for this calculation, it would
only provide an equation for samples of the frequency response, not the
entire curve.

208

The Scientist and Engineer's Guide to Digital Sgnal Processing

Parseval's Relation

EQUATION 10-3

Since the time and frequency domains are equivalent representations of the
same signal, they must have the same energy. This is called Parseval's
relation, and holds for all members of the Fourier transform family. For the
DFT, Parseval's relation is expressed:

Parseval's relation. In this equation, Xi] is
atime domain signal with i running from 0

to N-1, and X[K] is its modified frequency N-1 2 N2
spectrum, with k running from 0 to N/2. Z x[i]? = = Z Mag X [k]?
The modified frequency spectrum is found ico N o

by taking the DFT of the signal, and
dividing the first and last frequencies
(sample 0 and N/2) by the sguare-root of

two.

The left side of this equation is the total energy contained in the time domain
signal, found by summing the energies of the N individual samples. Likewise,
the right side is the energy contained in the frequency domain, found by
summing the energies of the N/2 + 1 sinusoids. Remember from physics that
energy is proportional to the amplitude squared. For example, the energy in
aspring is proportional to the displacement squared, and the energy stored in
a capacitor is proportional to the voltage squared. In Eq. 10-3, X[f] is the
frequency spectrum of x[n], with one slight modification: the first and last
frequency components, X[0] & X[N/2], have been divided by /2. This
modification, along with the 2/N factor on the right side of the equation,
accounts for several subtle details of calculating and summing energies.

To understand these corrections, start by finding the frequency domain
representation of the signal by using the DFT. Next, convert the frequency
domain into the amplitudes of the sinusoids needed to reconstruct the signal, as
previously defined in Eq. 8-3. Thisis done by dividing the first and last points
(sample 0 and N/2) by 2, and then dividing all of the points by N/2. While this
provides the amplitudes of the sinusoids, they are expressed as a peak
amplitude, not the root-mean-square (rms) amplitude needed for energy
calculations. In asinusoid, the peak amplitude is converted to rms by dividing
by y2. This correction must be made to all of the frequency domain values,
except sample 0 and N/2. This is because these two sinusoids are unique; one
is a constant value, while the other aternates between two constant values. For
these two special cases, the peak amplitude is already equal to the rms value.
All of the values in the frequency domain are squared and then summed. The
last step is to divide the summed value by N, to account for each sample in the
frequency domain being converted into a sinusoid that covers N values in the
time domain. Working through all of these details produces Eq. 10-3.

While Parseval's relation is interesting from the physics it describes
(conservation of energy), it has few practical usesin DSP.

CHAPTER

11

Fourier Transform Pairs

For every time domain waveform there is a corresponding frequency domain waveform, and vice
versa. For example, a rectangular pulse in the time domain coincides with a sinc function [i.e.,
sin(x)/x] in the frequency domain. Duality provides that the reverse is also true; a rectangular
pulse in the frequency domain matches a sinc function in the time domain. Waveforms that
correspond to each other in this manner are called Fourier transform pairs. Several common
pairs are presented in this chapter.

Delta Function Pairs

For discrete signals, the delta function is a simple waveform, and has an
equally simple Fourier transform pair. Figure 11-1a shows a delta function in
the time domain, with its frequency spectrum in (b) and (¢). The magnitude
is a constant value, while the phase is entirely zero. As discussed in the last
chapter, this can be understood by using the expansion/compression property.
When the time domain is compressed until it becomes an impulse, the frequency
domain is expanded until it becomes a constant value.

In (d) and (g), the time domain waveform is shifted four and eight samples to
the right, respectively. As expected from the properties in the last chapter,
shifting the time domain waveform does not affect the magnitude, but adds a
linear component to the phase. The phase signals in this figure have not been
unwrapped, and thus extend only from -= to =. Also notice that the horizontal
axes in the frequency domain run from -0.5 to 0.5. That is, they show the
negative frequencies in the spectrum, as well as the positive ones. The
negative frequencies are redundant information, but they are often included in
DSP graphs and you should become accustomed to seeing them.

Figure 11-2 presents the same information as Fig. 11-1, but with the

frequency domain in rectangular form. There are two lessons to be learned
here. First, compare the polar and rectangular representations of the

209

210

Amplitude

Amplitude

Amplitude

0

0

0

The Scientist and Engineer's Guide to Digital Sgnal Processing
Time Domain Frequency Domain
1 1 1 2 6
a Impulse at x[0] b. Magnitude) c. Phase
1 —
8 5 2
L nd ;;_ 0 g 0
g g
< 2
1 =
-4
2 6
16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency
1 1 1 2 6
d. Impulse at x[4] e. Magnitude) f. Phase
1 —
8 2, ‘g\ k. ‘k__\ by
- Z o0 E; 0
: 1.0 A ALY
1 YT Y
-4
2 -6
16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency
1 1 1 2 6
g. Impulse at x[8] h. Magnitude) i. Phase
s 2o b b bR R ER
AN S RRRRERR
< REREERE
| IR A 0 B
-4
2 -6
16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency

FIGURE 11-1
Delta function pairs in polar form. An impulse in the time domain corresponds to a
constant magnitude and alinear phase in the frequency domain.

frequency domains. As is usually the case, the polar form is much easier to
understand; the magnitude is nothing more than a constant, while the phase is
a straight line. In comparison, the real and imaginary parts are sinusoidal
oscillations that are difficult to attach a meaning to.

The second interesting feature in Fig. 11-2 is the duality of the DFT. In the
conventional view, each sample in the DFT's frequency domain corresponds
to a sinusoid in the time domain. However, the reverse of this is also true,
each sample in the time domain corresponds to sinusoids in the frequency
domain. Including the negative frequencies in these graphs allows the
duality property to be more symmetrical. For instance, Figs. (d), (e), and

Chapter 11- Fourier Transform Pairs

211

Time Domain Frequency Domain
2 - - - 2 2 -
a Impulse at x[0] b. Real Part c. Imaginary part
1 1
g! 8 8
= = =
= L and 3 0 50
£ £ £
<, < <
-1 -1
-1 2 2
0 16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency
2 1 1 1 2 2 i
d. Impulse at x[4] e. Real Part f. Imaginary part
1 1
= = =
= Lo g 3 0 30
£ £ £
: LMNMMY TNV
-1 -1
-1 2 2
0 16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency
2 , , , 2 1T =
g. Impulse at x[8] h. Real Part i. Imaginary part
1 1
= = =
= Lo 3 0 30
£ £ £
-1 -1
-1 2 2
0 16 32 48 63 0.5 0 0.5 0.5 0 0.5
Sample number Frequency Frequency
FIGURE 11-2

Deltafunction pairsin rectangular form. Each samplein the time domain resultsin a cosine wave in the real part,
and a negative sine wave in the imaginary part of the frequency domain.

(f) show that an impulse at sample number four in the time domain results in
four cycles of a cosine wave in the real part of the frequency spectrum, and
four cycles of a negative sine wave in the imaginary part. As you recall, an
impulse at sample number four in the real part of the frequency spectrum
results in four cycles of a cosine wave in the time domain. Likewise, an
impulse at sample number four in the imaginary part of the frequency spectrum
results in four cycles of a negative sine wave being added to the time domain
wave.

As mentioned in Chapter 8, this can be used as another way to calculate the
DFT (besides correlating the time domain with sinusoids). Each samplein the
time domain results in a cosine wave being added to the real part of the

212 The Scientist and Engineer's Guide to Digital Sgnal Processing

frequency domain, and a negative sine wave being added to the imaginary part.
The amplitude of each sinusoid is given by the amplitude of the time domain
sample. The frequency of each sinusoid is provided by the sample number of
the time domain point. The algorithm involves: (1) stepping through each time
domain sample, (2) calculating the sine and cosine waves that correspond to
each sample, and (3) adding up all of the contributing sinusoids. The resulting
program is nearly identical to the correlation method (Table 8-2), except that
the outer and inner loops are exchanged.

The Sinc Function

Figure 11-4 illustrates a common transform pair: the rectangular pulse and the
sinc function (pronounced “sink”). The sinc function is defined as:
sinc(a) = sin(wma)/(wa), however, it is common to see the vague statement: “the
sinc function is of the general form: sin(x)/x." In other words, the sinc is a sine
wave that decays in amplitude as 1/x. In (a), the rectangular pulse is
symmetrically centered on sample zero, making one-half of the pulse on the
right of the graph and the other one-half on the left. This appears to the DFT
as a single pulse because of the time domain periodicity. The DFT of this
signal is shown in (b) and (c), with the unwrapped version in (d) and (€).

First look at the unwrapped spectrum, (d) and (e). The unwrapped
magnitude is an oscillation that decreases in amplitude with increasing
frequency. The phase is composed of all zeros, as you should expect for
a time domain signal that is symmetrical around sample number zero. We
are using the term unwrapped magnitude to indicate that it can have both
positive and negative values. By definition, the magnitude must always be
positive. This is shown in (b) and (¢) where the magnitude is made all
positive by introducing a phase shift of n at all frequencies where the
unwrapped magnitude is negative in (d).

In (), the signal is shifted so that it appears as one contiguous pulse, but is no
longer centered on sample number zero. While this doesn't change the
magnitude of the frequency domain, it does add a linear component to the
phase, making it a jumbled mess. What does the frequency spectrum look like
as real and imaginary parts ? Too confusing to even worry about.

An N point time domain signal that contains a unity amplitude rectangular pulse
M points wide, has a DFT frequency spectrum given by:

EQUATION 11-1
DFT spectrum of arectangular pulse. Inthis
equation, N is the number of pointsin the

time domain signal, al of which haveavalue :
of zero, except M adjacent pointsthat have a Mag X [k] = M
value of one. The frequency spectrum is sn(mk/N)

contained in X[K], where k runs from 0 to
N/2. To avoid the division by zero, use
X[0] = M. The sine function uses radians,
not degrees. This equation takes into
account that the signal is aliased.

Chapter 11- Fourier Transform Pairs 213

Time Domain Frequency Domain
2 1 1 1 20 1 1 6 1 1
[a Rectangular pulse | b. Magnitude , Lo Phase
15
g g g
3 E 10 _g
= o 3 ‘l 0
£ £ s 8
<, < \;’ 2o
-1 5 6
0 32 64 96 127 0 01 02 03 04 05 0 01 02 03 04 05
Sample number Frequency Frequency
or
20 1 1 1 1 6 1 1
| d. Unwrapped Magnitude | , | le Phase
15
)
10 k]
Xl B
5
\ d:
0 x F_.r A ™, -4
5 -6
0 01 02 03 04 05 0 01 02 03 04 05
Frequency Frequency
2 1 1 1 20 1 1 6 1 1
[f. Rectangular pulse | g. Magnitude ,.L Lh. Phase
15
.) PSETITEE T
: g AL
2 2 {‘_
=] - = k EL 0
: : s AT
<, < \;’ g_z \ i**e* TS IRE
-1 5 6
0 32 64 96 127 0 01 02 03 04 05 0 01 02 03 04 05
Sample number Frequency Frequency

FIGURE 11-3
DFT of arectangular pulse. A rectangular pulse in one domain corresponds to a sinc
function in the other domain.

Alternatively, the DTFT can be used to express the frequency spectrum as a
fraction of the sampling rate, f:

EQUATION 11-2
Equation 11-1 rewritten in terms of the

sampling frequency. The parameter, f , is _|gn(nfM)
the fraction of the sampling rate, running Mag X (f) B N
continiously from 0 to 0.5. To avoid the sn(nf)

division by zero, use Mag X(0) = M.

In other words, Eq. 11-1 provides N/2 + 1 samples in the frequency spectrum,
while Eq. 11-2 provides the continuous curve that the samples lie on. These

214

The Scientist and Engineer's Guide to Digital Sgnal Processing

equations only provide the magnitude. The phase is determined solely by the
left-right positioning of the time domain waveform, as discussed in the last
chapter.

Notice in Fig. 11-3b that the amplitude of the oscillation does not decay to
zero before a frequency of 0.5 is reached. As you should suspect, the
waveform continues into the next period where it is aliased. This changes
the shape of the frequency domain, an effect that is included in Egs. 11-1
and 11-2.

It is often important to understand what the frequency spectrum looks like when
aliasing isn't present. This is because discrete signals are often used to
represent or model continuous signals, and continuous signals don't alias. To
remove the aliasing in Egs. 11-1 and 11-2, change the denominators from
sin(tkM/N) to tkM/N, and sin(nf) to =f, respectively. Figure 11-4 shows
the significance of this. The quantity =f can only run from O to 1.5708, since f
can only run from 0 to 0.5. Over this range there isn't much difference
between sin(nf) and nf. At zero frequency they have the same value, and
at a frequency of 0.5 there is only about a 36% difference. Without
aliasing, the curve in Fig. 11-3b would show a slightly lower amplitude
near the right side of the graph, and no change near the left side.

When the frequency spectrum of the rectangular pulse is not aliased
(because the time domain signal is continuous, or because you are ignoring
the aliasing), it is of the general form: sin(x)/x, i.e., a sinc function. For
continuous signals, the rectangular pulse and the sinc function are Fourier
transform pairs. For discrete signals thisis only an approximation, with the
error being due to aliasing.

The sinc function has an annoying problem at x = 0, where sin(x)/x becomes
zero divided by zero. This is not a difficult mathematical problem; as x
becomes very small, sin(x) approaches the value of x (see Fig. 11-4).

|

|

|

H

FIGURE 11-4 1

Comparing x and sin(x). Thefunctions: y(x) = x, :

and y(x) = sin(x) aresimilar for small values of x, 4

and only differ by about 36% at 1.57 (=/2). This :
describes how aliasing distorts the frequency 0.8t ——d-—-L-—1__

|

|

|

4

|

|

|

i

|

|

f

y(x)

spectrum of the rectangular pulse from a pure [[
sinc function. 0.6-F——4———f——

|

|
0.4-p——d-—— Al

|

)

4=
4 g

|
02+-—H—- -

|

|

]

i

0

0.0 02 04 06 08 1.0 12 14 1.6
X

Chapter 11- Fourier Transform Pairs 215

This turns the sinc function into x/x, which has a value of one. In other words,
as X becomes smaller and smaller, the value of sinc(x) approaches one, which
includes sinc(0) = 1. Now try to tell your computer this! All it sees is a
division by zero, causing it to complain and stop your program. The important
point to remember is that your program must include special handling at x = 0
when calculating the sinc function.

A key trait of the sinc function is the location of the zero crossings. These
occur at frequencies where an integer number of the sinusoid's cycles fit
evenly into the rectangular pulse. For example, if the rectangular pulse is
20 points wide, the first zero in the frequency domain is at the frequency
that makes one complete cycle in 20 points. The second zero is at the
frequency that makes two complete cycles in 20 points, etc. This can be
understood by remembering how the DFT is calculated by correlation. The
amplitude of a frequency component is found by multiplying the time
domain signal by a sinusoid and adding up the resulting samples. If the
time domain waveform is a rectangular pulse of unity amplitude, thisis the
same as adding the sinusoid's samples that are within the rectangular pulse.
If this summation occurs over an integral number of the sinusoid's cycles,
the result will be zero.

The sinc function is widely used in DSP because it is the Fourier transform pair
of a very simple waveform, the rectangular pulse. For example, the sinc
function is used in spectral analysis, as discussed in Chapter 9. Consider the
analysis of an infinitely long discrete signal. Since the DFT can only work
with finite length signals, N samples are selected to represent the longer signal.
The key here is that "selecting N samples from a longer signal” is the same as
multiplying the longer signal by a rectangular pulse. The ones in the
rectangular pulse retain the corresponding samples, while the zeros eliminate
them. How does this affect the frequency spectrum of the signal? Multiplying
the time domain by a rectangular pulse results in the frequency domain being
convolved with a sinc function. This reduces the frequency spectrum's
resolution, as previously shown in Fig. 9-5a.

Other Transform Pairs

Figure 11-5 (@) and (b) show the duality of the above: a rectangular pulse in
the frequency domain corresponds to a sinc function (plus aliasing) in the time
domain. Including the effects of aliasing, the time domain signal is given by:

EQUATION 11-3
Inverse DFT of therectangular pulse. Inthe
frequency domain, the pulse has an

amplitude of one, and runs from sample . 1 sn2ri(M - 1/2)/N)
number 0 through sample number M-1. The x[i1] = = - -
parameter N is the length of the DFT, and N an(mi/N)

X[i] isthetime domain signal withi running
from 0 to N-1. To avoid the division by
zero, use X[0] = (2M-1)/N.

216

EQUATION 11-4

The Scientist and Engineer's Guide to Digital Sgnal Processing

To eliminate the effects of aliasing from this equation, imagine that the
frequency domain is so finely sampled that it turns into a continuous curve.
This makes the time domain infinitely long with no periodicity. The DTFT is
the Fourier transform to use here, resulting in the time domain signal being
given by the relation:

Inverse DTFT of the rectangular pulse. In

the frequency domain, the pulse has an) sn(2nf i)
amplitude of one, and runs from zero X[i] = —————
frequency to the cutoff frequency, f., avalue I T

between 0 and 0.5. Thetimedomain signal is
heldin x[i] withirunningfrom0toN-1. To
avoid the division by zero, use x[0] = 2f_.

This equation is very important in DSP, because the rectangular pulse in the
frequency domain is the perfect low-pass filter. Therefore, the sinc function
described by this equation is the filter kernel for the perfect low-pass filter.
Thisis the basis for a very useful class of digital filters called the windowed-
sinc filters, described in Chapter 15.

Figures (c) & (d) show that a triangular pulse in the time domain coincides
with a sinc function squared (plus aliasing) in the frequency domain. This
transform pair isn't as important as the reason it is true. A 2M -1 point
triangle in the time domain can be formed by convolving an M point
rectangular pulse with itself. Since convolution in the time domain results in
multiplication in the frequency domain, convolving a waveform with itself will
square the frequency spectrum.

Is there awaveform that isits own Fourier Transform? The answer is yes, and
there is only one: the Gaussian. Figure (e) shows a Gaussian curve, and (f)
shows the corresponding frequency spectrum, also a Gaussian curve. This
relationship is only true if you ignore aliasing. The relationship between the
standard deviation of the time domain and frequency domain is given by:
2mo0, = 1/o,. While only one side of a Gaussian is shown in (f), the negative
frequencies in the spectrum complete the full curve, with the center of
symmetry at zero frequency.

Figure (g) shows what can be called a Gaussian burst. It is formed by
multiplying a sine wave by a Gaussian. For example, (g) is a sine wave
multiplied by the same Gaussian shown in (€). The corresponding frequency
domain is a Gaussian centered somewhere other than zero frequency. As
before, this transform pair is not as important as the reason it is true. Since
the time domain signal is the multiplication of two signals, the frequency
domain will be the convolution of the two frequency spectra. The frequency
spectrum of the sine wave is a delta function centered at the frequency of the
sine wave. The frequency spectrum of a Gaussian is a Gaussian centered at
zero frequency. Convolving the two produces a Gaussian centered at the
frequency of the sine wave. This should look familiar; it is identical to the
procedure of amplitude modulation described in the last chapter.

Chapter 11- Fourier Transform Pairs

217

Time Domain Frequency Domain
T T B : ! :
a. Sinc ‘b. Rectangular pulse
2 10
@ o)
E f X - E
=1 =5
< <
0o, h‘# W v W N 0
-1 -5
0 16 32 48 64 80 9% 112 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
2 1 1 1 15 1 1
c. Triangle d. Sinc squared
10
o ! () -h..‘-
° °
> >
= g =5
[=X [=X
£ £
<, <
0 —
-1 5
0 16 32 48 64 80 9% 112 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
2 1 1 1 15 1
e. Gaussian f. Gaussian
10
o ! © -'..‘.
° °
2 2
= L o nd F5
£ £
< 0 <
0 "
-1 5
0 16 32 48 64 80 9% 112 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
3 1 1 1 1 15 1
g. Gaussian burst h. Gaussian
2
10
% 1 ». % f‘f .-..l.
> >
;_l A L o nd ::_1 5
€0 il £
< i <
0 L
-1 -
]
2 -5
0 16 32 48 64 80 9% 112 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 11-5

Common transform pairs.

218 The Scientist and Engineer's Guide to Digital Sgnal Processing

Gibbs Effect

Figure 11-6 shows atime domain signal being synthesized from sinusoids. The
signal being reconstructed is shown in the last graph, (h). Since this signal is
1024 points long, there will be 513 individual frequencies needed for a
complete reconstruction. Figures (a) through (g) show what the reconstructed
signal looks like if only some of these frequencies are used. For example, (f)
shows a reconstructed signal using frequencies 0 through 100. This signal was
created by taking the DFT of the signal in (h), setting frequencies 101 through
512 to a value of zero, and then using the Inverse DFT to find the resulting
time domain signal.

As more frequencies are added to the reconstruction, the signal becomes closer
to the final solution. The interesting thing is how the final solution is
approached at the edges in the signal. There are three sharp edgesin (h). Two
are the edges of the rectangular pulse. The third is between sample numbers
1023 and O, since the DFT views the time domain as periodic. When only
some of the frequencies are used in the reconstruction, each edge shows
overshoot and ringing (decaying oscillations). This overshoot and ringing is
known as the Gibbs effect, after the mathematical physicist Josiah Gibbs,
who explained the phenomenon in 1899.

Look closely at the overshoot in (), (f), and (g). As more sinusoids are
added, the width of the overshoot decreases; however, the amplitude of the
overshoot remains about the same, roughly 9 percent. With discrete signals
this is not a problem; the overshoot is eliminated when the last frequency is
added. However, the reconstruction of continuous signals cannot be explained
so easily. An infinite number of sinusoids must be added to synthesize a
continuous signal. The problem is, the amplitude of the overshoot does not
decrease as the number of sinusoids approaches infinity, it stays about the same
9%. Given this situation (and other arguments), it is reasonable to question if
a summation of continuous sinusoids can reconstruct an edge. Remember the
squabble between Lagrange and Fourier?

The critical factor in resolving this puzzle is that the width of the overshoot
becomes smaller as more sinusoids are included. The overshoot is still present
with an infinite number of sinusoids, but it has zero width. Exactly at the
discontinuity the value of the reconstructed signal converges to the midpoint of
the step. As shown by Gibbs, the summation converges to the signal in the
sense that the error between the two has zero energy.

Problems related to the Gibbs effect are frequently encountered in DSP. For
example, a low-pass filter is a truncation of the higher frequencies, resulting
in overshoot and ringing at the edges in the time domain. Another common
procedure is to truncate the ends of a time domain signal to prevent them from
extending into neighboring periods. By duality, this distorts the edges in the
frequency domain. These issues will resurface in future chapters on filter
design.

Chapter 11- Fourier Transform Pairs

? ! !
a. Frequencies: 0
1
o) o)
-] -]
2 2
5 5
£ £
< 0 <
-1
0 256 512 768 1023
Sample number
2 T T
]]
c. Frequencies: 0 to 3 ‘
1
o) o)
-] °
: N\ :
EN / Yo
<, / \ y <
N4 p
-1
0 256 512 768 1023
Sample number
2 T T
1 1
e. Frequencies: 0 to 30
1 AAAA AVA
o) o)
-] -]
2 2
5 5
g g
0 vA A\ \/ A\
-1
0 256 512 768 1023
Sample number
2 T T
1 1
g. Frequencies: 0 to 300
1
@ o)
-] -]
2 2
5 5
£ £
< 0 <
-1
0 256 512 768 1023
Sample number
FIGURE 11-6.

]]
b. Frequencies: 0 & 1

—_

=]

0 256 512 768

1023
Sample number

—_

=]

—_

=]

—_

=]

]]
d. Frequencies: 0to 10

\I\/\ o
TG

0 256 512 768

1023
Sample number

1 1
f. Frequencies: 0 to 100

0 256 512 768

1023
Sample number

1 1
h. Frequencies: 0 to 512

0 256 512 768 1023

Sample number

The Gibbs effect.

219

220
Harmonics
Time Domain

a. Sine wave
°
2
=
E \/
<

128 256 384 512 640 768 896

Sample number

‘cA Asymmetrical distortion ‘
NANANINANANAWANA
°
2
=
E \/
<

128 256 384 512 640 768 896

Sample number

‘eA Symmetrical distortion ‘
SANANANANANN
°
2
=
E ¥
<

The Scientist and Engineer's Guide to Digital Sgnal Processing

If a signal is periodic with frequency f, the only frequencies composing the
signal are integer multiples of f, i.e., f, 2f, 3f, 4f, etc.
cdled harmonics. Thefirst harmonic isf, the second harmonic is 2f, the
third harmonic is 3f, and so forth. The first harmonic (i.e., f) is aso given
a special name, the fundamental frequency. Figure 11-7 shows an

1023

1023

128 256 384 512 640
Sample number

FIGURE 11-7
Example of harmonics. Asymmetrical distortion, shown in (c), resultsin even and odd harmonics,
(d), while symmetrical distortion, shown in (€), produces only even harmonics, (f).

768

896

1023

Amplitude

Amplitude

Amplitude

Frequency Domain

These frequencies are

700 T T
b. Fundamental
600
500
400
300
200
100
0
0 0.02 0.04 0.06 0.08 0.1
Frequency
700 T T T
d. Fundamental plus
600--- even and odd harmonics |
500
400
300
200
100 \
0 ‘ Tip . -
0 0.02 0.04 0.06 0.08 0.1
Frequency
700 T T
f. Fundamental plus
600 -+ odd harmonics ‘
500
400
300
200
100 \
0 b o
0 0.02 0.04 0.06 0.08 0.1
Frequency

Amplitude

Time Domain

Chapter 11- Fourier Transform Pairs 221

Frequency Domain

SRR

‘a. Distorted sine wave ‘

IR AN

0 20 40 60 80 100
Sample number

FIGURE 11-8

Harmonic aliasing. Figures (a) and (b) show
a distorted sine wave and its frequency
spectrum, respectively. Harmonics with a
frequency greater than 0.5 will become
aliased to a frequency between 0 and 0.5.
Figure (c) displays the same frequency
spectrum on a logarithmic scale, revealing
many aliased peaks with very low amplitude.

Amplitude

Amplitude

-100

700

6007——|b. Frequency spectrum |

500

400

300

200

100

0.1

0.2 0.3
Frequency

0.4

0.5

10°

10°

1 1 1 1
10 +-1c. Frequency spectrum (Log scale) ‘

107

10

10°

107+
10°
10°+

LU LS r_L
I

10° t
0 0.1 0.2 0.3 0.4 0.5
Frequency

example. Figure (a) is apure sine wave, and (b) isits DFT, a single peak.
In (c), the sine wave has been distorted by poking in the tops of the peaks.
Figure (d) shows the result of this distortion in the frequency domain.
Because the distorted signal is periodic with the same frequency as the
original sine wave, the frequency domain is composed of the original peak
plus harmonics. Harmonics can be of any amplitude; however, they usually
become smaller as they increase in frequency. As with any signal, sharp
edges result in higher frequencies. For example, consider a common TTL
logic gate generating a 1 kHz square wave. The edges rise in a few
nanoseconds, resulting in harmonics being generated to nearly 100 MHz,
the ten-thousandth harmonic!

Figure (e) demonstrates a subtlety of harmonic analysis. If the signal is
symmetrical around a horizontal axis, i.e., the top lobes are mirror images of
the bottom lobes, all of the even harmonics will have a value of zero. As
shown in (f), the only frequencies contained in the signal are the fundamental,
the third harmonic, the fifth harmonic, etc.

All continuous periodic signals can be represented as a summation of
harmonics, just as described. Discrete periodic signals have a problem that
disrupts this simple relation. As you might have guessed, the problem is
aliasing. Figure 11-8a shows a sine wave distorted in the same manner as
before, by poking in the tops of the peaks. This waveform looks much less

222

The Scientist and Engineer's Guide to Digital Sgnal Processing

regular and smooth than in the previous example because the sine wave is
at a much higher frequency, resulting in fewer samples per cycle. Figure
(b) shows the frequency spectrum of this signal. As you would expect, you
can identify the fundamental and harmonics. This example shows that
harmonics can extend to frequencies greater than 0.5 of the sampling
frequency, and will be aliased to frequencies somewhere between 0 and 0.5.
Y ou don't notice them in (b) because their amplitudes are too low. Figure
(c) shows the frequency spectrum plotted on a logarithmic scale to reveal
these low amplitude aliased peaks. At first glance, this spectrum looks like
random noise. It isn't; thisis aresult of the many harmonics overlapping
as they are aliased.

It isimportant to understand that this example involves distorting a signal
after it has been digitally represented. If this distortion occurred in an
analog signal, you would remove the offending harmonics with an antialias
filter before digitization. Harmonic aliasing is only a problem when
nonlinear operations are performed directly on a discrete signal. Even
then, the amplitude of these aliased harmonics is often low enough that they
can be ignored.

The concept of harmonics is also useful for another reason: it explains why the
DFT views the time and frequency domains as periodic. In the frequency
domain, an N point DFT consists of N/2+1 equally spaced frequencies. You
can view the frequencies between these samples as (1) having a value of zero,
or (2) not existing. Either way they don't contribute to the synthesis of the time
domain signal. In other words, a discrete frequency spectrum consists of
harmonics, rather than a continuous range of frequencies. This requires the
time domain to be periodic with a frequency equal to the lowest sinusoid in the
frequency domain, i.e., the fundamental frequency. Neglecting the DC value,
the lowest frequency represented in the frequency domain makes one complete
cycle every N samples, resulting in the time domain being periodic with a
period of N. In other words, if one domain is discrete, the other domain must
be periodic, and vice versa. This holds for al four members of the Fourier
transform family. Since the DFT views both domains as discrete, it must also
view both domains as periodic. The samples in each domain represent
harmonics of the periodicity of the opposite domain.

Chirp Signals

EQUATION 11-7

Phase of the chirp system.

Chirp signals are an ingenious way of handling a practical problem in echo
location systems, such as radar and sonar. Figure 11-9 shows the frequency
response of the chirp system. The magnitude has a constant value of one, while
the phase is a parabola:

Phase X[k] = ok + Pk2

Amplitude

Amplitude

Chapter 11- Fourier Transform Pairs 223

T T 50 T T
1 1
a. Chirp magnitude ‘ b. Chirp phase
0
o) \
8 50 S
g ™
%-100 \‘
[
-150
200
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency

FIGURE 11-9
Frequency response of the chirp system. The magnitude is a constant, while the phase is a parabola.

The parameter o introduces a linear slope in the phase, that is, it simply shifts
the impulse response left or right as desired. The parameter p controls the
curvature of the phase. These two parameters must be chosen such that the
phase at frequency 0.5 (i.e. k = N/2) isamultiple of 2r. Remember, whenever
the phase is directly manipulated, frequency 0 and 0.5 must both have a phase
of zero (or a multiple of 2r, which is the same thing).

Figure 11-10 shows an impulse entering a chirp system, and the impulse
response exiting the system. The impulse response is an oscillatory burst that
starts at a low frequency and changes to a high frequency as time progresses.
Thisis called a chirp signal for a very simple reason: it sounds like the chirp
of a bird when played through a speaker.

The key feature of the chirp system is that it is completely reversible. If you
run the chirp signal through an antichirp system, the signal is again made into
an impulse. This requires the antichirp system to have a magnitude of one,
and the opposite phase of the chirp system. As discussed in the last

0.5

T T L5 T T T
1 1 1 1 1
a. Impulse b. Impulse Response
(chirp signal)
1
@
Chirp E
—>| SyStem > E_ 0.5
<
5 W B il
WLl
|
1
-0. t
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Sample number Sample number
FIGURE 11-10

The chirp system. The impulse response of achirp systemisachirp signal.

224

The Scientist and Engineer's Guide to Digital Sgnal Processing

chapter, this means that the impulse response of the antichirp system is found
by preforming a left-for-right flip of the chirp system's impulse response.
Interesting, but what is it good for?

Consider how aradar system operates. A short burst of radio frequency energy
is emitted from a directional antenna. Aircraft and other objects reflect some
of this energy back to a radio receiver located next to the transmitter. Since
radio waves travel at a constant rate, the elapsed time between the transmitted
and received signals provides the distance to the target. This brings up the
first requirement for the pulse: it needs to be as short as possible. For
example, a 1 microsecond pulse provides a radio burst about 300 meters long.
This means that the distance information we obtain with the system will have
aresolution of about this same length. If we want better distance resolution,
we need a shorter pulse.

The second requirement is obvious: if we want to detect objects farther away,
you need more energy in your pulse. Unfortunately, more energy and shorter
pulse are conflicting requirements. The electrical power needed to provide a
pulse is equal to the energy of the pulse divided by the pulse length. Requiring
both more energy and a shorter pulse makes electrical power handling a
limiting factor in the system. The output stage of aradio transmitter can only
handle so much power without destroying itself.

Chirp signals provide a way of breaking this limitation. Before the impulse
reaches the final stage of the radio transmitter, it is passed through a chirp
system. Instead of bouncing an impulse off the target aircraft, a chirp signal
isused. After the chirp echo is received, the signal is passed through an
antichirp system, restoring the signal to an impulse. This allows the portions
of the system that measure distance to see short pulses, while the power
handling circuits see long duration signals. This type of waveshaping is a
fundamental part of modern radar systems.

CHAPTER

12

The Fast Fourier Transform

There are several ways to calculate the Discrete Fourier Transform (DFT), such as solving
simultaneous linear equations or the correlation method described in Chapter 8. The Fast
Fourier Transform (FFT) is another method for calculating the DFT. While it produces the same
result as the other approaches, it is incredibly more efficient, often reducing the computation time
by hundreds. This is the same improvement as flying in a jet aircraft versus walking! If the
FFT were not available, many of the techniques described in this book would not be practical.
While the FFT only requires a few dozen lines of code, it is one of the most complicated
algorithms in DSP. But don't despair! Y ou can easily use published FFT routines without fully
understanding the internal workings.

Real DFT Using the Complex DFT

JW. Cooley and JW. Tukey are given credit for bringing the FFT to the world
in their paper: "An agorithm for the machine calculation of complex Fourier
Series," Mathematics Computation, Vol. 19, 1965, pp 297-301. In retrospect,
others had discovered the technique many years before. For instance, the great
German mathematician Karl Friedrich Gauss (1777-1855) had used the method
more than a century earlier. This early work was largely forgotten because it
lacked the tool to make it practical: the digital computer. Cooley and Tukey
are honored because they discovered the FFT at the right time, the beginning
of the computer revolution.

The FFT is based on the complex DFT, a more sophisticated version of the real
DFT discussed in the last four chapters. These transforms are named for the
way each represents data, that is, using complex numbers or using real
numbers. The term complex does not mean that this representation is difficult
or complicated, but that a specific type of mathematics is used. Complex
mathematics often is difficult and complicated, but that isn't where the name
comes from. Chapter 29 discusses the complex DFT and provides the
background needed to understand the details of the FFT algorithm. The

225

226

The Scientist and Engineer's Guide to Digital Sgnal Processing

Real DFT
Time Domain Frequency Domain
Real Part
]] - VYV VUV
0 N-1 0 N/2
Imaginary Part
SENNENEN
0 N/2
Complex DFT
Time Domain Frequency Domain
Real Part Real Part
28 1051262 P20 102 295 02 0% 1207826 103 292 09 8% vy 111111
0 N-1 0 N/2 N-1
-
Imaginary Part Imaginary Part
NN EEEEEEEE NSNNNNNSNEEEEEE
0 N-1 0 N/2 N-1
FIGURE 12-1

Comparing the real and complex DFTs. The real DFT takes an N point time domain signal and
creates two N/2+ 1 point frequency domain signals. The complex DFT takes two N point time
domain signals and createstwo N point frequency domain signals. The crosshatched regions shows

the values common to the two transforms.

topic of this chapter is simpler: how to use the FFT to calculate the real DFT,
without drowning in a mire of advanced mathematics.

Since the FFT is an algorithm for calculating the complex DFT, it is
important to understand how to transfer real DFT data into and out of the
complex DFT format. Figure 12-1 compares how the real DFT and the
complex DFT store data. The real DFT transforms an N point time domain
signal into two N/2 + 1 point frequency domain signals. The time domain
signal is called just that: the time domain signal. The two signals in the
frequency domain are called the real part and the imaginary part, holding
the amplitudes of the cosine waves and sine waves, respectively. This
should be very familiar from past chapters.

In comparison, the complex DFT transforms two N point time domain signals
into two N point frequency domain signals. The two time domain signals are
called the real part and the imaginary part, just as are the frequency domain
signals. In spite of their names, all of the values in these arrays are just
ordinary numbers. (If you are familiar with complex numbers: the j's are not
included in the array values; they are a part of the mathematics. Recall that the
operator, Im(), returns a real number).

Chapter 12- The Fast Fourier Transform 227

Suppose you have an N point signal, and need to calculate the real DFT by
means of the Complex DFT (such as by using the FFT algorithm). First, move
the N point signal into the real part of the complex DFT's time domain, and
then set al of the samples in the imaginary part to zero. Calculation of the
complex DFT results in a real and an imaginary signal in the frequency
domain, each composed of N points. Samples 0 through N/2 of these signals
correspond to the real DFT's spectrum.

As discussed in Chapter 10, the DFT's frequency domain is periodic when the
negative frequencies are included (see Fig. 10-9). The choice of a single
period is arbitrary; it can be chosen between -1.0 and 0, -0.5 and 0.5, 0 and
1.0, or any other one unit interval referenced to the sampling rate. The
complex DFT's frequency spectrum includes the negative frequencies in the 0
to 1.0 arrangement. In other words, one full period stretches from sample O to
sample N- 1, corresponding with 0 to 1.0 times the sampling rate. The positive
frequencies sit between sample 0 and N/2, corresponding with 0 to 0.5. The
other samples, between N/2+1 and N-1, contain the negative frequency
values (which are usually ignored).

Calculating a real Inverse DFT using a complex Inverse DFT is slightly
harder. Thisis because you need to insure that the negative frequencies are
loaded in the proper format. Remember, points 0 through N/2 in the
complex DFT are the same as in the real DFT, for both the real and the
imaginary parts. For the real part, point N/2+1 is the same as point
N/2-1, point N/2+ 2 isthe same as point N/2- 2, etc. This continues to
point N-1 being the same as point 1. The same basic pattern is used for
the imaginary part, except the sign is changed. That is, point N/2+ 1 isthe
negative of point N/2- 1, point N/2+ 2 is the negative of point N/2- 2, etc.
Notice that samples 0 and N/2 do not have a matching point in this
duplication scheme. Use Fig. 10-9 as a guide to understanding this
symmetry. In practice, you load the real DFT's frequency spectrum into
samples 0 to N/2 of the complex DFT's arrays, and then use a subroutine to
generate the negative frequencies between samples N/2+1 and N-1. Table
12-1 shows such a program. To check that the proper symmetry is present,
after taking the inverse FFT, look at the imaginary part of the time domain.
It will contain all zeros if everything is correct (except for afew parts-per-
million of noise, using single precision calculations).

6000 'NEGATIVE FREQUENCY GENERATION

6010 'This subroutine creates the complex frequency domain from the real frequency domain.
6020 'Upon entry to this subroutine, N% contains the number of pointsin the signals, and

6030 'REX[] and IMX]] contain the real frequency domain in samples 0 to N%/2.

6040 'On return, REX[] and IMX[] contain the complex frequency domain in samples 0 to N%-1.

6050

6060 FOR K% = (N%/2+1) TO (N%-1)
6070 REX[K%] = REX[N%-K%]
6080 IMX[K%] = -IMX[N%-K%]

6090 NEXT K%
6100
6110 RETURN

TABLE 12-1

228 The Scientist and Engineer's Guide to Digital Sgnal Processing

How the FFT works

The FFT is a complicated algorithm, and its details are usually left to those that
specialize in such things. This section describes the general operation of the
FFT, but skirts a key issue: the use of complex numbers. If you have a
background in complex mathematics, you can read between the lines to
understand the true nature of the algorithm. Don't worry if the details elude
you; few scientists and engineers that use the FFT could write the program
from scratch.

In complex notation, the time and frequency domains each contain one signal
made up of N complex points. Each of these complex points is composed of
two numbers, the real part and the imaginary part. For example, when we talk
about complex sample X[42], it refers to the combination of ReX[42] and
ImX[42]. In other words, each complex variable holds two numbers. When
two complex variables are multiplied, the four individual components must be
combined to form the two components of the product (such asin Eq. 9-1). The
following discussion on "How the FFT works" uses this jargon of complex
notation. That is, the singular terms: signal, point, sample, and value, refer
to the combination of the real part and the imaginary part.

The FFT operates by decomposing an N point time domain signal into N
time domain signals each composed of a single point. The second step is to
calculate the N frequency spectra corresponding to these N time domain
signals. Lastly, the N spectra are synthesized into a single frequency
spectrum.

Figure 12-2 shows an example of the time domain decomposition used in the
FFT. In this example, a 16 point signal is decomposed through four

i:ggﬂt;’f (01234567809 101112 13 14 15 |
| /\

2 signals of

8 points | 02468101214 |/ 135 7 9 1113 15|
-’ /\ \

signals of

4 points 04812261014/ /1591337 1115]
S N N (N

2 points 0 8/|412||210]|614| |1 9]|513] 3 11| 7 15]

AN AN AN AN AN AT ANEA

tpont . [0][8][a][12][2][10][6]a][1][0][s] s3] a] 117]

FIGURE 12-2

The FFT decomposition. An N point signal is decomposed into N signals each containing asingle point.
Each stage uses an interlace decomposition, separating the even and odd numbered samples.

Chapter 12- The Fast Fourier Transform 229

Sample numbers Sample numbers
in normal order after bit reversal
Decimal Binary Decimal Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 ﬁ> 6 0100
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

FIGURE 12-3

The FFT bit reversal sorting. The FFT time domain decomposition can be implemented by
sorting the samples according to bit reversed order.

separate stages. The first stage breaks the 16 point signal into two signals each
consisting of 8 points. The second stage decomposes the data into four signals
of 4 points. This pattern continues until there are N signals composed of a
single point. An interlaced decomposition is used each time a signal is
broken in two, that is, the signal is separated into its even and odd numbered
samples. The best way to understand this is by inspecting Fig. 12-2 until you
grasp the pattern. There are Log,N stages required in this decomposition, i.e.,
a 16 point signal (2*) requires 4 stages, a 512 point signal (2°) requires 7
stages, a 4096 point signal (2*) requires 12 stages, etc. Remember this value,
Log,N; it will be referenced many times in this chapter.

Now that you understand the structure of the decomposition, it can be greatly
simplified. The decomposition is nothing more than a reordering of the
samplesin the signal. Figure 12-3 shows the rearrangement pattern required.
On the left, the sample numbers of the original signal are listed along with
their binary equivalents. On the right, the rearranged sample numbers are
listed, also along with their binary equivalents. The important ideais that the
binary numbers are the reversals of each other. For example, sample 3 (0011)
is exchanged with sample number 12 (1100). Likewise, sample number 14
(1110) is swapped with sample number 7 (0111), and so forth. The FFT time
domain decomposition is usually carried out by a bit reversal sorting
algorithm. This involves rearranging the order of the N time domain samples
by counting in binary with the bits flipped left-for-right (such as in the far right
column in Fig. 12-3).

230

The Scientist and Engineer's Guide to Digital Sgnal Processing

The next step in the FFT algorithm is to find the frequency spectra of the
1 point time domain signals. Nothing could be easier; the frequency
spectrum of a 1 point signal is equal to itself. This means that nothing is
required to do this step. Although there is no work involved, don't forget
that each of the 1 point signals is now a frequency spectrum, and not a time
domain signal.

The last step in the FFT is to combine the N frequency spectra in the exact
reverse order that the time domain decomposition took place. Thisis where the
algorithm gets messy. Unfortunately, the bit reversal shortcut is not
applicable, and we must go back one stage at a time. In the first stage, 16
frequency spectra (1 point each) are synthesized into 8 frequency spectra (2
points each). In the second stage, the 8 frequency spectra (2 points each) are
synthesized into 4 frequency spectra (4 points each), and so on. The last stage
results in the output of the FFT, a 16 point frequency spectrum.

Figure 12-4 shows how two frequency spectra, each composed of 4 points,
are combined into a single frequency spectrum of 8 points. This synthesis
must undo the interlaced decomposition done in the time domain. In other
words, the frequency domain operation must correspond to the time domain
procedure of combining two 4 point signals by interlacing. Consider two
time domain signals, abcd and efgh. An 8 point time domain signal can be
formed by two steps: dilute each 4 point signal with zeros to make it an

Time Domain Frequency Domain
[a[blc]d] - [ATB[CD]
[alo][blo]c[o]d]0] g (a[s]c[D]Aa[BICID]
(e[t To[h]

KKK T
[o]elo[f[ofg]o]h] g ([E[FIG[H[E[F]IGIH]
FIGURE 12-4

The FFT synthesis. When atime domain signal is diluted with zeros, the frequency domain is
duplicated. If the time domain signal is also shifted by one sample during the dilution, the spectrum
will additionally be multiplied by a sinusoid.

FIGURE 12-5

FFT synthesisflow diagram. This shows
the method of combining two 4 point
frequency spectrainto a single 8 point
frequency spectrum. The xS operation
means that the signal is multiplied by a
sinusoid with an appropriately selected

FIGURE 12-6

The FFT butterfly. This is the basic
calculation element in the FFT, taking
two complex points and converting
them into two other complex points.

Chapter 12- The Fast Fourier Transform 231

Odd- Four Point Even- Four Point
Frequency Spectrum Frequency Spectrum

Eight Point Frequency Spectrum

8 point signal, and then add the signals together. That is, abcd becomes
a0b0c0d0, and efgh becomes 0e0f0gOh. Adding these two 8 point signals
produces aebfcgdh. As shown in Fig. 12-4, diluting the time domain with zeros
corresponds to a duplication of the frequency spectrum. Therefore, the
frequency spectra are combined in the FFT by duplicating them, and then
adding the duplicated spectra together.

In order to match up when added, the two time domain signals are diluted with
zerosin adlightly different way. In one signal, the odd points are zero, while
in the other signal, the even points are zero. In other words, one of the time
domain signals (0e0f0gOh in Fig. 12-4) is shifted to the right by one sample.
This time domain shift corresponds to multiplying the spectrum by a sinusoid.
To see this, recall that a shift in the time domain is equivalent to convolving
the signal with a shifted delta function. This multiplies the signal's spectrum
with the spectrum of the shifted delta function. The spectrum of a shifted delta
function is a sinusoid (see Fig 11-2).

Figure 12-5 shows a flow diagram for combining two 4 point spectra into a
single 8 point spectrum. To reduce the situation even more, notice that Fig. 12-
5 isformed from the basic pattern in Fig 12-6 repeated over and over.

2 point input

2 point output

232

FIGURE 12-7

The Scientist and Engineer's Guide to Digital Sgnal Processing

This simple flow diagram is called a butter fly due to its winged appearance.
The butterfly is the basic computational element of the FFT, transforming two
complex points into two other complex points.

Figure 12-7 shows the structure of the entire FFT. The time domain
decomposition is accomplished with a bit reversal sorting algorithm.
Transforming the decomposed data into the frequency domain involves nothing
and therefore does not appear in the figure.

The frequency domain synthesis requires three loops. The outer loop runs
through the Log,N stages (i.e., each level in Fig. 12-2, starting from the bottom
and moving to the top). The middle loop moves through each of the individual
frequency spectra in the stage being worked on (i.e., each of the boxes on any
one level in Fig. 12-2). The innermost loop uses the butterfly to calculate the
points in each frequency spectra (i.e., looping through the samples inside any
one box in Fig. 12-2). The overhead boxes in Fig. 12-7 determine the
beginning and ending indexes for the loops, as well as calculating the sinusoids
needed in the butterflies. Now we come to the heart of this chapter, the actual
FFT programs.

Time Domain Data

Flow diagram of the FFT. Thisis based l

on three steps: (1) decompose an N point

time domain signal into N signals each : Time
containing a single point, (2) find the Egg%ﬁﬁg Domain
spectrum of each of the N point signals Decomposition

(nothing required), and (3) synthesize the
N frequency spectra into a single
frequency spectrum.

Y

Y
Overhead
Ty
E % Overhead Frequency
ol 2| 3 Domain
gl 2 g > Synthesis
= § 5 Y
8l 5| = Butterfly
5| & § Calculation
=3 4
g

Y
Frequency Domain Data

Chapter 12- The Fast Fourier Transform 233

FFT Programs

As discussed in Chapter 8, the real DFT can be calculated by correlating
the time domain signal with sine and cosine waves (see Table 8-2). Table
12-2 shows a program to calculate the complex DFT by the same method.

In an apples-to-apples comparison, this is the program that the FFT
improves upon.

Tables 12-3 and 12-4 show two different FFT programs, one in FORTRAN and
one in BASIC. First we will look at the BASIC routine in Table 12-4. This
subroutine produces exactly the same output as the correlation technique in
Table 12-2, except it does it much faster. The block diagram in Fig. 12-7 can
be used to identify the different sections of this program. Data are passed to
this FFT subroutine in the arrays: REX[] and IMX][], each running from
sample 0 to N-1. Upon return from the subroutine, REX[] and IMX]] are
overwritten with the frequency domain data. This is another way that the FFT
is highly optimized; the same arrays are used for the input, intermediate
storage, and output. This efficient use of memory is important for designing
fast hardware to calculate the FFT. The term in-place computation is used
to describe this memory usage.

While al FFT programs produce the same numerical result, there are subtle
variations in programming that you need to look out for. Several of these

5000 'COMPLEX DFT BY CORRELATION

5010 'Upon entry, N% contains the number of pointsin the DFT, and

5020 'XR[] and XI[] contain the real and imaginary parts of the time domain.
5030 'Upon return, REX[] and IMX]] contain the frequency domain data.
5040 'All signals run from 0 to N%-1.

5050

5060 PI = 3.14159265 'Set constants

5070

5080 FOR K% = 0 TO N%-1 'Zero REX[] and IMX]], so they can be used
5090 REX[K%] =0 'as accumulators during the correlation

5100 IMX[K%] =0
5110 NEXT K%

5120

5130 FOR K% =0 TO N%-1 'Loop for each value in frequency domain
5140 FOR 1% =0TO N%-1 'Correlate with the complex sinusoid, SR & Sl
5150

5160 SR = COS(2* PI* K%*1%/N%) 'Calculate complex sinusoid

5170 S| =-SIN(2* PI*K%*%/N%)
5180 REX[K%] = REX[K%] + XR[1%]* SR - XI[1%]*SI
5190 IMX[K%] = IMX[K%] + XR[1%]*SI + XI[1%]* SR
5200
5210 NEXT 1%
5220 NEXT K%
5230
5240 RETURN
TABLE 12-2

234

10
20

30
40

50

The Scientist and Engineer's Guide to Digital Sgnal Processing

of these differences are illustrated by the FORTRAN program listed in Table
12-3. This program uses an algorithm called decimation in frequency, while
the previously described algorithm is called decimation in time. In a
decimation in frequency algorithm, the bit reversal sorting is done after the
three nested loops. There are also FFT routines that completely eliminate the
bit reversal sorting. None of these variations significantly improve the
performance of the FFT, and you shouldn't worry about which one you are
using.

The important differences between FFT algorithms concern how data are
passed to and from the subroutines. In the BASIC program, data enter and
leave the subroutine in the arrays REX[] and IMX]], with the samples
running from index 0 to N-1. In the FORTRAN program, data are passed
in the complex array X(), with the samples running from 1 to N. Since this
is an array of complex variables, each sample in X() consists of two
numbers, areal part and an imaginary part. The length of the DFT must
also be passed to these subroutines. In the BASIC program, the variable
N% is used for this purpose. In comparison, the FORTRAN program uses
the variable M, which is defined to equal Log,N. For instance, M will be

SUBROUTINE FFT(X,M)
COMPLEX X (4096),U,S,T

P1=3.14159265

N=2**M

DO20L=1M

LE=2**(M+1-L)

LE2=LE/2

U=(1.0,0.0)

S=CMPLX(COS(PI/FLOAT(LE?2)),-SIN(PI/FLOAT(LE2)))

DO 20 J=1,LE2

DO 101=JN,LE

IP=1+LE2

T=X(1)+X(IP)

X(IP)=(X(1)-X(IP))*U

X(H=T

u=uU*Ss

ND2=N/2 TABLE 12-3

NM1=N-1 The Fast Fourier Transform in FORTRAN.

=1 Data are passed to this sqbroutine in the

DO 50 I=1. NM1 variables X(') and M. The integer, M, is the
’ base two logarithm of the length of the DFT,

IF(I.GE.J) GO TO 30 i.e, M =8 for a256 point DFT, M = 12 for a

T=X(J) 4096 point DFT, etc. The complex array, X(),

X(J)=X(1) holds the time domain data upon entering the

X(H=T DFT. Upon return from this subroutine, X() is

K=ND2 overwritten with the frequency domain data.

IF(K.GE.J) GO TO 50
JJIK

K=K/2

GO TO 40

JEHK

RETURN

END

Take note: this subroutine requires that the
input and output signals run from X(1) through
X(N), rather than the customary X(0) through
X(N-1).

Chapter 12- The Fast Fourier Transform 235

1000 'THE FAST FOURIER TRANSFORM

1010 'Upon entry, N% contains the number of pointsin the DFT, REX[] and
1020 'IMX]] contain the real and imaginary parts of the input. Upon return,
1030 'REX][] and IMX][] contain the DFT output. All signals run from 0 to N%-1.

1040°

1050 PI = 3.14159265

1060 NM1% = N%-1

1070 ND2% = N%/2

1080 M% = CINT(LOG(N%)/LOG(2))
1090 J% = ND2%

1100°

1110 FOR 1% = 1 TO N%-2

1120 IF 1% >= 3% THEN GOTO 1190
1130 TR = REX[J%]

1140 TI = IMX[J%]

1150 REX[J%] = REX[1%]

1160 IMX[J%] = IMX[1%]

1170 REX[I%] = TR

1180 IMX[I1%] =TI

1190 K% = ND2%

1200 IF K% > J% THEN GOTO 1240
1210 3% = J%-K%

1220 K% = K%/2

1230 GOTO 1200

1240 3% = J%6+K%

1250 NEXT 1%

1260

1270 FOR L% =1 TO M%

1280 LE% = CINT(2"L%)

1290 LE2% = LE%/2

1300 UR=1

1310 UI =0

1320 SR = COS(PI/LE2%)

1330 S| =-SIN(PI/LE2%)

1340 FOR J%=1TO LE2%

1350 IM1% = J%-1

1360 FOR 1% = JM1% TO NM1% STEP LE%
1370 IP% = 1%+LE2%

1380 TR = REX[IP%]*UR - IMX[IP%]* Ul
1390 Tl = REX[IP%]*Ul + IMX[IP%]*UR
1400 REX[IP%] = REX[I%]-TR
1410 IMX[IP%] = IMX[1%]-TI
1420 REX[1%] = REX[I%]+TR
1430 IMX[1%] = IMX[1%]+TI
1440 NEXT 1%

1450 TR=UR

1460 UR=TR*SR- UI*S|

1470 Ul = TR*SI + UI*SR

1480 NEXT J%

1490 NEXT L%

1500

1510 RETURN

TABLE 12-4

'Set constants

'Bit reversal sorting

'Loop for each stage

'Calculate sine & cosine values
'Loop for each sub DFT
'Loop for each butterfly

'‘Butterfly calculation

The Fast Fourier Transformin BASIC.

236

The Scientist and Engineer's Guide to Digital Sgnal Processing

8 for a 256 point DFT, 12 for a 4096 point DFT, etc. The point is, the
programmer who writes an FFT subroutine has many options for interfacing
with the host program. Arrays that run from 1 to N, such as in the
FORTRAN program, are especially aggravating. Most of the DSP literature
(including this book) explains algorithms assuming the arrays run from
sample 0 to N-1. For instance, if the arrays run from 1 to N, the symmetry
in the frequency domain is around points 1 and N/2+ 1, rather than points
0 and N/2,

Using the complex DFT to calculate the real DFT has another interesting
advantage. The complex DFT is more symmetrical between the time and
frequency domains than the real DFT. That is, the duality is stronger. Among
other things, this means that the Inverse DFT is nearly identical to the Forward
DFT. In fact, the easiest way to calculate an Inverse FFT is to calculate a
Forward FFT, and then adjust the data. Table 12-5 shows a subroutine for
calculating the Inverse FFT in this manner.

Suppose you copy one of these FFT agorithms into your computer program and
start it running. How do you know if it is operating properly? Two tricks are
commonly used for debugging. First, start with some arbitrary time domain
signal, such as from a random number generator, and run it through the FFT.
Next, run the resultant frequency spectrum through the Inverse FFT and
compare the result with the original signal. They should be identical, except
round-off noise (a few parts-per-million for single precision).

The second test of proper operation is that the signals have the correct
symmetry. When the imaginary part of the time domain signal is composed
of all zeros (the normal case), the frequency domain of the complex DFT
will be symmetrical around samples 0 and N/2, as previously described.

2000 'INVERSE FAST FOURIER TRANSFORM SUBROUTINE

2010 'Upon entry, N% contains the number of pointsin the IDFT, REX][] and

2020 'IMX]] contain the real and imaginary parts of the complex frequency domain.
2030 'Upon return, REX[] and IMX]] contain the complex time domain.

2040 'All signals run from 0 to N%-1.
2050
2060 FOR K% =0 TO N%-1
2070 IMX[K%] = -IMX[K %]
2080 NEXT K%
2090
2100 GOSUB 1000
2110
2120 FOR 1% =0 TO N%-1
2130 REX[1%] = REX[1%]/N%
2140 IMX[1%] = -IMX[1%]/N%
2150 NEXT 1%
2160
2170 RETURN
TABLE 12-5

'‘Change the sign of IMX]]

'Calculate forward FFT (Table 12-3)

'Divide the time domain by N% and
‘change the sign of IMX]]

Chapter 12- The Fast Fourier Transform 237

Likewise, when this correct symmetry is present in the frequency domain, the
Inverse DFT will produce atime domain that has an imaginary part composes
of all zeros (plus round-off noise). These debugging techniques are essential
for using the FFT; become familiar with them.

Speed and Precision Comparisons

When the DFT is calculated by correlation (as in Table 12-2), the program uses
two nested loops, each running through N points. This means that the total
number of operations is proportional to N times N. The time to complete the
program is thus given by:

EQUATION 12-1

DFT execution time. The time required . . 2
to calculate a DFT by correlation is ExecutionTime = kN
proportional to the length of the DFT

squared.

where N is the number of points in the DFT and kp; is a constant of
proportionality. If the sine and cosine values are calculated within the nested
loops, kper is equal to about 25 microseconds on a Pentium at 100 MHz. If
you precalculate the sine and cosine values and store them in a look-up-table,
koer drops to about 7 microseconds. For example, a 1024 point DFT will
require about 25 seconds, or nearly 25 milliseconds per point. That's slow!

Using this same strategy we can derive the execution time for the FFT. The
time required for the bit reversal is negligible. In each of the Log,N stages
there are N/2 butterfly computations. This means the execution time for the
program is approximated by:

EQUATION 12-2

FFT execution time. The time required . .
to calculate a DFT using the FFT is ExecutionTime = k|:|:-|- N IOQZN

proportional to N multiplied by the
logarithm of N.

The value of ke is about 10 microseconds on a 100 MHz Pentium system. A
1024 point FFT requires about 70 milliseconds to execute, or 70 microseconds
per point. This is more than 300 times faster than the DFT calculated by
correlation!

Not only is NLog,N less than N2, it increases much more slowly as N
becomes larger. For example, a 32 point FFT is about ten times faster than
the correlation method. However, a 4096 point FFT is one-thousand times
faster. For small values of N (say, 32 to 128), the FFT is important. For
large values of N (1024 and above), the FFT is absolutely critical. Figure
12-8 compares the execution times of the two algorithms in a graphical
form.

238

FIGURE 12-8

Execution timesfor calculating the DFT. The
correlation method refers to the algorithm
described in Table 12-2. This method can be
made faster by precalculating the sine and
cosine values and storing them in a look-up
table (LUT). The FFT (Table 12-3) is the
fastest algorithm when the DFT is greater than
16 points long. The times shown are for a
Pentium processor at 100 MHz.

The Scientist and Engineer's Guide to Digital Sgnal Processing

10 J R S Sy

1)) P IS M- < DV M.

Execution time (seconds)

4
0.001 T T T T T T T T
8§ 16 32 64 128 256 512 1024 2048 4096
Number points in DFT

The FFT has another advantage besides raw speed. The FFT is calculated more
precisely because the fewer number of calculations results in less round-off
error. This can be demonstrated by taking the FFT of an arbitrary signal, and
then running the frequency spectrum through an Inverse FFT. This
reconstructs the original time domain signal, except for the addition of round-
off noise from the calculations. A single number characterizing this noise can
be obtained by calculating the standard deviation of the difference between the
two signals. For comparison, this same procedure can be repeated using a DFT
calculated by correlation, and a corresponding Inverse DFT. How does the
round-off noise of the FFT compare to the DFT by correlation? See for
yourself in Fig. 12-9.

Further Speed Increases

FIGURE 12-9

DFT precision. Sincethe FFT calculates the
DFT faster than the correlation method, it also
calculatesit with less round-off error.

There are several techniques for making the FFT even faster; however, the
improvements are only about 20-40%. In one of these methods, the time

70 /
60 /

5 %

: /

o 40

a8 /

[%2]

& 30

s /

w20 | correlation |

i FFT

. . 1/*———ii

h ha e

16 32 64 128 256 512 1024
Number of points in DFT

Chapter 12- The Fast Fourier Transform 239

domain decomposition is stopped two stages early, when each signals is
composed of only four points. Instead of calculating the last two stages, highly
optimized code is used to jump directly into the frequency domain, using the
simplicity of four point sine and cosine waves.

Another popular algorithm eliminates the wasted cal culations associated with
the imaginary part of the time domain being zero, and the frequency spectrum
being symmetrical. In other words, the FFT is modified to calculate the real
DFT, instead of the complex DFT. These algorithms are called thereal FFT
and thereal Inverse FFT (or similar names). Expect them to be about 30%
faster than the conventional FFT routines. Tables 12-6 and 12-7 show programs
for these algorithms.

There are two small disadvantages in using the real FFT. First, the code is
about twice aslong. While your computer doesn't care, you must take the time
to convert someone else's program to run on your computer. Second, debugging
these programs is slightly harder because you cannot use symmetry as a check
for proper operation. These algorithms force the imaginary part of the time
domain to be zero, and the frequency domain to have left-right symmetry. For
debugging, check that these programs produce the same output as the
conventional FFT algorithms.

Figures 12-10 and 12-11 illustrate how the real FFT works. In Fig. 12-10,
(a) and (b) show atime domain signal that consists of a pulse in the real part,
and all zeros in the imaginary part. Figures (c) and (d) show the corresponding
frequency spectrum. As previously described, the frequency domain's real part
has an even symmetry around sample 0 and sample N/2, while the imaginary
part has an odd symmetry around these same points.

4000 'INVERSE FFT FOR REAL SIGNALS

4010 'Upon entry, N% contains the number of pointsin the IDFT, REX[] and

4020 'IMX[] contain the real and imaginary parts of the frequency domain running from
4030 'index 0 to N%/2. The remaining samplesin REX[] and IMX]] are ignored.
4040 'Upon return, REX[] contains the real time domain, IMX]] contains zeros.

4050

4060

4070 FOR K% = (N%/2+1) TO (N%-1) 'Make frequency domain symmetrical
4080 REX[K%] = REX[N%-K%] '(asin Table 12-1)

4090 IMX[K%]
4100 NEXT K%
4110"

= -IMX[N%-K %]

4120 FOR K% = 0 TO N%-1 'Add real and imaginary parts together
4130 REX[K%] = REX[K%]+IMX[K%)]

4140 NEXT K%
4150"

4160 GOSUB 3000 'Calculate forward real DFT (TABLE 12-6)
4170

4180 FOR 1% = 0 TO N%-1 'Add real and imaginary parts together
4190 REX[1%)] = (REX[1%]+IMX[1%])/N% ‘and divide the time domain by N%

4200 IMX[1%] =0

4210 NEXT 1%
4220
4230 RETURN

TABLE 12-6

240

Amplitude

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing

Time Domain Frequency Domain
T 8]]
a Real part . Real part (even symmetry) |
0 /
=]
2o AT -
<
-4
-8
16 32 48 63 0 16 32 48 63
Sample number - Freqgeuncy
T] 8 T T T
b. Imaginary part d. Imaginary part (odd symmetry) ‘
4
(]
g ﬁl
;—l 0 - J&wﬁ.ﬁf "i.__
£ ot
<
-4
-8
16 32 48 63 0 16 32 48 63
Sample number Frequency
FIGURE 12-10

Real part symmetry of the DFT.

Now consider Fig. 12-11, where the pulse is in the imaginary part of the time
domain, and the real part is all zeros. The symmetry in the frequency domain
is reversed; the real part is odd, while the imaginary part is even. This
situation will be discussed in Chapter 29. For now, take it for granted that this
is how the complex DFT behaves.

What if there is a signal in both parts of the time domain? By additivity, the
frequency domain will be the sum of the two frequency spectra. Now the key
element: a frequency spectrum composed of these two types of symmetry can
be perfectly separated into the two component signals. Thisis achieved by the
even/odd decomposition discussed in Chapter 6. In other words, two real
DFT's can be calculated for the price of single FFT. One of the signals is
placed in the real part of the time domain, and the other signal is placed in the
imaginary part. After calculating the complex DFT (via the FFT, of course),
the spectra are separated using the even/odd decomposition. When two or more
signals need to be passed through the FFT, this technique reduces the execution
time by about 40%. The improvement isn't a full factor of two because of the
calculation time required for the even/odd decomposition. Thisis arelatively
simple technique with few pitfalls, nothing like writing an FFT routine from
scratch.

Amplitude

Amplitude

Chapter 12- The Fast Fourier Transform 241

Time Domain Frequency Domain
T 8]]
a Real part [c. Redl part (odd symmetry) |
4
E o NP R
;El 0 't Nx"‘\/,
-4
-8

16

32 48 63 0 16 32 48 63

Sample number - Frequency
T] 8]]]
b. Imaginary part ‘d. Imaginary part (even symmetry) ‘
.
4 \
: \ P ~, /[
=
g L™ il = L™
<
-4
-8
16 32 48 63 0 16 32 48 63
Sample number Frequency

FIGURE 12-11
Imaginary part symmetry of the DFT.

The next step is to modify the algorithm to calculate a single DFT faster. It's
ugly, but hereis how it isdone. Theinput signal is broken in half by using an
interlaced decomposition. The N/2 even points are placed into the real part of
the time domain signal, while the N/2 odd points go into the imaginary part.
An N/2 point FFT is then calculated, requiring about one-half the time as an
N point FFT. The resulting frequency domain is then separated by the
even/odd decomposition, resulting in the frequency spectra of the two interlaced
time domain signals. These two frequency spectra are then combined into a
single spectrum, just as in the last synthesis stage of the FFT.

To close this chapter, consider that the FFT is to Digital Signal Processing
what the transistor is to electronics. It is a foundation of the technology;
everyone in the field knows its characteristics and how to use it. However,
only a small number of specialists really understand the details of the internal
workings.

242 The Scientist and Engineer's Guide to Digital Sgnal Processing

3000 'FFT FOR REAL SIGNALS

3010 'Upon entry, N% contains the number of pointsin the DFT, REX[] contains
3020 'thereal input signal, while valuesin IMX[] areignored. Upon return,
3030 'REX[] and IMX[] contain the DFT output. All signals run from 0 to N%-1.
3040

3050 NH% = N%/2-1 ‘Separate even and odd points
3060 FOR 1% = 0 TO NH%

3070 REX(1%) = REX(2*1%)

3080 IMX(1%) = REX(2*1%+1)

3090 NEXT 1%

3100

3110 N% = N%/2 'Calculate N%/2 point FFT

3120 GOSUB 1000 '(GOSUB 1000 isthe FFT in Table 12-3)
3130 N% = N%*2

3140

3150 NM1% = N%-1 ‘Even/odd frequency domain decomposition

3160 ND2% = N%/2

3170 N4% = N%/4-1

3180 FOR 1% =1 TO N4%

3190 IM% = ND2%-1%

3200 1P2% = 1%+ND2%

3210 IPM% = IM%+ND2%

3220 REX(IP2%) = (IMX(1%) + IMX(IM%))/2
3230 REX(IPM%) = REX(IP2%)

3240 IMX(1P2%) = -(REX(1%) - REX(IM%))/2
3250 IMX(IPM%) = -IMX(1P2%)

3260 REX(1%) = (REX(1%) + REX(IM%))/2
3270 REX(IM%) = REX(1%)

3280 IMX(1%) = (IMX(1%) - IMX(IM%))/2
3290 IMX(IM%) =-IMX(1%)

3300 NEXT 1%

3310 REX(N%* 3/4) = IMX(N%/4)

3320 REX(ND2%) = IMX(0)

3330 IMX(N%*3/4) =0

3340 IMX(ND2%) =0

3350 IMX(N%/4) =0

3360 IMX(0) =0

3370

3380 PI = 3.14159265 ‘Complete the last FFT stage
3390 L% = CINT(LOG(N%)/LOG(2))

3400 LE% = CINT(2"L %)

3410 LE2% = LE%/2

3420UR=1

3430U1 =0

3440 SR = COS(PI/LE2%)

3450 S| = -SIN(PI/LE2%)

3460 FOR J% =1 TO LE2%

3470 IM1% = J%-1

3480 FOR 1% =JM1% TO NM1% STEP LE%
3490 1P% = 1%+LE2%

3500 TR =REX[IP%]*UR - IMX[IP%]*UlI
3510 TI = REX[IP%]*Ul + IMX[IP%]*UR
3520 REX[IP%] = REX[1%]-TR

3530 IMX[IP%] = IMX[1%]-TI

3540 REX[1%] = REX[1%]+TR

3550 IMX[1%] =IMX[1%]+TI

3560 NEXT 1%

3570 TR=UR

3580 UR=TR*SR- UI*S|

3590 Ul =TR*SI + UI*SR

3600 NEXT J%

3610 RETURN TABLE 12-7

CHAPTER

13

Continuous Signal Processing

Continuous signal processing is a parallel field to DSP, and most of the techniques are nearly
identical. For example, both DSP and continuous signal processing are based on linearity,
decomposition, convolution and Fourier analysis. Since continuous signals cannot be directly
represented in digital computers, don't expect to find computer programs in this chapter.
Continuous signal processing is based on mathematics; signals are represented as equations, and
systems change one equation into another. Just as the digital computer is the primary tool used
in DSP, calculus is the primary tool used in continuous signal processing. These techniques have
been used for centuries, long before computers were devel oped.

The Delta Function

Continuous signals can be decomposed into scaled and shifted delta functions,
just as done with discrete signals. The difference is that the continuous delta
function is much more complicated and mathematically abstract than its discrete
counterpart. Instead of defining the continuous delta function by what it is, we
will define it by the characteristics it has.

A thought experiment will show how this works. Imagine an electronic circuit
composed of linear components, such as resistors, capacitors and inductors.
Connected to the input is a signal generator that produces various shapes of
short pulses. The output of the circuit is connected to an oscilloscope,
displaying the waveform produced by the circuit in response to each input
pulse. The question we want to answer is. how is the shape of the output
pulse related to the characteristics of the input pulse? To simplify the
investigation, we will only use input pulses that are much shorter than the
output. For instance, if the system responds in milliseconds, we might use input
pulses only a few microseconds in length.

After taking many measurement, we come to three conclusions. First, the
shape of the input pulse does not affect the shape of the output signal. This

243

244

The Scientist and Engineer's Guide to Digital Sgnal Processing

is illustrated in Fig. 13-1, where various shapes of short input pulses
produce exactly the same shape of output pulse. Second, the shape of the
output waveform is totally determined by the characteristics of the system,
i.e., the value and configuration of the resistors, capacitors and inductors.
Third, the amplitude of the output pulse is directly proportional to the area
of the input pulse. For example, the output will have the same amplitude
for inputs of: 1 volt for 1 microsecond, 10 volts for 0.1 microseconds,
1,000 volts for 1 nanosecond, etc. This relationship also allows for input
pulses with negative areas. For instance, imagine the combination of a 2
volt pulse lasting 2 microseconds being quickly followed by a -1 volt pulse
lasting 4 microseconds. The total area of the input signal is zero, resulting
in the output doing nothing.

Input signals that are brief enough to have these three properties are called
impulses. In other words, an impulse is any signal that is entirely zero
except for a short blip of arbitrary shape. For example, an impulse to a
microwave transmitter may have to be in the picosecond range because the
electronics responds in nanoseconds. In comparison, a volcano that erupts
for years may be a perfectly good impulse to geological changes that take
millennia.

Mathematicians don't like to be limited by any particular system, and
commonly use the term impulse to mean a signal that is short enough to be
an impulse to any possible system. That is, asignal that is infinitesimally
narrow. The continuous delta function is a normalized version of this type
of impulse. Specifically, the continuous delta function is mathematically
defined by three idealized characteristics: (1) the signal must be
infinitesimally brief, (2) the pulse must occur at time zero, and (3) the pulse
must have an area of one.

Since the delta function is defined to be infinitesimally narrow and have a fixed
area, the amplitude is implied to be infinite. Don't let this bother you; it is
completely unimportant. Since the amplitude is part of the shape of the
impulse, you will never encounter a problem where the amplitude makes any
difference, infinite or not. The delta function is a mathematical construct, not
areal world signal. Signalsin the real world that act as delta functions will
always have a finite duration and amplitude.

Just as in the discrete case, the continuous delta function is given the
mathematical symbol: &(). Likewise, the output of a continuous system in
response to a delta function is called the impulse response, and is often
denoted by: h(). Notice that parentheses, (), are used to denote continuous
signals, as compared to brackets, [], for discrete signals. This notation is
used in this book and elsewhere in DSP, but isn't universal. Impulses are
displayed in graphs as vertical arrows (see Fig. 13-1d), with the length of the
arrow indicating the area of the impulse.

To better understand real world impulses, look into the night sky at a planet
and a star, for instance, Mars and Sirius. Both appear about the same
brightness and size to the unaided eye. The reason for this similarity is not

Chapter 13- Continuous Signal Processing 245

Linear
System

e ‘ /\"\
System
e ‘ /\/\
System
t) e ‘ /\’\
System
FIGURE 13-1

The continuous delta function. If the input to a linear system is brief compared to the resulting
output, the shape of the output depends only on the characteristics of the system, and not the shape
of theinput. Such short input signals are called impulses. Figuresa,b & cillustrate example input
signals that are impulses for this particular system. The term delta function is used to describe a
normalized impulse, i.e., onethat occursat t =0 and has an area of one. The mathematical symbols
for the deltafunction are shown in (d), avertical arrow and 6(t).

= =

o(

FQ

obvious, since the viewing geometry is drastically different. Marsis about
6000 kilometers in diameter and 60 million kilometers from earth. In
comparison, Sirius is about 300 times larger and over one-million times
farther away. These dimensions should make Mars appear more than
three-thousand times larger than Sirius. How is it possible that they ook
alike?

These objects look the same because they are small enough to be impulses to
the human visual system. The perceived shape is the impulse response of the
eye, not the actual image of the star or planet. This becomes obvious when the
two objects are viewed through a small telescope; Mars appears as a dim disk,
while Sirius still appears as a bright impulse. This is also the reason that stars
twinkle while planets do not. The image of a star is small enough that it can
be briefly blocked by particles or turbulence in the atmosphere, whereas the
larger image of the planet is much less affected.

246 The Scientist and Engineer's Guide to Digital Sgnal Processing

Convolution

Just as with discrete signals, the convolution of continuous signals can be
viewed from the input signal, or the output signal. The input side
viewpoint is the best conceptual description of how convolution operates.
In comparison, the output side viewpoint describes the mathematics that
must be used. These descriptions are virtually identical to those presented
in Chapter 6 for discrete signals.

Figure 13-2 shows how convolution is viewed from the input side. An input
signal, x(t), is passed through a system characterized by an impulse response,
h(t), to produce an output signal, y(t). This can be written in the familiar
mathematical equation, y(t) = x(t)*kh(t). The input signal is divided into
narrow columns, each short enough to act as an impulse to the system. In
other words, the input signal is decomposed into an infinite number of scaled
and shifted delta functions. Each of these impulses produces a scaled and
shifted version of the impulse response in the output signal. The final output
signal is then equal to the combined effect, i.e., the sum of al of the individual
responses.

For this scheme to work, the width of the columns must be much shorter
than the response of the system. Of course, mathematicians take this to the
extreme by making the input segments infinitesimally narrow, turning the
situation into a calculus problem. In this manner, the input viewpoint
describes how a single point (or narrow region) in the input signal affects
a larger portion of output signal.

In comparison, the output viewpoint examines how a single point in the output
signal is determined by the various values from the input signal. Just as with
discrete signals, each instantaneous value in the output signal is affected by a
section of the input signal, weighted by the impulse response flipped
left-for-right. In the discrete case, the signals are multiplied and summed. In
the continuous case, the signals are multiplied and integrated. In equation
form:

+o00

EQUATION 13-1
The convolution integral. This equation y(t) = f x(t) h(t-t)dt
defines the meaning of: y(t) = x(t)*h(t).

—o0

This equation is called the convolution integral, and is the twin of the
convolution sum (Eq. 6-1) used with discrete signals. Figure 13-3 shows how
this equation can be understood. The goal is to find an expression for
calculating the value of the output signal at an arbitrary time, t. The first
step is to change the independent variable used to move through the input
signal and the impulse response. That is, we replace t with ¢ (a lower case

Chapter 13- Continuous Signal Processing 247

a a
x() . w s SL}I/rS]t%EII’Ir’] /(3 b AC
time (t) time(t)
FIGURE 13-2

Convolution viewed from the input side. The input signal, x(t), is divided into narrow segments,
each acting as an impulse to the system. The output signal, y(t), isthe sum of the resulting scaled
and shifted impulse responses. Thisillustration shows how three pointsin theinput signal contribute
to the output signal.

Greek tau). This makes x(t) and h(t) become x(t)and h(z), respectively.
This change of variable names is needed because t is already being used to
represent the point in the output signal being calculated. The next step is to
flip the impulse response left-for-right, turning it into h(-t). Shifting the
flipped impulse response to the location t, results in the expression becoming
h(t-t). Theinput signal is then weighted by the flipped and shifted impulse
response by multiplying the two, i.e., x(t) h(t-t). The value of the output
signal is then found by integrating this weighted input signal from negative to
positive infinity, as described by Eq. 13-1.

If you have trouble understanding how this works, go back and review the same
concepts for discrete signalsin Chapter 6. Figure 13-3 is just another way of
describing the convolution machine in Fig. 6-8. The only difference is that
integrals are being used instead of summations. Treat this as an extension of
what you aready know, not something new.

An example will illustrate how continuous convolution is used in real world
problems and the mathematics required. Figure 13-4 shows a simple
continuous linear system: an electronic low-pass filter composed of a single
resistor and a single capacitor. As shown in the figure, an impulse entering this
system produces an output that quickly jumps to some value, and then
exponentially decays toward zero. In other words, the impulse response of
this simple electronic circuit is a one-sided exponential. Mathematically, the

Linear t
—>| System [y(®)

time (7) T ti me(t)l

FIGURE 13-3

Convolution viewed from the output side. Each value in the output signal is influenced by many
pointsfrom theinput signal. Inthisfigure, the output signal at timet isbeing calculated. Theinput
signal, x(7), isweighted (multiplied) by the flipped and shifted impul se response, given by h(t-7).
Integrating the weighted input signal produces the value of the output point, y(t)

248 The Scientist and Engineer's Guide to Digital Sgnal Processing

2 T
I I I

(3} | | | R g
=] | I | k]
2 > E]
N :
01 c :

PS A N L

-1 0 1 2 3)
Time

FIGURE 13-4

Example of acontinuouslinear system. Thiselectronic circuit isalow-passfilter composed of asingleresistor
and capacitor. The impulse response of this system is a one-sided exponential.

impulse response of this system is broken into two sections, each represented
by an equation:

0 fort<0

h(t)

ht) = ae™" fortso0

where o« = 1/RC (Risinohms, Cisin farads, and tisin seconds). Just asin
the discrete case, the continuous impulse response contains complete
information about the system, that is, how it will react to all possible signals.
To pursue this example further, Fig. 13-5 shows a square pulse entering the
system, mathematically expressed by:

1 for0<t<1

x(t)
x(t)

0 otherwise

Since both the input signal and the impulse response are completely known as
mathematical expressions, the output signal, y(t), can be calculated by
evaluating the convolution integral of Eg. 13-1. Thisis complicated by
the fact that both signals are defined by regions rather than a single

y(®)
2 . 2 .
| | | |
© I o I I I
k] | 2 I I I
PR SN P, S ———
3 — £ N
< < | I
0 0 f } t
-1 0 -1 0 1 2 3
Time
FIGURE 13-5

Example of continuous convolution. Thisfigureillustrates asquare pulse entering an RC low-passfilter (Fig.
13-4). The sguare pulse is convolved with the system's impul se response to produce the output.

Chapter 13- Continuous Signal Processing 249

a. No overlap b. Partial overlap c. Full overlap
(t<0) (0<t<1) (t>1)
t t
"0 1 0o "1 0 1
-« T —> <«— T —> <~ T —>
FIGURE 13-6

Calculating a convolution by segments. Since many continuous signals are defined by regions, the convolution
calculation must be performed region-by-region. In thisexample, calculation of the output signal is broken into
three sections: (a) no overlap, (b) partial overlap, and (c) total overlap, of the input signal and the shifted-
flipped impul se response.

mathematical expression. This is very common in continuous signal
processing. It isusually essential to draw a picture of how the two signals
shift over each other for various values of t. In this example, Fig. 13-6a
shows that the two signals do not overlap at all for t<0. This means that
the product of the two signals is zero at all locations along the ¢ axis, and
the resulting output signal is:

yit) = 0 fort<0

A second case is illustrated in (b), where t is between 0 and 1. Here the two
signals partially overlap, resulting in their product having nonzero values
between t= 0 and t=t. Since thisis the only nonzero region, it is the only
section where the integral needs to be evaluated. This provides the output
signal for 0 <t <1, given by:

y(t) fx(r) h(t-t)dt (startwith Eq. 13-1)

t
fl' owe -9 g (plug in the signals)
0

y(t)

t
(evaluate the integral)

y(t) = e [e“]
0

y(t) = e [e*- 1] (reduce)

yit) = 1-e ™™ foro<t<1

250

The Scientist and Engineer's Guide to Digital Sgnal Processing

Figure (c) shows the calculation for the third section of the output signal, where
t > 1. Here the overlap occurs between t=0 and t= 1, making the
calculation the same as for the second segment, except a change to the limits
of integration:

1

y(t) = fl- ae - Idrg (plug into Eq. 13-1)
0
1
y(t) = e * [e¥] (evaluate the integral)
0
y(t) = [e*-1]e ™ for t>1

The waveform in each of these three segments should agree with your
knowledge of electronics. (1) The output signal must be zero until the input
signal becomes nonzero. That is, the first segment is given by y(t) = 0 for
t<0. (2) When the step occurs, the RC circuit exponentially increases to match
the input, according to the equation: y(t) = 1- e “!. (3) When the input is
returned to zero, the output exponentially decays toward zero, given by the
equation: y(t) = ke *! (where k= e*- 1, the voltage on the capacitor just
before the discharge was started).

More intricate waveforms can be handled in the same way, although the
mathematical complexity can rapidly become unmanageable. When faced
with a nasty continuous convolution problem, you need to spend significant
time evaluating strategies for solving the problem. If you start blindly
evaluating integrals you are likely to end up with a mathematical mess. A
common strategy is to break one of the signals into simpler additive
components that can be individually convolved. Using the principles of
linearity, the resulting waveforms can be added to find the answer to the
original problem.

Figure 13-7 shows another strategy: modify one of the signals in some linear
way, perform the convolution, and then undo the original modification. In this
example the modification is the derivative, and it is undone by taking the
integral. The derivative of a unit amplitude square pulse is two impulses, the
first with an area of one, and the second with an area of negative one. To
understand this, think about the opposite process of taking the integral of the
two impulses. As you integrate past the first impulse, the integral rapidly
increases from zero to one, i.e., a step function. After passing the negative
impulse, the integral of the signal rapidly returns from one back to zero,
compl eting the sgquare pulse.

Taking the derivative simplifies this problem because convolution is easy
when one of the signals is composed of impulses. Each of the two impulses
in x/(t) contributes a scaled and shifted version of the impulse response to

Chapter 13- Continuous Signal Processing 251

(8}

Amplitude
|
I
I
I
]
|
I
I
L
|
I
I

Amplitude
n
I
I
I
|
I
I
ot ———-
I
I
I
Amplitude
|
I
I
O — = ———

(=1
'

—_
|

Amplitude
1
I
I
D2 nininlnl kb bl
I
I
|
Amplitude
r <

' '
5] —_
'

FIGURE 13-7

A strategy for convolving signals. Convolution problems can often be simplified by clever use of the rules
governing linear systems. In thisexample, the convolution of two signalsis simplified by taking the derivative
of one of them. After performing the convolution, the derivative is undone by taking the integral.

the derivative of the output signal, y’(t). That is, by inspection it is known
that: y’(t) = h(t) - h(t-1). The output signal, y(t), can then be found by
plugging in the exact equation for h(t), and integrating the expression.

A slight nuisance in this procedure is that the DC value of the input signal is
lost when the derivative is taken. This can result in an error in the DC value
of the calculated output signal. The mathematics reflects this as the arbitrary
constant that can be added during the integration. There is no systematic way
of identifying this error, but it can usually be corrected by inspection of the
problem. For instance, thereisno DC error in the example of Fig. 13-7. This
is known because the calculated output signal has the correct DC value when
t becomes very large. If an error is present in a particular problem, an
appropriate DC term is manually added to the output signal to complete the
calculation.

This method also works for signals that can be reduced to impulses by taking
the derivative multiple times. In the jargon of the field, these signals are called
piecewise polynomials. After the convolution, the initial operation of multiple
derivatives is undone by taking multiple integrals. The only catch is that the
lost DC value must be found at each stage by finding the correct constant of
integration.

252 The Scientist and Engineer's Guide to Digital Sgnal Processing

Before starting a difficult continuous convolution problem, there is another
approach that you should consider. Ask yourself the question: Is a
mathematical expression really needed for the output signal, or is a graph of
the waveform sufficient? If a graph is adequate, you may be better off to
handle the problem with discrete techniques. That is, approximate the
continuous signals by samples that can be directly convolved by a computer
program. While not as mathematically pure, it can be much easier.

The Fourier Transform

The Fourier Transform for continuous signals is divided into two categories,
one for signals that are periodic, and one for signals that are aperiodic.
Periodic signals use a version of the Fourier Transform called the Fourier
Series, and are discussed in the next section. The Fourier Transform used with
aperiodic signals is simply called the Fourier Transform. This chapter
describes these Fourier techniques using only real mathematics, just as the last
several chapters have done for discrete signals. The more powerful use of
complex mathematics will be reserved for Chapter 31.

Figure 13-8 shows an example of a continuous aperiodic signal and its
frequency spectrum. The time domain signal extends from negative infinity to
positive infinity, while each of the frequency domain signals extends from zero
to positive infinity. This frequency spectrum is shown in rectangular form
(real and imaginary parts); however, the polar form (magnitude and phase) is
also used with continuous signals. Just as in the discrete case, the synthesis
equation describes a recipe for constructing the time domain signal using the
data in the frequency domain. In mathematical form:

+ oo

X(t) = %fReX(m)cos(mt) ~ ImX(w) Sn(ot) do
0

EQUATION 13-2

The Fourier transform synthesis equation. In thisequation, x(t) isthetime
domain signal being synthesized, and ReX(w) & ImX(w) are the real and
imaginary parts of the frequency spectrum, respectively.

In words, the time domain signal is formed by adding (with the use of an
integral) an infinite number of scaled sine and cosine waves. The real part
of the frequency domain consists of the scaling factors for the cosine waves,
while the imaginary part consists of the scaling factors for the sine waves. Just
as with discrete signals, the synthesis equation is usually written with
negative sine waves. Although the negative sign has no significance in this
discussion, it is necessary to make the notation compatible with the complex
mathematics described in Chapter 29. The key point to remember is that
some authors put this negative sign in the equation, while others do not.
Also notice that frequency is represented by the symbol, », a lower case

Chapter 13- Continuous Signal Processing 253

Time Domain Frequency Domain

100
b. Re X(w)

a

o]
Amplitude
& 3

4m I\ 20 <o ,/
| R

0
'\ 0 20 40 60 80 100 120 140
AR Frequency (hertz)

Amplitude

-4 100

C. Ilm X((ol)

-8

-50 40 -30 20 -10 O 10 20 30 40 50
Time (milliseconds)

[=2)
[=)

N
[=)

Amplitude

/f\
20

/ N
0 20 40 60 80 100 120 140
Frequency (hertz)

FIGURE 13-8

Example of the Fourier Transform. The time domain signal, x(t), extends from negative to positive infinity.
The frequency domain is composed of areal part, ReX(w), and animaginary part, ImX(w), each extending from
zero to positive infinity. The frequency axisin thisillustration is labeled in cycles per second (hertz). To
convert to natural frequency, multiply the numbers on the frequency axis by 2x.

Greek omega. As you recall, this notation is called the natural frequency,
and has the units of radians per second. That is, w= 2=nf, where f is the
frequency in cycles per second (hertz). The natural frequency notation is
favored by mathematicians and others doing signal processing by solving
eguations, because there are usually fewer symbols to write.

The analysis equations for continuous signals follow the same strategy as the
discrete case: correlation with sine and cosine waves. The equations are:

+ oo

fx(t) cos(wt) dt

EQUATION 13-3 ReX(w)
The Fourier transform analysis equations. In
this equation, ReX(w) & ImX(w) arethereal
and imaginary parts of the frequency
spectrum, respectively, and x(t) is the time
domain signal being analyzed. |mX(0))

- fx(t) sin(wt) dt

254 The Scientist and Engineer's Guide to Digital Sgnal Processing

As an example of using the analysis equations, we will find the frequency
response of the RC low-pass filter. This is done by taking the Fourier
transform of its impulse response, previously shown in Fig. 13-4, and
described by:

h(t) = 0 fort<o

h(t) = ae % fort>0

The frequency response is found by plugging the impulse response into the
analysis equations. First, the real part:

+ oo

ReH(w) = f h(t) cos(wt) dt (start with Eq. 13-3)
ReH(w) = f ae “' cos(wt) dt (plug in the signal)
0
B aefoct .
ReH(w) = ———— [-«acos(wt) + wsn(wt)] (evaluate)
062 + (.02 0
2
ReH(w) = —>—
062 + (.-.)2

Using this same approach, the imaginary part of the frequency response is
calculated to be:

ImH(w) = — 2%

062+(.02

Just as with discrete signals, the rectangular representation of the frequency
domain is great for mathematical manipulation, but difficult for human
understanding. The situation can be remedied by converting into polar
notation with the standard relations: MagH (w) = [ReH (w)? + ImH (w)?]*
and PhaseH(w) = arctan[ReH(w)/ImH(w)]. Working through the algebra

Chapter 13- Continuous Signal Processing 255

provides the frequency response of the RC low-pass filter as magnitude and
phase (i.e., polar form):

Mag H (w) = @
g () [OCZJr (.-.)2]1/2
PhaseH (w) = arctan|- 2
o

Figure 13-9 shows graphs of these curves for a cutoff frequency of 1000 hertz
(i.e., o= 2mw1000).

1.2 T T : : : 1.6 T T : : :
a. Magnitude i i i 12t ___|b.Phase | _____ R R
101 E— e - LS SN —— ! ! : : !
I I I I I I I I
1 1 1 0.8F-————- Ao o Lo Ao I
i i | ~ | | | i i
0.8+
o T FoTT O R — A LS S LS
° 1 1 1 = 1 1 1 1 1
= I E AN S N S
= 0.6 ! L ! R e Y
£ 8 i i i | |
<C -0.4- —— S, Lo Ao S
0.4+ I I E : : : : :
i i 0.84-—--2 S F S IR E N
02 ! ' : : : ! !
‘ ! ! ! T S SRR A T |
I I I I I I
I I I I I I I I
0.0 t t t t t 1.6 f t t t t
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Frequency (hertz) Frequency (hertz)
FIGURE 13-9

Frequency response of an RC low-pass filter. These curves were derived by calculating the Fourier
transform of the impul se response, and then converting to polar form.

The Fourier Series

This brings us to the last member of the Fourier transform family: the Fourier
series. The time domain signal used in the Fourier series is periodic and
continuous. Figure 13-10 shows several examples of continuous waveforms
that repeat themselves from negative to positive infinity. Chapter 11 showed
that periodic signals have a frequency spectrum consisting of harmonics. For
instance, if the time domain repeats at 1000 hertz (a period of 1 millisecond),
the frequency spectrum will contain a first harmonic at 1000 hertz, a second
harmonic at 2000 hertz, a third harmonic at 3000 hertz, and so forth. The first
harmonic, i.e., the frequency that the time domain repeats itself, is also called
the fundamental frequency. This means that the frequency spectrum can be
viewed in two ways: (1) the frequency spectrum is continuous, but zero at all
frequencies except the harmonics, or (2) the frequency spectrum is discrete,
and only defined at the harmonic frequencies. In other words, the frequencies
between the harmonics can be thought of as having a value of zero, or simply

256 The Scientist and Engineer's Guide to Digital Sgnal Processing

not existing. The important point is that they do not contribute to forming the
time domain signal.

The Fourier series synthesis equation creates a continuous periodic signal
with a fundamental frequency, f, by adding scaled cosine and sine waves
with frequencies: f, 2f, 3f, 4f, etc. The amplitudes of the cosine waves are
held in the variables: a,,a,, a, a,, etc., while the amplitudes of the sine
waves are held in: b;, b,, b, b,, and so on. In other words, the "a" and "b"
coefficients are the real and imaginary parts of the frequency spectrum,
respectively. In addition, the coefficient a, is used to hold the DC value of
the time domain waveform. This can be viewed as the amplitude of a cosine
wave with zero frequency (a constant value). Sometimes a, is grouped with
the other "a" coefficients, but it is often handled separately because it
requires special calculations. There isno b, coefficient since a sine wave
of zero frequency has a constant value of zero, and would be quite useless.
The synthesis equation is written:

X(t) = a, + “Zahcos(antn) - “ansin(antn)
n=1 n=1

EQUATION 13-4

The Fourier series synthesis equation. Any periodic signal, x(t), can
be reconstructed from sine and cosine waves with frequencies that are
multiples of the fundamental, f. The a, and b, coefficients hold the
amplitudes of the cosine and sine waves, respectively.

The corresponding analysis equations for the Fourier series are usually
written in terms of the period of the waveform, denoted by T, rather than the
fundamental frequency, f (where f= 1/T). Since the time domain signal is
periodic, the sine and cosine wave correlation only needs to be evaluated over
a single period, i.e.,, -T/2to T/2,0to T, -T to 0, etc. Selecting different
limits makes the mathematics different, but the final answer is aways the same.
The Fourier series analysis equations are:

1 T/2 2 T/2 21tn
T
a = — fx(t)dt a = = fx(t) cos() dt
T T T
-T2 -TI2
EQUATION 13-5
Fourier series analysis equations. |n these equations, x(t) is T2
the time domain signal being decomposed, a, is the DC b = -2 X(t) sn 2ntn dt
component, a, & b, hold the amplitudes of the cosine and n T f T
sine waves, respectively, and T is the period of the signal, T2

i.e., thereciprocal of the fundamental frequency.

o>

o>

o>

>

Time Domain

a Pulse

00T

T
d=KkT ke T

b. Square

c. Triangle

VAR

t=0

d. Sawtooth

e. Rectified

f. Cosine wave

FIGURE 13-10
Examples of the Fourier series. Six common time domain waveforms are shown, along with the equationsto
calculatetheir "a" and "b" coefficients.

Chapter 13- Continuous Signal Processing

A -

Frequency Domain

f

2f

3f

4f

5f

6f

4f

5f

6f

4f

5f

6f

4f

5f

6f

4f

5f

6f

4f

5f

6f

a, = Ad

a, = % sin(nrd)

(d = 0.27 in this example)

a, =0
an—isin(ﬂ)

nm 2
b =0

(all even harmonics are zero)

8 =

o - A
(nm)?

b, = O

n

(all even harmonics are zero)

a, =0
a =20
A
b = &
" nm
a, = 2Aln
a - A
n(4n?-1)
b,=0
a = A

(all other coefficients are zero)

257

258 The Scientist and Engineer's Guide to Digital Sgnal Processing

—T:/2 —k/‘2 k‘/2 T:/2
A H H

Amplitude

0-— . . ; . ; . . -
-3T -2T ' o 21 3T
Time

'
-
—

FIGURE 13-11

Example of calculating a Fourier series. Thisis a pulse train with a duty cycle of d = k/T. The
Fourier series coefficients are calculated by correlating the waveform with cosine and sine waves
over any full period. In this example, the period from -T/2 to T/2 is used.

Figure 13-11 shows an example of calculating a Fourier series using these
eguations. The time domain signal being analyzed is a pulse train, a square
wave with unequal high and low durations. Over asingle period from -T/2
to T/2, the waveform is given by:

A for-k/2 < t < k/2

x(t)
x(t)

0 otherwise

The duty cycle of the waveform (the fraction of time that the pulse is "high")
is thus given by d = k/T. The Fourier series coefficients can be found by
evaluating Eq. 13-5. First, we will find the DC component, a,:

T2

1
a, = = [x(t)dt (start with Eq. 13-5)
T,
1 k2
a, = = Adt (plug in the signal)
T
= A=k (evaluate the integral)
e
a, = Ad (substitute: d = k/T)

This result should make intuitive sense; the DC component is simply the
average value of the signal. A similar analysis provides the "a" coefficients:

Chapter 13- Continuous Signal Processing 259

T/2
a = 2 fx(t) cos(ZnTtn) dt (start with Eq. 13-4)

T
-T2
k/2
2 2ntn
a = — ACOS() dt (plug in the signal)
T JZ T
k/2
a_n = i # g’n(2ntn ‘ (evaluate the integral)
T L2nn T w2
a - 2Agn(nd) (reduce)
nm

The"b" coefficients are calculated in this same way; however, they al turn out
to be zero. In other words, this waveform can be constructed using only cosine
waves, with no sine waves being needed.

The "a" and "b" coefficients will change if the time domain waveform is
shifted left or right. For instance, the "b" coefficients in this example will be
zero only if one of the pulsesis centered on t = 0. Think about it this way.
If the waveform is even (i.e., symmetrical around t = 0), it will be composed
solely of even sinusoids, that is, cosine waves. This makes all of the "b"
coefficients equal to zero. If the waveform if odd (i.e., symmetrical but
oppositein sign around t = 0), it will be composed of odd sinusoids, i.e., sine
waves. Thisresultsin the "a" coefficients being zero. If the coefficients are
converted to polar notation (say, M,, and 8, coefficients), a shift in the time
domain leaves the magnitude unchanged, but adds a linear component to the
phase.

To complete this example, imagine a pulse train existing in an electronic
circuit, with a frequency of 1 kHz, an amplitude of one volt, and a duty cycle
of 0.2. The table in Fig. 13-12 provides the amplitude of each harmonic
contained in this waveform. Figure 13-12 also shows the synthesis of the
waveform using only the first fourteen of these harmonics. Even with this
number of harmonics, the reconstruction is not very good. In mathematical
jargon, the Fourier series converges very slowly. Thisisjust another way of
saying that sharp edges in the time domain waveform results in very high
frequencies in the spectrum. Lastly, be sure and notice the overshoot at the
sharp edges, i.e., the Gibbs effect discussed in Chapter 11.

An important application of the Fourier series is electronic frequency
multiplication. Suppose you want to construct a very stable sine wave
oscillator at 150 MHz. This might be needed, for example, in a radio

260

Amplitude (volts)

The Scientist and Engineer's Guide to Digital Sgnal Processing

transmitter operating at this frequency. High stability calls for the circuit to
be crystal controlled. That is, the frequency of the oscillator is determined by
aresonating quartz crystal that is a part of the circuit. The problem is, quartz
crystals only work to about 10 MHz. The solution is to build a crystal
controlled oscillator operating somewhere between 1 and 10 MHz, and then
multiply the frequency to whatever you need. This is accomplished by
distorting the sine wave, such as by clipping the peaks with a diode, or running
the waveform through a squaring circuit. The harmonics in the distorted
waveform are then isolated with band-pass filters. This allows the frequency
to be doubled, tripled, or multiplied by even higher integers numbers. The
most common technique is to use sequential stages of doublers and triplers to
generate the required frequency multiplication, rather than just a single stage.
The Fourier series is important to this type of design because it describes the
amplitude of the multiplied signal, depending on the type of distortion and
harmonic selected.

15 frequency | amplitude
(volts)
1.0-M M M M Y DC 0.20000
[[’ \ ’ 1kHz | 037420
0.5 2kHz 0.30273
’ I I \ I 3kHz 0.20182
0.0-F-ta A+ Al Al-4-1a Al 4 kHz 0.09355
5kHz 0.00000
0.5 6 kHz -0.06237
0 1 2 3 4 7 kHz -0.08649
Time (milliseconds) 8 KkHz -0.07568
9kHz -0.04158
10 kHz 0.00000
11 kHz 0.03402
FIGURE 13-12 12 kHz 0.05046
Example of Fourier series synthesis. The waveform :
being constructed is a pulse train at 1 kHz, an 123 kHz 0.00492
amplitude of one volt, and a duty cycle of 0.2 (as 124 kHz 0.00302
illustrated in Fig. 13-11). This table shows the 125kHz 0.00000
amplitude of the harmonics, while the graph shows 126 kHz -0.00297
the reconstructed waveform using only the first :
fourteen harmonics. 803 kHz 0.00075
804 kHz 0.00046
805 kHz 0.00000
806 kHz -0.00046

CHAPTER

14

Introduction to Digital Filters

Digital filters are used for two general purposes. (1) separation of signals that have been
combined, and (2) restoration of signals that have been distorted in some way. Analog
(electronic) filters can be used for these same tasks; however, digital filters can achieve far
superior results. The most popular digital filters are described and compared in the next seven
chapters. This introductory chapter describes the parameters you want to look for when learning
about each of these filters.

Filter Basics

Digital filters are a very important part of DSP. In fact, their extraordinary
performance is one of the key reasons that DSP has become so popular. As
mentioned in the introduction, filters have two uses. signal separation and
signal restoration. Signal separation is needed when a signal has been
contaminated with interference, noise, or other signals. For example, imagine
a device for measuring the electrical activity of a baby's heart (EKG) while
still in the womb. The raw signal will likely be corrupted by the breathing and
heartbeat of the mother. A filter might be used to separate these signals so that
they can be individually analyzed.

Signal restoration is used when a signal has been distorted in some way. For
example, an audio recording made with poor equipment may be filtered to
better represent the sound as it actually occurred. Another example is the
deblurring of an image acquired with an improperly focused lens, or a shaky
camera.

These problems can be attacked with either analog or digital filters. Which
is better? Analog filters are cheap, fast, and have a large dynamic range in
both amplitude and frequency. Digital filters, in comparison, are vastly
superior in the level of performance that can be achieved. For example, a
low-pass digital filter presented in Chapter 16 has a gain of 1 +/- 0.0002 from
DC to 1000 hertz, and a gain of less than 0.0002 for frequencies above

261

262

The Scientist and Engineer's Guide to Digital Sgnal Processing

1001 hertz. The entire transition occurs within only 1 hertz. Don't expect
this from an op amp circuit! Digital filters can achieve thousands of times
better performance than analog filters. This makes a dramatic difference in
how filtering problems are approached. With analog filters, the emphasis
is on handling limitations of the electronics, such as the accuracy and
stability of the resistors and capacitors. In comparison, digital filters are
so good that the performance of the filter is frequently ignored. The
emphasis shifts to the limitations of the signals, and the theoretical issues
regarding their processing.

It is common in DSP to say that a filter's input and output signals are in the
time domain. This is because signals are usually created by sampling at
regular intervals of time. But thisis not the only way sampling can take place.
The second most common way of sampling is at equal intervals in space. For
example, imagine taking simultaneous readings from an array of strain sensors
mounted at one centimeter increments along the length of an aircraft wing.
Many other domains are possible; however, time and space are by far the most
common. When you see the term time domain in DSP, remember that it may
actually refer to samples taken over time, or it may be a general reference to
any domain that the samples are taken in.

As shown in Fig. 14-1, every linear filter has an impulse response, a step
response and a frequency response. Each of these responses contains
complete information about the filter, but in a different form. If one of the
three is specified, the other two are fixed and can be directly calculated. All
three of these representations are important, because they describe how the
filter will react under different circumstances.

The most straightforward way to implement a digital filter is by convolving the
input signal with the digital filter's impulse response. All possible linear filters
can be made in this manner. (This should be obvious. If it isn't, you probably
don't have the background to understand this section on filter design. Try
reviewing the previous section on DSP fundamentals). When the impulse
response is used in this way, filter designers give it a special name: the filter
kernel.

There is also another way to make digital filters, called recursion. When
a filter is implemented by convolution, each sample in the output is
calculated by weighting the samples in the input, and adding them together.
Recursive filters are an extension of this, using previously calculated values
from the output, besides points from the input. Instead of using a filter
kernel, recursive filters are defined by a set of recursion coefficients. This
method will be discussed in detail in Chapter 19. For now, the important
point is that all linear filters have an impulse response, even if you don't
use it to implement the filter. To find the impulse response of a recursive
filter, simply feed in an impulse, and see what comes out. The impulse
responses of recursive filters are composed of sinusoids that exponentially
decay in amplitude. In principle, this makes their impulse responses
infinitely long. However, the amplitude eventually drops below the round-off
noise of the system, and the remaining samples can be ignored. Because

Chapter 14- Introduction to Digital Filters 263

0.3 T T 15 T T T
a. Impulse response ‘ ‘ c. Frequency response
0.2 1.0
(3] (3]
E FFT 3
= 0.1 = 05
£ - =
< <
0.0 R 0.0 L
0.1 0.5
32 64 96 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
l Integrate l 20 Log()
1.5 T 40 ! ! ! !
b. Step response ‘ d. Frequency response (in dB) ‘
20
1.0 [
o))
E g "
E’ 0.5 g ﬁ&
< ; g L‘L.\
<
0.0 -
& -40 =
T —
0.5 -60
32 64 96 127 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 14-1

Filter parameters. Every linear filter has an impul se response, a step response, and afregquency response. The
step response, (b), can be found by discrete integration of the impulse response, (a). The frequency response
can be found from the impul se response by using the Fast Fourier Transform (FFT), and can be displayed either
on alinear scale, (c), or in decibels, (d).

of this characteristic, recursive filters are also called Infinite Impulse
Response or IR filters. In comparison, filters carried out by convolution are
called Finite Impulse Response or FIR filters.

As you know, the impulse response is the output of a system when the input is
an impulse. In this same manner, the step response is the output when the
input is a step (also called an edge, and an edge response). Since the step is
the integral of the impulse, the step response is the integral of the impulse
response. This provides two ways to find the step response: (1) feed a step
waveform into the filter and see what comes out, or (2) integrate the impulse
response. (To be mathematically correct: integration is used with continuous
signals, while discrete integration, i.e., a running sum, is used with discrete
signals). The frequency response can be found by taking the DFT (using the
FFT agorithm) of the impulse response. This will be reviewed later in this

264

EQUATION 14-1
Definition of decibels. Decibels are a

The Scientist and Engineer's Guide to Digital Sgnal Processing

chapter. The frequency response can be plotted on alinear vertical axis, such
as in (c), or on a logarithmic scale (decibels), as shown in (d). The linear
scaleis best at showing the passband ripple and roll-off, while the decibel scale
is needed to show the stopband attenuation.

Don't remember decibels? Here is a quick review. A bel (in honor of
Alexander Graham Bell) means that the power is changed by a factor of ten.
For example, an electronic circuit that has 3 bels of amplification produces an
output signal with 10x10x10 = 1000 times the power of the input. A decibel
(dB) is one-tenth of a bel. Therefore, the decibel values of: -20dB, -10dB,
0dB, 10dB & 20dB, mean the power ratios: 0.01, 0.1, 1, 10, & 100,
respectively. In other words, every ten decibels mean that the power has
changed by a factor of ten.

Here's the catch: you usually want to work with a signal's amplitude, not
its power. For example, imagine an amplifier with 20dB of gain. By
definition, this means that the power in the signal has increased by a factor
of 100. Since amplitude is proportional to the square-root of power, the
amplitude of the output is 10 times the amplitude of the input. While 20dB
means a factor of 100 in power, it only means a factor of 10 in amplitude.
Every twenty decibels mean that the amplitude has changed by a factor of
ten. In equation form:

I:)2
dB = 10 IogloF

[

way of expressing aratio between two
signals. Ratios of power (P, & P,) usea

different equation from ratios of
amplitude (A, & A)).

dB = 20log,,

> &

The above equations use the base 10 logarithm; however, many computer
languages only provide a function for the base e logarithm (the natural log,
written log,x or Inx). The natural log can be use by modifying the above
equations: dB = 4.342945log,(P,/P,) and dB = 8.685890 log,(A,/A,).

Since decibels are a way of expressing the ratio between two signals, they are
ideal for describing the gain of a system, i.e., the ratio between the output and
the input signal. However, engineers also use decibels to specify the amplitude
(or power) of asingle signal, by referencing it to some standard. For example,
the term: dBV means that the signal is being referenced to a 1 volt rms signal.
Likewise, dBm indicates a reference signal producing 1 mW into a 600 ohms
load (about 0.78 volts rms).

If you understand nothing else about decibels, remember two things: First,
-3dB means that the amplitude is reduced to 0.707 (and the power is

Chapter 14- Introduction to Digital Filters 265

therefore reduced to 0.5). Second, memorize the following conversions
between decibels and amplitude ratios:

60dB = 1000
40dB = 100
20dB = 10
0B = 1
-20dB = 0.1
-40dB = 0.01
-60dB = 0.001

How Information is Represented in Signals

The most important part of any DSP task is understanding how information is
contained in the signals you are working with. There are many ways that
information can be contained in asignal. This is especially true if the signal
is manmade. For instance, consider all of the modulation schemes that have
been devised: AM, FM, single-sideband, pulse-code modulation, pulse-width
modulation, etc. The list goes on and on. Fortunately, there are only two
ways that are common for information to be represented in naturally occurring
signals. We will call these: information represented in the time domain,
and information represented in the frequency domain.

Information represented in the time domain describes when something occurs
and what the amplitude of the occurrence is. For example, imagine an
experiment to study the light output from the sun. The light output is measured
and recorded once each second. Each sample in the signal indicates what is
happening at that instant, and the level of the event. |f a solar flare occurs, the
signal directly provides information on the time it occurred, the duration, the
development over time, etc. Each sample contains information that is
interpretable without reference to any other sample. Even if you have only one
sample from this signal, you still know something about what you are
measuring. This is the simplest way for information to be contained in a
signal.

In contrast, information represented in the frequency domain is more
indirect. Many thingsin our universe show periodic motion. For example,
a wine glass struck with a fingernail will vibrate, producing a ringing
sound; the pendulum of a grandfather clock swings back and forth; stars
and planets rotate on their axis and revolve around each other, and so forth.
By measuring the frequency, phase, and amplitude of this periodic motion,
information can often be obtained about the system producing the motion.
Suppose we sample the sound produced by the ringing wine glass. The
fundamental frequency and harmonics of the periodic vibration relate to the
mass and elasticity of the material. A single sample, in itself, contains no
information about the periodic motion, and therefore no information about
the wine glass. The information is contained in the relationship between
many points in the signal.

266

The Scientist and Engineer's Guide to Digital Sgnal Processing

This brings us to the importance of the step and frequency responses. The step
response describes how information represented in the time domain is being
modified by the system. In contrast, the frequency response shows how
information represented in the frequency domain is being changed. This
distinction is absolutely critical in filter design because it is not possible to
optimize a filter for both applications. Good performance in the time domain
results in poor performance in the frequency domain, and vice versa. If you are
designing a filter to remove noise from an EKG signal (information represented
in the time domain), the step response is the important parameter, and the
frequency response is of little concern. If your task isto design a digital filter
for a hearing aid (with the information in the frequency domain), the frequency
response is all important, while the step response doesn't matter. Now let's
look at what makes a filter optimal for time domain or frequency domain
applications.

Time Domain Parameters

It may not be obvious why the step response is of such concern in time domain
filters. You may be wondering why the impulse response isn't the important
parameter. The answer lies in the way that the human mind understands and
processes information. Remember that the step, impulse and frequency
responses al contain identical information, just in different arrangements. The
step response is useful in time domain analysis because it matches the way
humans view the information contained in the signals.

For example, suppose you are given a signal of some unknown origin and
asked to analyze it. The first thing you will do is divide the signal into
regions of similar characteristics. You can't stop from doing this; your
mind will do it automatically. Some of the regions may be smooth; others
may have large amplitude peaks; others may be noisy. This segmentation
is accomplished by identifying the points that separate the regions. Thisis
where the step function comes in. The step function is the purest way of
representing a division between two dissimilar regions. It can mark when
an event starts, or when an event ends. It tells you that whatever is on the
left is somehow different from whatever is on the right. This is how the
human mind views time domain information: a group of step functions
dividing the information into regions of similar characteristics. The step
response, in turn, is important because it describes how the dividing lines
are being modified by the filter.

The step response parameters that are important in filter design are shown
in Fig. 14-2. To distinguish events in a signal, the duration of the step
response must be shorter than the spacing of the events. This dictates that
the step response should be as fast (the DSP jargon) as possible. Thisis
shown in Figs. (a) & (b). The most common way to specify the risetime
(more jargon) is to quote the number of samples between the 10% and 90%
amplitude levels. Why isn't a very fast risetime always possible? There are
many reasons, noise reduction, inherent limitations of the data acquisition
system, avoiding aliasing, etc.

Chapter 14- Introduction to Digital Filters

1.5 . .
1 1
a. Slow step response ‘
1.0
@
©
=
S 0.5
IS
<
0.0
0.5
16 32 48 64
Sample number
1.5 .
I
c. Overshoot
1.0 I
@
©
=
S 0.5 I
IS
<
N
0.0 e
0.5
16 32 48 64
Sample number
1.5 . .
1 1
e. Nonlinear phase
1.0
@
©
=
S 0.5
1S
<
0.0
0.5
16 32 48 64
Sample number
FIGURE 14-2

Parameters for evaluating time domain performance. The step responseis used to measure how well afilter
performsin thetime domain. Three parameters areimportant: (1) transition speed (risetime), shown in (a) and

Amplitude

-0.5

Amplitude

-0.5

Amplitude

GOOD

267

—_
(=]

g
n

0.0

1 1
b. Fast step response ‘

/2"'

16 32 48
Sample number

64

14
n

0.0

1
d. No overshoot

16 32 48
Sample number

64

14
n

f. Linear phase

_

o
)

-0.5

16 32 48
Sample number

64

(b), (2) overshoot, shownin (c) and (d), and (3) phase linearity (symmetry between the top and bottom halves
of the step), shown in (e) and (f).

Figures (c) and (d) shows the next parameter that is important: over shoot in
the step response. Overshoot must generally be eliminated because it changes
the amplitude of samples in the signal; this is a basic distortion of
the information contained in the time domain. This can be summed up in

268 The Scientist and Engineer's Guide to Digital Sgnal Processing

one question: s the overshoot you observe in a signal coming from the thing
you are trying to measure, or from the filter you have used?

Finally, it is often desired that the upper half of the step response be
symmetrical with the lower half, asillustrated in (e) and (f). This symmetry
is needed to make the rising edges look the same as the falling edges. This
symmetry is called linear phase, because the frequency response has a phase
that is a straight line (discussed in Chapter 19). Make sure you understand
these three parameters; they are the key to evaluating time domain filters.

Frequency Domain Parameters

Figure 14-3 shows the four basic frequency responses. The purpose of
these filters is to allow some frequencies to pass unaltered, while
completely blocking other frequencies. The passband refers to those
frequencies that are passed, while the stopband contains those frequencies
that are blocked. The transition band is between. A fast roll-off means
that the transition band is very narrow. The division between the passband
and transition band is called the cutoff frequency. In analog filter design,
the cutoff frequency is usually defined to be where the amplitude is reduced
to 0.707 (i.e., -3dB). Digital filters are less standardized, and it is
common to see 99%, 90%, 70.7%, and 50% amplitude levels defined to be
the cutoff frequency.

Figure 14-4 shows three parameters that measure how well a filter performs
in the frequency domain. To separate closely spaced frequencies, the filter
must have a fast roll-off, asillustrated in (a) and (b). For the passband
frequencies to move through the filter unaltered, there must be no passband
ripple, as shown in (c) and (d). Lastly, to adequately block the stopband
frequencies, it is necessary to have good stopband attenuation, displayed

in (e) and (f).
a. Low-pass c. Band-pass

3 passband | | transition 3

E LA ban E

a a
FIGURE 14-3 5 5
The four common frequency responses.
Frequency domain filters are generally stopband

used to pass certain frequencies (the Frequency Frequency
passband), while blocking others (the
stopband). Four responses are the most
common: low-pass, high-pass, band-pass,

d band-reject.
ana bancrreee b. High-pass d. Band-reject

Amplitude
Amplitude

Frequency Frequency

Chapter 14- Introduction to Digital Filters 269

1.5 . . 1.5 . .
a. Slow roll-off b. Fast roll-off
1.0 1.0
@ @ ‘\
© ©
2 2
=S 05 505
£ £ ;
< < X
0.0 0.0
0.5 0.5
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
1.5 : : : 1.5 : :
‘ c. Ripple in passband d. Flat passband
1.0 __-.fﬂ' 1.0
© ©
2 2
=S 05 505
£ | g ;
) .) .
0.0 0.0
0.5 0.5
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
0 : : : 0 : : :
20----| e. Poor stopband attenuation 1 20—---| f. Good stopband attenuation 1
.’ \ .’ \
% 20 % 20
@ @ \
:3 -40 l' ﬁ Av A S -40 \
g . 5
g -0 i HH g 60
< %0 < %0
-100 100
-120 -120 Ana
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 14-4

Parameters for evaluating frequency domain performance. The frequency responses shown are for |ow-pass
filters. Three parameters areimportant: (1) roll-off sharpness, shownin (a) and (b), (2) passband ripple, shown
in (c) and (d), and (3) stopband attenuation, shown in (€) and (f).

Why is there nothing about the phase in these parameters? First, the phase
isn't important in most frequency domain applications. For example, the phase
of an audio signal is almost completely random, and contains little useful
information. Second, if the phase is important, it is very easy to make digital

270

The Scientist and Engineer's Guide to Digital Sgnal Processing

filters with a perfect phase response, i.e., al frequencies pass through the filter
with a zero phase shift (also discussed in Chapter 19). In comparison, analog
filters are ghastly in this respect.

Previous chapters have described how the DFT converts a system's impulse
response into its frequency response. Here is a brief review. The quickest
way to calculate the DFT is by means of the FFT algorithm presented in
Chapter 12. Starting with a filter kernel N samples long, the FFT calculates
the frequency spectrum consisting of an N point real part and an N point
imaginary part. Only samples0to N/2 of the FFT's real and imaginary parts
contain useful information; the remaining points are duplicates (negative
frequencies) and can be ignored. Since the real and imaginary parts are
difficult for humans to understand, they are usually converted into polar
notation as described in Chapter 8. This provides the magnitude and phase
signals, each running from sample 0 to sample N/2 (i.e.,, N/2+1 samplesin
each signal). For example, an impulse response of 256 points will result in a
frequency response running from point 0 to 128. Sample O represents DC, i.e.,
zero frequency. Sample 128 represents one-half of the sampling rate.
Remember, no frequencies higher than one-half of the sampling rate can appear
in sampled data.

The number of samples used to represent the impulse response can be
arbitrarily large. For instance, suppose you want to find the frequency
response of afilter kernel that consists of 80 points. Since the FFT only works
with signals that are a power of two, you need to add 48 zeros to the signal to
bring it to alength of 128 samples. This padding with zeros does not change
the impulse response. To understand why thisis so, think about what happens
to these added zeros when the input signal is convolved with the system's
impulse response. The added zeros simply vanish in the convolution, and do
not affect the outcome.

Taking this a step further, you could add many zeros to the impulse response
to make it, say, 256, 512, or 1024 points long. The important idea is that
longer impulse responses result in a closer spacing of the data points in the
frequency response. That is, there are more samples spread between DC and
one-half of the sampling rate. Taking this to the extreme, if the impulse
response is padded with an infinite number of zeros, the data points in the
frequency response are infinitesimally close together, i.e., a continuous line.
In other words, the frequency response of afilter is really a continuous signal
between DC and one-half of the sampling rate. The output of the DFT is a
sampling of this continuous line. What length of impulse response should you
use when calculating a filter's frequency response? As a first thought, try
N=1024, but don't be afraid to change it if needed (such as insufficient
resolution or excessive computation time).

Keep in mind that the "good" and "bad" parameters discussed in this chapter
are only generalizations. Many signals don't fall neatly into categories. For
example, consider an EKG signal contaminated with 60 hertz interference.
The information is encoded in the time domain, but the interference is best
dealt with in the frequency domain. The best design for this application is

Chapter 14- Introduction to Digital Filters 271

Time Domain Frequency Domain
1.0 I I I 1.5 I I I
087__‘ a. Original filter kernel \ ‘ b. Original frequency response ‘
0.6
@ o 1.0
° °
204 =]
= -« B
E 02 k| 3
< <
0.0 guliy o . 057
i g
0.2
0.4 00+ EpsEEEsdEEEEEEEEEEEE
0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
1o ! ! ! ! Lo ! ! !
0.5 _| ¢ Filter kernel with spectral inversion L__ d. Inverted frequency response
0.6)
; |
S o4 s
!\ v
E 0.2 ‘) E T i Flipped
00 L . 0.5 top-for-bottom |-
M
0.2 Tl
0.4 00 muuunm
0 10 20 30 40 50 0 0.1 0.2 03 0.4 05
Sample number Frequency

FIGURE 14-5

Example of spectral inversion. Thelow-passfilter kernel in (a) has the frequency response shownin (b). A
high-passfilter kernel, (c), isformed by changing the sign of each samplein (a), and adding one to the sample
at the center of symmetry. Thisaction in the time domain invertsthe frequency spectrum (i.e., flipsit top-for-
bottom), as shown by the high-pass frequency responsein (d).

bound to have trade-offs, and might go against the conventional wisdom of this
chapter. Remember the number one rule of education: A paragraph in a book
doesn't give you a license to stop thinking.

High-Pass, Band-Pass and Band-Reject Filters

High-pass, band-pass and band-reject filters are designed by starting with a
low-pass filter, and then converting it into the desired response. For this
reason, most discussions on filter design only give examples of low-pass
filters. There are two methods for the low-pass to high-pass conversion:
spectral inversion and spectral reversal. Both are equally useful.

An example of spectral inversion is shown in 14-5. Figure (a) shows a low-
pass filter kernel called a windowed-sinc (the topic of Chapter 16). This filter
kernel is 51 points in length, although many of samples have a value
so small that they appear to be zero in this graph. The corresponding

272 The Scientist and Engineer's Guide to Digital Sgnal Processing

FIGURE 14-6

Block diagram of spectral inversion. In
(a), theinput signal, x[n], isapplied to two
systems in parallel, having impulse
responses of h[n] and 8[n]. Asshownin
(b), the combined system has an impulse
response of §[n] - h[n]. This means that
the frequency response of the combined
system isthe inversion of the frequency
response of h[n].

a. High-pass by Low-pass
adding parallel stages
> h[n] N\
x[n] J’@—> yln]
> O[n]
All-pass
b. High-pass High-pass

in a single stage

x[n] ——{ 9[n] - h[n] |————> y[n]

frequency response is shown in (b), found by adding 13 zeros to the filter
kernel and taking a 64 point FFT. Two things must be done to change the
low-pass filter kernel into a high-pass filter kernel. First, change the sign of
each sample in the filter kernel. Second, add one to the sample at the center
of symmetry. This results in the high-pass filter kernel shown in (c), with the
frequency response shown in (d). Spectral inversion flips the frequency
response top-for-bottom, changing the passbands into stopbands, and the
stopbands into passbands. In other words, it changes a filter from low-pass to
high-pass, high-pass to low-pass, band-pass to band-reject, or band-reject to
band-pass.

Figure 14-6 shows why this two step modification to the time domain results
in an inverted frequency spectrum. In (@), the input signal, x[n], is applied to
two systems in parallel. One of these systems is a low-pass filter, with an
impulse response given by h[n]. The other system does nothing to the signal,
and therefore has an impulse response that is a delta function, 6[n]. The
overall output, y[n], is equal to the output of the all-pass system minus the
output of the low-pass system. Since the low frequency components are
subtracted from the original signal, only the high frequency components appear
in the output. Thus, a high-pass filter is formed.

This could be performed as a two step operation in a computer program:
run the signal through a low-pass filter, and then subtract the filtered signal
from the original. However, the entire operation can be performed in a
signal stage by combining the two filter kernels. As described in Chapter

Chapter 14- Introduction to Digital Filters 273

Time Domain Frequency Domain
1.0 I I I 1.5 I I I
087__‘ a. Original filter kernel \ ‘ b. Original frequency response ‘
0.6
" o 1.0
© ©
204 =]
= — S
E 02 k| 3
< <
0.0 guliy o . 057
: gl g
0.2
0.4 00+ Sasssssfesssnminennns
0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
1o ! ! : : ' : : : :
0.s.L_| ¢. Filter kernel with spectral reversal | ___ d. Reversed frequency response
0.6
© ° 1.0+
2% 2 —>
E’ 0.2 N — E- F7'_d
: ippe
< /\ < y i
00 . /V Z\ . 0.54 left-for-right
T
0.2 It
0.4 0.0 mmmssainssnnpeenen
0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 14-7

Example of spectral reversal. The low-pass filter kernel in (@) has the frequency response shown in (b). A
high-passfilter kernel, (c), isformed by changing the sign of every other samplein (a). Thisactioninthetime
domain results in the frequency domain being flipped left-for-right, resulting in the high-pass frequency
response shown in (d).

7, parallel systems with added outputs can be combined into a single stage by
adding their impulse responses. As shown in (b), the filter kernel for the high-
pass filter is given by: §[n] - h[n]. That is, change the sign of all the samples,
and then add one to the sample at the center of symmetry.

For this technique to work, the low-frequency components exiting the low-pass
filter must have the same phase as the low-frequency components exiting the
all-pass system. Otherwise a complete subtraction cannot take place. This
places two restrictions on the method: (1) the original filter kernel must have
left-right symmetry (i.e., a zero or linear phase), and (2) the impulse must be
added at the center of symmetry.

The second method for low-pass to high-pass conversion, spectral reversal, is
illustrated in Fig. 14-7. Just as before, the low-pass filter kernel in (a)
corresponds to the frequency response in (b). The high-pass filter kernel, (),
is formed by changing the sign of every other samplein (a). Asshownin
(d), this flips the frequency domain left-for-right: 0 becomes 0.5 and 0.5

274

FIGURE 14-8

Designing a band-pass filter. As shown

The Scientist and Engineer's Guide to Digital Sgnal Processing

a. Band-pass by Low-pass High-pass

cascading stages l

in (a), a band-pass filter can be formed x[n] —>> hl[n] > hz[n] > y[l’l]

by cascading a low-pass filter and a
high-passfilter. Thiscan bereduced to

asingle stage, shown in (b). The filter
kernel of the single stageis equal to the
convolution of the low-pass and high-

pass filter kernels.

b. Band-pass Band-pass

in a single stage

Xx[n] ———> hj[n] * hy[n] ———> y[n]

becomes 0. The cutoff frequency of the example low-pass filter is 0.15,
resulting in the cutoff frequency of the high-pass filter being 0.35.

Changing the sign of every other sample is equivalent to multiplying the filter
kernel by a sinusoid with afrequency of 0.5. Asdiscussed in Chapter 10, this
has the effect of shifting the frequency domain by 0.5. Look at (b) and imagine
the negative frequencies between -0.5 and O that are of mirror image of the
frequencies between 0 and 0.5. The frequencies that appear in (d) are the
negative frequencies from (b) shifted by 0.5.

Lastly, Figs. 14-8 and 14-9 show how low-pass and high-pass filter kernels can
be combined to form band-pass and band-reject filters. In short, adding the
filter kernels produces a band-reject filter, while convolving the filter kernels
produces a band-pass filter. These are based on the way cascaded and
parallel systems are be combined, as discussed in Chapter 7. Multiple
combination of these techniques can also be used. For instance, a band-pass
filter can be designed by adding the two filter kernels to form a stop-pass
filter, and then use spectral inversion or spectral reversal as previously
described. All these techniques work very well with few surprises.

Filter Classification

Table 14-1 summarizes how digital filters are classified by their use and by
their implementation. The use of a digital filter can be broken into three
categories: time domain, frequency domain and custom. As previously
described, time domain filters are used when the information is encoded in the
shape of the signal's waveform. Time domain filtering is used for such
actions as. smoothing, DC removal, waveform shaping, etc. In contrast,
frequency domain filters are used when the information is contained in the

Chapter 14- Introduction to Digital Filters

FIGURE 14-9

Designing aband-reject filter. Asshown
in (a), a band-reject filter is formed by
the parallel combination of a low-pass
filter and a high-pass filter with their
outputs added. Figure (b) shows this
reduced to asingle stage, with the filter
kernel found by adding the low-pass
and high-passfilter kernels.

a. Band-reject by
adding parallel stages

Low-pass

X[n]

> h,[n]
j*@—> y[n]
A

b. Band-reject
in a single stage

> h,[n]

High-pass

Band-reject

x[n] ——>

h,[n] + hy[n] ———> y[n]

275

amplitude, frequency, and phase of the component sinusoids. The goal of these
filtersis to separate one band of frequencies from another. Custom filters are
used when a special action is required by the filter, something more elaborate
than the four basic responses (high-pass, low-pass, band-pass and band-reject).
For instance, Chapter 17 describes how custom filters can be used for
deconvolution, away of counteracting an unwanted convolution.

FILTER IMPLEMENTED BY:

Convolution
Finite Impulse Response (FIR)

Recursion
Infinite Impulse Response (IIR)

Time Domain
(smoothing, DC removal)

Moving average (Ch. 15)

Single pole (Ch. 19)

Frequency Domain
(separating frequencies)

Windowed-sinc (Ch. 16)

Chebyshev (Ch. 20)

Custom
(Deconvolution)

FILTER USED FOR:

FIR custom (Ch. 17)

Iterative design (Ch. 26)

TABLE 14-1

Filter classification. Filters can be divided by their use, and how they are implemented.

276

The Scientist and Engineer's Guide to Digital Sgnal Processing

Digital filters can be implemented in two ways, by convolution (also called
finite impulse response or FIR) and by recursion (also called infinite impulse
response or |IR). Filters carried out by convolution can have far better
performance than filters using recursion, but execute much more slowly.

The next six chapters describe digital filters according to the classificationsin
Table 14-1. First, we will look at filters carried out by convolution. The
moving average (Chapter 15) is used in the time domain, the windowed-sinc
(Chapter 16) is used in the frequency domain, and FIR custom (Chapter 17) is
used when something special is needed. To finish the discussion of FIR filters,
Chapter 18 presents a technique called FFT convolution. Thisis an algorithm
for increasing the speed of convolution, allowing FIR filters to execute faster.

Next, we look at recursive filters. The single pole recursive filter (Chapter 19)
is used in the time domain, while the Chebyshev (Chapter 20) is used in the
frequency domain. Recursive filters having a custom response are designed by
iterative techniques. For this reason, we will delay their discussion until
Chapter 26, where they will be presented with another type of iterative
procedure: the neural network.

As shown in Table 14-1, convolution and recursion are rival technigques; you
must use one or the other for a particular application. How do you choose?
Chapter 21 presents a head-to-head comparison of the two, in both the time and
frequency domains.

CHAPTER

15

Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use. In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response. This makes it the
premier filter for time domain encoded signals. However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average. These have slightly better performance in the frequency domain, at the
expense of increased computation time.

Implementation by Convolution

As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal. In
equation form, this is written:

EQUATION 15-1

Equation of the moving average filter. In M-1
thisequation, x[] istheinput signal, y[] is y[i] = ; E x[i +j]
the output signal, and M is the number of M 55

points used in the moving average. This
equation only uses points on one side of the
output sample being cal cul ated.

Where X[] isthe input signal, y[] is the output signal, and M is the number
of pointsin the average. For example, in a5 point moving average filter, point
80 in the output signal is given by:

x[80] + x[81] + x[82] + x[83] + x[84]
5

y[80] =

277

278 The Scientist and Engineer's Guide to Digital Sgnal Processing

100"

As an alternative, the group of points from the input signal can be chosen
symmetrically around the output point:

x[78] + x[79] + x[80] + x[81] + x[82]

y[80] - c

This corresponds to changing the summation in Eq. 15-1 from: j = 0to M- 1,
to: j= -(M-1)/2to (M-1)/2. For instance, in an 11 point moving average
filter, the index, j, can run from 0 to 11 (one side averaging) or -5 to 5
(symmetrical averaging). Symmetrical averaging requires that M be an odd
number. Programming is slightly easier with the points on only one side;
however, this produces a relative shift between the input and output signals.

Y ou should recognize that the moving average filter is a convolution using a
very simple filter kernel. For example, a 5 point filter has the filter kernel:
-0,0, 1/5,1/5,1/5,1/5,1/5,0,0-- . That is, the moving average filter is a
convolution of the input signal with a rectangular pulse having an area of one.
Table 15-1 shows a program to implement the moving average filter.

MOVING AVERAGE FILTER

110 'This program filters 5000 samples with a 101 point moving
120 'average filter, resulting in 4900 samples of filtered data.

130

140 DIM X[4999] 'X[] holds the input signal

150 DIM Y [4999] 'Y[] holds the output signal

160"

170 GOSUB X XXX 'Mythical subroutine to load X[]

180"

190 FOR 1% = 50 TO 4949 'Loop for each point in the output signal
200 Y[I%] =0 'Zero, so it can be used as an accumulator
210 FOR 3% =-50TO50 'Calcul ate the summation

220 Y[1%] = Y[1%] + X (1%+J%]

230 NEXT J%

240 Y[1%] = Y[1%)]/101 'Complete the average by dividing

250 NEXT 1%

260"

270 END

TABLE 15-1

Noise Reduction vs. Step Response

Many scientists and engineers feel guilty about using the moving average filter.
Because it is so very simple, the moving average filter is often the first thing
tried when faced with a problem. Even if the problem is completely solved,
there is still the feeling that something more should be done. This situation is
truly ironic. Not only is the moving average filter very good for many
applications, it is optimal for acommon problem, reducing random white noise
while keeping the sharpest step response.

Amplitude

Chapter 15- Moving Average Filters

H‘ .“Ii', l ________ 4 H

a. Original signal

i
: :
0 100 200 300 400 500

Sample number

FIGURE 15-1

Example of a moving average filter. In (a), a
rectangular pulseisburied in random noise. In
(b) and (c), thissignal isfiltered with 11 and 51
point moving average filters, respectively. As
the number of pointsin thefilter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving averagefilter
is the optimal solution for this problem,
providing the lowest noise possible for agiven
edge sharpness.

Amplitude

Amplitude

279

‘b. 11 point moving average

I
I
I
I
|
————m T-—-
I
I
I
I
I
I
I
1

I
200

300

Sample number

500

0 100 200 300 400 500
Sample number

Figure 15-1 shows an example of how thisworks. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design afilter with afixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input pointsis special; each is just as
noisy asits neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when al the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

280

The Scientist and Engineer's Guide to Digital Sgnal Processing

Frequency Response

EQUATION 15-2

Frequency response of an M point moving H [f] -

Figure 15-2 shows the frequency response of the moving average filter. It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11:

sn(nfM)

averagefilter. The frequency, f, runs between i
Oand0.5. For f=0,use: H[f]=1 Msin(nf)

FIGURE 15-2

Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curvesare
generated by Eq. 15-2.

The roll-off is very slow and the stopband attenuation is ghastly. Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa. In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

1.2

-
7

o
©
|

o
o
|

Amplitude

f=]
EN
|

<
(S}
|

B TN T T T T T T

o
=}

Frequency

Relatives of the Moving Average Filter

In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal. Unfortunately, there are some applications
where both domains are simultaneously important. For instance, television
signals fall into this nasty category. Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image. However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc. As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Chapter 15- Moving Average Filters 281

0.2 1.25 T T T
a. Filter kernel ‘ c. Freguency response
1.00
{1 pag“)
AR A}
Q 2 pass C Y Q [
3 p j+/‘ " ‘ FFT 5075 "\ [I pass
= T - \
E ; W Foso s \ mj
A
A N\ ‘\‘ 4 pass
L
’ “
0.0 - k! 0.00 S \/
0 6 12 18 24 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
l Integrate l 20 Log()
1.2 T 40
o b. Step response 207__J d. Frequency response (dB) \ _______
: LS ol !
T pass |)J/;_,;_-/-‘/' | o ~ [Tpass]
o 08 /" | 4 pass 8 20 O\ T
o ~ Y Pty 7
g % “Vl" ‘\\/ LT s
E_o 6 2 4 B(‘\':' .L" : - v 3
<04 // £ 60 \.".//'\\\\‘” V7
. < [u \In'
7 s i - AN A
0.2 /&J 100 ,IL!—\\'/ \‘ :.: /
A VYT 4 pass v
‘(72 2 pass
0.0-+-aetFd ; -120 j u W/
0 6 12 18 24 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency

FIGURE 15-3

Characteristics of multiple-pass moving average filters. Figure (a) shows the filter kernels resulting from
passing a seven point moving average filter over the data once, twice and four times. Figure (b) shows the
corresponding step responses, while (c) and (d) show the corresponding frequency responses.

the signal's information is encoded in the time domain. For instance, the
temperature monitor in a scientific experiment might be contaminated with 60
hertz from the power lines, 30 kHz from a switching power supply, or 1320
kHz from a local AM radio station. Relatives of the moving average filter
have better frequency domain performance, and can be useful in these mixed
domain applications.

Multiple-pass moving average filters involve passing the input signal
through a moving average filter two or more times. Figure 15-3a shows the
overall filter kernel resulting from one, two and four passes. Two passes are
equivalent to using a triangular filter kernel (a rectangular filter kernel
convolved with itself). After four or more passes, the equivalent filter kernel
looks like a Gaussian (recall the Central Limit Theorem). As shown in (b),
multiple passes produce an "s" shaped step response, as compared to the
straight line of the single pass. The frequency responses in (c) and (d) are
given by Eq. 15-2 multiplied by itself for each pass. That is, each time domain
convolution results in a multiplication of the frequency spectra.

282

The Scientist and Engineer's Guide to Digital Sgnal Processing

Figure 15-4 shows the frequency response of two other relatives of the moving
average filter. When a pure Gaussian is used as afilter kernel, the frequency
response is also a Gaussian, as discussed in Chapter 11. The Gaussian is
important because it is the impulse response of many natural and manmade
systems. For example, a brief pulse of light entering a long fiber optic
transmission line will exit as a Gaussian pulse, due to the different paths taken
by the photons within the fiber. The Gaussian filter kernel is also used
extensively in image processing because it has unique properties that allow
fast two-dimensional convolutions (see Chapter 24). The second frequency
response in Fig. 15-4 corresponds to using a Blackman window as a filter
kernel. (The term window has no meaning here; it is simply part of the
accepted name of this curve). The exact shape of the Blackman window is
given in Chapter 16 (Eg. 16-2, Fig. 16-2); however, it looks much like a
Gaussian.

How are these relatives of the moving average filter better than the moving
average filter itself? Three ways: First, and most important, these filters have
better stopband attenuation than the moving average filter. Second, the filter
kernels taper to a smaller amplitude near the ends. Recall that each point in
the output signal is a weighted sum of a group of samples from the input. If the
filter kernel tapers, samples in the input signal that are farther away are given
less weight than those close by. Third, the step responses are smooth curves,
rather than the abrupt straight line of the moving average. These last two are
usually of limited benefit, although you might find applications where they are
genuine advantages.

The moving average filter and its relatives are all about the same at reducing
random noise while maintaining a sharp step response. The ambiguity liesin
how the risetime of the step response is measured. If the risetime is measured
from 0% to 100% of the step, the moving average filter is the best you can do,
as previously shown. In comparison, measuring the risetime from 10% to 90%
makes the Blackman window better than the moving average filter. The point
is, this is just theoretical squabbling; consider these filters equal in this
parameter.

The biggest difference in these filters is execution speed. Using a recursive
algorithm (described next), the moving average filter will run like lightning in
your computer. In fact, it is the fastest digital filter available. Multiple passes
of the moving average will be correspondingly slower, but still very quick. In
comparison, the Gaussian and Blackman filters are excruciatingly slow,
because they must use convolution. Think afactor of ten times the number of
points in the filter kernel (based on multiplication being about 10 times slower
than addition). For example, expect a 100 point Gaussian to be 1000 times
slower than a moving average using recursion.

Recursive Implementation

A tremendous advantage of the moving average filter is that it can be
implemented with an algorithm that is very fast. To understand this

FIGURE 15-4

Freguency response of the Blackman window
and Gaussian filter kernels. Both these filters 20
provide better stopband attenuation than the
moving averagefilter. Thishasno advantagein
removing random noise from time domain
encoded signals, but it can be useful in mixed
domain problems. The disadvantage of these
filters is that they must use convolution, a
terribly slow algorithm.

EQUATION 15-3

Chapter 15- Moving Average Filters 283

40 -

-60 —

-80

Amplitude (dB)

-100

-120

-140

0 0.1 0.5

Frequency

algorithm, imagine passing an input signal, X[], through a seven point moving
average filter to form an output signal, y[]. Now look at how two adjacent
output points, y[50] and y[51], are calculated:

y[50] = x[47] + x[48] + x[49] + x[50] + x[51] + x[52] + x[53]

y[51] = x[48] + x[49] + x[50] + x[51] + x[52] + X[53] + x[54]

These are nearly the same calculation; points x[48] through x[53] must be
added for y[50], and again for y[51]. If y[50] has aready been calculated, the
most efficient way to calculate y[51] is:

y[51] = y[50] + x[54] - x[47]

Once y[51] has been found using y[50], then y[52] can be calculated from
sample y[51], and so on. After the first point is calculated in y[], al of the
other points can be found with only a single addition and subtraction per point.
This can be expressed in the equation:

Recursive implementation of the moving
average filter. In this equation, X[] is the y[il = y[i -1] + x[i +p] - x[i -q]
input signal, y[] isthe output signal, M isthe

number of pointsin the moving average (an
odd number). Before this equation can be

where:. p=(M-1)/2

used, the first point in the signal must be q=p+1
calculated using a standard summation.

Notice that this equation use two sources of datato calculate each point in the
output: points from the input and previously calculated points from the output.
Thisis called arecursive equation, meaning that the result of one calculation

284

The Scientist and Engineer's Guide to Digital Sgnal Processing

is used in future calculations. (The term "recursive" also has other meanings,
especially in computer science). Chapter 19 discusses a variety of recursive
filtersin more detail. Be aware that the moving average recursive filter is very
different from typical recursive filters. In particular, most recursive filters have
an infinitely long impulse response (I1R), composed of sinusoids and
exponentials. The impulse response of the moving average is a rectangular
pulse (finite impulse response, or FIR).

This algorithm is faster than other digital filters for several reasons. First,
there are only two computations per point, regardliess of the length of the filter
kernel. Second, addition and subtraction are the only math operations needed,
while most digital filters require time-consuming multiplication. Third, the
indexing scheme is very simple. Each index in Eqg. 15-3 is found by adding or
subtracting integer constants that can be calculated before the filtering starts
(i.e.,, p and g). Forth, the entire algorithm can be carried out with integer
representation. Depending on the hardware used, integers can be more than an
order of magnitude faster than floating point.

Surprisingly, integer representation works better than floating point with this
algorithm, in addition to being faster. The round-off error from floating point
arithmetic can produce unexpected results if you are not careful. For example,
imagine a 10,000 sample signal being filtered with this method. The last
sample in the filtered signal contains the accumulated error of 10,000 additions
and 10,000 subtractions. This appears in the output signal as a drifting offset.
Integers don't have this problem because there is no round-off error in the
arithmetic. If you must use floating point with this algorithm, the program in
Table 15-2 shows how to use a double precision accumulator to eliminate this
drift.

100 'MOVING AVERAGE FILTER IMPLEMENTED BY RECURSION
110 'This program filters 5000 samples with a 101 point moving

120 'average filter, resulting in 4900 samples of filtered data.

130 'A double precision accumulator is used to prevent round-off drift.

140

150 DIM X[4999] 'X[] holds the input signal

160 DIM Y [4999] Y[] holds the output signal

170 DEFDBL ACC 'Define the variable ACC to be double precision
180"

190 GOSUB X XXX 'Mythical subroutine to load X[]

200"

210ACC=0 'Find Y[50] by averaging points X[0] to X[100]

220 FOR 1% = 0 TO 100
230 ACC =ACC + X[1%]
240 NEXT 1%

250 Y[[50] = ACC/101

260"

'Recursive moving average filter (Eqg. 15-3)

270 FOR 1% = 51 TO 4949

280 ACC = ACC + X[1%+50] - X[1%-51]
290 Y[1%] = ACC

300 NEXT 1%

310°

320 END

TABLE 15-2

CHAPTER

16

Windowed-Sinc Filters

Windowed-sinc filters are used to separate one band of frequencies from another. They are very
stable, produce few surprises, and can be pushed to incredible performance levels. These
exceptional frequency domain characteristics are obtained at the expense of poor performancein
the time domain, including excessive ripple and overshoot in the step response. When carried out
by standard convolution, windowed-sinc filters are easy to program, but slow to execute. Chapter
18 shows how the FFT can be used to dramatically improve the computational speed of these
filters.

Strategy of the Windowed-Sinc

Figure 16-1 illustrates the idea behind the windowed-sinc filter. In (a), the
frequency response of the ideal low-pass filter is shown. All frequencies below
the cutoff frequency, f., are passed with unity amplitude, while all higher
frequencies are blocked. The passband is perfectly flat, the attenuation in the
stopband is infinite, and the transition between the two is infinitesimally small.

Taking the Inverse Fourier Transform of thisideal frequency response produces
the ideal filter kernel (impulse response) shown in (b). As previously discussed
(see Chapter 11, Eq. 11-4), this curve is of the general form: sin(x)/x, called
the sinc function, given by:

Convolving an input signal with this filter kernel provides a perfect low-pass
filter. The problem is, the sinc function continues to both negative and positive
infinity without dropping to zero amplitude. While this infinite length is not
a problem for mathematics, it is a show stopper for computers.

285

286 The Scientist and Engineer's Guide to Digital Sgnal Processing

EQUATION 16-1

The Hamming window.

To get around this problem, we will make two modifications to the sinc
function in (b), resulting in the waveform shown in (c). First, it is truncated
to M+1 points, symmetrically chosen around the main lobe, where M is an
even number. All samples outside these M +1 points are set to zero, or simply
ignored. Second, the entire sequence is shifted to the right so that it runs from
0 to M. This allows the filter kernel to be represented using only positive
indexes. While many programming languages allow negative indexes, they are
a nuisance to use. The sole effect of this M/2 shift in the filter kernel is to
shift the output signal by the same amount.

Since the modified filter kernel is only an approximation to the ideal filter
kernel, it will not have an ideal frequency response. To find the frequency
response that is obtained, the Fourier transform can be taken of the signal in
(c), resulting in the curve in (d). It'samess! Thereis excessive ripplein the
passband and poor attenuation in the stopband (recall the Gibbs effect
discussed in Chapter 11). These problems result from the abrupt discontinuity
at the ends of the truncated sinc function. Increasing the length of the filter
kernel does not reduce these problems; the discontinuity is significant no matter
how long M is made.

Fortunately, there is a simple method of improving this situation. Figure (€)
shows a smoothly tapered curve called a Blackman window. Multiplying the
truncated-sinc, (c), by the Blackman window, (€), results in the windowed-
sinc filter kernel shown in (f). The idea is to reduce the abruptness of the
truncated ends and thereby improve the frequency response. Figure (g) shows
this improvement. The passband is now flat, and the stopband attenuation is
so good it cannot be seen in this graph.

Several different windows are available, most of them named after their

original developers in the 1950s. Only two are worth using, the Hamming
window and the Blackman window These are given by:

These

windows run from i = 0 to M, w[i] = 0.54 - 0.46 cos(2ri/M)
for atotal of M + 1 points.

EQUATION 16-2
The Blackman window.

FIGURE 16-1

wli] = 0.42 - 0.5c0s(2ni/M) + 0.08 cos(4ni/M)

Figure 16-2a shows the shape of these two windows for M = 50 (i.e., 51 total
points in the curves). Which of these two windows should you use? It's a
trade-off between parameters. As shown in Fig. 16-2b, the Hamming
window has about a 20% faster roll-off than the Blackman. However,

(facing page)

Derivation of the windowed-sinc filter kernel. The frequency response of the ideal low-pass filter is shown
in (@), with the corresponding filter kernel in (b), asinc function. Sincethesincisinfinitely long, it must be
truncated to be used in acomputer, as shownin (c). However, thistruncation results in undesirable changes
in the frequency response, (d). The solution is to multiply the truncated-sinc with a smooth window, (e),
resulting in the windowed-sinc filter kernel, (f). The frequency response of the windowed-sinc, (g), is smooth
and well behaved. These figures are not to scale.

Chapter 16- Windowed-Sinc Filters

Time Domain
1.5 . .
‘ b. Ideal filter kernel
1.0
(<] (<]
5 5
S 05 =) =
£ £
< <
TV
0.5
-50 25 0 25 50
Sample number
1.5 . . .
‘ ¢. Truncated-sinc filter kernel
1.0
(] (]
g 5
3 0.5 == 5
£ £
< <
00 L% 2l
AN
u U abrupt end
0.5 ;
0 M
Sample number
1.5 . . .
e. Blackman or Hamming window
1.0
(]
=]
2
5 05
£
<
0.0
0.5
0 M
Sample number
1.5 . . .
‘ f. Windowed-sinc filter kernel
1.0
(] (]
5 5
305 - =
£ £
g }‘ k& g
0.0 o
N [
0.5
0 M

Sample number

FIGURE 16-1

287

Frequency Domain

1.5

‘ a. Ideal frequeﬁcy respolnse ‘

1.0
0.5
0.0
0.5
fe 0.5
Frequency
15 1 1 1 1
d. Truncated-sinc frequency response
1.0 \I\v/\
0.5 \
0.5]
fe 0.5
Frequency
15 1 1 1 1
g. Windowed-sinc frequency response
1.0
0.5
0.0
0.5 —
0 fe 0.5
Frequency

288

Amplitude

The Scientist and Engineer's Guide to Digital Sgnal Processing

15 : : ! !
‘ b. Frequency response “ i
i i i i
I I I I
I I I I
o 107 1 —qommmme- qm—=—- - e
g | |
2 o
I I
g | | |
05t —mmmmmmbe Y [
I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
0.0 t t t t
0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
40 : T T .
I I I :
Characteristics of the Blackman and Hamming 20*-4 c. Frequency response (dB) F“i‘ -------
windows. The shapes of these two windows are o i i [[
shownin (a), and given by Egs. 16-1 and 16-2. As = ! ! !
shown in (b), the Hamming window resultsin about D 20dbomemee [| |
20% faster roll-off than the Blackman window. o ! ! !
However, the Blackman window has better stop- 2 A0+ L ----1'—--———
band attenuation (Blackman: 0.02%, Hamming: = i i
0.2%), and a lower passband ripple (Blackman: E B r NYNAAAN AN
0.02% Hamming: 0.2%). g0l L ___________ i
I I
S B . | |
i i i
-120 t t t

=)
=)
-
=)
)
=)
w
=)
IS

0.5
Frequency

(c) shows that the Blackman has a better stopband attenuation. To be exact,
the stopband attenuation for the Blackman is -74dB (~0.02%), while the
Hamming is only -53dB (~0.2%). Although it cannot be seen in these graphs,
the Blackman has a passband ripple of only about 0.02%, while the Hamming
is typically 0.2%. In general, the Blackman should be your first choice; a
slow roll-off is easier to handle than poor stopband attenuation.

There are other windows you might hear about, although they fall short of the
Blackman and Hamming. The Bartlett window is a triangle, using straight
lines for the taper. The Hanning window, also called the raised cosine
window, is given by: w[i] = 0.5- 0.5cos(2wi /M). These two windows have
about the same roll-off speed as the Hamming, but worse stopband attenuation
(Bartlett: -25dB or 5.6%, Hanning -44dB or 0.63%). You might also hear of
arectangular window. Thisisthe same as no window, just a truncation of
the tails (such asin Fig. 16-1c). While the roll-off is ~2.5 times faster than the
Blackman, the stopband attenuation is only -21dB (8.9%).

Designing the Filter

To design a windowed-sinc, two parameters must be selected: the cutoff
frequency, f., and the length of the filter kernel, M. The cutoff frequency

Chapter 16- Windowed-Sinc Filters 289

i i i
‘ a. Roll-off vs. kernel length ‘

utoff frequency ‘

Amplitude

0.0

4o 1gl]

———] 5 |-+

~
(e}
I
- O
N
ol

Amplitude

|
I
I
I
I
T

FIGURE 16-3

1 1 1
0.2 0.3 0.4 0.5 0.2 03
Frequency Frequency

Filter length vs. roll-off of the windowed-sinc filter. Asshownin (a), for M = 20, 40, and 200, the transition
bandwidths are BW = 0.2, 0.1, and 0.02 of the sampling rate, respectively. Asshown in (b), the shape of the
frequency response does not change with different cutoff frequencies. In (b), M = 60.

is expressed as a fraction of the sampling rate, and therefore must be between
0 and 0.5. The value for M sets the roll-off according to the approximation:

EQUATION 16-3

Filter length vs. roll-off. The length of the
filter kernel, M, determines the transition
bandwidth of the filter, BW. Thisisonly an
approximation since roll-off depends on the
particular window being used.

where BW is the width of the transition band, measured from where the curve
just barely leaves one, to where it almost reaches zero (say, 99% to 1% of the
curve). The transition bandwidth is also expressed as a fraction of the
sampling frequency, and must between 0 and 0.5. Figure 16-3a shows an
example of how this approximation is used. The three curves shown are
generated from filter kernels with: M = 20, 40, and 200. From Eqg. 16-3, the
transition bandwidths are: BW= 0.2, 0.1, and 0.02, respectively. Figure (b)
shows that the shape of the frequency response does not depend on the cutoff
frequency selected.

Since the time required for a convolution is proportional to the length of the
signals, Eq. 16-3 expresses a trade-off between computation time (depends on
the value of M) and filter sharpness (the value of BW). For instance, the 20%
slower roll-off of the Blackman window (as compared with the Hamming) can
be compensated for by using a filter kernel 20% longer. In other words, it
could be said that the Blackman window is 20% slower to execute that an
equivalent roll-off Hamming window. Thisisimportant because the execution
speed of windowed-sinc filtersis already terribly slow.

As also shown in Fig. 16-3b, the cutoff frequency of the windowed-sinc filter
is measured at the one-half amplitude point. Why use 0.5 instead of the

290

EQUATION 16-4

hli] = K

The Scientist and Engineer's Guide to Digital Sgnal Processing

standard 0.707 (-3dB) used in analog electronics and other digital filters? This
is because the windowed-sinc's frequency response is symmetrical between the
passband and the stopband. For instance, the Hamming window results in a
passband ripple of 0.2%, and an identical stopband attenuation (i.e., ripplein
the stopband) of 0.2%. Other filters do not show this symmetry, and therefore
have no advantage in using the one-half amplitude point to mark the cutoff
frequency. As shown later in this chapter, this symmetry makes the windowed-
sinc ideal for spectral inversion.

After f. and M have been selected, the filter kernel is calculated from the
relation:

sin(2nf_ (i - M/2))
i-M/2

[0.42 - 0.5005[ﬂ] + 0.08005[ﬂ]
M M

The windowed-sinc filter kernel. The cutoff frequency, f., is expressed as a
fraction of the sampling rate, avalue between 0 and 0.5. Thelength of the filter
kernel is determined by M, which must be an even integer. The sample number
i, isan integer that runs from 0 to M, resulting in M+1 total pointsin the filter
kernel. The constant, K, is chosen to provide unity gain at zero frequency. To
avoid adivide-by-zero error, for i = M/2, use h[i] = 2rnf. K.

Don't be intimidated by this equation! Based on the previous discussion, you
should be able to identify three components. the sinc function, the M/2 shift,
and the Blackman window. For the filter to have unity gain at DC, the constant
K must be chosen such that the sum of all the samples is equal to one. In
practice, ignore K during the calculation of the filter kernel, and then normalize
all of the samples as needed. The program listed in Table 16-1 shows how this
is done. Also notice how the calculation is handled at the center of the sinc,
i = M/2, which involves a division by zero.

This equation may be long, but it is easy to use; simply type it into your
computer program and forget it. Let the computer handle the calculations. If
you find yourself trying to evaluate this equation by hand, you are doing
something very very wrong.

Let's be specific about where the filter kernel described by Eq. 16-4 is located
in your computer array. As an example, M will be chosen to be 100.
Remember, M must be an even number. The first point in the filter kernel is
in array location 0, while the last point is in array location 100. This means
that the entire signal is 101 points long. The center of symmetry is at point 50,
i.e., M/2. The 50 points to the left of point 50 are symmetrical with the 50
points to the right. Point O is the same value as point 100, and point 49 is the
same as point 51. If you must have a specific number of samples in the filter
kernel, such as to use the FFT, simply add zeros to one end or the other. For
example, with M = 100, you could make samples 101 through 127 equal to
zero, resulting in a filter kernel 128 points long.

Chapter 16- Windowed-Sinc Filters

291

Filter kernel Step response
0.10 . . 12 ! !
a. f. =0.015 LoL__|b- fc =0.015 N
0.08—-1 M = 500 M = 500 /
0.8
o 0.06 ® /
s S 06
3 0.04 = l
£ £ 04
< 0.02 1\ < /
/ \ 0.2 /
0.00 <N/ o 0.0 ~ N\
-0.02 0.2
0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number
0.10 . 12 .
1 e fe = 0.04 Lol |d- fe = 0.04 N Al
0.08 M = 500 M = 500 4
0.8
o 006 °
s S o6
= 0.04 =
S £ 0.4
< oo <
0.2
0.00 ALY WAP W 0.0 S I\V
-0.02 0.2
0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number
0.10 ; 12 .
e. f.=0.04 Lo . f. =0.04 [\
0.08+-- M = 150 T M = 150
0.8
o 0.06 °
s S o6
= 0.04 =
S £ 0.4
< o, <
0.2
0.00 ,.vl\ ’\,~ 0.0 AV
-0.02 0.2
0 150 0 100 200 300 400 500
Sample number Sample number
FIGURE 16-4
Example filter kernels and the corresponding step responses. The frequency of the sinusoidal oscillation is

approximately egual to the cutoff frequency, f., while M determines the kernel length.

Figure 16-4 shows examples of windowed-sinc filter kernels, and their
corresponding step responses. The samples at the beginning and end of
the filter kernels are so small that they can't even be seen in the graphs.
Don't make the mistake of thinking they are unimportant! These samples may
be small in value; however, they collectively have a large effect on the

292 The Scientist and Engineer's Guide to Digital Sgnal Processing

performance of the filter. This is also why floating point representation is
typically used to implement windowed-sinc filters. Integers usually don't have
enough dynamic range to capture the large variation of values contained in the
filter kernel. How does the windowed-sinc filter perform in the time domain?
Terrible! The step response has overshoot and ringing; thisis not a filter for
signals with information encoded in the time domain.

Examples of Windowed-Sinc Filters

An electroencephalogram, or EEG, is a measurement of the electrical
activity of the brain. It can be detected as millivolt level signals appearing
on electrodes attached to the surface of the head. Each nerve cell in the
brain generates small electrical pulses. The EEG is the combined result of
an enormous number of these electrical pulses being generated in a
(hopefully) coordinated manner. Although the relationship between thought
and this electrical coordination is very poorly understood, different
frequencies in the EEG can be identified with specific mental states. If you
close your eyes and relax, the predominant EEG pattern will be a slow
oscillation between about 7 and 12 hertz. This waveform is called the
alpha rhythm, and is associated with contentment and a decreased level of
attention. Opening your eyes and looking around causes the EEG to change
to the beta rhythm, occurring between about 17 and 20 hertz. Other
frequencies and waveforms are seen in children, different depths of sleep,
and various brain disorders such as epilepsy.

In this example, we will assume that the EEG signal has been amplified by
analog electronics, and then digitized at a sampling rate of 100 samples per
second. Acquiring data for 50 seconds produces a signal of 5,000 points. Our
goal is to separate the alpha from the beta rhythms. To do this, we will design
a digital low-pass filter with a cutoff frequency of 14 hertz, or 0.14

1.5 T

L. , , , . T T T
' ' | | : : | |
a. Low-pass filter i i b. High-pass filter i i
i i i i i i i i
: : : : o : : : :
10—~ m e mm e m B et
8 | [| 8 ! | | |
= | | = | |
el 1 1 = 1 1
£ 2 ! l £ e 0 ! :
< g 1 1 < g g 1 1
0.5F - s 1 S N —— Lo 0.5 R R e Lo
< 1 1 < oo} 1 1
S 1 1 S ko] 1 1
< | | < @ i i
I I I I
I I I I
I I I I
I I I I
0.0 T 1 \ t 0.0 T 1 t t
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 16-5

Exampl e of windowed-sinc filters. The alphaand betarhythmsin an EEG are separated by low-pass and high-
passfilterswith M =100. The program to implement the low-passfilter is shown in Table 16-1. The program
for the high-passfilter isidentical, except for a spectral inversion of the low-pass filter kernel.

Chapter 16- Windowed-Sinc Filters 293
1.50 T T T T T T T 40 T T T T T 1
1 1 1 1 1 : : : : 1 1 1 1 1 1 1 : :
a. Frequency response ‘: ! ! ! 20,_‘ b. Frequency response (dB) L___;____}____
oo A P
| | | | | | | 0+——-b—— b _—d
Lo I N = O A U T A
L i e A K5 RN SRR S SR S A 0 S SR A S -
= | | | | | | | I | | | | | | | |
= | | | | | | | ko] | | | | | | | |
= Lo b e e o L
£ oo A = A . oo
< | | | | | | | E 60 +-——-b—— b [PENNDER RN U —
0.50- = b < T T
oo Lo R[S E B B S A TR A -
| | | | | | | | | | | | |
| | | | | | | | | | | | |
I Lo 100 ----p- b - !
| | | | | | | | | | | | |
| | | | | | | | |) |
0.00 : — 120 a1 f f
0.15 . 0.25 1500 2000 2500
Frequency (discrete) Frequency (hertz)
FIGURE 16-6

Example of a windowed-sinc band-pass filter. This filter was designed for a sampling rate of 10 kHz. When
referenced to the analog signal, the center frequency of the passband is at 2 kHz, the passband is 80 hertz, and the
transition bands are 50 hertz. The windowed-sinc uses 801 pointsin the filter kernel to achieve thisroll-off, and a
Blackman window for good stopband attenuation. Figure (@) shows the resulting frequency response on a linear
scale, while (b) showsitin decibels. Thefrequency axisin (a) is expressed as afraction of the sampling frequency,
while (b) is expressed in terms of the analog signal before digitization.

of the sampling rate. The transition bandwidth will be set at 4 hertz, or 0.04 of
the sampling rate. From Eqg. 16-3, thefilter kernel needsto be about 101 points
long, and we will arbitrarily choose to use aHamming window. The programin
Table 16-1 shows how the filter is carried out. The frequency response of the
filter, obtained by taking the Fourier Transform of the filter kernel, isshownin
Fig. 16-5.

In a second example, we will design a band-pass filter to isolate a signaling
tone in an audio signal, such as when a button on a telephone is pressed. We
will assume that the signal has been digitized at 10 kHz, and the goal is to
isolate an 80 hertz band of frequencies centered on 2 kHz. In terms of the
sampling rate, we want to block all frequencies below 0.196 and above 0.204
(corresponding to 1960 hertz and 2040 hertz, respectively). To achieve a
transition bandwidth of 50 hertz (0.005 of the sampling rate), we will make the
filter kernel 801 points long, and use a Blackman window. Table 16-2 contains
aprogram for calculating the filter kernel, while Fig. 16-6 shows the frequency
response. The design involves several steps. First, two low-pass filters are
designed, one with a cutoff at 0.196, and the other with a cutoff at 0.204. This
second filter is then spectrally inverted, making it a high-pass filter (see
Chapter 14, Fig. 14-6). Next, the two filter kernels are added, resulting in a
band-reject filter (see Fig. 14-8). Finally, another spectral inversion makes
this into the desired band-pass filter.

Pushing it to the Limit

The windowed-sinc filter can be pushed to incredible performance levels
without nasty surprises. For instance, suppose you need to isolate a 1 millivolt
signal riding on a 120 volt power line. The low-pass filter will need

294

The Scientist and Engineer's Guide to Digital Sgnal Processing

100 'LOW-PASS WINDOWED-SINC FILTER
110 'This program filters 5000 samples with a 101 point windowed-sinc filter,
120 'resulting in 4900 samples of filtered data.

130

140 DIM X[4999] 'X[] holds the input signal

150 DIM Y [4999] 'Y[] holds the output signal

160 DIM H[100] 'H[] holds the filter kernel

170"

180 PI = 3.14159265

190 FC = .14 'Set the cutoff frequency (between 0 and 0.5)
200 M% = 100 'Set filter length (101 points)

210"

220 GOSUB XXXX 'Mythical subroutine to load X[]

230"

240" 'Calculate the low-pass filter kernel via Eq. 16-4
250 FOR 1% =0TO 100

260 IF (1%-M%/2) = 0 THEN H[1%] = 2*PI*FC

270 IF (1%-M%/2) <> 0 THEN H[1%] = SIN(2*PI*FC * (1%-M%/2)) / (1%-M%/2)

280 H[1%] = H[1%] * (0.54 - 0.46* COS(2* PI*1%/M%))
290 NEXT 1%

300"
310SUM =0 'Normalize the low-pass filter kernel for
320 FOR 1% =0 TO 100 'unity gain at DC

330 SUM = SUM + H[I1%]
340 NEXT 1%

350"

360 FOR 1% = 0 TO 100
370 H[1%] = H[1%] / SUM
380 NEXT 1%

390"
400 FOR J% = 100 TO 4999 'Convolve the input signal & filter kernel
410 Y[J%] =0

420 FORI1%=0TO 100

430

Y[J%)] = Y[J%)] + X[I%-1%] * H[1%)]

440 NEXT 1%
450 NEXT J%

460

470 END

TABLE 16-1

a stopband attenuation of at least -120dB (one part in one-million for those
that refuse to learn decibels). As previously shown, the Blackman window
only provides -74dB (one part in five-thousand). Fortunately, greater
stopband attenuation is easy to obtain. The input signal can be filtered
using a conventional windowed-sinc filter kernel, providing an intermediate
signal. The intermediate signal can then be passed through the filter a
second time, further increasing the stopband attenuation to -148dB (1 part
in 30 million, wow!). It is also possible to combine the two stages into a
single filter. The kernel of the combined filter is equal to the convolution of
the filter kernels of the two stages. This also means that convolving any
filter kernel with itself results in a filter kernel with a much improved
stopband attenuation. The price you pay is a longer filter kernel and a
dower roll-off. Figure 16-7a shows the frequency response of a 201 point low-
pass filter, formed by convolving a 101 point Blackman windowed-sinc with
itself. Amazing performance! (If you really need more than -100dB of
stopband attenuation, you should use double precision. Single precision

Chapter 16- Windowed-Sinc Filters

100 'BAND-PASS WINDOWED-SINC FILTER
110 'This program calculates an 801 point band-pass filter kernel

120"

130 DIM A[800]
140 DIM B[800]
150 DIM H[800]
160"

170 Pl = 3.1415926
180 M% = 800
190"

200"

210 FC = 0.196
220 FOR 1% = 0 TO 800

'A[] workspace for the lower cutoff
'B[] workspace for the upper cutoff
'H[] holdsthefinal filter kernel

'Set filter kernel length (801 points)

'Calculate the first low-pass filter kernel via Eq. 16-4,
'with a cutoff frequency of 0.196, storein A[]

230 IF (1%-M%/2) = 0 THEN A[I1%] = 2*PI*FC
240 IF (1%-M%/2) <>0 THEN A[1%] = SIN(2*PI*FC * (1%-M%/2)) / (1%-M%/2)
250 A[1%] = A[1%] * (0.42 - 0.5* COS(2* PI* |%/M%) + 0.08* COS(4* PI* |%/M%))

260 NEXT 1%

270"

280 SUM =0

290 FOR 1% = 0 TO 800
300 SUM = SUM + A[1%)]
310 NEXT 1%

320"

330 FOR 1% = 0 TO 800
340 A[1%] = A[1%] / SUM
350 NEXT 1%

360"

370 FC = 0.204

380 FOR 1% = 0 TO 800

'Normalize the first low-pass filter kernel for
'unity gain at DC

'Calculate the second low-pass filter kernel via Eq. 16-4,
'with a cutoff frequency of 0.204, storein BJ[]

390 IF (1%-M%/2) = 0 THEN B[1%] = 2*PI*FC
400 IF (1%-M%/2) <> 0 THEN B[I%] = SIN(2*PI*FC * (1%-M%/2)) / (1%-M%/2)
410 B[1%] = B[1%] * (0.42 - 0.5* COS(2* PI*1%/M%) + 0.08* COS(4* PI* |%/M %))

420 NEXT 1%

430"

440 SUM =0

450 FOR 1% = 0 TO 800
460 SUM =SUM + B[1%)]
470 NEXT 1%

480"

490 FOR 1% = 0 TO 800
500 B[1%] = B[1%] / SUM
510 NEXT 1%

520"

530 FOR 1% = 0 TO 800
540 B[1%] = - B[1%)]

550 NEXT 1%

560 B[400] = B[400] + 1
570"

580

590 FOR 1% = 0 TO 800
600 H[I1%] = A[1%] + B[1%]
610 NEXT 1%

620"

630 FOR 1% = 0 TO 800
640 H[I1%] = -H[1%)]

650 NEXT 1%

660 H[400] = H[400] + 1
670"

680 END

'Normalize the second |ow-pass filter kernel for
'unity gain at DC

'Change the low-pass filter kernel in B[] into a high-pass
'filter kernel using spectral inversion (asin Fig. 14-5)

'Add the low-pass filter kernel in A[], to the high-pass
'filter kernel in B[], to form a band-reject filter kernel
'stored in H[] (asin Fig. 14-8)

'Change the band-reject filter kernel into a band-pass
'filter kernel by using spectral inversion

"The band-pass filter kernel now residesin H[]

TABLE 16-2

295

296

The Scientist and Engineer's Guide to Digital Sgnal Processing

T T T 1.

I
7:1 a. Incredible stopband attenuation !

i
b. Incredible roll-off !

Amplitude (dB)
&

R

~ T

¥ single precision [~ 0.5
——————————— L+ round-off noise - R e LR R Y R

T
m—tr—=t-"-1
—_
[=

Amplitude

———
I
I
I
I
I
I
I
4
I
I
I
I
I
I
I

I I I I

I I I I
R T e SO PP . :
TS A— I L ! A !
T o R E— S S L omommem S A |

I I I I I I I I
-200 } i i } 0.0 b : :

0 0.1 0.2 03 0.4 05 0.1995 0.2 0.2005
Frequency Frequency
FIGURE 16-7

The incredible performance of the windowed-sinc filter. Figure (a) shows the frequency response of a
windowed-sinc filter with increased stopband attenuation. Thisis achieved by convolving a windowed-sinc
filter kernel with itself. Figure (b) showsthe very rapid roll-off a 32,001 point windowed-sinc filter.

round-off noise on signals in the passband can erratically appear in the
stopband with amplitudes in the -100dB to -120dB range).

Figure 16-7b shows another example of the windowed-sinc's incredible
performance: alow-pass filter with 32,001 pointsin the kernel. The frequency
response appears as expected, with aroll-off of 0.000125 of the sampling rate.
How good is this filter? Try building an analog electronic filter that passes
signals from DC to 1000 hertz with less than a 0.02% variation, and blocks all
frequencies above 1001 hertz with less than 0.02% residue. Now that's a
filter! If you really want to be impressed, remember that both the filtersin Fig.
16-7 use single precision. Using double precision allows these performance
levels to be extended by a million times.

The strongest limitation of the windowed-sinc filter is the execution time; it can
be unacceptably long if there are many points in the filter kernel and standard
convolution is used. A high-speed algorithm for this filter (FFT convolution)
is presented in Chapter 18. Recursive filters (Chapter 19) also provide good
frequency separation and are a reasonable alternative to the windowed-sinc
filter.

I's the windowed-sinc the optimal filter kernel for separating frequencies? No,
filter kernels resulting from more sophisticated techniques can be better. But
beware! Before you jump into this very mathematical field, you should
consider exactly what you hope to gain. The windowed-sinc will provide any
level of performance that you could possibly need. What the advanced filter
design methods may provide is a slightly shorter filter kernel for a given level
of performance. This, in turn, may mean a slightly faster execution speed. Be
warned that you may get little return for the effort expended.

CHAPTER

17

Custom Filters

Most filters have one of the four standard frequency responses. low-pass, high-pass, band-pass
or band-reject. This chapter presents a general method of designing digital filters with an
arbitrary frequency response, tailored to the needs of your particular application. DSP excels
in this area, solving problems that are far above the capabilities of analog electronics. Two
important uses of custom filters are discussed in this chapter: deconvolution, a way of restoring
signals that have undergone an unwanted convolution, and optimal filtering, the problem of
separating signals with overlapping frequency spectra. Thisis DSP at its best.

Arbitrary Frequency Response

The approach used to derive the windowed-sinc filter in the last chapter can
also be used to design filters with virtually any frequency response. The only
difference is how the desired response is moved from the frequency domain into
the time domain. In the windowed-sinc filter, the frequency response and the
filter kernel are both represented by equations, and the conversion between
them is made by evaluating the mathematics of the Fourier transform. In the
method presented here, both signals are represented by arrays of numbers, with
a computer program (the FFT) being used to find one from the other.

Figure 17-1 shows an example of how this works. The frequency response
we want the filter to produce is shown in (a). To say the least, it is very
irregular and would be virtually impossible to obtain with analog
electronics. This ideal frequency response is defined by an array of
numbers that have been selected, not some mathematical equation. In this
example, there are 513 samples spread between 0 and 0.5 of the sampling
rate. More points could be used to better represent the desired frequency
response, while a smaller number may be needed to reduce the computation
time during the filter design. However, these concerns are usually small,
and 513 is a good length for most applications.

297

298 The Scientist and Engineer's Guide to Digital Sgnal Processing

Besides the desired magnitude array shown in (a), there must be a
corresponding phase array of the same length. In this example, the phase
of the desired frequency response is entirely zero (this array is not shown
in Fig. 17-1). Just as with the magnitude array, the phase array can be
loaded with any arbitrary curve you would like the filter to produce.
However, remember that the first and last samples (i.e., 0 and 512) of the
phase array must have a value of zero (or a multiple of 2r, which is the
same thing). The frequency response can also be specified in rectangular
form by defining the array entries for the real and imaginary parts, instead
of using the magnitude and phase.

The next step is to take the Inverse DFT to move the filter into the time
domain. The quickest way to do this isto convert the frequency domain to
rectangular form, and then use the Inverse FFT. This results in a 1024
sample signal running from 0 to 1023, as shown in (b). Thisis the impulse
response that corresponds to the frequency response we want; however, it
is not suitable for use as a filter kernel (more about this shortly). Just as
in the last chapter, it needs to be shifted, truncated, and windowed. In this
example, we will design the filter kernel with M = 40, i.e., 41 points
running from sample 0 to sample 40. Table 17-1 shows a computer program
that converts the signal in (b) into the filter kernel shown in (c). Aswith
the windowed-sinc filter, the points near the ends of the filter kernel are so
small that they appear to be zero when plotted. Don't make the mistake of
thinking they can be deleted!

100 'CUSTOM FILTER DESIGN
110 'This program converts an aliased 1024 point impulse response into an M+1 point
120 "filter kernel (such as Fig. 17-1b being converted into Fig. 17-1c)

130

140 DIM REX[1023] 'REX]] holds the signal being converted

150 DIM T[1023] "T[] isatemporary storage buffer

160"

170 PI = 3.14159265

180 M% = 40 'Set filter kernel length (41 total points)

190"

200 GOSUB XXXX 'Mythical subroutine to load REX[] with impulse response
210"

220 FOR 1% =0TO 1023 'shift (rotate) the signal M/2 points to the right
230 INDEX% = 1% + M%/2
240 IFINDEX% > 1023 THEN INDEX% = INDEX%-1024
250 T[INDEX%] = REX[1%)]
260 NEXT 1%
270"
280 FOR 1% = 0 TO 1023
290 REX[1%] = T[1%]
300 NEXT 1%
310" "Truncate and window the signal
320 FOR 1% =0 TO 1023
330 IF 1% <= M% THEN REX[I1%)] = REX[1%] * (0.54 - 0.46 * COS(2* PI*|%/M%))
340 IF1%>M% THEN REX[1%] =0
350 NEXT 1%
360" "The filter kernel now resides in REX[0] to REX[40]
370 END
TABLE 17-1

Chapter 17- Custom Filters 299

Time Domain Frequency Domain
15 i i 3 i i i
‘ b. Impulse response (aliased) ‘ ‘ a. Desired frequency response ‘
1.0
3 g’
o« £
< < |
O-OT /\/\ \\
0.5 0

(=)

1
512 768 1023 0 0.1 0.2 0.3 0.4 0.5

Sample number Frequency

1

1.5 3
I I I I
c. Filter kernel ‘ d. Actual frequency response
1.0
[} [} 2
i i
E’ 0.5 - é‘
£ l\ i £ \
i ~ M \\
-0.5 0
10 20 30 40 1023 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 17-1

Example of FIR filter design. Figure (a) shows the desired frequency response, with 513 samples running
between 0 to 0.5 of the sampling rate. Taking the Inverse DFT resultsin (b), an aliased impulse response
composed of 1024 samples. To form thefilter kernel, (c), the aliased impulse response is truncated to M-+ 1
samples, shifted to the right by M/2 samples, and multiplied by a Hamming or Blackman window. |n this
example, M is40. The program in Table 17-1 shows how thisis done. Thefilter kernel istested by padding
it with zeros and taking the DFT, providing the actual frequency response of the filter, (d).

The last step is to test the filter kernel. Thisis done by taking the DFT (using
the FFT) to find the actual frequency response, as shown in (d). To obtain
better resolution in the frequency domain, pad the filter kernel with zeros
before the FFT. For instance, using 1024 total samples (41 in the filter kernel,
plus 983 zeros), results in 513 samples between 0 and 0.5.

As shown in Fig. 17-2, the length of the filter kernel determines how well the
actual frequency response matches the desired frequency response. The
exceptional performance of FIR digital filters is apparent; virtually any
frequency response can be obtained if a long enough filter kernel is used.

This is the entire design method; however, there is a subtle theoretical issue
that needs to be clarified. ~Why isn't it possible to directly use the impulse
response shown in 17-1b as the filter kernel? After all, if (a) is the Fourier
transform of (b), wouldn't convolving an input signal with (b) produce the exact
frequency response we want? The answer is no, and here's why.

300

The Scientist and Engineer's Guide to Digital Sgnal Processing

When designing a custom filter, the desired frequency response is defined by
the values in an array. Now consider this. what does the frequency response
do between the specified points? For simplicity, two cases can be imagined,
one "good" and one "bad." In the "good" case, the frequency response is a
smooth curve between the defined samples. In the "bad" case, there are wild
fluctuations between. As luck would have it, the impulse response in (b)
corresponds to the "bad" frequency response. This can be shown by padding
it with a large number of zeros, and then taking the DFT. The frequency
response obtained by this method will show the erratic behavior between the
originally defined samples, and look just awful.

To understand this, imagine that we force the frequency response to be what
we want by defining it at an infinite number of points between 0 and 0.5.
That is, we create a continuous curve. The inverse DTFT is then used to
find the impulse response, which will be infinite in length. In other words,
the "good" frequency response corresponds to something that cannot be
represented in a computer, an infinitely long impulse response. When we
represent the frequency spectrum with N/2 + 1 samples, only N points are
provided in the time domain, making it unable to correctly contain the
signal. The result is that the infinitely long impulse response wraps up
(aliases) into the N points. When this aliasing occurs, the frequency
response changes from "good" to "bad." Fortunately, windowing the N
point impulse response greatly reduces this aliasing, providing a smooth
curve between the frequency domain samples.

Designing a digital filter to produce a given frequency response is quite simple.
The hard part is finding what frequency response to use. Let's look at some
strategies used in DSP to design custom filters.

Deconvolution

Unwanted convolution is an inherent problem in transferring analog
information. For instance, all of the following can be modeled as a
convolution: image blurring in a shaky camera, echoes in long distance
telephone calls, the finite bandwidth of analog sensors and electronics, etc.
Deconvolution is the process of filtering a signal to compensate for an
undesired convolution. The goal of deconvolution is to recreate the signal as
it existed before the convolution took place. This usually requires the
characteristics of the convolution (i.e., the impulse or frequency response) to
be known. This can be distinguished from blind deconvolution, where the
characteristics of the parasitic convolution are not known. Blind deconvolution
is a much more difficult problem that has no general solution, and the approach
must be tailored to the particular application.

Deconvolution is nearly impossible to understand in the time domain, but
quite straightforward in the frequency domain. Each sinusoid that composes
the original signal can be changed in amplitude and/or phase as it passes
through the undesired convolution. To extract the original signal, the
deconvolution filter must undo these amplitude and phase changes. For

Chapter 17- Custom Filters 301

a.MI=10

i
c. M = 100
) A

()

Amplitude

e | L

Amplitude

\

T~ /\/\/ \/ \\

0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency

i
d. M = 300

[N}

[N}

Amplitude

Amplitude

\

1

0 0 :
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
} : :
FIGURE 17-2 e. M = 1000] |
Frequency response vs. filter kernel length. i
These figures show the frequency responses /
2

obtained with various lengths of filter kernels.
The number of points in each filter kernel is
equal to M+1, running from 0 to M. As more
points are used in the filter kernel, the resulting
frequency response more closely matches the 1 \

desired frequency response. Figure 17-1ashows
the desired frequency response for this example. /\/\ ! \\

Amplitude

0
0 0.1 0.2 0.3 0.4 0.5

Frequency

example, if the convolution changes a sinusoid's amplitude by 0.5 with a 30
degree phase shift, the deconvolution filter must amplify the sinusoid by 2.0
with a -30 degree phase change.

The example we will use to illustrate deconvolution is a gamma ray detector.
Asillustrated in Fig. 17-3, this device is composed of two parts, a scintillator
and a light detector. A scintillator is a special type of transparent material,
such as sodium iodide or bismuth germanate. These compounds change the
energy in each gamma ray into a brief burst of visible light. This light

302

The Scientist and Engineer's Guide to Digital Sgnal Processing
= (6]
3 g
(o S
Time Time
scintillator ,\
gamma ray I/
"""""""""""" g | amplifier
L L
light light detector
FIGURE 17-3

Example of an unavoidable convolution. A gammaray detector can be formed by mounting a scintillator on
alight detector. When agammaray strikesthe scintillator, its energy is converted into a pulse of light. This
pulse of light isthen converted into an electronic signal by the light detector. The gammaray isan impulse,
while the output of the detector (i.e., the impul se response) resembles a one-sided exponential.

is then converted into an electronic signal by a light detector, such as a
photodiode or photomultiplier tube. Each pulse produced by the detector
resembles a one-sided exponential, with some rounding of the corners. This
shape is determined by the characteristics of the scintillator used. When a
gamma ray deposits its energy into the scintillator, nearby atoms are excited to
a higher energy level. These atoms randomly deexcite, each producing a single
photon of visible light. The net result is alight pulse whose amplitude decays
over afew hundred nanoseconds (for sodium iodide). Since the arrival of each
gammaray is an impulse, the output pulse from the detector (i.e., the one-sided
exponential) is the impul se response of the system.

Figure 17-4a shows pulses generated by the detector in response to randomly
arriving gamma rays. The information we would like to extract from this
output signal is the amplitude of each pulse, which is proportional to the
energy of the gamma ray that generated it. Thisis useful information because
the energy can tell interesting things about where the gammaray has been. For
example, it may provide medical information on a patient, tell the age of a
distant galaxy, detect a bomb in airline luggage, etc.

Everything would be fine if only an occasional gamma ray were detected, but
thisis usually not the case. As shown in (a), two or more pulses may overlap,
shifting the measured amplitude. One answer to this problem is to deconvolve
the detector's output signal, making the pulses narrower so that less pile-up
occurs. ldeally, we would like each pulse to resemble the original impulse. As
you may suspect, thisisn't possible and we must settle for a pulse that is finite
in length, but significantly shorter than the detected pulse. This goal is
illustrated in Fig. 17-4b.

Chapter 17- Custom Filters 303

? : : ? : :
‘ a. Detected pulses ‘ b. Filtered pulses

1 l Iy 1
(] I (5]
° | °
=1 =1
< \ <

0 P 0

-1 -1

0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number

FIGURE 17-4

Example of deconvolution. Figure (a) shows the output signal from a gamma ray detector in response to a
series of randomly arriving gamma rays. The deconvolution filter is designed to convert (a) into (b), by
reducing the width of the pulses. This minimizes the amplitude shift when pulsesland on top of each other.

Even though the detector signal has its information encoded in the time
domain, much of our analysis must be done in the frequency domain, where
the problem is easier to understand. Figure 17-5ais the signal produced by
the detector (something we know). Figure (c) is the signal we wish to have
(also something we know). This desired pulse was arbitrarily selected to
be the same shape as a Blackman window, with a length about one-third
that of the original pulse. Our goal isto find afilter kernel, (e), that when
convolved with the signal in (a), produces the signal in (c). In equation
form: if a*ke=c, and given a and c, find e.

If these signals were combined by addition or multiplication instead of
convolution, the solution would be easy: subtraction is used to "de-add" and
division is used to "de-multiply." Convolution is different; there is not asimple
inverse operation that can be called "deconvolution." Convolution is too messy
to be undone by directly manipulating the time domain signals.

Fortunately, this problem is simpler in the frequency domain. Remember,
convolution in one domain corresponds with multiplication in the other domain.
Again referring to the signalsin Fig. 17-5: if bxf = d, and given b and d, find
f. Thisis an easy problem to solve: the frequency response of the filter, (f),
is the frequency spectrum of the desired pulse, (d), divided by the frequency
spectrum of the detected pulse, (b). Since the detected pulse is asymmetrical,
it will have anonzero phase. This means that a complex divison must be used
(that is, a magnitude & phase divided by another magnitude & phase). In case
you have forgotten, Chapter 9 defines how to perform a complex division of
one spectrum by another. The required filter kernel, (e), is then found from the
frequency response by the custom filter method (IDFT, shift, truncate, &
multiply by a window).

There are limits to the improvement that deconvolution can provide. In
other words, if you get greedy, things will fall apart. Getting greedy in this

304

The Scientist and Engineer's Guide to Digital Sgnal Processing

example means trying to make the desired pulse excessively narrow. Let's ook
at what happens. If the desired pulse is made narrower, its frequency spectrum
must contain more high frequency components. Since these high frequency
components are at a very low amplitude in the detected pulse, the filter must
have a very high gain at these frequencies. For instance, (f) shows that some
frequencies must be multiplied by afactor of three to achieve the desired pulse
in (c). If the desired pulse is made narrower, the gain of the deconvolution
filter will be even greater at high frequencies.

The problem is, small errors are very unforgiving in this situation. For
instance, if some frequency is amplified by 30, when only 28 is required, the
deconvolved signal will probably be a mess. When the deconvolution is pushed
to greater levels of performance, the characteristics of the unwanted
convolution must be understood with greater accuracy and precision. There
are always unknowns in real world applications, caused by such villains as:
electronic noise, temperature drift, variation between devices, etc. These
unknowns set a limit on how well deconvolution will work.

Even if the unwanted convolution is perfectly understood, there is still a
factor that limits the performance of deconvolution: noise. For instance,
most unwanted convolutions take the form of alow-pass filter, reducing the
amplitude of the high frequency components in the signal. Deconvolution
corrects this by amplifying these frequencies. However, if the amplitude of
these components falls below the inherent noise of the system, the
information contained in these frequencies is lost. No amount of signal
processing can retrieve it. It's gone forever. Adios! Goodbye! Sayonaral
Trying to reclaim this data will only amplify the noise. As an extreme case,
the amplitude of some frequencies may be completely reduced to zero. This
not only obliterates the information, it will try to make the deconvolution
filter have infinite gain at these frequencies. The solution: design a less
aggressive deconvolution filter and/or place limits on how much gain is
allowed at any of the frequencies.

How far can you go? How greedy istoo greedy? This depends totally on the
problem you are attacking. If the signal is well behaved and has low noise, a
significant improvement can probably be made (think a factor of 5-10). If the
signal changes over time, isn't especially well understood, or is noisy, you
won't do nearly as well (think a factor of 1-2). Successful deconvolution
involves a great deal of testing. If it works at some level, try going farther;
you will know when it falls apart. No amount of theoretical work will allow
you to bypass this iterative process.

Deconvolution can also be applied to frequency domain encoded signals. A
classic example is the restoration of old recordings of the famous opera
singer, Enrico Caruso (1873-1921). These recordings were made with very
primitive equipment by modern standards. The most significant problem
is the resonances of the long tubular recording horn used to gather the
sound. Whenever the singer happens to hit one of these resonance
frequencies, the loudness of the recording abruptly increases. Digital
deconvolution has improved the subjective quality of these recordings by

Chapter 17- Custom Filters

Time Domain

1.5 T T
‘ a. Detected pulse ‘
1.0
Q
°©
2
= 05
[=5
g Ty
<
0.0 L
L Gamma ray strikes
TE A —
0 10 20 30 40 50
Sample number
1.5 T T
c. Desired pulse
1.0
9 /"\X
°©
2
5 05
£
<
0.0
0.5
10 20 30 40 50
Sample number
04 : : :
‘ e. Required filter kernel
0.2 -—pm
S \
°©
2
5 0.0 o,
£
<
0.2
0.4
10 20 30 40 50
Sample number
FIGURE 17-5

Frequency Domain

305

15 T T 1 T
‘b. Detected frequency spectrum ‘
o 1.0
°
2
=
£
<os \
0.0 —
0 0.1 0.2 0.3 0.4 0.5
Frequency
L3 : : : :
d. Desired frequency spectrum
o 1.0
°
2
=
£
<os \
0.0 \
0 0.1 0.2 0.3 0.4 0.5
Frequency
40 : : : :
‘f. Required Frequency response
3.0 ™\
(0] / \
°
2
=20
£
<
1.0 \
0.0
0.1 0.2 0.3 0.4 0.5
Frequency

Example of deconvolution in the time and frequency domains. The impulse response of the example gammaray detector
isshownin (a), while the desired impulse responseis shownin (c). The frequency spectra of these two signals are shown
in (b) and (d), respectively. Thefilter that changes (a) into (c) has afrequency response, (f), equal to (b) divided by (d). The
filter kernel of thisfilter, (e), isthen found from the frequency response using the custom filter design method (inverse DFT,
truncation, windowing). Only the magnitudes of the frequency domain signals are shown in thisillustration; however, the
phases are nonzero and must also be used.

reducing the loud spots in the music. We will only describe the general
method; for a detailed description, see the original paper: T. Stockham, T.
Cannon, and R. Ingebretsen, "Blind Deconvolution Through Digital Signal
Processing", Proc. |IEEE, vol. 63, Apr. 1975, pp. 678-692.

306

The Scientist and Engineer's Guide to Digital Sgnal Processing

a. Original spectrum c. Recorded spectrum e. Deconvolved spectrum
% K % %
2 2 2
=l =l =l
= = =
< < <
Frequency Frequency Frequency
Al / Undesired
naesir ;
. >{ Deconvolution }———>
f\ >>> I> Convolution
~ ! /
b. Frequency response d. Frequency response
8 8
2 2
=l =
= =
< <
Frequency Frequency

FIGURE 17-6

Deconvolution of old phonograph recordings. The frequency spectrum produced by the original singer is
illustrated in (a). Resonance peaks in the primitive equipment, (b), produce distortion in the recorded
frequency spectrum, (c). The frequency response of the deconvolution filter, (d), is designed to counteracts
the undesired convolution, restoring the original spectrum, (€). These graphsare for illustrative purposes only;
they are not actual signals.

Figure 17-6 shows the general approach. The frequency spectrum of the
original audio signal is illustrated in (a). Figure (b) shows the frequency
response of the recording equipment, a relatively smooth curve except for
several sharp resonance peaks. The spectrum of the recorded signal, shown in
(c), is equal to the true spectrum, (a), multiplied by the uneven frequency
response, (b). The goal of the deconvolution is to counteract the undesired
convolution. In other words, the frequency response of the deconvolution filter,
(d), must be the inverse of (b). That is, each peak in (b) is cancelled by a
corresponding dip in (d). If this filter were perfectly designed, the resulting
signal would have a spectrum, (e), identical to that of the original. Here's the
catch: the original recording equipment has long been discarded, and its
frequency response, (b), is a mystery. In other words, this is a blind
deconvolution problem; given only (c), how can we determine (d)?

Blind deconvolution problems are usually attacked by making an estimate
or assumption about the unknown parameters. To deal with this example,
the average spectrum of the original music is assumed to match the average
spectrum of the same music performed by a present day singer using modern
equipment. The average spectrum is found by the techniques of Chapter 9:

Chapter 17- Custom Filters 307

break the signal into a large number of segments, take the DFT of each
segment, convert into polar form, and then average the magnitudes together.
In the simplest case, the unknown frequency response is taken as the average
spectrum of the old recording, divided by the average spectrum of the modern
recording. (The method used by Stockham et al. is based on a more
sophisticated technique called homomorphic processing, providing a better
estimate of the characteristics of the recording system).

Optimal Filters

Figure 17-7a illustrates a common filtering problem: trying to extract a
waveform (in this example, an exponential pulse) buried in random noise. As
shown in (b), this problem is no easier in the frequency domain. The signal has
a spectrum composed mainly of low frequency components. |n comparison, the
spectrum of the noise is white (the same amplitude at all frequencies). Since
the spectra of the signal and noise overlap, it is not clear how the two can best
be separated. In fact, the real question is how to define what "best" means.
We will look at three filters, each of which is "best" (optimal) in a different
way. Figure 17-8 shows the filter kernel and frequency response for each of
these filters. Figure 17-9 shows the result of using these filters on the example
waveform of Fig. 17-7a.

The moving average filter is the topic of Chapter 15. As you recall, each
output point produced by the moving average filter is the average of a certain
number of points from the input signal. This makes the filter kernel a
rectangular pulse with an amplitude equal to the reciprocal of the number of
points in the average. The moving average filter is optimal in the sense that it
provides the fastest step response for a given noise reduction.

The matched filter was previously discussed in Chapter 7. As shown in Fig.
17-8a, the filter kernel of the matched filter is the same as the target signal

1.5 T T T T 15 T T T T
a. Signal + noise (time domain) ‘ ‘b. Signal + noise (frequency spectrum) ‘
I
10 |
o signal !0 A
g g signal|
£ s [noise | =
o o
< 4 < -
5 noise |
0.0 - \ ,/L
i A
I I
L —
0.5 t t 0
0 10 200 300 400 500 0 0.1 0.2 0.3 0.4 0.5
Sample number Frequency
FIGURE 17-7

Example of optimal filtering. In (&), an exponential pulse buried in random noise. The frequency spectra of
the pulse and noise are shown in (b). Since the signal and noise overlap in both the time and frequency
domains, the best way to separate them isn't obvious.

308 The Scientist and Engineer's Guide to Digital Sgnal Processing
025 , , L5 , ,
a. Filter kernel ‘bA Frequency response ‘
020 [Wiener i i
« age
) moving average]R [l o |
o5 - " 3
= ; E =
Zow "matched |- g
4 ed |
0.05
o.oommﬁﬂh'ﬁ.:fl %..... E--- hv s
0 10 20 30 40 50 0 0.1 0.2 0.3 0.4
Sample number Frequency

FIGURE 17-8
Example of optimal filters. In (@), threefilter kernels are shown, each of which isoptimal in some sense. The
corresponding frequency responses are shown in (b). The moving average filter is designed to have a
rectangular pulsefor afilter kernel. In comparison, thefilter kernel of the matched filter looks like the signal
being detected. The Wiener filter isdesigned in the frequency domain, based on the rel ative amounts of signal
and noise present at each frequency.

EQUATION 17-1
The Wiener filter. The frequency response, S[f]2

represented by H[f], is determined by the H [f] =
frequency spectra of the noise, N[f], and
the signal, S[f]. Only the magnitudes are

being detected, except it has been flipped left-for-right. The idea behind the
matched filter is correlation, and this flip is required to perform correlation
using convolution. The amplitude of each point in the output signal is a
measure of how well the filter kernel matches the corresponding section of the
input signal. Recall that the output of a matched filter does not necessarily
look like the signal being detected. This doesn't really matter; if a matched
filter is used, the shape of the target signal must already be known. The
matched filter is optimal in the sense that the top of the peak is farther above
the noise than can be achieved with any other linear filter (see Fig. 17-9b).

The Wiener filter (named after the optimal estimation theory of Norbert
Wiener) separates signals based on their frequency spectra. As shown in Fig.
17-7b, at some frequencies there is mostly signal, while at others there is
mostly noise. It seems logical that the "mostly signal" frequencies should be
passed through the filter, while the "mostly noise" frequencies should be
blocked. The Wiener filter takes this idea a step further; the gain of the filter
at each frequency is determined by the relative amount of signal and noise at
that frequency:

S[f]2+N[f]2

important; all of the phases are zero.

This relation is used to convert the spectrain Fig. 17-7b into the Wiener
filter's frequency response in Fig. 17-8b. The Wiener filter is optimal in the
sense that it maximizes the ratio of the signal power to the noise power

Amplitude

Chapter 17- Custom Filters 309

1.5 T T T 1.5 T T
1 1 1
a. Moving average filter ‘ b. Matched filter
1.0 1.0
[}
| E
0.5 5 0.5
£
AJ \'_)
040’_‘V4VMVAI WS v VM"'V'AV 0.0 AT ozl My
-0.5 -0.5
0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number
1.5 : :
FIGURE 17'9_ . . c. Weiner filter
Example of using three optimal filters. These
signalsresult from filtering the waveformin Fig. 1.0
17-7 with thefiltersin Fig. 17-8. Each of these ©
threefiltersisoptimal in some sense. In (@), the B
moving average filter results in the sharpest S o0s A
edge response for agiven level of random noise g
reduction. In (b), the matched filter produces a <
peak that isfarther above the residue noise than 0.0 PV N SPLN r\wwA‘ T
provided by any other filter. In (c), the Wiener
filter optimizes the signal-to-noise ratio.
-0.5
0 100 200 300 400 500

Sample number

(over the length of the signal, not at each individual point). An appropriate
filter kernel is designed from the Wiener frequency response using the custom
method.

While the ideas behind these optimal filters are mathematically elegant, they
often fail in practicality. Thisisn't to say they should never be used. The point
is, don't hear the word "optimal" and stop thinking. Let's look at several
reasons why you might not want to use them.

First, the difference between the signalsin Fig. 17-9 is very unimpressive. In
fact, if you weren't told what parameters were being optimized, you probably
couldn't tell by looking at the signals. This is usually the case for problems
involving overlapping frequency spectra. The small amount of extra
performance obtained from an optimal filter may not be worth the the
increased program complexity, the extra design effort, or the longer execution
time.

Second: The Wiener and matched filters are completely determined by the
characteristics of the problem. Other filters, such as the windowed-sinc and
moving average, can be tailored to your liking. Optimal filter advocates would
claim that this diddling can only reduce the effectiveness of the filter. Thisis

310

The Scientist and Engineer's Guide to Digital Sgnal Processing

very arguable. Remember, each of these filtersis optimal in one specific way
(i.e., "in some sense"). This is seldom sufficient to claim that the entire
problem has been optimized, especially if the resulting signals are interpreted
by a human observer. For instance, a biomedical engineer might use a Wiener
filter to maximize the signal-to-noise ratio in an electro-cardiogram. However,
it is not obvious that this also optimizes a physician's ability to detect irregular
heart activity by looking at the signal.

Third: The Wiener and matched filter must be carried out by convolution,
making them extremely slow to execute. Even with the speed improvements
discussed in the next chapter (FFT convolution), the computation time can be
excessively long. In comparison, recursive filters (such as the moving average
or others presented in Chapter 19) are much faster, and may provide an
acceptable level of performance.

CHAPTER

18

FFT Convolution

This chapter presents two important DSP techniques, the overlap-add method, and FFT
convolution. The overlap-add method is used to break long signals into smaller segments for
easier processing. FFT convolution uses the overlap-add method together with the Fast Fourier
Transform, allowing signals to be convolved by multiplying their frequency spectra. For filter
kernels longer than about 64 points, FFT convolution is faster than standard convolution, while
producing exactly the same result.

The Overlap-Add Method

There are many DSP applications where a long signal must be filtered in
segments. For instance, high fidelity digital audio requires a data rate of
about 5 Mbytes/min, while digita video requires about 500 Mbytes/min. With
data rates this high, it is common for computers to have insufficient memory to
simultaneously hold the entire signal to be processed. There are also systems
that process segment-by-segment because they operate in real time. For
example, telephone signals cannot be delayed by more than a few hundred
milliseconds, limiting the amount of data that are available for processing at
any oneinstant. |In still other applications, the processing may require that the
signal be segmented. An example is FFT convolution, the main topic of this
chapter.

The overlap-add method is based on the fundamental technique in DSP: (1)
decompose the signal into simple components, (2) process each of the
components in some useful way, and (3) recombine the processed components
into the final signal. Figure 18-1 shows an example of how this is done for
the overlap-add method. Figure (a) is the signal to be filtered, while (b) shows
the filter kernel to be used, a windowed-sinc low-pass filter. Jumping to the
bottom of the figure, (i) shows the filtered signal, a smoothed version of (a).
The key to this method is how the lengths of these signals are affected by the
convolution. When an N sample signal is convolved with an M sample

311

312

The Scientist and Engineer's Guide to Digital Sgnal Processing

filter kernel, the output signal is N+ M-1 sampleslong. For instance, the input
signal, (a), is 300 samples (running from 0 to 299), the filter kernel, (b), is 101
samples (running from 0 to 100), and the output signal, (i), is 400 samples
(running from 0 to 399).

In other words, when an N sample signal is filtered, it will be expanded by
M-1 points to the right. (This is assuming that the filter kernel runs from
index 0 to M. If negative indexes are used in the filter kernel, the expansion
will also be to the left). In (@), zeros have been added to the signal between
sample 300 and 399 to illustrate where this expansion will occur. Don't be
confused by the small values at the ends of the output signal, (i). Thisis
simply aresult of the windowed-sinc filter kernel having small values near its
ends. All 400 samplesin (i) are nonzero, even though some of them are too
small to be seen in the graph.

Figures (c), (d) and (e) show the decomposition used in the overlap-add
method. The signal is broken into segments, with each segment having 100
samples from the original signal. In addition, 100 zeros are added to the right
of each segment. In the next step, each segment is individualy filtered by
convolving it with the filter kernel. This produces the output segments shown
in (f), (g), and (h). Since each input segment is 100 samples long, and the
filter kernel is 101 samples long, each output segment will be 200 samples
long. The important point to understand is that the 100 zeros were added to
each input segment to allow for the expansion during the convolution.

Notice that the expansion results in the output segments overlapping each
other. These overlapping output segments are added to give the output
signal, (i). For instance, samples 200 to 299 in (i) are found by adding the
corresponding samples in (g) and (h). The overlap-add method produces
exactly the same output signal as direct convolution. The disadvantage is
a much greater program complexity to keep track of the overlapping
samples.

FFT Convolution

FFT convolution uses the principle that multiplication in the frequency
domain corresponds to convolution in the time domain. The input signal is
transformed into the frequency domain using the DFT, multiplied by the
frequency response of the filter, and then transformed back into the time
domain using the Inverse DFT. This basic technique was known since the
days of Fourier; however, no one really cared. This is because the time
required to calculate the DFT was longer than the time to directly calculate
the convolution. This changed in 1965 with the development of the Fast
Fourier Transform (FFT). By using the FFT algorithm to calculate the
DFT, convolution via the frequency domain can be faster than directly
convolving the time domain signals. The final result is the same; only the
number of calculations has been changed by a more efficient algorithm. For
this reason, FFT convolution is also called high-speed convolution.

Chapter 18- FFT Convolution

4 . .
a Input signal
o 27 : : Q
° °
2 2
£ £
< <
-4 T T T
0 100 200 300 400
Sample number
——— - ———— == — = — = = =
4 : :
C. Inputsegment1 |,
2

Amplitude
P 2

Amplitude
T

2 I added | - - - - - -
Zeros
-4 T T T
0 100 200 300 400
Sample number
4

d. Input ssgment2 |

s
-4 i T T
0 100 200 300 400
Sample number
4 T T
e Inputsegment3 |
2 . :

Amplitude

T T T
0 100 200 300 400
Sample number

FIGURE 18-1

The overlap-add method. The goal isto convolvethe
input signal, (a), with the filter kernel, (b). Thisis
done by breaking the input signal into a number of
segments, such as (c), (d) and (e), each padded with
enough zeros to allow for the expansion during the
convolution. Convolving each of the input segments
with the filter kernel produces the output segments,
(f), (9), and (h). The output signal, (i), isthen found
by adding the overlapping output segments.

0.180

0.120—

0.060—

b. Filter
| kernd | .

0.000— - -:

-0.060

i o
T T T
0 50 100
Sample
——— - ———— == — = — = = =
! 4 : :
|
| . ‘f. Oultputsegrpentl ‘
PR : : :
2 . .
| ‘_;_ 0_\\/&_ ___________
. : : :
| S . L .
|
-4 T T T
| 0 100 200 300 400
| Sample number
| +
4 . .
: g Output ssgment 2|
e L -
[8 Z Z Z
2 . . .
I Z04---- J\/\/\,_
£ : : :
< . \ .
| B e R
|
| -4 T T T
0 100 200 300 400
I Sample number
|
| +
| ¢ ; : '
| h. Output segment 3 ‘
2 : : :
(. ' ' '
2
b3
| £
<
| -
|
I 4 t t t
0 100 200 300 400
I Sample number
|
L e e e e e e e e e e e e e — g
4
i. Output signa
2 L
° ; :
°
2
=
£
<
-4 T T T
0 100 200 300 400

Sample number

313

314

The Scientist and Engineer's Guide to Digital Sgnal Processing

FFT convolution uses the overlap-add method shown in Fig. 18-1; only the way
that the input segments are converted into the output segments is changed.
Figure 18-2 shows an example of how an input segment is converted into an
output segment by FFT convolution. To start, the frequency response of the
filter is found by taking the DFT of the filter kernel, using the FFT. For
instance, (@) shows an example filter kernel, a windowed-sinc band-pass filter.
The FFT converts this into the real and imaginary parts of the frequency
response, shown in (b) & (c). These frequency domain signals may not look
like a band-pass filter because they are in rectangular form. Remember, polar
form is usually best for humans to understand the frequency domain, while
rectangular form is normally best for mathematical calculations. These red
and imaginary parts are stored in the computer for use when each segment is
being calculated.

Figure (d) shows the input segment to being processed. The FFT is used to find
its frequency spectrum, shown in (e) & (f). The frequency spectrum of the
output segment, (h) & (i) is then found by multiplying the filter's frequency
response, (b) & (c), by the spectrum of the input segment, (e) & (f). Since
these spectra consist of real and imaginary parts, they are multiplied according
to Eg. 9-1 in Chapter 9. The Inverse FFT is then used to find the output
segment, (g), from its frequency spectrum, (h) & (i). It is important to
recognize that this output segment is exactly the same as would be obtained by
the direct convolution of the input segment, (d), and the filter kernel, (a).

The FFTs must be long enough that circular convolution does not take place
(also described in Chapter 9). This means that the FFT should be the same
length as the output segment, (g). For instance, in the example of Fig. 18-2,
the filter kernel contains 129 points and each segment contains 128 points,
making output segment 256 points long. This calls for 256 point FFTs to be
used. This means that the filter kernel, (a), must be padded with 127 zeros to
bring it to a total length of 256 points. Likewise, each of the input segments,
(d), must be padded with 128 zeros. As another example, imagine you need
to convolve a very long signal with a filter kernel having 600 samples. One
alternative would be to use segments of 425 points, and 1024 point FFTs.
Another alternative would be to use segments of 1449 points, and 2048 point
FFTs.

Table 18-1 shows an example program to carry out FFT convolution. This
program filters a 10 million point signal by convolving it with a 400 point filter
kernel. This is done by breaking the input signal into 16000 segments, with
each segment having 625 points. When each of these segments is convolved
with the filter kernel, an output segment of 625+ 400- 1= 1024 points is
produced. Thus, 1024 point FFTs are used. After defining and initializing all
the arrays (lines 130 to 230), the first step is to calculate and store the
frequency response of the filter (lines 250 to 310). Line 260 calls a
mythical subroutine that loads the filter kernel into XX[0] through
XX[399], and sets XX[400] through XX[1023] to a value of zero. The
subroutine in line 270 is the FFT, transforming the 1024 samples held in
XX][] into the 513 samples held in REX[] & IMX]], the real and

Chapter 18- FFT Convolution

Time Domain

o
-
|

Amplitude

a. Filter kernel

wW

-|signd in 0 to 128
zerosin 129 to 255

T T
128 192 255

Sample number

Amplitude

Jd. Inputsegment | .

L signd in 0to 127

zerosin 128 to 255

T T
128 192 255

Sample number

Amplitude
o
T

L
407 - -- - signd in0t0255 |~
6.0 [: r
0 64 128 192 255
Sample number
FIGURE 18-2

FFT

FFT

IFFT

315

Frequency Domain

2.0
b. Redl
104 ~p= -4 ===
[}
°
=
=4
1S
<
10+ -0 e
2.0 t
0 64 128
Fregquency
100
50
[}
°
=
3 0]
1S
<
S0f - - [
-100 t
0 64 128
Frequency
100
h. Redl
50—+ ----- L

Amplitude
o
|
Amplitude
?

S04 - - - - - P
-100 t
0 64 128
Frequency

2.0 .
c. Imaginary
LOF -p---d-----
o .
he] '
E '
A Z
£ .
< Z
Lot -
2.0 X
0 64 128
Frequency
100 .
f. Imaginary
504 ----- G-
[}
°
2
s 0
IS
<
S0t - - [
-100 '
0 64 128
Frequency
100

w
(=}
|

-50+

-100

0 64 128

Frequency

FFT convolution. Thefilter kernel, (a), and the signal segment, (d), are converted into their respective spectra,
(b) & (c) and (d) & (e), viathe FFT. These spectra are multiplied, resulting in the spectrum of the output
segment, (h) & (i). Thelnverse FFT then finds the output segment, (g).

imaginary parts of the frequency response. These values are transferred into
the arrays REFR[] & IMFR[] (for: REal and IMaginary Frequency Response),
to be used later in the program.

316 The Scientist and Engineer's Guide to Digital Sgnal Processing

The FOR-NEXT loop between lines 340 and 580 controls how the 16000
segments are processed. In line 360, a subroutine loads the next segment to be
processed into X X[0] through XX[624], and sets X X[625] through XX[1023]
to a value of zero. In line 370, the FFT subroutine is used to find this
segment's frequency spectrum, with the real part being placed in the 513 points
of REX]], and the imaginary part being placed in the 513 points of IMX]].
Lines 390 to 430 show the multiplication of the segment's frequency spectrum,
held in REX[] & IMX]], by the filter's frequency response, held in REFR]]
and IMFR[]. The result of the multiplication is stored in REX[] & IMX]],
overwriting the data previously there. Since this is now the frequency spectrum
of the output segment, the IFFT can be used to find the output segment. Thisis
done by the mythical IFFT subroutine in line 450, which transforms the 513
points held in REX[] & IMX]] into the 1024 points held in X X[], the output
segment.

Lines 470 to 550 handle the overlapping of the segments. Each output segment
is divided into two sections. The first 625 points (0 to 624) need to be
combined with the overlap from the previous output segment, and then written
to the output signal. The last 399 points (625 to 1023) need to be saved so that
they can overlap with the next output segment.

To understand this, look back at Fig 18-1. Samples 100 to 199 in (g) need to
be combined with the overlap from the previous output segment, (f), and can
then be moved to the output signal (i). In comparison, samples 200 to 299 in
(9) need to be saved so that they can be combined with the next output

segment, (h).

Now back to the program. The array OLAP]] is used to hold the 399 samples
that overlap from one segment to the next. In lines 470 to 490 the 399 values
in this array (from the previous output segment) are added to the output
segment currently being worked on, held in XX[]. The mythical subroutine in
line 550 then outputs the 625 samples in XX[Q] to XX[624] to the file holding
the output signal. The 399 samples of the current output segment that need to
be held over to the next output segment are then stored in OLAP[] in lines 510
to 530.

After al 0 to 15999 segments have been processed, the array, OLAP[], will
contain the 399 samples from segment 15999 that should overlap segment
16000. Since segment 16000 doesn't exist (or can be viewed as containing all
zeros), the 399 samples are written to the output signal in line 600. This
makes the length of the output signal 16000x625 + 399 = 10,000,399 points.
This matches the length of input signal, plus the length of the filter kernel,
minus 1.

Speed Improvements

When is FFT convolution faster than standard convolution? The answer
depends on the length of the filter kernel, as shown in Fig. 18-3. The time

Chapter 18- FFT Convolution 317

100 'FFT CONVOLUTION

110 'This program convolves a 10 million point signal with a 400 point filter kernel. The input
120 'signal is broken into 16000 segments, each with 625 points. 1024 point FFTs are used.
130

130" ‘INITIALIZE THE ARRAYS

140 DIM XX[1023] ‘the time domain signal (for the FFT)

150 DIM REX[512] 'real part of the frequency domain (for the FFT)

160 DIM IMX[512] 'imaginary part of the frequency domain (for the FFT)
170 DIM REFR[512] 'real part of the filter's frequency response

180 DIM IMFR[512] 'imaginary part of the filter's frequency response

190 DIM OLAP[398] 'holds the overlapping samples from segment to segment
200"

210 FOR 1% =0TO 398 'zero the array holding the overlapping samples

220 OLAP[I%] =0
230 NEXT 1%

240"

250" 'FIND & STORE THE FILTER'S FREQUENCY RESPONSE
260 GOSUB XXXX 'Mythical subroutine to load the filter kernel into X X[]

270 GOSUB XXXX '‘Mythical FFT subroutine: XX[]--> REX[] & IMX]]

280 FOR F% =0 TO 512 'Save the frequency response in REFR[] & IMFR]]

290 REFR[F%] = REX[F%]

300 IMFR[F%] = IMX[F%)]

310 NEXT F%

320"

330" 'PROCESS EACH OF THE 16000 SEGMENTS

340 FOR SEGMENT% = 0 TO 15999

350 '

360 GOSUB XXXX 'Mythical subroutine to load the next input segment into XX|]
370 GOSUB XXXX 'Mythical FFT subroutine: XX[] --> REX[] & IMX[]
380 '

390 FORF% =0TO 512 'Multiply the frequency spectrum by the frequency response

400 TEMP = REX[F%]*REFR[F%] - IMX[F%]*IMFR[F%]

410 IMX[F%] = REX[F%]*IMFR[F%] + IMX[F%]* REFR[F%]

420 REX[F%] =TEMP

430 NEXT F%

440

450 GOSUB XXXX '‘Mythical IFFT subroutine: REX[] & IMX[] --> XX[]
460

470 FOR 1% =0TO 398 'Add the last segment's overlap to this segment

480 XX[1%] = XX[1%] + OLAP[1%]

490 NEXT 1%

500 '

510 FOR 1% =625 TO 1023 'Save the samples that will overlap the next segment
520 OLAP[1%-625] = XX[1%]

530 NEXT 1%

540 '

550 GOSUB XXXX '‘Mythical subroutine to output the 625 samples stored
560 ' in XX[0] to XX[624]

570 '

580 NEXT SEGMENT%

590"

600 GOSUB XXXX 'Mythical subroutine to output all 399 samplesin OLAP]]
610 END

TABLE 18-1

for standard convolution is directly proportional to the number of pointsin
the filter kernel. In comparison, the time required for FFT convolution
increases very slowly, only as the logarithm of the number of pointsin the

318

FIGURE 18-3

Execution times for FFT convolution. FFT
convolution is faster than the standard
method when the filter kernel islonger than
about 60 points. These execution timesare
for a 100 MHz Pentium, using single
precision floating point.

The Scientist and Engineer's Guide to Digital Sgnal Processing

1.5

—_
|
[R ——

e]
R |

o
n
|

_d 2

Execution Time (msec/point)

FFT
T

T
I
I
I
I
I
I
I
I
I

L
I
I
I
I
I
I
I
I
I
I

T
I
I
I
I
I
I
I

A]

I
T i
I J
I
I I
I I
I I
I
|
I
I I
| |

I
I
| |
8 16 32 64 128 256 512 1024
Impulse Response Length

filter kernel. The crossover occurs when the filter kernel has about 40 to 80
samples (depending on the particular hardware used).

The important idea to remember: filter kernels shorter than about 60 points
can be implemented faster with standard convolution, and the execution time
is proportional to the kernel length. Longer filter kernels can be implemented
faster with FFT convolution. With FFT convolution, the filter kernel can be
made as long as you like, with very little penalty in execution time. For
instance, a 16,000 point filter kernel only requires about twice as long to
execute as one with only 64 points.

The speed of the convolution also dictates the precision of the calculation (just
as described for the FFT in Chapter 12). This is because the round-off error in
the output signal depends on the total number of calculations, which is directly
proportional to the computation time. |If the output signal is calculated faster,
it will also be calculated more precisely. For instance, imagine convolving a
signal with a 1000 point filter kernel, with single precision floating point.
Using standard convolution, the typical round-off noise can be expected to be
about 1 part in 20,000 (from the guidelines in Chapter 4). In comparison, FFT
convolution can be expected to be an order of magnitude faster, and an order
of magnitude more precise (i.e., 1 part in 200,000).

Keep FFT convolution tucked away for when you have a large amount of data
to process and need an extremely long filter kernel. Think in terms of a million
sample signal and a thousand point filter kernel. Anything less won't justify
the extra programming effort. Don't want to write your own FFT convolution
routine? Look in software libraries and packages for prewritten code. Start
with this book's web site (see the copyright page).

CHAPTER

19

Recursive Filters

Recursive filters are an efficient way of achieving a long impulse response, without having to
perform along convolution. They execute very rapidly, but have less performance and flexibility
than other digital filters. Recursive filters are also called Infinite Impulse Response (1IR) filters,
since their impulse responses are composed of decaying exponentials. This distinguishes them
from digital filters carried out by convolution, called Finite Impulse Response (FIR) filters. This
chapter is an introduction to how recursive filters operate, and how simple members of the family
can be designed. Chapters 20, 26 and 33 present more sophisticated design methods.

The Recursive Method

To start the discussion of recursive filters, imagine that you need to extract
information from some signal, x[]. Your need is so great that you hire an old
mathematics professor to process the data for you. The professor's task is to
filter x[] to produce y[], which hopefully contains the information you are
interested in. The professor begins his work of calculating each point in y[]
according to some algorithm that is locked tightly in his over-developed brain.
Part way through the task, a most unfortunate event occurs. The professor
begins to babble about analytic singularities and fractional transforms, and
other demons from a mathematician's nightmare. It is clear that the professor
has lost his mind. Y ou watch with anxiety as the professor, and your algorithm,
are taken away by several men in white coats.

You frantically review the professor's notes to find the algorithm he was
using. You find that he had completed the calculation of points y[0] through
y[27], and was about to start on point y[28]. As shown in Fig. 19-1, we will
let the variable, n, represent the point that is currently being calculated. This
means that y[n] is sample 28 in the output signal, y[n-1] is sample 27,
y[n-2] is sample 26, etc. Likewise, X[n] is point 28 in the input signal,

319

320

EQUATION 19-1

The Scientist and Engineer's Guide to Digital Sgnal Processing

x[n-1] is point 27, etc. To understand the algorithm being used, we ask
ourselves. "What information was available to the professor to calculate y[n],
the sample currently being worked on?"

The most obvious source of information is the input signal, that is, the values:
x[n], x[n-1], X[n-2],--. The professor could have been multiplying each point
in the input signal by a coefficient, and adding the products together:

y[n] = aox[n] + a]_X[n—l] + 6\2X[n—2] + asx[n_g] £ eee

Y ou should recognize that this is nothing more than simple convolution, with
the coefficients: a,, a,, a,, -, forming the convolution kernel. If thiswas all the
professor was doing, there wouldn't be much need for this story, or this chapter.
However, there is another source of information that the professor had access
to: the previously calculated values of the output signal, held in:
y[n-1], y[n-2], y[n-3],-. Using this additional information, the algorithm
would be in the form:

y[n] = aox[n] + a]_X[n—l] + 6\2X[n—2] + asx[n_g] Foeee
+ by[n-1] + b,y[n-2] + byy[n-3] + -

Therecursion equation. Inthisequation, x[] is
theinput signal, y[]isthe output signal, and the
a'sand b's are coefficients.

In words, each point in the output signal is found by multiplying the values
from the input signal by the "a" coefficients, multiplying the previously
calculated values from the output signal by the "b" coefficients, and adding the
products together. Notice that there isn't a value for by, because this
corresponds to the sample being calculated. Equation 19-1 is called the
recursion equation, and filters that use it are called recursive filters. The
"a' and "b" values that define the filter are called the r ecur sion coefficients.
In actual practice, no more than about a dozen recursion coefficients can be
used or the filter becomes unstable (i.e., the output continually increases or
oscillates). Table 19-1 shows an example recursive filter program.

Recursive filters are useful because they bypass a longer convolution. For
instance, consider what happens when a delta function is passed through a
recursive filter. The output is the filter's impulse response, and will typically
be a sinusoidal oscillation that exponentially decays. Since this impulse
response in infinitely long, recursive filters are often called infinite impulse
response (I1R) filters. In effect, recursive filters convolve the input signal with
avery long filter kernel, although only a few coefficients are involved.

Amplitude

Chapter 19- Recursive Filters 321

2 T

i i i i
a. The input signal, x[]‘ i b. The output signal, y[]‘ i
I I
R — R R A— R
! ! L, ! :
| | E | :
Y I [R L - = I I~ S
.) = P4
i i x[n-3] < i y[n-3)
14 i i x[n-2] 14 i i y[n-2]
ST T Poxe)”7)] T T r yn-1] I
i i x[n] i i yln]
| | | |
t t 2 t t
0 10 20 30 0 10 20 30
Sample number Sample number

FIGURE 19-1

Recursivefilter notation. The output sample being calculated, y[n], is determined by the values from
the input signal, x[n], xn-1], x[n-2], -, as well as the previously calculated values in the output
signal, y[n-1], y[n-2], y[n-3], . These figures are shown for n = 28.

The relationship between the recursion coefficients and the filter's response is
given by a mathematical technique called the z-transform, the topic of
Chapter 33. For example, the z-transform can be used for such tasks as:
converting between the recursion coefficients and the frequency response,
combining cascaded and parallel stages into a single filter, designing recursive
systems that mimic analog filters, etc. Unfortunately, the z-transform is very
mathematical, and more complicated than most DSP users are willing to deal
with. Thisis the realm of those that specialize in DSP.

There are three ways to find the recursion coefficients without having to
understand the z-transform. First, this chapter provides design equations for
several types of simple recursive filters. Second, Chapter 20 provides a
"cookbook" computer program for designing the more sophisticated Chebyshev
low-pass and high-pass filters. Third, Chapter 26 describes an iterative method
for designing recursive filters with an arbitrary frequency response.

100 'RECURSIVE FILTER

110

120 DIM X[499] 'holds the input signal

130 DIM Y[499] 'holds the filtered output signal

140

150 GOSUB X XXX 'mythical subroutine to calculate the recursion

160" ‘coefficients: AO, Al, A2, B1, B2

170"

180 GOSUB X XXX 'mythical subroutine to load X[] with the input data
190"

200 FOR 1% = 2 TO 499
210 Y[I%] = AO*X[1%] + A1*X[1%-1] + A2*X[1%-2] + B1*Y[1%-1] + B2*Y[1%-2]
220 NEXT 1%
230"
240 END
TABLE 19-1

322

The Scientist and Engineer's Guide to Digital Sgnal Processing
Digital Filter
13 | | | L | | I
| | | | | |
| 1 | 0 __1 R
g 1o | | | Recursive g 1o | " e +'
2 I I I Filter 2 = I
5 0S5 —————— 4 —————— - - S ——dt 4 ——t———
£ | | | a, = 0.15 £ ln | |
< 00 | | | b, = 0.85 < 00 ' | |
O-pummeanm— — — q—— — ——— O-punraramnn| — — — —— — [— ——
| | | | | |
05 e 0. bt
0 10 20 30 40 0 10 20 30 40
Sample number Sample number
Analog Filter
'3 | |
| |
1.0 ———— } R
g | 3
2 | VVV V | 2
5 05—————F}F———— - =
£ | C g
< | <
0.0 —-————r -
| |
-0.5 | |
0 10 20 30
Time
FIGURE 19-2

Single pole low-pass filter. Digital recursive filters can mimic analog filters composed of resistors and
capacitors. Asshown in thisexample, asingle polelow-pass recursivefilter smoothes the edge of astep input,

just as an electronic RC filter.

Single Pole Recursive Filters

Figure 19-2 shows an example of what is called a single pole low-pass filter.
This recursive filter uses just two coefficients, a, = 0.15 and b, = 0.85. For
this example, the input signal is a step function. As you should expect for a
low-pass filter, the output is a smooth rise to the steady state level. This figure
also shows something that ties into your knowledge of electronics. This low-
pass recursive filter is completely analogous to an electronic low-pass filter
composed of a single resistor and capacitor.

The beauty of the recursive method is in its ability to create a wide variety of
responses by changing only a few parameters. For example, Fig. 19-3 shows
a filter with three coefficients: a,=0.93, a, = -0.93 and b, = 0.86. As
shown by the similar step responses, this digital filter mimics an electronic RC
high-pass filter.

These single pole recursive filters are definitely something you want to keep
in your DSP toolbox. You can use them to process digital signals just as
you would use RC networks to process analog electronic signals. This
includes everything you would expect: DC removal, high-frequency noise
suppression, wave shaping, smoothing, etc. They are easy to program, fast

Digital Filter

1.5

Chapter 19- Recursive Filters 323

30

| | |
| | |
10— — — 4]]
g | | |
E [[[
505 ———f———4———t+———
£ | | |
< o | | |
Oprmmamane — — — | — — — — ——
| | |
0.5 | | |
0 10 20 30 40
Sample number
Analog Filter
1.5 I
|
10— ———
o)
°
=
5 05+—————}F———- F———-
£
<
0.0 ————r———-
|
0.5 J
0 10
Time
FIGURE 19-3

| | |
| | |
- o ——
Recursive 3 . I I
Filter 2 |- I I
8 =093 [BTk
le:l)1 - 608963 < 0.0 ! 1 L TTT PR
,=0. O peammnnany — — — — " S—
| | |
0. I ; |
0 10 20 30 40
Sample number
L5 | | |
C
|| > 8
> °
I 2
Q.
R €
<

Single pole high-passfilter. Proper coefficient selection can also make the recursive filter mimic an electronic
RC high-passfilter. These single pole recursive filters can be used in DSP just as you would use RC circuits

in analog electronics.

to execute, and produce few surprises. The coefficients are found from these

simple equations:

EQUATION 19-2

Single pole low-pass filter. The filter's
responseis controlled by the parameter, x,

avalue between zero and one.

EQUATION 19-3
Single pole high-pass filter.

R

R

(1+x)/2
—(1+X)/2

The characteristics of these filters are controlled by the parameter, X, a
value between zero and one. Physically, x is the amount of decay between
adjacent samples. For instance, x is 0.86 in Fig. 19-3, meaning that the
value of each sample in the output signal is 0.86 the value of the sample
before it. The higher the value of x, the slower the decay. Notice that the

324 The Scientist and Engineer's Guide to Digital Sgnal Processing
1.5 T T T T 1.5 T T T T
' ' | | ' ' | |
a. Original signal ! ! ‘ b. Filtered signals ‘ ! !
I I I I
T . — o p
. —_ . —
E | | | | E | | |
BT e e & B B 05p-—----- po-=--=- i Lo Pt To-m--—-
= i i i i = i i i |
<€ 1 1 1 1 <€ 1 1 1
I I I I I I I
i i i i i i i i
S I P T [. 00 ! — :
| | | | | [highpass] | |
I I I I I I I I
05 : : : : 05 : : : :
0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number
FIGURE 19-4

Example of single polerecursivefilters. In (a), ahigh frequency burst rides on aslowly varying signal. In (b),
single pole low-pass and high-passfilters are used to separate the two components. The low-pass filter uses x

= 0.95, while the high-passfilter is for

x=0.86.

filter becomes unstable if x is made greater than one. That is, any nonzero
value on the input will make the output increase until an overflow occurs.

The value for x can be directly specified, or found from the desired time

constant of the

filter.

Just as RxC is the number of seconds it takes an RC

circuit to decay to 36.8% of itsfinal value, d is the number of samples it takes
for arecursive filter to decay to this same level:

EQUATION 19-4

Time constant of single pole filters. This
equation relates the amount of decay
between samples, x, with the filter's time
constant, d, the number of samplesfor the
filter to decay to 36.8%.

-1/d

For instance, a sample-to-sample decay of x = 0.86 corresponds to a time

constant of d = 6.63 samples (as shown in Fig 19-3).

There is also a fixed

relationship between x and the -3dB cutoff frequency, f., of the digital filter:

EQUATION 19-5

Cutoff frequency of single pole filters.
The amount of decay between samples, x,
is related to the cutoff frequency of the
filter, f., avalue between 0 and 0.5.

-2nf,

This provides three ways to find the "a" and "b" coefficients, starting with the
time constant, the cutoff frequency, or just directly picking x.

Figure 19-4 shows an example of using single pole recursive filters. In (a), the
original signal is a smooth curve, except a burst of a high frequency sine wave.
Figure (b) shows the signal after passing through low-pass and high-pass
filters. The signals have been separated fairly well, but not perfectly, just as
if simple RC circuits were used on an analog signal.

Amplitude

Chapter 19- Recursive Filters 325

15 : : : : 15 : : : :
]]]]
‘a High-pass filter ‘ i i b. Low-passfilter ‘ i i
]]]]
]]]]]]]]
]]]]]]]]
Lol oot] | ! ! ! ! ! ! !
' | | | % ' - i
]] =]]]
j i i = | i
] I o I]
RN £ i :
] | N [l
I I
]]
]]
]]
]]
]]
]
i i
t f

0.4 0.5

Frequency

FIGURE 19-5

Single pole frequency responses. Figures (a)
and (b) show the frequency responses of high-
pass and low-pass single pole recursive filters, 104
respectively. Figure (c) shows the frequency
response of a cascade of four low-pass filters.
The frequency response of recursive filtersis
not always what you expect, especially if the
filter is pushed to extreme limits. For example,
the f. = 0.25 curvein (c) isquite useless. Many
factors areto blame, including: aliasing, round-
off noise, and the nonlinear phase response.

I
I
I
[e
I
I
I
I
I
I
I
1

Amplitude

05 -mm N\ b

0.0 t]
0 01 0.2 03 0.4 05
Frequency

Figure 19-5 shows the frequency responses of various single pole recursive
filters. These curves are obtained by passing a delta function through the filter
to find the filter's impulse response. The FFT is then used to convert the
impulse response into the frequency response. In principle, the impulse
response is infinitely long; however, it decays below the single precision round-
off noise after about 15 to 20 time constants. For example, when the time
constant of the filter is d = 6.63 samples, the impulse response can be
contained in about 128 samples.

The key feature in Fig. 19-5 is that single pole recursive filters have little
ability to separate one band of frequencies from another. In other words,
they perform well in the time domain, and poorly in the frequency domain.
The frequency response can be improved slightly by cascading several
stages. This can be accomplished in two ways. First, the signal can be
passed through the filter several times. Second, the z-transform can be used
to find the recursion coefficients that combine the cascade into a single
stage. Both ways work and are commonly used. Figure (c) shows the
frequency response of a cascade of four low-pass filters. Although the
stopband attenuation is significantly improved, the roll-off is still terrible.
If you need better performance in the frequency domain, look at the
Chebyshev filters of the next chapter.

326 The Scientist and Engineer's Guide to Digital Sgnal Processing

The four stage low-pass filter is comparable to the Blackman and Gaussian
filters (relatives of the moving average, Chapter 15), but with a much faster
execution speed. The design equations for a four stage low-pass filter are:

_ 4

EQUATION 19-6 % (1 X)
Four stage low-passfilter. These equations bl = 4x
provide the "a" and "b" coefficients for a 5
cascade of four single pole low-pass filters. b2 = -6X
The relationship between x and the cutoff 3
frequency of thisfilter isgiven by Eg. 19-5, b3 = 4X
with the 2r replaced by 14.445. 4

b, = -X

Narrow-band Filters

A common need in electronics and DSP is to isolate a narrow band of
frequencies from a wider bandwidth signal. For example, you may want to
eliminate 60 hertz interference in an instrumentation system, or isolate the
signaling tones in a telephone network. Two types of frequency responses are
available: the band-pass and the band-reject (also called a notch filter).
Figure 19-6 shows the frequency response of these filters, with the recursion
coefficients provided by the following equations:

EQUATION 19-7 a, = 1-K
Band-pass filter. An example frequency
response is shown in Fig. 19-6a. To use a, = 2(K-R)cos(2nf)
these equations, first select the center 2
frequency, f, and the bandwidth, BW. Both 6\2 = R°-K
of these are expressed as a fraction of the _
sampling rate, and therefore in the range of bl = 2R COS(2nf)
010 0.5. Next, calculate R, and then K, and b. = - Rz
then the recursion coefficients. 2

g = K
EQUATION 19-8 a, = -2Kcos(2nf)
Band-reject filter. This filter is commonly
called a notch filter. Example frequency a, = K
responses are shown in Fig. 19-6b. bl - 2R COS(onf)

b, = -R?

where:
K - 1- 2Rcos(2nf) + R?

2 - 2cos(2nf)

R= 1-3BW

Amplitude

Chapter 19- Recursive Filters 327

step response of the band-reject filter is shown
in (c). The band-reject (notch) filter is useful

15 1.5 . . . ,
I I I I I I I I
a. Band-pass frequency response ‘ ‘b. Band-reject frequency response ‘
! ! ! ! BW=0.0066] | ! !
10-F---—--~ e e i e o 107 ST7 ' 1
i i i B i i i
| | | = | | |
| | | = I — |
i i i i g_ | BW—I0.033 i
| I 1 1 <€ 1 1
0.5—+-- single stage |~ 1| R ettt m——----- 05—y~ e it m——-----
BW=0.0066 | [|i | | i i
| i three stages i i i i
i i i i i i
I I I I I I
0.0 \ t i \ 0.0 t \ t t
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
15 . , ,
1 1 :
‘c. Band-reject step response !
FIGURE 19-6 : :
Characteristics of narrow-band filters. Figure (a) ! !
| |
various band-pass and band-reject filters. The i
i
I
I
I
I

for removing 60 Hz and similar interference 05 .
from time domain encoded waveforms.

and (b) shows the frequency responses of 1.07--(wvwv.lru ir

Amplitude
@
-3
1l
o
3
3

0.0

Sample number

Two parameters must be selected before using these equations: f, the center
frequency, and BW, the bandwidth (measured at an amplitude of 0.707). Both
of these are expressed as a fraction of the sampling frequency, and therefore
must be between 0 and 0.5. From these two specified values, calculate the
intermediate variables: R and K, and then the recursion coefficients.

As shown in (@), the band-pass filter has relatively large tails extending from
the main peak. This can be improved by cascading several stages. Since the
design equations are quite long, it is simpler to implement this cascade by
filtering the signal several times, rather than trying to find the coefficients
needed for a single filter.

Figure (b) shows examples of the band-reject filter. The narrowest bandwidth
that can be obtain with single precision is about 0.0003 of the sampling
frequency. When pushed beyond this limit, the attenuation of the notch will
degrade. Figure (c) shows the step response of the band-reject filter. Thereis
noticeable overshoot and ringing, but its amplitude is quite small. Thisallows
the filter to remove narrowband interference (60 Hz and the like) with only a
minor distortion to the time domain waveform.

328

The Scientist and Engineer's Guide to Digital Sgnal Processing

Phase Response

There are three types of phase response that a filter can have: zero phase,
linear phase, and nonlinear phase. An example of each of these is shown
in Figure 19-7. As shown in (a), the zero phase filter is characterized by an
impulse response that is symmetrical around sample zero. The actual shape
doesn't matter, only that the negative numbered samples are a mirror image of
the positive numbered samples. When the Fourier transform is taken of this
symmetrical waveform, the phase will be entirely zero, as shown in (b).

The disadvantage of the zero phase filter is that it requires the use of negative
indexes, which can be inconvenient to work with. The linear phase filter is a
way around this. The impulse response in (d) is identical to that shown in (a),
except it has been shifted to use only positive numbered samples. The impulse
response is still symmetrical between the left and right; however, the location
of symmetry has been shifted from zero. This shift results in the phase, (€),
being a straight line, accounting for the name: linear phase. The slope of this
straight line is directly proportional to the amount of the shift. Since the shift
in the impulse response does nothing but produce an identical shift in the output
signal, the linear phase filter is equivalent to the zero phase filter for most
purposes.

Figure (g) shows an impulse response that is not symmetrical between the left
and right. Correspondingly, the phase, (h), is not a straight line. In other
words, it has a nonlinear phase. Don't confuse the terms: nonlinear and
linear phase with the concept of system linearity discussed in Chapter 5.
Although both use the word linear, they are not related.

Why does anyone care if the phase is linear or not? Figures (c), (f), and (i)
show the answer. These are the pulse responses of each of the three filters.
The pulse response is nothing more than a positive going step response
followed by a negative going step response. The pulse response is used here
because it displays what happens to both the rising and falling edges in a
signal. Here isthe important part: zero and linear phase filters have left and
right edges that ook the same, while nonlinear phase filters have left and right
edges that look different. Many applications cannot tolerate the left and right
edges looking different. One example is the display of an oscilloscope, where
this difference could be misinterpreted as a feature of the signal being
measured. Another example isin video processing. Can you imagine turning
on your TV to find the left ear of your favorite actor looking different from his
right ear?

It is easy to make an FIR (finite impulse response) filter have a linear phase.
This is because the impulse response (filter kernel) is directly specified in the
design process. Making the filter kernel have left-right symmetry is all that is
required. This is not the case with IIR (recursive) filters, since the recursion
coefficients are what is specified, not the impulse response. The impulse
response of arecursive filter is not symmetrical between the left and right, and
therefore has a nonlinear phase.

Chapter 19- Recursive Filters

Zero Phase Filter

T T 12 T T

,_l a Impulse response L__ el _ b. Phase

e
%)
G

o
)
=)

e
v

f=1

)
.
I

g
(=2
73

my
-l
Phase (radians)
o

Amplitude

=]

8
Fug
.

o
=2
G

<
=
S
—
©

25 0 25 50 0 01 02 03 04 05
Sample number Frequency

Linear Phase Filter

0.25 T T 96 T T

0}204 d. Impulse response L__ L | & Phase

0.15 .
g 8
S0 el 5
: fi% o
5 =
E 0.05 8

0.00 &3

g
0.05 64
0.10 96
25 0 25 50 0 01 02 03 04 05
Sample number Frequency

Nonlinear Phase Filter

T T 12 T T

,_l g. Impulse response L__ el h. Phase
i
1
T _ -

e
%)
G

o
)
S

e
v

o
S

g
[=2
73

Phase (radians)
o

Amplitude

o
=)
S

o
=2
G

<
=
S
—
©

25 0 25 50 0 01 02 03 04 05
Sample number Frequency

FIGURE 19-7

329

T T T T
‘ c. Pulseresponse ‘

i

Amplitude

i

g
=}

0 25 50 75
Sample number

100

—_
W

‘ f. IPuls;elr%pcl)nse I‘

—_
(=1

o
n

i

Amplitude

g
=}

J

o
W

)
G

g
=}

0 25 50 75
Sample number

100

—_
W

‘ i. Pulseresponse

—_
(=1

o
n

I

Amplitude

g
=}

L

o
W

-25

0 25 50 75
Sample number

100

Zero, linear, and nonlinear phasefilters. A zero phase filter has an impulse response that has left-right symmetry
around sample number zero, asin (a). Thisresultsin afrequency response that has a phase composed entirely of
zeros, asin (b). Zero phaseimpulse responses are desirabl e because their step responses are symmetrical between
the top and bottom, making the left and right edges of pulseslook the same, asisshownin (c). Linear phasefilters
have | eft-right symmetry, but not around sample zero, asillustrated in (d). Thisresultsin aphasethat islinear, that
is, astraight line, asshownin (e). Thelinear phase pulse response, shownin (f), hasall the advantages of the zero
phase pulse response. In comparison, theimpulse responses of nonlinear phase filters are not symmetrical between
theleft and right, asin (g), and the phases are not astraight line, asin (h). Theworst part isthat the left and right

edges of the pulse response are not the same, as shown in (i).

330 The Scientist and Engineer's Guide to Digital Sgnal Processing

Analog electronic circuits have this same problem with the phase response.
Imagine a circuit composed of resistors and capacitors sitting on your desk. |f
the input has always been zero, the output will also have always been zero.
When an impulse is applied to the input, the capacitors quickly charge to some
value and then begin to exponentially decay through the resistors. The impulse
response (i.e., the output signal) is a combination of these various decaying
exponentials. The impulse response cannot be symmetrical, because the output
was zero before the impulse, and the exponential decay never quite reaches a
value of zero again. Analog filter designers attack this problem with the
Bessel filter, presented in Chapter 3. The Bessel filter is designed to have as
linear phase as possible; however, it is far below the performance of digital
filters. The ability to provide an exact linear phase is a clear advantage of
digital filters.

Fortunately, there is a simple way to modify recursive filters to obtain a zero
phase. Figure 19-8 shows an example of how this works. The input signal to
be filtered is shown in (a). Figure (b) shows the signal after it has been
filtered by a single pole low-pass filter. Since thisis a nonlinear phase filter,
the left and right edges do not look the same; they are inverted versions of each
other. As previously described, this recursive filter is implemented by starting
at sample 0 and working toward sample 150, calculating each sample along the
way.

Now, suppose that instead of moving from sample 0 toward sample 150, we
start at sample 150 and move toward sample 0. In other words, each sample
in the output signal is calculated from input and output samples to the right of
the sample being worked on. This means that the recursion equation, Eq. 19-1,
is changed to:

y[n] = ayx[n] + a x[n+1] + a,x[n+2] + a;x[n+3] + -

+ byy[n+1] + b,y[n+2] + byy[n+3] + -
EQUATION 19-9
The reverse recursion equation. Thisis the
same as Eq. 19-1, except the signal isfiltered
from left-to-right, instead of right-to-left.

Figure (c) shows the result of this reverse filtering. This is analogous to
passing an analog signal through an electronic RC circuit while running time
backwards. !esrevinu eht pu-wercs nac lasrever emit -noituaC

Filtering in the reverse direction does not produce any benefit in itself; the
filtered signal still has left and right edges that do not look alike. The
magic happens when forward and reverse filtering are combined. Figure (d)
results from filtering the signal in the forward direction and then filtering again
in the reverse direction. Voilal This produces a zero phase recursive filter.
In fact, any recursive filter can be converted to zero phase with this
bidirectional filtering technique. The only penalty for this improved
performance is a factor of two in execution time and program complexity.

Chapter 19- Recursive Filters

13 : : : : :
a. Original signal | | i i
i i | | |
L.07------ N —r N
| | | |
Q | i | |
°
2 | I | |
5 0.5+ : o o e
= | | | |
<€ 1 | 1 1
I | I I
I l I I
0.0-4 . - L ' . .
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
0.5 f f f f f
0 25 50 75 100 125 150
Sample number
FIGURE 19-8

Bidirectional recursive filtering. A rectangular
pulse input signal is shown in (a). Figure (b)
shows the signal after being filtered with a
single pole recursive low-pass filter, passing
from left-to-right. In (c), the signal has been
processed in the same manner, except with the
filter moving right-to-left. Figure (d) showsthe
signal after being filtered both left-to-right and
then right-to-left. Any recursive filter can be
made zero phase by using this technique.

Amplitude

Amplitude

Amplitude

331
15 . . T T T
L
b. Filtered |i : : :
> I I I I
T M meeret AN R SN S
I I I
I I I I
I I I I
I I I I
I I I I
I I I I
s Rt | SRR . -mmee
I I I I I
I I I I
I I I I
I I I I
I I I I
0.0-4 . T L . .
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
0.5 t t t t t
0 25 50 75 100 125 150
Sample number
15 . . T T T
! | i i i
c. Filtered || : : :
T
1.0p----- T ! o T
I | I I I
I I I I
I I I I I
I Il I I I
I I I I I
T
I I I 1 I
I I I I
I I I I
I I I I
I I I I
0.0-4 o?___ R . .
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
0.5 t t t t t
0 25 50 75 100 125 150
Sample number
15 . . T T T
L
d. Filtered || : : :
< > I I I I
I I I I
1.04-—==== T ——— S S L Ao
I I I I
I I I I I
I I I I I
I } I I I
I I I | I
I I I
0.5+----- A P -
i | i i i
I I I I I
I I I I I
I I I I I
0.0-4 i R L - - — .
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
0.5 t t t t t
0 25 50 75 100 125 150
Sample number

How do you find the impulse and frequency responses of the overall filter? The
magnitude of the frequency response is the same for each direction, while the
phases are opposite in sign. When the two directions are combined, the

magnitude becomes squared, while the phase cancels to zero.

In the time

domain, this corresponds to convolving the original impulse response with a
left-for-right flipped version of itself. For instance, the impulse response of a

332

The Scientist and Engineer's Guide to Digital Sgnal Processing

single pole low-pass filter is a one-sided exponential. The impulse response of
the corresponding bidirectional filter is a one-sided exponential that decays to
the right, convolved with a one-sided exponential that decays to the left. Going
through the mathematics, this turns out to be a double-sided exponential that
decays both to the left and right, with the same decay constant as the original
filter.

Some applications only have a portion of the signal in the computer at a
particular time, such as systems that alternately input and output data on a
continuing basis. Bidirectional filtering can be used in these cases by
combining it with the overlap-add method described in the last chapter. When
you come to the question of how long the impulse response is, don't say
"infinite." If you do, you will need to pad each signal segment with an infinite
number of zeros. Remember, the impulse response can be truncated when it
has decayed below the round-off noise level, i.e., about 15 to 20 time constants.
Each segment will need to be padded with zeros on both the left and right to
allow for the expansion during the bidirectional filtering.

Using Integers

Single precision floating point is ideal to implement these simple recursive
filters. The use of integersis possible, but it is much more difficult. There are
two main problems. First, the round-off error from the limited number of bits
can degrade the response of the filter, or even make it unstable. Second, the
fractional values of the recursion coefficients must be handled with integer
math. One way to attack this problem is to express each coefficient as a
fraction. For example, 0.15 becomes 19/128. Instead of multiplying by 0.15,
you first multiply by 19 and then divide by 128. Ancther way is to replace the
multiplications with look-up tables. For example, a 12 bit ADC produces
samples with a value between 0 and 4095. Instead of multiplying each sample
by 0.15, you pass the samples through a look-up table that is 4096 entries long.
The value obtained from the look-up table is equal to 0.15 times the value
entering the look-up table. This method is very fast, but it does require extra
memory; a separate look-up table is needed for each coefficient. Before you
try either of these integer methods, make sure the recursive algorithm for the
moving average filter will not suit your needs. It loves integers.

CHAPTER

20

Chebyshev Filters

Chebyshev filters are used to separate one band of frequencies from another. Although they
cannot match the performance of the windowed-sinc filter, they are more than adequate for many
applications. The primary attribute of Chebyshev filters is their speed, typically more than an
order of magnitude faster than the windowed-sinc. This is because they are carried out by
recursion rather than convolution. The design of these filters is based on a mathematical
technique called the z-transform, discussed in Chapter 33. This chapter presents the information
needed to use Chebyshev filters without wading through a mire of advanced mathematics.

The Chebyshev and Butterworth Responses

The Chebyshev response is a mathematical strategy for achieving a faster roll-
off by dlowing ripple in the frequency response. Analog and digital filters that
use this approach are called Chebyshev filters. For instance, analog
Chebyshev filters were used in Chapter 3 for analog-to-digital and digital-to-
analog conversion. These filters are named from their use of the Chebyshev
polynomials, developed by the Russian mathematician Pafnuti Chebyshev
(1821-1894). This name has been translated from Russian and appears in the
literature with different spellings, such as: Chebychev, Tschebyscheff,
Tchebysheff and Tchebichef.

Figure 20-1 shows the frequency response of low-pass Chebyshev filters with
passband ripples of: 0%, 0.5% and 20%. As the ripple increases (bad), the
roll-off becomes sharper (good). The Chebyshev response is an optimal trade-
off between these two parameters. When the ripple is set to 0%, the filter is
called a maximally flat or Butterworth filter (after S. Butterworth, a
British engineer who described this response in 1930). A ripple of 0.5% isa
often good choice for digital filters. This matches the typical precision and
accuracy of the analog electronics that the signal has passed through.

The Chebyshev filters discussed in this chapter are called type 1 filters,
meaning that the ripple is only allowed in the passband. In comparison,

333

334

FIGURE 20-1

The Chebyshev response. Chebyshev filters
achieve afaster roll-off by allowing ripplein the
passband. When the ripple is set to 0%, it is
caled a maximally flat or Butterworth filter.
Consider using aripple of 0.5% in your designs;
this passband unflatness is so small that it
cannot be seen in this graph, but the roll-off is
much faster than the Butterworth.

The Scientist and Engineer's Guide to Digital Sgnal Processing

Amplitude

Frequency

type 2 Chebyshev filters have ripple only in the stopband. Type 2 filters are
seldom used, and we won't discuss them. There is, however, an important
design called the elliptic filter, which has ripple in both the passband and the
stopband. Elliptic filters provide the fastest roll-off for a given number of
poles, but are much harder to design. We won't discuss the elliptic filter here,
but be aware that it is frequently the first choice of professional filter
designers, both in analog electronics and DSP. If you need this level of
performance, buy a software package for designing digital filters.

Designing the Filter

Y ou must select four parameters to design a Chebyshev filter: (1) a high-pass
or low-pass response, (2) the cutoff frequency, (3) the percent ripple in the
passband, and (4) the number of poles. Just what is a pole? Here are two
answers. |f you don't like one, maybe the other will help:

Answer 1- The Laplace transform and z-transform are mathematical ways of
breaking an impulse response into sinusoids and decaying exponentials. This
is done by expressing the system's characteristics as one complex polynomial
divided by another complex polynomial. The roots of the numerator are called
zeros, while the roots of the denominator are called poles. Since poles and
zeros can be complex numbers, it is common to say they have a "location” in
the complex plane. Elaborate systems have more poles and zeros than simple
ones. Recursive filters are designed by first selecting the location of the poles
and zeros, and then finding the appropriate recursion coefficients (or analog
components). For example, Butterworth filters have poles that lie on acircle
in the complex plane, while in a Chebyshev filter they lie on an ellipse. This
is the topic of Chapters 32 and 33.

Answer 2- Poles are containers filled with magic powder. The more poles in
afilter, the better the filter works.

Chapter 20- Chebyshev Filters 335

1.25 , 1.25 : : : :
‘ ‘ c. High-pass frequency response
! : : T T
1.00 S 1.00 - = — = pmumn - : :
1 - F 1 1 1 1
1 t 1 1 1 1
o\ | | | |
[} 3 [}
S 0.75 b - B 0.75+---F-—- fmm————— R e fmmm———— R
2 ! 2] ! ! !
E ! L E | | | i
< 0.50— 3 3 ----------:—---J._1 - < 0.50 I e & S 4
]] P | | 3
i] ; i ik :
025 1 B 0.254—f -k A S Y -
LA - £7 ’
1 R 1 1 1
63\
I ‘ I I I,
0.00 ;) 0.00 - e % =epl”6 pole
0 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency

20 T T T T 20 T T T T
b. Low-pass frequency response (dB) ‘ d. High-pass frequency response (dB) ‘
0 ' i | ' *7 i | i i
3 1 1 1 1
— B 1 — 1 1
g 0 g A
@ i @ i i
S ot 'r R VAR i A W —
g LN g |
€ 60-F--mmmmmbroooon k < 604 ALl AL
|
80F---——-- I i‘
| L
| S
| A
-100 t - -100
0 0.1 0.2
Frequency Frequency
FIGURE 20-2

Chebyshev frequency responses. Figures (a) and (b) show the frequency responses of low-pass Chebyshev
filterswith 0.5% ripple, while (c) and (d) show the corresponding high-pass filter responses.

Kidding aside, the point is that you can use these filters very effectively
without knowing the nasty mathematics behind them. Filter design is a
speciaty. In actual practice, more engineers, scientists and programmers think
in terms of answer 2, than answer 1.

Figure 20-2 shows the frequency response of several Chebyshev filters with
0.5% ripple. For the method used here, the number of poles must be even. The
cutoff frequency of each filter is measured where the amplitude crosses 0.707
(-3dB). Filters with a cutoff frequency near 0 or 0.5 have a sharper roll-off
than filters in the center of the frequency range. For example, atwo pole filter
at f. = 0.05 has about the same roll-off as afour pole filter at f. = 0.25. This
is fortunate; fewer poles can be used near 0 and 0.5 because of round-off noise.
More about this later.

There are two ways of finding the recursion coefficients without using the z-
transform. First, the cowards way: use atable. Tables 20-1 and 20-2 provide
the recursion coefficients for low-pass and high-pass filters with 0.5% passband
ripple. If you only need a quick and dirty design, copy the appropriate
coefficients into your program, and you're done.

336

0.01

0.025

0.05

0.075

0.1

0.15

0.2

0.25

0.3

0.35

0.40

0.45

The Scientist and Engineer's Guide to Digital Sgnal Processing

2 Pole 4 Pole 6 Pole
a0= 8 663387E 04 a0= 4149425507 (!! Unstable !1) a0= 1301351E10 (!! Unstable !!)
al= 1732678503 bl= 1919120E{0 al= 165077006 bl= 3 89345300 = 8348100E10 bl= 5 83330
a2= 8.6633BTE04 bo=-0.225M3E01 a= 2 480655E 06 b= -5.688233E{0 a2= 2 0B7027E09 ho= -1 442798E+01
a3= LG507/0E06 b3= 3.695783E{0 a3= 2 782703500 b3= 1 887786E/0L
ad= 4140425507 b4=-9.010106E01 ad= 2 0B7027E09 bd= - 1 380014E+01
a5= 8 348109E10 b5= 5. 450000E+00
a6= 1301351E10 b= -8 930932E 01
a0= 5 112374E 03 a0= 1 S04626E 05 a0= 3136210508 (!! Unstable !!)
al= 102475E(R bl= 1 797154E+00 = 6018503505 bl= 3.725385E{0 al= 1 881726507 bl= 5. 691653EH00
a2= 5112374E (03 bo=-8 176033E01 a2= 9 027/SAE 05 bo= -5 226004EK0 a2= 4, 704314507 b= -1 3531726401
a3= 601803505 b3= 3. 270002E{0 a3= 6272419507 b3= 1 719986E+01
ad= 1S0M626E05 ba=-7.705239E01 ad= 4 704314E 07 b= - 1 232689E+01
a5= 1 83I726E07 b5= 4.
ab= 3 136210508 b= -7. 5563408 01
a0= 1 868323E (2 a0= 2 141500E 04 a0= 1 771089E 06
al= 3 73/647E(2 bl= 1503987E{0 al= 8 566037/E04 bl= 3. al= 1 062654E05 bl= 5. 330512E+00
a2= 1868323E(2 bo=-6.686903E01 a2= 1 284906E 03 b= -4 470272EK0 a2= 2 656634E 05 ho= -1 19661101
a3= 8 56B037E04 b3= 2 G43718EH0 a3= 3. 52179505 bd= L 44706701
ad= 2 141500E04 bA=-503269E01 ad= 2 656634E 05 b= -9, 937710E00
a5= LOGGMAEQDE b5= 3.
ab= 1 771080E 06 b= -5, 7075615 01
a0= 3. 869430E (2 0= 9. 72632E 04 a0= 1797538505
al= 7.738850E(2 bl= 1390667E{0 al= 3. 800537E03 bl= 3. 103M4E{0 al= L1 O78523504 bl= 4. 921746E+00
a2= 3.860430E(2 bo= -5 474M46E01 a2= 5 835806E 03 b= -3 774453E{0 a2= 2 696A07E 04 bo= -1 1
a3= 3.800537/E03 b3= 2 a3= 3.5050/6E04 b3= 1 180764E+0L
o= O.7263M2E04 bA=-4.562908E01 ad= 2 696307E04 bd=-7
a5= 1078523504 b5= 2 822100E+00
ab6= 1797538505 b= -4. 3077108 01
a0= 6.372802E (2 a0= 2 780755E 03 a0= 9. 086148E 05
al= 1 274560E0L bl= 1 194365E+00 = T112302E02 bl= 2 764031E{0 al= 5 451688504 bl= 4. 470118E+00
a2= 6.372802E(2 bo=-4492774E01 a2= 1 668AS3E02 b= -3 a2= 1362922503 b= -8
3= L12302E0 b3= L a3= 1B8I729E03 b3= 9 5A3712EH0
ad= 2 780755E 03 bA= -3 5023E01 ad= 1362022503 b= -6 079376E+00
a5= 5451688504 b5= 2 1
ab= O.086148E 05 bo= -3 2473635 01
a0= 1 254285601 a0= 1 180009E (2 a0= 8. 618665E 04
al= 25085/0E0L bl= 8070778501 al= 4 720034E02 bl= 2 030089E{0 al= 5 171199503 bl= 3.
a2= 125285E01 bo=-3.08/918E01 a2= 7.080051E 02 b2= -2 OI29G1EH0 a2= 1 202800802 b= -5, 754735EH00
a3= 4720034E(2 b3= O.807915E01 a3= 1 723733502 b3= 5. GAS387EAD
ad= 1180000E(2 b4=-2 O46700E0L ad= 1 202800E 02 bd= -3 304902E+00
a5= 5 I71199E 03 b5= 1 177469E+00
ab= 8 618665E 04 b= -1 836195E 01
a0= 1 997396E 01 0= 3. 224554E (2 a0= 4.187408E 03
al= 3 OM/PEOL bl= 4.29148E01 al= 1 280821E0L bl= 1265012EK0 al= 2 512445502 bl= 2 315806E+00
a2= 1 907306E 0L bo=-2 280633E01 a2= 1 934732E 01 bo= -1 203878EH0 a2= 6, 281112502 ho= -3, 293726E00
a3= L1280R1E0L b3= 5.405908E01 a3= 8 37481602 b3= 2 904826E+00
al= 3 24554E(2 ba=-1185538E01 ad= 6 281112E02 b= - L 6R4128EH00
a5= 2 51245E (2 b5= 60214265 01
ab= 4. 187408503 b= -1 029147E 01
a0= 2 858110501 a0= 7.015301E (2 a0= 1 434449E (2
al= 571621E0L bl= 5423258502 al= 28061200l bl= 4.541481E01 al= 8 606697E02 bl= 1 O76052E+00
a2= 2 858110E01 bo=-1 O74768E01 a2= 4.200180E01 bo=-7.417536E01 a2= 2 151674E 01 ho= - 1 662847E+00
a3= 2 806120E0L b3= 2 36122E0L a3 2 868B09E 0L b3= L1 191063E+00
ad= 7.01501E02 bi=-7.00476E02 ad= 2 I51674E0L b= -7, 403087E 01
a5= 8 60BGITE(2 b5= 2 752158E 01
ab= 1 43M9E (2 b= -5 72251E (2
a0= 3.849163E 01 a0= 1 33556601 a0= 3. 997487E (2
al= 7.6986E0L bl=-3.240116E01 al= 5 34263501 bl= -3 904486E0L al= 2 39BAREO0L bl= -2 441152501
a2= 3 8I0163E01 bo=-2 147536E01 a2= 8 O0I3304E0L b2= -6 784138E01 a2= 5 996231501 ho= - L 130306E+00
a3= 5.34263E01 b3=-141221IE(2 a3= 7.9M9/5E01 b3= 1 0G3L67E 0L
ad= 1 33566E0L bA=-5302238E(2 ad= 5 996231E01 b= -3 463209E 01
a5= 2 308IPE0L b5= 8 832992E (2
ab= 3 007A8TE (2 bo= -3 278741E (2
a0= 5. 0010245 01 a0= 2 34097301 0= 9. 7TRRNIE®
al= 1 00020500 bl=-7.158963E01 al= 9 363802501 bl=-1263672E{0 al= 5 875393501 bl= -1 627573500
a2= 5 001024E01 bo=-2 845103801 a2= 1 bo= -1 0BOAS7EH0 a2= 1 4683485400 b= - 1 955020E+00
a3= 9 36BREOL b3=-3 276206501 a3= 1 9584BAEH00 b= - L O75051EH00
ad= 2 30973E01 b4=-7.376791E(2 ad= 1 468348E+00 bd= -5, 106501E O1
a5= 5 875303501 b5=-7.
a6= O.7RRIEM bb= -2 639193E (2
a0= 6.362308E 01 a0= 3. 896966E 01 a0= 2 21184E0L
al= 1 272462E{00 bl=-1125379EW00 al= 1 S58787E+00 bil= -2 161179E{00 al= L 327100E+00 bl= -3. 058672E+00
a2= 6.32308E0L b2=-4 195MIEQL a2= 2 338180EH00 bo= -2 03B92EH0 a2= 3 3177516400 b= -4 300465E+00
a3= 1 SH8787EH0 b3= -8 78000BE0L a3= 4 423668E+00 b= -3 523254EH00
o= 3 8060GGEOL ba=-1 GI06BE0L ad= 3 317751EH00 b= - 1 684185E+00
a5= 1 327100EH00 b5= -4. 414881 01
ab= 2 21183E 0L b= -5, 7675135 (2
a0= 8 00L101E 01 a0= 6.2916935 01 a0= 4. 760635E 01
al= 1 60020EA00 bl=-1556260E{00 al= 2 51667/E+00 bil= -3.077062E{00 al= 2 856381E+00 bl= -4. 5224035400
a2= 8 (O0LI0IEOL b2=-6 44171301 a2= 3 775016EH00 b2= -3 641323E{0 a2= 7. 1400525400 b= -8 676344E+00
a3= 251 b3= -1 94G220E0 a3= 9, 5212/0EH00 b= -9. 007512E+00
o= 6201693501 b4=-3 00MBEOL ad= 7. 1400525400 bd= -5, 328429E+00
a5= 2 85638IEH0 b5= - 1 702543400
TABLE 20-1 ab= 4. 7606355 01 b6= - 2 303303E 01

L ow-pass Chebyshev filters (0.5% ripple)

0.01

0.025

0.05

0.075

0.1

0.15

0.2

0.25

0.3

0.35

0.40

0.45

Chapter 20- Chebyshev Filters

2 Pole

4 Pole

6 Pole

337

a0= 9.567529E 01
al= -1 913506E+00
az=

8. 00110201
- 1. 600220E+00
8. 001102E 01

5. 001024E 01
- 1. 000205E+00
5. 001024E 01

3. 849163E 01
al= -7. 698326 01
3. 849163E 01

2. 858111501
al= -5. 716222 01
2. 858111E01

1. 997396E 01
al= -3. 994792E 01
1. 997396E 01

o
m»'aa

E
828

a0= 1 868823E 02
al= -3. 737647E 02
a2= 1 868823F 02

TABLE 20-2

bl= 1 911437E+00
b2= -9, 155749 01

bl= 1 777932E+00
b2=-8. 022106E 01

bl= 1 556269E+00
b2= - 6. 441715 01

bl= 1 338264E+00
b2= - 5. 185469E 01

bl= 1 125379E+00
b2= - 4. 195440E 01

bl= 7. 158993E 01
b2=-2. 845103E 01

bl= 3 249116E 01
b2= - 2. 147536E 01

bl= - 5. 423243E 02
b2= - 1. 974768E 01

bl= -4. 291049E 01
b2=-2. 280633E 01

bl= -8 070777& 01
b2= -3, 087918E 01

bl= - 1. 194365E+00
b2= -4, 4927748 01

bl= - 1. 593937E+00
b2= - 6. 686903E 01

ad= 2 141509 04

High-pass Chebyshev filters (0.5% ripple)

(11 Unstable I1)

b= -6. 318300 01

3. 077062E+00
- 3. 641324500

-3, 990047 01

2. 617304E+00
= - 2. 749252600

. 325548EH00
= - 2. 524546E 01

FET

%iﬁ%
:

- 1. 610655E 01

1. 263672600

. 080487E+00
3276296E01
= -7. 376791E 02

?ﬁﬁ%

3. 904484E- 01
-6. 784138 01
1. 412016E 02
-5. 392238E 02

%ﬁﬁ%

-4. 541478E 01
-7. 4175356 01
-2.361221E 01
-7.096475E 02

FovT

- 1. 26591200
. 203878E+00

-5. 405908 01
- 1. 185538k 01

%ﬁﬁ%

- 2. 039039E+H00
- 2. 012961E+00
-9. 897915 01
- 2. 046700E 01

R %ﬁﬁ%

RHRE
a8
:

a0= 8 630195& 01
= -5. 178118E+00
1. 294529E+01
- 1. 726039E+01
1. 294529E+01
-5. 178118E+H00
8. 630195E 01

=

= -4. 147718EH00

2

4. 760636E- 01
3. 259100E 01
1. 955460E+00

:
FRRRE

%

e

:

S
FRFRE

8. 6186655 04

9. 086141E 05
-5. 451685 04
1. 362921E 03
-1.817228E 03
1. 362921E 03
-5. 451685 04
9. 086141E 05

1. 771089E 06
-1 062654 05
2. 656634E 05
-3. 542179 05
2. 656634 05
- 1. 0626%4E 05
1. 771089E 06

BRRGHEE FEREHED BRRBAGS %%$%%%% RRRGHRD RREGRLE BURRLEG RARGELE FRRHELE DRRELEL RARGELE BREEH

(11 Unstabe I1)
bl= 5. 705102E00
b= - 1. 356935E+01

= -6,
= - 3. 041570E+00

= 4. 4148785 01

%5%%%%
g
E

= -5, 106501E 01
7. 239843E- 02
-2.639193E 02

%ﬁ?ﬁﬁ%

2. 44114901
1. 130306E+00

i
%

%ﬁfﬁﬁ%
%

— - 3. 203726E+00
—-1ﬁemm

FEETRE

= - 6. 079377E+00
A0062E+00

FERET

ki
g
:

- 3. 673283EH00
-5. 707561E 01

338

The Scientist and Engineer's Guide to Digital Sgnal Processing

There are two problems with using tables to design digital filters. First, tables
have a limited choice of parameters. For instance, Table 20-1 only provides
12 different cutoff frequencies, a maximum of 6 poles per filter, and no choice
of passband ripple. Without the ability to select parameters from a continuous
range of values, the filter design cannot be optimized. Second, the coefficients
must be manually transferred from the table into the program. This is very time
consuming and will discourage you from trying alternative values.

Instead of using tabulated values, consider including a subroutine in your
program that calculates the coefficients. Such a program is shown in Table 20-
4. The good news is that the program is relatively simple in structure. After
the four filter parameters are entered, the program spits out the "a" and "b"
coefficients in the arrays A[] and B[]. The bad news is that the program calls
the subroutine in Table 20-5. At first glance this subroutine is really ugly.
Don't despair; it isn't as bad as it seems! There is one simple branch in line
1120. Everything else in the subroutine is straightforward number crunching.
Six variables enter the routine, five variables leave the routine, and fifteen
temporary variables (plus indexes) are used within. Table 20-5 provides two
sets of test data for debugging this subroutine. Chapter 31 discusses the
operation of this program in detail.

Step Response Overshoot

15

Amplitude

o
o
|

0.0

Butterworth and Chebyshev filters have an overshoot of 5 to 30% in their step
responses, becoming larger as the number of polesisincreased. Figure 20-3a
shows the step response for two example Chebyshev filters. Figure (b) shows
something that is unique to digital filters and has no counterpart in analog
electronics: the amount of overshoot in the step response depends to a small
degree on the cutoff frequency of the filter. The excessive overshoot and
ringing in the step response results from the Chebyshev filter being optimized
for the frequency domain at the expense of the time domain.

[y
o
f
1
1
1
1
1
B

|
]]

(3]
W
|

Percent overshoot

i I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I

T T T T

-10

FIGURE 20-3

20 30
Sample number

40 50 60

Frequency

Chebyshev step response. The overshoot in the Chebyshev filter's step response is 5% to 30%,
depending on the number of poles, as shown in (a), and the cutoff frequency, asshownin (b). Figure
(a) isfor acutoff frequency of 0.05, and may be scaled to other cutoff frequencies.

Stability

TABLE 20-3

The maximum number of

Chapter 20- Chebyshev Filters 339

The main limitation of digital filters carried out by convolution is execution
time. It is possible to achieve nearly any filter response, provided you are
willing to wait for the result. Recursive filters are just the opposite. They run
like lightning; however, they are limited in performance. For example, consider
a 6 pole, 0.5% ripple, low-pass filter with a 0.01 cutoff frequency. The
recursion coefficients for this filter can be obtained from Table 20-1:

al=
al=
az2=
a3=
ad=
ab=
a6=

. 391351E- 10

. 348109E- 10 bl= 5. 883343E+00
. 087027E-09 b2= -1.442798E+01
. 782703E-09 b3= 1.887786E+01
. 087027E-09 b4= -1.389914E+01
. 348109E- 10 b5= 5. 459909E+00
. 391351E-10 b6= -8.939932E- 01

R OMNNNO®PRF

Look carefully at these coefficients. The "b" coefficients have an absolute
value of about ten. Using single precision, the round-off noise on each of these
numbers is about one ten-millionth of the value, i.e., 10°®. Now look at the "a"
coefficients, with a value of about 10°. Something is obviously wrong here.
The contribution from the input signal (via the "a" coefficients) will be 1000
times smaller than the noise from the previously calculated output signal (via
the "b" coefficients). This filter won't work! In short, round-off noise limits
the number of poles that can be used in afilter. The actual number will depend
slightly on the ripple and if it is a high or low-pass filter. The approximate
numbers for single precision are:

Cutoff frequency 0.02 005 010 025 040 045 048

polesfor single precision. Maximum poles 4 6 10 20 10 6 4

The filter's performance will start to degrade as this limit is approached; the
step response will show more overshoot, the stopband attenuation will be poor,
and the frequency response will have excessive ripple. If the filter is pushed
too far, or there is an error in the coefficients, the output will probably oscillate
until an overflow occurs.

There are two ways of extending the maximum number of poles that can be
used. First, use double precision. This requires using double precision in the
coefficient calculation as well (including the value for pi).

The second method is to implement the filter in stages. For example, a six
pole filter starts out as a cascade of three stages of two poles each. The
program in Table 20-4 combines these three stages into a single set of
recursion coefficients for easier programming. However, the filter is more
stable if carried out as the original three separate stages. This requires
knowing the "a" and "b" coefficients for each of the stages. These can

340 The Scientist and Engineer's Guide to Digital Sgnal Processing

100 'CHEBY SHEV FILTER- RECURSION COEFFICIENT CALCULATION

110

120 'INITIALIZE VARIABLES

130 DIM A[22] 'holds the "a" coefficients upon program completion
140 DIM BJ[22] 'holds the "b" coefficients upon program completion
150 DIM TA[22] 'internal use for combining stages

160 DIM TB[22] 'internal use for combining stages

170"

180 FOR 1% =0TO 22

190 A[l1%] =0

200 B[I%] =0

210 NEXT 1%

220"

230A[2] =1

240B[2] =1

250 PI = 3.14159265

260 'ENTER THE FOUR FILTER PARAMETERS

270 INPUT "Enter cutoff frequency (0to.5): ", FC

280 INPUT "Enter Ofor LP, 1for HP filter: ", LH

290 INPUT "Enter percent ripple (0to29): ", PR

300 IINPUT "Enter number of poles (2,4,...20): " NP

2%8 FIOR P% =1 TO NP/2 ‘LOOP FOR EACH POLE-PAIR
228 IGOSUB 1000 "The subroutinein TABLE 20-5
228 FOR 1% =0TO 22 'Add coefficients to the cascade

370 TA[1%] = A[1%)]

380 TB[I1%] = B[1%]

390 NEXT 1%

400

410 FORI%=2TO 22

420 A[1%] = AO*TA[1%] + A1*TA[1%-1] + A2* TA[1%-2]
430 B[I%] = TB[I%] - B1*TB[I1%-1] - B2*TB[1%-2]
440 NEXT 1%

450

460 NEXT P%

470"

480B[2] =0 'Finish combining coefficients

490 FOR 1% = 0 TO 20

500 A[l%] = A[1%+2]

510 B[1%] = -B[1%+2]

520 NEXT 1%

530"

540 SA =0 'NORMALIZE THE GAIN
550 SB = 0

560 FOR 1% = 0 TO 20

570 IFLH=0THEN SA = SA + A[l%]

580 IFLH=0THEN SB = SB + B[l%]

500 IFLH=1THENSA = SA + A[I%] * (-1 %
600 IFLH=1THENSB = SB + B[I1%] * (-1)"1%
610 NEXT 1%

620"

630 GAIN=SA /(1- SB)

640"

650 FOR 1% =0TO 20

660 A[1%] = A[1%] / GAIN

670 NEXT 1%

680" "The final recursion coefficientsarein A[] and B[]

690 END

TABLE 20-4

Chapter 20- Chebyshev Filters 341

1000 'THIS SUBROUTINE IS CALLED FROM TABLE 20-4, LINE 340

1010

1020"' Variables entering subroutine: Pl, FC, LH, PR, HP, P%

1030"' Variables exiting subroutine: AO, Al, A2, B1, B2

1040"' Variables used internally: RP, IP, ES, VX, KX, T, W, M, D, K,

1050 X0, X1, X2,Y1,Y2

1060

1070 'Calculate the pole location on the unit circle

1080 RP = -COS(PI/(NP*2) + (P%-1) * PI/NP)
1090 IP= SIN(PI/(NP*2) + (P%-1) * PI/NP)
1100
1110 'Warp from acircle to an ellipse
1120 IFPR =0 THEN GOTO 1210
1130 ES = SQR((100 / (100-PR))*2 -1)
1140 VX = (1/NP) * LOG((1/ES) + SQR((VES*2) + 1))
1150 KX = (1/NP) * LOG((1/ES) + SQR((VES2) - 1))
1160 KX = (EXP(KX) + EXP(-KX))/2
1170 RP= RP* ((EXP(VX) - EXP(-VX)) /2) | KX
1180 IP = IP* ((EXP(VX) + EXP(-VX)) /2)/ KX
1190
1200 's-domain to z-domain conversion
1210 T =2* TAN(1/2)
1220 W =2*PI*FC
1230 M = RP"2 + |P"\2
1240D =4 - 4*RP*T + M*T"2
1250 X0 =T"2/D
1260 X1 =2*T~2/D
1270 X2 =T~2/D
1280 Y1 =(8-2*M*T"2)/D
1290 Y2 = (-4 - 4*RP*T - M*T"2)/D
1300
1310 'LPTOLP, or LP TO HP transform
1320 IF LH = 1 THEN K = -COS(W/2 + 1/2) / COS(W/2 - 1/2)
1330 IF LH = 0 THEN K = SIN(1/2 - W/2) / SIN(1/2 + W/2)
1340D =1+ Y1*K - Y2*K~"2
1350 A0 = (X0 - X1*K + X2*K~2)/D
1360 A1l = (-2*X0*K + X1 + X1*K~"2 - 2*X2*K)/D
1370 A2 = (X0*K"2 - X1*K + X2)/D
1380B1 = (2*K + Y1 + Y1*K"2 - 2*Y 2*K)/D
1390 B2 = (-(K"2) - Y1*K + Y 2)/D
1400 IFLH=1THEN A1 =-A1l
1410 IFLH=1THEN B1=-B1
1420
1430 RETURN
TABLE 20-5

TABLE 20-4 and 20-5

Programto calculatethe"a" and "b" coefficients for Chebyshev recursivefilters. Inlines270-300, four parameters are
entered into the program. The cutoff frequency, FC, is expressed as afraction of the sampling frequency, and therefore
must bein therange: 0to 0.5. Thevariable, LH, is set to avalue of one for a high-pass filter, and zero for alow-pass
filter. The value entered for PR must bein the range of 0to 29, corresponding to 0to 29% ripplein the filter's frequency
response. The number of polesin thefilter, entered in the variable NP, must be an even integer between 2 and 20. At
the completion of the program, the"a" and "b" coefficients are stored inthe arrays A[] and B[] (a,=A[0], &, = A[1],
etc.). TABLE 20-5isasubroutine called from line 340 of the main program. Six variables are passed to this subroutine,
and five variables are returned. Table 20-6 (next page) contains two sets of data to help debug this subroutine. The
functions: COS and SIN, use radians, not degrees. The function: LOG isthe natural (base €) logarithm. Declaring all
floating point variables (including the value of) to be double precision will allow more polesto be used. Tables 20-1
and 20-2 were generated with this program and can be used to test for proper operation. Chapter 33 describes the
mathematical operation of this program.

342 The Scientist and Engineer's Guide to Digital Sgnal Processing

DATA SET 1 DATA SET 2

Enter the subroutine with these values:

FC = 01 FC = 01

LH =0 LH =1

PR =0 PR = 10

NP = 4 NP = 4

P% =1 P = 2

Pl = 3.141592 Pl = 3.141592

These values should be present at line 1200:

RP = -0.923879 RP = -0.136178

IP = 0.382683 IP = 0.933223

ES = not used ES = 0.484322

VX = not used VX = 0.368054

KX = not used KX = 1.057802

These values should be present at line 1310:

T = 1.092605 T = 1.092605

W = 0.628318 W = 0.628318

M = 1.000000 M = 0.889450

D = 9.231528 D = 5.656972

X0 = 0.129316 X0 = 0.211029

X1 = 0.258632 X1 = 0.422058

X2 = 0.129316 X2 = 0.211029

Y1l = 0.607963 Y1l = 1.038784

Y2 = -0.125227 Y2 = -0.789584

These values should be return to the main program:

A0 = 0.061885 A0 = 0.922919

Al = 0.123770 Al = -1.845840

A2 = 0.061885 A2 = 0.922919

B1 = 1.048600 Bl = 1.446913

B2 = -0.296140 B2 = -0.836653
TABLE 20-6

Debugging data. This table contains two sets of data for debugging the
subroutine listed in Table 20-5.

be obtained from the program in Table 20-4. The subroutine in Table 20-5is
called once for each stage in the cascade. For example, it is called three times
for a six pole filter. At the completion of the subroutine, five variables are
return to the main program: A0, Al, A2, B1, & B2. These are the recursion
coefficients for the two pole stage being worked on, and can be used to
implement the filter in stages.

CHAPTER

21

Filter Comparison

Decisions, decisions, decisions! With all these filters to choose from, how do you know which
to use? This chapter is a head-to-head competition between filters; we'll select champions from
each side and let them fight it out. In the first match, digital filters are pitted against analog
filters to see which technology is best. In the second round, the windowed-sinc is matched
against the Chebyshev to find the king of the frequency domain filters. In the final battle, the
moving average fights the single pole filter for the time domain championship. Enough talk; let
the competition begin!

Match #1: Analog vs. Digital Filters

Most digital signals originate in analog electronics. If the signal needs to be
filtered, is it better to use an analog filter before digitization, or a digital filter
after? We will answer this question by letting two of the best contenders
deliver their blows.

The goal will be to provide a low-pass filter at 1 kHz. Fighting for the analog
side is a six pole Chebyshev filter with 0.5 dB (6%) ripple. As described in
Chapter 3, this can be constructed with 3 op amps, 12 resistors, and 6
capacitors. In the digital corner, the windowed-sinc is warming up and ready
to fight. The analog signal is digitized at a 10 kHz sampling rate, making the
cutoff frequency 0.1 on the digital frequency scale. The length of the
windowed-sinc will be chosen to be 129 points, providing the same 90% to
10% roll-off asthe analog filter. Fair isfair. Figure 21-1 shows the frequency
and step responses for these two filters.

Let's compare the two filters blow-by-blow. As shown in (a) and (b), the
analog filter has a 6% ripple in the passband, while the digital filter is
perfectly flat (within 0.02%). The analog designer might argue that the ripple
can be selected in the design; however, this misses the point. The flatness
achievable with analog filters is limited by the accuracy of their resistors and

343

344

The Scientist and Engineer's Guide to Digital Sgnal Processing

capacitors. Even if a Butterworth response is designed (i.e., 0% ripple), filters
of this complexity will have a residue ripple of, perhaps, 1%. On the other
hand, the flatness of digital filters is primarily limited by round-off error,
making them hundreds of times flatter than their analog counterparts. Score
one point for the digital filter.

Next, look at the frequency response on a log scale, as shown in (c) and (d).
Again, the digital filter is clearly the victor in both roll-off and stopband
attenuation. Even if the analog performance is improved by adding additional
stages, it till can't compare to the digital filter. For instance, imagine that you
need to improve these two parameters by a factor of 100. This can be done
with simple modifications to the windowed-sinc, but is virtually impossible for
the analog circuit. Score two more for the digital filter.

The step response of the two filtersis shown in (€) and (f). The digital filter's
step response is symmetrical between the lower and upper portions of the
step, i.e., it has a linear phase. The analog filter's step response is not
symmetrical, i.e., it has a nonlinear phase. One more point for the digital
filter. Lastly, the analog filter overshoots about 20% on one side of the step.
The digital filter overshoots about 10%, but on both sides of the step. Since
both are bad, no points are awarded.

In spite of this beating, there are still many applications where analog filters
should, or must, be used. This is not related to the actual performance of the
filter (i.e., what goes in and what comes out), but to the general advantages that
analog circuits have over digital techniques. The first advantage is speed:
digital is slow; analog is fast. For example, a personal computer can only filter
data at about 10,000 samples per second, using FFT convolution. Even simple
op amps can operate at 100 kHz to 1 MHz, 10 to 100 times as fast as the
digital system!

The second inherent advantage of analog over digital is dynamic range. This
comes in two flavors. Amplitude dynamic range is the ratio between the
largest signal that can be passed through a system, and the inherent noise of the
system. For instance, a 12 bit ADC has a saturation level of 4095, and an rms
guantization noise of 0.29 digital numbers, for a dynamic range of about
14000. In comparison, a standard op amp has a saturation voltage of about
20 volts and an internal noise of about 2 microvolts, for a dynamic range
of about ten million. Just as before, a simple op amp devastates the digital
system.

The other flavor is frequency dynamic range. For example, it is easy to
design an op amp circuit to simultaneously handle frequencies between 0.01
Hz and 100 kHz (seven decades). When thisis tried with adigital system,
the computer becomes swamped with data. For instance, sampling at 200
kHz, it takes 20 million points to capture one complete cycle at 0.01 Hz. You
may have noticed that the frequency response of digital filters is almost
always plotted on a linear frequency scale, while analog filters are usually
displayed with a logarithmic frequency. This is because digital filters need

Amplitude

Amplitude (dB)

Amplitude

Chapter 21- Filter Comparison

Analog Filter
(6 pole 0.5dB Chebyshev)
1.50 7 T T
1 257___‘ a. Frequency response \
1.00
0.75
0.50
0.25 \
0.00
0 1000 2000 3000 4000 5000
Frequency (hertz)

40 I I I

20,__4 c. Frequency response (dB) 1

0

20

-40 \\

-60 \\

-80 \\
-100 T~

0 1000 2000 3000 4000 5000
Frequency (hertz)
2.0 : :
e. Step response

1.5

AV

0.5 /

0.0 /
0.5

FlI

-4 2 0 2 4 6
Time (milliseconds)

GURE 21-1

Amplitude

Amplitude (dB)

Amplitude

345

Digital Filter
(129 point windowed-sinc)
1.50 T T T
]]]
1_257___‘ b. Frequency response ‘
1.00
0.75 \
0.50
0.25
0.00
0 0.1 0.2 03 0.4 05
Frequency
40 T T T
I I I
20,__4 d. Frequency response (dB) 1
0 ~
20
-40 \
-60 \
-80
-100
0 0.1 0.2 0.3 0.4 0.5
Frequency
2.0 , ,
I I
f. Step response
1.5
1.0 o
0.5
0.0 S
0.5
-40 20 0 20 40 60 80

Sample number

Comparison of analog and digital filters. Digital filters have better performance in many areas, such as:
passband ripple, (a) vs. (b), roll-off and stopband attenuation, (c) vs. (d), and step response symmetry,
(e) vs. (f). Thedigital filter in this example has a cutoff frequency of 0.1 of the 10 kHz sampling rate.
This provides afair comparison to the 1 kHz cutoff frequency of the analog filter.

alinear scale to show their exceptional filter performance, while analog filters
need the logarithmic scale to show their huge dynamic range.

346

The Scientist and Engineer's Guide to Digital Sgnal Processing

Match #2: Windowed-Sinc vs. Chebyshev

Both the windowed-sinc and the Chebyshev filters are designed to separate one
band of frequencies from another. The windowed-sinc is an FIR filter
implemented by convolution, while the Chebyshev is an IR filter carried out
by recursion. Which is the best digital filter in the frequency domain? Well
let them fight it out.

The recursive filter contender will be a 0.5% ripple, 6 pole Chebyshev
low-pass filter. A fair comparison is complicated by the fact that the
Chebyshev's frequency response changes with the cutoff frequency. We will
use a cutoff frequency of 0.2, and select the windowed-sinc's filter kernel to be
51 points. This makes both filters have the same 90% to 10% roll-off, as
shown in Fig. 21-2(a).

Now the pushing and shoving begins. The recursive filter has a 0.5% ripple
in the passband, while the windowed-sinc is flat. However, we could easily set
the recursive filter ripple to 0% if needed. No points. Figure 21-2b shows that
the windowed-sinc has a much better stopband attenuation than the Chebyshev.
One point for the windowed-sinc.

Figure 21-3 shows the step response of the two filters. Both are bad, as you
should expect for frequency domain filters. The recursive filter has a nonlinear
phase, but this can be corrected with bidirectional filtering. Since both filters
are so ugly in this parameter, we will call this a draw.

So far, there isn't much difference between these two filters; either will work
when moderate performance is needed. The heavy hitting comes over two
critical issues. maximum performance and speed. The windowed-sinc is a
powerhouse, while the Chebyshev is quick and agile. Suppose you have a
really tough frequency separation problem, say, needing to isolate a 100

40 T T T

T T T T T
1 1 I I 1 1 1 I
I I I
a. Fr(laquency rclesponse ‘i i 207__‘ b. Fr(lequency rlesponse (IdB) L___ i’ _______
I I I I I I I I
| | | | 0 ' ' I Lo
1.0 1 [[I a 1 1 1
@ | Y 1 i S | | |
8 I I N 20— el UNNeCL L
b= ! Chebyshev ! % : : :
g— i recur51lve i £ a0l i_ _______ i___ N Chebyghev |
< | | | g— ! ! recursive
0.5+ windowed-sinc i it - < ol . : . N
; ! ! ! windowed-sinc
I I I I
| | | | 80— IS [N, W N S
I I I I I I
I I I I I I
I I I I I I
0.0 f j " i -100 t t t —
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
FIGURE 21-2

Windowed-sinc and Chebyshev frequency responses. Frequency responses are shown for a 51 point
windowed-sinc filter and a 6 pole, 0.5% ripple Chebyshev recursive filter. The windowed-sinc has better
stopband attenuation, but either will work in moderate performance applications. The cutoff frequency of both
filtersis 0.2, measured at an a