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A BC NOTE

Students learn in a number of ways and in a variety of settings. They learn
through lectures, in informal study groups, or alone at their desks or in
front of a computer terminal. Wherever the location, students learn most
efficiently by solving problems, with frequent feedback from an instruc-
tor, following a worked-out problem as a model. Worked-out problems
have a number of positive aspects. They can capture the essence of a
key concept — often better than paragraphs of explanation. They provide
methods for acquiring new knowledge and for evaluating its use. They
provide a taste of real-life issues and demonstrate techniques for solving
real problems. Most important, they encourage active participation in
learning.

We created the BookWare Companion Series because we saw an un-

fulfilled need for computer-based learning tools that address the compu- .

tational aspects of problem solving across the curriculum. The BC series
concept was also shaped by other forces: a general agreement among in-
structors that students learn best when they are actively involved in their
own learning, and the realization that textbooks have not kept up with or
matched student learning needs. Educators and publishers are just begin-
ning to understand that the amount of material crammed into most text-
books cannot be absorbed, let alone the knowledge to be mastered in four
years of undergraduate study. Rather than attempting to teach students
all the latest knowledge, colleges and universities are now striving to teach
them to reason: to understand the relationships and connections between
new information and existing knowledge; and to cultivate problem-solving
skills, intuition, and critical thinking. The BookWare Companion Series
was developed in response to this changing mission.

Specifically, the BookWare Companion Series was designed for educa-
tors who wish to integrate their curriculum with computer-based learning
tools, and for students who find their current textbooks overwhelming.
The former will find in the BookWare Companion Series the means by
which to use powerful software tools to support their course activities,
without having to customize the applications themselves. The latter will
find relevant problems and examples quickly and easily and have instant
electronic access to them.




We hope that the BC series will become a clearinghouse for the ex-
change of reliable teaching ideas and a baseline series for incorporating
learning advances from emerging technologies. For example, we intend to
reuse the kernel of each BC volume and add electronic scripts from other
software programs as desired by customers. We are pursuing the addition
of Al/Expert System technology to provide an intelligent tutoring capa-
bility for future iterations of BC volumes. We also anticipate a paperless
environment in which BC content can flow freely over high-speed net-
works to support remote learning activities. In order for these and other
goals to be realized, educators, students, software developers, network ad-
ministrators, and publishers will need to communicate freely and actively
with each other. We encourage you to participate in these exciting de-
velopments and become involved in the BC Series today. If you have an
idea for improving the effectiveness of the BC concept, an example prob-
lem, a demonstration using software or multimedia, or an opportunity to
explore, contact us.

Thank you one and all for your continuing support.

The PWS Electrical Engineering Team:

Bill_Barter@PWS.Com Acquisitions Editor
Angie Mlinko@PWS.Com Assistant Editor
Nathan_Wilbur@PWS.Com Marketing Manager
Pam_Rockwell@PWS.Com Production Editor
Monica-Block@PWS.Com Editorial Assistant
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PREFACE

From the beginning of the last decade we have witnessed a revolution
in computer technology and an explosion in user-friendly applications.
This revolution is still continuing today with low-cost personal computer
systems that rival the performance of expensive workstations. This tech-
nological prowess should be brought to bear on the educational process
and, in particular, on effective teaching that can result in enhanced learn-
ing. This companion book on digital signal processing (DSP) makes a
small contribution toward that goal.

The teaching methods in signal processing have changed over the
years from the simple “lecture-only” format to a more integrated “lecture-
laboratory” environment in which practical hands-on issues are taught
using DSP hardware. However, for effective teaching of DSP the lecture
component must also make extensive use of computer-based explanations,
examples, and exercises. For the last several years, the MATLAB software
developed by The MathWorks, Inc. has established itself as the de facto
standard for numerical computation in the signal-processing community
and as a platform of choice for algorithm development. There are sev-
eral reasons for this development, but one most important reason is that
MATLAB is available on practically all computing platforms. For several
years the expensive Professional Version of MATLAB was the only version
available on the market. The advent of an inexpensive Student Edition
bas now made it possible to use it in classrooms. Recently, several text-
books in DSP have appeared which generally provide exercises that can
be done using MATLAB. However, for students (and for practicing engi-
neers interested in DSP) there are no “how-to” references for effective
use of MATLAB in DSP. In this book we have made an attempt at inte-
grating MATLAB with traditional topics in DSP so that it can be used
to explore difficult topics and solve problems to gain insight. Many prob-
lems or design algorithms in DSP require considerable computation. It is
for these that MATLAB provides a convenient tool so that many scenar-
ios can be tried with ease. Such an approach can enhance the learning
process.
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SCOPE OF THE BOOK

This book is primarily intended for use as a supplement in junior- or
senior-level undergraduate courses on DSP. We assume that the student
(or user) is familiar with the fundamentals of MATLAB. Those topics are
not covered since several tutorial books and manuals on MATLAB are
available. Similarly, this book is not written as a textbook in DSP because
of the availability of excellent textbooks. What we have tried to do is to
provide enough depth to the material augmented by MATLAB functions
and examples so that the presentation is consistent, logical, and enjoyable.
Therefore this book can also be used as a self-study guide by anyone
interested in DSP.

When this project got under way, version 3.5 of the Student Edition of
MATLAB was available. Since the beginning of 1995 a more advanced GUI
(graphical user interface) version 4.0 of the Student Edition is available.
This book is compatible with the newer version.

ORGANIZATION OF THE BOOK
-

The first eight chapters of this book discuss traditional material covered
in an introductory course on DSP. The last two chapters are presented
as applications in DSP with emphasis on MATLAB-based projects. The
following is a list of chapters and a brief description of their contents:

Chapter 1, Introduction: This chapter introduces readers to the disci-
pline of signal processing and discusses the advantages of DSP over analog
signal processing. A brief introduction to MATLAB is also provided.

Chapter 2, Discrete-time Signals and Systems: This chapter provides
a brief review of discrete-time signals and systems in the time domain.
Appropriate use of MATLAB functions is demonstrated.

. Chapter 8, The Discrete-time Fourier Analysis: This chapter dis-
cusses discrete-time signal and system representation in the frequency
domain. Sampling and reconstruction of analog signals are also presented.

Chapter 4, The z-Transform: This chapter provides signal and sys-
tem description in the complex frequency domain. MATLAB techniques are
introduced to analyze z-transforms and to compute inverse z-transforms.
Solutions of difference equations using the z-transform and MATLAB are
provided.

Chapter 5, The Discrete Fourier Transform: This chapter is devoted
to the computation of the Fourier transform and to its efficient imple-
mentation. The discrete Fourier series is used to introduce the discrete
Fourier transform, and several of its properties are demonstrated using

PREFACE
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MaTLAB. Topics such as fast convolution and fast Fourier transform are
thoroughly discussed.

Chapter 6, Digital Filter Structures: This chapter discusses several
structures for the implementation of digital filters. Several useful MATLAB
functions are developed for the determination and implementation of these
structures. Lattice and ladder filters are also introduced and discussed.

Chapter 7, FIR Filter Design: This chapter and the next introduce
the important topic of digital filter design. Three important design tech-
niques for FIR filters — namely, window design, frequency sampling de-
sign, and the equiripple filter design — are discussed. Several design ex-
amples are provided using MATLAB.

Chapter 8, IIR Filter Design: Included in this chapter are techniques
in IIR filter design. It begins with analog filter design and introduces such
topics as filter transformations and filter-band transformation. Once again
several design examples using MATLAB are provided.

Chapter 9, Applications in Adaptive Filtering: This chapter is the
first of two chapters on projects using MATLAB. Included is an intro-
duction to the theory and implementation of adaptive FIR filters with
projects in system identification, interference suppression, narrowband
frequency enhancement, and adaptive equalization.

Chapter 10, Applications in Communications: This chapter focuses
on several projects dealing with waveform representation and coding, and
with digital communications. Included is a description of pulse-code mod-
ulation (PCM), differential PCM (DPCM) and adaptive DPCM (AD-
PCM), delta modulation (DM) and adaptive DM (ADM), linear predic-
tive coding (LPC), generation and detection of dual-tone multifrequency
(DTMF) signals, and a description of signal detection applications in bi-
nary communications and spread-spectrum communications.

-

The book is an outgrowth of our teaching of a MATLAB-based undergrad-
uate DSP course over several years. Many MATLAB functions discussed in
this book were developed in this course. These functions are available on
the accompanying diskette as a pwsk-dsp toolbox. Create a separate di-
rectory for this toolbox and reference it in the matlabpath environment.
The book also contains numerous MATLAB scripts in many examples.
These scripts are also made available on the disk and are kept in individ-
ual directories created for each chapter. In addition, many figures were
produced as MATLAB plots, and their scripts are available in the figures
directory. Students should study these scripts to gain insight into the
MATLAB procedures. We will appreciate any comments, corrections, or
compact coding of these programs and scripts. Solutions to problems and

Software
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the associated script files will be made available to instructors in the near
future.

Further information about MATLAB and related publications may
be obtained from

The MathWorks, Inc.

24 Prime Park Way

Natick, MA 01760-1500

Phone: (508) 647-7000 Fax: (508) 647-7001
E-mail: info@mathworks.com

WWW: http://www.mathworks.com
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PREFACE

INTRODUCTION

Over the past several decades the field of digital signal processing (DSP)
has grown to be important both theoretically and technologically. A major
reason for its success in industry is due to the development and use of low-
cost software and hardware. New technologies and applications in various
fields are now poised to take advantage of DSP algorithms. This will lead
to a greater demand for electrical engineers with background in DSP.
Therefore it is necessary to make DSP an integral part of any electrical
engineering curriculum.

Not long ago an introductory course on DSP was given mainly at
the graduate level. It was supplemented by computer exercises on filter
design, spectrum estimation, and related topics using mainframe (or mini)
computers. However, considerable advances in personal computers and
software over the past decade made it possible to introduce a DSP course
to undergraduates. Since DSP applications are primarily algorithms that
are implemented either on a DSP processor [11] or in software, a fair
amount of programming is required. Using interactive software, such as
MATLAB, it is now possible to place more emphasis on learning new and
difficult concepts than on programming algorithms. Interesting practical
examples can be discussed, and useful problems can be explored.

With this philosophy in mind, we have developed this book as a com-
panion book (to traditional textbooks like [16, 19]) in which MATLAB is
an integral part in the discussion of topics and concepts. We have chosen
MATLAB as the programming tool primarily because of its wide avail-
ability on computing platforms in many universities across the country.
Furthermore, a student edition of MATLAB has been available for several
years, placing it among the least expensive software for educational pur-
poses. We have treated MATLAB as a computational and programming
toolbox containing several tools (sort of a super calculator with several
keys) that can be used to explore and solve problems and, thereby, en-
hance the learning process.

This book is written at an introductory level in order to introduce
undergraduate students to an exciting and practical field of DSP. We
emphasize that this is not a textbook in the traditional sense but a




companion book in which more attention is given to problem solving and
hands-on experience with MATLAB. Similarly, it is not a tutorial book
in MATLAB. We assume that the student is familiar with MATLAB and is
currently taking a course in DSP. The book provides basic analytical tools
needed to process real-world signals (a.k.a. analog signals) using digital
techniques. We deal mostly with discrete-time signals and systems, which
are analyzed in both the time and the frequency domains. The analysis
and design of processing structures called filters and spectrum analyzers
is one of the most important aspects of DSP and is treated in great detail
in this book. Many advanced topics in DSP (which are generally covered
in a graduate course) are not treated in this book, but it is hoped that
the experience gained in this book will allow students to tackle advanced
topics with greater ease and understanding.

In this chapter we provide a brief overview of both DSP and MATLAB.

OVERVIEW OF DIGITAL SIGNAL PROCESSING

HOW ARE
SIGNALS
PROCESSED?

In this modern world we are surrounded by all kinds of signals in vari-
ous forms. Some of the signals are natural, but most of the signals are
manmade. Some signals are necessary (speech), some are pleasant (mu-
sic), while many are unwanted or unnecessary in a given situation. In an
engineering context, signals are carriers of information, both useful and
unwanted. Therefore extracting or enhancing the useful information from
a mix of conflicting information is a simplest form of signal processing.
More generally, signal processing is an operation designed for extracting,
enhancing, storing, and transmitting useful information. The distinction
between useful and unwanted information is often subjective as well as
objective. Hence signal processing tends to be application dependent.

The signals that we encounter in practice are mostly analog signals. These
signals, which vary continuously in time and amplitude, are processed
using electrical networks containing active and passive circuit elements.
This approach is known as analog signal processing (ASP)—for example,
radio and television receivers.

Analog signal:  z,(t) ——»F&nalog signal processor | — ¥a(t) :Analog signal

They can also be processed using digital hardware containing adders,
multipliers, and logic elements or using special-purpose microprocessors.
However, one needs to convert analog signals into a form suitable for
digital hardware. This form of the signal is called a digital signal. It takes

Chapter 1 ® INTRODUCTION

Analog —

ADVANTAGES
OF DSP OVER
ASP

one of the finite number of values at specific instances in time, and hence
it can be represented by binary numbers, or bits. The processing of digital
signals is called DSP; in block diagram form it is represented by

Equivalent Analog Signal Processor

~

(o) — [ 8! [p¥) "% [AG] — [FoE] |~ Analog
e e

Discrete System

where the various block elements are discussed below.

PrF: This is a prefilter or an antialiasing filter, which conditions the
analog signal to prevent aliasing.

ADC: This is called an analog-to-digital converter, which produces a
stream of binary numbers from analog signals.

Digital signal processor: This is the heart of DSP and can represent a
general-purpose computer or a special-purpose processor, or digital hard-
ware, and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog
converter, which produces a staircase waveform from a sequence of binary
numbers, a first step towards producing an analog signal.

PoF: This is a postfilter to smooth out staircase waveform into the de-
sired analog signal.

" It appears from the above two approaches to signal processing, analog
and digital, that the DSP approach is the more complicated, containing
more components than the “simpler looking” ASP. Therefore one might
ask a question: Why process signals digitally? The answer lies in many
advantages offered by DSP.

A major drawback of ASP is its limited scope for performing complicated
signal processing applications. This translates into nonflexibility in pro-
cessing and complexity in system designs. All of these generally lead to
expensive products. On the other hand, using a DSP approach, it is pos-
sible to convert an inexpensive personal computer into a powerful signal
processor. Some important advantages of DSP are these:

1. Systems using the DSP approach can be developed using software
running on a general-purpose computer. Therefore DSP is relatively con-
venient to develop and test, and the software is portable.

2. DSP operations are based solely on additions and multiplications,
leading to extremely stable processing capability—for example, stability
independent of temperature.

Overview of Digital Signal Processing 3



3. DSP operations can easily be modified in real time, often by simple
programming changes, or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs
of memories, gates, microprocessors, and so forth.

The principal disadvantage of DSP is the speed of operations, espe-
cially at very high frequencies. Primarily due to the above advantages,
DSP is now becoming a first choice in many technologies and applica-
tions, such as consumer electronics, communications, wireless telephones,
and medical imaging.

In some applications, such as voice synthesis, a signal is first analyzed
to study its characteristics, which are then used in digital filtering to
generate a synthetic voice.

In the first half of this book we will deal with the signal-analysis
aspect of DSP. In Chapter 2 we will begin with basic descriptions of
discrete-time signals and systems. These signals and systems are analyzed
in the frequency domain in Chapter 3. A generalization of the frequency-
domain description, called the z-transform, is introduced in Chapter 4.
The practical algorithms for computing the Fourier transform are dis-
cussed in Chapter 5 in the form of the discrete Fourier transform and the
fast Fourier transform.

The second half of this book is devoted to the signal-filtering aspect of
DSP. In Chapter 6 we describe various implementations and structures of
digital filters. In Chapter 7 we provide design techniques and algorithms
for designing one type of digital filter called finite-duration impulse re-
sponse (or FIR) filters, while in Chapter 8 we provide a similar treatment
for another type of filter called infinite-duration impulse response (or IIR)
filters. In both chapters we discuss only the simpler but practically use-
ful techniques of filter design. More advanced techniques are not covered.
Finally, the last two chapters provide some practical applications in the
form of projects that can be done using material learned in the first eight
chapters. In Chapter 9 concepts in adaptive filtering are introduced, and
simple projects in system identification, interference suppression, adap-
tive line enhancement, and so forth are discussed. In Chapter 10 a brief
introduction to digital communications is presented with projects in such
topics as PCM, DPCM, and LPC being outlined.

In all these chapters the central theme is the generous use and ad-
equate demonstration of MATLAB tools. Most of the existing MATLAB
functions for DSP are described in detail, and their correct use is demon-
strated in many examples. Furthermore, many new MATLAB functions are
developed to provide insights into the working of many algorithms. We
believe that this “hand-holding” approach will enable students to dispel
fears about DSP and will provide an enriching learning experience.

A FEW WORDS ABOUT MATLAB®
—ik

TWO Most DSP operations can be categorized as being either signal analysis
IMPORTANT tasks or signal filtering tasks as shown below.
CATEGORIES
OF DSP Digital signal
! i P
, Analysis | Digital filter
Measurements Digital signal
Signal analysis This task deals with the measurement of signal prop-
erties. It is generally a frequency-domain operation. Some of its applica-
tions are
e spectrum (frequency and/or phase) analysis
o speech recognition
o speaker verification
o target detection
Signal filtering  This task is characterized by the “signal in-signal out”
situation. The systems that perform this task are generally called filters.
It is usually (but not always) a time-domain operation. Some of the ap-
plications are
e removal of unwanted background noise
e removal of interference
e separation of frequency bands
o shaping of the signal spectrum
4 Chapter 1 ® INTRODUCTION

MATLAB is an interactive, matrix-based system for scientific and engi-
neering numeric computation and visualization. Its strength lies in the
fact that complex numerical problems can be solved easily and in a frac-
tion of the time required with a programming language such as Fortran
or C. It is also powerful in the sense that by using its relatively simple
programming capability, MATLAB can be easily extended to create new
commands and functions.

A Few Words about MATLAB 5
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MATLAB is available on a number of computing environments:
Sun/HP/VAXstation workstations, 80x86 PCs, Apple Macintosh, VAX,
and several parallel machines. The basic MATLAB program is further
enhanced by the availability of numerous toolboxes (a collection of spe-
cialized functions in a specific topic) over the years. The information in
this book generally applies to all these environments. The development
of this book was begun under the professional version 3.5 running un-
der DOS. A relatively inexpensive Student Edition containing limited
toolboxes and functions was also available from Prentice Hall publishers.
Therefore we decided to make MATLAB routines and other material in
this book compatible with the Student Edition. However, at present the
current major version of MATLAB is version 4.2 under graphical user
interface (GUI). Also a new Student Edition in GUI is available since
February 1995, containing enhanced and new toolboxes. This book is
certainly compatible with this edition, and every attempt is made to
identify the new functions that are available and that can be used. A new
toolbox available in the Student Edition is the Symbolic toolbox, which is
based on Maple engine. Since digital signal processing primarily requires
numerical computations, the Symbolic toolbox is neither discussed nor
used in this book.

The scope and power of MATLAB go far beyond the few words given
in this section. It is senseless to provide a concise information or tuto-
rial on MATLAB when excellent books and guides are available on this
topic. Students should consult the MATLAB User’s Guide [2] and Refer-
ence Guide [1]. Similarly, students should attempt the tutorial given in
[3]. The information given in all these references, along with the online
facility, usually is sufficient for students to use this book.

Chapter 1 ® INTRODUCTION

T

DISCRETE-TIME
SIGNALS AND
SYSTEMS

We begin with the concepts of signals and systems in discrete time. A
number of important types of signals and their operations are introduced.
Linear and shift-invariant systems are discussed mostly because they are
easier to analyze and implement. The convolution and the difference equa-
tion representations are given special attention because of their impor-
tance in digital signal processing and in MATLAB. The emphasis in this
chapter is on the representations and implementation of signals and sys-
tems using MATLAB.

DISCRETE-TIME SIGNALS
— -

Signals are broadly classified into analog and discrete signals. An analog
signal will be denoted by Z4(t), in which the variable ¢ can represent any
physical quantity, but we will assume that it represents time in seconds. A
discrete signal will be denoted by  (n), in which the variable n is integer-
valued and represents discrete instances in time. Therefore it is also called
a discrete-time signal, which is a number sequence and will be denoted by
one of the following notations:

z(n) = {z(m)} = {-- yx(—l),x(TO),z(l), -}

where the up-arrow indicates the sample at n = 0.

In MATLAB we can represent a finite-duration sequence by a row
vector of appropriate values. However, such a vector does not have any
information about sample position n. Therefore a correct representation




TYPES OF
SEQUENCES

of z(n) would require two vectors, one each for z and n. For example, a
sequence z(n) = {2,1,-1,0,1,4,3,7} can be represented in MATLAB by
T

>> n=[-3,-2,-1,0,1,2,3,4); =x=[2,1,-1,0,1,4,3,7];

Generally, we will use the x-vector representation alone when the sample
position information is not required or when such information is trivial
(e.g. when the sequence begins at n = 0). An arbitrary infinite-duration
sequence cannot be represented in MATLAB due to the finite memory
limitations.

We use several elementary sequences in digital signal processing for anal-
ysis purposes. Their definitions and MATLAB representations are given
below.

1. Unit semple sequence:

1, n=0_
6("‘): {0, n#o = {"'10101%»0701"'}

In MATLAB the function zeros(1,N) generates a row vector of N zeros,
which can be used to implement §(n) over a finite interval. However, the
logical relation n==0 is an elegant way of implementing 6(n). For example,
to implement

_J1, n=ng
6(77. no) = {0’ n # o
over the n; < ng < ny interval, we will use the following MATLAB func-
tion.

function [x,n] = impseq(n0,ni,n2)

% Generates x(n) = delta(n-n0); ni <= n <= n2
%
% [x,n] = impseq(n0,n1,n2)

%

n = [ni:n2]; x = [(@-n0) == 0];

2. Unit step sequence:

1, n20_
u(n)—{O, n<0—{...,0,0,%,1,1,...}

In MATLAB the function ones(1,N) generates a row vector of N ones. It

can be used to generate u(n) over a finite interval. Once again an elegant
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approach is to use the logical relation n>=0. To implement

1, n2ng
“("""°)={0, n < ng

over the ny < ng < ny interval, we will use the following MATLAB func-
tion.

function [x,n] = stepseq(n0,n1,n2)
% Generates x(n) = u(n-n0); nl <= n <= n2

% [x,n] = stepseq(n0,n1,n2)
n = [n1:n2); x = [(n-n0) >= 0];
3. Real-valued exponential sequence:
z(n) =a™,Vn; a €R
In MATLAB an array operator “.~” is required to implement a real ex-
ponential sequence. For example, to generate z(n) = 09", 0<n <10,
we will need the following MATLAB script:
>>n = [0:10); x = (0.9).7n;
4. Complez-valued exponential sequence:
z(n) = eleHiwo)n yn
where ¢ is called an attenuation and wp is the frequency in radians. A
MATLAB function exp is used to generate exponential sequences. For ex-
ample, to generate z(n) = exp[(2+33)n], 0 < n < 10, we will need
the following MATLAB script:
>> n = [0:10]; x = exp((2+3j)#n);
5. Sinusoidal sequence:
z(n) = cos(won + 6),Vn

where @ is the phase in radians. A MATLAB function cos (or sin) is
used to generate sinusoidal sequences. For example, to generate z(n) =
3cos(0.1mn+7/3)+2sin(0.57n), 0 < n < 10, we will need the following
MATLAB script:

>>n = [0:10]; x = 3%cos(0.1*pi*n+pi/3) + 2#sin(0.5+pi*n);

Discrete-time Signals



6. Random sequences: Many practical sequences cannot be described
by mathematical expressions like those' above. These sequences are called
random (or stochastic) sequences and are characterized by parameters of
the associated probability density functions or their statistical moments. i

relational operations like “<=" and “==", and the find function are re-
quired to make z; (n) and z2 (n} of equal length. The following function,
called the sigadd function, demonstrates these operations.

In MATLAB two types of (pseudo-) random sequences are available. The function [y,n] = sigadd(x1,n1,x2,n2)

rand(1,N) generates a length N random sequence whose elements are % implements y(n) = x1(n)+x2(n)

uniformly distributed between [0, 1]. The randn(1,N) generates a length %

N Gaussian random sequence with mean 0 and variance 1. Other random % [y,n) = sigadd(xi,n1,x2,02)

sequences can be generated using transformations of the above functions. % y = sum sequence over n, which includes nl and n2

. . NI % x1 = first sequence over nl
7. Periodic sequence: A sequence z(n) is periodic if z(n) = z(n+ N) | :
A X N ’ ! L x2 = d n2 (n2 can be different f nt)
Vn. The smallest integer N that satisfies the above relation is called the : % x2 = second sequence over on oe on
fundamental period. We will use Z(n) to denote a periodic sequence. To

o = min(min(n1),min(n2)) :max(max(n1) ,max(n2)); % duration of y(n)
generate P periods of #(n) from one period {z(n), 0<n <N -1}, we

yl = zeros(1,length(n)); y2 = yi; % initialization

can copy z (n) P times: y1(£ind((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(£ind ((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
>> xtilde = [x,x,...,x]; ¥ = yi+y2; % sequence addition

But an elegant approach is to use MATLAB’s powerful indexing capabili-
ties. First we generate a matrix containing P rows of z (n) values. Then
we can concatenate P rows into a long row vector using the construct
(:). However, this construct works only on columns. Hence we will have
to use the matrix transposition operator * to provide the same effect on

Its use is illustrated in Example 2.2.
2. Signal multiplication: This is a sample-by-sample multiplication
(or “dot” multiplication) given by

{z1(n)} - {z2(n)} = {z1(n)z2(n)}

rows.
It is implemented in MATLAB by the array operator “.*”. Once again

>> xtilde = x’ * ones(1,P); % P columns of x; x is a row vector the similar restrictions apply for the .* operator as for the + operator.

>> xtilde = xtilde(:); % long column vector Therefore we have developed the sigmult function, which is similar to
>> xtilde = xtilde’; % long row vector the sigadd function. )
Note that the last two lines can be combined into one for compact coding. function [y,n] = sigmult(xi,nl,x2,n2)
This is shown in Example 2.1. % implements y(n) = xi(n)*x2(n)
%
% [y,n] = sigmult(xi,ni,x2,n2)
OPERATIONS Here we briefly describe basic sequence operations and their MATLAB % y = product sequence over n, which includes nl and n2
ON equivalents. % x1 = first sequence over ni
SEQUENCES . . % x2 = second sequence over n2 (n2 can be different from ni)
1. Signal addition: This is a sample-by-sample addition given by %
n = min(min(ni) ,min(n2)) :max(max(nl) ,max(n2)); % duration of y(n)
{z1(n)} + {z2(n)} = {z1(n) + z2(n)} y1 = zeros(1,length(n)); y2 = yi; %
y1(£ind((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
It is implemented in MATLAB by the arithmetic operator “+”. However, y2(£ind((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
the lengths of z; (n) and z3(n) must be the same. If sequences are of y =yl % y2; % sequence multiplication

unequal lengths, or if the sample positions are different for equal-length
sequences, then we cannot directly use the operator +. We have to first Its use is also given in Example 2.2.

augment 7, (n) and 23 (n) so that they have the same position vector n 3. Scaling: In this operation each sample is multiplied by a scalar a.
(and hence the same length). This requires careful attention to MATLAB's
indexing operations. In particular, logical operation of intersection “&”, a{z(n)} = {ez(n)}
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A

An arithmetic operator “*” is used to implement the scaling operation in
MATLAB.

4. Shifting: In this operation each sample of z(n) is shifted by an
amount k to obtain a shifted sequence y(n).

y(n) = {z(n - k)}
If we let m = n — k, then n = m + k and the above operation is given by
y(m+k) = {z(m)}

Hence this operation has no effect on the vector x, but the vector n
is changed by adding k to each element. This is shown in the function
sigshift.

function [y,n] = sigshift(x,m,n0)
% implements y(n) = x(n-n0)

% Iy,n] = sigshift(x,m,n0)

n=mnd; y = Xx;

Its use is given in Example 2.2.
5. Folding: In this operation each sample of x(n) is flipped around
n = 0 to obtain a folded sequence y(n).

y(n) = {z(-n)}

In MATLAB this operation is implemented by £1iplr (x)function for sam-
ple values and by -£1iplr(n) function for sample positions as shown in
the sigfold function.

function [y,n) = sigfold(x,n)
% implements y(n) = x(-m)

% {y,n] = sigfold(x,n)

y = fliplr(x); n = -fliplr(n);
6. Sample summation: This operation differs from signal addition op-
eration. It adds all sample values of x(n) between n; and n,.

nz

Z z(n) = z(ny) + - - - + 2(n2z)

n=n,

It is implemented by the sum(x(n1:n2)) function.

12
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[m] EXAMPLE 2.1

Solution

7. Sample products: This operation also differs from signal multipli-
cation operation. It multiplies all sample values of z(n) between n; and
na.

ﬁz(n) =z{n) X -+ X z(ng)

™

1t is implemented by the prod(x(n1:n2)) function.
8. Signal energy: The energy of a sequence z(n) is given by

£= z(n)z*(n) = lz(n)

where superscript * denotes the operation of complex conjugation®. The
energy of a finite-duration sequence z(n) can be computed in MATLAB
using

>> Ex = sum(x .* conj(x)); % one approach
>> Ex = sum(abs(x) .~ 2); % another approach

9. Signal power: The average power of a periodic sequence with fun-
damental period N is given by

1 N-1
P = N ; 117(’1)[2

Generate and plot each of the following sequences over the indicated interval.
a. z(n)=26(n+2)~-é6(n—4), -5<n<5.

b. z(n) = n[u(n) — u(n — 10)] + 10e~"3"1 [y(n — 10) ~ u(n — 20)],
0<n<20.

¢. z(n) = c08(0.047n) + 0.2w(n), 0 < n < 50, where w(n) is a Gaussian
random sequence with zero mean and unit variance.

d. #n)={..54,3,2,1,5,4,3,2,1,5,4,3,2,1,..}; ~10<n <9.
T
a z(n)=26(n+2)—6(n—4), -5<n<s.
>> n = [-5:5];
>> x = 2*impseq(-2,-5,5) - impseq(4,-5,5);
>> stem(n,x); title(’Sequence in Problem 2.1a’)

>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1a.

1The symbol * denotes many operations in digital signal processing. Its font (roman
or computer) and its position (normal or superscript) will distinguish each operation.

Discrete-time Signals
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TS

b. z(n) = nlu(n) —u(n — 10)] + 10e™03(*~10) [y(n — 10) — u(n — 20)],

0<n<20.

>>
>>
>>
>>
>
>

v

n = [0:20];

x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));

x2 = 10%*exp(-0.3*(n-10)) .*(stepseq(10,0,20)~stepseq(20,0,20));
x = x1+x2;

subplot(2,2,3); stem(n,x); title(’Sequence in Problem 2.1b*)
xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1b.

>>
>>
>>
>

¢. z(n) = cos(0.04mn) + 0.2w(n), 0<n <50

n = [0:50];

x = cos(0.04*pi*n)+0.2+¢randn(size(n));

subplot(2,2,2); stem(n,x); title(’Sequence in Problem 2.1c’)
xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1c.

Sequence in Example 2.1a Sequence in Example 2.1b
3
10
2 8
=1 - 6
c (3
4 X 4
: S Ty
ol [92s
-2

.
o
o
wn
©

5 10 15 20
n n

Sequence in Example 2.1d

6
4
$
IR
LTI
0 10 20 30 40 10 -5 0 5
n n

FIGURE 2.1 Sequences in Ezample 2.1
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a EXAMPLE 2.2

Solution

d. #(n) = {-5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,..}; -10<n <9.
T

Note that over the given interval, the sequence Z (n) has four periods.

>>n = [-10:9); x = [5,4,3,2,1];

>> xtilde = x’ * omes(1,4);

>> xtilde = (xtilde(:))’;

>> subplot(2,2,4); stem(n,xtilde); title(’Sequence in Problem 2.14%)
>> xlabel(’n’); ylabel(’xtilde(n)’);

The plot of the sequence is shown in Figure 2.1d. 0

Let z(n) = {1,2,3,4,5,6,7,6,5,4, 3,2,1}. Determine and plot the following
sequences. !

a. 1 (n) = 2z(n — 5) — 3z (n+4)
b. z2(n)=z@B-n)+z(n)z(n-2)

The sequence z (n) is nonzero over —2 < n < 10. Hence
>> n = -2:10; x = [1:7,6:-1:1];

will generate  (n).

a. z1 (n) = 2z(n — 5) — 3z (n+4).
The first part is obtained by shifting z (n) by 5 and the second part by shift-
ing z (n) by —4. This shifting and the addition can be easily done using the
sigshift and the sigadd functions.

>> [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4);

>> [xi,n1] = sigadd(2*x11,n11,-3*x12,n12);

>> subplot(2,1,1); stem(n1,x1); title(’Sequence in Example 2.2a’)
>> xlabel(’n’); ylabel(’xi(n)’);

The plot of 1 (n) is shown in Figure 2.2a.

b. zz2(n)=z(83-n)+z(n)z(n—-2).
The first term can be written as x (— (n — 3)). Hence it is obtained by first fold-
ing  (n) and then shifting the result by 3. The second part is a multiplication
of x (n) and « (n — 2), both of which have the same length but different support
(or sample positions). These operations can be easily done using the sigfold
and the sigmult functions.

>> [x21,n21] = sigfold(x,n); [x21,n21] = sigshift(x21,n21,3);

>> [x22,n22] = sigshift(x,n,2); [x22,n22] = sigmult(x,n,x22,n22);
>> [x2,n2] = sigadd(x21,n21,x22,n22);

>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’)
>> xlabel(’n’); ylabel(’x2(n)’);

The plot of z2 (n) is shown in Figure 2.2b. [m}

Discrete-time Signals
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a EXAMPLE 2.3

Solution

Sequence in Example 2.2a

E TH NTT‘M'

RN |

x1(n)

n
Sequence in Example 2.2b

x2(n)
3

10}

”?TTTTTT

-7 0 . 12

o

FIGURE 2.2 Seguences in Example 2.2

This example shows that the four sig* functions developed in this
section provide a convenient approach for sequence manipulations.

Generate the complex-valued signal
z(n) = 7003 _19<n <10

and plot its magnitude, phase, the real part, and the imaginary part in four
separate subplots.

MATLAB Script

n = [-10:1:10]; alpha = -0.1+0.3j;

x = exp(alpha#*n);

subplot(2,2,1); stem(n,real(x));title(’real part’);xlabel(’n’)
subplot(2,2,2); stem(n,imag(x));title(’imaginary part’) ;xlabel(’n’)
subplot(2,2,3); stem(n,abs(x));title(’magnitude part’);xlabel(’n’})
subplot(2,2,4); stem(n,(180/pi)*angle(x));title(’phase part’) ;xlabel(’n’)

The plot of the sequence is shown in Figure 2.3. [m]
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SOME USEFUL
RESULTS

s, gl
_1 J} 223 4 l
;:o A s 0 s w0
2 B _ m’TTTm
L s

-10 -5 0 5 0 -10 -5 0 5. 10
n n

FIGURE 2.3 Complez-valued sequence plots in Ezample 2.3

There are several important results in discrete-time signal theory. We will
discuss some that are useful in digital signal processing.

Unit sample synthesis Any arbitrary sequence x(n) can be synthe-
sized as a weighted sum of delayed and scaled unit sample sequences, such
as

z(n)= Y z(k)é(n—k) 21)

=—00

We will use this result in the next section.

Even and odd synthesis A real-valued sequence z(n) is called even
(symmetric) if

Ze(—n) = ze(n)
Similarly, a real-valued sequence z,(n) is called odd (antisymmetric) if

10(_7") = ——:z:,,(n)

Discrete-time Signals
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u] EXAMPLE 2.4

Sohstion

Then any arbitrary real-valued sequence z{n) can be decomposed into its
even and odd components

z(n) = ze(n) + zo(n) (2:2)

where the even and odd parts are given by
ze(n) = % [x(n) +z(-n)] and z,(n}= % [z(n) — z(~n)) (2.3)

respectively. We will use this decomposition in studying properties of the
Fourier transform. Therefore it is a good exercise to develop a simple
MATLAB function to decompose a given sequence into its even and odd
components. Using MATLAB operations discussed so far, we can obtain
the following evenodd function.

function [xe, xo, m] = evenodd(x,n)
% Real signal decomposition into even and odd parts
3
% [xe, x0, m] = evenodd(x,n)
%
if any(imag(x) “= 0)

error{’x is not a real sequence’)

end

m = -fliplr(n);

m1 = min([m,n)); m2 = max({n,n]); m = ml:m2;
nm = n(1)-m(1); ni = 1:length(n);

x1 = zeros(1,length(m));

xi(ni+nm) = x; x = x1;

xe = 0.5+(x + fliplr(x));

x0 = 0.5%(x - fliplr(x));

The sequence and its support are supplied in x and n arrays, respectively.
It first checks if the given sequence is real and determines the support
of the even and odd components in m array. It then implements (2.3)
with special attention to the MATLAB indexing operation. The resulting
components are stored in xe and xo arrays.

Let z(n) = u(n) — u(n — 10). Decompose z(n) into even and odd components.

The sequence z(n), which is nonzero over 0 < n < 9, is called a rectangular
pulse. We will use MATLAB to determine and plot its even and odd parts.

>> n = [0:10}; x = stepseq(0,0,10)-stepseq(10,0,10);

>> [xe,xo0,m] = evenodd(x,n);

>> figure(1); clf

>> subplot(2,2,1); stem(n,x); title(’Rectangular pulse’)

18
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>> xlabel(’n’); ylabel(’x(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,2); stem(m,xe); title(’Even Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,0,1.2])
>> subplot(2,2,4); stem(m,xo0); title(’0dd Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,-0.6,0.6])

The plots shown in Figure 2.4 clearly demonstrate the decomposition. [m]

A similar decomposition for complex-valued sequences is explored in
Problem 2.5.

The geometric series A one-sided exponential sequence of the form
{a®, n >0}, where o is an arbitrary constant, is called a geometric
series. In digital signal processing, the convergence and expression for the
sum of this series are used in many applications. The series converges for
|| < 1, while the sum of its components converges to

= 1
St — T for fo] <1 (2.4)

n=0

Rectangular pulse Even Part

0.8 0.8

(n,
(=]
D
xe(n)
o
(=]

< 0
0.4 0.4
0.2 0.2

-10 -5 0 5 10 . -10 -5 0 5 10

xe(n)
(=]

4
o
.
o
-
o
-
(=]

FIGURE 2.4 Ewven-odd deco ition in Ezample 2.4
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We will also need an expression for the sum of any finite number of terms
of the series given by

N-1

n l-a¥
> ar= T Ve (2.5)

n=0

These two results will be used throughout this book.

Correlations of sequences Correlation is an operation used in many
applications in digital signal processing. It is a measure of the degree to
which two sequences are similar. Given two real-valued sequences z(n) and
y(n) of finite energy, the crosscorrelation of z(n) and y(n} is a sequence
Tzy(£) defined as

oo

ray®) = Y z(n)y(n—¢) (26)

n=-o00

The index £ is called the shift or lag parameter. The special case of (2.6)
when y(n) = z(n) is called autocorrelation and is defined by

oo

reel) = Y a(ma(n—9) 27)

n=--o0c

It provides a measure of self-similarity between different alignments of the
sequence. MATLAB functions to compute auto- and crosscorrelations are
discussed later in the chapter.

DISCRETE SYSTEMS

LINEAR
SYSTEMS

Mathematically, a discrete-time system (or discrete system for short) is
described as an operator T|] that takes a sequence z(n) (called ezcitation)
and transforms it into another sequence y(n) (called response). That is,

y(n) = Tlz(n)]

In DSP we will say that the system processes an input signal into an output
signal. Discrete systems are broadly classified into linear and nonlinear
systems. We will deal mostly with linear systems.

A discrete system T'[-] is a linear operator L[ if and only if L[] satisfies
the principle of superposition, namely,

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

Liaiz1(n) + a2z2(n)] = ay L(z; )]+ azL[z2(n)], Va1, az, z1(n), z9(n)
(2.8)

Using (2.1) and (2.8), the output y (n) of a linear system to an arbitrary
input z (n) is given by )

y(n)=L[x(n)1=L[ > x(k)a(n—w] = 3 0L b

n=-—oo n=-—00

The response L [§ (n — k)] can be interpreted as the response of a linear
system at time n due to a unit sample (a well-known sequence) at time k.
It is called an impulse response and is denoted by h(n, k). The output
then is given by the superposition summation

o0

y(n)= Y z(k)h(nk) (29)

n=—00

The computation of (2.9) requires the time-varying impulse response
h (n, k), which in practice is not very convenient. Therefore time-invariant
systems are widely used in DSP.

Linear time-invariant (LTI) system A linear system in which an
input-output pair, £(n) and y(n), is invariant to a shift n in time is called
a linear time-invariant system. For an LTI system the L[-] and the shifting
operators are reversible as shown below.

2(n) — [ZH] — y(n) — [Shift by k| — y(n— &)
z(n)—»—»z(n—k)—v—ry(n—k)

We will denote an LTI system by the operator LTI [-]. Let z(n) and y(n)
be the input-output pair of an LTI system. Then the time-varying function
k (n, k) becomes a time-invariant function h (n — k), and the output from
(2.9) is given by

00

y(n) = LTI [z(n)] = Y a(k)h(n - k) (2.10)

k=—00

The impulse response of an LTT system is given by h(n). The mathemat-
ical operation in (2.10) is called a linear convolution sum and is denoted
by

y(n) £ z(n) » h(n) @11)

Discrete Systems
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Hence an LTI system is completely characterized in the time domain by
the impulse response h(n) as shown below.

a(n) — [h(n) | — ¥(n) = 2(n) * h(n)

We will explore several properties of the convolution in Problem 2.12.

Stability This is a very important concept in linear system theory. The
primary reason for considering stability is to avoid building harmful sys-
tems or to avoid burnout or saturation in the system operation. A system
is said to be bounded-input bounded-output (BIBO) stable if every bounded
input produces a bounded output.

[z(n)] < 00 = ly(n)| < o0, Y2,y

An LTI system is BIBO stable if and only if its impulse response is abso-
lutely summable.

o0
BIBO Stability <= Y _ [h(n)| < 00 (2.12)

—00

Causality This important concept is necessary to make sure that sys-
tems can be built. A system is said to be causal if the output at index no
depends only on the input up to and including the index no; that is, the
output does not depend on the future values of the input. An LTI system
is causal if and only if the impulse response

h(n)=0, n<0 (2.13)

Such a sequence is termed a causal sequence. In signal processing, unless
otherwise stated, we will always assume that the system is causal.

CONVOLUTION

We introduced the convolution operation (2.11) to describe the response
of an LTI system. In DSP it is an important operation and has many other
uses that we will see throughout this book. Convolution can be evaluated
in many different ways. If the sequences are mathematical functions (of
finite or infinite duration), then we can analytically evaluate (2.11) for all
n to obtain a functional form of y(n).

2
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a EXAMPLE 2.5

Solution

CASE i

Let the rectangular pulse z(n) = u(n) — u(n — 10) of Example 2.4 be an input
to an LTI system with impulse response

h(n) = (0.9)" u(n)

Determine the output y{(n).

The input z(n) and the impulse response h(n) are shown in Figure 2.5. From
(2.11)

9 9
yin) =Y 1) (09" P u(n—k) = (0.9)" S Fun-k  (214)
k=0 k=0

The sum in 2.14 is almost a geometric series sum except that the term u(n — k)
takes different values depending on n and k. There are three different conditions
under which u(n — k) can be evaluated.

n < 0: Then u(n —k) =0, 0< k <9. Hence from (2.14)
y(n)=0 (2.15)

In this case the nonzero values of z(n) and h(n) do not overlap.

input Sequence
2 T T T T T T T T T ¥
1.5¢ : 1
g1 ]
0.51- 4
6600860
- 0 5 10 15 20 25 30 35 40 45
n
Impulse Response
2 T T v T u T T T T T
1.5f 1
€ 4L ]
F 1
0.5 4
% 0 s 10 5 20 25 30 35 40 45

n

FIGURE 2.5 The input sequence and the impulse response in Ezample 2.5

Convolution

23



CASE ii

CASE iii

O EXAMPLE 2.6

0<n<9 Thenu(n—k)=1, 0<k<n. Hence from (2.14)

ym= 09" Y (09) ™ = 09)" Y [09)7]* (2.16)
k=0 k=0
= (0.9)" 1-09~" =10[1-(09™"], 0<n<9

1-(0.9)7"

In this case the impulse response h{n) partially overlaps the input x(n).
n>9: Then u(n — k) =1, 0 < k < 9 and from (2.14)

9
y(n)=0.9)"Y_ (0.9)™* @.17)
1- 0.9)7%°
1-(0.9)1

In this last case h(n) completely overlaps x(n).

= (0.9)" =10(0.9)"° [1- (0.9}, n2>9

The complete response is given by (2.15), (2.16), and (2.17). It is shown in
Figure 2.6 which depicts the distortion of the input pulse. ]

The above example can also be done using a method called graphical
convolution, in which (2.11) is given a graphical interpretation. In this
method h(n — k) is interpreted as a folded-and-shifted version of h(k).
The output y(n) is obtained as a sample sum under the overlap of z(k)
and h(n — k). We use an example to illustrate this.

Given the following two sequences

z(n) = [3,11,770,—1,4,2] , —3<n<3  him)= [2,3,0,—5,2,1] , —1<n<4
1 1

determine the convolution y(n) = z(n) * h(n).

Solution In Figure 2.7 we show four plots. The top-left plot shows z(k) and h(k), the
original sequences. The top-right plot shows z(k) and h{—k), the folded version
Output Sequence
8 . T T T T T T T T T
6 4
=
o Ii Il!ll]ll'lllllllllll!l "
-5 [} 5 10 15 20 25 30 35 40
n
FIGURE 2.6 The output sequence in Ezample 2.5
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x(k) and h{k) x{k) and h(-k)
10 solid: x dashed: 10 solid: x dashed:
5 5
[~ [+
f lpe Lot ak;
0 & o855
-5 O -5 s
-5 0 5 -5 0 5
k k
x(k} and h(-1-k) x(k) and h{2-k)
10 sofid: x  dashed: 10 solid: x dashed:
5 5
bollle [s LT P
n=1 ©0 =
-5 © -5 o
-5 0 5 -5 0 5
& k

FIGURE 2.7 Graphical ¢ lution in Ezample 2.6

of h(k). The bottom-left plot shows z(k) and h(—1- k), the folded-and-shifted-
by-—1 version of (k). Then

Y a(k)h(~1-k) =3 x (=5) + 11 X0+ T x3+0x2=6=y(-1)
k
The bottom-right plot shows z(k) and h(2 — k), the folded-and-shifted-by-2
version of h(k), which gives

3 w(k)h(2—k) = 1X1+Tx2+0% (=5)+(-1) x0+4x3+2x2 =41 = ¥(2)
k

Thus we have obtained two values of y(n). Similar graphical calculations can
be done for other remaining values of y(n). Note that the beginning point (first
nonzero sample) of y(n) is given by n = -3+ (~1) = =4, while the end point
(the last nonzero sample) is given by n = 3 + 4 = 7. The complete output is
given by

y(n} = {6, 31,47,6,—51,~5,41,18,-22,-3,8, 2}
1

Students are strongly encouraged to verify the above result. Note that the result-
ing sequence y (n) has a longer length than both the z (n) and h (n) sequences.
a

If arbitrary sequences are of infinite duration, then MATLAB cannot be
used directly to compute the convolution. MATLAB does provide a built-in
function called conv that computes the convolution between two finite-

Convolution

2%



=] EXAMPLE 2.7

duration sequences. The conv function assumes that the two sequences
begin at n = 0 and is invoked by

> y = conv(x,h);
For example, to do the convolution in Example 2.5, we could use

>> x (3, 11, 7, 0, -1, 4, 2];
> h = {2, 3, 0, -5, 2, 1];
>> y = conv(x,h)
y=
6 31 47 6 -561 -5 41 18 -22 -3 8 2

to obtain the correct y(n) values. However, the conv function neither pro-
vides nor accepts any timing information if the sequences have arbitrary
support. What is needed is a beginning point and an end point of y(n).
Given finite duration z(r) and h(n), it is easy to determine these points.
Let

{z(n); nop <n<nz} and  {R(n); na <1 < npe}

be two finite-duration sequences. Then referring to Example 2.6 we ob-
serve that the beginning and end points of y(n) are

Tigp = Ngp + pp  8Nd  Nye = Nge + Tpe

respectively. A simple extension of the conv function, called conv_m, which
performs the convolution of arbitrary support sequences can now be de-
signed.

function [y,ny] = conv_m(x,nx,h,nh)

% Modified convolution routine for signal processing
%
% (y,ny] = conv_m(x,nx,h,nh)

% Iy,ny]l = convolution result

% [x,nx] = first signal

% [h,nh] = second signal

%

nyb = nx(1)+nh(1); nye = nx(length(x)) + nh{(length(h));
ny = [nyb:nyel;

y = conv(x,h);

Perform the convolution in Example 2.6 using the conv_m function.

Solution MATLAB Script
> x = (3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];
> h=1[2, 3, 0, -5, 2, 1]; ny = [-1:4];
26 Chapter 2 @ DISCRETE-TIME SIGNALS AND SYSTEMS
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Solution

>> [y,ny]l = conv_m(x,nx,h,nh)
y=
6 31 47 6 -51 -6 41 18 -22 -3 8 2

y(n) = {6, 31,47,6,-51,—5,41,18,-22,-3,8, 2}
T
as in Example 2.6. a

An alternate method in MATLAB can be used to perform the convo-
lution. This method uses a matrix-vector multiplication approach, which
we will explore in Problem 2.13.

Tf we compate the convolution operation (2.11) with that of the crosscor-
relation of two sequences defined in (2.6), we observe a close resemblance.
The crosscorrelation ry,(£) can be put in the form

1ya(€) = y(£) * z(~£)
with the autocorrelation r5.(£) in the form
72(€) = 2(€) x (=)

Therefore these correlations can be computed using the conv function if
sequences are of finite duration.

In this example we will demonstrate one application of the crosscorrelation
sequence. Let

z(n) = [3, 11,7,0, --1,4,2]
T

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version
y(n) = z(n - 2) + w(n)

where w(n) is Gaussian seq\ience with mean 0 and variance 1. Compute the
crosscorrelation between y(n) and z(n).

From the construction of y(r) it follows that y(n) is “similar” to z(n — 2) and
hence their crosscorrelation would show the strongest similarity at £ = 2. To test
this out using MATLAB, let us compute the crosscorrelation using two different
noise sequences.

Convolution
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% noise sequence 1

>>
>>
>>
>
>>
>>
>>
>>
>>

%

x=(3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

[y,nyl = sj.gshift(x,nx,2); % obtain x(n-2)

w = randn(1,length(y)); nv = ny; % generate w(n)

[y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)
[x,nx] = sigfold(z,nx); % obtain x(-n)

[rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation
subplot(1,1,1), subplot(2,1,1);stem(nrxy,rxy)

axis([-5,10,-50,260]) ;xlabel(’lag variable 1’)
ylabel (’rxy’);title(’Crosscorrelation: noise sequence 1’)

% noise sequence 2

x=[3, 11, 7,0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

[y,ny] = sigshift(x,nx,2); % obtain x(n-2)

w = randn(1,length(y)); nw = ny; % generate w(n)

[y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)
{x,nx] = sigfold(x,nx); 4% obtain x{(-n)

[rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation
subplot(2,1,2);stem(nrxy,rxy)

axis(([-5,10,-50,250]) ;xlabel(’lag variable 1’)
ylabel(’rxy’);title(’Crosscorrelation: noise sequence 2’)

From Figure 2.8 we observe that the crosscorrelation indeed peaks at £ = 2,
which implies that y (n) is similar to z (n) shifted by 2. This approach can be

Crosscorrelation: noise sequence 1

250 T T T T T
200 Maximum p
150 E
100} R
i T Lt
T ? Q Q T
[
50 s 2 L ' L
-4 -2 0 2 4 6 8
lag variable |
Crosscorrelation: noise sequence 2
T T T T T
2001 Maximum
150} E
‘100 B
e T I [ 7]
o ? ? @ ? ? T
50 : L ) L "
-4 2 0 4 6 8

2
lag variable |

FIGURE 2.8 Crosscorrelation sequence with two different noise realizations
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DIFFERENCE

used in applications like radar signal processing in identifying and localizing
targets. ]

It should be noted that the signal-processing toolbox in MATLAB also
provides a function called xcorr for sequence correlation computations.
In its simplest form

>> xcorr(x,y)
computes the crosscorrelation between vectors x and y, while
>> xcorr(x)

computes the autocorrelation of vector x. This function is not available in
the Student Edition of MATLAB. It generates results that are identical to
the one obtained from the proper use of the conv.m function. However, the
xcorr function cannot provide the timing (or lag) information (as done by
the conv.m function), which then must be obtained by some other means.
Therefore we will emphasize the use of the conv.m function.

EQUATIONS
2

An LTI discrete system can also be described by a linear constant coeffi-
cient difference equation of the form

N M
Zaky(n —k)= Z bnz(n—m), Vn (2.18)
k=0

m=0

If ay # 0, then the difference equation is of order N. This equation
describes a recursive approach for computing the current output, given
the input values and previously computed output values. In practice this
equation is computed forward in time, from n = —o0 to n = oco. Therefore
another form of this equation is

M N
yn) = Y bna(n—m) = Y asy(n— k) (219)
m=0 k=1
A solution to this equation can be obtained in the form
y(n) = yu(n) +yp(n)
The homogeneous part of the solution, yx(n), is given by

N
yu(n) =)zl

k=1

Difference Equations
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Solution

where 2z, k =1,..., N are N roots (also called natural frequencies) of the
characteristic equation

This characteristic equation is important in determining the stability of
systems. If the roots zj satisfy the condition

|l <1, k=1,...,N (2.20)

then a causal system described by (2.19) is stable. The particular part
of the solution, yp(n), is determined from the right-hand side of (2.18).
In Chapter 4 we will discuss the analytical approach of solving difference
equations using the z-transform.

A routine called filter is available to solve difference equations numeri-
cally, given the input and the difference equation coefficients. In its sim-
plest form this routine is invoked by

y = filter(b,a,x)

where

b= (b0, b1, ..., bM]; a = [a0, al, ..., aN];

are the coefficient arrays from the equation given in (2.18), and x is the
input sequence array. The output y has the same length as input x. One

must ensure that the coefficient a0 not be zero. We illustrate the use of
this routine in the following example.

Given the following difference equation
y(n) —y(n-1)+09y(n - 2) =z(n); Vn
a. Calculate and plot the impulse response h(n) at n = —20,...,100.

b. Calculate and plot the unit step response s(n) at n = —20,...,100.
c. Is the system specified by h(n) stable?

From the given difference equation the coefficient arrays are

b= [1]; a=[1, -1, 0.9];

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

a. MATLAB Script
>>be={1]; a = [1, -1, 0.9]);
>> x = impseq(0,-20,120); n = [-20:120];
>> h = filter(b,a,x);
>> subplot(2,1,1); stem(n,h);
>> title(’Impulse Response’); xlabel(’n’}; ylabel(’h(n)’)

The plot of the impulse response is shown in Figure 2.9.
b. MaTLAB Script

>> x = stepseq(0,-20,120);

>> s = filter(b,a,x);

>> subplot(2,1,2); stem(n,s)

>> title(’Step Response’); xlabel(’n’); ylabel(’s(n)’)

The plot of the unit step response is shown in Figure 2.9.

¢. To determine the stability of the system, we have to determine h(n) for
all n. Although we have not described a method to solve the difference equation,
we can use the plot of the impulse response to observe that h(n) is practically
zero for n > 120. Hence the sum )" |h(n)| can be determined from MATLAB
using

Impulse Response

h(n)

FIGURE 2.9 Impulse response and step response plots in Ezample 2.9
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>> sum(abs(h))
ans = 14.8785

which implies that the system is stable. An alternate approach is to use the
stability condition (2.20) using MATLAB’s roots function.

>>z = roots(a);
>>magz = abs(z)
magz = 0.9487

0.9487

Since the magnitudes of both roots are less than one, the system is stable. O

In the previous section we noted that if one or both sequences in
the convolution are of infinite length, then the conv function cannot be
used. If one of the sequences is of infinite length, then it is possible to use
MATLAB for numerical evaluation of the convolution. This is done using
the filter function as we will see in the following example.

Let us consider the convolution given in Example 2.5. The input sequence is of
finite duration

z(n) = u(n) — u(n — 10)
while the impulse response is of infinite duration
h(n) = (0.9)" u(n)
Determine y(n) = z(n) * h(n).

Solution If the LTI system, given by the impulse response h(n), can be described by a
difference equation, then y(n) can be obtained from the filter function. From
the h(n) expression

(0.9)h(n — 1) = (0.9) (0.9)* ' u(n — 1) = (0.9)" u(n — 1)
or
h(n) — (0.9) h(n ~ 1) = (0.9)" u(n) — (0.9)" u(n — 1)

= (0.9)" [u(n) — u(n — 1)] = (0.9)" 6(n)

=§(n)
The last step follows from the fact that §(n) is nonzero only at n = 0. By
definition h(n) is the output of an LTI system when the input is §(n). Hence
substituting z(n) for §(n) and y(n) for h(n), the difference equation is

y(n) = 0.9y(n — 1) = z(n)

Now MATLAB’s £ilter function can be used to compute the convolution indi-
rectly.
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FIGURE 2.10 Output sequence in Ezample 2.10

>> b= [1); a = [1,-0.9];

>> n = -5:50; x = stepseq(0,-5,50) - stepseq(10,-5,50);
>> y = filter(b,a,x);

>> subplot(1,1,1);

>> subplot(2,1,2); stem(n,y); title(’Output sequence’)
>> xlabel(’n’); ylabel(’y(n)’); axis({-5,50,-0.5,8])

The plot of the output is shown in Figure 2.10, which is exactly the same as
that in Figure 2.6. 0

In Example 2.10 the impulse response was a one-sided exponential se-
quence for which we could determine a difference equation representation.
This means that not all infinite-length impulse responses can be converted
into difference equations. The above analysis, however, can be extended to
a linear combination of one-sided exponential sequences, which results in
higher-order difference equations. We will discuss this topic of conversion
from one representation to another one in Chapter 4.

In digital signal processing the difference equation is generally solved for-
ward in time from n = 0. Therefore initial conditions on z(n) and y(n)
are necessary to determine the output for n > 0. The difference equation
is then given by

M N
yn) =3 bmz(n-m) =Y ayn—k);n20  (221)
k=1

m=0
subject to the initial conditions:

{y(n); -N<n<-1} and {z(n); - M <n< -1}
A solution to (2.21) can be obtained in the form

y(n) = yzr(n) + yzs(n)

Difference Equations
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DIGITAL
FILTERS

where yzr(n) is called the zero-input solution, which is a solution due
to the initial conditions alone (assuming they exist), while the zero-state
solution, yzs(n), is a solution due to input z(n) alone (or assuming that
the initial conditions are zero). In MATLAB another form of the function
filter can be used to solve for the difference equation, given its initial
conditions. We will illustrate the use of this form in Chapter 4.

Filter is a generic name that means a linear time-invariant system de-
signed for a specific job of frequency selection or frequency discrimination.
Hence discrete-time LTI systems are also called digital filters. There are
two types of digital filters.

FIR filter If the unit impulse response of an LTT system is of finite
duration, then the system is called a finite-duration impulse response (or
FIR) filter. Hence for an FIR filter h(n) = 0 for n < n, and for n > n,.
The following part of the difference equation (2.18) describes a causal FIR
filter:

M
y(n)=Y_ bnz(n—m) (222)

m=0

Furthermore, h(0) = by, k(1) = b1, ..., H(M) = by, while all other h(n)’s
are 0. FIR filters are also called nonrecursive or moving average (MA)
flters. In MATLAB FIR filters are represented either as impulse response
values {h(n)} or as difference equation coefficients {bm} and {ao = 1}.
Therefore to implement FIR filters, we can use either the conv(x,h)
function (and its modifications that we discussed) or the filter(b,1,x)
function. There is a difference in the outputs of these two implementations
that should be noted. The output sequence from the conv(x,h) function
has a longer length than both the z(n) and h(n) sequences. On the other
hand, the output sequence from the filter(b,1 ,x) function has exactly
the same length as the input z(n) sequence. In practice (and especially
for processing signals) the use of the filter function is encouraged.

IIR filter Tf the impulse response of an LTI system is of infinite dura-
tion, then the system is called an infinite-duration impulse response (or
I1R) filter. The following part of the difference equation (2.18):

N
> axy(n — k) = z(n) (2.23)

k=0

describes a recursive filter in which the output y(n) is recursively com-
puted from its previously computed values and is called an autoregressive
(AR) filter. The impulse response of such filter is of infinite duration and
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hence it represents an IR filter. The general equation (2.18) also describes
an IIR filter. It has two parts: an AR part and an MA part. Such an IIR
filter is called an autoregressive moving average, or an ARMA, filter. In
MATLAB IIR filters are described by the difference equation coefficients
{bm} and {ax} and are implemented by the filter(b,a,x) function.

PROBLEMS

P2.2

P23

P24

P25

B

Generate and plot the samples (use the stem function) of the following sequences using
MATLAB.

a. z1(n) =z:£=0(m+1)[6(n—2m)—6(n—2m—1)], 0<n<25.
b. z2(n) = n® fu(n + 5) — u(n — 6)] + 106(n) + 20(0.5)" [u(n — 4) — u(n — 10)].
c. z3(n) = (0.9)" cos(0.2rn+7/3), 0<n<20.

d. z4(n) = 10c0s(0.00087n?) + w(n), 0 < n < 100, where w(n) is a random sequence
uniformly distributed between {—1,1]. How do you characterize this sequence?

e. Z5(n)=1{...,1,2,3,2,1,2,3,2,1,.. .}periobic. Plot 5 periods.
T

Let z(n) = {1,—2,4,6,—5,8,10}. Generate and plot the samples (use the stem function) of
the following sequences. !

a. 11 (n) = 3z(n + 2) + z(n — 4) — 2z(n)

b. z2 (n) = 5z(5 + n) + 4z(n + 4) + 3z(n)

c. z3(n) = z(n + 4)z(n — 1) + (2 — n)z(n)

d. z4(n) = 2e"%"z (n) + cos (0.1rn)z(n +2), ~10<n <10

e z5(n) =Y o_ nz(n—k)

The complex exponential sequence /“°™ or the sinusoidal sequence cos (won) are periodic if

the normalized frequency fo 2 % is a rational number; that is, fo = ~ where K and N
are integers.

a. Prove the above result.

b. Generate and plot cos(0.37n), —20 < n < 20. Is this sequence periodic? If it is, what is
its fundamental period? From the examination of the plot what interpretation can you give
to the integers K and N above?

c. Generate and plot cos(0.3n), —20 < n < 20. Is this sequence periodic? What do you
conclude from the plot? If necessary examine the values of the sequence in MATLAB to
arrive at your answer. ‘

Decompose the sequences given in Problem 2.2 into their even and odd components. Plot
these components using the stem function.

A complex-valued sequence z.(n) is called conjugate-symmetric if

ze(n) = z2(-n)
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Similarly, a complex-valued sequence z,(n) is called conjugate-antisymmetric if
zo(n) = ~z5(~n)
Then any arbitrary complex-valued sequence z(n) can be decomposed into
z(n) = z.(n) + zo(n)
where z.(n) and z.(n) are given by
ze(n) = La(n) +2°(-n)]  end  wo(n) =3 [=(n) - z*(-n)] (2.29)
respectively. .
a. Modify the evenodd function discussed in the text so that it a.wepts an arbitrary
sequence and decomposes it into its symmetric and antisymmetric components by

implementing (2.24).
b. Decompose the following sequence:

z(n) = 10e~ 4™, 0<n<10

into its conjugate-symmetric and conjugate-antisymmetric componen‘ts. Plot their real and
imaginary parts to verify the decomposition. (Use the subplot function.)
The operation of signal dilation (or decimation or down-sampling) is defined by

y(n) = z(nM)
in which the sequence z(n) is down-sampled by an integer factor M. For example, if

z(n) ={~-~,—2,4,?,—6,5,—1,8,...}

then the down-sampled sequences by a factor 2 are given by

y(n)=1{..,-235.8,...}
T
a. Develop a MATLAB function dnsample that has the form

function y = dnsample(x,M)

to implement the above operation. Use the indexing mechanism of MATLAB with careful
attention to the origin of the time axis n = 0.

b. Generate z(n) = sin(0.1257n), —50 <n <50. Decimate z(n) by a factor of 4 to
generate y(n). Plot both z(n) and y(n) using subplot and comment on the re?ults.

¢. Repeat the above using z(n) = sin(0.57n), —50 <n <50. Qualitatively discuss the
effect of down-sampling on signals.

Determine the autocorrelation sequence ryz(£) and the crosscorrelation sequence rzy(£) for
the following sequences.

z(n) = (09)", 0<n<20; yn)=(087", -0<n=0

What is your observation?
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P2.8 In a certain concert hall, echoes of the original audio signal z(n) are generated due to the
reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a
combination of z(n) and its echoes. Let

y(n) = z(n) + az(n — k)
where k is the amount of delay in samples and « is its relative strength. We want to
estimate the delay using the correlation analysis.
a. Determine analytically the autocorrelation ryy(£) in terms of the autocorrelation rzz(£).

b. Let z(n) = cos(0.27n) + 0.5 cos(0.6mn), @ = 0.1, and k = 50. Generate 200 samples of
y(n) and determine its autocorrelation. Can you obtain a and k by observing 7y, (£)?
P2.9 Three systems are given below.

Tiz(n)) =2 Tlz(n)] =3z(n)+4 Talz(n)] =z(n) + 2z(n—1) — 2(n — 2)
a. Use (2.8) to determine analytically whether the above systems are linear.

b. Let z1(n) be a uniformly distributed random sequence between [0, 1] over 0 < n < 100,
and let z2(n) be a Gaussian random sequence with mean 0 and variance 10 over

0 <n < 100. Using these sequences, test the linearity of the above systems. Choose any
values for constants a; and az in (2.8). You should use several realizations of the above
sequences to arrive at your answers.

P2.10 Three systems are given below.

n n+10
Tile(m) =) (k) Tle@)]=Y z(k); Tslz(n)] =2z(-n)
0 n-10
a. Use (2.9) to determine analytically whether the above systems are time-invariant.

b. Let z(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 < n < 100.
Using this sequence, test the time invariance of the above systems. Choose any values for

sample shift k in (2.9). You should use several realizations of the above sequence to arrive
at your answers.

P2.11 For the systems given in Problems 2.9 and 2.10 determine analytically their stability and
causality.

P2.12 The linear convolution defined in (2.11) has several properties:

z1(n) * x2(n) = z1(n) * z2(n) : Commutation
[z1(n) * z2(n)] * z3(n) = z1(n) * [z2(n) * z3(n)] : Association 2.25)
z1(n) * [z2(n) + z3(n)] = z1(n) * T2(n) + z1(n) * z3(n) : Distribution
z(n) *8(n —ng) = z(n —no) - : Identity

a. Analytically prove these properties.
b. Using the following three sequences, verify the above properties.

z1(n) =nlu(n+ 10) —u(n — 20)]
z2(n) = cos (0.1mn) [u(n) — u(n — 30)]
z3(n) = (1.2)" [u(n + 5) — u(n — 10))

Use the conv_m function.
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P2.13

P2.14

P2.15

P2.16

When the sequences x {n) and k (n) are of finite duration N, and N, respectively, then
their linear convolution (2.10) can also be implemented using matriz-vector multiplication.
If elements of y{n) and z(n) are arranged in column vectors x and y respectively, then from
(2.10) we obtain

y=Hx

where linear shifts in h(n — k) for n =0,..., Ny — 1 are arranged as rows in the matrix H.
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this
matrix, consider the sequences

z(n)={1,2,3,4} and h(n)={3,2,1}
T 1

a. Determine the linear convolution y (n) = h (n) * z (n).

b. Express z(n) as a 4 X 1 column vector x and y(n) as a 6 x 1 column vector y. Now
determine the 6 x 4 matrix H so that y = Hx.

c. Characterize the matrix H. From this characterization can you give a definition of a
Toeplitz matrix? How does this definition compare with that of time invariance?

d. What can you say about the first column and the first row of H?

MATLAB provides a function called toeplitz to generate a Toeplitz matrix, given the first
row and the first column.

a. Using this function and your answer to Problem 2.13 part d, develop an alternate
MATLAB function to implement linear convolution. The format of the function should be

function [y,H)=conv_tp{(h,x)

% Linear Convolution using Toeplitz Matrix
%
% [y,H] = conv_tp(h,x)

% y = output sequence in column vector form

% H = Toeplitz matrix corresponding to sequence h so that y = Hx
% h = Impulse response sequence in column vector form

% x = input sequence in column vector form

b. Verify your function on the sequences given in Problem 2.13.
Let z(n) = (0.8)" u(n).
a. Determine z(n) * z(n) analytically.

b. Using the filter function, determine the first 50 samples of z(n) * z(n). Compare your
results with those of part a.

A particular linear and time-invariant system is described by the difference equation
y(n) — 0.5y(n — 1) + 0.25y(n — 2) = z(n) + 2z(n — 1) + x(n — 3)

a. Determine the stability of the system.

b. Determine and plot the impulse response of the system over 0 < n < 100. Determine the
stability from this impulse response.
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P2.17

c. If the input to this system is z(n) = [5 + 3 cos(0.27n) + 45in(0.67n)] u(n), determine the
response y(n) over 0 < n < 200.
A “simple” digital differentiator is given by

y(n) =z(n) —z(n - 1)

which computes a backward first-order difference of the input sequence. Implement this
differentiator on the following sequences and plot the results. Comment on the
appropriateness of this simple differentiator.

a. z(n) = 5 [u(n) — u(n — 20)]: a rectangular pulse
b. z(n) = nlu(n) — u(n — 10)] + (20 — n) fu(n — 10) ~u(n — 20)]: a triangular pulse
c. z(n) =sin (%) [u(n) — u(n — 100)]: a sinusoidal pulse

Problems

39



THE DISCRETE-TIME
FOURIER ANALYSIS

We have seen how a linear and time-invariant system can be represented
using its response to the unit sample sequence. This response, called the
unit impulse response h(n), allows us to compute the system response to
any arbitrary input z(n) using the linear convolution as shown below.

2(n) — [A(n) ]| — y(n) = h(n) * z(n)

This convolution representation is based on the fact that any signal can
be represented by a linear combination of scaled and delayed unit sam-
ples. Similarly, we can also represent any arbitrary discrete signal as a
linear combination of basis signals introduced in Chapter 2. Each ba-
sis signal set provides a new signal representation. Each representation
has some advantages and some disadvantages depending upon the type
of system under consideration. However, when the system is linear and
time-invariant, only one representation stands out as the most useful. It
is based on the complex exponential signal set {e/“"} and is called the
Discrete-time Fourier Transform.

THE DISCRETE—TIMEF{OURIER TRANSFORM (DTFT)

If z(n) is absolutely summable, that is, S, |z(n)] < oo, then its
discrete-time Fourier transform is given by

o0

X(e*) & Flam) = P z(n)e " (3.1)

n=—0oo

[m] EXAMPLE 3.1

Solution

a EXAMPLE 3.2

TWO
IMPORTANT
PROPERTIES

The inverse discrete-time Fourier transform (IDTFT) of X (e7*) is given
by

2(n) & F-1 [x(e)] =% / X dw  (32)

-

The operator F [} transforms a discrete signal z(n) into a complex-valued
continuous function X (e’*) of real variable w, called a digital frequency,
which is measured in radians.

Determine the discrete-time Fourier transform of z(n) = (0.5)" u(n).

The sequence z(n) is absolutely summable; therefore its discrete-time Fourier
transform exists.

X(@*) = iz(n)e‘j“’" =Y (5)" e7im

_ 1 e
T 1-05ew  ew—-05

(0.5e5)" o

OMS cMs

Determine the discrete-time Fourier transform of the following finite-duration
sequence:

z(n) = {1,2,3,4,5}
1

Using definition (3.1),

o
X(“) = Zz(n)e‘j“" = &/ 4+ 2+ 3¢9 4 4e7™ 4 5o~

—o0

Since X(¢/*) is a complex-valued function, we will have to plot its mag-
nitude and its angle (or the real and the imaginary part) with respect to w
separately to visually describe X (¢’“). Now w is a real variable between —oo
and oo, which would mean that we can plot only a part of the X (&) func-
tion using MATLAB. Using two important properties of the discrete-time Fourier
transform, we can reduce this domain to the [0, ] interval for real-valued se-
quences. We will discuss other useful properties of X (e“) in the next section.

[w]

We will state the following two properties without proof.

1. Periodicity: The discrete-time Fourier transform X (/) is periodic
in w with period 2.

X(ejw) = X(ej[w+21r])

The Discrete-time Fourier Transform (DTFT) ) |



ey

Implication: We need only one period of X (e7%) (i.e.,w €[0, 2], or [, ],
etc.) for analysis and not the whole domain —oo < w < o0.
2. Symmetry: For real-valued z(n), X(e’“) is conjugate symmetric.

X(e™w) = X*(e)
or
Re[X(e™*)] = Re[X(e?*)]  (even symmetry)
Im[X(e~7*)] = — Im[X(e™)] (odd symmetry)
|X(e=™)] = |X (&) (even symmetry)
(X(e™I%) = —LX(eMv) (odd symmetry)

Implication: To plot X (e’*’), we now need to consider only a half period
of X(e#*). Generally, in practice this period is chosen to be w € [0, 7).

MATLAB If x(n) is of infinite duration, then MATLAB cannot be used directly to
IMPLEMEN- compute X(e’*) from z(n). However, we can use it to evaluate the ex-
TATION pression X (e#) over [0, 7] frequencies and then plot its magnitude and

angle (or real and imaginary parts).

] EXAMPLE 3.3  Evaluate X(e’”) in Example 3.1 at 501 equispaced points between [0,%] and
plot its magnitude, angle, real, and imaginary parts.
Solution MATLAB Script
>> w = [0:1:500]1*pi/500; % [0, pi] axis divided inte 501 points.
>> X = exp(j*w) ./ (exp(j*w) - 0.5%ones(1,501));
>> magX = abs(X); angX = angle(X);
>> realX = real(X); imagX = imag(X);
>> subplot(2,2,1); plot(w/pi,magX); grid
>> xlabel(’frequency in pi units’); title(’Magnitude Part’); ylabel(’Magnitude’)
>> gubplot(2,2,3); plot(w/pi,angk); grid
>> xlabel(’frequency in pi units’); title(’Angle Part’); ylabel(’Radians’)
>> subplot(2,2,2); plot(w/pi,realX); grid
>> xlabel(’frequency in pi units’); title(’Real Part’); ylabel(’Real’)
>> subplot(2,2,4); plot(w/pi,imagX); grid
>> xlabel(’frequency in pi units’); title(’Imaginary Part’); ylabel(’Imaginary’)
The resulting plots are shown in Figure 3.1. Note that we divided the w array by
pi before plotting so that the frequency axes are in the units of m and therefore
easier to read. This practice is strongly recommended. a
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FIGURE 3.1 Plots in Ezample 3.3

If z(n) is of finite duration, then MATLAB can be used to compute
X{(e’™) numerically at any frequency w. The approach is to implement
(3.1) directly. I, in addition, we evaluate X (e’) at equispaced frequen-
cies between [0, 7], then (3.1) can be implemented as a matriz-vector mul-
tiplication operation. To understand this, let us assume that the sequence
z(n) has N samples between n; < n < ny (i.e., not necessarily between
[0, N ~1]) and that we want to evaluate X (e7) at

z
M

which are (M + 1) equispaced frequencies between [0, 7]. Then (3.1) can
be written as

w2 Tk E=01,..,M

N .
X(ejwk) =Ze—j("’/M)k"lx(n[)’ k:o,l,...,M
=1

When {z(ng)} and {X(e/*)} are arranged as column vectors x and X,
respectively, we have

X =Wx (33)
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O EXAMPLE 3.4

Solution

where W is an (M + 1) x N matrix given by
wi {e_j("/M)k"‘; m<n<ny, k=0,1,.. .,M}

In addition, if we arrange {k} and {n,} as row vectors k and n respectively,
then

W= o (357

In MATLAB we represent sequences and indices as row vectors; therefore
taking the transpose of (3.3), we obtain

XT =xT [exp (—j -A%nTk)] (3.9)

Note that nTk is an N x (M + 1) matrix. Now (3.4) can be implemented
in MATLAB as follows.

>> k = [0:M]; n = [n1:n2];
>> X = x * (exp(-j*pi/M)) .~ (n’*k);

Numerically compute the discrete-time Fourier transform of the sequence z(n)
given in Example 3.2 at 501 equispaced frequencies between [0, 7.

MaTLAB Script
>>n = -1:3; x = 1:5;

>> k = 0:500; w = (pi/500)*k;

>> X = x * (exp(-j*pi/500)) .~ (n’*k);

>> magX = abs(X); angX = angle(X);

>> realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(k/500,magX);grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’)
>> subplot(2,2,3); plot(k/500,angX/pi);grid

>> xlabel(’frequency in pi units’); title(’Angle Part’)

>> subplot(2,2,2); plot(k/500,realX);grid

>> xlabel(’frequency in pi units’); title(’Real Part’)

>> subplot(2,2,4); plot(k/500,imagX);grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’)

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot
is depicted as a discontinuous function between —m and 7. This is because the
angle function in MATLAB computes the principal angle. a

The procedure of the above example can be compiled into a MATLAB
function, say a dtft function, for ease of implementation. This is explored
in Problem 3.1. This numerical computation is based on definition (3.1).
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a EXAMPLE 3.5

Solution
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FIGURE 3.2 Plots in Ezample 3.4

It is not the most elegant way of numerically computing the discrete-time
Fourier transform of a finite-duration sequence. Furthermore, it creates an
N x (M + 1) matrix in (3.4) that may exceed the size limit in the Student
Edition of MATLAB for large M and N. In Chapter 5 we will discuss in
detail the topic of a computable transform called the discrete Fourier
transform (DFT) and its efficient computation called the fast Fourier
transform (FFT). Also there is an alternate approach based on the 2-
transform using the MATLAB function freqz for finite-duration sequences,
which we will discuss in Chapter 4. In this chapter we will continue to use
the approaches discussed so far for calculation as well as for investigation
purposes.

In the next two examples we investigate the periodicity and symmetry
properties using complex-valued and real-valued sequences.

Let z(n) = (0.9exp (jn/3))", 0 < n <10. Determine X (') and investigate
its periodicity.

Since z(n) is complex-valued, it satisfies only the periodicity property. Therefore
it is uniquely defined over one period of 2x. However, we will evaluate and plot it
at 401 frequencies over two periods between [—2m, 21r] to observe its periodicity.
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a EXAMPLE 3.6

>>n = 0:10; x = (0.9*exp(j*pi/3)). n;

>> k = -200:200; w = (pi/100)+k;

>> X = x * (exp(-j*pi/100)) .~ (n’'*k);

>> magX = abs(X); angX =angle(X);

>> subplot(2,1,1); plot(w/pi,magX);grid

>> xlabel(’frequency in units of pi’); ylabel(’IX|’)

>> title(’Magnitude Part’)

>> subplot(2,1,2); plot(w/pi,angX/pi);grid

»> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)
>> title(’Angle Part’)

From the plots in Figure 3.3 we observe that X (¢7*) is periodic in w but is not
conjugate-symmetric. a

Let z(n) = 2", =10 < n < 10. Investigate the conjugate-symmetry property
of its discrete-time Fourier transform.

Solution Once again we will compute and plot X (e’“) over two periods to study its
symmetry property.
Magnitude Part
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FIGURE 3.3 Plots in Ezample 8.5
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FIGURE 3.4 Plots in Example 3.6

subplot(1,1,1)

n = -5:5; x = (-0.9).7n;

k = -200:200; w = (pi/100)*k;

X = x * (exp(-j*pi/100)) .~ (n’*k);

magX = abs(X); angX =angle(X);

subplot(2,1,1); plot(vw/pi,magk);grid
axis([-2,2,0,15])

xlabel(’frequency in units of pi’); ylabel(’ IX|?*)
title(’Magnitude Part’)

subplot(2,1,2); plot(w/pi,angX)/pi;grid
axis([-2,2,-1,1])

xlabel(’frequency in units of pi’); ylabel(’radians/pi’)
title(’Angle Part’)

From the plots in Figure 3.4 we observe that X (e?“) is not only periodic in w
but is also conjugate-symmetric. Therefore for real sequences we will plot their
Fourier transform magnitude and angle responses from 0 to 7. o

THE PROPERTIES OF THE DTFT
+

In the previous section we discussed two important properties that we
needed for plotting purposes. We now discuss the remaining useful proper-
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ties, which are given below without proof. Let X {¢7“) be the discrete-time
Fourier transform of z(n).

1. Linearity: The discrete-time Fourier transform is a linear transfor-
mation; that is,

Flazi(n) + Bz2(n)] = oF [z1(n)} + BF [z2 (n)) (3.5)
for every a, B, z1(n), and z3 (n).
2. Time shifting: A shift in the time domain corresponds to the phase
shifting.
Flz(n - k)] = X(e*)e ¥ (3:6)
3. Frequency shifting: Multiplication by a complex exponential cor-
responds to a shift in the frequency domain.
F [a()ern] = X (=) 37)

4. Conjugation: Conjugation in the time domain corresponds to the
folding and conjugation in the frequency domain.

Fle*(n)] = X*(e™) (38)

5. Folding: Folding in the time domain corresponds to the folding in
the frequency domain.

Flz(-n)]=X (e™) (39)

6. Symmetries in real sequences: We have already studied the conju-
gate symmetry of real sequences. These real sequences can be decomposed
into their even and odd parts as we discussed in Chapter 2.

z(n) = ze(n) + To(n)
Then
Flze(n) =Re [X(ej“)]

3.10
Fleo(m) = i Im [X (/)] 10

Implication: If the sequence z(n) is real and even, then X (€99) is also
real and even. Hence only one plot over [0, ] is necessary for its complete
representation.

A similar property for complex-valued sequences is explored in Prob-
lem 3.7.

7. Convolution: This is one of the most useful properties that makes
system analysis convenient in the frequency domain.

Floi(n) x z2(n)] = F [11(n)] F lea(n)] = Xa(e™) Xo(e™)  (311)
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u] EXAMPLE 3.7

8. Multiplication: This is a dual of the convolution property.

Floa(n) - z2(] = Flna (] @ Fleaw] £ 5 [ X Xale a8
: (3.12)

The convolution-like operation above is called a periodic convolution and
hence denoted by @ . It is discussed (in its discrete form) in Chapter 5.
9. Energy: The energy of the sequence x(n) can be written as

£ = ilZ(n)Iz = o [ X[ o (313

L L2
|X ()] :
= —}———dw (for real sequences using even symmetry)
0

This is also known as Parseval’s Theorem. From (3.13) the energy density
spectrum of z(n) is defined as

o 12
3, 2 KL

(3.14)

Then the energy of z{n) in the [w;,w;] band is given by
w2
/Qz(w)dw, 0wy <wp &
wi

In the next several examples we will verify some of these properties
using finite-duration sequences. We will follow our numerical procedure
to compute discrete-time Fourier transforms in each case. Although this
does not analytically prove the validity of each property, it provides us
with an experimental tool in practice.

In this example we will verify the linearity property (3.5) using real-valued finite-
duration sequences. Let x1(n) and z2(n) be two random sequences uniformly
distributed between [0,1] over 0 < n < 10. Then we can use our numerical
discrete-time Fourier transform procedure as follows.

x1 = rand(1,11); x2 = rand(1,11); n = 0:10;
alpha = 2; beta = 3;

k = 0:500; w = (pi/600)*k;
X1 = x1 * (exp(-j*pi/600)).~(n’*+k); % DTFT of x1

X2 = x2 * (exp(-j*pi/500))."(n’»k); % DIFT of x2
x = alpha*xl + beta*x2; % Linear combination of x1 & x2
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> X = x * (exp(~j*pi/500))." (n’*k); % DTFT of x >> xlabel(’frequency in pi units’); ylabel(’|Yl’)

>> % verification >> title(’Magnitude of Y’)

>> X_check = alpha*X1 + beta*X2; % Linear Combination of X1 & X2 >> subplot(2,2,4); plot(w/pi,angle(Y)/pi); grid; axis([-1,1,-1,1])
>> error = max(abs(X-X_check)) % Difference >> xlabel(’frequency in pi units’); ylabel(’radians/pi’)

error = >> title(’Angle of Y’)

7.1064e-015

and from plots in Figure 3.5 we observe that X (e’*) is indeed shifted by =/4

Since the maximum absolute error between the two Fourier transform arrays in both magnitude and angle. o

is less than 107, the two arrays are identical within the limited numerical
precision of MATLAB. n]
0 EXAMPLE3.10 To verify the conjugation property (3.8), let z(n) be a complex-valued random

sequence over —5 < n < 10 with real and imaginary parts uniformly distributed

O  EXAMPLE3S Let z(n) be a random sequence uniformly distributed between [0,1) over 0 <
between [0, 1]. The MATLAB verification is as follows.

n < 10 and let y(n) = z(n — 2). Then we can verify the sample shift property
(3.6) as follows.
>> n = -5:10; x = rand(1,length(n)) + j*rand(1,length(n));

>> x = rand(1,11); n = 0:10;
>> k = 0:500; w = (pi/500)¥k;

>> X = x # (exp(-j*pi/600)).~(n’*k); % DTFT of x
>> % signal shifted by two samples

>> y = x; m = n+2;

> Y = y * (exp(-j*pi/500))."(m’*k); % DTFT of y

>> % verification

>> k = -100:100; w = (pi/100)*k;

> X = x * (exp(-j*pi/100))." (n’*k);
% conjugation property

>> y = conj(x);

>> Y =y * (exp(-j*pi/100)) . (n’*k);
% verification

>> Y_check = conj(fliplr(X));

% frequency between -pi and +pi
% DTFT of x

% signal conjugation
% DIFT of y

% conj (X(~w))

% multiplication by exp(-j2w)
% Difference

>> Y_check = (exp(-j*2).°v).*X;
>> error = max{abs(Y-Y_check))
. error =

‘ 5.7737e-016 u] 60

Magnitude of X

0 EXAMPLE 39 To verify the frequency shift property (3.7), we will use the graphical approach.

Let %
z(n) = cos(nn/2), 0<n <100 and y(n) = &™/4z(n) g
e
j Then using MATLAB,
> n = 0:100; x = cos(pim/2); o, : -1 ‘ : :
. - 05 0 05 1 - !
>> k = -100:100; w = (pi/100)+k; % frequency between -pi and +pi frequency in pi units ! -OWS ncy0 inpiur?li: !
> X = x * (exp(~j*pi/100))."(n'*k); % DTFT of x Magnitude of Y Angle of Y
% 60 " - 1
>> y = exp(j*pisn/4).*x; % signal multiplied by exp(j*pitn/4) : :
i >> Y = y * (exp(-j*pi/100)) .7 (n’+k); % DIFT of y
] % Graphical verification 4o 2
: >> subplot(1,1,1) = &
>> subplot(2,2,1); plot(w/pi,abs(X)); grid; axis({-1,1,0,60]) 20 3
>> rlabel(’frequency in pi units’); ylabel(’IXI’)
>> title(’Magnitude of X’)

>> subplot(2,2,2); plot (v/pi,angle(X)/pi); grid; axis([-1,1,-1,11) 0

. N : . N : "1 05 0 05 1 ..‘ o5 o Y 1

>> xlabel(’frequency in pi units’); ylabel(’radiands/pi’) e A
frequency in pi units

>> title(’Angle of X') pi frequency in pi units

>> subplot(2,2,3); plot(w/pi,abs(Y)); grid; axis([-1,1,0,601) FIGURE 3.5 Plots in Example 3.9
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>> error = max(abs(Y-Y_check)) % Difference
error =
0 u}
O  EXAMPLE3.11 To verify the folding property (3.9), let z(n) be a random sequence over -5 <
n < 10 uniformly distributed between [0,1). The MATLAB verification is as
follows.
>>n = -5:10; x = rand(1,length(n));
>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(~j*pi/100)). (n’*k); % DTFT of x
% folding property
>> y = fliplr(x); m = -fliplr(n); % signal folding
>> Y = y * (exp(-j*pi/100)) .~ (m’*k); % DTFT of y
% verification
>> Y_check = fliplr(X); % X(-w)
>> error = max(abs(Y-Y_check)) % Difference
error =
0 a
O  EXAMPLE 312 In this problem we verify the symmetry property (3.10) of real signals. Let
z(n) =sin(7n/2), -5<n<10
Then using the evenodd function developed in Chapter 2, we can compute
the even and odd parts of z(n) and then evaluate their discrete-time Fourier
transforms. We will provide the numerical as well as graphical verification.
>>n = -5:10; x = sin(pi*n/2);
>> k = =100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)) . (n’*k); % DTFT of x
% signal decomposition
>> [xe,xo,m] = evenodd(x,n); % even and odd parts
>> XE = xe * (exp(-j*pi/100)). (m’+k); % DTFT of xe
>> X0 = xo * (exp(-j*pi/100)).~(m’#k); ¥ DTFT of xo
% verification
>> IR = real(X); % real part of X
>> errorl = max(abs(XE-XR)) % Difference
errorl =
1.8974e-019
>> XI = imag(X); % imag part of X
>> error2 = max(abs (X0-j*XI)) % Difference
error2 =
1.8033e-019
% graphical verification
>> subplot(1,1,1)
>> subplot(2,2,1); plot{w/pi,XR); grid; axis([-1,1,-2,2])
>> xlabel(’frequency in pi units’); ylabel(’Re(X)’);
>> title(’Real part of X’)
52 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

>>
>>
>>
>>
>>
>>
>
>>
>>

v

Real part of X Imaginary part of X

3 g
g° E
-1}
_2 . -10 N N N
-1 0.5 0_ X 0.5 1 -1 -0.5 0 0.5 1
frequency in pi units frequency in pi units
Transform of even part Transform of odd part
2 " ¥ 10 " "

-1

-2 H :
-1 -05 [} 0.5 1 -1 -0.5 0 0.5 1
frequency in pi units frequency in pi units

FIGURE 3.6 Plots in Ezample 3.12

subplot(2,2,2); plot(w/pi,XI); grid; axis([-1,1,-10,10])
xlabel(’frequency in pi units’); ylabel(’Im(X)’);
title(’Imaginary part of X’)

subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,2])
xlabel(’frequency in pi units’); ylabel(’XE’);
title(’Transform of even part’)

subplot(2,2,4); plot(w/pi,imag(X0)); grid; axis([-1,1,-10,10])
xlabel(’frequency in pi units’); ylabel(’X0’);
title(’Transform of odd part’)

From the plots in Figure 3.6 we observe that the real part of X (¢%) (or the
imaginary part of X (e)) is equal to the discrete-time Fourier transform of
ze(n) (or zo(n)). [m}

THE FREQUENCY DOM_AlN REPRESENTATION OF LT! SYSTEMS

‘We earlier stated that the Fourier transform representation is the most
useful signal representation for LTI systems. It is due to the following
result.
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RESPONSE TO
A COMPLEX
EXPONENTIAL
ejwoﬂ

= DEFINITION 1

RESPONSE TO
SINUSOIDAL
SEQUENCES

Let z(n) = e7“o™ be the input to an LTI system represented by the impulse

response h(n).
efwon — h(n) % efom
Then

y(n) = h(n) x 9" = ih(k)ej‘“("—k)

—00

= [i h(k)e—iwv"] elvwon (3.15)

o0

= [Flh()]lum,] "

Frequency Response

The discrete-time Fourier transform of an impulse response is called
the Frequency Response (or Transfer Function ) of an LTI system and is
denoted by

H(em) 2 i h(n)e= 3" (3.16)

Then from (3.15) we can represent the system by

#(n) = " —s — y(n) = H(e?) x &8“o" (3.17)

Hence the output sequence is the input exponential sequence modified by
the response of the system at frequency wp. This justifies the definition
of H(e?) as a frequency response because it is what the complex expo-
nential is multiplied by to obtain the output y(n). This powerful result
can be extended to a linear combination of complex exponentials using
the linearity of LTI systems.

3 Apeion — — ST ApH(elr)
k k

In general, the frequency response H (¢/“) is a complex function of w. The
magnitude | H(e#)| of H(e?) is called the magnitude (or gain) response
function, and the angle / H(e?*) is called the phase response function as
we shall see below.

" Let z(n) = Acos(won + 6p) be an input to an LTI system h(n). Then

from (3.17) we can show that the response y(n) is another sinusoid of the
same frequency wo, with amplitude gained by |H (ej“’°)| and phase shifted
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by LH{e?“0), that is,
y(n) = A|H(e°)| cos (won + 6o + LH(e7)) (3.18)

This response is called the steady-state response denoted by yss(n). It can
be extended to a linear combination of sinusoidal sequences.

ZA;; cos(wgn + 6x) — — ZA" ]H(ej“”‘)| cos (wen + Ok + LH(eY))
P k

RESPONSE TO  Finally, (3.17) can be generalized to arbitrary absolutely summable se-
ARBITRARY quences. Let X(e?*) = Flz(n)] and Y (e) = F[y(n)]; then using the
SEQUENCES convolution property (3.11), we have

V() = H(e™) X (&) (3.19)

Therefore an LTI system can be represented in the frequency domain by
X(e/?) — | H(e) | — Y(e/) = H(e?) X(e/)

The output y(n) is then computed from Y (¢?*') using the inverse discrete-
time Fourier transform (3.2). This requires an integral operation, which is
not a convenient operation in MATLAB. As we shall see in Chapter 4, there
is an alternate approach to the computation of output to arbitrary inputs
using the z-transform and partial fraction expansion. In this chapter we
will concentrate on computing the steady-state response.

O EXAMPLE313 Determine the frequency response H(e?) of a system characterized by h{n) =

(0.9)™u(n). Plot the magnitude and the phase responses.

Solution Using (3.16),
o0 R o0
HE) =Y hp)e™ =Y (0.9)"e ™"
-0 0
_ Jwyn
=D 097 = t—g5w
0
Hence
) 1 1
H(eY| = _
I ¢ )I \/(1 —09cosw)? + (0.9sinw)?  /1.81 — 1.8cosw
and
oy 0.9sinw
LH(&*) = —arctan [-———-—l —O.Qwsw]
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[m] EXAMPLE 3.14

Solution

To plot these responses, we can either implement the IH (ej“)l and ZH(e™)
functions or the frequency response H (ej“) and then compute its magnitude
and phase. The latter approach is more useful from a practical viewpoint (as
shown in (3.18)).

>> w = [0:1:500}%pi/600; Y% [0, pil axis divided into 501 points.
>> H = exp(j»w) ./ (exp(j*w) - 0.9*ones(1,501));

>> magh = abs(H); angH = angle(H);

>> subplot(2,1,1); plot (w/pi,magh); grid;

>> xlabel(’frequency in pi units’); ylabel(’ 1HI’);

>> title(’Magnitude Response’);

>> subplot(2,1,2); plot(vw/pi,angh/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);
>> title(’Phase Respomse’);

The plots are shown in Figure 3.7. =]

Let an input to the system in Example 3.13 be 0.1u(n). Determine the steady-
state response Yss(n).

Since the input is not absolutely summable, the discrete-time Fourier transform
is not particularly useful in computing the complete response. However, it can
be used to compute the steady-state response. In the steady state (i.e., n — oo)

Magnitude Response
10 T T T T T ¥ T T
B\ 4
B\ b J
I
4 ]
o o B NG o
0 t L 2 i s ) 1 m 1
[} 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1
frequency in pi units
Phase Response
0,

5

o
@

Phase in pi Radians
S
N

1 L i 2 s
0.1 02 03 0.4 05 0.6 07 0.8 0.9 1
frequency in pi units

' A I

o
ot

FIGURE 3.7 Frequency response plots in Ezample 3.13
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FREQUENCY
RESPONSE
FUNCTION
FROM
DIFFERENCE
EQUATIONS

O EXAMPLE 3.15

the input is a constant sequence (or a sinusoid with wo = 6o = 0). Then the
output is

Yos(n) = 0.1 x H(®) =01x10=1

where the gain of the system at w = 0 (also called the DC gain) is H(e?°) = 10,
which is obtained from Figure 3.7. [m]

When an LTI system is represented by the difference equation

N M
y(n) + Zaly(n - = Z bpz(n —m) (3.20)

£=1 m=0

then to evaluate its frequency response from (3.16), we would need the im-
pulse response h(n). However, using (3.17), we can easily obtain H (€79).
We know that when z(n) = 7", then y(n) must be H(e™)e?™. Substi-
tuting in (3.20), we have

N M
H(e*)e™ + Y agH(#)e 0 = 3 by ™

£=1 m=0

or

M

H(eh) = 22— (3:21)
1+ Z ap e~iwt
=1

after canceling the common factor e/™ term and rearranging. This equa-
tion can easily be implemented in MATLAB, given the difference equation
parameters.
An LTI system is specified by the difference equation

y(n) =0.8y(n — 1) +z(n)

a. Determine H(e’™).
b. Calculate and plot the steady-state response y»s(n) to

z(n) = cos(0.05wn)u(n)

Solution Rewrite the difference equation as y(n) — 0.8y(n — 1) = z(n).
a. Using (3.21), we obtain
o 1
H(*) = =087 (3.22)
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b. In the steady state the input is z(n) = cos(0.057n) with frequency
wp = 0.057 and 6o = 0°. The response of the system is

j0.08my _ 1
HE%) = ¢

__O_ém = 4_09286—,1045377
— U.5e/%

Therefore
yss(n) = 4.0928 cos(0.057n — 0.5377) = 4.0928 cos [0.057(n — 3.42))

This means that at the output the sinusoid is scaled by 4.0928 and shifted by
3.42 samples. This can be verified using MATLAB.

>> subplot(1,1,1)

>»b=1; a=[1,-0.8];

>> n=[0:100) ;x = cos(0.05*pi*n);

>y = filter(b,a,x);

>> subplot(2,1,1); sten(n,x);

>> xlabel(’n’); ylabel(’x(n)’); title(’Input sequence’)
>> subplot(2,1,2); sten(n,y);

>> xlabel(’n’); ylabel(’y(n)’); title(’Output sequence’)

From the plots in Figure 3.8 we note that the amplitude of yss(n) is approxi-
mately 4. To determine the shift in the output sinusoid, we can compare 2ero

input sequence

05 ﬁﬁ T"Y v ]

—_

x(n)
=

FIGURE 3.8 Plots in Example 3.15
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O  EXAMPLE 3.16

crossings of the input and the output. This is shown in Figure 3.8, from which
the shift is approximately 3.5 samples. [m]

In Example 3.15 the system was characterized by a first-order differ-
ence equation. It is fairly straightforward to implement (3.22) in MATLAB
as we did in Example 3.13. In practice the difference equations are of large
order and hence we need a compact procedure to implement the general
expression (3.21). This can be done using a simple matrix-vector multi-
plication. If we evaluate H(¢?*) at k=0,1,..., K equispaced frequencies
over [0, 7], then

M
§ bm e—jwum

jwky =0
H(g*) = 2= ,
1+Za¢ e—dwit
£=1
1f we let {bm}, {ae} (with ap =1), {m =0,..., M}, {£=0,...,N}, and

{wr} be arrays (or row vectors), then the numerator and the denominator
of (3.23) become

k=0,1,....K (3.23)

bexp (—jmTw); aexp (—J!Tg)

respectively. Now the array H(e7**) in (3.23) can be computed using a ./
operation. This procedure can be implemented in a MATLAB function to
determine the frequency response function, given {b..} and {a,} arrays.
We will explore this in Example 3.16 and in Problem 3.15.

A 3rd-order lowpass filter is described by the difference equation
y(n) = 0.0181x(n) + 0.0543z(n — 1) + 0.0543z(n — 2) + 0.0181x(n — 3)
+ 1.76y(n — 1) — 1.1829y(n — 2) + 0.2781y(n — 3)

Plot the magnitude and the phase response of this filter and verify that it is a
lowpass filter.

Solution We will implement the above procedure in MATLAB and then plot the filter
responses.
> b = [0.0181, 0.0543, 0.0543, 0.0181); % filter coefficient array b
>> a = [1.0000, -1.7600, 1.1829, -0.2781); Y% filter coefficient array a
>> m = 0:length(b)-1; 1 = 0:length(a)-1; % index arrays m and 1
> K = 500; k = 0:1:K; % index array k for frequencies
>> w = pi*k/K; % [0, pi] axis divided into 501 points.
>> num = b * exp(~j*m’*w); % Numerator calculations
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FIGURE 3.9 Plots for Ezample 3.16

den = a * exp(-j*1’*w); % Denominator calculations
H = num ./ den; % Frequency response

magH = abs(H); angH = angle(H); % mag and phase responses
subplot(1,1,1);

subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,11)

xlabel(’frequency in pi units’); ylabel(’|H|’);
title(’Magnitude Response’);

subplot(2,1,2); plot(w/pi,angH/pi); grid

xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);
title(’Phase Response’);

From the plots in Figure 3.9 we see that the filter is indeed a lowpass filter. O

SAMPLING AND RECO!\‘STRUCTION OF ANALOG SIGNALS

In many applications—for example, in digital communications—real-
world analog signals are converted into discrete signals using sampling
and quantization operations (collectively called analog-to-digital con-
version or ADC). These discrete signals are processed by digital signal
processors, and the processed signals are converted into analog signals

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

SAMPLING

using a reconstruction operation (called digital-to-analog conversion or
DAC). Using Fourier analysis, we can describe the sampling operation
from the frequency-domain viewpoint, analyze its effects, and then ad-
dress the reconstruction operation. We will also assume that the number
of quantization levels is sufficiently large that the effect of quantization
on discrete signals is negligible.

Let z,(t) be an analog (absolutely integrable) signal. Its continuous-time
Fourier transform (CTFT) is given by

X.(j0) & / za(t)e I dt (3.24)

-0

where Q is an analog frequency in radians/sec. The inverse continuous-
time Fourier transform is given by

:1:.,(t)=2—17r / X, (jQ)e™*d {3.25)

We now sample z,(t) at sampling interval T, seconds apart to obtain the
discrete-time signal z(n).
N
z{n) = zq( nTs)

Let X (e7%) be the discrete-time Fourier transform of z(n). Then it can be
shown [19] that X (e**) is a countable sum of amplitude-scaled, frequency-
scaled, and translated versions of the Fourier transform X.(590).

x@) =21 S x[i(L -2 (3.26)
AR AV '
=—00
The above relation is known as the aliasing formula. The analog and
digital frequencies are related through T,
w= QT (3.27)
while the sampling frequency F; is given by

1
F, = =, sam/sec (3.28)

T,
The graphical illustration of (3.26) is shown in Figure 3.10, from which
we observe that, in general, the discrete signal is an aliased version of the
corresponding analog signal because higher frequencies are aliased into
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FIGURE 3.10 Sampling operation in the time and frequency domains

lower frequencies if there is an overlap. However, it is possible to recover
the Fourier transform X,(j§) from X(e?) {or equivalently, the analog
signal z,(t) from its samples z(n)) if the infinite “replicas” of X,(j€?) do
not overlap with each other to form X (e/). This is true for band-limited
analog signals.

Band-limited Signal

A signal zs band-limited if there exists a finite radian frequency (o
such that X,(jQ) is zero for |2 > Qq. The frequency Fo=Qo/27 is called
the signal bandwidth in Hz.
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Referring to Figure 3.10, if 7 > QoT,—or equivalently, Fy/2 > Fo—
then

; 1 w T w m
Jwy = — i— ) —— <= < = B
X (&) T,,X (JT), T <T T, (3.29)

which leads to the sampling theorem for band limited signals.

[ ] THEOREM 3 Sampling Principle
A band-limited signal z,(t) with bandwidth Fy can be reconstructed
from its sample values z(n) = zo(nTs) if the sampling frequency F, =
1/T, is greater than twice the bandwidth Fo of z.(t)-

F, > 2F,

Otherwise aliasing would result in z(n). The sampling rate of 2Fy for an
analog band-limited signal is called the Nyquist rate.

It should be noted that after zq(t) is sampled, the highest analog
frequency that z(n) represents is Fy /2 Hz (or w = 7). This agrees with
the implication stated in Property 2 of the discrete-time Fourier transform
in the first section of this chapter.

MATLAB In a strict sense it is not possible to analyze analog signals using MATLAB
IMPLEMEN- unless we use the Symbolic toolbox. However, if we sample z4(t) on a fine
TATION grid that has a sufficiently small time increment to yield a smooth plot

and a large enough maximum time to show all the modes, then we can
approximate its analysis. Let At be the grid interval such that At < T,.
Then

2 (m) & T(mAt) (3.30)

can be used as an array to simulate an analog signal. The sampling interval
T, should not be confused with the grid interval At, which is used strictly
to represent an analog signal in MATLAB. Similarly, the Fourier transform
relation (3.24) should also be approximated in light of (3.30) as follows

X, () = Y za(m)e I AL = At Y zg(m)e=i ™At (331)

Now if 7o (t) (and hence zg(m)) is of finite duration, then (3.31) is similar
to the discrete-time Fourier transform relation (3.3) and hence can be
implemented in MATLAB in a similar fashion to analyze the sampling
phenomenon.
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O EXAMPLE 3.17

Solution

jm}

EXAMPLE 3.18

Let z4(t) = e~*°°*l, Determine and plot its Fourier transform.

From (3.24)
o0 0 oo
Xa(§2) = /za(t)e'jmdtz /ewome'jmdt—f—/e_mmte_jmdt
o

-0 —00

_ 0.002

=

1+ (1)

which is a real-valued function since z,(t) is a real and even signal. To evaluate
Xa(j§) numerically, we have to first approximate z.(t) by a finite-duration
grid sequence zg(m). Using the approximation e™® = 0, we note that za(t)
can be approximated by a finite-duration signal over ~0.005 < ¢ < 0.005 (or
equivalently, over [—5,5) msec). Similarly from (3.32), X,(j©) =~ 0 for Q >
2 (2000). Hence choosing

(3.32)

At=5x10"° & =25x107°

1
2(2000)

we can obtain zg(m) and then implement (3.31) in MATLAB.

% Analog Signal

>> Dt = 0.00005; t = ~0.005:Dt:0.005; xa = exp(-1000*abs(t});
% Continuous-time Fourier Tramnsform

>>Wmax = 2#pi*2000; K = 500; k = 0:1:K; W = ktWmax/K;

>>Xa = xa * exp(-j*t’*W) * Dt; Xa = real(Xa);

>>W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax
>>Xa = [fliplr(Xa), Xa(2:501)]; % Xa over -Wmax to Wmax interval
>>subplot(1,1,1)

>>subplot(2,1,1) ;plot (t*1000,xa);

>>xlabel(’t in msec.’); ylabel(’xa(t)’)

>>title(’Analog Signal’)

>>subplot(2,1,2) ;plot (W/ (2#pi*1000) ,Xax1000);

>>xlabel (*Frequency in KHz’); ylabel(’Xa(jW)*1000*)
>>title(’Continuous-time Fourier Transform’)

Figure 3.11 shows the plots of z4(t) and Xa(j§2). Note that to reduce the number
of computations, we computed X,(j§?) over [0,40007] radians/sec (or equiva-
lently, over [0,2] KHz) and then duplicated it over [—4000w,0] for plotting
purposes. The displayed plot of X(j2) agrees with (3.32). a

To study the effect of sampling on the frequency-domain quantities, we will
sample z4(t) in Example 3.17 at two different sampling frequencies.

a. Sample z,(t) at F, = 5000 sam/sec to obtain x1(n). Determine and plot
X1 (e™).

b. Sample z,(t) at F, = 1000 sam/sec to obtain z2(n). Determine and plot
X2 (ej e )
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FIGURE 3.11 Plots in Ezample 3.17

Solution

a. Since the bandwidth of z.(t) is 2KHz, the Nyquist rate is 4000 sam/sec,

which is less than the given Fy. Therefore aliasing will be (almost) nonexistent.

% Analog Signal

>>

Dt = 0.00005; t = -0.006:Dt:0.005; xa = exp(-1000*abs(t));

% Discrete-time Signal

>>

Ts = 0.0002; n = -25:1:26; x = ex‘p(—lOOO*abs(n*Ts));

% Discrete-time Fourier transform

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

In

K =500; k =0:1:K; w= pi*k/K;

X = x * exp(-j*n’*w); X = real(X);

w = [-fliplr(w), w(2:K+1)];

X = [fliplr(X), X(2:K+1)];

subplot(1,1,1)

subplot(2,1,1);plot (£*1000,xa) ;

xlabel(’t in msec.’); ylabel(’xi(n)’)
title(’Discrete Signal’); hold on
stem(n*Ts*1000,x); gtext(’Ts=0.2 msec’); hold off
subplot(2,1,2) ;plot(w/pi,X);

xlabel (’Frequency in pi units’); ylabel (’X1(w)’)
title(’Discrete-time Fourier Transform’)

the top plot in Figure 3.12 we have superimposed the discrete signal z1(n)

over z4(t) to emphasize the sampling. The plot of X2(e™) shows thflt 'it isa
scaled version (scaled by F» = 5000) of Xa(j€). Clearly there is no aliasing.
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FIGURE 3.12 Plots in Ezample 3.18a

b. Here F, = 1000 < 4000. Hence there will be a considerable amount of
aliasing. This is evident from Figure 3.13, in which the shape of X(’*) is dif-
ferent from that of X,(j2) and can be seen to be a result of adding overlapping
replicas of X,(jQ). u}

From the sampling theorem and the above examples it is clear that if we
sample band-limited z,(t) above its Nyquist rate, then we can reconstruct
Zo(t) from its samples z(n). This reconstruction can be thought of as a
two-step process:

o First the samples are converted into a weighted impulse train.

00

3 (n)d(t—nTy) = - +2(~1)b(n+Te)+2(0)8(t) +2(8(n—Ta) +---

n=-—od

o Then the impulse train is filtered through an ideal analog lowpass
filter band-limited to the [-F,/2, F;/2] band.

Impulse train | Ideal lowpass

z(n) — X
conversion filter

— z,4(t)
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Discrete Signal

1 T v T T T T T T

Ts=1 msec J

5 -4 -3 2 -1 [} 1 2 3 4 5
tin msec.
Discrete-time Fourier Transform
2.5 T T T T T T T Y T

2r 4

1.5 1

X2(w)

hig 4

0.5

(-}1 08 06 04 -02 0 0.2 0.4 0.6 08 1

Frequency in pl units

FIGURE 3.13 Plots in Example 3.18b

This two-step procedure can be described mathematically using an inter-
polating formula [19]

o0

za(t) = Y z(n)sinc[Fy(t - nT)] (3.33)

n=—oo

_where sinc(z) = Z2IZ is an interpolating function. The physical inter-

pretation of the abg\zre reconstruction (3.33) is given in Figure 3.14, from

which we observe that this ideal interpolation is not practically feasible
because the entire system is noncausal and hence not realizable.

Practical D/A converters In practice we need a different approach
than (3.33). The two-step procedure is still feasible, but now we replace
the ideal lowpass filter by a practical analog lowpass filter. Another in-
terpretation of (3.33) is that it is an infinite-order interpolation. We want
finite-order (and in fact low-order) interpolations. There are several ap-
proaches to do this.
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x{0) sinc{Ft]

P P t
7

+
x(1) sinc[F,(t - T
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X,(t)
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. ! — ¢
2T,
| L1 1
T, o T, 27T, 3T,
+ x(3) sinciF,{t — 3T
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e N
s Ty
3T,
+
x(n) :
xt=1) quu) - x,(8) = S xtn) sinclFy{t = nT,)
x(2) x(3)
11 n 1 I ¢
1 0 1 2 3 -1, 0 T, 2T, 3T,
Sampling Reconstruction

FIGURE 3.14 Reconstruction of band-limited signal from its samples

o Zero-order-hold (ZOH) interpolation: In this interpolation a given
sample value is held for the sample interval until the next sample is re-
ceived.

Z,(t) =2z(n), nT,<n<(n+1)T,

which can be obtained by filtering the impulse train through an interpo-
lating filter of the form

1, 0<t<T.
ho(t) = -
0, otherwise
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MATLAB
IMPLEMEN-
TATION

which is a rectangular pulse. The resulting signal is a piecewise-constant
(staircase) waveform which requires an appropriately designed analog
post-filter for accurate waveform reconstruction.

z(n) — — &q(t) — — za(t)

o First-order-hold (FOH) interpolation: In this case the adjacent
samples are joined by straight lines. This can be obtained by filtering
the impulse train through

t
—_— <t <
1+Ts, 0<t<T,
hai(t) = 1__t_’ T, <t < 2T,
T,
0, otherwise

Once again an appropriately designed analog postfilter is required for
accurate reconstruction. These interpolations can be extended to higher
orders. One particularly useful interpolation employed by MATLAB is the
following.

o Cubic spline interpolation: This approach uses spline interpolants
for a smoother, but not necessarily more accurate, estimate of the analog
signals between samples. Hence this interpolation does not require an
analog postfilter. The smoother reconstruction is obtained by using a set
of piecewise continuous third-order polynomials called cubic splines, given
by (5]

2a () = ao (n) + 01 (n) (t — nTy) + @z (n) (¢ — nT,)°
+az(n)(t— nT,)}, nT,<n<(n+1)T, (3.34)

where {a; (n),0<i < 3} are the polynomial coefficients, which are de-
termined by using least-squares analysis on the sample values. (Strictly
speaking, this is not a causal operation but is a convenient one in MaT-
LAB.)

For interpolation between samples MATLAB provides several approaches.
The function sinc(x), which generates the (sinmz)/mz function, can
be used to implement (3.33), given a finite number of samples. If
{z(n), n1 € n < np} is given, and if we want to interpolate z4 (t) on
a very fine grid with the grid interval At, then from (3.33)

z, (MAL) = Z z(n)sinc [Fy(mAt — nTy)], t <mAt<t; (3.35)

n=ny
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which can be implemented as a matrix-vector multiplication operation as
shown below.

> n = nl:n2; t = t1:t2; Fs = 1/Ts; nTs = n*Ts; % Ts is the sampling interval
>> xa =X * sinc(Fs*(ones(length(n),1)*t-nTs’tones(1,lengCh(t))));

Note that it is not possible to obtain an ezact analog z4(t) in light of the
fact that we have assumed a finite number of samples. We now demon-
strate the use of the sinc function in the following two examples and also
study the aliasing problem in the time domain.

O EXAMPLE3.19 From the samples z1(n) in Example 3.18a, reconstruct z,(t) and comment on

Solution

the results.

Note that z1(n) was obtained by sampling za(t) at T, = 1 /F. = 0.0002 sec. We
will use the grid spacing of 0.00005 sec over —0.005 < ¢ < 0.005, which gives
z(n) over —25 < n < 25.

% Discrete-time Signal xi(n)
> Ts = 0.0002; n = -25:1:25; nTs = n*Ts;
>> x = exp(-1000*abs(nTs));
% Analog Signal recomstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa =X * sinc(Fs*(ones(length(n),1)*t—nTs’*onas(1,length(t))));
% check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =
0.0363

The maximum error between the reconstructed and the actual analog signal is
0.0363, which is due to the fact that z(t) is not strictly band-limited (and also
we have a finite number of samples). From Figure 3.15 we note that visually
the reconstruction is excellent. [m]

Reconstructed Signal from x1(n) using sinc function
1 T T T T T T T T

0.8+ E

0.6 p

xa(t)

041 4

0.2 A

e
-5 -4 -3 ~2 -1 0 1 2 3 4 5
t in msec.

FIGURE 3.15 Reconstructed signal in Ezample 3.19
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O EXAMPLE 3.20

Solution

0O EXAMPLE 321

From the samples z2(n) in Example 3.18b reconstruct z4(t) and comment on
the results. ’

In this case z2(n) was obtained by sampling Za(t) at Tp = 1/F, = 0.001 sec. We
will again use the grid spacing of 0.00005 sec over —0.005 < t < 0.005, which
gives z(n) over =5 <n < 5.

% Discrete-time Signal x2(n)
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts;
> x = exp(-1000#abs(nTs));
% Analog Signal recomstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa =X * sinc(!-‘s*(ones(length(n).1)*t-nTs’*ones(l,lengt:h(t))));
% check
»> error = max(abs(xa - exp(-1000%abs(t))))
error =
0.1852

The maximum error between the reconstructed and the actual analog signal is
0.1852, which is significant and cannot be attributed to the nonband-limitedness
of z,(t) alone. From Figure 3.16 observe that the reconstructed signal differs
from the actual one in many places over the interpolated regions. This is the
visual demonstration of aliasing in the time domain. u]

The second MATLAB approach for signal reconstruction is a plotting
approach. The stairs function plots a staircase (ZOH) rendition of the
analog signal, given its samples, while the plot function depicts a linear
(FOH) interpolation between samples.

Plot the reconstructed signal from the samples Z1 (n) in Example 3.18 using
the ZOH and the FOH interpolations. Comment on the plots.

Solution Note that in this reconstruction we do not compute (t) but merely plot it
using its samples.
Reconstructed Signal from x2(n) using sinc function
1 T T T T T T T T
05t d
g
x
o
235 -4 -3 -2 -1 0 1 2 3 4 5
tin msec.
FIGURE 3.16 Reconstructed signal in Ezample 3.20
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Y% Discrete-time Signal xi(n) : Ts = 0.0002

>> Tg = 0.0002; n = -25:1:26; nTs = n*Ts;

>> x = exp(-1000*abs(nTs));

% Plots

>> subplot(2,1,1); stairs(nTs*1000,x);

>> xlabel(’t in msec.'); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x1(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off

%

Y Discrete-time Signal x2(n) : Ts = 0.001

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts;

>> x = exp(-1000+abs(nTs));

% Plots

>> subplot(2,1,2); stairs(nTs+*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x2(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off

The plots are shown in Figure 3.17, from which we observe that the ZOH re-
construction is a crude one and that the further processing of analog signal is
necessary. The FOH reconstruction appears to be a good one, but a careful
observation near t = 0 reveals that the peak of the signal is not correctly repro-

Reconstructed Signal from x1(n) using zero-order—hoid
1 T T T v T v T T

xa(t)

0.4r

0.2f

&?
IN
b
b
i

tin msec.
Reconstructed Signal from x1(n) using first-order—hold

1 T T T T T T

0.8 p

06 4

xa(t)

04+ 1

0.2r 4

o
-5 -4 -3 -2 -1 0 1 2 3 4 5
tin msec.

FIGURE 3.17 Signal reconstruction in Example 3.21
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0O  EXAMPLE 3.22

Solution

duced. In general, if the sampling frequency is much higher than the Nyquist
rate, then the FOH interpolation provides an acceptable reconstruction. [m]

The third approach of reconstruction in MATLAB involves the use of
cubic spline functions. The spline function implements interpolation be-
tween sample points. It is invoked by xa = spline (nTs,x,t), in which x
and nTs are arrays containing samples z(n) at nT, instances, respectively,
and t array contains a fine grid at which z,(t) values are desired. Note
once again that it is not possible to obtain an ezact analog z,(t).

From the samples 71(n) and z2 (n) in Example 3.18, reconstruct z4(t) using
the spline function. Comment on the results.

This example is similar to Examples 3.19 and 3.20. Hence sampling parameters
are the same as before.

% a) Discrete-time Signal x1(n): Ts = 0.0002
> Ts = 0.0002; n = ~25:1:25; nTs = n*Ts;

>> x = exp(-1000+abs(nTs));

% Analog Signal recomstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005;

>> xa = spline(nTs,x,t);

% check

>> error = max(abs(xa - exp(-1000%abs(t))))
error = 0.0317

The maximum error between the reconstructed and the actual analog signal
is 0.0317, which is due to the nonideal interpolation and the fact that z.(t)
is nonband-limited. Comparing this error with that from the sinc (or ideal)
interpolation, we note that this error is lower. The ideal interpolation gener-
ally suffers more from time-limitedness (or from a finite number of samples).
From the top plot in Figure 3.18 we observe that visually the reconstruction is
excellent.

% Discrete-time Signal x2(n): Ts = 0.001
>> Ts = 0.001; n = -5:1:5; nTas = n*Ts;

>> x = exp(-1000sabs(nTs));

% Analog Signal reconstruction

»>> Dt = 0.00005; t = -0.005:Dt:0.005;

>> xa = gpline(nTs,x,t);

% check

>> error = max(abs(xa - exp(-1000%abs(t))))
error = 0.1679

The maximum error in this case is 0.1679, which is significant and cannot be
attributed to the nonideal interpolation or nonband-limitedness of z.(t). From
the bottom plot in Figure 3.18 observe that the reconstructed signal again differs
from the actual one in many places over the interpolated regions.
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Reconstructed Signal from x1(n) using cubic spline function
1 Y T T T T ¥ T T

08f p

06 4

xa(t)

0.4 h

0.2f b

s 4 3 2 A [} 1 2 3 4 5
tin msec.
Reconstructed Signal from x2(n) using cubic spline function

1 T T T T T

xa(t)

t in msec.

FIGURE 3.18 Reconstructed signal in Ezample 3.22

From these examples it is clear that for practical purposes the spline
interpolation provides the best results.

PROBLEMS

—=

P3.1  Write a MATLAB function to compute the DTFT of a finite-duration sequence. The format
of the function should be

function [X]) = dtft(x,n,w)

% Computes Discrete-time Fourier Transform
% [X] = dtft(x,n,w)

%

% X = DTFT values computed at w frequencies
% x = finite duration sequence over n

% n = sample position vector

% w = frequency location vector

P3.2

Use this function to compute the DTFT in the following problems (wherever required).
For each of the following sequences, determine the DTFT X (ei”). Piot the magnitude and
angle of X (e”")
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P3.3

P34

P3.6

P3.7

P38

=

. z{n) =2(0.8)" [u(n) — u(n— 20)]

z(n) = n(0.9)" [u(n) — u(50)]

c. z(n)={4,3,2,1,2,3,4}. Comment on the angle plot.

t
d. z(n) = {4,3,2,1,1,2,3,4}. Comment on the angle plot.

1
e. z(n) ={4,3,2,1,0,—1,-2,-3, -4}. Comment on the angle plot.

1
£ z(n)={4,3,2,1,-1,-2,-3, ~4}. Comment on the angle plot.

1
Determine analytically the DTFT of each of the following sequences. Plot the magnitude
and angle of X (e"") using MATLAB.
a z(n)=3(09)°%u(n)
b. z(n) =2(0.8)" ?u(n - 2)
c. z(n)=n(0.5)"u(n)
d. z(n)=(n+2)(-0.7)" u(n—-2)
e. z(n) = 5(—0.9)" cos (0.17n) u (n)
A symmetric rectangular pulse is given by

Rov (n) 1, -N<n<N
n)=
N 0, otherwise

Determine the DTFT for N = 5, 15, 25, 100. Scale the DTFT so that X (¢’°) = 1. Plot the

normalized DTFT over [—n,7]. Study these plots and comment on their behavior as a
function of N.

Repeat Problem 3.4 for a symmetric triangular pulse that is given by
In(n) = [1 - M] Rn (n)
N
Repeat Problem 3.4 for a symmetric raised cosine pulse that is given by
Cx (n) = [0.5 +0.5c08 (%)] Ry ()

A complex-valued sequence z (n) can be decomposed into a conjugate symmetric part
z. (n) and a conjugate-antisymmetric part =, (n) as discussed in Chapter 2. Show that
Flze (n)] = Xr () and  Flzo(n)] =jX1 (ei“’)
where Xg (ej“) and X7 (e’“’) are the real and imaginary parts of the DTFT X (e/),
respectively. Verify this property on
z(n) = 1™ [u(n) — u(n - 20)]
using the MATLAB functions developed in Chapter 2.

A complex-valued DTFT X (ej“’) can also be decomposed into its conjugate-symmetric
part X, (e"") and conjugate-antisymmetric part X, (ej“); that is,

X () = X, (") + X, (")
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P39

P3.10

P3.11

P3.12

P3.13

where
X () =3 X ()4 X ()] amd Xo(e%) =§ [X (&) - X" ()]
Show that
FUX (¢)] =za(m)  and  F[Xo ()] =@ (m)
where g (n) and ;7 (n) are the real and imaginary parts of z (n). Verify this property on
z(n) = %™ fu(n) — u(n — 20)]

using the MATLAB functions developed in Chapter 2.
Using the frequency-shifting property, show that the DTFT of a sinusoidal pulse

z (n) = (coswon) Ry (1)

is given by

sin {(w — wo) /2} 2 | “sin {(w +wo) /2}

2
where R (n) is the rectangular pulse given in Problem 3.4.
Compute and plot X (e"") for w, = /2 and N =5, 15, 25, 100. Use the plotting interval
[~, 7). Comment on your results.

X () = % [sin{(w-wo) N/2}] +1 [sin{(w+wo)N/2}]

Let z (n) = Tio (n) be a triangular pulse given in Problem 3.5. Using properties of the
DTFT, determine and plot the DTFT of the following sequences.

a. z(n) =T (—n)

b. z(n) = Tio(n) — Tao (n — 10)
c. x{n) = Tio(n})* T (—n)

d. z(n) = Tio (n) ™

e. z(n)=Tao (n) - Too (n)

For each of the linear timé-invariant systems described by the impulse response, determine
the frequency response function H (ej“’) and plot the magnitude response |H (ef”)l and
the phase response LH (&/*).

a. h(n) = (0.9)™

b. h(n) = sinc (0-2n) [u (n + 20) — u(n — 20)], where sinc0 = 1.

¢. h(n) = sinc(0.2n) [u(n) — u (n - 40)]

d. h(n) = [(0.5)" 4+ (0.4)"]u(n)

e. hin)= (0.5)"™ cos (0.17n)

Let z (n) = 3cos (0.57n + 60°) + 2sin (0.37n) be the input to each of the systems described
in Problem 3.11. In each case determine the output y (n).

An ideal lowpass filter is described in the frequency domain by

1.e7%, |w| <we

Ha (eﬂ") = {0, we < |w) <7

where w, is called the cutoff frequency and « is called the phase delay.

7%
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a. Determine the ideal impulse response hq (n) using the IDTFT relation (3.2).
b. Determine and plot the truncated impulse response

h , 0<n<N-1

hmy= R O=n=

0, otherwise
for N =41, o = 20, and w, = 0.57.
¢. Determine and plot the frequency response function H (ej“’) and compare it with the
ideal lowpass filter response Hy (e’""). Comment on your observations.

P3.14 An ideal highpass filter is described in the frequency domain by

1.e79%, we<|wl <7

Hy () =
o) ={,
where w, is called the cutoff frequency and a is called the phase delay.
a. Determine the ideal impulse response hg (n) using the IDTFT relation (3.2).
b. Determine and plot the truncated impulse response

ha(n), 0<n<N-1

hm = {4 :
0, otherwise

ol S we

for N =31, a = 15, and w, = 0.57.
¢. Determine and plot the frequency response function H (e"") and compare it with the
ideal highpass filter response Hq (ej“’). Comment on your observations.

P3.15 For a linear time-invariant system described by the difference equation

M N
y(m) = bnz(n—m)- ay(n-1
m=0 =1
the frequency response function is given by
E"M-.=0 bme—jwm

H () =
( ) 1+ Zf;l g™t

Write & MATLAB function freqresp to implement the above relation. The format of this
function should be

function [H] = fregresp(b,a,w)

% Frequency response function from difference equation

% [H} = freqresp(b,a,v)

% H = frequency response array evaluated at v frequencies
% b = numerator coefficient array

% a = denomihator coefficient array (a(1)=1)

% w = frequency location array

P3.16 Determine H (ej”) and piot its magnitude and phase for each of the following systems.

s y(n) =Yoo ez(n—m)
b. y(n) =z(n)+2z(n— 1) +z(n—2)-05y(n—1)—0.25y(n - 2)
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P3.17

P3.18

P3.19

P3.20

o I

c. y(n) =2z(n)+z(n—1)—-0.25 (n—1) +0.25y(n — 2)

d y(n)=zs(n)+z(n-2) —0.81y{n—2)

e y(m) =x(n) - T;, 05 'v(n=b

A linear time-invariant system is described by the difference equation

3 3

y(n)= Zz(n—Zm) - Z(O.Bl)‘y(n—%)

m=0 =1

Determine the steady-state response of the system to the following inputs:
a z(n)=5+10(-1)"
b. z(n) =1+ cos(0.5mn + 7/2)
c. = (n) = 2sin(rn/4) + 3cos (3mn/4)
d z(n) =35 _ (k+1)cos (mkn/4)
e. z(n) = cos(mn)
In each case generate z (n), 0 < n < 200 and process it through the filter function to
obtain y (n). Compare your y (n) with the steady-state responses in each case.

An analog signal z. (t) = sin (1000xt) is sampled using the following sampling intervals. In
each case plot the spectrum of the resulting discrete-time signal.

a8 T, =0.1ms

b. I, =1ms

¢c. T, =0.01 sec

We have the following analog filter, which is realized using a discrete filter.

za () —[A/D] " [r )] *=[D/A] — 2. ()

The sampling rate in the A/D and D/A is 100 sam/sec, and the impulse response is

h(n) = (0.5)" u(n).

a. What is the digital frequency in z (n) if za (£) = 3 cos (207t)?

b. Find the steady-state output ya (t) if Ta (t) = 3cos (20xt).

¢. Find the steady-state output ya (£) if o (£) = 3u(t).

d. Find two other analog signals z, (t), with different analog frequencies, that will give the
same steady-state output y, (£) when z, (t) = 3cos (20~t) is applied.

e. To prevent aliasing, a prefilter would be required to process zq (t) before it passes to the
A/D converter. What type of filter should be used, and what should be the largest cutoff
frequency that would work for the given configuration?

Consider an analog signal z, () = sin(207t), 0 <t < 1. It is sampled at T, = 0.01, 0.05,
and 0.1 sec intervals to obtain z (n).

a. For each 7, plot = (n).

b. Reconstruct the analog signal ya (t) from the samples = (n) using the sinc interpolation
(use At = 0.001) and determine the frequency in ya (t) from your plot. (Ignore the end
effects.)
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¢. Reconstruct the analog signal ya (t) from the samples  (n) using the cubic spline
interpolation and determine the frequency in ya (t) from your plot. (Ignore the end effects.)
d. Comment on your results.

Consider the analog signal zq (f) = sin (20wt + 7 /4),0<t< 1.1t is sampled at T, = 0.05
sec intervals to obtain z (n).

a. Plot z, (t) and superimpose z (n) on it using the plot(n,x,’o’) function.

b. Reconstruct the analog signal ya () from the samples x (n) using the sinc interpolation
(use At = 0.001) and superimpose = (n) on it.

¢. Reconstruct the analog signal ya () from the samples = (n) using the cubic spline
interpolation and superimpose z (n) on it.

d. You should observe that the resultant reconstruction in each case has the correct
frequency but a different amplitude. Explain this observation. Comment on the role of
phase of z, (t) on sampling and reconstruction of signals.
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THE Z-TRANSFORM

In Chapter 3 we studied the discrete-time Fourier transform approach for
representing discrete signals using complex exponential sequences. This
representation clearly has advantages for LTI systems because it describes
systems in the frequency domain using the frequency response function
H(e?). The computation of the sinusoidal steady-state response is greatly
facilitated by the use of H(e’*). Furthermore, response to any arbitrary
absolutely summable sequence z(n) can easily be computed in the fre-
quency domain by multiplying the transform X (e?) and the frequency
response H(e/*). However, there are two shortcomings to the Fourier
transform approach. First, there are many useful signals in practice—
such as u(n) and nu(n)—for which the discrete-time Fourier transform
does not exist. Second, the transient response of a system due to ini-
tial conditions or due to changing inputs cannot be computed using the
discrete-time Fourier transform approach.

Therefore we now consider an extension of the discrete-time Fourier
transform to address the above two problems. This extension is called the
2-transform. Its bilateral (or two-sided) version provides another domain
in which a larger class of sequences and systems can be analyzed, while its
unilateral (or one-sided) version can be used to obtain system responses
with initial conditions or changing inputs.

THE BILATERAL z-TRANSFORM
—u

The 2z-transform of a sequence z(n) is given by
A [>¢]
X2 Zlm)= Y, =(m)z™ (4.1)

n=—oo

where z is a complex variable. The set of z values for which X (2) exists

is called the region of convergence (ROC) and is given by
Ry < |z < Rzy 4.2

for some positive numbers R;_ and R..
The inverse z-transform of a complex function X (z) is given by

A 1
= Z—l — n-1
2(n) X = 52 }i X ()" (43)
where C is a counterclockwise contour encircling the origin and lying in
the ROC.
Comments:

1. The complex variable z is called the complez frequency given by
z = |2| €/, where |z| is the attenuation and w is the real frequency.

2. Since the ROC (4.2) is defined in terms of the magnitude |2|, the
shape of the ROC is an open ring as shown in Figure 4.1. Note that R,_
may be equal to zero and/or R4 could possibly be oo.

3. If Ryy < Ry, then the ROC is a null space and the z-transform
does not exist.

4. The function |2| =1 (or z = /) is a circle of unit radius in the
z-plane and is called the unit circle. If the ROC contains the unit circle,
then we can evaluate X (z) on the unit circle.

[=+]

X (@) pmeso = X (&) = D z(n)e™ = Fla(n)]

n=-—0oc

Therefore the discrete-time Fourier transform X (e?*) may be viewed as
a special case of the z-transform X(z).

a EXAMPLE 41 Let z3(n) = a™u(n), 0 < |aj < oo. (This sequence is called a positive-time
sequence). Then

Rz}

FIGURE 4.1 A general region of convergence
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z
== |z} > |a] = ROC1: |a} < |2] < o0

Ry Rz
Note: Xi(2) in this example is a rational function; that is,

a B _ =z
Xi(z) = Alz)  z-a

where B(z) = z is the numerator polynomial and A(z) = z—aisthe denominator
polynomial. The roots of B(z) are called the zeros of X (2), while the roots of
A(z) are called the poles of X(z). In this example X, (2) has a zero at the origin
z =0 and a pole at z = a. Hence z1(n) can also be represented by a pole-zero
diagram in the z-plane in which zeros are denoted by ‘o’ and poles by ‘x’ as
shown in Figure 4.2. [m]

[n} EXAMPLE 42  Let z3(n) = —b"u(—n—1),0 < [b] < co. (This sequence is called a negative-time
sequence.) Then

Xala) = - S == 5 (8)

00 o0
=-2{)" =1-20)
=1-—1_ = _%_ ROCx: _0_<l|2|< fb|
ST T w N

R, Ruy

The ROC; and the pole-zero plot for this z2(n) are shown in Figure 4.3.

Im{z}

Re{z}

FIGURE 4.3 The ROC in Ezample 4.2
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Note: If b= a in this example, then X2(2) = X1(z) except for their respective
ROCS; that is, ROC: # ROCa. This implies that the ROC is a distinguishing
feature that guarantees the uniqueness of the z-transform. Hence it plays a very
important role in system analysis. ju]

m} EXAMPLE 43  Let z3(n) = z1(n) + 22(n) = a™u(n) — b"u(—n — 1) (This sequence is called a
two-sided sequence.) Then using the above two examples,

oo

X3(z) = Za"z_" - ib"z—"

n=0

={ 2 _ ROC:: |z|>|al}+{zib,R001: lz|<|b|}

z—a’

z z
= e tiTH

ROCs: ROC1 NROC:

If |b| < la], the ROC3 is a nuil space and X3(z) does not exist. If ja} < ib|,
then the ROCs is |a| < }z| < |b] and X3(2) exists in this region as shown in
Figure 4.4. [m]

PROPERTIES Froin the observation of the ROCs in the above three examples, we state
OF THE ROC the following properties.

1. The ROC is always bounded by a circle since the convergence
condition is on the magnitude |z|.

2. The sequence z1(n) = a™u(n) in Example 4.1 is a special case of
a right-sided sequence, defined as a sequence z(n) that is zero for some
n < no. From Example 4.1 the ROC for right-sided sequences is always
outside of a circle of radius R,_. If ng > 0, then the right-sided sequence
is also called a causal sequence.

3. The sequence z3(n) = —b™u(—n — 1) in Example 4.2 is a special
case of a left-sided sequence, defined as a sequence z(n) that is zero for
some n > ng. If ng < 0, the resulting sequence is called an anticausal
sequence. From Example 4.2 the ROC for left-sided sequences is always
inside of a circle of radius R, ..

Im{z}

'aY-

Re{z}

o’

FIGURE 4.4 The ROC in Example 4.3
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4. The sequence z3(n) in Example 4.3 is a two-sided sequence. The
ROC for two-sided sequences is always an open ring R, < 2| < Rey
if it exists.

5. The sequences that are zero for n < ny and n > ng are called
finite-duration sequences. The ROC for such sequences is the entire 2-
plane. If n; < 0, then z = o0 is not in the ROC. Ifnz > 0, then 2 =0 is
not in the ROC.

6. The ROC cannot include a pole since X (z) converges uniformly
in there. )

7. There is at least one pole on the boundary of a ROC of a rational
X(2).

8. The ROC is one contiguous region; that is, the ROC does not come
in pieces.

In digital signal processing, signals are assumed to be causal since
almost every digital data is acquired in real time. Therefore the only
ROC of interest to us is the one given in 2 above.

IMPORTANT PROPERTIES OF THE >-TRANSFORM
—

The properties of the z-transform are generalizations of the properties
of the discrete-time Fourier transform that we studied in Chapter 3. We
state the following important properties of the z-transform without proof.

1. Linearity:

Zlayzi(n) + apza(n)] = a1 X1(2) + a2X2(z); ROC: ROC:, NROC,,

(44)
2. Sample shifting:
Z(z(n—np) =2z ™X(2); ROC: ROC, (4.5)
3. Frequency shifting:
Zla"z(n)] = X (2) . ROC: ROC, scaled by |a| (46)
4. Folding:
Zlz(-n)] = X (1/2); ROC: Inverted ROC, @an
5. Complex conjugation:
Z[z*(n)) = X*(2*); ROC: ROC, (4.8)
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a EXAMPLE 4.4
Solution
a EXAMPLE 4.5

6. Differentiation in the z-domain:
Z[nx(n)] = -zd—)gi); ROC: ROC, (4.9)

This property is also called “multiplication by a ramp” property.
7. Multiplication:
Zin(n)zz (n)] = —1—— ?{ Xy (V) Xz (z/v) v ldy; (4.10)
2nj Jo
ROC: ROC,, NInverted ROC;,

where C is a closed contour that encloses the origin and lies in the common
ROC.

8. Convolution:
Z [z1(n) * 22(n)] = X1(2)X2(2); ROC: ROC;, N ROC;, (411)

This last property transforms the time-domain convolution operation
into a multiplication between two functions. It is a significant property
in many ways. First, if X;(z) and X,(z) are two polynomials, then their
product can be implemented using the conv function in MATLAB.

Let X1(z) =2+ 327" +427% and X2(2) =3+ 427! + 5272 46273, Determine
X3(z) = X1(2)X2(2).

From the definition of the z-transform we observe that

z1{n) = {2,3,4} and z2(n) = {3,4,5,6}
T t

Then the convolution of the above two sequences will give the coefficients of the
required polynomial product.

>> x1 = [2,3,4); x2 = [3,4,5,6];
>> x3 = conv(x1,x2)
x3 = 6 17 34 43 38 24

Hence
Xs(z) =6+ 17271 + 34272 +4327° + 38274 + 2427°

Using the convm function developed in Chapter 2, we can also multiply
two z-domain polynomials corresponding to noncausal sequences. u]

Let Xa1(z) =2 +2+4327 ! and Xa(2) = 24° +4z+ 3+ 52", Determine X3(z) =
Xx(z)Xz(Z).
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Solution

Note that

z1(n) = {1,2,3} and za(n) = {2, 4,3,5}
1 1
Using MATLAB,

>> xt = [1,2,3]; n1 = [-1:1];
> x2 = [2,4,3,5); n2 = [-2:1];
>> [x3,n3] = conv_m(x1,n1,x2,n2)
x3 = '
2 8 17 23 19 15

-3 -2 -1 [} 1 2
we have

Xa(z) =22 + 82 + 172+ 23+ 19271 + 15272 O

In passing we note that to divide one polynomial by another one, we
would require an inverse operation called deconvolution [19, Chapter 6].
In MATLAB [p,r] = deconv(b,a) computes the result of dividing b by
a in a polynomial part p and a remainder r. For example, if we divide the
polynomial X3(2) in Example 4.4 by X;(z),

> x3 = [6,17,34,43,38,24]; x1 = [2,3,4];
>> [x2,r] = deconv(x3,x1)
x2 =

3 4 5 6

0 0 0 0 0 0

then we obtain the coefficients of the polynomial X»(2) as expected. To
obtain the sample index, we will have to modify the deconv function
as we did in the conv_m function. This is explored in Problem 4.8. This
operation is useful in obtaining a proper rational part from an improper
rational function.

The second important use of the convolution property is in system
output computations as we shall see in a later section. This interpreta-
tion is particularly useful for verifying the z-transform expression X ()
using MATLAB. Note that since MATLAB is a numerical processor (unless
the Symbolic toolbox is used), it cannot be used for direct z-transform
calculations. We will now elaborate on this. Let z(n) be a sequence with
a rational transform

B(2)

X)= %
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where B(z) and A(z) are polynomials in 2~1. If we use the coefficients of
B(z) and A(z) as the b and a arrays in the filter routine and excite this
filter by the impulse sequence &(n), then from (4.11) and using Z [§ (n)] =
1, the output of the filter will be z(n). (This is a numerical approach of
computing the inverse z-transform; we will discuss the analytical approach
in the next section.) We can compare this output with the given z(n) to
verify that X(z) is indeed the transform of z(n). This is illustrated in

Example 4.6.
SOME Using the definition of z-transform and its properties, one can determine
COMMON 2-transforms of common sequences. A list of some of these sequences is
2-TRANSFORM  given in Table 4.1.

PAIRS

n] EXAMPLE 46 Using z-transform properties and the 2transform table, determine the z-
transform of

z(n)=(n— 2)(0.5)" cos [g— (n— 2)] u(n —2)

TABLE 4.1 Some common z-transform pairs

Sequence Transform ROC
&(n) 1 Vz
u(n) = 2> 1

—u(-n—-1) T_—lz‘_j Iz <1
a"u(n) e el > ol
—bru(-n—1) e l21 < bl

(asinwo)z™"

[a™ sinwon] u(n) T= @acoswa)e ¥ o222 12| > |al
[a™ coswon] u(n) = (;‘:cg::;:fl)z_;;z_z |2] > |al

na™u(n) (T_G—Z;-‘_T); 2] > lal
—nb"u(—n —1) (—l_b—zb;_—l); fz] < {bi

Important Properties of the 2-Transform 87



— —————

Solution Applying the sample-shift property,

X(2) = Zlo(n)) = 2°2 [n(0.5)" cos ("—;‘) u(n)]

with no change in the ROC. Applying the multiplication by a ramp property,

X() = 2 {_de [(05)" cos (37) u(m)] }

dz

with no change in the ROC. Now the z-transform of (0.5)™ cos (%n) u(n) from

Table 4.1 is
z [(0'5)-" 08 (%) "(")] 12 (10; &sgc;ii) i—ol.zsz—f I > 05
= el
Hence
e s

_ 0.2527% — 0.527% +0.06252"°
= 1-21+40.7522 ~ 0.252-3 + 0.06252~%’

|z} > 0.5

MATLAB verification: To check that the above X(z) is indeed the correct ex-
pression, let us compute the first 8 samples of the sequence z(n) corresponding
to X (z) as discussed before.

>> b= [0,0,0,0.25,-0.5,0.0625]; a= [1,-1,0.75,-0.25,0.0626];
>> [delta,n)=impseq(0,0,7)
delta =
i 0 0 0 0 0 0 0
n=
0 i 2 3 4 5 6 7
>> x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4
0 0 0  0.25000000000000
Columns 5 through 8
-0.25000000000000 ~-0.37500000000000 ~0.12500000000000  0.07812600000000
>> x = [(n-2).%(1/2) .~ (n-2) .*cos(pi*(n-2)/3)] .#stepseq(2,0,7) % original sequence
x =
Columns 1 through 4
0 0 0  0.25000000000000
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Columns 5 through 8
-0.25000000000000 -0.37500000000000 -0.12500000000000  0.07812500000000

This approach can be used to verify the z-transform computations. m]

INVERSION OF THE -TRANSFORM
—

From definition (4.3) the inverse z-transform computation requires an
evaluation of a complex contour integral that, in general, is a complicated
procedure. The most practical approach is to use the partial fraction ex-
pansion method. It makes use of the z-transform Table 4.1 (or similar
tables available in many textbooks.) The z-transform, however, must be
a rational function. This requirement is generally satisfied in digital signal
processing.

Central Idea: When X(z) is a rational function of 271, it can be ex-
pressed as a sum of simple (first-order) factors using the partial fraction
expansion. The individual sequences corresponding to these factors can
then be written down using the z-transform table.

The inverse z-transform procedure can be summarized as follows:

Method: Given

_ bo+biz7 - +byz”
T lt+az7t 4 tanz”

M
X(z) , Ro_ <|z| < Rey (4.12)

e express it as

1+az1+---+ayz ¥

—~—
Proper rational part

Bo+biz=l 4+ by_1z= -1 M-N
X(2) =b0+b12 +---+bn-12 + Z Cor*
k=0

[
polynomial part if M>N

where the first term on the right-hand side is the proper rational part
and the second term is the polynomial (finite-length) part. This can be
obtained by performing polynomial division if M > N using the deconv
function.

o perform a partial fraction expansion on the proper rational part of
X(z) to obtain

N Rk M-N
_ —k
X(@) =3 71t > Gz (4.13)
k=1 k=0
M>N
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where py, is the kth pole of X(z) and R is the residue at pi. It is assumed
that the poles are distinct for which the residues are given by

R = 80 + Blz‘l +.-- 4 EN_lz_(N‘l)
k 1+a2- ' +---+anz™V

(1-p2")

=Pk

For repeated poles the expansion (4.13) has a more general form. If a pole
pr. has multiplicity r, then its expansion is given by

zr: Rk,zz—(l-l) _ Ry Rk’zz—l - M(:i
2 —per ) 1-me T (1-pez )’ A—pe 1)
(4.13)

where the residues Ry ¢ are computed using a more general formula, which
is available in [19].
o write z(n) as

N 1 M-N
— -1 —
z(n) _;sz [ l-pkz_l] + kg Cib(n — k)

M>N

e finally, use the relation from Table 4.1

o 21 f reutn) lalSRe
‘ [z—m]”{—pzu(—n—l) > Ry )

to complete z(n).

a EXAMPLE 47 Find the inverse z-transform of z(z) = m

Solution Write
1 -1
z 2%
X(z)= = 3
QR Ty gy Rl Py pe g g
1.,—1 1 1
_ 37 _ 3 ___3
A-z)1-3z1) 1-z1 1-%z7}

or

X(@) = % (1—12—1) '% (1—1§z—1)

Now, X(z) has two poles: 21 = 1 and z; = %; and since the ROC is not specified,
there are three possible ROCs as shown in Figure 4.5.
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Im{z) Im{z} Im{z}

‘-‘ Re{z} Re{z} Re{z}

ROC, ROC,

FIGURE 4.5 The ROCs in Example 4.7

a. ROCy: 1 < |z| < 0o. Here both poles are on the interior side of the
ROC;; that is, |21] < Rs— =1 and |z| < 1. Hence from (4.15)

1 1 /1\"
m(n) = gutn) - 5 (5) v

which is a right-sided sequence.

b. ROCz: 0 < |z| < . Here both poles are on the exterior side of the
ROGC;; that is, |21] > Rz+ = & and |z2| > §. Hence from (4.15)

za(n) = 3 {~u(-n-1)}— 3 {—— (%)"u(-n -1}
1 /1\" 1
=3 (5) u(-n—1)— —2-u(—n -1)

which is a left-sided sequence.

¢. ROCs: } < |2} < 1. Here pole 21 is on the exterior side of the ROC3—

that is, |21 > Rz+ = 1—while pole 2 is on the interior side—that is, |22} < 3.
Hence from (4.15)

z3(n) = —%u(—n -1)- % (l)"u(n)

3
which is a two-sided sequence. [m]
MATLAB A MATLAB function residuez is available to compute the residue part
IMPLEMEN- and the direct (or polynomial) terms of a rational function in z~1. Let

TATION

by + bzt 4 +byz ™ _B(2)

@ taz 4 +anz N A(2)
N M-N

_ Ry —k

= kX___:l 1 —pkz_1+ Z Ciz

k=0

X(z)=

M>N

be a rational function in which the numerator and the denominator poly-
nomials are in ascending powers of z7. Then [R,p,Cl=residuez (b,a)
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a EXAMPLE 4.8

finds the residues, poles, and direct terms of X (z} in which two poly-
nomials B (z) and A(z) are given in two vectors b and a, respectively.
The returned column vector R contains the residues, column vector p
contains the pole locations, and row vector C contains the direct terms.
If p(k)=...=p(k+r-1) is a pole of multiplicity r, then the expansion in-
cludes the term of the form

R BRis1 Biyra1
+ ot
T-pez ! ' (1-pezt) (1—pez~t)

(4.16)

which is different from (4.14).

Similarly, [b,a]l=residuez(R,p,C), with three input arguments and
two output arguments, converts the partial fraction expansion back to
polynomials with coefficients in row vectors b and a.

To check our residue functions, let us consider the rational function
z
X =ga 1

given in Example 4.7.

Sodution First rearrange X (z) so that it is a function in ascending powers of z7%.
1 -1
z 0+2
X(z) = =
B)=3g 5,2 3 a4z 42°

Now using MATLAB,
>> b = [0,1}; a = [3,-4,1];
>> {R,p,C] = residuez(b,a)
R =

0.5000

-0.6000

p=

1.0000

0.3333
c =

0
we obtain
1 1
_ 2 2
X(z) = 1-271 1—%2“1

as before. Similarly, to convert back to the rational function form,
>> [b,a] = residuez(R,p,C)
b=

0.0000

0.3333
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[} EXAMPLE 4.9

a=

1.0000

-1.3333

0.3333

so that
X(z) = 0+3z7! B P _ z
BT PN 3—dz-1+2z2 322-4z+1

as before. O

Compute the inverse z-transform of

1
(1—0.9z-1)7 (1 +092-1)’

X(z)y= |z| > 0.9

We can evaluate the denominator polynomial as well as the residues using MAT-
LAB.

>> b = 1; a = poly({0.9,0.9,-0.9])
a=
1.0000 -0.9000 -0.8100 0.7290

> [R,p,C]=residuez(b.a)
R =

0.2500

0.5000

0.2500

0.9000

0.9000

-0.9000
c = ;

a

Note that the denominator polynomial is computed using MATLAB'’s polynomial
function poly, which computes the polynomial coefficients, given its roots. We
could have used the conv function, but the use of the poly function is more
convenient for this purpose. From the residue calculations and using the order
of residues given in (4.16), we have

0.25 + 0.5 0.25
1-098z71 ' (1- 0.9z-1)% 1+ 0.9z’

X(2)= |2} > 0.9

025 05 (0927Y) 0.25
= T=09:7 T 09°(1—00z-1) | 1409z el > 0.9
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Hence from Table 4.1 and using the z-transform property of time-shift,
5(n) = 0.25(0.9)" u(m) + 3 (n-+ 1) (0.9)"* u(n+1) + 025 (~0.9)" u(n)
which upon simplification becomes
z(n) = 0.75 (0.9)" u(n) + 0.5n. (0.9)" u(n) + 0.25 (~0.9)" u(n)

MATLAB verification:

>> [delta,n] = impseq(0,0,7);
>> x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4
1.00000000000000  0.90000000000000  1.62000000000000  1.45800000000000
Columns 5 through 8
1.96830000000000  1.77147000000000  2.12576400000000 1. 91318760000000
>> x = (0.75)#(0.9)."n + (0.5)*n.#(0.9)."n + (0.25)*(~0.9)."n ¥ answer sequence
x=
Columns 1 through 4
1. 00000000000000  0.90000000000000  1.62000000000000-  1.45800000000000
Columns 5 through 8
1.96830000000000  1.77147000000000  2.12576400000000 1.91318760000000 O

{3 EXAMPLE 410 Determine the inverse z-transform of

14042271
1—0.8v/22-1 + 0.642~2

so that the resulting sequence is causal and contains no complex numbers.

X(2)=

Solution We will have to find the poles of X (z) in the polar form to determine the ROC
of the causal sequence. )

> b = [1,0.4%sqrt(2)]; a=[1,-0.8+sqrt(2),0.64];
>> [R,p,C] = residuez(b,a)
R =

0.5000 - 1,0000i

0.5000 + 1.0000i

0.5657 + 0.56571

0.5657 - 0.5657i
C=

1

>> Mp=abs(p’) % pole magnitudes
Mp =

0.8000  0.8000
>> Ap=angle(p’)/pi % pole angles in pi umnits
Ap =

-0.2500 0.2500
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From the above calculations
0.5+ 7 05—j
1—08je 3zt  1-|0.8efTz1’

and from Table 4.1 we have ]
o(n) = (0.5+ ) [0.8" e T ¥ u(n) + (0.5 - j) 0.8 e1mun)
— o8 [os{e 7 4T} 4+ {7 1T} uln)
=08 [cos (?) +2sin (?)] u(n)

MATLAB verification:

X(z) = |z} > 0.8

>> [delta, n] = impseq(0,0,6);
»» x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4
1.00000000000000  1.69705627484771 1. 28000000000000  0.36203867196751
Columns 5§ through 8
~0.40960000000000 —0.69511426017762 -0.52428800000000 -0.14829104003789
>> x = ((0.8).°n).*(cos(pi*n/4)+2*sin(pi*n/4))
x =
Columns 1 through 4
1.00000000000000  1.69705627484771 1. 28000000000000  0.36203867196751
Columns 5 through 8
-0.40960000000000 -0.69511426017762 -0.52428800000000 -~0.14829104003789
ju}

SYSTEM REPRESENTATION iN THE :-DOMAIN
——

Similar to the frequency response function H (e7“), we can define the
2-domain function, H(z), called the system function. However, unlike
H{(e3®), H(z) exists for systems that may not be BIBO stable.

s OerNiTioN1 The System Function
The system function H(z) is given by

H(z) £ Z{a(n)] = Y_h(m)z™; Ra- <2l < R+ 4171

Using the convolution property (4.11) of the z-transform, the output
transform Y (z) is given by

Y(2) = H(z) X(2) : ROC, =ROCiN ROC, (4.18)
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SYSTEM
FUNCTION
FROM THE
DIFFERENCE
EQUATION
REPRESEN-
TATION

provided ROC, overlaps with ROC;. Therefore a linear and time-
invariant system can be represented in the z-domain by

X(2) ——»—vY(z) = H(z) X(2)

When LTI systems are described by a difference equation
N M
y(n)+ Y ory(n—k) = bz(n—10 (4.19)
k=1 £=0

the system function H(z) can easily be computed. Taking the z-transform
of both sides, and using properties of the z-transform,

N M
Y(z)+) a2 7*Y(2) = > bt X (2)
k=1 £=0

or

= (4.20)

bz~ M (zM+---+%‘:~)

=N (N +---+an)

After factorization, we obtain

: ﬁ (2 —ze)
H(z)=bp N M EL— (a.21)

1 (z—p&x)
k=1

where z's are the system zeros and px’s are the system poles. Thus H(z)
(and hence an LTI system) can also be represented in the 2-domain using
a pole-zero plot. This fact is useful in designing simple filters by proper
placement of poles and zeros.

To determine zeros and poles of a rational H(z), we can use the
MATLAB function roots on both the numerator and the denominator
polynomials. (Its inverse function poly determines polynomial coefficients
from its roots as we discussed in the previous section.) It is also possible
to use MATLAB to plot these roots for a visual display of a pole-zero plot.
The function zplane(b,a) plots poles and zeros, given the numerator row
vector b and the denominator row vector a. As before, the symbol “o”
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TRANSFER

FUNCTION

REPRESEN-
TATION

represents a zero and the symbol “x” represents a pole. The plot includes
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in
column vector z and the poles in column vector p. Note very carefully the
form of the input arguments for the proper use of this function.

If the ROC of H(z) includes a unit circle (z = /@), then we can evaluate
H(2) on the unit circle, resulting in a frequency response function or
transfer function H(e’*). Then from (4.21)

ﬁ(ej“ - z)
H(e]w) = by eI (N-M)w __———;, (4.22)
TI(e™ - pi)

1

The factor (€7 — zz) can be interpreted as a vector in the complex z-plane
from a zero z; to the unit circle at z = €, while the factor (e?¥ — pk)
can be interpreted as a vector from a pole pi to the unit circle at z = e?“.

This is shown in Figure 4.6. Hence the magnitude response function

e =z - - [ - zp|
le? —pi]---le? — pw|

|H(e™)] = [ol (4.23)

can be interpreted as a product of the lengths of vectors from zeros to the
unit circle divided by the lengths of vectors from poles to the unit circle
and scaled by |bo]. Similarly, the phase response function

M N
LH(e) =[0 or 1] + [(N = M)w] + ) £(6 — =) — le L(e" ~px)
v M 1

constant linear -—

non;;ear
(4.24)
Im{z}
Unit
circle
FIGURE 4.6 Pole and zero vectors
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TATION

a EXAMPLE 4.11

can be interpreted as a sum of a constant factor, a linear-phase factor,
and a nonlinear-phase factor (angles from the “zero vectors” minus the
sum of angles from the “pole vectors”).

In Chapter 3 we plotted magnitude and phase responses in MATLAB by
directly implementing their functional forms. MATLAB also provides a
function called freqz for this computation, which uses the interpretation
given above. In its simplest form this function is invoked by

[H,w] = freqz(b,a,N)

which returns the N-point frequency vector w and the N-point complex fre-
quency response vector H of the system, given its numerator and denomi-
nator coefficients in vectors b and a. The frequency response is evaluated
at N points equally spaced around the upper half of the unit circle. Note
that the b and a vectors are the same vectors we use in the filter func-
tion or derived from the difference equation representation (4.19). The
second form

{H,v] = freqz(b,a,N, ’whole’)

uses N points around the whole unit circle for computation. In yet another
form

H = freqz(b,a,w)

it returns the frequency response at frequencies designated in vector w,
normally between 0 and 7.

Given a causal system

y(n) = 0.9y(n — 1) + z(n)
a. Find H(z) and sketch its pole-zero plot.
b. Plot |H(e?)| and £H(e™).
c. Determine the impulse response h(n).

Solution The difference equation can be put in the form
y(n) ~ 0.9y(n — 1) = z(n)
a. From (4.21)
1
H(Z) = m;:—l, |z| >09

since the system is causal. There is one pole at 0.9 and one zero at the origin.

We will use MATLAB to illustrate the use of the zplane function.
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>>b=[1, 0]; a = [1, -0.9];
>> zplane(b,a)

Note that we specified b=[1,0] instead of b=1 because the zplane function
assumes that scalars are zeros or poles. The resulting pole-zero plot is shown in
Figure 4.7.

b. Using (4.23) and (4.24), we can determine the magnitude and phase
of H(e’*). Once again we will use MATLAB to illustrate the use of the freqz
function. Using its first form, we will take 100 points along the upper half of
the unit circle.

>> [H,w] = freqz(b,2,100);

>> magH = abs(H); phaH = angle(H);

>> subplot(2,1,1);plot(w/pi,magh);grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’);

>> title(’Magnitude Response’)

>> subplot(2,1,2);plot (vw/pi,phali/pi);grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’);
>> title(’Phase Response’)

The response plots are shown in Figure 4.8. If you study these plots carefully,
you will observe that the plots are computed between 0 < w < 0.997 and fall
short at w = . This is due to the fact that in MATLAB the lower half of the

Pole-Zero Plot
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FIGURE 4.8 Frequency response plots in Example 4.11

unit circle begins at w = m. To overcome this problem, we will use the second
form of the freqz function as follows.

> [H,w] = freqz(b,a,200,’vhole’);
>> magH = abs(H(1:101)); phaH = angle(H(1:101));

Now the 101st element of the array H will correspond to w = 7. A similar result
can be obtained using the third form of the freqz function.

>> w = [0:1:100]%pi/100;
> H = freqz(b,a,w);
>> magH = abs(H); phal = angle();

In the future we will use any one of these forms, depending on our convenience.
Also note that in the plots we divided the w and phaHl arrays by pi so that
the plot axes are in the units of 7 and easier to read. This practice is strongly
recommended. '

c. From the z-transform Table 4.1

|l > 0.9] = (0.9)"u(n) o

_ 1
_ -1
) =2 [1 0.9z~
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O EXAMPLE 412 Given that
z+1 ’

H()= 759,71 081

is a causal system, find

a. its transfer function representation,
b. its difference equation representation, and
¢. its impulse response representation.

Solution The poles of the system function are at z = 0.9Z % w/3. Hence the ROC of the
above causal system is |z| > 0.9. Therefore the unit circle is in the ROC, and

the discrete-time Fourier transform H (&) exists.
a. Substituting z = &’ in H(2),

iw &Y +1 _ v +1
H(") = % — 0.9¢7 + 0.81 (/v — 0.9¢37/3)(e3% — 0.9¢~3%/3)

b. Using H(2) = Y (2)/X(2),
Y(z) z+1 (z") 2t 4z7?

X(G) = #-08:+081\z2) T-08z-1 +081z2
Cross multiplying,
Y(z) - 0927 'Y (2) + 081272Y(2) = 2 ' X (2) + 272X (z)
Now taking the inverse z-transform,
y(n) —09y(n - 1) + 08ly(n—-2)=z(n—-1)+ z(n—2)
or
y(n) =09y(n-1) - 08ly(n—-2) +z(n—-1)+ z(n—2)

¢. Using MATLAB,

s> b = [0,1,11; a = [1,-0.9,0.81];
> [R,p,C] = residuez(b,a)
R =
-0.6173 + 0.9979i
-0.6173 - 0.9979i
0.4500 - 0.7794i
0.4500 + 0.7794i
C =

1.2346
>> Mp = abs(p’)
Mp =
0.9000 0.9000

System Representation in the z-Domain
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>> Ap = angle(p’)/pi
Ap =
~0.3333 0.3333

we have

—0.6173 + j0.9979 . —0.6173 — j0.9979

H(z) = 1.234 - : y
(2) = 12346 + 7106578, =1 T T [0.9] e/

|z| > 0.9
Hence from Table 4.1
h(n) = 1.23465(n) + [(—0.6173 + j0.9979) [0.9]" e~ imm/3
+ (~0.6173 — j0.9979) |0.9]" /™ u(n)
= 1.23466(n) + |0.9]" [-1.2346 cos (7n/3) + 1.9958 sin (mn/3)] u(n)
= |0.9{" [-1.2346 cos (wn/3) + 1.9958sin (mn/3)] u(n — 1)
The last step results from the fact that h(0) = 0. ]

RELATIONSHIPS In this and the previous two chapters we developed several system repre-

BETWEEN sentations. Figure 4.9 depicts the relationships between these representa-
SYSTEM tions in a graphical form.

REPRESEN-

TATIONS

STABILITY For LTI systems the BIBO stability is equivalent to 3> [h(k)| < oo.
AND From the existence of the discrete-time Fourier transform this stability
CAUSALITY implies that H (/) exists, which further implies that the unit circle }z| =

1 must be in the ROC of H{(z). This result is called the 2-domain stability

Express Hiz) in z7!
cross multiply and
take inverse

Take inverse
2-transform

Take
z-transform
solve for Y/X

Take
z-transform

o —

-
Substitute - /
z=g¢/® // Take inverse /
/ DTFT /
| Ve
Take DTFT - Take Fourier
solve for Y/X - transform

FIGURE 4.9 System representations in pictorial form
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theorem; therefore the dashed paths in Figure 4.9 exist only if the system
is stable.

u THEOREM 2 z-Domain LTI Stability

An LTI system is stable if and only if the unit circle is in the ROC
of H(z).

For LTI causality we require that h(n) = 0, for n < 0 (i.e., a right-
sided sequence). This implies that the ROC of H(z) must be outside of
some circle of radius Rp_. This is not a sufficient condition since any
right-sided sequence has a similar ROC. However, when the system is
stable, then its causality is easy to check.

= THEOREM3 z-Domain Causal LTI Stability

A causal LTI system is stable if and only if the system function H(z)
has all its poles inside the unit circle.

0 EXAMPLEA13 A causal LTI system is described by the following difference equation:

y(r) = 0.81y(n — 2) + x(n) — z(n—2)
Determine

a. the system function H(z),

b. the unit impulse response h{n),

¢. the unit step response v(n), that is, the response to the unit step u(n),
and’

d. the frequency response function H (¢*), and plot its magnitude and
phase over 0 < w < 7.

Solution Since the system is causal, the ROC will be outside of a circle with radius equal
to the largest pole magnitude.

a. Taking the z-transform of both sides of the difference equation and then
solving for Y(z)/X(z) or using (4.20), we obtain

H(z) = 1-22 1z (2] > 0.9
2} = 1708172 (1+092-7) (1 -09z7%) ‘
b. Using MATLAB for the partial fraction expansion,
> b= [1,0,-1]; a = [1,0,-0.81];
>>[R,p,C] = residuez(b,a);
R =
-0.1173
-0.1173
p=
-0.9000
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0.9000
C=
1.2346
we have
1 1
H(z) = 1.2346 - 0.1173 150951 0.1173m7, 12| > 0.9

or from Table 4.1

h(n) = 1.23465(n) — 0.1173 {1 + (—1)"} (0.9)" u(n)

¢. From Table 4.1 Z [u(n)] =

T _11_1 , |2l > 1. Hence

V(z)=H(z)U(z)=[ (1+z-l)(1_2_1) }[ ! ], |z| > 09Nz >1

(1+092-1)(1-09z7Y) [l1—~27!
-1
=0+ o.9z1—1+) z1 ~00:-1) 2> 09
or
V(z) = 10556 ——— — 0.0556 L 1z>09
1-09z1! 1409271
Finally,

v(n) = [1.0556 (0.9)" ~ 0.0556 (—0.9)"] u(n)

Note that in the calculation of V(z) there is a pole-zero cancellation at z = 1.
This has two implications. First, the ROC of V(2) is still {|z] > 0.9} and
not {|z| >0.9N|z| > 1 = 2| > 1}. Second, the step response v(n) contains no
steady-state term u(n).

d. Substituting z = ¢ in H(2),
1—e 9%

H(E") = 15510

We will use MATLAB to compute and plot responses.

>> w = {0:1:500]*pi/500;

>> H = freqz(b,a,w);

>> magH = abs(H); phall = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid

>> xlabel(’frequency in pi umits’); ylabel(’Magnitude’)

>> title(’Magnitude Response’)

>> gubplot(2,1,2); plot(w/pi,phal/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’)
>> title(’Phase Response’)

The frequency response plots are shown in Figure 4.10. u]
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Magnitude Response
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FIGURE 8.10 Frequency response plots for Ezample 4.13

SOLUTIONS OF THE DIFFERENCE EQUATIONS

In Chapter 2 we mentioned two forms for the solution of linear constant
coefficient difference equations. One form involved finding the particu-
lar and the homogeneous solutions, while the other form involved finding
the zero-input (initial condition) and the zero-state responses. Using 2-
transforms, we now provide a method for obtaining these forms. In ad-
dition, we will also discuss the fransient and the steady-state responses.
In digital signal processing difference equations generally evolve in the
positive n direction. Therefore our time frame for these solutions will be
n > 0. For this purpose we define a version of the bilateral z-transform
called the one-sided z-transform.

@ DEFINITION& The One-sided z Transform
The one-sided z-transform of a sequence x(n) is given by

2+ [z(n)] 2 Zfa(nyu(n)] 2 X7 =) =)z (425)

n=0
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Then the sample shifting property is given by

2+ [a(n - B)] = Z[s(n — K)u(n)]

= i z(n—k)z7" = i z(m)z-(m+k)
n=0 m=—k
I .
m=—k m=0

or
Ztz(n—K)] = z(—l)zl‘k +z(=2)22F+- «+:t(—k)+z‘kX+(z) (4.26)

This result can now be used to solve difference equations with 'nonzero
initial conditions or with changing inputs. We want to solve the difference

equation
N M
1 +Zaky(n —k)= E bz(n—m),n =0
k=1 m=0
subject to these initial conditions:
{y(@),i= -1,...,—N} and {=z(i)i= -1,...,—M}.

We now demonstrate this solution using an example.

a EXAMPLE 414 Solve
1
y(w) - Suln = 1)+ gu(n—2) = a{n), n 20
where
z(n) = (l)" u(n)
4
subject to y(—-1) =4 and y(—2) = 10.

Solution Taking the one-sided 2-transform of both sides of the difference equation, we
obtain

1
Y+(z)—% [w-1+ z-‘y+(z)]+§ e R R ) v v

Substituting the initial conditions and rearranging,

g J Y 1 ot
Y+(Z)[1—§Z 1+§Z ]——1?%—;_—1‘4—(1 2z )

® THE 2-TRANSFORM
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or

1
1-1;1 -1
Y = 1- %z':i— 1,72 1- ;z_‘?i 1z-2 (4.27)
Finally,
WIS B ot oo
(1-11)a-21(1-321)
Using the partial fraction expansion, we obtain
yrge—L . £, 3 (4.28)
1-1z71 T 1—271 " 142!

After inverse transformation the solution is
1\" 2 1/I1\"
i =[(3) +3+3(3) ]um o (4.29)
Forms of the Solutions The above solution is the complete response
of the difference equation. It can be expressed in several forms.
¢ Homogeneous and particular parts:

an{) e 3 v

)

~ ~~
homogeneous part particular part

The homogeneous part is due to the system poles and the particular part
is due to the input poles.
o Transient and steady-state responses:

1/1\" 1\" 2
y(n) =[§ (Z) + (§> ]u(n) + gu(n)
iy - L~
transient response steady-state response

The transient response is due to poles that are inside the unit circle, while
the steady-state response is due to poles that are on the unit circle. Note
that when the poles are outside the unit circle, the response is termed an
unbounded response.

e Zero-input (or initial condition) and zero-state responses:
In equation (4.27) Y *(2) has two parts. The first part can be interpreted
as

Yzs(2) = H(z)X(2)
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while the second part as
Yz](z) = H(Z)ch(z)

where Xjc(2) can be thought of as an equivalent initial-condition input
that generates the same output Yzr as generated by the initial conditions.
In this example zyc(n) is

zIC('”’) = {]T-’ '—2}

Now taking the inverse z-transform of each part of (4.27), we write the

complete response as
<) o)+ o - ) A

~

zero-state response zero-input response

From this example it is clear that each part of the complete solution is, in
general, a different function and emphasizes a different aspect of system
analysis.

MATLAB In Chapter 2 we used the filter function to solve the difference equation,
IMPLEMEN- given its coefficients and an input. This function can also be used to find
TATION the complete response when initial conditions are given. In this form the
filter function is invoked by
y= filter(b,a,x,xic)
where xic is an equivalent initial-condition input array. To find the com-
plete response in Example 4.14, we will use
s> n = [0:7]; x = (1/4)."n; xic = [1, -2);
>> format long
>yl = filter(b,a,x,xic)
yi=
Columng 1 through 4
2.00000000000000  1.25000000000000 0.93750000000000  0.79687500000000
Columns 5 through 8
0.73046875000000  0.69824218750000 0.68237304687500  0.67449951171875
> y2 = (1/3)*(1/4) . "n+(1/2) .~n+(2/3)*ones(1,8) % Matlab Check
y2 = '
Columns 1 through 4
2.00000000000000  1.25000000000000 0.93750000000000  0.79687500000000
Columns 5 through 8
0.73046875000000  0.69824218750000 0.68237304687500  0.67449951171875
108 Chapter 4 ® THE 2-TRANSFORM
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Solution

which agrees with the response given in (4.29). In Example 4.14 we com-
puted zyc(n) analytically. However, in practice, and especially for large-
order difference equations, it is tedious to determine z;c (n) analytically.
MATLAB provides a function called £filtic, which is available only in the
Signal Processing toolbox (version 2.0b or later). It is invoked by

xic = filtic(b,a,Y,X)

in which b and a are the filier coefficient arrays and Y and X are the initial-
condition arrays from the initial conditions on y(n) and z(n), respectively,
in the form

Y= [y(—1)7 y(—2)1 LR y('—N)]

X = [z(-1), 2(-2),-.., =(-M)]
Kz(n)=0, n < —1thenXneednotbe specified in the filtic function.
In Example 4.14 we could have used

> Y = [4, 10];
>> xic = filtic(b,a,¥)
Y=

1 -2

to determine zic(n).

Solve the difference equation
yin) = % (e(n) +2(n — 1) + z(n — 2)] +095y(n 1) ~09025y(n —2), 720
where z(n) = cos(rn/3)u(n) and

y(-1)=-2, y(-2)=-3 (-1 =1 2(-2)=1

First determine the solution analytically and then by using MATLAB.

Taking a one-sided z-transform of the difference equation
1 - -
Y*(z) = 3 [(XH(2) +2(-1)+2 1X*(2) +2(=2) + 2 2(=1) + 27X (2)]
+095 [y(-1) +27'Y" (2)] —0.9025 [y(~2) + 2 y(-1) +272Y Y (2)]
and substituting the initial conditions, we obtain

1 1,-1 i,—-2
3 t3% t3%

1—0.95z-1 + 0.90252~2

1.4742 4+ 2.138327}
1- 0.95z-! + 0.9025z~2

&y}
Clearly, z1c(n) = (1.4742,2.1383]. Now substituting X*(2) = —1—1—291—5_;::7_3

Y¥(z)= Xt (z)+

and simplifying, we will obtain Y *+(2) as a rational function. This simplification
and further partial fraction expansion can be done using MATLAB as shown
below.

Solutions of the Difference Equations
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> b = [1,1,11/3; a = [1,-0.95,0.9025];
>» Y= [-2,-3]; X = (1,1];
>> xic=filtic(b,a,¥,X)
xic =

1.4742 2.1383
>> bxplus = [1,-0.5]; axplus = [1,-1,1]; % X(2) transform coeff.
>> ayplus = conv(a,axplus) % Denominator of Yplus(z)
ayplus =

1.0000 -1.8500 2.8525 -1.8525 0.9025
>> byplus = conv(b,bxplus)+conv(xic,axplus) % Numerator of Yplus(z)
byplus =

1.8075 0.8308 -0.4976 1.9717
>> [R,p,C] = residuez(byplus,ayplus)
R =

0.0584 + 3.9468i 0.0584 - 3.9468i 0.8453 + 2.0311i  0.8453 - 2.0311i

0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i  0.4750 - 0.8227i

C=
0]
>> Mp = abs(p), Ap = angle(p)/pi % Polar form
“P -
1.0000 1.0000 0.9500 0.9500
Ap =

-0.3333 0.3333 0.3333 -0.3333

Hence

1.8076 + 0.8308z! — 0.49752% + 1.9717z~3
1-1.052z-" + 2.85252—2 — 1.85252—3 + 0902524
_ 0.0584 + j3.9468  0.0584 — j3.9468
T 1 in/3ymd 1 - ein/3z-1

0.8453 + j2.0311 0.8453 — j2.0311
1—0.95¢/7/3z-1 ' 1~ 0.95¢-3~/32-1

Y¥() =

Now from Table 4.1
y(n) = (0.0584 + j3.9468) e ™"/ + (0.0584 — 53.9468) '™/
+(0.8453 + 52.031) (0.95)" €™ + (0.8453 — j2.031) (0.95)" e™™/°
= 0.1169 cos (7n/3) + 7.8937sin (7n/3)
+ (0.95)™ [1.6906 cos (wn/3) — 4.0623sin (7n/3)}, n2>0

The first two terms of y(n) correspond to the steady-state response, as well as
to the particular response, while the last two terms are the transient response
{(and homogeneous response) terms.

To solve this example using MATLAB, we will need the filtic function,
which we have already used to determine the zsc(n) sequence. The solution
will be a numerical one. Let us determine the first 8 samples of y(n).
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>> n = [0:7]; x = cos(pi*n/3);
>S»>y= filter(b,a,x,xic)
y =
Columns 1 through 4
1.80750000000000  4.35545833333333 2. 83975000000000 ~1. 56637197916667
Columns 5 through 8
-4.71759442187500 -3.40139732291667 1. 35063484230469  5.02808085078841
% Matlab Verification
>> A=real(2#R(1)); B=imag(2*R(1)); C=real(2+R(3)); D=imag(2+R(4));
>> y=hA*cos (pi*n/3)+B*sin(pi*n/3)+({0.95). ~n) .#(C*cos(pi*n/3)+D*sin(pi*n/3))
y=
Columns 1 through 4
1.80750000000048  4.35545833333359 2. 83974999999978 -1.56637197916714
Columns 5§ through 8
-4.71759442187528 -3.40139732291648 1. 35963484230515  5.02808085078871
[m]

PROBLEMS

P41

i —

Determine the z-transform of the following sequences using definition (4.1). Indicate the
region of convergence for each sequence and verify the z-transform expression using
MATLAB.

a. z(n) = {3,2,1,-2,-3}
T

b. z(n) = (0.8)"u(n—2)

c. z(n) = (%)"u(l —n)

d am) =27+ (3)"

e. z(n)=(n+1)(3)"u(n)

P42 Determine the z-transform of the following sequences using the z-transform table and the
2-transform properties. Express X (z) as a rational function in z~*. Verify your results
using MATLAB. Indicate the region of convergence in each case and provide a pole-zero plot.
a z(n)=26(n—2)+3u(n-3)

b. z(n) = (%)" u{n—2) + (09" u(n)
c. z(n) =nsin ("—3'1) u(n) +(0.9)" u(n—2)
d z(n)= (%)" cos (%’1 - 45°) u(n—1)
n—~2 x
e z(n)=(n-3)(3) cos{Z(n—1)}u(n)

P43 The z-transform of z (n) is X () = (1 + 2z"), |zl # 0. Find the 2-transforms of the
following sequences, and indicate their regions of convergence.
ani(n)=z@-n)+z(n-3)

b. z2(n) = (1+n+n2)z(n)
c. zs(n)=(4)"z(n-2)
d zsi(n)=z(n+2)xx(n-2)
e. x5 (n) = cos (mn/2)z" (n)
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P44 Repeat Problem 4.3 if
14271 1
X@)=———5— =
g v g g 2> 3

P45 The inverse z-transform of X (z) is z (n) = (%)" u(n). Using the z-transform properties,

determine the sequences in each of the following cases.

a. X1(z) = =1 X (2)

b. Xo(z) = 2X (z_l)

¢ Xs(z) =2X(3z) + 3X (2/3)

d X)) =X (2 X (z77)

e. Xs(z) = z25§£—’l
P4.6  If sequences x; (1), T2 (n), and s (n) are related by z3 (n) = 21 (n) * z2 (n), then

$ nw=( 5 n0) (3 =0)
n=-00 n=—00 n=—oo

a. Prove the above result by substituting the definition of convolution in the left-hand side.

b. Prove the above result using the convolution property.

¢. Verify the above result using MATLAB by choosing any two sequences z; (1) and z2 (n).
P4.7 Determine the results of the following polynomial operations using MATLAB.

a Xi(z)={1-2z""+32"2 - 427%) (44327 - 2272+ 27°)

b. X2 (2) = (22 —2243+227 + 2_2) (z3 - z‘a)

¢ X3(2) = (1 +27 4+ z'z)a

d. Xu(2) = X1 (2) X2 (2) + X3 (2)

e. Xs(z)= (27" =323+ 2275+ 5277 - 77%) (2 +32* +22° + 42%)

P4.8 The deconv function is useful in dividing two causal sequences. Write a MATLAB function
deconv.m to divide two noncausal sequences (similar to the conv function). The format of
this function should be
function [p,np,r,nr] = deconv_m(b,nb,a,na)

% Modified deconvolution routine for noncausal sequences
% function [p,np,r,nr] = deconv_m(b,nb,a,na}
%
% p = polynomial part of support npl <= n <= np2
% np = [np1, np2]
% r = remainder part of support mrl <= n <= nr2
% nr = [nr1, nr2)
% b = numerator polynomial of support nbl <= n <= nb2
% nb = [nb1, nb2]
% a = denominator polynomial of support nal <= n <= na2
% na = [nai, na2]
%
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Check your function on the following operation:

Prz+l+2 42724278 1 . 327243278
=(z—-1 ~1_9,~ 9z~ Tz
z4+2+271 (z +2 i )+z+2+z—1

P49 Determine the following inverse z-transforms using the partial fraction expansion method.
a Xi(z)=(1-2"'-4272+ 4273 (1 -2+ B2 - 1273). The sequence is
right-sided.

b Xa(2)=(1-2""—427" +4273) /(1= Rt 4 2% - 127%). The sequence is
absolutely summable.
c. X3(2)= (z3 -3+ 42+ 1) / (13 —42% 2 0.16). The sequence is left-sided.
d. Xa(2) = 2/ (2° +22% + 1.252 +0.25), |2| > 1.
e. Xs(z) = z/ (2 —0.25)%, |2| < 05.
P4.10 Suppose X (z) is given as follows:

243271
X (2)= I

—iros2 A>09

a. Determine z (n) in a form that contains no complex numbers.

b. Using MATLAB, find the first 20 samples of z (n) and compare them with your answer in
the above part.

P4.11 For the linear and time-invariant systems described by the impulse responses below,
determine (i) the system function representation, (i) the difference equation representation,
(iii) the pole-zero plot, and (iv) the output y (n) if the input is z (n) = (%)" u(n).

a hin)=2 (%)"u(n)

b. h(n)=n(})"u(n)+ (-1)"un)

c. h(n) =3(0.9)"cos(rn/d +x/3)u(n+1)
d. h(n)=nlu(n) —u(n—10)

e. h(n) =[2 —sin(an)]u(n)

P4.12 For the linear and time-invariant systems described by the system functions below,
determine (i) the impulse response representation, (i) the difference equation
representation, (iii) the pole-zero plot, and (iv) the output y (n) if the input is
z(n) = 3cos (mn/3) u(n).

a. H(z) =(z+1)/(z—0.5), causal system.
b. H(z)=(1+2z"+27%) /(140527 - 0.25277) , stable system.
c H@z)=(22-1)/(2- 3)%, anticausal system.
z 1-0.5z7"
2—025 142271
e Hiz)=(1+z""+ z'z)z, stable system.

P4.13 For the linear, causal, and time-invariant systems described by the difference equations
below, determine (i) the impulse response representation, (ii) the system function
representation, (iii) the pole-zero plot, and (iv) the output y (n) if the input is
z(n) =2(0.9)" u(n).

d. H(z)= , stable system.
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P4.14

P4.15

P4.16

P4.17

P4.18

sy

p

cyn)=fz(m)+2x(n-1)+x(n-3)]/4

. y(n) =z (n) + 0.5z (n — 1) — 0.5y (n — 1) + 0.25y (n —2)

y(n) =2z (n) +0.9y(n—1)

. y(n) = —0.45z (n) — 04z (n — 1) + 2 (n — 2) + 0.4y (n—1)+0.45y(n—2)

y() =34 08" z(n—m) - T, (0.9) y(n-0)

The output sequence y (n) in Problem 4.13 is the total response. For each of the systems
given in that problem, separate y (n) into (i) the homogeneous part, (ii) the particular part,
(iii) the transient response, and (iv) the steady-state response.

e A0

A stable system has the following pole-zero locations:

s o lglo 1
z21 =7 2=—1 P1= 3 ]2’ P2 = 3 .72

Tt is also known that the frequency response function H (e"") evaluated at w = 0 is equal to
0.8; that is,

H () =08
a. Determine the system function H (2) and indicate its region of convergence.

b. Determine the difference equation representation.

¢. Determine the steady-state response ys, (r) if the input is z (n) = L sin (1271) u(n).

V2
d. Determine the transient response g, (n) if the input is z (n) = % sin (127—1) u(n).

A digital filter is described by the difference equation
y(n)=z(m)+z(n—-1)+09y(n—-1)-08ly(n-2)

a. Using the freqz function, plot the magnitude and phase of the frequency response of the
above filter. Note the magnitude and phase at w = 7/3 and at w = .

b. Generate 200 samples of the signal z (n) = sin (7n/3) + 5 cos (wn) and process through
the filter. Compare the steady-state portion of the output to z (n). How are the amplitudes
and phases of two sinusoids affected by the filter?

Solve the following difference equation for y (n) using the one-sided z-transform approach.
y(n)=05y(n—1) +0.25y(n—2)+z(n), n20; y(-1)=1,y(-2)=2
z(n) = (0.8)" u(n)

Generate the first 20 samples of y (n) using MATLAB and compare them with your answer.
Solve the difference equation for y(n), n>0

y(n) — 0.4y (n — 1) — 0.45y (n — 2) = 0.45z (n) + 0.4z (n - 1)~ z(n—-2)
driven by the input z (n) =2+ (%)" u{n) and subject to
y(-1)=0,y(-2) =3 z(-1)==2z(-2) =2

Decompose the solution y (n) into (i) transient response, (ii) steady-state response, (iii) zero
input response, and (iv) zero-state response.
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P4.19 A causal, linear, and time-invariant system is given by the following difference equation:
y(n)=yln-1}+y(n-2)+z(n-1)
a. Find the system function H(2) for this system.
b. Plot the poles and zeros of H(z) and indicate the region of convergence (ROC).
¢. Find the unit sample response h(n) of this system.

d. .Is this system stable? If the answer is yes, justify it. If the answer is no, find a stable
unit sample response that satisfies the difference equation.

P4.20 Determine the zero-state response of the system
yn)=jy(n-1)+s@m)+3z(n-1), n>0; y(-1)=2
to the input
z(n) =™ *u(n)

What is the steady-state response of the system?
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THE DISCRETE
FOURIER
TRANSFORM

In Chapters 3 and 4 we studied transform-domain representations
of discrete signals. The discrete-time Fourier transform provided the
frequency-domain (w) representation for absolutely summable sequences.
The z-transform provided a generalized frequency-domain (z) represen-
tation for arbitrary sequences. These transforms have two features in
common. First, the transforms are defined for infinite-length sequences.
Second, and the most important, they are functions of continuous vari-
ables (w or z). From the numerical computation viewpoint (or from
MATLAB's viewpoint), these two features are troublesome because one
has to evaluate infinite sums at uncountably infinite frequencies. To use
MATLAB, we have to truncate sequences and then evaluate the expressions
at finitely many points. This is what we did in many examples in the two
previous chapters. The evaluations were obviously approximations to the
exact calculations. In other words, the discrete-time Fourier transform
and the z-transform are not numerically computable transforms.
Therefore we turn our attention to a numerically computable trans-
form. It is obtained by sampling the discrete-time Fourier transform in the
frequency domain (or the z-transform on the unit circle). We develop this
transform by first analyzing periodic sequences. From Fourier analysis we
know that a periodic function (or sequence) can always be represented by
a linear combination of harmonically related complex exponentials (which
is a form of sampling). This gives us the Discrete Fourier Series (or DFS)
representation. Since the sampling is in the frequency domain, we study
the effects of sampling in the time domain and the issue of reconstruction
in the z-domain. We then extend the DFS to finite-duration sequences,
which leads to a new transform, called the Discrete Fourier Transform
(or DFT). The DFT avoids the two problems mentioned above and is
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a numerically computable transform that is suitable for computer imple-
mentation. We study its properties and its use in system analysis in detail.
The numerical computation of the DFT for long sequences is prohibitively
time consuming. Therefore several algorithms have been developed to effi-
ciently compute the DFT. These are collectively called fast Fourier trans-
form (or FFT) algorithms. We will study two such algorithms in detail.

THE DISCRETE FOURIER SERIES
—-

In Chapter 2 we defined the periodic sequence by Z(n), satisfying the
condition

#(n) = E(n+kN), Vn,k (5.1)

where N is the fundamental period of the sequence. From Fourier analysis
we know that the periodic functions can be synthesized as a linear com-
bination of complex exponentials whose frequencies are multiples (or har-
monics) of the fundamental frequency (which in our case is 2r/N). From
the frequency-domain periodicity of the discrete-time Fourier transform,
we conclude that there are a finite number of harmonics; the frequencies
are {¥k, k=0,1,...,N— 1}. Therefore a periodic sequence #(n) can
be expressed as

N-1
3(n) = Ilv T XRWEH, n=0,21,..., 5.2)
k=0

where {X(k), k=0,%1,...,} are called the discrete Fourier series co-
efficients, which are given by

N-1
Xk =Y #m)e I HE, k=0,41,..., (5.3)

n=0

Note that X (k) is itself a (complex-valued) periodic sequence with fun-
damental period equal to N, that is,

X(k+ N)=X(k) (5.4)

The pair of equations (5.3) and (5.2) taken together is called the discrete

Fourier series representation of periodic sequences. Using Wn L% to
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[} EXAMPLE 5.1

denote the complex exponential term, we express (5.3) and (5.2) as

. N-1
X(k)2DFS[i(n)] = Y F(n)Wpt : Analysis or a
n=0 DFS equation
AN & 1 N-1 o k
Z(n) = IDFS [X (k)] =5 Y. X(k)WX™" : Synthesis or an inverse
k=0 DFS equation

(5.5)

Find DFS representation of the periodic sequence given below:

#(n)=1{..,0,1,2,3,0,1,2,3,0,1,2,3,...}
T

Solution The fundamental period of the above sequence is N = 4. Hence Wy = 1% =
—j. Now
3
(k) =) HmWT*, k=0,£1,%2,...
n=0
Hence
3 3
X@)=Y #mwi"= S #(n) = #(0) + (1) + £(2) + £(3) = 6
) )
Similarly,
3 3
X)) =Y smwi =Y 2n)(-)" = (-2+2)
(4] 0
3 3
X@) =Y emWit =) _3(m)(~)" =2
o 0
3 3
X@) =Y #mwi =3 #n)(~5)" = (-2=2) o
) o
MATLAB A careful look at (5.5) reveals that the DFS is a numerically computable
IMPLEMEN- representation. It can be implemented in many ways. To compute each
TATION sample X(k), we can implement the summation as a for...end loop.
To compute all DFS coefficients would require another for. ..end loop.
This will result in a nested two for...end loop implementation. This
is clearly inefficient in MATLAB. An efficient implementation in MATLAB
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would be to use a matrix-vector multiplication for each of the relations
in (5.5). We have used this approach earlier in implementing a numerical
approximation to the discrete-time Fourier transform. Let X and X denote
column vectors corresponding to the primary periods of sequences z(n)
and X (k), respectively. Then (5.5) is given by

X =Wyi
I R (56)
X = ﬁwa
where the matrix Wy is given by
n—
1 1 1
N-1
N 1wy - Wi
Wy = [WN osk,ugN—l] =’f . . . . (5.7
1 WI(VN—I) WI(VN—I)Q

The matrix Wy is a square matrix and is called a DFS matriz. The
following MATLAB function dfs implements the above procedure.

function [Xk] = dfs(xn,N)
% Computes Discrete Fourier Series Coefficients

% (Xk] = dafs(xn,N)

% Xk = DFS coeff. array over 0 <= k <= N-1

% xn = One period of periodic signal over 0 <= n <= N-1
% N = Fundamental period of xn

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2+pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values
WNnk = WN .” nk; % DFS matrix

Xk = xn * WNnk; % row vector for DFS coefficients

The DFS in Example 5.1 can be computed using MATLAB as

>> xn = [0,1,2,3]; N = 4;
>> Xk = dfs(xn,N)

6.0000 -2.0000 + 2.0000i =-2.0000 - 0.0000i -2.0000 - 2.0000i
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a EXAMPLE 5.2

o

The following idfs function implements the synthesis equation.

function [xn] = idfs(Xk,N)
% Computes Inverse Discrete Fourier Series

%

% [xn] = idfs(Xk,N)

% xn = One period of periodic signal over 0 <= n <= N-1
% Xk = DFS coeff. array over 0 <= k <= N-1

% N = Fundamental period of Xk

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2+pi/N); % wn factor

nk = n’#*k; Y creates a N by N matrix of nk values

% IDFS matrix
% row vector for IDFS values

WNpk = WN .~ (-nk);
xm = (Xk * WNnk)/N;

Caution: The above functions are efficient approaches of implementing
(5.5) in MATLAB. They are not computationally efficient, especially for
large N. We will deal with this problem later in this chapter.

A periodic “square wave” sequence is given by
1, mN<n<mN+L-1
i(n) = i m=0,41,%2,...
0, mN+L<n<(m+1)N-1
where N is the fundamental period and L/N is the duty cycle.

a. Determine an expression for |X (k)] in terms of L and N.

b. Plot the magnitude |X(k)| for L =5, N =20; L =5, N = 40; L =5,
N =60; and L =7, N =60.

¢c. Comment on the results.

Solution A plot of this sequence for L =5 and N = 20 is shown in Figure 5.1.
Three perlods of xtitde(n)
15 T T T T T
g
] 0.5[
0
%0 -10 ] 10 20 30
n
FIGURE 5.1 Periodic square wave sequence
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RELATION
TO THE 2-

TRANSFORM

a. By applying the analysis equation (5.3),

N-1 L-1 L-1

X(k)y=) a(n)e ¥t = DICEE AT (e-:'%‘k)"
n=0 n=0 . n=0
L, k=0,+N,%2N,...

= (| _ g-i2xLk/N
gy, ol otherwise

The last step follows from the sum of the geometric terms formula (2.5) in

Chapter 2. The last expression can be simplified to

1 — g=i3WLk/N o —jnLk[N gixLk/N _ o~jxLk/N
1 —o—d2rk/N  g-ink/N gink/N _ g=jnk/N
— e_j,(L._l)k/N sin (WkL/N)
sin (wk/N)
or the magnitude of X (k) is given by
L, k=0,tN,£2N,...
|X (k)| = < |sin (xkL/N) therwi
sin(rk/N) |» Ceee

b. MATLAB script for L = 5 and N = 20 is given below.

>>L =5; N=20; k = [-N/2:N/2); % Sq wave parameters
>> xn = [ones(1,L), zeros(1,N-L)]; % Sq wave x(n)

>> Xk = dfs(xn,N); % DFS

>> magXk = abs{[Xk(N/2+1:N) Xk(1:N/2+1)]); % DFS magnitude

>> subplot(2,2,1); stem(k,magXk) ; axis([-N/2,N/2,-0.5,5.5])

>> xlabel(’k’); ylabel(’Xtilde(k)’}

>> title(’DFS of SQ. wave: L=5, N=20’)

The plots for the above and all other cases are shown in Figure 5.2. Note that
since X (k) is periodic, the plots are shown from —N/2 to N/2.

¢. Several interesting observations can be made from plots in Figure 5.2.
The envelopes of the DFS coefficients of square waves look like “sinc” functions.
The amplitude at k = 0 is equal to L, while the zeros of the functions are at
multiples of N/L, which is the reciprocal of the duty cycle. We will study these
functions later in this chapter. [m}

Let z(n) be a finite-duration sequence of duration N such that

Nonzero, 0 <n< N -1
z(n) = (5.8)

0, elsewhere
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DFS of SQ. wave: L=5, N=20

DFS of SQ. wave: L=5, N=40

Xtilde(k)

N W s
Xtilde(k)

nN [ o o

-
-

T

-10 0 10 20

R

-10 -5 0 5 10

=]

8

k k
DFS of 5Q. wave: L=7, N=60

DFS of SQ. wave: L=5, N=60

i

k

Xtilde{k)
N W e O
Xtilde(k)

FIGURE 5.2 The DFS plots of a periodic square wave for various L and N.

Then we can find its z-transform:

N-1

X(z)=)Y =z(n)z™ (5.9)

n=0

Now we construct a periodic sequence Z(n) by periodically repeating z(n)
with period N, that is,

#n), 0<n<N-1
= 5.10
z(m) { 0, elsewhere (5-10)
The DFS of #(n) is given by

} N-1 o N-1 R

X(k)= 3 #m)e =3 a(n) [ehvk] (5.11)

n=0 n=0
Comparing it with (5.9), we have
X(B) = X(2)|__ a9+ (5.12)

which means that the DFS X (k) represents N evenly spaced samples of
the z-transform X (2) around the unit circle.
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RELATION TO  Since z(n) in (5.8) is of finite duration of length N, it is also absolutely

THE DTFT summable. Hence its DTFT exists and is given by
) N-1 ) N-1
X(@9) =Y wn)e " =Y Hn)e " (5.13)
n=0 n=0

Comparing (5.13) with (5.11), we have

X(k) = X&), o254 (5.14)
Let
2n 2
wy = N and ) = F"rk = kw,

then the DFS X (k) = X (e7*) = X (e/¥1), which means that the DFS is
obtained by evenly sampling the DTFT at w; = %" intervals. From (5.12)
and (5.14) we observe that the DFS representation gives us 2 sampling
mechanism in the frequency domain which, in principle, is similar to sam-

pling in the time domain. The interval wy = 2m is the sampling interval
N g

in the frequency domain. It is also called the frequency resolution because
it tells us how close are the frequency samples (or measurements).

O  EXAMPLES3 Let z(n) = {0,1,2,3}.
1

a. Compute its discrete-time Fourier transform X (7).
b. Sample X (™) at kw1 = &k, k=10,1,2,3 and show that it is equal
to X(k) in Example 5.1.
Solution The sequence z(n) is not periodic but is of finite duration.

a. The discrete-time Fourier transform is given by

o0
X() = Z z(n)e ™ = 7 4 2e7 4 3¢9

oo
b. Sampling at kw1 = 2k, k=0,1,2,3, we obtain
X(e®)=1+2+3=6=X(0)
X (eI27/4) = &I2/4 4 9e7I4/4 4 370/ = —p 4 25 = X(1)
X(4/8) = e /4 4 9T 4 gem I/ = 9 = X(2)
X(eI07/4) = £7907/4 4 9e™12m/4 | 37T/ = _9 25 = X(3)

as expected. [m]
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SAMPLING AND RECONSTRUCTION IN THE 2-DOMAIN

Let z(n) be an arbitrary absolutely summable sequence, which may be of
infinite duration. Its z-transform is given by

o0

X(2)= Z z(m)z™™

m=—-00
and we assume that the ROC of X (z) includes the unit circle. We sample

X(2) on the unit circle at equispaced points separated in angle by w; =
2n/N and call it a DFS sequence,

k)R X@ e,  E=0ELE2. (5.15)
00 g oo
= E z(m)e I FF™ = Z (m)WE™
m=-—00 m=—00

which is periodic with period N. Finally, we compute the IDFS of X{(k),
#(n) = IDFS[X (k)]

which is also periodic with period N. Clearly, there must be a relationship
between the arbitrary z(n) and the periodic #(r). This is an important
issue. In order to compute the inverse DTFT or the inverse z-transform
numerically, we must deal with a finite number of samples of X (2) around
the unit circle. Therefore we must know the effect of such sampling on
the time-domain sequence. This relationship is easy to obtain.

N-1
n) = ’;‘r S X(WEt (from (5.2))
k=0
1 N-1 oo
=% { > z(m)W,';"'}w,;’“" (from (5.15))
k=0 \m=—o0
or
o0 1 N-1 0 oo
i(n) = Z z{m) NZW;"("—'") = z z(m) Z §(n—m—rN)
m=-—00 o m=—00 r=—00

), n—-m=rN
T 10, elsewhere

o0 o0

Z Z z(m)b(n —m —rN)

r=-—00 M=—00

|
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Solution

or

Z(n) = i :z(n—rN)="-+.7:(n+N)+a:(n)+x(n—N)+~~ (5.16)

r=-00

which means that when we sample X (2) on the unit circle, we obtain a
periodic sequence in the time domain. This sequence is a linear combina-
tion of the original z(r) and its infinite replicas, each shifted by multiples
of +N. This is illustrated in Example 5.5. From (5.16) we observe that if
z(n) =0 forn < 0and n > N, then there will be no overlap or aliasing in
the time domain. Hence we should be able to recognize and recover z(n)
from Z(n), that is,

z(n) = Fn)for0<n<(N-1)
or

1, 0<n<N-1

z(n) = Z(n)Rn(n) = E(n) {0 clse

where Ry(n) is called a rectangular window of length N. Therefore we
have the following theorem.

Frequency Sampling
If z(n) is time-limited (i.e., of finite duration) to [0, N — 1], then N
samples of X(z) on the unit circle determine X (z) for all 2.

Let z1(n) = {6,5,4,3,2,1}. Its DTFT Xy(e’) is sampled at
T

we=T7, k=0,%1,42,33,...

to obtain a DFS sequence X2(k). Determine the sequence Z2(n), which is the
inverse DFS of X»(k)-

Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate
Z3(n) by using the aliasing formula (5.16).

oo

Za(n) = z x1(n — 4r)

Thus z(4) is aliased into z(0), and =(5) is aliased into z(1). Hence

&a(n) ={...,8,6,4,3,8,6,4,3,8,6,4,3,...} o
T
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a

EXAMPLESS Let z(n) = (0.7)" u(n). Sample its z-transform on the unit circle with N = 5,
10, 20, 50 and study its effect on the time domain.

Solution From Table 4.1 the z-transform of z(n) is

1 z
X@ =197~ z-01

We can now use MATLAB to implement the sampling operation

X (k) = X(2)|,mpsamen , k=0,%1, +2,...

|z} > 0.7

and the inverse DFS computation to determine the corresponding time-domain
sequence. The MATLAB script for N = 5 is shown below.

> N=5; k = 0:1:N-1; % sample index

>> wk = 2#pi*k/N; zk = exp(j*vk); % samples of z

>> Xk = (zk)./(zk-0.7); % DFS as samples of X(z)
>> xn = real(idfs(Xk,N)); % IDFS

>> ytilde = xn’# ones(1,8); xtilde = (xtilde(:))’; % Periodic sequence

>> subplot(2,2,1); stem(0:39,xtilde) ;axis([0,40,-0.1,1.5))

>> xlabel{’n’); ylabel(’xtilde(n)’); title(’N=5’)

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain,
especially for N = 5 and N = 10. For large values of N the tail end of z{n)

N=5 N=10

xtilde(n)
xtilde(n)

xtilde(n)
xtilde(n)

0 | 0
1] 10 20 30 40 0 10 20 30 40
n n

FIGURE 5.3 Plots in Ezample 5.5
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is sufficiently small to result in any appreciable amount of aliasing in practice.
Such information is useful in effectively truncating an infinite-duration sequence

prior to taking its transform. [m]
RECON- Let z(n) be time-limited to [0, N — 1}. Then from Theorem 1 we should
STRUCTION be able to recover the z-transform X (z) using its samples X (k). This is
FORMULA given by
X(2) = Z [o(n)] = Z [E(n)Rn (1)
=Z|IDFS{ X(k) }Rw(n)]
S——
samples of X(z)
The above approach results in the z-domain reconstruction formula.
N-1 N-1
X(z)= )Y a(m)z"= > &)™
0 0
N-1 () N-1
=3 {ﬁ > X(k)w,;’"'} "
[} 0
= N-1
— I —kn,—
=5 X(k){ZW z "}
k=0 0
g N2 N-1
=5 X(k) {Z (Wi*2™") }
k=0 0
N-1 —kN _—-N
= ILV X(k) {1 WN—k z-1 }
prar 1-Wg"z
Since Wi*" =1, we have
1- 832 XKk
X(2)= — (5.17)
N g 1- WNkz‘l
THE DTFT The reconstruction formula (5.17) can be specialized for the discrete-time
INTERPO- Fourier transform by evaluating it on the unit circle z = /. Then
LATION N1 .
FORMULA X(e) = 1—e N X(k)
- N 1 — ei2nk/N g—jw
k=0
N-1 . _ ,—jwN
= z X(k) . jan/N —jw
k=0 N{1-e e~}
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MATLAB
IMPLEMEN-
TATION

Consider
1- g9l 1— e~ iw=3MN
N{T-emNe=i} {1 - emito-1}

_ et { sin (= 4)4] }
2nky1
)3

e~ 39w—2%F) | Nsin[(w— 5
Let
®(w) 2 %I%)je‘j“(ﬂf_l) : an interpolating polynomial  (5.18)
Then
R 2k
Xy =" X(ko (w - T) (5.19)

k=0

This is the DTFT interpolation formula to reconstruct X (e*) from its
samples X (k). Since (0) = 1, we have that X (e/2™*/V) = X (k), which
means that the interpolation is exact at sampling points. Recall the time-
domain interpolation formula (3.33) for analog signals:

o

za(t)= Y z(n)sinc|Fy(t — nT)] (5.20)

n=-—oo

The DTFT interpolating formula (5.19) looks similar.

However, there are some differences. First, the time-domain formula
(5.20) reconstructs an arbitrary nonperiodic analog signal, while the
frequency-domain formula (5.19) gives us a periodic waveform. Second,
in (5.19) we use a %’:—"% interpolation function instead of our more
familiar #22 (sinc) function. Therefore the ®(w) function is sometimes
called a digital sinc function, which itself is periodic. This is the function
we observed in Example 5.2.

The interpolation formula (5.19) suffers the same fate as that of (5.20)
while trying to implement it in practice. One has to generate several
interpolating polynomials (5.18) and perform their linear combinations
to obtain the discrete-time Fourier transform X (e/*) from its computed
samples X (k). Furthermore, in MATLAB we have to evaluate (5.19) on
a finer grid over 0 < w < 2r. This is clearly an inefficient approach.
Another approach is to use the cubic spline interpolation function as an
efficient approximation to (5.19). This is what we did to implement (5.20)
in Chapter 3. However, there is an alternate and efficient approach based
on the DFT, which we will study in the next section.
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THE DISCRETE FOURIER TRANSFORM

The discrete Fourier series provided us a mechanism for numerically com-
puting the discrete-time Fourier transform. It also alerted us to a poten-
tial problem of aliasing in the time domain. Mathematics dictates that
the sampling of the discrete-time Fourier transform result in a periodic
sequence Z(n). But most of the signals in practice are not periodic. They
are likely to be of finite duration. How can we develop a numerically com-
putable Fourier representation for such signals? Theoretically, we can take
care of this problem by defining a periodic signal whose primary shape is
that of the finite-duration signal and then using the DFS on this periodic
signal. Practically, we define a new transform called the Discrete Fourier
Transform (DFT), which is the primary period of the DFS. This DFT
is the ultimate numerically computable Fourier transform for arbitrary
finite-duration sequences.

First we define a finite-duration sequence z(n) that has N samples
over 0 < n < N —1 as an N-point sequence. Let #(n) be a periodic signal
of period N, created using the N-point sequence z(n); that is, from (5.19)

o0

Z(n) = }: z(n —rN)

r=—00

This is a somewhat cumbersome representation. Using the modulo-N op-
eration on the argument we can simplify it to

#(n) = z(nmod N) (5.21)

A simple way to interpret this operation is the following: if the argument
n is between 0 and N — 1, then leave it as it is; otherwise add or sub-
tract multiples of N from 7 until the result is between 0 and N — 1. Note
carefully that (5.21) is valid only if the length of z(n) is N or less. Further-
more, we use the following convenient notation to denote the modulo-N
operation.

2((n))y £ z(nmod N) (5.22)
Then the compact relationships between z(n) and Z(n) are

i(n) = :f((n)) N (Pe.riodic extensi.on) (523)
z(n) = Z(n)Ry(n) (Window operation)

The rem(n,N) function in MATLAB determines the remainder after di-
viding n by N. This function can be used to implement our modulo-N
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operation when n > 0. When n < 0, we need to modify the result to
obtain correct values. This is shown below in the m=mod (n,N) function.

function m = mod(n,N)

% Computes m = (n mod N) index
%
% m = mod(n,N)
m = rem(n,N);
m = m+N;

m = rem(m,N);

In this function n can be any integer array, and the array m contains the
corresponding modulo-N values.

From the frequency sampling theorem we conclude that N equispaced
samples of the discrete-time Fourier transform X (7Y of the N-point se-
quence z(n) can uniquely reconstruct X (e’*). These N samples around
the unit circle are called the discrete Fourier transform coefficients. Let
X (k) = DFS (n), which is a periodic (and hence of infinite duration) se-
quence. Its primary interval then is the discrete Fourier transform, which
is of finite duration. These notions are made clear in the following defi-
nitions. The Discrete Fourier Transform of an N-point sequence is given
by

X(k) & DFT [z(n)] = {g((k)’ glfe:hfriv ~le X(k)YRn(k)
or
N-1
X(k)= z(mWg¥, 0<k<N-1 (5.24)
n=0

Note that the DFT X(k) is also an N-point sequence, that is, it is
1ot defined outside of 0 < k < N — 1. From (5.23) X(k) = X((k))n;
that is, outside the 0 < k < N — 1 interval only the DFS X(k) is de-
fined, which of course is the periodic extension of X (k). Finally, X (k) =
X (k)R (k) means that the DFT X (k) is the primary interval of X(k).

The inverse discrete Fourier transform of an N-point DFT X (k) is
given by

2(n) 2 IDFT [X (k)] = &(n)Rn(n)

or

N-1
z(n) = % S X(BW*, 0<n<N-1 (5.25)
k=0
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1

Once again z(n) is not defined outside 0 < n < N — 1. The extension of
z (n) outside this range is Z(n).

MATLAB It is clear from the discussions at the top of this section that the DFS is
IMPLEMEN- practically equivalent to the DFT when 0 < n < N — 1. Therefore the
TATION implementation of the DFT can be done in a similar fashion. If z(n) and
X (k) are arranged as column vectors x and X, respectively, then from
(5.24) and (5.25) we have
X=W NX
1 (5.26)
where Wy is the matrix defined in (5.7) and will now be called a DFT
matriz. Hence the earlier dfs and idfs MATLAB functions can be renamed
as the dft and idft functions to implement the discrete Fourier transform
computations.
function [Xk] = dft(xn,N)
% Computes Discrete Fourier Transform
Y% = -
% (Xk} = dft(xn,N)
Y% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence
% N = Length of DFT
%
n = [0:1:N-1]; % row vector for n
k = [0:1:N-1]; % row vecor for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’*k; % creates a N by N matrix of nk values
WNnk = WN .~ nk; % DFT matrix
Xk = xn * WNnk; % row vector for DFT coefficients
function [xn] = idft(Xk,N)
% Computes Inverse Discrete Transform
%
% [xn] = idft(Xk,N)
% xn = N-point sequence over 0 <= n <= N-1
% Xk = DFT coeff. array over 0 <= k <= N-1
% N = length of DFT
%
n = [0:1:N-1]; % row vector for n
k= [Q:l:N—l]; Y% row vecor for k
WN = exp(-j*2*pi/N); % Wn factor
nk = n’sk; Y% creates a N by N matrix of nk values
WNnk = WN .” (-nk); % IDFT matrix
xn = (Xk * WNnk)/N; % row vector for IDFT values
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o

EXAMPLE 5.6 Let z(n) be a 4-point sequence:
1, 0<n<
2(n) = <n<3
0, otherwise

a. Compute the discrete-time Fourier transform X{e’*) and plot its mag-
nitude and phase. .
b. Compute the 4-point DFT of z(n).

Solution a. The discrete-time Fourier transform is given by

3
X(ejw) — Zz(n)e—jun =1+ e~ + eI + R
[
= L__eﬁu_ - sin(2w) _jaw/z
1—ev  sin(w/2)

Hence

sin(2w)

|| = E= 7]

and
3w sin(2w)
2’ when sin{w/2)
sin{2w)
sin(w/2)

LX(&Y) =

—3—;{ +m, when

The plots are shown in Figure 5.4.
b. Let us denote the 4-point DFT by X4 (k). Then

3
Xo(k) = D =mWe; k=0,1,2,3 Wi= eI =
n=0
These calculations are similar to those in Example 5.1. We can also use MATLAB
to compute this DFT.’

>> x = [1,1,1,1]; N = 4;
> X = aft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi
magX =
4.0000 0.0000 0.0000 0.0000
phaX =
0 -134.9810 -90.0000 -44.9979

Hence

X4(k) = {410)'01 0}
i

Note that when the magnitude sample is zero, the corresponding angle is not
zero. This is due to a particular algorithm used by MATLAB to compute the
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Magnitude of the DTFT
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FIGURE 5.4 The DTFT plots in Ezample 5.6

angle part. Generally these angles should be ignored. The plot of DFT values
is shown in Figure 5.5. The plot of X () is slso shown as a dashed line for
comparison. From the plot in Figure 5.5 we observe that X4 correctly gives 4
samples of X (¢’), but it has only one nonzero sample. Is this surprising? By
Jooking at the 4-point z(n), which contains all 1’s, one must conclude that its
periodic extension is

Z(n)=1,Vn

which is a constant (or a DC) signal. This is what is predicted by the DFT
X4(k), which has a nonzero sample at k =0 (or w = 0) and has no values at
other frequencies. [m]

O  EXAMPLES] How can we obtain other samples of the DTFT X(e*)?

Solution It is clear that we should sample at dense (or finer) frequencies; that is, we
should increase N. Suppose we take twice the number of points, or N=28
instead of 4. This we can achieve by treating z(n) as an 8-point sequence by

appending 4 zeros.

z(n) = {1,1,1,1,0,0,0,0}
T
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FIGURE 5.5 The DFT plots of Ezample 5.6

This is a very important operation called a zero-padding operation. This oper-
ation is necessary in practice to obtain a dense spectrum of signals as we shall
see. Let X3 (k) be an 8-point DFT, then

7

Xe(k) =D z(m)Ws* k=0,1,...,7; W= eiv/4

n=0

In this case the frequency resolution is w; = 27/8 = /4.

> x = [1,1,1,1, zeros(1,4)]; N = 8;
>> X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi
magX =
4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 0.0000 2.6131
phaX =
0 -67.5000 -134.9810 -22.5000 -90.0000 22.5000. -44.9979  67.5000

Hence

X (k) = {4, 2.6131e7675° 0, 1.0824¢™72%", 0, 1.0824¢72%%°
T

0, 2.613167°7%°}
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Magnitude of the DFT: N=8
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FIGURE 5.6 The DFT plots of Ezample 5.7: N =8

which is shown in Figure 5.6. Continuing further, if we treat z(n) as a 16-point
sequence by padding 12 zeros, such that

z(n) = {1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0}
T

then the frequency resolution is w1 = 27/16 = 7/8 and Wie = e~9™/®_Therefore
we get a more dense spectrum with spectral samples separated by /8. The
sketch of X16 (k) is shown in Figure 5.7. [m}

Comments: Based on the last two examples there are several comments
that we can make.

1. Zero-padding is an operation in which more zeros are appended to
the original sequence. The resulting longer DFT provides closely spaced
samples of the discrete-time Fourier transform of the original sequence.
In MATLAB zero-padding is implemented using the zeros function.

9. In Example 5.6 all we needed to accurately plot the discrete-time
Fourier transform X (e/) of z(n) was X4 (k}, the 4-point DFT. This is
because z(n) had only 4 nonzero samples, so we could have used the inter-
polation formula (5.19) on X, (k) to obtain X (e9). However, in practice,
it is easier to obtain X (k) and Xy (k), and so on, to fill in the values
of X(e’*) rather than using the interpolation formula. This approach can
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FIGURE 5.7 The DFT plots of Ezample 5.7: N =16

be made even more efficient using fast Fourier transform algorithms to
compute the DFT.

3. The zero-padding gives us a high-density spectrum and provides
a better displayed version for plotting. But it does not give us a high-
resolution spectrum because no new information is added to the signal;
only additional zeros are added in the data.

4. To get a high-resolution spectrum, one has to obtain more data
from the experiment or observations (see Example 5.8 below). There are
also other advanced methods that use additional side information or non-
linear techniques.

m] EXAMPLE 5.8 To illustrate the difference between the high-density spectrum and the high-
resolution spectrum, consider the sequence
z(n) = cos (0.487n) + cos (0.527n)
We want to determine its spectrum based on the finite number of samples.
a. Determine and plot the discrete-time Fourier transform of z(n), 0 <
n < 10.
b. Determine and plot the discrete-time Fourier transform of z(n), 0 <
n < 100.
136 Chapter 5 ® THE bISCRETE FOURIER TRANSFORM

Solution

>>
>>
>>
>>
>>
>>

>>
>
>
>
>>
>
>>

v

We could determine analytically the discrete-time Fourier transform in each
case, but MATLAB is a good vehicle to study these problems.

a. We can first determine the 10-point DFT of z(n) to obtain an estimate
of its discrete-time Fourier transform.

n = [0:1:99]; x = cos(0.48%pi*n)+cos(0.52+pi*n);

nt = [0:1:9] ;yl = x(1:1:10);

subplot(2,1,1) ;stem(nl,yl); title(’signal x(n), 0 <= n <= 9’);xlabel(’n’)
Y1 = dft(y1,10); mag¥l = abs(Y1(1:1:6));

k1 = 0:1:5 ;wl = 2%pi/10%k1;

subplot(2,1,2) ;plot(wi/pi,mag¥1) ;title(’Samples of DTFT Magnitude’);
xlabel(’frequency in pi units’)

The plots in Figure 5.8 show there aren’t enough samples to draw any conclu-
sions. Therefore we will pad 90 zeros to obtain a dense spectrum.

n2 = [0:1:99]; y2 = [x(1:1:10) zeros(1,90)];

subplot(2,1,1) ;stem(n2,y2) ;title(’signal x(n), 0 <= n <= 9 + 90 zeros’);
xlabel(’n’) :

Y2 =dft(y2,100); magY2 = abs(Y2(1:1:51));

k2 = 0:1:50; w2 = 2+pi/100%k2;

subplot(2,1,2); plot(wd/pi,magY3); title(’DTFT Magnitude’);

xlabel (’frequency in pi units’)

signal x(n), 0<=n<=9

T T T T T T T T
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Samples of DTFT Magnitude
10 T T T T T T T T T

T ]
0.

.2 0.3 0.4 05 0.6 07
frequency in pi units

FIGURE 5.8 Signal and its spectrum in Ezample 5.8a: N =10
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signal x(n), 0 <= n <= 9 + 90 zeros

T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

0 s L . ) "
0 0.1 02 03 0.4 0.5 0.6 07 o8

frequency in pi units

0.8

FIGURE 5.9 Signal and its spectrum in Ezample 5.8a: N =100

Now the plot in Figure 5.9 shows that the sequence has a dominant frequency
at w = 0.57. This fact is not supported by the original sequence, which has two
frequencies. The zero-padding provided a smoother version of the spectrum in
Figure 5.8.

b. To get better spectral information, we will take the first 100 samples of
z(n) and determine its discrete-time Fourier transform.

>> subplot(2,1,1); stem(n,x);

>> title(’signal x(n), 0 <= <= 99°); xlabel(’n’)

>> X = dft(x,100); magX = abs(X(1:1:51));

>> k = 0:1:50; w = 2%pi/100%k;

>> subplot(2,1,2); plot(vw/pi,magk); title(’DIFT Magnitude’);
>> xlabel(’frequency in pi units’)

Now the discrete-time Fourier transform plot in Figure 5.10 clearly shows two
frequencies, which are very close to each other. This is the high-resolution spec-
trum of z(n). Note that padding more zeros to the 100-point sequence will result
in a smoother rendition of the spectrum in Figure 5.10 but will not reveal any
new information. Students are encouraged to verify this. u]
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signal x(n), 0 <=n <=99
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FIGURE 5.10 Signal and its spectrum in Ezample 5.8b: N = 100

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

The DFT properties are derived from those of the DFS because mathe-
matically DFS is the valid representation. We discuss several useful prop-
erties, which are given without proof. These properties also apply to the
DFS with necessary changes. Let X (k) be an N-point DFT of the se-
quence z(n). Unless otherwise stated, the N-point DFTs will be used in
these properties.

1. Linearity: The DFT is a linear transform
DFT a1 (n) + bza(n)] = a DFT [z (n)] + bDFT [z2(n)] (5.27)

Note: If z1(n) and z2(n) have different durations—that is, they are
Ny-point and No-point sequences, respectively—then choose N3 =
max(Np, N3} and proceed by taking N3-point DFTs.

2. Circular folding: If an N-point sequence is folded, then the result
z(—n) would not be an N-point sequence, and it would not be possible
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a EXAMPLE 5.9

to compute its DFT. Therefore we use the modulo-N operation on the
argument (—n) and define folding by

z(0), n=20

— = 5.28

1"(( n))N {I(N'—n), 1 n ( )

This is called a circular folding. To visualize it, imagine that the se-
quence z(n) is wrapped around a circle in the counterclockwise direc-
tion so that indices n = 0 and n = N overlap. Then z((—n))~ can
be viewed as a clockwise wrapping of z(n) around the circle; hence the
name circular folding. In MATLAB the circular folding can be achieved by
x=x(mod(-n,N)+1). Note that the arguments in MATLAB begin with 1.
Then its DFT is given by

X(0),

k=0
X(N-k), 1<k<N-1 (5.29)

DFT [z ((~m))y] = X (-F))n = {

Let z(n) =10(0.8)*, 0<n<10.

a. Determine and plot z ((—n)),;-
b. Verify the circular folding property.

a. MATLAB Script
>>n = 0:100; x = 10+(0.8) .” n;
>> y = x(mod(-n,11)+1);
>> subplot(2,1,1); stem(n,x); title(’Original sequence’)
>> xlabel(’n’); ylabel(’x(n)’); ’
>> subplot(2,1,2); stem(n,y); title(’Circularly folded sequence’)
>> xlabel(’n’); ylabel(’x(-n mod 10}’);

The plots in Figure 5.11 show the effect of circular folding.
b. MATLAB Script

> X = dft(x,11); Y = afs(y,11);

>> subplot(2,2,1); stem(n,real(X));

>> title(’Real{DFT{x(n)]}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X));

>> title(’Imag{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Y));

>> title(’Real{DFT[x((-n))11]1}’); xlabel(’k’);

>> subplot(2,2,4); stem(n,imag(Y));

>> title(’Imag{DFT[x((-n))11)}"); xlabel(’k’);

The plots in Figure 5.12 verify the property. a
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3. Conjugation: Similar to the above property we have to introduce
the circular folding in the frequency domain.

DFT [z*(n)] = X ((=K))y (5.30)

4. Symmetry properties for real sequences: Let z(n) be a real-valued
N-point sequence. Then z(n) = z*(n). Using the above property,

X(k)=X"((-=F))n (5.31)

This symmetry is called a circular conjugate symmetry. It further implies
that

Re[X (k)] = Re[X ((=K))n] == Circular-even sequence

Im [X (k)] = —Im [X (N — k)) y] = Circular-odd sequence

1X(E)] =X (k) nl == Circular-even sequence

LX(K)=~LX((-K)n == Circular-odd sequence
(5.32)

Comments: 1. Observe the magnitudes and angles of the various DFTs
in Examples 5.6 and 5.7. They do satisfy the above circular symmetries.
These symmetries are different than the usual even and odd symmetries.
To visualize this, imagine that the DFT samples are arranged around a
circle so that the indices k = 0 and k = N overlap; then the samples
will be symmetric with respect to k = 0, which justifies the name circular
symmetry.

2. The corresponding symmetry for the DFS coefficients is called the
periodic conjugate symmetry.

3. Since these DFTs have symmetry, one needs to compute X (k) only
for

k=0,1,...,£v2—; N even

or for
N-1

k=0,1,...,T; N odd

This results in about 50% savings in computation as well as in storage.
4. From (5.30)

X(0) = X*((-0))n = X*(0)

which means that the DFT coefficient at k = 0 must be a real number.
But k = 0 means that the frequency wix = kw; = 0, which is the DC
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frequency. Hence the DC coefficient for a real-valued z(n) must be a real
number. In addition, if N is even, then N/2 is also an integer. Then from

T (),

which means that even the k = N/2 component is also real-valued. This
component is called the Nyguist component since k = N/2 means that
the frequency wnyz = (N/2)(2n/N) = m, which is the digital Nyquist
frequency.

The real-valued signals can also be decomposed into their even and odd
components, z.(n) and z,(n), respectively, as discussed in Chapter 2.
However, these components are not N-point sequences and therefore we
cannot take their N-point DFTs. Hence we define a new set of components
using the circular folding discussed above. These are called circular-even
and circular-odd components defined by

A _ z(0), n=0
ec (n) = 3 [z(n) + 2 ((-n))n] = {%[x(n)+z(N—n)], l<n<N-1
A o n=20
Zoc(n) = §[I(ﬂ)—$((_n))N] = {%[I(ﬂ)—I(N—-n)l, 1<n<N-1
(5633)
Then
DFT [z.. (n)] = Re [X (k)] = Re[X ((=K))x] (5:34)

DFT [zoc (n)] = Im [X (k)] = Im [X ((=k))x]

Implication: If z(n) is real and circular-even, then its DFT is also real
and circular-even. Hence only the first 0 < n < N/2 coefficients are
necessary for complete representation.

Using (5.33), it is easy to develop a function to decompose an N-point
sequence into its circular-even and circular-odd components. The follow-
ing circevod function uses the mod function given earlier to implement
the n MOD N operation.

function [xec, xoc] = circevod(x)
% signal decomposition into circular-even and circular-odd parts
%
% [xec, xoc] = circeved(x)
%
if any(imag(x) ~= 0)
error(’x is not a real sequence’)
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end b. MATLAB Script

N = length(x); n = 0:(N-1); : >> X = dft(x,11); Xec = dft(xec,11); Xoc = daft(xoc,11);
xec = 0.5%(x + x(mod(-n,N)+1)); >> subplot(2,2,1); stem(n,real(X)); axis([-0.5,10.5,-5,50])
xoc = 0.5#(x - x(mod(-n,N)+1)); >> title(’Real{DFT{x(n)1}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X)); axis([-0.5,10.5,-20,201)

>> title(’Imag(DFT{x(n)1}’); xlabel(’k’);

>> gubplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])
>> title(’DFT[xec(n)]’); xlabel(’k’);

;’. Bszf;’nfg:epigse:;’)ti:‘héﬁ)(n) and zec(n) components of =(r) >> subplot(2,2,4); stem(n,imag(Xoc)); axis({-0.5,10.5,-20,20]1)

) e >> title(’DFT{xoc(n)]1’); xlabel(’k’);

O EXAMPLES10 Let z(n) = 10(0.8)*, 0<n <10 asin Example 5.9.

Solution a. MaTLAB Script
>>n = 0:10; x = 10%(0.8) .” n;
>> [xec,xoc] = circevod(x);
>> subplot(2,1,1); stem(n,xec); title(’Circular-even component’)
>> xlabel(’n’); ylabel(’xec(n)’); axis([-0.5,10.5,~1,11])
>> subplot(2,1,2); stem(n,xoc); title(’Circular-odd component’)
>> xlabel(’n’); ylabel(’xoc(n)’); axis([-0.5,10.5,-4,4])

From the plots in Figure 5.14 we observe that the DFT of zc.(n) is the same as
the real part of X(k) and that the DFT of Zoc(n) is the same as the imaginary
part of X (k). ]

A similar property for complex-valued sequences is explored in Exer-
cise 5.10.

§. Circular shift of a sequence: If an N-point sequence is shifted in
either direction, then the result is no longer between 0 < n <N-1

The plots in Figure 5.13 show the circularly symmetric components of z(n). Therefore we first convert z(n) into its periodic extension %(n), and then
shift it by m samples to obtain
Fn-—m)=z((n—m)y (5.35)
Circular-even component
1of i ! j ! j j ) i i i Real{DFTIx(n}}} tmag{DFTIx(n)i}
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8f -
40
€ 6 ] I\ 10
g4 f 1 0 2
BEEEREN ; T
2t |
10 -10
of j
—— — — Ttees0e9]
5 10

n 0 205 5 10
Circular-odd component k k
4— T T T T T T . T T DFT[xec(n)] DFTxoc(n)}
201

xoc(n)
<
T

B 8 &8 3

EauE ‘:W“Mﬂ

10 ﬂ -10
S T I T AR AESXEXEL:
s 9 10 20
0 ) 5 10 0 5 10
FIGURE 5.13  Circular-even and circular-odd components of the sequence in Ez- K X
ample 5.10a FIGURE 5.14 Plots of DFT symmetry properties in Ezample 5.10b
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0O EXAMPLE 5.11

Solution

This is called a periodic shift of #(n). The periodic shift is then converted
into an N-point sequence. The resulting sequence

#(n - m)Ru(n) = z((n ~m))y Ra(n) (5.36)

is called the circular shift of z(n). Once again to visualize this, imagine
that the sequence z(n) is wrapped around a circle. Now rotate the circle
by k samples and unwrap the sequence from0<n< N-1TtsDFTis
given by

DFT [z ((n — m)) y R (n)] = W™ X (k) (537)

Let z(n) = 10(0.8)", 0 < n <10 be an 11-point sequence.

a. Sketch 2 ((n + 4)),; Ru(n), that is, a circular shift by 4 samples toward
the left.

b. Sketch z ((n — 3)),5 Ras(n), that is, a circular shift by 3 samples toward
the right, where z(n) is assumed to be a 15-point sequence.

We will use a step-by-step graphical approach to illustrate the circular shifting
operation. This approach shows the periodic extension #(n) = z((n))y of z(n),
followed by a linear shift in £(n) to obtain & (n — m) = z ((n — m)) y, and finally
truncating & (n — m) to obtain the circular shift.

a. Figure 5.15 shows four sequences. The top-left shows z(n), the bottom-
left shows #(n), the top-right shows & (n +4), and finally the bottom-right
shows z((n+4));; Ru(n). Note carefully that as samples move out of the
[0, N — 1] window in one direction, they reappear from the opposite direction.
This is the meaning of the circular shift, and it is different from the linear shift.

b. In this case the sequence z(n) is treated as a 15-point sequence by
padding 4 zeros. Now the circular shift will be different than when N = 11.
This is shown in Figure 5.16. In fact the circular shift z ((n — 3)),; looks like a
linear shift z(n — 3). a

To implement a circular shift, we do not have to go through the
periodic shift as shown in Example 5.11. It can be implemented directly
in two ways. In the first approach, the modulo-N operation can be used
on the argument (n —m) in the time domain. This is shown below in the
cirshftt function.

function y = cirshftt(x,m,N)
% Circular shift of m samples wrt size N in sequence x: (time domain)

% [yl = cirshftt(x,m,N)

% y = output sequence containing the circular shift
% x = input sequence of length <= N

% m = sample shift

% N = size of circular buffer

% Method: y(n) = x((n-m) mod N)

Original x(n) Periodic shift
10 10
. .
: TTTTTT? it ﬁTTTi’? TTTTTT
-5 0 5n 10 15 -5 4] 5n 10 15
Periodic extention Circular shift
10 10
8 8
el [T i
5 0 5 10 15 -5 0 5 10 15

n

Original x(n)
10
8
6|
4l
1l
0 10 20
n
Periodic extention
10
8!
6
4
2
s

0 10 20
n

n

FIGURE 5.15 Graphical interpretation of circular shift, N =11

T
-

n

FIGURE 5.16 Graphical interpretation of circular shift, N =15
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00 EXAMPLE 5.12

% Check for length of x
if length(x) > N
error(’N must be >= the length of x’)
end
x = [x zeros(1,N-length(x))];
n = [0:1:N-1];
n = mod(n-m,N);
y = x(n+1);

In the second approach, the property 5.37 can be used in the frequency
domain. This is explored in Exercise 5.12.

Given an 11-point sequence z(n) = 10 (0.8)*, 0<n <10, determine and plot
z((n—6))5-

Solution MATLAB Script
>>n = 0:10; x = 10%(0.8) .” n;
>> y = cirshftt(x,6,15);
>» n = 0:14; x = [x, zeros(1,4)];
>> subplot(2,1,1); stem(n,x); title(’Original sequence’)
>> xlabel(’n’); ylabel(’x(n)’);
>> subplot(2,1,2); sten(n,y);
»> title(’Circularly shifted sequence, N=15’)
>> xlabel(’n’); ylabel(’x((n-6) mod 15)°);
The results are shown in Figure 5.17. a
6. Circular shift in the frequency domain: This property is a dual of
the above property given by
DFT [Wy"z(n)] = X ((k — 0))y Rn(k) (5.38)
7. Circular convolution: A linear convolution between two N-point
sequences will result in a longer sequence. Once again we have to restrict
our interval to 0 < n € N — 1. Therefore instead of linear shift, we
should consider the circular shift. A convolution operation that contains
a circular shift is called the circular convolution and is given by
N-1
o) @ ) = 3 ni(msz (n-m))y, 0<n<N-1 (539
m=0
Note that the circular convolution is also an N-point sequence. It has a
structure similar to that of a linear convolution. The differences are in
the summation limits and in the N-point circular shift. Hence it depends
on N and is also called an N-point circular convolution. Therefore the
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FIGURE 5.17 Circularly shifted sequence in Ezample 5.12

use of the notation @ is appropriate. The DFT property for the circular
convolution is

DFT [zl(n) ® :vg(n)] = X3 (k) - Xa(k) (5.40)

An alternate interpretation of this property is that when we multiply two
N-point DFTs in the frequency domain, we get the circular convolution
(and not the usual linear convolution) in the time domain.

Let z1(n) = {1,2,2} and z2(n) = {1,2, 3,4}. Compute the 4-point circular
convolution x1(n) za(n).

Note that z1(n) is a 3-point sequence, hence we will have to pad one zero to
make it a 4-point sequence before we perform the circular convolution. We will
solve this problem in the time domain as well as in the frequency domain. In
the time domain we will use the mechanism of circular convolution, while in the
frequency domain we will use the DFTs.

o Time-domain approach: The 4-point circular convolution is given by

3
z1(n) (@ 2a(n) = Y 71 (m) 22 ((n = m))4

m=0
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Thus we have to create a circularly folded and shifted sequence 2 ((n — m)) 5,
tnultiply it sample-by-sample with 21 (m), add the samples to obtain the circular
convolution value for that n, and then repeat the procedure for 0 < n <-3.
Consider

zi(m) = {1, 2, 2, 0} and  z2(m)={1, 2, 3, 4}
forn=0

3

3
Y zim) za (@ -m)s = D {1 2, 2, 0}-{1, 4,3, 2}]

m=0 m=0
3
=) {1,860 =15
m=0

forn=1

3 3
S mm) w((L-m)s =D [{1,2,2,0-{2, 1,43}

m=0 m=0
3
=) {2,280} =12
m=0

forn=2

3 3
Zzl(m) - Z2 ((2 - m))s = 2 [{17 2,2 0} . {37 2,1, 4}]

m=0 m=0
3
=Y {3420 =9
m=0

forn=3

3 '3
S z(m) -z (B-m)s = D 1 2,2,0}-{4,3,2,1})

m=0 m=0
3
=) {4,640 =14
m=0

Hence
21(n) (@) z2(n) = {15, 12, 9, 14}

e Frequency-domain approach: In this approach we first compute 4-point
DFTs of #;(n) and z2(n), multiply them sample-by-sample, and then take the
inverse DFT of the result to obtain the circular convolution.
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DFT of z1(n)
z1{n) = {1,2,2,0} = Xi(k) = {5, -1-j2, 1, -1 + 32}
DFT of z2(n)
za(n) = {1,2,3,4} = Xa(k) = {10, -2 +j2, -2, —2— 52}
Now
X1(k) - X2(k) = {50, 6 + 32, -2, 6 — 52}
Finally after IDFT,
z1(n) (@) z2(n) = {15, 12, 9, 14}
which is the same as before. u]
Similar to the circular shift implementation, we can implement the circular
convolution in a number of different ways. The simplest approach would be
to implement (5.39) literally by using the cirshftt function and requir-
ing two nested for. . .end loops. Obviously, this is not efficient. Another
approach is to generate a sequence z ((n —m)), for each n in [0, N — 1]
as rows of a matrix and then implement (5.39) as a matrix-vector multi-

plication similar to our dft function. This would require one for...end
loop. The following circonvt function incorporates these steps.

function y = circonvt(x1,x2,N)
% N-point circular convolution between x1 and x2: (time-domain)

% [yl = circonvt(x1,x2,N)
% y = output sequence containing the circular convolution
% x1 = input sequence of length N1 <= N
% x2 = input sequence of length N2 <= XN
% N = size of circular buffer
% Method: y(n) = sum (x1(m)*x2((n-m) mod X))
% Check for length of xi
if length(xi) > N
error (’N must be >= the length of x1°)
end
% Check for length of x2
if length(x2) > N
error (N must be >= the length of x2’)
end
x1=[x1 zeros(1,N-length(x1))];
x2=[x2 zeros(1,N-length(x2))];
m= [0:1:N-1];
x2 = x2(mod(-m,N)+1);
H = zeros(N,N);
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[0 EXAMPLE 5.14

Solution

0  EXAMPLE5.15

P

for n = 1:1:N

H(n,:) = cirshftt(x2,n-1,N);
end

y = x1+H’;

The third approach would be to implement the frequency-domain opera-
tion (5.40) using the dft function. This is explored in Exercise 5.15.

Let us use MATLAB to perform the circular convolution in Example 5.13.
The sequences are z1(n) = {1,2,2} and za2(n) = {1,2,3,4}.

>> x1 = [1,2,2]; x2 = [1,2,3,4];
>> y = circonvt(x1, x2, 4)
y =

15 12 9 14

Hence
z1(n) (@) z2(n) = {15, 12, 9, 14}

as before. [m]

In this example we will study the effect of N on the circular convolution. Obvi-
ously, N > 4; otherwise there will be a time-domain aliasing for z2(n). We will
use the same two sequences from Example 5.13. .

a. Compute z;(n) e z2(n).
b. Compute z1(n) e za2(m).
¢. Comment on the results.

Solution The sequences are 1(n) = {1,2,2} and z2(n) = {1,2,3,4}. Even though the
sequences are the same as in Example 5.14, we should expect different results
for different values of N. This is not the case with the linear convolution, which
is unique, given two sequences.

a. 5-point circular convolution:
> x1 = [1,2,2]; x2 = [1,2,3,4];
>> y = circonvt(x1, x2, 5)
y=

9 4 9 14 14
Hence
o1(n) (B) z2(n) = {9, 4, 9, 14, 14}
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b. 6-point circular convolution:

>> x1 = [1,2,2); x2 = [1,2,3,4];
>> y = circonvt(x1, x2, 6)
y=
i 4 9 14 14 8

z1(n) (6) z2(n) = {1, 4, 9, 14, 14, 8}

¢. A careful observation of 4, 5-, and 6-point circular convolutions from
this and the previous example indicates some unique features. Clearly, an N-
point circular convolution is an N-point sequence. However, some samples in
these convolutions have the same values, while other values can be obtained
as a sum of samples in other convolutions. For example, the first sample in
the 5-point convolution is a sum of the first and the last sample of the 6-point
convolution. The linear convolution between z1(n) and z2(n) is given by

zi(n) »z2(n) = {1, 4, 9, 14, 14, 8}

which is equivalent to the 6-point circular convolution. These and other issues
are explored in the next section. [m]

8. Multiplication: This is the dual of the circular convolution prop-
erty. It is given by

DFT [z (n) - z2(n)] = %xl *) ® Xa(4) (5.41)

in which the circular convolution is performed in the frequency domain.
The MATLAB functions developed for circular convolution can also be
used here since X; (k) and X, (k) are also N-point sequences.

9. Parseval’s relation: This relation computes the energy in the fre-
quency domain.

N-1 . 1 N-1
E.= ) lzm)’= N X ®P® (5.42)
n=0 k=0

The quantity P—‘%‘lﬁ is called the energy spectrum of finite-duration se-

- L o | X l?
quences. Similarly, for periodic sequences, the quantity I N I is called
the power spectrum.
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LINEAR CONVOLUTION USING THE DFT
—

One of the most important operations in linear systems is the linear convo-
lution. In fact FIR filters are generally implemented in practice using this
linear convolution. On the other hand, the DFT is a practical approach
for implementing linear system operations in the frequency domain. As we
shall see later, it is also an efficient operation in terms of computations.
However, there is one problem. The DFT operations result in a circular
convolution (something that we do not desire), not in a linear convolution
that we want. Now we shall see how to use the DFT to perform a linear
convolution (or equivalently, how to make a circular convolution identical
to the linear convolution). We alluded to this problem in Example 5.15.

Let z;(n) be an Ni-point sequence and let z2(n) be an No-point
sequence. Define the linear convolution of z)(n) and za(n) by z3(n), that
is,

z3(n) = z1(n) * z2(n) (5.43)
o0 N;-1
= Y z(k)m(n—k) = S m(k)za(n — k)
k=—o00 0

Then z3(n) is a (Ny + N2 — 1)-point sequence. If we choose N =
max(N;, N2) and compute an N-point circular convolution z; (m) @
z2(n), then we get an N-point sequence, which obviously is different
from z3(n). This observation also gives us a clue. Why not choose
N = N; + N — 1 and perform an (N3 + Ny — 1)-point circular con-
volution? Then at least both of these convolutions will have an equal
number of samples.

Therefore let N = Ny + Np — 1 and let us treat z;(n) and z2(n) as
N-point sequences. Define the N-point circular convolution by x4 (n).

z4(n) = ©1(n) Q) z2(n) (5.49)
N-1
= [z z(k)z2((n - k))N] Rn(n)

m=0

N-1 oo
[Z zi(k) Y zz(n——k—rN)] R (n)

m=0 r=-—-00

oo Ni-1

3 Y mk)ze(n—k~rN) | Rn(n)

r=—o00 m=0

z3(n—rN)
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0  EXAMPLE5.16

Solution

ERROR
ANALYSIS

= [ i z3(n — rN)] Rn(n) using (5.43)

T=—00

This analysis shows that, in general, the circular convolution is an aliased
version of the linear convolution. We observed this fact in Example 5.15.
Now since z3(n) is an N = (Ny + Nz — 1)-point sequence, we have

z4(n) =z3(n); 0<n<(N-1)
which means that there is no aliasing in the time domain.

Conclusion: If we make both z;(n) and za(n) N = Ny + N, — 1 point
sequences by padding an appropriate number of zeros, then the circular
convolution is identical to the linear convolution.
Let z1(n) and z2(n) be the two 4-point sequences given below.

n(n)={1, 22 1}, =) ={1, -1, -1, 1}

a. Determine their linear convolution z3(n).
b. Compute the circular convolution z4(n) so that it is equal to z3(n).

We will use MATLAB to do this problem.

a. MATLAB Script
>» x1 = (1,2,2,1]; x2=[1,-1,-1,1];
>> x3 = conv(x1,x2)
x3 = 1 1 -1 -2 -1 1 i

Hence the linear convolution x3(n) is a 7-point sequence given by
z3(n) = {1,1,-1,-2,-1,1, 1}

b. We will have to use N > 7. Choosing N = 7, we have

>> x4 = circonvt(x1,x2,7)
x4 = 1 1 -1 -2 -1 1 1

Hence

ze={1,1,-1,-2,-1,1,1} = x3(n) [n]

In order to use the DFT for linear convolution, we must choose N properly.
However, in practice it may not be possible to do so, especially when
N is very large and there is a limit on memory. Then an error will be
introduced when N is chosen less than the required value to perform the
circular convolution. We want to compute this error, which is useful in
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a EXAMPLE 5.17

practice. Obviously, N > max(Ni, Ny). Therefore let
max(Nl,Nz) <N« (N1 + Ny — 1)

Then from our previous analysis (5.44)

o0

z4(n) = [ Z z3(n — rN)] Rn(n)

r=—00

Let an error e(n) be given by

e(n) = z4(n) — z3(n)
= Zx;;(n —rN)| Rn{n)
r#0

Since N > max(NNy, N2}, only two terms corresponding to r = %1 remain
in the above summation. Hence

e(n) = [z3(n — N) + z3(n + N)| Rn(n)

Generally, z1(n) and z2(n) are causal sequences. Then 23 (n) is also causal,
which means that

z3(n-N)=0; 0<n<N-1
Therefore
e(n)=z3(n+N), 0<n<N-1 (5.45)

This is a simple yet important relation. It implies that when max(N, N2)
< N < (N1 + N; — 1), the error sample at n is the same as the linear
convolution N samples away. Now the linear convolution will be zero
after (N; + Nz — 1) samples. This means that the first few samples of the
circular convolution are in error, while the remaining ones are the correct
linear convolution values.

Consider the sequences z1(n) and z2(n) from the previous example. Evaluate
circular convolutions for N = 6, 5, and 4. Verify the error relations in each case.

Solution Clearly, the linear convolution z3(n) is still the same.
z3(n) = {1,1,-1,-2,-1,1,1}
When N = 6, we obtain a 6-point sequence.
za(n) = 21(n) (6) z2(n) = {2,1,-1,-2,~1,1}
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BLOCK CON-
VOLUTIONS

Therefore
e(n) = {2,1,-1,-2,-1,1} - {1, 1, -1, -2,-1,1}, 0<ng5
= {1,0,0,0,0,0}
= za(n + 6)

as expected. When N = 5, we obtain a 5-point sequence,

z4(n) = 71 (n) (B) 2a(n) = {2,2,-1,-2,~1}
and
e(n) = {2,2,-1,-2,-1} — {1,1,-1,-2,-1}, 0<n<4
={1,1,0,0,0}
= z3(n +5)

Finally, when N = 4, we obtain a 4-point sequence,

z4(n) = z1(n) @ xz2(n) = {0,2,0,-2}
and
e(n) = {0,2,0,-2} - {1,1,-1,-2}, 0<n<3
={-1,1,1,0}
=z3(n+4)

The last case of N = 4 also provides the useful observation given below. [m]

Observation: When N = max(Ny, N,) is chosen for circular convolution,
then the first (M — 1) samples are in error (i.e., different from the linear
convolution), where M = min(N1, Nz). This result is useful in implement-
ing long convolutions in the form of block processing.

When we want to filter an input sequence that is being: received con-
tinuously, such as a speech signal from a microphone, then for practical
purposes we can think of this sequence as an infinite-length sequence. If
we want to implement this filtering operation as an FIR filter in which
the linear convolution is computed using the DFT, then we experience
some practical problems. We will have to compute a large DFT, which is
generally impractical. Furthermore, output samples are not available un-
til all input samples are processed. This introduces an unacceptably large
amount of delay. Therefore we have to segment the infinite-length input
sequence into smaller sections (or blocks), process each section using the
DFT, and finally assemble the output sequence from the outputs of each
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O  EXAMPLES.18

section. This procedure is called a block convolution (or block processing)
operation.

Let us assume that the sequence z(n) is sectioned into N-point se-
quences and that the impulse response of the filter is an M-point sequence,
where M < N. Then from the above observation we note that the N-point
circular convolution between the input block and the impulse response will
yield a block output sequence in which the first (M — 1) samples are not
the carrect output values. If we simply partition z(n} into nonoverlapping
sections, then the resulting output sequence will have intervals of incor-
rect samples. To correct this problem, we can partition z(n) into sections,
each overlapping with the previous one by exactly (M — 1) samples, save
the last (N — M + 1) output samples, and finally concatenate these out-
puts into a sequence. To correct for the first (M — 1) samples in the first
output block, we set the first (M — 1) samples in the first input block to

zero. This procedure is called an overlap-save method of block convolu-.

tions. Clearly, when N >> M, this method is more efficient. We illustrate

it using a simple example. '

Let z(n) = (n+1), 0<n<9andh(n)={1,0,—1}. Implement the overlap-
1

save method using N = 6 to compute y(n) = z(n) * h(n).

Since M = 3, we will have to overlap each section with the previous one by two

samples. Now z(n) is a 10-point sequence, and we will need (M — 1) = 2 zeros
in the beginning. Since N = 6, we will need 3 sections. Let the sections be

z:(n) = {0,0,1,2,3,4}
z2(n) = {3,4,5,6,7,8}
z3(n) = {7,8,9,10,0,0}
Note that we have to pad z3(n) by two zeros since x(n) runs out of values at

n = 9. Now we will compute the 6-point circular convolution of each section
with h(n).

w1 =z1(n) (6) h(n) = {-3,-4,1,2,2,2}
2 = z2(n) (6) h(n) = {~4,-4,2,2,2,2}
ys = za(n) (6) h(n) = {7,8,2,2,~9, 10}

Noting that the first two samples are to be discarded, we assemble the output
y(n) as

y(n) =1{1,2,2,2,2,2,2,2,2,2,-9,~10}
1
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MATLAB
IMPLEMEN-
TATION

The linear convolution is given by

z(n) + h(n) = {1,2,2,2,2,2,2,2,2,2, -9, -10}
1

which agrees with the overlap-save method. 0

Using the above example as a guide, we can develop a MATLAB function to
implement the overlap-save method for a very long input sequence z(n).
The key step in this function is to obtain a proper indexing for the seg-
mentation. Given z(n) for n > 0, we have to set the first (M — 1) samples
to zero to begin the block processing. Let this augmented sequence be

A
#(n) 2{0,0,...,0,z(n)}, n>0
(n) ={ z(n)}, =
(M—1) zeros

and let L = N — M + 1, then the kth block zx(n), 0<n < N-1,is
given by

ze(n) =#(m); kL<m<kL+N-1,k20,0<n<N-1

The total number of blocks is given by

N+ M-2
K—l I J+1

where N, is the length of z(n) and |-] is the truncation operation. Now
each block can be circularly convolved with h(n) using the circonvt
function developed earlier to obtain

ye(n) = zi(n) @) h(n)

Finally, discarding the first (M — 1) samples from each yx(n) and con-
catenating the remaining samples, we obtain the linear convolution y(n).
This procedure is incorporated in the following ovrlpsav function.

function [y] = ovrlpsav(x,h,N)

%

)

Overlap-Save method of block convolution

{yl = ovrlpsav(x,h,N)
y = output sequence
x = input sequence

h = impulse response
N = block length

Lenx = length(x); M = length(h);
Mi = M-1; L = N-M1;
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O EXAMPLE5.19

Solution
>>
>

-4
L}

[h zeros(1,N-M)];

x = [zeros(1,M1), x, zeros(i,N-1)1; % preappend (M-1) zeros
K = floor({Lenx+M1-1)/(L)); % # of blocks

Y = zeros(K+1,N);

% convolution with succesive blocks

for k=0:K

xk = x(k*L+1:kxL+N);

Y(k+1,:) = circonvt(xk,h,N);

end
Y =Y(:,M:N)?; . % discard the first (M-1) samples
y o= (Y2, % assemble output

It should be noted that the ovrlpsav function as developed here is not
the most efficient approach. We will come back to this issue when we
discuss the fast Fourier transform.

To verify the operation of the ovrlpsav function, let us consider the sequences
given in Example 5.18.

MATLAB Script
n=0:9; x=n+l; h = [1,0,-1]; N = 6;
y = ovrlpsav(x,h,N)

y =

1 2 2 2 2 2 2 2 2 2 -9 -10

This is the correct linear convolution as expected. a

There is an alternate method called an overlap-add method of block
convolutions. In this method the input sequence z(n) is partitioned into
nonoverlapping blocks and convolved with the impulse response. The re-
sulting output blocks are overlapped with the subsequent sections and
added to form the overall output. This is explored in Exercise 5.20.

THE FAST FOURIER TRANSFORM
»—

The DFT (5.24) introduced earlier is the only transform that is discrete in
both the time and the frequency domains, and is defined for finite-duration
sequences. Although it is a computable transform, the straightforward
implementation of (5.24) is very inefficient, especially when the sequence
length N is large. In 1965 Cooley and Tukey {4] showed a procedure to
substantially reduce the amount of computations involved in the DFT.
This led to the explosion of applications of the DFT, including in the
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digital signal processing area. Furthermore, it also led to the development
of other efficient algorithms. All these efficient algorithms are collectively
known as fast Fourier transform (FFT) algorithms.

Consider an N-point sequence z(n). Its N-point DFT is given by
(5.24) and reproduced here

N-1
X(k)y=>_ s(mWFr, 0<k<N-1 (5.46)

n=0

where Wy = e—327/N_ To obtain one sample of X(k), we need N complex
multiplications and (N —1) complex additions. Hence to obtain a complete
set of DFT coefficients, we need N2 complex multiplications and N (N -
1) ~ N? complex additions. Also one has to store V' 2 complex coefficients
{W5*} (or generate internally at an extra cost). Clearly, the number of
DFT computations for an N-point sequence depends quadratically on N,
which will be denoted by the notation

CN =0(N2)

For large N, o (N?) is unacceptable in practice. Generally, the processing
time for one addition is much less than that for one multiplication. Hence
from now on we will concentrate on the number of complex multiplica-
tions, which itself requires 4 real multiplications and 2 real additions.

Goal of an Efficient Computation In an efficiently designed algo-
rithm the number of computations should be constant per data sample,
and therefore the total number of computations should be linear with
respect to V.

The quadratic dependence on N can be reduced by realizing that most
of the computations (which are done again and again) can be eliminated
using the periodicity property

Wkln — WII:,("+N) - W](Jc+N)n
and the symmetry property

knt+N/2 _ kn
WEnHNE - _wk

of the factor {WZF}.

One algorithm that considers only the periodicity of WgF is the
Goertzel algorithm. This algorithm still requires Cy = o(N 2) multiplica-
tions, but it has certain advantages. This algorithm is described in Chap-
ter 10. We first begin with an example to illustrate the advantages of the
symmetry and periodicity properties in reducing the number of compu-
tations. We then describe and analyze two specific FFT algorithms that
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require Cy = o{Nlog N) operations. They are the decimation-in-time Hence an efficient algorithm is
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms.

Step 1 Step 2
g1 ==z(0) +=(2) X(0)= g1 +4g2
[ EXAMPLES20 Let us discuss the computations of a 4-point DFT and develop an efficient g2 = z(1) +z(3) X(1) = h1 — jha (547)
algorithm for its computation. h1 = 2(0) — z(2) X(2) = g1 g
. ha = z(1) — z(3) X(3) = h1+jhe

= nk . _ —iw/4 _ '

X(k) = Z W, 0<k<3; Wi=e ! ==J which requires only 2 complex multiplications, which is a considerably smaller
n=0 number, even for this simple example. A signal flowgraph structure for this
algorithm is given in Figure 5.18.

Solution The above computations can be done in the matrix form . . X .
An Interpretation: This efficient algorithm (5.47) can be interpreted differ-

X(0) w? w9 WP Wi rz(0) ently. First, a 4-point sequence x(n) is divided into two 2-point sequences, which

are arranged into column vectors as given below.
x@| T |we w2z wi wi| |=@ Hm(ﬂ)] [x(l)]] _ [z(O) z(l)]
3) we wi wg wil 1z(3) =] [z@®)]] [=(2) =)
Second, a smaller 2-point DFT of each column is taken.

W =(0) =z(1)] _[1 1] z(0) =z(1)
? L(z) z(:s)] - [1 -1 [x(Z) 1(3)]
[x(0)+a:(2) z:(1)+:z:(3)] _ [g1 92]

Wi=Wi=1 ; Wi=Wi=-j T lz0) - 2@ =) -2z@)] |m ke
Wi=Wf=-1 ; Wi=j

X@) we wi wi wil|z(1)

which requires 16 complex multiplications.

Efficient Approach:  Using periodicity,

Then each element of the resultant matrix is multiplied by {W7?}, where p is

. . index: that i P . 3 ‘i
and substituting in the above matrix form, we get the row index and q is the column index; that is, the following dot-product is

performed:
X(0) 1 1 1 17 {=(0) 1 1 e 92]_ ) g2
x| v - -1 5= : 1 -j hi hy ki —jha
X() 1 -1 1 -1 [=@ ‘
(3) 1§ -1 -1 =@
o> —0 — »—0 X(0
Using symmetry, we obtain X0 [ ©

X0) = z(0)+=z(1) +z(2) +z(3) = [z(0) + z(2)] +[z(1) + z(3)] x2) N
[ 92 » h‘!

X(1) = 2(0) - jz(1) — 2(2) + j=(3) = [=(0) — z(2)] —jlz(1) - z(3)]

>»—0 X(1}

e e xin = > > —0 X(2)
2
X(2) = =(0) — (1) +2(2) - 2(3) = [&(0) +=(2)) —[z(1) +=(3)]
N et N e’
91 92 x{3) :1 N > 0 X(3)
X(3) = 2(0) + jz(1) - 2(2) — j=(3) = [£(0) ~ 2(2)] +ilz(1) - 2B3)) :
h Ay FIGURE 5.18 Signal flowgraph in Ezample 5.20
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Finally, two more smaller 2-point DFTs are taken of row vectors.

[gl gz]w _[gl gz] [1 1]_[yx+gz n-9
hi —jha| 0 |m —ghe] [t -1 [mi—jhe Ri+3ihe
X)) X()
B [X(l) x<3)]

Although this interpretation seems to have more multiplications than the effi-
cient algorithm, it does suggest a systematic approach of computing a larger
DFT based on smaller DFTs. ]

DIVIDE-AND- To reduce the DFT computation’s quadratic dependence on N, one must
COMBINE choose a composite number N = LM since
APPROACH
L? + M? « N? for large N
Now divide the sequence into M smaller sequences of length L, take M
smaller L-point DFTs, and then combine these into a larger DFT using
L smaller M-point DFTs. This is the essence of the divide-and-combine
approach. Let N = LM, then the indices n and k in (5.46) can be written
as
n=M{+m, 0<f<L-1, 0<m<M-1
(5.48)
k=p+Lg, 0<p<L-1, 0<gsM-1
and write sequences z(n) and X (k) as arrays z(£, m) and X (p, q), respec-
tively. Then (5.46) can be written as
M-1L-1
X(p, q) - Z Z :E(f, m)Wt(\,Ml+m)(P+Lq) (5_49)
m=0 £=0
M—1 L-1
=5 (e[St mmr i
m=0 =0
M-1 L1
= g [Z x(é,m)W,f"} Wit
m=0 =0
N L-point DFT
M-point DFT
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Hence (5.49) can be implemented as a three-step procedure:

1. First, we compute the L-point DFT array

L-1
Flp,m)=Y_ (¢, mW¥;, 0<p<L-1 (5.50)
£=0

for each of the columns m=0,...,M —1.
2. Second, we modify F(p,m) to obtain another array.

0<p<L-1
=WiF , - 51
G(p,m) N (P’m) OSmSM—-.-l (5 )
The factor Wi™ is called a twiddle factor.
3. Finally, we compute the M-point DFTs
M-1
X(p.g)= Y Gl.mWy' 0<g<M-1 (552)

m=0
for each of therows p=0,...,L —1.

The total number of complex multiplications for this approach can now
be given by

Cn = ML* + N + LM? < o (N?) (5.53)

This procedure can be further repeated if M or L are composite num-
bers. Clearly, the most efficient algorithm is obtained when N is a highly
composite number, that is, N = R”. Such algorithms are called radiz-R
FFT algorithms. When N = Ry*R;?---, then such decompositions are
called mized-radiz FFT algorithms. The one most popular and easily pro-
grammable algorithm is the radix-2 FFT algorithm.

RADIX-2 FFT Let N = 2¥; then we choose M = 2 and L = N/2 and divide z(n) into
ALGORITHM two N/2-point sequences according to (5.48) as
aln) =2(n) o<n< 1
g2(n) =z(2n +1) 2
The sequence gy(n) contains even-ordered samples of z(n), while g2(n)
contains odd-ordered samples of z(n). Let G1(k) and G3(k) be N/2-point
DFTs of gy(n) and ga(n), respectively. Then (5.49) reduces to
X(k) = Gi(k) + WkGa(k), 0<k<N-1 (5.54)
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This is called a merging formula, which combines two N/2-point DFTs
into one N-point DFT. The total number of complex multiplications re-
duces to

N2
Cn= T+N=0(N2/2)

This procedure can be repeated again and again. At each stage the se-
quences are decimated and the smaller DFTs combined. This decimation
ends after v stages when we have N one-point sequences, which are also
one-point DFTs. The resulting procedure is called the decimation-in-time
FFT (DIT-FFT) algorithm, for which the total number of complex mul-
tiplications is

Cy =Nv=Nlog; N

Cleatly, if N is large, then Cy is approximately linear in N, which was
the goal of our efficient algorithm. Using additional symmetries, Cn can
be reduced to % log, N. The signal flowgraph for this algorithm is shown
in Figure 5.19 for N = 8.

x(0) > X(0)
w2 /w/,g\\ we
x(4) > — X

x{6)

X(5)

x(3) X(6)
Wy
x(7) " P 0 X(7)
Wy Wy wy
FIGURE 5.19 Decimation-in-time FFT structure for N = 8
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In an alternate approach we choose L = 2, M = N/2 and follow
the steps in (5.49). Note that the initial DFTs are 2-point DFTs, which
contain no complex multiplications. From (5.50)

F(0,m) = £(0,m) + z(1,m)Wy
=z(n) +z(n+ N/2), 0<n < N/2
F(1,m) = z(0,m) + z(1,m)W;
=z(n) ~z(n+N/2), 0<n < N/2
and from (5.51)
G(0,m) = F(0,m)W}
=z(n) + z(n+ N/2), 0<n < N/2
G(1,m) = F1,m)Wg
= [o(n) — a(n + N/D| WR, 0 < n < N/2

(5.55)

Let G(0,m) = dy(n) and G(1,m) = dz(n) for 0 <n < N/2-1 (since
they can be considered as time-domain sequences); then from (5.52) we
have

X(©0,9)= X(29) =Dia)

(5.56)

X(1,q) = X(2¢+1) = Da(9)
This implies that the DFT values X(k) are computed in a decimated
fashion. Therefore this approach is called a decimation-in-frequency FFT
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of
the DIT-FFT structure, and its computational complexity is also equal

to % logy N.
MATLAB MATLAB provides a function called ££t to compute the DFT of a vector x.
IMPLEMEN- It is invoked by X = ££t(x,N), which computes the N-point DFT. If the
TATION length of x is less than N, then x is padded with zeros. If the argument N

is omitted, then the length of the DFT is the length of x. If x is a matrix,
then ££t(x,N) computes the N-point DFT of each column of x.

This ££t function is written in machine language and not using MAT-
LAB commands (i.e., it is not available as a .m file). Therefore it executes
very fast. It is written as a mixed-radix algorithm. If N is a power of
two, then a high-speed radix-2 FFT algorithm is employed. If N is not
a power of two, then N is decomposed into prime factors and a slower
mixed-radix FFT algorithm is used. Finally, if N is a prime number, then
the £ft function is reduced to the raw DFT algorithm.
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0O  EXAMPLE 5.21

Solution

The inverse DFT is computed using the ifft function, which has the
same characteristics as fft.

In this example we will study the execution time of the £ft function for 1 <
N < 2048. This will reveal the divide-and-combine strategy for various values
of N.

To determine the execution time, MATLAB provides two functions. The clock
function provides the instantaneous clock reading, while the etime(t1,t2) func-
tion computes the elapsed time between two time marks t1 and t2. To determine
the execution time, we will generate random vectors from length 1 through 2048,
compute their FFTs, and save the computation time in an array. Finally, we
will plot this execution time versus N.

MATLAB Script
>> Nmax = 2048;

>> fft_time=zeros(1,Nmax);

>> for n=1:1:Nmax

>> x=rand(1,n);

>> t=clock;fft(x) ;£ft_time(n)=etime(clock,t);
>> end

>> n=[1:1:Nmax];

>> plot(n,fft_time,’.’)

> xlabel(’N’);ylabel(’Time in Sec.’)

>> title(’FFT execution times’)

v

The plot of the execution times is shown in Figure 5.20. This plot is very in-
formative. The points in the plot do not show one clear function but appear
to group themselves into various trends. The uppermost group depicts a o N?)
dependence on N, which means that these values must be prime numbers be-
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm.
Similarly, there are groups corresponding to the o (N 2/ 2), 4 (N 2/ 3), o (N 2/ 4),
and so on, dependencies for which the number N has fewer decompositions.
The last group shows the (aimost linear) o (N log N) dependence, which is for
N =2Y,0 < v < 11. For these values of N, the radix-2 FFT algorithm is used.
For all other values, a mixed-radix FFT algorithm is employed. This shows that
the divide-and-combine strategy is very effective when N is highly composite.
For example, the execution time is 0.16 second for N = 2048, 2.48 seconds for
N = 2047, and 46.96 seconds for N = 2039. (m]

The MATLAB functions developed previously in this chapter should
now be modified by substituting the fft function in place of the dft
function. From the above example care must be taken to use a highly
composite N. A good practice is to choose N = 2¥ unless a specific
situation demands otherwise.
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FAST CONVO-
LUTIONS

FFT execution times
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FIGURE 5.20 FFT ezecution times for 1 <= N <= 2048

The conv function in MATLAB is implemented using the filter function
{which is written in C) and is very efficient for smaller values of N (< 50).
For larger values of N it is possible to speed up the convolution using the
FFT algorithm. This approach uses the circular convolution to implement
the linear convolution, and the FFT to implement the circular convolu-
tion. The resulting algorithm is called a fast convolution algorithm. In
addition, if we choose N = 2 and implement the radix-2 FFT, then the
algorithm is called a high-speed convolution. Let z; (n) be a Nj-point se-
quence and z; (n) be a Na-point sequence; then for high-speed convolution
N is chosen to be

N = floga(N1+Na=1)] (5.57)

where [x] is the smallest integer greater than x (also called a ceiling
function). The linear convolution 1 (n) * z2 (n) can now be implemented
by two N-point FFTs, one N-point IFFT, and one N-point dot-product.

1 (n) * 72 (n) = IFFT [FFT [z1 (n)] - FFT [z; (m)) (5.58)

For large values of N, (5.58) is faster than the time-domain convolution
as we see in the following example.
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0  EXAMPLE 5.22

To demonstrate the effectiveness of the high-speed convolution, let us compare
the execution times of two approaches. Let z: (n) be an L-point uniformly
distributed random number between [0, 1], and let z2 (n) be an L-point Gaussian
random sequence with mean 0 and variance 1. We will determine the average
execution times for 1 < L < 150, in which the average is computed over the 100
realizations of random sequences.

Solution MAaTLAB Script
conv_time = zeros(1,150); fft_time = zeros(1,150) ;
%
for L = 1:150
te = 0; t£=0;
N = 2+L-1; nu = ceil(logl0(NI)}/1ogl10(2)); N = 27uy;
for I=1:100
h = randn(1,L);
x = rand(1,L);
0 = clock; yi = conv(h,x); ti=etime(clock,t0);
tc = tcttl;
t0 = clock; y2 = ifft (£t (h,N) . #££ft(x,N)); t2=etime(clock,t0);
tf = tf+t2;
end
%
conv_time(L)=tc/100;
fft_time(L)=t£/100;
end
%
n = 1:150; subplot(1,1,1);
plot (n(25:160) ,conv_time(25:160) ,n(25:150) ,£ft_time(25: 150))
Figure 5.21 shows the linear convolution and the high-speed convolution times
for 25 < L < 150. It should be noted that these times are affected by the
computing platform used to execute the MATLAB script. The plot in Figure
5.21 was obtained on a 33-MHz 486 computer. It shows that for low values of
L the linear convolution is faster. The crossover point appears to be L = 50,
beyond which the linear convolution time increases exponentially, while the
high-speed convolution time increases fairly linearly. Note that since N = 2%,
the high-speed convolution time is constant over a range on L. [m]
HIGH-SPEED Earlier we discussed a black convolution algorithm called the overlap-and-
BLOCK CON- save method (and its companion the overlap-and-add method), which is
VOLUTIONS used to convolve a very large sequence with a relatively smaller sequence.
The MATLAB function ovrlpsav developed in that section uses the DFT
to implement the linear convolution. We can now replace the DFT by
the radix-2 FFT algorithm to obtain a high-speed overlap-and-save algo-
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Comparison of convolution times
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FIGURE 5.21 Comparison of linear and high-speed convolution times

rithm. To further reduce the computations, the FFT of the shorter (fixed)
sequence can be computed only once. The following hsolpsav function
shows this algorithm.

function [y] = hsolpsav(x,h,N)

% High-speed Overlap-Save method of block convelutions using FFT
%
% [y} = hsolpsav(x,h,N)

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length (must be a power of two)
%

N = 2°(ceil(logl0(N)/1logi0(2));

Lenx = length(x); M = length(h);

M1 = M-1; L = N-M1;

h = £f£t(h,N);

%

x = [zeros(1,M1), x, zeros(1,N-1)];

K = floor((Lenx+Mi-1)/(L)); % # of blocks
Y = zeros(K+1,N);
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for k=0:K

xk = £t (x(k*L+1:k*L+N));
Y(k+1,:) = real (ifft(xk.*h));
end

Yo=Y, MM y o= (Y())

A similar modification can be done to the overlap-and-add algorithm.

PROBLEMS

P5.1

P5.2

P5.3

+

Determine the DFS coefficients of the following periodic sequences using the DFS definition,
and verify by using MATLAB. ‘

. #1(n) = {2,0,2,0}, N=4

. £2(n) ={0,0,1,0,0}, N=5

Z3(n) = {3,-3,3,-3}, N =4

. Za(n) = {44, —5,—i} N =4

e Zs(n)={1,4,4,1}, N=4

Determine the periodic sequences, given the following periodic DFS coefficients. First use
the IDFS definition and then verify using MATLAB.

X1 (k) = {5,-25,3,2j}, N =4

b. Xa(k)={4,-5,3,-5}, N=4

¢ X3(k)={1,2,3,4,5}, N=5

d. Xa(k)=1{0,0,2,0}, N=4

e. Xs(k)={0,4,-20, -3}, N=4

Let &:(n) be periodic with fundamental period N = 50, where one period is given by

ne
I (n) = {
and let 2(n) be periodic with fundamental period N = 100, where one period is given by

Fafn) = {ne

These two periodic sequences differ in their periodicity but otherwise have equal nonzero
samples.

a. Find the DFS X; (k) of £1(n) and plot samples (using the stem function) of its
magnitude and angle versus k.

a o TP

®

—03n  0<n<25

0, 26<n<49

~03n 0<n<25

0, 26<n<99

b. Find the DFS Xz (k) of £2(n) and plot samples of its magnitude and angle versus k.
c. What is the difference between the above two DFS plots?
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P54 Consider the periodic sequence &;(n) given in Problem 5.3. Let F3(n) be periodic with

P5.5

P5.6

period 100, obtained by concatenating two periods of Z1(n), that is,

#3(n) = [1(n), 1{n)lpErIODIC
Clearly, #3(n) is different from Z2(n) of Problem 3 even though both of them are periodic
with period 100.
a. Find the DFS X3 (k) of #3(n) and plot samples of its magnitude and angle versus k.
b. What effect does the periodicity doubling have on the DFS?
¢. Generalize the above result to M-fold periodicity. In particular, show that if

im(n) = |F1(n),...,%:(n)
R
M times PERIODIC

then
Xa (Mk) =MX,(k), k=0,1,...,N—1
X (k) =0, k#0,M,...,MN

Let X(e’) be the DTFT of a 10-point sequence:

z(n) = {2,5,3,-4,-2,6,0,-3,-3,2}

n (m) =IDFS. [X(e), X(*"/%), X(&1)]

Determine y: (n) using the frequency sampling theorem. Verify your answer using MATLAB.
b. Let

20-point . N , N .
v (n) = IDFS. [X(£°), X (™%, X(1°/%), .., X (09 ™)]

Determine y2 (n) using the frequency sampling theorem. Verify your answer using MATLAB.
A 12-point sequence is x (n) defined as

z(n) ={1,2,3,4,5,6,6,5,4,3,2,1}

a. Determine the DFT X (k) of = (n). Plot (using the stem function) its magnitude and
phase.

b. Plot the magnitude and phase of the DTFT X (') of z (n) using MATLAB.
¢. Verify that the above DFT is the sampled version of X (e/*). It might be helpful to
combine the above two plots in one graph using the hold function.

d. Isit possii)le to reconstruct the DTFT X (') from the DFT X (k)? If possible, give the
necessary interpolation formula for reconstruction. If not possible, state why this
reconstruction cannot be done.
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P5.7

P5.8

P5.9

Plot the DTFT magnitudes of the following sequences using the DFT as a computation
tool. Make an educated guess about the length N so that your plots are meaningful.

a. z1 {n) = 2cos (0.27n) [u(n) — u(n - 10)]

b. 2 (n) = sin(0.457n)sin (0.557n), 0<n < 50

c. z3(n)=3(2)", -10<n<10

d. za(n)=(-05)", -10<n<10

e. z5(n)=5 (0.96”“)" u(n)

Let H(e’) be the frequency response of a real, causal discrete-time LTI system.
a. If

5
Re{H (¢)} = Y (05)" cos (kw)
k=0

determine the impulse response k (n) analytically. Verify your answer using IDFT as a
computation tool. Choose the length N judiciously.

b. If

H(e")dw =0

-

5
Im {H (ej“’)} = z2£sin (fw) and
=0

determine the impulse response h (n) analytically. Verify your answer using IDFT as a
computation tool. Again choose the length N judiciously.

Let X (k) denote the N-point DFT of an N-point sequence z (). The DFT X (k) itself is
an N-point sequence.

a. Xf the DFT of X (k) is computed to obtain another N-point sequence 1 (n), show that

o (n) = No((m)y, 0Sn<N-1
b. Using the above property, design a MATLAB function to implement an N-point circular
folding operation z2 (n) = z1 ((—n)) v The format should be

x2 = circfold(xi,N)

% Circular folding using DFT

% x2 = circfold(x1;N)

% x2 = circularly folded output sequence
% x1 = input sequence of length <= N

% N = circular buffer length

¢c. Determine the circular folding of the following sequence:

1 (n) ={1,2,3,4,5,6,6,5,4,3,2,1}
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P5.10

P5.11

P5.12

Complex-valued N-point sequences are decomposed into N-point even and odd sequences
using the following relations:

S

[z() +=" (-m)n]

Tec (1)

2

[z (n) — =" (=m)x]

Toc (N)

(S S

Then
DFT [zec (n)] = Re [X (k)] = Re [X (EHM!
DFT (zoc (n)] = 5 Im [X (k)] = j Im [X ((=K))x]

a. Prove the above property analytically.

b. Modify the circevod function developed in the chapter so that it can be used for
complex-valued sequences.

¢. Verify the above symmetry property and your MATLAB function on the following
sequence.

z(n) = (0.9¢™%)" fu(n) —u(n—20)]
The first five values of the 8-point DFT of a real-valued sequence x (n) are given by
{0.25,0.125 — j0.3,0,0.125 — j0.06,0.5}
Determine the DFT of each of the following sequences using properties.
a 2 (n) =2 (2 - n))g
b. z2(n) =z {(n+5))y
c. za(n) =2%(n)
d za(n) =z(n) ® z((-n))s
e. zs(n) =z (n) /4
If X (k) is the DFT of an N-point complex-valued sequence
z(n) = zr (n) + jz1 (n)
where zr (n) and z1 (n) are the real and imaginary parts of z (n), then
Xr (k) 2 DFT [z (n)] = Xec (k)
X1 (k) & DFT [a1 (n)] = Xoe (K)

where X (k) and X, (k) are the circular-even and circular-odd components of X (k) as
defined in Problem 5.10.
a. Prove the above property analytically.

b. This property can be used to compute the DFTs of two real-valued N-point sequences
using one N-point DFT operation. Specifically, let z1 (n) and x2 (n) be two N-point
sequences. Then we can form a complex-valued sequence

z(n) = 71 (n) + jz2 (v)
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P5.13

and use the above property. Develop a MATLAB function to implement this approach with
the following format.

functdon [X1,X2] = real2dft(xi,x2,N)
% DFTs of two real sequences

% [X1,X2) = real2dft(x1,x2,N)

% X1 = n-point DFT of x1

% X2 = n-point DFT of x2

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of DFT

¢c. Compute the DFTs of the following two sequences:
z (n) = cos (0.257n), = (n) = sin (0.757n); 0<n<63

Using the frequency-domain approach, develop a MATLAB function to determine a circular
shift z ((n — m))y, given an Ny-point sequence z(n), where Ny < N. Your function should
have the following format.

function y = cirshftf(x,m,N)

%

Yfunction y=cirshftf(x,m,N)

%

% Circular shift of m samples wrt size N in sequence x: (freq domain)
%

% y : output sequence containing the circular shift
% x : input sequence of length <= N

% m : sample shift

% N : size of circular buffer

%

% Method: y(n) = idft(dft(x(n))*WN"(mk))

%

% If m is a scalar then y is a sequence (row vector)

% If m is a vector then y is a matrix, each row is a circular shift
% in x corresponding to entries in vecor m

% M and x should not be matrices

Verify your function on the following sequence
zi(n)=11-n, 0<n<10

with m = 10 and N = 15.

P5.14 Using the analysis and synthesis equations of the DFT, show that

N-—-1 1 N-1
Y leml =5 IX®F
k=0

n=0
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P5.15

P5.16

P5.17

P5.18

P5.19

This is commonly referred to as a Parseval’s relation for the DFT. Verify this relation by
using MATLAB on the sequence in Problem 5.9.

Using the frequency domain approach, develop a MATLAB function to implement the
circular convolution operation between two sequences. The format of the sequence should be

function x3 = circonvf(x1,x2,N)

% Circular convolution in the frequency domain
% x3 = circonvf(x1,x2,l)

% x3 = convolution result of length N

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of circular buffer

The circonvt function developed in this chapter implements the circular convolution as a
matrix-vector multiplication. The matrix corresponding to the circular shifts

{:c (n-m))y; 0<n<N- 1} has an interesting structure. This matrix is called a
circulant matrix, which is a special case of the Toeplitz matrix introduced in Chapter 2.
a. Consider the sequences given in Example 5.13. Express 23 (n) as a column vector x; and
22 ((n —m))y as a matrix Xo with rows corresponding to n = 0, 1,2, 3. Characterize this
matrix Xz. Can it completely be described by its first row (or column)?

b. Determine the circular convolution as X2x; and verify your calculations.

Develop a MATLAB function to construct a circulant matrix C, given an N-point sequence
z (n). Use the cirshftf function developed in Problem 5.13. Your subroutine function
should have the following format.

function [C] = circulnt(x,N)

% Circulant Matrix from an N-point sequence
% {€] = circulnt(x,N)

% C = circulant matrix of size NxN

% x = sequence of length <= N

% N = size of circulant matrix

Using this function, modify the circular convolution function circonvt discussed in the
chapter so that the for. ..end loop is eliminated. Verify your functions on the sequences in
Problem 5.16.

Compute the N-point circular convolution for the following sequences.

a 21 (n) ={1,1,1,1}, 22 (n) = cos (7n/4) Rn (n); N=8

b. 1 (n) = cos (2nn/N)Rn (n), T2 (n) = sin (2rn/N) RN (n); N =32

c. z1(n) = (0.8)" Ry (n), z2(n) = (-08)"Rn(n); N=20

d. 71 (n) =nRy (n), z2(n) = (N -n) RN (n); N=10

e z1(n)={1,-1,1,-1}, z2(n) = {1,0,-1,0}; N=4

For the following sequences compute (i) the N-point circular convolution z3 (n) = z1 (n)

@ 3 (n), (ii) the linear convolution =4 (n) = =1 (n) * T2 (n), and (jii) the error sequence
e(n) = x3 (n) — 24 ().
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P5.20

.71 (n) ={1,1,1,1}, z2(n) = cos (rn/4) Re (n); N =8

. z1 (n) = cos (2nn/N) Ris (1), T2 (n) =sin(27n/N)Ris (n); N =32
. 21 (n) = (08)" Riwo(n), z2(n) = (~08)" R (n); N=15

.z (n)=nRio(n), z2(n) = (N —n)Ree(n); N=10

. zi(n) = {1,-1,1,-1}, z2(n) = {1,0,-1,0}; N=5

In each case verify that e (n) = 24 (n+ N).

o a0 T @

The overlap-add method of block convolution is an alternative to the overlap-save method.
Let z (n) be a long sequence of length ML, where M, L > 1. Divide z (n) into M segments
{Zm (n), m=1,...,M}, each of length L.

z(n), mM<n<(m+1)M-1 =
Tm (n) = {0Y clsewhere sothat z(n)= '2) T (1)

Let h(n) be an L-point impulse response; then

M-1 M-1
y(n)=z(n)*h{n)= me(n)*h(n)= Zym(n); ym(n)éxm(n)th(n)

m=0 m=0

Clearly, ym (n) is a (2L — 1)-point sequence. In this method we have to save the
intermediate convolution results and then properly overlap these before adding to form the
final result y (n). To use DFT for this operation, we have to choose N > (2L —1).

a. Develop a MATLAB function to implement the overlap-add method using the circular
convolution operation. The format should be

function [y] = ovrlpadd(x,h,N)
% Overlap-Add method of block convolution
% [yl = ovrlpadd(x,h,N)

= output sequence

= input sequence

= impulse response

= block length >= 2¢length(h)-1

NN NNN
E R

b. Incorporate the radix-2 FFT implementation in the above function to obtain a
high-speed overlap-add block convolution routine. Remember to choose N = 2",

. Verify your functions on the following two sequences:

 (n) = cos (n/500) Raooo (), R (n) = {1,-1,1,-1}

7—_———__ﬁ

P5.21 Given the sequences z3 (n) and z2 (n) shown below:
5 {n)=1{2,1,1,2}, =z (n)={1,-1,-1,1}
a. Compute the circular convolution z3 () @ z2(n) for N =4, 7, and 8.
b. Compute the linear convolution z1 (n) * z2 (n).
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¢. Using results of calculations, determine the minimum value of N necessary so that linear
and circular convolutions are the same on the N-point interval.

d. Without performing the actual convolutions, explain how you could have obtained the
result of part c.

P5.22 Let

1_ Acos (2mén/N) RN (n)

A 2rk < -
2(n) = cos (2rfn/N), 0<n<N
0, elsewhere

where £ is an integer. Notice that z (n) contains ezactly £ periods (or cycles) of the cosine
waveform in N samples. This is a windowed cosine sequence containing no leakage.

a. Show that the DFT X (k) is a real sequence given by
AN A
X(k)=76(k—2)+—21!6(k—N+£); 0<k<(N—-1),0<E<N
b. Show that if £ = 0, then the DFT X (k) is given by
X (k)=AN6(k); 0<k<(N-1)

¢. Explain clearly how the above results should be modified if £ < 0 or £> N.

d. Verify the results of parts a, b, and ¢ by using the following sequences. Plot the real
parts of the DFT sequences using the stem function.

(i) z1 (n) = 3cos (0.047n) Raoo0 (n)
(ii) Ta (n) = 5Rs0 (n)
(iii) 3 (n) = (1 + 2cos (0.57n) + cos (an)] Rioco (n)
(iv) z4(n) = cos (2571/16) Req (n)
(v) x5 (n) = [4cos (0.17n) — 3cos (1.97n)] Ry (n)
P5.23 Let z(n) = Acos (won) Ry (n), where wo is a real number.
a. Using the properties of the DFT, show that the real and the imaginary parts of X (k)
are given by

X (k) = Xg (k) + 3X1 (k)

_ r(N-1) sin [ (k — foN)]
X (k) = (A/2) cos [——N (k ng)] sl E= o) /N] f.,sz) N

n(N-1) sin{r (k — N + foN)]
+ (A/2) cos [——N (k+foN)] sin[1r(k-N+fo](\)I)/N]

_ i a(N-1) ., sin [ (k — foN)]
X1 (k) = —(A/2)sin [-—N (k foN)] RN /N 1‘:,) ]
_ . | (N=-1) sin{r (k— N + foN)]
(4/2) S“‘[ N (k+hN )] o~ N T M)/

b. The above result implies that the original frequency wo of the cosine waveform has leaked
into other frequencies that form the harmonics of the time-limited sequence, and hence it is
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P5.24

P5.25

#

called the leakage property of cosines. It is a natural result due to the fact that
band-limited periodic cosines are sampled over noninteger periods. Explain this result using
the periodic extension £(n) of z (n} and the result in Problem 5.22 part a.

¢. Verify the leakage property using z (n) = cos (57n/99) R200 (n). Plot the real and the
imaginary parts of X (k) using the stem function.

Let

2(n) = {Asin(Z‘rrln/N), 0<n<N-1_ Asin (2ntn/N) Ry ()

0, elsewhere
where £ is an integer. Notice that z (n) contains ezactly £ periods (or cycles) of the sine
waveform in N samples. This is a windowed sine sequence containing no leakage.

a. Show that the DFT X (k) is a purely imaginary sequence given by

Al;'a(k—NH); 0<k<(N-1),0<E<N

X (k) = %’m—e)—-,z—

b. Show that if £ = 0, then the DFT X (k) is given by
X(k)=0; 0<k<(N-1)

¢. Explain clearly how the above results should be modified if £ < 0or £> N.

d. Verify the results of parts a, b, and ¢ using the following sequences. Plot the imaginary
parts of the DFT sequences using the stem function.

(i) z1(n) = 3sin (0.047n) Ra200 (n)

(ii) x2 (n) = 5sin10mnRso (n)

(iii) z3 (n) = [2sin (0.57n) +sin (mn)] Raoo (n)

(iv) za(n) = sin (257n/16) Rea (1)

(v) zs(n) = [4sin(0.1wn) — 3sin (1.97n)] Rn (n)

Let z(n) = Asin(won) R (n), where wo is & real number.

a. Using the properties of the DFT, show that the real and the imaginary parts of X (k)
are given by

X (k) = Xr (k) + jX1 (k)

_ [ (N-1) sin 7 (k — foN)]
Xr (k) = (A/2)sin [—N—— (k- foN)] ey 1'\31) N

sin[r (k — N + foN))|
sin[w (k — N + foN) /N]

sin[r (k — foN)]
sin{r (k — foN) /N]

sin [z (k = N + foN)]
sin[x (k— N + foN) /N]

— (A/2)sin ["—(1\;\[—'9 (k+ foN)]

X1 () = - (4/2) oos ["(—iN—“” (k- foN)]

+ (4/2)cos ["—U"N—'l—) (k+ foN)]
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b. The above result is the leakage property of sines. Explain it using the periodic extension
#(n) of = (n) and the result in Problem 5.24 part a.
¢. Verify the leakage property using z (n) = sin (57n./99) Re00 (n). Plot the real and the
imaginary parts of X (k) using the stem function.
P5.26 An analog signal z.(t) = 2sin (47t) + 5cos (8nt) is sampled at ¢ = 0.01n for
n=0,1,...,N —1 to obtain an N-point sequence z (n). An N-point DFT is used to obtain
an estimate of the magnitude spectrum of za(t).
a. From the following values of N, choose the one that will provide the accurate estimate of
the spectrum of z(t). Plot the real and imaginary parts of the DFT spectrum | X (k).
i) N =40, (ii) N = 50, (iii) N = 60.
b. From the following values of N, choose the one that will provide the least amount of
leakage in the spectrum of Za(t). Plot the real and imaginary parts of the DFT spectrum
(X ()]
(i) N =90, (if) N =95, (iif) N = 99.
P5.27 Using (5.49), determine and draw the signal flowgraph for the N = 8 point, radix-2
decimation-in-frequency FFT algorithm. Using this flowgraph, determine the DFT of the
sequence

z(n) = cos(wnf2), 0<n<7

P5.28 Using (5.49), determine and draw the signal flowgraph for the N = 16-point, radix-4
decimation-in-time FFT algorithm. Using this flowgraph, determine the DFT of the
sequence

z(n)=cos{wnf2), 0<n<15

P5.29 Let z(n) =cos(xn/99), 0<n< (N — 1) be an N-point sequence. Choose N = 4" and

determine the execution times in MATLAB for v = 5,6, ...,10. Verify that these times are
proportional to
Nlog, N
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DIGITAL FILTER
STRUCTURES

In earlier chapters we studied the theory of discrete systems in both the
time and frequency domains. We will now use this theory for the process-
ing of digital signals. To process signals, we have to design and implement
systems called filters (or spectrum analyzers in some contexts). The filter
design issue is influenced by such factors as the type of the filter (i.e., IIR
or FIR) or the form of its implementation (structures). Hence before we
discuss the design issue, we first concern ourselves with how these filters
can be implemented in practice. This is an important concern because
different filter structures dictate different design strategies.

As we discussed earlier, IIR filters are characterized by infinite-
duration impulse responses. Some of these impulse responses can be
modeled by rational system functions or, equivalently, by difference equa-
tions. Such filters are termed as auto-regressive moving average (ARMA)
or, more generally, as recursive filters. Those IIR filters that cannot be so
modeled are called nonrecursive filters. In DSP, IIR filters generally imply
recursive ones because these can be implemented efficiently. Therefore
we will always use the term IIR to imply recursive filters. Furthermore,
ARMA filters include moving average filters that are FIR filters. However,
we will treat FIR filters separately from IIR filters for both design and
implementation purposes.

We begin with a description of basic building blocks that are used
to describe flter structures. In the remaining sections we briefly describe
IIR, FIR, and lattice filter structures, respectively, and provide MATLAB
functions to implement these structures.
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BASIC ELEMENTS

Since our filters are LTI systems, we need the following three elements to
describe digital filter structures. These elements are shown in Figure 6.1.

o Adder: This element has two inputs and one output and is shown
in Figure 6.1(a). Note that the addition of three or more signals is imple-
mented by successive two-input adders.

o Multiplier (gain): This is a single-input, single-output element and
is shown in Figure 6.1(b). Note that the multiplication by 1 is understood
and hence not explicitly shown.

¢ Delay element (shifter or memory): This element delays the signal
passing through it by one sample as shown in Figure 6.1(c). It is imple-
mented by using a shift register.

Using these basic elements, we can now describe various structures of
both IIR and FIR flters. MATLAB is a convenient tool in the development
of these structures that require operations on polynomials.

IIR FILTER STRUCTURES
+

The system function of an IIR filter is given by

M
32 bz -1 -M
B(z)  a=0 bp+byz7t+---+bmz
H(z)=—~= = ;ap=1 (6.1)
Alz) X 1+az- - +anz ¥V
anz~"
n§=:o "

where by, and a., are the coefficients of the filter. We have assumed without
loss of generality that ap = 1. The order of such an IIR filter is called NV if

xy(n) .ﬁ/'/v
x(n) (a) Adder
-1

a z
x{n) @——3—0 ax{n) x{n) e——p——e x(n — 1)
(b) Multiplier {c) Delay element

—e x,(n) + xp(n}

FIGURE 6.1 Three basic elements
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DIRECT FORM

an # 0. The difference equation representation of an IIR filter is expressed
as

M N
y(n) = Z bnx(n —~m)— Z amy(n —m) (6-2)

m=0

" Three different structures can be used to implement an IIR filter:

o Direct form: In this form the difference equation (6.2) is imple-
mented directly as given. There are two parts to this filter, namely the
moving average part and the recursive part (or equivalently, the numera-
tor and denominator parts). Therefore this implementation leads to two
versions: direct form I and direct form II structures.

e Cascade form: In this form the system function H(z) in equation
(6.1) is factored into smaller second-order sections, called biquads. The
system function is then represented as a product of these biquads. Each
biquad is implemented in a direct form, and the entire system function is
implemented as a cascade of biquad sections.

o Parallel form: This is similar to the cascade form, but after factor-
ization, a partial fraction expansion is used to represent H(2) as a sum
of smaller second-order sections. Each section is again implemented in a
direct form, and the entire system function is implemented as a parallel
network of sections.

We will briefly discuss these forms in this section. TIR filters are gen-
erally described using the rational form version (or the direct form struc-
ture) of the system function. Hence we will provide MaTLAB functions for
converting direct form structures to cascade and parallel form structures.

As the name suggests, the difference equation (6.2) is implemented as
given using delays, multipliers, and adders. For the purpose of illustration,
let M = N = 4. Then the difference equation is

y(n) = boz(n) + biz(n — 1) + boz(n — 2) + baz(n — 3) + byz(n — 4)
—ay(n—1) —azy(n-2) - agy(n — 3) — asy(n — 4)

which can be implemented as shown in Figure 6.2. This block diagram is
called direct form I structure.

The direct form I structure implements each part of the rational func-
tion H(z) separately with a cascade connection between them. The nu-
merator part is a tapped delay line followed by the denominator part,
which is a feedback tapped delay line. Thus there are two separate de-
lay lines in this structure, and hence it requires eight delay elements. We
can reduce this delay element count or eliminate one delay line by inter-
changing the order in which the two parts are connected in the cascade.
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by
x{n) o— >—e y(n)
-1 -1
" b, b -a, z
-1 . -1
" b, A -a, z
-1 -1
Z " by -a3 Y2
-1 -1
[z by 3 —a, z

FIGURE 6.2 Direct form I structure

Now the two delay lines are close to each other, connected by a unity
gain branch. Therefore one delay line can be removed, and this reduction
leads to a canonical structure called direct form II structure, shown in
Figure 6.3. It should be noted that both direct forms are equivalent from
the input-output point of view. Internaily, however, they have different

signals.
MATLAB In MATLAB the direct form structure is described by two row vectors;
IMPLEMEN- b containing the {b,} coefficients and a containing the {a,} coefficients.
TATION The structure is implemented by the filter function, which is discussed
in Chapter 2.
CASCADE In this form the system function H(z) is written as a product of second-
FORM order sections with real coefficients. This is done by factoring the numer-

ator and denominator polynomials into their respective roots and then
combining either a complex conjugate root pair or any two real roots into
second-order polynomials. In the remainder of this chapter we assume

x{n) & 3 —e y(n)
-8 z7! b,
—a, 27! by
-a, z7! by
—a, ! bs 3

FIGURE 6.3 Direct form II structure
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Yiln) = Xg 4 4ln) o— ~® i +1(N)
-1
~Aa [P Bia

—Ay2 By

FIGURE 6.4 Biquad section structure

that N is an even integer. Then

bo+bizt 4+ byzN

H =
) l+aiz 1 +---+ayzV

(6.3)

b -1 by ,—N
=01+5.§z +-~-+—b§-z
1+az-t+---+anz=V

K 1+ Bk’12—1 + Bk’22—2
=B H
k=1

- 1+ Ak,lz“l + Ak,gz‘z

where K is equal to %, and Bg1, Bk2, Ak, and A are real numbers
representing the coefficients of second-order sections. The second-order
section

_ Yk+1(z) _ 1+ Bk,lz"l + Bk,gz_'2 .
Yk(Z) 1+ Ak’lz‘l + Ak,gz—z’

with
Yi(2) = boX(2); Yrs1(2) =Y (2)

is called the kth biquad section. The input to the kth biquad section is
the output from the (k — 1)th biquad section, while the output from the
kth biquad is the input to the (k +1)th biquad. Now each biquad section
H.(2) can be implemented in direct form II as shown in Figure 6.4. The
entire filter is then implemented as a cascade of biquads.

As an example, consider N = 4. Figure 6.5 shows a cascade form
structure for this fourth-order IIR filter.

bo
x{n) &= > > - y{n)

-1 -1

—/11,1 (2 B, Ay 1% Ba ]
-1 -1

Az B, 1} ~Az2 27 By

FIGURE 6.5 Cascade form structure for N =4
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MATLAB
IMPLEMEN-
TATION

Given the coefficients {b,} and {an} of the direct form filter, we have to
obtain the coefficients bg, { Bk}, and {Ax,}. This is done by the function
dir2cas given below.

function [b0,B,A] = dir2cas(b,a); :
% DIRECT-form to CASCADE-form conversion (cplxpair version)
%
% [b0,B,A] = dir2cas(b,a)

% b0 = gain coefficient

= K by 3 matrix of real coefficients containing bk’s
K by 3 matrix of real coefficients containing ak’s
numerator polynomial coefficients of DIRECT form
= denominator polynomial coefficients of DIRECT form

b
W

A
% b
a

% compute gain coefficient bO
b0 = b(1); b = b/bO;

a0 = a(1); a = a/a0;

b0 = b0/al;

%

M = length(b); N = length(a);
if N> M

b = [b zeros(1,N-M)];

elseif M > N

a = [a zeros(1,M-N)]1; N = M;
else

NM = O;

end

%

K = floor(N/2); B = zeros(k,3); A = zeros(K,3);
if K*2 == N;

b= [b0];

a= [a0];

end

%

broots = cplxpair(roots(b));
aroots = cplxpair(roots(a));
for i=1:2:2+K

Brow = broots(i:l:i+i,:);
Brow = real(poly(Brow));
B(fix((i+1)/2),:) = Brow;
Arow = aroots(i:l:i+l,:);
Arow = real(poly(Arow));
A(£ix((i+1)/2),:) = Arow;
end

The above function converts the b and a vectors into K x3Band A
matrices. It begins by computing by, which is equal to bp/ap (assuming
ap # 1). It then makes the vectors b and a of equal length by zero-
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padding the shorter vector. This ensures that each biquad has a nonzero
numerator and denominator. Next it computes the roots of the B(z) and
A(z) polynomials. Using the cplxpair function, these roots are ordered in
complex conjugate pairs. Now every pair is converted back into a second-
order numerator or denominator polynomial using the poly function.

The cascade form is implemented using a casfiltr function, which
is described below. It employs the filter function in a loop using the
coefficients of each biquad stored in B and A matrices. The input is scaled
by b0, and the output of each filter operation is used as an input to the
next filter operation. The output of the final filter operation is the overall
output.

function y = casfiltr(b0,B,A,x);
% CASCADE form realization of IIR and FIR filters
)
% y = casfiltr(b0,B,A,x);
% y = output sequence
% b0 = gain coefficient of CASCADE form
% B =K by 3 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence
%
[K,L] = size(B);
N = length(x);
w = zeros(K+1,N);
w(i,:) = x;
for i = 1:1:K
w(i+l,:) = filter(B(i,:),Ai,:),w(i,:));

end
y = bosw(K+1,:);

The following MATLAB function, cas2dir, converts a cascade form
1o a direct form. This is a simple operation that involves multiplication of
several second-order polynomials. For this purpose the MATLAB function
conv is used in a loop over K factors.

function [b,a] = cas2dir(b0,B,A);
% CASCADE-to-DIRECT form conversion

% [b,a] = cas2dir(b0,B,A)

% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form
% b0 = gain coefficient

% B =K by 3 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
h

{K,L] = size(B);
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b = [1];

a = [1];

for i=1:1:K
b=conv(b,B(i,:));
a=conv(a,A(i,:));
end

b = b*b0;

A filter is described by the following difference equation:
16y(n) + 12y(n — 1) + 2y(n — 2) — 4y(n — 3) —~y(n — 4)
= z(n) — 3z(n — 1) + 11z(n — 2) — 27z(n — 3) + 18z(n — 4)

Determine its cascade form structure.

Solution MaTLAB Script
>> b=[1 -3 11 -27 18];
>> a=[16 12 2 -4 -1];
>> [b0,B,AJ=dir2cas(b,a)
b0 = 0.0625
B =
1.0000 -0.0000 9.0000
1.0000 -3.0000 2.0000
A=
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250
The resulting structure is shown in Figure 6.6. To check that our cascade struc-
ture is correct, let us compute the first 8 samples of the impulse response using
both forms.
>> delta = impseq(0,0,7);
delta =
1 0 0 0 ] 0 [o] 0
>> format long
>> heas=casfiltr(b0,B,A,delta)
0.625
x{n) > > > > yin)
-1 -1
1 -1 7 o L 0.25 7 -3 \

- .

Y

|
Q
o
N
[
-
y©
’

-1
0.125 LA 3

FIGURE 6.6 Cascade structure in Ezample 6.1.
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hcas =
Columns 1 through 4
0.06250000000000 -0.23437500000000  0.85546875000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945
>> hdir=filter(b,a,delta)
hdir =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968760000
Columns 5 through 8
2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945

a
PARALLEL In this form the system function H (z) is written as a sum of second order
FORM sections using partial fraction expansion (PFE).
-1 ... -M
H(z) B(z) bo+biz7i +---+buz (6.4)

- A()  1+az7l+---+anzV
PO : _N M-N

=bo+b12 Ly 4byog2! N+ Z Ckz"k

14+aiz7 1+ +anz™V >

[ —
only if M2N
K _ M-N
B
T4 Agaz T+ Araz™? T 5

N
only if M2N

where K is equal to %, and Big, Bi,1, Ak,1, and A2 are real numbers
representing the coefficients of second-order sections. The second-order
section

-1
Hi(z) = Yit1(2)  Bro+ Braz

= ; =1,...,. K
Y: (Z) 1+ Ak'lz‘l + Ak,gz—w L ’

with
Ya(z) = Hi(2)X(2), Y(2)=) Yi(z)y M<N

is the kth proper rational biquad section. The filter input is available to
all biquad sections as well as to the polynomial section if M > N (which
is an FIR part). The output from these sections is summed to form the
filter output. Now each biquad section Hy(z) can be implemented in direct
form IL. Due to the summation of subsections, a parallel structure can be
built to realize H(z). As an example, consider M = N = 4. Figure 6.7
shows a parallel form structure for this fourth-order IR filter.
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MATLAB
IMPLEMEN-
TATION

:
—A1, Z By
)

~Aq, z
x({n) o——>—e -« —>—o y(n)

A
—Az 27 By
b

_AZ,Z z

FIGURE 6.7 Parallel form structure for N = 4

The function dir2par given below converts the direct form coefficients
{bn} and {a.} into parallel form coefficients {Bx,} and {Ak;:}.

function [C,B,Al = dir2par(b,a);
% DIRECT-form to PARALLEL-form conversion

% [C,B,A] = dir2par(b,a)

= Polynomial part when length(b) >= length(a)

= K by 2 matrix of real coefficients containing bk’s
K by 3 matrix of real coefficients containing ak’s
= pumerator polynomial coefficients of DIRECT form
= denominator polynomial coefficients of DIRECT form

b
[T - o)
]

%
M = length(b); N = length(a);

{r1,p1,C] = residuez(b,a);

p = cplxpair (p1,10000000%eps) ;
1 = cplxcomp(pl,p);

r = ri(I);

K = floor(N/2); B = zeros(K,2); A = zeros(K,3);
if K#2 == N; %N even, order of A(z) odd, one factor is first order
for i=1:2:N-2

Brow = r(i:1:i+1,:);

Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arov, [1);
B(£fix((i+1)/2),:) = real(Brow);

A(fix((i+1)/2),:) = real (Arow) ;

end

[Brow,Arow] = residuez(r(N-1) ,p(N-1),01);

B(K,:) = [real(Brow) 0}; A(K,:) = [real (Arow) 0];
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else
for i=1:2:N-1
Brow = r(i:1:i+1,:);
Arow = p(i:l:i+1,:);
[Brow,Arow] = residuez(Brow,Arow,{]);
B(£fix((i+1)/2),:) = real(Brow);
A(£ix((i+1)/2),:) = real(Arow);
end
end

The dir2cas function first computes the z-domain partial fraction expan-
sion using the residuez function. We need to arrange pole-and-residue
pairs into complex conjugate pole-and-residue pairs followed by real pole-
and-residue pairs. To do this, the cplxpair function from MATLAB can
be used; this sorts a complex array into complex conjugate pairs. How-
ever, two consecutive calls to this function, one each for pole and residue
arrays, will not guarantee that poles and residues will correspond to each
other. Therefore a new cplxcomp function is developed, which compares
two shuffled complex arrays and returns the index of one array, which can
be used to rearrange another array.

function I = cplxcomp(pl,p2)
% I = cplxcomp(pl,p2)
% Compares two complex pairs vhich contain the same scalar elements
% but (possibly) at differrent indices. This routine should be
% wused after CPLXPAIR routine for rearranging pole vector and its
% corresponding residue vector.
% p2 = cplxpair(pl)
%
1=01;
for j=1:1:length(p2)

for i=1:1:length(pi)
if (abs(p1(i)-p2(j)) < 0.0001)

1=[I,il;

end

end
end
1=1’;

After collecting these pole-and-residue pairs, the dir2cas function com-
putes the numerator and denominator of the biquads by employing the
residuez function in the reverse fashion.

These parallel form coefficients are then used in the function
parfiltr, which implements the parallel form. The parfiltr function
uses the filter function in a loop using the coefficients of each biquad
stored in the B and A matrices. The input is first filtered through the FIR
part C and stored in the first row of a w matrix. Then the outputs of all
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biquad filters are computed for the same input and stored as subsequent
rows in the w matrix. Finally, all the columns of the ¥ matrix are summed
to yield the output.

function y = parfiltr(C,B,A,x);

% PARALLEL form realization of IIR filters
%
% [yl = parfiltr(C,B,A,x);

% y = output sequence

% C = polynomial (FIR) part when M >= N

% B = K by 2 matrix of real coefficiemnts containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence

[K,L] = size(B);
N = length(x);
w = zeros(K+1,N);
w(1,:) = filter(C,1,x);
for i = 1:1:K
w(i+l,:) = filter(B(i,:),A(i,:),x);
end
y = sum(w);

To obtain a direct form from a parallel form, the function par2dir can
be used. It computes poles and residues of each proper biquad and com-
bines these into system poles and residues. Another call of the residuez
function in reverse order computes the numerator and denominator poly-
nomials.

function {b,a) = par2dir(C,B,4);

% PARALLEL-to-DIRECT form comversion
h
Y% [b,a]l = par2dir(C,B,A)

% b = numerator polynomial coefficients of DIRECT form
= depominator polynomial coefficients of DIRECT form
= Polynomial part of PARALLEL form

= K by 2 matrix of real coefficients containing bk’s
= K by 3 matrix of real coefficients containing ak’s

s
=W ap

%
[K,L] = size(A); R = [1; P = [];

for i=1:1:K
[r,p,k]=residuez(B(i,:),A(i,:));
R = [R;r]; P = [P;p);

end

{b,a] = residuez(R,P,C);
b=b(:)’; a=a(:)’;

IIR Filter Structures
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[m] EXAMPLE 6.2

Consider the filter given in Example 6.1.
16y(n) + 12y(n — 1) + 2y(n — 2) — dy(n — 3)—y(n—4)
= z(n) — 3z(n — 1) + 11z(n ~ 2) — 27z(n - 3) + 18z(n — 4)

Now determine its parallel form.

Solution MaTLAB Script
>> b=[1 -3 11 -27 18];
>> a=[16 12 2 -4 -1];
>> {C,B,A)=dir2par(b,a)
¢ =
-18
B=
10.0500 -3.9500
28.1125 -13.3625
A=
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250
The resulting structure is shown in Figure 6.8. To check our parallel structure,
let us compute the first 8 samples of the impulse response using both forms.
>> format long; delta = impseq(0,0,7);
>> hpar=parfiltr(C,B,A,delta)
hpar =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0. 85546875000000 -2.284179687650000
-18
-10.05 [
-1
b -1 Z -39
-1
b 005 |?
x(n) o—>—e « =0 y{n)
28.1125 \
> "
0.2‘5 -13.3626
b oas 177
FIGURE 6.8 Parallel form structure in Ezample 6.2.
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Columns 5 through 8
o.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945
> hdir = filter(b,a,delta) '

hdir =

Columns 1 through 4
0.06250000000000 -0.23437500000000 0.855468765000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219  0.49931716918945

g EXAMPLE 6.3

Solution

w}

What would be the overall direct, cascade, or parallel form if a structure contains
a combination of these forms? Consider the block diagram shown in Figure 6.9.

This structure contains a cascade of two parallel sections. The first parallel
section contains two biquads, while the second one contains three biquads. We
will have to convert each parallel section into a direct form using the par2dir
function, giving us a cascade of two direct forms. The overall direct form can be
computed by convolving the corresponding numerator and denominator poly-
nomials. The overall cascade and parallel forms can now be derived from the
direct form.

>> C0=0; Bi=[2 4;3 11; A1={1 10.9; 1 0.4 -0.4];

>> B2=[0.5 0.7;1.5 2.5;0.8 1]; A2=(1 -1 0.8;1 0.5 0.5;1 0 -0.5);
>> [bl,al]=par2dir(€0,B1,A1)’

bl =

5.0000 8.8000 4.5000 -0.7000

x(n) e=—>—=e

> —>—oyin

(=
-
~
S
-

FIGURE 6.9 Block diagram in Ezample 6.3
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al =
1.0000 1.4000 0.9000 -0.0400 -0.3600
>> [b2,a2]=par2dir(C0,B2,A2)
b2 =
2.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750
a2 =
1.0000 -0.5000 0.3000 0.1500 0.0000 0.0500 -0.2000
>> b=conv(bl,b2) % Overall direct form numerator
b=
Columns 1 through 7
14,0000 37.3900  27.2400 6.2620 12.4810 11.6605 -5.7215
Columns 8 through 9
-3.8865 0.5425
>> a=conv(al,a2) ¥% Overall direct form denominator
a=
Columns 1 through 7
1.0000 0.9000 0.5000 0.0800 0.1400 0.3530 -0.2440
Columns 8 through 11
-0.2890 -0.1820 -0.0100 0.0720 )
>> [b0,Bc,Ac]=dir2cas(b,a) % Overall cascade form

b0 =
14.0000
Bc =
1.0000 1.8836 1.1328
1.0000 ~0.6915 0.6719
1.0000 2.0776 0.8666
1.0000 0 0
1.0000 -0.5990 0.0588
Ac =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105
1.0000 -1.1704 0.3276
>> [C0,Bp,Apl=dir2par(b,a) % Overall parallel form
co =1
Bp =

-20.4201 -1.6000
24.1602 5.1448
2.4570 3.3774
-0.8101 -0.2382
8.6129 -4.0439

1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105
1.0000 -1.1704 0.3276

This example shows that by using the MATLAB functions developed in this
section, we can probe and construct a wide variety of structures. a
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FIR FILTER STRUCTURES
—

A finite-duration impulse response filter has a system function of the form

M-1
H(z)=bo+ bzt 4 by ™= b2 (65)

n=0
Hence the impulse response i(n) is
by, 0<n<M-1
h(n) = {07 else (6.6)

and the difference equation representation is
y(n) = bpz(n) + biz(n — 1)+ +by—rz(n—M+ 1) (6.7)

which is a linear convolution of finite support.

The order of the filter is M — 1, while the length of the filter (which
is equal to the number of coefficients) is M. The FIR filter structures are
always stable, and they are relatively simple compared to IR structures.
Furthermore, FIR filters can be designed to have a linear-phase response,
which is desirable in some applications.

We will consider the following four structures:

e Direct form: In this form the difference equation (6.7) is imple-
mented directly as given.

o Cascade form: In this form the system function H(z) in (6.5) is fac-
tored into second-order factors, which are then implemented in a cascade
connection.

o Linear-phase form: When an FIR filter has a linear phase response,
its impulse response exhibits certain symmetry conditions. In this form
we exploit these symmetry relations to reduce multiplications by about
half.

o Frequency sampling form: This structure is based on the DFT of
the impulse response h(n) and leads to a parallel structure. It is also suit-
able for a design technique based on the sampling of frequency response
H (e/).

We will briefly describe the above four forms along with some exam-
ples. The MATLAB function dir2cas developed in the previous section is
also applicable for the cascade form.

FIR Filter Structures
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DIRECT FORM

MATLAB
IMPLEMEN-
TATION

CASCADE
FORM

x(n) &
) [ 71 Zz-1
Ybyo by by by by

> > > >——a y(n)

FIGURE 6.10 Direct form FIR structure

The difference equation (6.7) is implemented as a tapped delay line since
there are no feedback paths. Let M =5 (i.e., a fourth-order FIR filter);
then

y(n) = boz(n) + byz(n — 1) + bez(n - 2) + baz(n — 3) + bax(n — 4)

The direct form structure is given in Figure 6.10. Note that since the
denominator is equal to unity, there is only one direct form structure.

In MATLAB the direct form FIR structure is described by the row vector
b containing the {b,} coefficients. The structure is implemented by the
filter function, in which the vector a is set to the scalar value 1 as
discussed in Chapter 2.

This form is similar to that of the IR form. The system function H (2)
is converted into products of second-order sections with real coefficients.
These sections are implemented in direct form and the entire filter as a
cascade of second-order sections. From (6.5)

H(z) = bo+ biz™" + -+ bz MH (6.8)

h by -—M+1)
= 1+ -2z +---+—
b"( bo b

K
=by H (1 + Bk,ll—l + Bk,gz_z)

k=1

where K is equal to ‘_%J, and By ; and By are real numbers representing
the coefficients of second-order sections. For M = 7 the cascade form is
shown in Figure 6.11.

b
x(n) o~—> > > »—a y(n)
-1
Yz 81,1 3 z 32,1 3 P4 83’1

-1 -1
2By, 27 By, Z " By,

FIGURE 6.11 Cascade form FIR structure
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MATLAB
IMPLEMEN-
TATION

LINEAR-PHASE
FORM

Although it is possible to develop a new MATLAB function for the FIR
cascade form, we will use our dir2cas function by setting the denominator
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct
form from the cascade form.

For frequency-selective filters (e.g., lowpass filters) it is generally desirable
to have a phase response that is a linear function of frequency; that is, we
want

(HE®)=B~aw, -T<wsTw (6.9)

where 8 = 0 or +7/2 and « is a constant. For a causal FIR filter with
impulse response over [0, M —1] interval, the linear-phase condition (6.9)
imposes the following symmetry conditions on the impulse response h(n):

Rn)=h(M ~-1-n); f=00<n<M-1 (6.10)

h(n) = —h(M —1-n); f==*7/2, o0<n<M-1 (611)
An impulse response that satisfies (6.10) is called a symmetric impulse
response, while that in (6.11) is called an antisymmetric impulse response.
These symmetry conditions can now be exploited in a structure called the
linear-phase form.

Consider the difference equation given in (6.7) with a symmetric im-
pulse response in (6.10). We have

y(n) =boz(n)+blx(n-—1)+~-‘+b1z(n——M+2)+boz(n——M+1)
=bo[z(n)+a:(n—M+l)]+b1[:c(n—1)+a:(n—M+2)]+~-

The block diagram implementation of the above difference equation is
shown in Figure 6.12 for both odd and even M.

b, by

M=7 M=6

FIGURE 6.12 Linear phase form FIR structures (sy tric impulse response)
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Clearly, this structure requires 50% fewer multiplications than the di-
rect form. A similar structure can be derived for an antisymmetric impulse
response.

MATLAB The linear-phase structure is essentially a direct form drawn differently to
IMPLEMEN- save on multiplications. Hence in a MATLAB implementation the linear-
TATION phase structure is equivalent to the direct form.

[m] EXAMPLE 64 An FIR filter is given by the system function

_ 1 4, -8
H(z)—1+16162 +z
Determine and draw the direct, linear-phase, and cascade form structures.
a. Direct form: The difference equation is given by

y(n) = z(n) + 16.0625z(n — 4) +z(n—8)

and the direct form structure is shown in Figure 6.13(a).
b. Linear-phase form: The difference equation can be written in the form

y(n) = [z(n) + =(n — 8)] + 16.0625z(n — 4)

and the resulting structure is shown in Figure 6.13(b).
c. Cascade form:

>> b-[1,0,0,0,18+1/16,0,0,0,1];
>> [b0,B,A] = dir2cas(b,1)

x{n}

-4

r4 4
x{(n) o— >
Y 16.0625 Y
> >—ae y(n) y(n)

{a) Direct form {b) Linear-phase form

x{n) o—> > —e y{n)
- -1 -1 -1
z7'Y 28284 } Z 07071 4 Z'Y 070711 § 7Y -28284
-1 -1 -1 -1
z a0 1+ 7] o z 0.25 z 40

{c) Cascade form

FIGURE 6.13 FIR filter structures in Ezample 6.4
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[s] EXAMPLE 6.5

bo = 1
B =
1.0000 2.8284 4.0000
1.0000 0.7071 0.2500
1.0000 ~0.7071 0.2500
1.0000 -2.8284 4.0000
A=
1 0 1]
1 [v] 0
1 o 0
1 0 (o}
The cascade form structure is shown in Figure 6.13(c). [m]

For the filter in Example 6.4 what would be the structure if we desire a cascade
form containing linear-phase components with real coefficients?

We are interested in cascade sections that have symmetry and real coefficients.
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter
has an arbitrary zero at z = r/@, then there must be three other zeros at
(1/7)£68,rL—8, and (1/r)L —6 to have real filter coefficients. We can now make
use of this property. First we will determine the zero locations of the given
eighth-order polynomial. Then we will group four zeros that satisfy the above
property to obtain one (fourth-order) linear-phase section. There are two such
sections, which we will connect in cascade.

> b-[1,0,0,0,16+1/16,0,0,0,1] H
>> broots=roots(b)

broots =
-1.4142 + 1.4142i
-1.4142 - 1.4142i
1.4142 + 1.4142i
1.4142 - 1.4142i

-0.3536 + 0.3536i
-0.3536 - 0.3536i
0.3536 + 0.3536i
0.3536 - 0.3536i
>> Bi=real(poly([broots(1),broots(2),broots (5) ,broots(6)1))

Bl =
1.0000 3.5355 6.2500 3.5365 1.0000
>> B2=real(poly([broots(3) ,broots(4),broots(7),broots (8)1))
B2 =
1.0000 -3.5356 6.2500 -3.5355 1.0000
The structure is shown in Figure 6.14. w}

FIR Filter Structures

201



FREQUENCY
SAMPLING
FORM

FIGURE 6.14 Cascade of FIR linear-phase elements

In this form we use the fact that the system function H (z) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5 we recall that these samples are in
fact the M-point DFT values {H (k), 0<% k < M — 1} of the M-point
impulse response h (n). Therefore we have

H(z)=Z[h(n)]
= Z[IDFT {H (k)}]

Using this procedure, we obtain [see (5.17) on page 127]

(1-rM\S H(K)
H(z)= ( i ) gﬁ W (6.12)

This shows that the DFT H (k), rather than the impulse response h(n)
(or the difference equation), is used in this structure. It is also interesting
to note that the FIR filter described by (6.12) has & recursive form similar
to an IR filter because (6.12) contains both poles and zeros. The resulting
filter is an FIR filter since the poles at W,;;* are canceled by the roots of

The system function in (6.12) leads to a parallel structure as shown in
Figure 6.15 for M = 4.

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the WX factor. Then (6.12) can be expressed
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H(0)

A —NZ_1
H(1)
i/4 21
x{n) p w} —>—o y(n)
- HER)
—z4 i
‘m\}z—1
’ Hi3)
de
FIGURE 6.15 Frequency sampling structure forM =4
as (see Problem 6.10)
1-2M (& H(0)  H(M/2)
H(z) = H —_— X
() =37 {;21 W@+t 1y 619

where L = 1—”2;1 for M odd, L = —42‘— —1for M even, and {H (2), k=1,
..., L} are second-order sections given by

cos [LH (k)] — 2~ 1cos [AH (k) - 2_17"4_’2]

H =
k() 1-2z1cos (%) + 272

(6.14)

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16
for M = 4 containing real coefficients.

cos[ZH{(} 2|H11)l

z?

2cos (27/4)

- —cos[ZH(1) - 27/4)

1/4 ) H{0)

x(n) o> —e y(n)
\J —\1‘\iz—1
_z4 H@)

\qz—1
-1

FIGURE 6.16 Frequency sampling structure for M = 4 with real coefficients
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MATLAB
IMPLEMEN-
TATION

Given the impulse response h(n) or the DFT H (k), we have to deter-
mine the coefficients in (6.13) and (6.14). The following MATLAB function,
dir2fs, converts a direct form (h (n) values) to the frequency sampling
form by directly implementing (6.13) and (6.14).

function [C,B,A] = dir2fs(h)
% Direct form to Frequency Sampling form conversion
%
% [C,B,A] = dir2fs(h)
% C = Row vector containing gains for parallel sections
% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rows
% h = impulse response vector of an FIR filter
A
M = length(h);
H = ££t(h,M);
magH = abs(H); phal = angle(i)’;
% check even or odd M
if (M == 2%floor(M/2))
L = M/2-1; % M is even
Al = [1,-1,0;1,1,0];
€1 = [real(H(1)),real (H(L+2))];
else
L= (M-1)/2; % M is odd
AL = [1,-1,0);
c1 = [real(H(1))];

end

k = [1:L]1°;

% initialize B and A arrays

B = zeros(L,2); A = ones(L,3);

% compute denominator coefficients
A(1:L,2) = ~2#cos(2%pi*k/M); A = [A;A1);
% compute numerator coefficients
B(1:L,1) = cos(phal(2:L+1));

B(1:L,2) = —cos(phaH(2:L+1)-(2+pi*k/M));
% compute gain coefficients

C = [2*magH(2:L+1),C11%;

In the above function the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the second-order parallel sections
are given first, followed by H (0) and H(M/2) (if M is even). The B
matrix contains the numerator coefficients, which are arranged in length-
2 row vectors for each second-order section. The A matrix contains the
denominator coefficients, which are arranged in length-3 row vectors for
the second-order sections corresponding to those in B, followed by the
coefficients for the first-order sections.
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a EXAMPLE 6.6

Solution

A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
flter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z =T,
where the radius = is very close to one but is less than one (e-g., r = 0.99),
which results in

1- MM Mf H (k)

H(z)= ;
(=) M 1—rWifz*

— j2nk/
> H (k) H(ref2 M)

(6.15)
Now approximating H (re’2™/M) ~ H (e727*/M) for r ~ 1, we can obtain

a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem 6.11.

Let h(n) = 3{1,2,3,2,1}. Determine and draw the frequency sampling form.
1

MATLAB Script
>> h = [1,2,3,2,11/9;
>> {C,B,A]l = dir2fs(h)

C =
0.5818
0.0849
1.0000
B =
-0.8090 0.8090
0.3090 -0.3080
A=

1.0000 -0.6180 1.0000
1.0000 1.6180 1.0000
1.0000 -1.0000 0

Since M = 5 is odd, there is only one first-order section. Hence

1-27° —0.809 + 0.809z~1
H(z) = 05818y =G5 TRz-1 + 22
0.309 — 0.309z~" 1
R TS T T P z‘1:|
The frequency sampling form is shown in Figure 6.17. [u]

FIR Filter Structures

205



] EXAMPLE 6.7

Solution

-0.809 0.5818
z7! !
QGJB 0.809
-1
_1 z
0.2 0.309 0.0848
x{n) & > >—e y(n)
U !
-1.618 -0.309
—z-6 |
-1 \ Zat
1

FIGURE 6.17 Frequency sampling structure in Ezample 6.6

The frequency samples of a 32-point linear-phase FIR filter are given by

1, k=0,1,2
|H(k)| =405 k=3

0, k=4,5,...,15

Determine its frequency sampling form, and compare its computational com-
plexity with the linear-phase form.

In this example since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2ts function for which we will have to determine the impulse response h(n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as

H (k) = |H (k)| €7®, k=0,1,...,31
H®)| =|H(@E2-k)|, k=12,...,3 H{0)=1

4H(k)=—3—21§gk=—m(32-k), k=0,1,...,31

Now the IDFT of H (k) will result in the desired impulse response.

>> M = 32; alpha = (M-1)/2;

>> magHk = [1,1,1,0.5,zeros(1,25),0.5,1,1];

>> k1 = 0:15; k2 = 16:M-1;

>> angHk = [-alpha#*(2+pi)/M#ki, alpha* (2+pi) /M* (M-k2)]1;
>> H = magHk.*exp(j*angik);

>> h = real (ifft(H,M));

>> [C,B,A) = dir2fs(h)
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1.0000 1.8478 1.0000
1.0000 1.9616 1.0000
1.0000 -1.0000 0
1.0000 1.0000 0

Note that only four gain coefficients are nonzero. Hence the frequency sampling
form is

—0.9952 + 0.9952z ™" 0.9808 — 0.9808z"
1-z73% 1—1.9616z"1 + 22 1—1.84782-1 4 z~2
32 —0.9569 + 0.9569z* 1
1-1.6629z"1+272  1-—z71t

H(z)=

To determine the computational complexity, note that since H (0) = 1, the first-
order section requires no multiplication, while the three second-order sections
require three multiplications each for a total of nine multiplications per output
sample. The total number of additions is 13. To implement the linear-phase
structure would require 16 multiplications and 31 additions per output sample.
Therefore the frequency sampling structure of this FIR filter is more efficient
than the linear-phase structure. [m]

LATTICE FILTER STRUCTURES
——

ALL-ZERO
LATTICE
FILTERS

The lattice filter is extensively used in digital speech processing and in
the implementation of adaptive filters. It is a preferred form of realization
over other FIR or IIR filter structures because in speech analysis and in
speech synthesis the small number of coefficients allows a large number of
formants to be modeled in real time. The all-zero lattice is the FIR filter
representation of the lattice filter, while the lattice ladder is the IIR filter
representation.

An FIR filter of length M (or order M — 1) has a lattice structure with
M —1 stages as shown in Figure 6.18. Each stage of the filter has an input
and output that are related by the order-recursive equations {19}:

fm(n) = fM—l(n) +ngm—l(n - 1), m=12,... ,M-1

(6.16)

gm(n) = K fm-1(n) + gm-1{n — 1), m=12,...,M-1
where the parameters K, m = 1,2,...,M — 1, called the reflection
coefficients, are the lattice filter coefficients. If the initial values of fm(n)
and gn(m) are both the scaled value (scaled by Kp) of the filter input
z(n), then the output of the (M — 1) stage lattice filter corresponds to
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foln} fi(m f{n) u- 1(n} fM(n)
" " T 4 n
x(n} K, K K 4
~——e
Ko 21 Ki - K2 2 Km
goln g gﬁn) gain) gMjn) gmin

FIGURE 6.18  All-zero lattice filter
the output of an (M — 1) order FIR filter; that is,

fo(n) = go(n) = Koz(n)
y(n) = fu-1(n)
If the FIR filter is given by the direct form

M-1 M-1 b
H(z)= Y bnz ™ =bo (1 +Y ﬁz"") (6.18)

(6.17)

m=0 m=1

and if we denote the polynomial Apr-1(2) by

M-1
Ap-1(z) = (1 + Z aM_l(m)z‘"‘> ; (6.19)

m=1
bm
aM_l(m)=E,m=l,...,M—1

then the lattice filter coefficients {K} can be obtained by the following
recursive algorithm [19]:
Ko=bo
Ky1=oam-1(M-1)
Jm (2) = 27™Am (271)
Ap(2) = KmJm(2)
1- K2 !

K. = am(m),

m=M-1,...,1 (6.20)

Am-1(2) = m=M-1,...,1
m=M-2,...,1

Note that the above algorithm will fail if |Km| = 1 for any m = 1,...,
M — 1. Clearly, this condition is satisfied by linear-phase FIR filters since

ba—
bo = el = [Kar-1| = lane s~ 1) = | 22| =1

Therefore linear-phase FIR filters cannot be implemented using lattice
structures.
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TATION

Given the coefficients {bs} of the direct form, we can obtain the lattice
filter coefficients {Ky} using (6.20). This is done by the MATLAB func-
tion dir2latc given below. Note that the equation to compute JIm(2)
implies that the polynomial Jm(2) is a fliplr operation on the Ap(z)
polynomial.

function [K] = dir2latc(b)
% FIR Direct form to All-Zero Lattice form Conversion

% (K] = dir2latc(b)
% K = Lattice filter coefficients (reflection coefficients)
% b = FIR direct form coefficients (impulse response)

M = length(b);

K = zeros(1,M);

bl = b(1);

if b1 = 0

error(’b(1) is equal to zero’)
end

K(1) = b1; A = b/bl;

for m=M:-1:2

K(m) = A(m);

3 = £1iplr(A);

A= (A—K(m)*J)/(l-K(m)*K(m));
A= A(l:m-1);

end

The lattice filter is implemented using (6.16) and (6.17), which is done by
a latcfilt function, which is given below.

function [yl = latcfilt(K,x)
% LATTICE form realization of FIR filters
%
% y = latcfilt(K,x)
% y = output sequence
% K = LATTICE filter (reflection) coefficient array
% x = input sequence
%
Nx = length(x)-1;
x = K(1)*x;
M = length(K)-1i; K = K(2:M+1);
fg = [x; [0 x(1:Fx)11;
for m = 1:M
fg = [1,K(m);Km),1]+fg;
£g(2,:) = [0 £g(2,1:80];

end
y = fg(1,:);
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u] EXAMPLE 6.8

Solution

The equations (6.20) can also be used to determine the direct form
coefficients {b,,} from the lattice filter coefficients { K} using a recursive
procedure [19]:

Ao(2) = Jolz) =1
Am(2) = Amc1 (2) + Kmz 1 Imoa (2), m= 1,2,...,M-1
Ju(2) = 2™ Am (z71),

by = Koapr—1(m),

6.21
“m=12,...,.M-1 (621)

m=0,1,.... M -1

The MATLAB function latc2dir given below implements (6.21). Note
that the product K2~ Jm-1(2) is obtained by convolving the two cor-
responding arrays, while the polynomial Jm(2) is obtained by using a
f1iplr operation on the Am(2) polynomial.

function [b] = latc2dir(K)

% All-Zero Lattice form to FIR Direct form Conversion
%

% b} = latc2dir(K)

% b = FIR direct form coefficients (impulse response)

% K = Lattice filter coefficients (reflection coefficients)

M = length(K);

J=1; A=1;

for m=2:1:M

A = [A,0]+conv([0,K(m)],3);
J = £liplr(d);

end

b=A*K(1);

An FIR filter is given by the difference equation
13 5 2
y(n) = 2z(n) + ﬁz(n -1+ Zz(n -2)+ §z(n -3)

Determine its lattice form.

MATLAB Script
>> b=[2, 13/12, 5/4, 2/31;
>> K=dir2latc(b)
K=
2.0000 0.2500 0.5000 0.3333

Hence

1 1
Ko=2, K1=Z, K2=§,K3=

Ll

Lattice Filter Structures

211



z-1 21 21
x(n) &
2 13/12 5/4 2/3Y
—eo y(n)
(a)
* y(n)
1/4 12 1/3
x(n)’-—;—"
s 1/4 21 1/2 2 1/3
(b)

FIGURE 6.19 FIR filter structures in Ezample 6.8: (a) Direct form (b) Lattice
form

The direct form and the lattice form structures are shown in Figure 6.19. To
check that our lattice structure is correct, let us compute the impulse response
of the filter using both forms.

>> [x,n] = impseq(0,0,3];
>> format long

>> hdirect=filter(b,1,delta)
hdirect =

2.00000000000000  1.08333333333333  1.25000000000000  0.66666666666667

>> hlattice=latcfilt(K,delta)

hlattice
2.00000000000000  1.08333333333333  1.25000000000000  0.66666666666667

ALL-POLE
LATTICE
FILTERS

[m}

A lattice structure for an IIR filter is restricted to an all-pole system
function. It can be developed from an FIR lattice structure. Let an all-
pole system function be given by

1

H(z)= (6.22)

N
1+ Z an(m)z—™
m=1

which from (6.19) is equal to H(z) = gy Clearly, it is an inverse
system to the FIR lattice of Figure 6.18 (except for factor bp). This IIR
filter of order N has a lattice structure with N stages as shown in Figure
6.20. Each stage of the filter has an input and output that are related by
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IMPLEMEN-
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[m] EXAMPLE 6.9

Solution

x(n) = fyln} fy-1ln) fr(n) fi(n) = foln)

—Ky ~K -k
Ky K K
z—-'l z—‘l B Z;' y(n)
gnin) gn-1in giin) gyln) " gyln)

FIGURE 6.20 All-pole lattice filter

the order-recursive equations [19]:
fn(n) =z(n)
fm—l(n)=fm(n)-ngm—1(Tl—1), m=N,N-1,...,1
gm(n) = Kmfm-1(n) + gm-1(n—1), m=N,N-1,...,1
y(n) = fo(n) = go(n)

where the parameters Ky, m=1,2,...,M —1, are the reflection coef-
ficients of the all-pole lattice and are obtained from (6.20) except for Ko,
which is equal to 1.

(6.23)

Since the IIR lattice coefficients are derived from the same (6.20) proce-
dure used for an FIR lattice filter, we can use the dir2latc function in
MATLAB. Care must be taken to ignore the Ky coefficient in the K array.
Similarly, the latc2dir function can be used to convert the lattice {Kmn}
coefficients into the direct form {ay(m)} provided that Ko = 1 is used as
the first element of the K array. The implementation of an IIR lattice is
given by (6.23), and we will discuss it in the next section.

Consider an all-pole IIR filter given by
1

H(z) =
2) 1+ 821+ 52724 3273

Determine its lattice structure.

MATLAB Script
>> a=[1, 13/24, 5/8, 1/3];
>> K=dir2latc(b)

X =

1.0000 0.2500 0.5000 0.3333

Hence

W=
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LATTICE-
LADDER
FILTERS

z-—1 z—l z—‘l
Y~-1/3 Y-5/8 —13/24
x{n) e— o y(n)
(a)
x{n) o—> >
-1/3 -1/2 -1/4
1/3 1/2 1/4
z7! 27! z7?
— > >— - < yin
(b}

FIGURE 6.21 IIR filter structures in Ezample 6.9: (a) Direct form (b) Lattice
form

The direct form and the lattice form structures of this IIR filter are shown in
Figure 6.21. a

A general IIR filter containing both poles and zeros can be realized as
a lattice-type structure by using an all-pole lattice as the basic building
block. Consider an IIR filter with system function

M
3 bu(k)zF
H(z) = =2 - iM(’) (6.24)
1+ P oy A0
k=1

where, without loss of generality, we assume that N > M. A lattice-
type structure can be constructed by first realizing an all-pole lattice
with coefficients Kmm, 1 < m < N for the denominator of (6.24), and
then adding a ladder part by taking the output as a weighted linear
combination of {gm(n)} as shown in Figure 6.22 for M = N. The result

xtn) = fy(n)

fN- 1(") fz(")

fi{n)

foln)

-

_KN

Ky

> g

._K2

2=

K

gnin)

Cn

" gy-atm)
Crn-1

gan)
C;

g1{n}
¢

Co

golm

yi{n)

P

FIGURE 6.22 Lattice-ladder structure for realizing a pole-zero IIR filter.
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is a pole-zero IIR filter that has the lattice-ladder structure. Its output is
given by

M
y(m) = 3 Crngm(m) (6.25)

m=0

where {Cp} are called the ladder coefficients that determine the zeros of
the system function H(2). It can be shown (19] that {Cr} are given by

M
Bu(2) =3 Codm(2) (626)

m=0

where Jm(2) is the polynomial in (6.20). From (6.26) one can obtain a
recursive relation

Bp(z) = Bm—1(2) + CmJm(z); m=0,2,....M

or equivalently,

M
Cm=bn+ Y Cai(i-m); m=M M~1...,0 (6.27)

i=m+1

from the definitions of Br,(z) and Am(z).

To obtain a lattice-ladder structure for a general rational IIR filter, we
can first obtain the lattice coefficients {Kin} from Ay (2) using the recur-
sion (6.20). Then we can solve (6.27) recursively for the ladder coefficients
{Cp} to realize the numerator B v(z). This is done in the MATLAB func-
tion dir2ladr given below. It can also be used to determine the all-pole
lattice parameters when the array b is set to b= [11.

function [K,C] = dir2ladr(b,a)
% IIR Direct form to pole-zero Lattice/Ladder form Conversion

%
% [k,C] = dir2ladr(b,a)

% K = Lattice coefficients (reflection coefficients), [X1,...,KK]
% ¢ = Ladder Coefficients, fco,...,CN]

% b = Numerator polynomial coefficients (deg <= Num deg)

% a = Denominator polynomial coefficients

al = a(1); a = a/al; b = b/al;
M = length(b); N = length(a);
if M>N

error(’
end

#++ length of b must be <= length of a k)

Lattice Filter Structures
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b = [b, zeros(1,N-M)]; K = zeros(1,N-1);
A = zeros(N-1,N-1); C = b;
for m = N-1:-1:1
A(m,1:m) = -a(2:m+1)*C(m+1);
K(m) = a(m+1);
J = flipir(a);
a = (a-K(m)*J)/(1-K(m)*K(m));
a = a(l:m); :
C(m) = b(m) + sum(diag(A(m:N-1,1:N-m)));
end

Note: To use this function, N > M. If M > N, then the numerator
An(2) should be divided into the denominator Bj(z) using the deconv
function to obtain a proper rational part and a polynomial part. The
proper rational part can be implemented using a lattice-ladder structure,
while the polynomial part is implemented using a direct structure.

To convert a lattice-ladder form into a direct form, we first use the
recursive procedure in (6.21) on {Km} coefficients to determine {an(k)}
and then solve (6.27) recursively to obtain {br(k)}. This is done in the
MATLAB function ladr2dir given below.

function [b,a] = ladr2dir(K,C)
% Lattice/Ladder form to IIR Direct form Conversion

% [b,a] = ladr2dir(X,C)

% b = numerator polynomial coefficients

% a = denominator polymonial coefficients

% K = Lattice coefficients (reflection coefficients)
% C = Ladder coefficients

=
L}

length(K); M = length(C);
¢ = [C, zeros(1,N-M+1)];
J=1; a =1; A = zeros(N,N);
for m=1:1:N
a = [a,0]+conv([0,K(m)],J);
A(m,1:m) = -a(2:m+1);
J = fliplr(a);
end
b(N+1) = C(N+1);
for m = N:-1:1
Alm,1:m) = A(m,1:m)*C(m+1);
b(m) = C(m) - sum(diag(A(m:N,1:N-m+1)));
end

The lattice-ladder filter is implemented using (6.23) and (6.25). This
is done in the MATLAB function ladrfilt, which is given below. It should
be noted that due to the recursive nature of this implementation along
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Solution

with the feedback loops, this MATLAB function is neither an elegant nor
an efficient method of implementation. It is not possible to exploit MAT-
LAB’s inherent parallel processing capabilities in implementing this lattice-
ladder structure.

function [y] = ladrfilt(K,C,x)
% LATTICE/LADDER form realization of IIR filters

% [yl = ladrfilt(K,C,x)

y = output sequence

% K = LATTICE (reflection) coefficient array
C
x

LADDER coefficient array
input sequence

%
Nx = length(x); y = zeros{(1,Nx);
N = length(C); f = zeros(N,Nx); g = zeros(N,Nx+1);
£(N,:) = x;
for n = 2:1:Nx+1
for m = N:-1:2
f(m-1,n-1) = £(m,n-1) - K(m-1)*g(n-1,n-1);
g(m,n) = K(m-1)#f (m-1,n-1) + g(m-1,0-1);
end
g(1,n) = £(1,n-1);
end
y = Ckg(:,2:Nx+1);

Convert the following pole-zero IIR filter into a lattice-ladder structure.

1427 42:72 4278
1+ 8214+ 22724 3273

H(z)=

MATLAB Script
>> b = [1,2,2,1) a = [1, 13/24, 5/8, 1/3];
>> [K,C] = dir2ladrc(b)
K =

0.2500 0.5000 0.3333
C=

-0.2695 0.8281 1.4583 1.0000

Hence

and

Co = —0.2695, C, = 0.8281, C> = 1.4583, C3=1

Lattice Filter Structures
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x(n) e > e y(n)
12 177 2
ST I L \
-1
+ -3 L \
(a)
xin) & >
-1/3 -12 -1/4
3 12 14
z! B z7! z!
10 1.4583 0.8281 —0.2695
> »—e yin)
(b}

FIGURE 6.23 IIR filter structures in Ezample 6.10: (a) Direct form (b) Lattice-
ladder form

The resuiting direct form and the lattice-ladder form structures are shown in
Figure 6.23. To check that our lattice-ladder structure is correct, let us compute
the first 8 samples of its impulse response using both forms.

>> [x,n]=impseq(0,0,7)
>> format long
>> hdirect = filter(b,a,x)
hdirect =
Columns 1 through 4
1.00000000000000
Columns 5 through 8
—0.64752302768488  0.45261700163162
>> hladder = ladrfilt(X,C,x)
hladder =
Columns 1 through 4
1.00000000000000
Columns § through 8
—0.54752302758488

1.45833333333333  0.58506944444444 -0.56170428240741

0.28426911049255 -0.25435705167494
1.45833333333333  0.58506944444444 -0.56170428240741

0.45261700163162  0.28426911049255 -0.25435705167494

u]
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PROBLEMS

P6.1

—l-

A causal linear time-invariant system is described by

1y >~ (1)
im=3(3) so-0+>(5) -0
=1

Determine and draw the block diagrams of the following structures. Compute the response
of the system to

z(n) =u(n), 0<n<100

in each case using the corresponding structures.

a. Direct form I

b. Direct form II

¢. Cascade form containing second-order direct form 1I sections
d. Parallel form containing second-order direct form 1I sections
e. Lattice-ladder form

P6.2 An IIR filter is described by the following system function:
H=2 14027 4272 2-z71 1+2271 4272
““\1-0.82"1 +0.6422 1-0.75z"1 1+0.81z-2
Determine and draw the following structures.
a. Direct form I
b. Direct form II
¢. Cascade form containing second-order direct form II sections
d. Parallel form containing second-order direct form 11 sections
e. Lattice-ladder form
P6.3 An IIR filter is described by the following system function:
—14.75 - 12.927" 24.5 4 26.8227}
H =
(2) (1 -3z 14 %z"’) + (1 —z 141272
Determine and draw the following structures:
a. Direct form I
b. Direct form II
¢. Cascade form containing second-order direct form 11 sections
d. Parallel form containing second-order direct form II sections
e. Lattice-ladder form
P64 Figure 6.24 describes a causal linear time-invariant system. Determine and draw the
following structures:
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x(n} @
-1/2 -2/3 0.56
12 2/3 -0.56
1 z—‘l z—1 z—1
—e y(n)

FIGURE 6.24 Structure for Problem 6.4

a. Direct form I
b. Direct form IT
¢. Cascade form containing second-order direct form II sections

d. Parallel form containing second-order direct form II sections

P6.5 A linear time-invariant system with system function
05(1+27)°
H(z) = 3.1+ 7,-2._18,3_1,4_11,-54 7,6
(1-3z 1+ 3§22 g2 —gr 7t ;¥ T 16 )
is to be implemented using a flowgraph of the form shown in Figure 6.25.
a. Fill in all the coefficients in the diagram.
b. Is your solution unique? Explain.
P6.6 A linear time-invariant system with system function
H(z) = 5+ 11.227" +5.44272 — 0.3842™% — 235527 — 1.22882"°
- 1+ 0.8z-1 — 0.512z—3 — 0.40962—4
is to be implemented using a flowgraph of the form shown in Figure 6.26. Fill in all the
coefficients in the diagram.
P6.7 Consider the linear time-invariant system given in Problem 6.5.
6
0.5(1+2z7!
H(z) = 3.1 1,2 13(_3 1)_.4 1.5 L 7.6
(1—-2-2 + 527" — 167 —g¥ "t — 3% + 16% )
—1 ——3 —1
x{n)e— —e y{n}
21 71 7 7 {
C—1 J ] il 11 1
- 2 r1—1' i 21
— I— (] So— —3 ] I
FIGURE 6.25 Structure for Problem 6.5
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——aey(n)

—3
x{n) e-——g -
—

FIGURE 6.26 Structure for Problem 6.6

It is to be implemented using a flowgraph of the form shown in Figure 6.27.
a. Fill in all the coefficients in the diagram.

b. Is your solution unique? Explain.

An FIR filter is described by the difference equation

10 _
v =3 (3) ata-)

k=0
Determine and draw the block diagrams of the following structures.
a. Direct form
b. Linear-phase form

—3 3 —_—1
x(n) — = —e y(n)
r4 z
| — { — —) { —
21 1
m—) {—— 1
—
L Zal
| —  —
— (O
FIGURE 6.27 Structure for Problem 6.7
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P6.9

P6.10

P6.11

c. Cascade form
d. Frequency sampling form
A linear time-invariant system is given by the system function

10
HE=) (2™

k=0

Determine and draw the block diagrams of the following structures.
a. Direct form

b. Cascade form

c. Lattice form

d. Frequency sampling form

Using the conjugate symmetry property of the DFT

_JH(), k=0
H(k)—{H°(M—k), k=1,....,M-1

and the conjugate symmetry property of the W,,* factor, show that (6.12) can be put in
the form (6.13) and (6.14) for real FIR filters.

To avoid poles on the unit circle in the frequency sampling structure, one samples H (z) at
2 = 72 /M =0, .. M~ 1, where r ~ 1(but < 1) as discussed in this chapter.

a. Using
H (re”™*/M) ~ H (k)

show that the frequency sampling structure is given by

-M L
HE=1200 {22|H(k)|m(z)+ 2O, %‘%}
k=1

where
cos [LH (k)] —rz ™" cos [£H (k) - 5

1—2rz-Ycos (2LM'°) +2z-2

He(2) = ,k=1,...,L

and M is even.

b. Modify the MATLAB function dir2fs (which was developed in this chapter) to
implement the above frequency sampling form. The format of this function should be

[C,B,A,TM] = dir2fs(h,r)

% Dixect form to Frequency Sampling form conversion
%
% [C,B,A] = dir2fs(h)

% C = Row vector containing gains for parallel sections

% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rows
% ™M = r°M factor needed in the feedforward loop
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% h = impulse response vector of an FIR filter
% r = radius of the circle over which samples are taken (r<t)
%

¢. Determine the frequency sampling structure for the impulse response given in Example
6.6 using the above function.

Determine the impulse response of an FIR filter with lattice parameters
Ko=2, Ky =06, K2=0.3, K3 =05, K¢ =09

Draw the direct form and lattice form structures of the above filter.
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FIR FILTER DESIGN

We now turn our attention to the inverse problem of designing systems
from the given specifications. It is an important as well as a difficult prob-
lem. In digital signal processing there are two important types of systems.
The first type of systems perform signal filtering in the time domain and
hence are called digital filters. The second type of systems provide signal
representation in the frequency domain and are called spectrum analyzers.
In Chapter 5 we described signal representations using the DFT. In this
and the next chapter we will study several basic design algorithms for
both FIR and IIR filters. These designs are mostly of the frequency selec-
tive type; that is, we will design primarily multiband lowpass, highpass,
bandpass, and bandstop filters. In FIR filter design we will also consider
systems like differentiators or Hilbert transformers, which, although not
frequency-selective filters, nevertheless follow the design techniques be-
ing considered. More sophisticated filter designs are based on arbitrary
frequency-domain specifications and require tools that are beyond the
scope of this book.

We first begin with some preliminary issues related to design philos-
ophy and design specifications. These issues are applicable to both FIR
and TIR filter designs. We will then study FIR filter design algorithms in
the rest of this chapter. In Chapter 8 we will provide a similar treatment
for IIR filters.

PRELIMINARIES

The design of a digital filter is carried out in three steps:

o Specifications: Before we can design a filter, we must have some
specifications. These specifications are determined by the applications.

o Approximations: Once the specifications are defined, we use various
concepts and mathematics that we studied so far to come up with a filter
description that approximates the given set of specifications. This step is
the topic of filter design.
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o Implementation: The product of the above step is a filter descrip-
tion in the form of either a difference equation, or a system function H (2),
or an impulse response h(n). From this description we implement the fil-
ter in hardware or through software on a computer as we discussed in
Chapter 6.

In this and the next chapter we will discuss in detail only the second step,
which is the conversion of specifications into a filter description.

In many applications like speech or audio signal processing, digital
filters are used to implement frequency-selective operations. Therefore,
specifications are required in the frequency-domain in terms of the de-
sired magnitude and phase response of the filter. Generally a linear phase
response in the passband is desirable. In the case of FIR filters, it is pos-
sible to have exact linear phase as we bave seen in Chapter 6. In the case
of IIR filters a linear phase in the passband is not achievable. Hence we
will consider magnitude-only specifications.

The magnitude specifications are given in one of two ways. The first
approach is called absolute specifications, which provide a set of require-
ments on the magnitude response function |H (¢7*)]- These specifications
are generally used for FIR filters. IIR filters are specified in a somewhat
different way, which we will discuss in Chapter 8. The second approach is
called relative specifications, which provide requirements in decibels (dB),
given by

|H(e™)]
dB scale = ~20log;g w7 = 0
P01 H(€7) | max
This approach is the most popular one in practice and is used for both
FIR and IIR filters. To illustrate these specifications, we will consider a
lowpass filter design as an example.

A typical absolute specification of a lowpass filter is shown in Figure 7.1a,
in which

» band [0, w,] is called the passband, and &, is the tolerance (or ripple)
that we are willing to accept in the ideal passband respounse,

o band [ws, 7] is called the stopband, and & is the corresponding
tolerance (or ripple), and

o band [wp,w;] is called the transition band, and there are no restric-
tions on the magnitude response in this band.

A typical absolute specification of a lowpass filter is shown in Figure 7.1b,
in which

e R, is the passband ripple in dB, and

e A, is the stopband attenuation in dB.

Preliminaries

225



Passband
ripple

| Transition Stopband
:4—- band ripple

|H(e/*)|

(a)

Decibels

" I

FIGURE 7.1 FIR filter specifications: (a) Absolute (b) Relative

The parameters given in the above two specifications are obviously
related. Since |H (ef“’)lxmx in absolute specifications is equal to (1+ 1),
we have

1-6
= ~20log;g —— > 0 (= .
R, g1°1+61> (=0) (7.1)
and
62
A, =—-20log)g ——>0(>1) (71.2)
+6
0 EXAMPLE 7.1 In a certain filter’s specifications the passband ripple is 0.25 dB, and the stop-
band attenuation is 50 dB. Determine &; and 62.
Solution Using (7.1), we obtain
R, =0.25 = —20log 1=8 5 =00144
10 1 + 61 .
Using (7.2), we obtain
A, =50 = —20log, b _ _20l0g — % s5-0032 O
01+ 6 107 +0.0144 )
[m] EXAMPLE 7.2  Given the passband tolerance 6, = 0.01 and the stopband tolerance §2 = 0.001,
determine the passband ripple R, and the stopband attenuation A,.
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From (7.1) the passband ripple is

1-6
= -20]