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Abstract

The CACAO Java Virtual Machine was designed as a 64-bit Java Virtual
Machine on the Institut für Computersprachen der Technischen Universität
Wien in 1996. The primary intent of CACAO was to build the fastest Just-
In-Time compiler available at this time of the Alpha architecture.

This document describes some optimizations and enhancements imple-
mented in CACAO like lazy class loading and instruction combining with
constant operands to speed up compile and run time.

Furthermore experiences of porting the CACAO Java Virtual Machine to
two new architectures are presented. These new architectures are the IA32
and AMD64 architecture. Especially the porting to the IA32 architecture is
interesting because a 32-bit architecture is not a preferred target architecture
for CACAO.

Finally the implemented optimizations and the ports are evaluated against
CACAO itself and well-known Java Virtual Machines.
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Chapter 1

Introduction

1.1 About CACAO

The CACAO Java Virtual Machine [Gra97] was designed as a 64-bit Java
Virtual Machine on the Institut für Computersprachen der Technischen Uni-
versiät Wien in 1996. A Java Virtual Machine [LY99] executes Java byte
code which is the binary representation of a compiled source code written in
the Java Programming Language [GJSB00].

The primary intent of CACAO was a fast compiling and executing Java
Virtual Machine, thus is was designed to use a compile-only approach with a
Just-In-Time compiler. Compile-only means that the Java Virtual Machine
only uses a compiler which produces native machine code and no interpreter.
A Just-In-Time compiler compiles each executed Java method into native
machine code exactly when the method is called.

The target architecture CACAO was developed for is the DEC Alpha.
The Alpha architecture is a 64-bit RISC architecture which means that CA-
CAO can be easily ported to other 64-bit RISC architectures like MIPS.

1.2 Motivation

The early CACAO implementation was trimmed to run some benchmarks
and daily-usage console Java programs like Java compilers. This means a
simple thread support was implemented and a mostly static run time system.
This implementation was sufficient to run the Sun Java compiler javac and
most SPEC benchmarks [Cor98] which have been patched to run as console

6



CHAPTER 1. INTRODUCTION 7

applications since AWT was not implemented. The development of CACAO
has nearly stopped in 1999.

In 2002 the CACAO development team decided to push the CACAO de-
velopment further and to port CACAO to the famous IA32 architecture. Af-
ter this port was done the next obvious architecture was AMD’s new AMD64
architecture. The experiences of both ports are described throughout this
document in section 3.6 and 3.7 respectively.

Since CACAO was now ready to nearly run on every PC, aside from the
fact that CACAO does not compile or run under Microsoft Windows yet, the
CACAO development team decided to make CACAO a standard compliant
Java Virtual Machine and to release CACAO under the GNU General Public
License in the future. This means that some run time parts of CACAO had
to be restructured mostly to be thread safe and reentrant.

One big part was the class loading system. A standard compliant Java
Virtual Machine must support lazy class loading and lazy class linking. Since
CACAO only supported eager class loading and linking this has to be imple-
mented completely new (see chapter 2). This change not even made CACAO
more standard compliant but made it faster in startup times of the Java Vir-
tual Machine which will be shown in the evaluation chapter of this document
(see chapter 4).



Chapter 2

Class Loader

2.1 Introduction

A Java Virtual Machine dynamically loads, links and initializes classes and
interfaces when they are needed. Loading a class or interface means locating
the binary representation—the class files—and creating a class or interface
structure from that binary representation. Linking takes a loaded class or
interface and transfers it into the runtime state of the Java Virtual Machine so
that it can be executed. Initialization of a class or interface means executing
the static class or interface initializer <clinit>.

The following sections describe the process of loading, linking and ini-
talizing a class or interface in the CACAO Java Virtual Machine in greater
detail. Further the used data structures and techniques used in CACAO and
the interaction with the GNU Classpath [Fou04] are described.

2.2 System class loader

The class loader of a Java Virtual Machine is responsible for loading all type
of classes and interfaces into the runtime system of the Java Virtual Machine.
Every Java Virtual Machine has a system class loader which is implemented
in java.lang.ClassLoader and this class interacts via native function calls
with the Java Virtual Machine itself.

The GNU Classpath implements the system class loader in the GNU
Classpath specific class gnu.java.lang.SystemClassLoader which extends
java.lang.ClassLoader and interacts with the Java Virtual Machine. The

8



CHAPTER 2. CLASS LOADER 9

bootstrap class loader is implemented in java.lang.ClassLoader plus the
Java Virtual Machine depended class java.lang.VMClassLoader. This class
is the main class how the bootstrap class loader of the GNU Classpath in-
teracts with the Java Virtual Machine. The main function of this class is

static final native Class loadClass(String name, boolean resolve)

throws ClassNotFoundException;

This native function is implemented in the CACAO Java Virtual Ma-
chine, located in nat/VMClassLoader.c and calls the internal loader func-
tions of CACAO class loading system. If the name argument is NULL, a
java.lang.NullPointerException is created and the function returns NULL.

If the name is non-NULL a new UTF8 string of the class’ name is created
in the internal symbol table via

utf *javastring_toutf(java_lang_String *string, bool isclassname);

This function converts a java.lang.String string into the internal used
UTF8 string representation. isclassname tells the function to convert any
. (periods) found in the class name into / (slashes), so the class loader can
find the specified class in the file system or in the zip/jar file.

Then a new classinfo structure (see figure 2.1) is created via the

classinfo *class_new(utf *classname);

function call. This function creates a unique representation of this class,
identified by its classname, in the JVM’s internal class hashtable. The newly
created classinfo structure is initialized with default values like setting
loaded, linked and initialized to false which guarantee a definite state
of a new class.

The next step is to actually load the class requested. Thus the main
loader function

classinfo *class_load(classinfo *c);

is called, which is a wrapper function to the real loader function

classinfo *class_load_intern(classbuffer *cb);
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struct classinfo { /* class structure */

...

s4 flags; /* ACC flags */

utf *name; /* class name */

s4 cpcount; /* number of entries in constant pool */

u1 *cptags; /* constant pool tags */

voidptr *cpinfos; /* pointer to constant pool info structures */

classinfo *super; /* super class pointer */

classinfo *sub; /* sub class pointer */

classinfo *nextsub; /* pointer to next class in sub class list */

s4 interfacescount; /* number of interfaces */

classinfo **interfaces; /* pointer to interfaces */

s4 fieldscount; /* number of fields */

fieldinfo *fields; /* field table */

s4 methodscount; /* number of methods */

methodinfo *methods; /* method table */

...

bool initialized; /* true, if class already initialized */

bool initializing; /* flag for the compiler */

bool loaded; /* true, if class already loaded */

bool linked; /* true, if class already linked */

s4 index; /* hierarchy depth (classes) or index */

/* (interfaces) */

s4 instancesize; /* size of an instance of this class */

...

vftbl_t *vftbl; /* pointer to virtual function table */

methodinfo *finalizer; /* finalizer method */

u2 innerclasscount; /* number of inner classes */

innerclassinfo *innerclass;

...

utf *packagename; /* full name of the package */

utf *sourcefile; /* classfile name containing this class */

java_objectheader *classloader; /* NULL for bootstrap classloader */

};

Figure 2.1: classinfo structure
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This wrapper function is required to ensure some requirements:

• enter a monitor on the classinfo structure to make sure that only one
thread can load the same class or interface at the same time

• check if the class or interface is loaded, if it is true, leave the monitor
and return immediately

• measure the loading time if requested

• initialize the classbuffer structure with the actual class or interface
data

• reset the loaded field of the classinfo structure to false and remove
the classinfo structure from the internal class hashtable if an error
or exception during loading

• free any allocated memory

• leave the monitor

The class load function is implemented to be reentrant. This must
be the case for the eager class loading algorithm implemented in CACAO
(described in more detail in section 2.3.1). Furthermore this means that
serveral threads can load different classes or interfaces at the same time on
multiprocessor machines.

The class load intern function preforms the actual loading of the bi-
nary representation (see figure 2.2) of the class or interface.

During loading some verifier checks are performed which can throw an er-
ror. This error can include a java.lang.ClassFormatError or a java.lang.NoClassDefFoundEr
Some of these java.lang.ClassFormatError checks are

• Truncated class file — unexpected end of class or interface data

• Bad magic number — class or interface does not start with the magic
bytes (0xCAFEBABE)

• Unsupported major.minor version — the byte code version of the given
class or interface is not supported by the JVM

The actual loading of the bytes from the binary representation is done
via the suck * functions. These functions are
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0xCAFEBABE

Header

Constant Pool

Type Information

and
Bytecodes

Figure 2.2: Binary representation of a class or interface

• suck u1: load one unsigned byte (8 bit)

• suck u2: load two unsigned bytes (16 bit)

• suck u4: load four unsigned bytes (32 bit)

• suck u8: load eight unsigned bytes (64 bit)

• suck float: load four bytes (32 bit) converted into a float value

• suck double: load eight bytes (64 bit) converted into a double value

• suck nbytes: load n bytes

Loading signed values is done via the suck s[1,2,4,8] macros which
cast the loaded unsigned bytes to signed values. All these functions take
a classbuffer structure pointer as argument which contains the binary rep-
resentation and the size of the class or interface.

This classbuffer structure is filled with data via the

classbuffer *suck_start(classinfo *c);

function. This function tries to locate the class, specifed with the classinfo
structure, in the CLASSPATH. This can be a plain class file in the file system
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or a file in a zip/jar file. If the class file is found, the classbuffer is filled
with data collected from the class file, including the class file size and the
binary representation of the class.

Before any read of a byte from the binary representation with a suck *

function, the remaining bytes in the classbuffer data array must be checked
with the

static inline bool check_classbuffer_size(classbuffer *cb, s4 len);

function. If the remaining bytes number is less than the amount of the
bytes to be read, specified by the len argument, a java.lang.ClassFormatError
with the detail message Truncated class file—as mentioned before—is thrown.

The following subsections describe chronologically in greater detail the
individual loading steps of a class or interface from it’s binary representation.

2.2.1 Constant pool loading

The class’ constant pool is loaded via

static bool class_loadcpool(classbuffer *cb, classinfo *c);

from the constant pool table in the binary representation of the class
of interface. The classinfo structure has two pointers to arrays which
contain the class’ constant pool infos, namely: cptags and cpinfos. cptags
contains the type of the constant pool entry. cpinfos contains a pointer to
the constant pool entry itself.

The constant pool needs to be parsed in two passes. But some constant
pool types can be completely resolved in the first pass and need no further
processing. These types are:

• CONSTANT Integer

• CONSTANT Float

• CONSTANT Long

• CONSTANT Double

• CONSTANT Utf8
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The remaining constant pool entries need two passes:

• CONSTANT Class

• CONSTANT String

• CONSTANT NameAndType

• CONSTANT Fieldref

• CONSTANT Methodref

• CONSTANT InterfaceMethodref

In the first pass the information loaded is saved in temporary structures,
which are further processed—if required—in the second pass, when the com-
plete constant pool has been traversed. Only when all constant pool entries
have been processed, every constant pool entry can be completely resolved,
but this resolving can only be done in a specific order:

1. CONSTANT Class

2. CONSTANT String

3. CONSTANT NameAndType

4. CONSTANT Fieldref

CONSTANT Methodref

CONSTANT InterfaceMethodref — these entries are combined into one
structure

In the second pass the references are resolved and the runtime structures
are created. Any UTF8 strings, constant nameandtype structures or refer-
enced classes are resolved with the

voidptr class_getconstant(classinfo *c, u4 pos, u4 ctype);

function. This functions checks for type equality and then returns the
requested cpinfos slot of the specified class.
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2.2.2 Interface loading

Interface loading is very simple and straightforward. After reading the num-
ber of interfaces, for every interface referenced, a u2 constant pool index is
read from the currently loading class or interface. This index is used to re-
solve the interface class via the class getconstant function from the class’
constant pool. This means, interface loading is more interface resolving than
loading. The resolved interfaces are stored in an classinfo * array allo-
cated by the CACAO class loader system. The memory pointer of the array
is assigned to the interfaces field of the clasinfo structure.

2.2.3 Field loading

The number of fields—fields count—of the class or interface is read as u2
value from the binary representation of the class or interface (see figure 2.3).

fields count

fields[]

field info

field info

...

field info

�
�

�

Figure 2.3: Fields area in binary representation of a class or interface

For each field the function

static bool field_load(classbuffer *cb, classinfo *c, fieldinfo *f);

is called. The fieldinfo * argument is a pointer to a fieldinfo struc-
ture (see figure 2.4) allocated by the CACAO class loader system. The
fields’ name and descriptor are resolved from the class constant pool via
class getconstant. If the verifier option is turned on, the fields’ flags,
name and descriptor are checked for validity and can result in throwing a
java.lang.ClassFormatError.

Each field can have some attributes. The number of attributes is read
as u2 value from the binary representation. If the field has the ACC FINAL



CHAPTER 2. CLASS LOADER 16

struct fieldinfo { /* field of a class */

s4 flags; /* ACC flags */

s4 type; /* basic data type */

utf *name; /* name of field */

utf *descriptor; /* JavaVM descriptor string of */

/* field */

s4 offset; /* offset from start of object */

/* (instance variables) */

imm_union value; /* storage for static values */

/* (class variables) */

...

};

Figure 2.4: fieldinfo structure

bit set in the flags, the ConstantValue attribute is available. This is the
only attribute processed by field load and can occur only once, otherwise
a java.lang.ClassFormatError is thrown. The ConstantValue entry in
the constant pool contains the value for a final field. Depending on the
fields’ type, the proper constant pool entry is resolved and assigned.

2.2.4 Method loading

Like for fields, the number of methods of the class or interface—methods count—
is read from the binary representation (see figure 2.5) as u2 value.

methods count

methods[]

method info

method info

...

method info

�
�

�

Figure 2.5: Method area in binary representation of a class or interface

For each method found the function
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static bool method_load(classbuffer *cb, classinfo *c, methodinfo *m);

is called. The methodinfo * argument is a pointer to a methodinfo

structure (see figure 2.6) allocated by the CACAO class loading system. The
method’s name and descriptor are resolved from the class constant pool
via class getconstant. With the verifier turned on, some method checks
are carried out. These include flags, name and descriptor checks and
argument count check.

The method loading function has to distinguish between a native and
a ”normal” Java method. Depending on the ACC NATIVE flag bit a different
stub is created.

For a Java method, a compiler stub is created. The purpose of this stub
is to call the CACAO JIT compiler with a pointer to the byte code of the
Java method as argument to compile the method into machine code. During
code generation the pointer to this compiler stub routine is used as temporary
method call target, if the method is used in a function call and is not compiled
yet. After the target method is compiled, the new entry point of the method
is patched into the generated code and the compiler stub is needless, thus it
is freed.

If the method is a native method, the CACAO class loader system tries to
find the native function. If the function was found, a native stub is generated.
This stub is responsible to manipulate the method’s arguments to be suitable
for the native method called. This includes inserting the JNI environment
pointer as first argument and, if the native method has the ACC STATIC

flag set, inserting a pointer to the methods class as second argument. If the
native method is static, the native stub also checks if the method’s class
is already initialized. If the method’s class is not initialized whilst the native
stub is generated, a asm check clinit calling code is emitted.

Each method found in the binary representation can have some attributes.
The method loading function processes two of them: Code and Exceptions.

The Code attribute is a variable-length attribute which contains the Java
Virtual Machine instructions—the byte code—of the Java method. If the
method is either native or abstract, it must not have a Code attribute,
otherwise it must have exactly one Code attribute. Additionally to the
byte code, the Code attribute contains the exception table and attributes
to Code attribute itself. One exception table entry contains the start pc,
end pc and handler pc of the try-catch block, each read as u2 value, plus
a reference to the class of the catch type. Currently there are two at-
tributes of the Code attribute defined in the Java Virtual Machine specifica-
tion: LineNumberTable and LocalVariableTable. CACAO only processes
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struct methodinfo { /* method structure */

java_objectheader header; /* we need this in jit’s monitorenter */

s4 flags; /* ACC flags */

utf *name; /* name of method */

utf *descriptor; /* JavaVM descriptor string of method */

...

bool isleafmethod; /* does method call subroutines */

classinfo *class; /* class, the method belongs to */

s4 vftblindex; /* index of method in virtual function */

/* table (if it is a virtual method) */

s4 maxstack; /* maximum stack depth of method */

s4 maxlocals; /* maximum number of local variables */

s4 jcodelength; /* length of JavaVM code */

u1 *jcode; /* pointer to JavaVM code */

...

s4 exceptiontablelength;/* exceptiontable length */

exceptiontable *exceptiontable; /* the exceptiontable */

u2 thrownexceptionscount;/* number of exceptions attribute */

classinfo **thrownexceptions; /* checked exceptions a method may throw */

u2 linenumbercount; /* number of linenumber attributes */

lineinfo *linenumbers; /* array of lineinfo items */

...

u1 *stubroutine; /* stub for compiling or calling natives */

...

};

Figure 2.6: methodinfo structure
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the LineNumberTable attribute. A LineNumberTable entry consist of the
start pc and the line number, which are stored in a lineinfo structure.

The linenumber count and the memory pointer of the lineinfo structure
array are assigned to the classinfo fields linenumbercount and linenumbers

respectively.

The Exceptions attribute is a variable-length attribute and contains the
checked exceptions the Java method may throw. The Exceptions attribute
consist of the count of exceptions, which is stored in the classinfo field
thrownexceptionscount, and the adequate amount of u2 constant pool in-
dex values. The exception classes are resolved from the constant pool and
stored in an allocated classinfo * array, whose memory pointer is assigned
to the thrownexceptions field of the classinfo structure.

Any attributes which are not processed by the CACAO class loading
system are skipped via

static bool skipattributebody(classbuffer *cb);

which skips one attribute or

static bool skipattributes(classbuffer *cb, u4 num);

which skips a specified number num of attributes. If any problem occurs
in the method loading function, a java.lang.ClassFormatError with a
specific detail message is thrown.

2.2.5 Attribute loading

Attribute loading is done via the

static bool attribute_load(classbuffer *cb, classinfo *c,

u4 num);

function from the binary representation of the class or interface (see figure
2.7).

The currently loading class or interface can contain some additional at-
tributes which have not already been loaded. The CACAO system class
loader processes two of them: InnerClasses and SourceFile.
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Figure 2.7: Attribute area in binary representation of a class or interface

The InnerClass attribute is a variable-length attribute in the attributes
table of the binary representation of the class or interface. A InnerClass

entry contains the inner class constant pool index itself, the outer class

index, the name index of the inner class’ name and the inner class’ flags bit
mask. All these values are read in u2 chunks.

The constant pool indexes are used with the

voidptr innerclass_getconstant(classinfo *c, u4 pos, u4 ctype);

function call to resolve the classes or UTF8 strings. After resolving is
done, all values are stored in an innerclassinfo structure.

The other attribute, SourceFile, is just one u2 constant pool index value
to get the UTF8 string reference of the class’ SourceFile name. The string
pointer is assigned to the sourcefile field of the classinfo structure.

Both attributes must occur only once. Other attributes than these two
are skipped with the earlier mentioned skipattributebody function.

After the attribute loading is done and no error occured, the class load intern

function returns the classinfo pointer to signal that no problem occured.
If NULL is returned an error or exception was raised.

2.3 Eager - lazy class loading

A Java Virtual Machine can implement two different algorithms for the sys-
tem class loader to load classes or interfaces: eager class loading and lazy
class loading.
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2.3.1 Eager class loading

The Java Virtual Machine initially creates, loads and links the class of the
main program with the system class loader. The creation of the class is
done via the class new function call (see section 2.2). In this function, with
eager loading enabled, firstly the currently created class or interface is loaded
with class load. CACAO uses the eager class loading algorithm with the
command line switch -eager. As described in the ”Constant pool loading”
section (see 2.2.1), the binary representation of a class or interface contains
references to other classes or interfaces. With eager class loading enabled,
referenced classes or interfaces are loaded immediately.

If a class reference is found in the second pass of the constant pool loading
process, the class is created in the class hashtable with class new intern.
CACAO uses the intern function here because the normal class new func-
tion, which is a wrapper function, instantly tries to link all referenced classes
when eager class loading is enabled. This must not happen until all classes
or interfaces referenced are loaded, otherwise the Java Virtual Machine gets
into an indefinite state.

After the classinfo of the class referenced is created, the class or in-
terface is loaded via the class load function (described in more detail in
section 2.2). When the class loading function returns, the current referenced
class or interface is added to a list called unlinkedclasses, which contains
all loaded but unlinked classes referenced by the currently loaded class or
interface. This list is processed in the class new function of the currently
created class or interface after class load returns. For each entry in the
unlinkedclasses list, class link is called which finally links the class (de-
scribed in more detail in section 2.4) and then the class entry is removed from
the list. When all referenced classes or interfaces are linked, the currently
created class or interface is linked and the class new functions returns.

2.3.2 Lazy class loading

Usually it takes much more time for a Java Virtual Machine to start a pro-
gram with eager class loading than with lazy class loading. With eager class
loading, a typical HelloWorld program needs 513 class loads with the current
GNU Classpath CACAO is using. When using lazy class loading, CACAO
only needs 121 class loads for the same HelloWorld program. This means
with lazy class loading CACAO needs to load more than four times less class
files. Furthermore CACAO does also lazy class linking, which saves much
more run-time here.
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CACAO’s lazy class loading implementation does not completely follow
the JVM specification. A Java Virtual Machine which implements lazy class
loading should load and link requested classes or interfaces at runtime. But
CACAO does class loading and linking at parse time, because of some prob-
lems not resolved yet. That means, if a Java Virtual Machine instruction
is parsed which uses any class or interface references, like JAVA PUTSTATIC,
JAVA GETFIELD or any JAVA INVOKE* instructions, the referenced class or in-
terface is loaded and linked immediately during the parse pass of currently
compiled method. This introduces some incompatibilities with other Java
Virtual Machines like Sun’s JVM, IBM’s JVM or Kaffe.

Given a code snippet like this

void sub(boolean b) {

if (b) {

new A();

}

System.out.println("foobar");

}

If the function is called with b equal false and the class file A.class

does not exist, a Java Virtual Machine should execute the code without any
problems, print foobar and exit the Java Virtual Machine with exit code 0.
Due to the fact that CACAO does class loading and linking at parse time, the
CACAO Virtual Machine throws an java.lang.NoClassDefFoundError: A

exception which is not caught and thus discontinues the execution without
printing foobar and exits.

The CACAO development team has not yet a solution for this problem.
It’s not trivial to move the loading and linking process from the compilation
phase into runtime, especially CACAO was initially designed for eager class
loading and lazy class loading was implemented at a later time to optimize
class loading and to get a little closer to the JVM specification. Lazy class
loading at runtime is one of the most important features to be implemented
in the future. It is essential to make CACAO a standard compliant Java
Virtual Machine.

2.4 Linking

Linking is the process of preparing a previously loaded class or interface to
be used in the Java Virtual Machine’s runtime environment. The function
which performs the linking in CACAO is
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classinfo *class_link(classinfo *c);

This function, as for class loading, is just a wrapper function to the main
linking function

static classinfo *class_link_intern(classinfo *c);

This function should not be called directly and is thus declared as static.
The purposes of the wrapper function are

• enter a monitor on the classinfo structure, so that only one thread
can link the same class or interface at the same time

• check if the class or interface is linked, if it is true, leave the monitor
and return immediately

• measure linking time if requested

• check if the intern linking function has thrown an error or an exception
and reset the linked field of the classinfo structure to false

• leave the monitor

The class link function, like the class load function, is implemented
to be reentrant. This must be the case for the linking algorithm implemented
in CACAO. Furthermore this means that serveral threads can link different
classes or interfaces at the same time on multiprocessor machines.

The first step in the class link intern function is to set the linked

field of the currently linked classinfo structure to true. This is essential,
that the linker does not try to link a class or interface again, while it’s already
in the linking process. Such a case can occur because the linker also processes
the class’ direct superclass and direct superinterfaces.

In CACAO’s linker the direct superinterfaces are processed first. For each
interface in the interfaces field of the classinfo structure is checked if
there occured an java.lang.ClassCircularityError, which happens when
the currently linked class or interface is equal the interface which should be
processed. Otherwise the interface is loaded and linked if not already done.
After the interface is loaded successfully, the interface flags are checked for the
ACC INTERFACE bit. If this is not the case, a java.lang.IncompatibleClassChangeError
is thrown and class link intern returns.

Then the direct superclass is handled. If the direct superclass is equal
NULL, we have the special case of linking java.lang.Object. There are only
set some classinfo fields to special values for java.lang.Object like
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c->index = 0;

c->instancesize = sizeof(java_objectheader);

vftbllength = 0;

c->finalizer = NULL;

If the direct superclass is non-NULL, CACAO firstly detects class circular-
ity as for interfaces. If no java.lang.ClassCircularityError was thrown,
the superclass is loaded and linked if not already done before. Then some
flag bits of the superclass are checked: ACC INTERFACE and ACC FINAL. If one
of these bits is set an error is thrown.

If the currently linked class is an array, CACAO calls a special array
linking function

static arraydescriptor *class_link_array(classinfo *c);

This function firstly checks if the passed classinfo is an array of arrays
or an array of objects. In both cases the component type is created in the
class hashtable via class new and then loaded and linked if not already done.
If none is the case, the passed array is a primitive type array. No matter of
which type the array is, an arraydescriptor structure is allocated and filled
with the appropriate values of the given array type.

After the class link array function call, the class index is calculated.
For interfaces—classes with ACC INTERFACE flag bit set—the class’ index is
the global interfaceindex plus one. Any other classes get the index of the
superclass plus one.

Some classinfo fields are inherited from the superclass like instancesize,
vftbllength and the finalizer function. All these values are temporary
ones and can be overwritten at a later time.

The next step in class load intern is to compute the virtual function
table length. For each method in classinfo’s methods field which has not the
ACC STATIC flag bit set, thus is an instance method, the direct superclasses
up to java.lang.Object are checked with

static bool method_canoverwrite(methodinfo *m, methodinfo *old);

if the current method can overwrite the superclass method, if there exists
one. If the superclass method has the ACC FINAL flag bit set, the CACAO
class linker throws a java.lang.VerifyError.
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struct vftbl {

methodptr *interfacetable[1]; /* interface table (access via macro) */

classinfo *class; /* class, the vtbl belongs to */

arraydescriptor *arraydesc; /* for array classes, otherwise NULL */

s4 vftbllength; /* virtual function table length */

s4 interfacetablelength; /* interface table length */

s4 baseval; /* base for runtime type check */

/* (-index for interfaces) */

s4 diffval; /* high - base for runtime type check */

s4 *interfacevftbllength; /* length of interface vftbls */

methodptr table[1]; /* class vftbl */

};

Figure 2.8: vftbl structure

After processing the virtual function table length, the CACAO linker com-
putes the interface table length. For the current class’ and every superclass’
interfaces, the function

static s4 class_highestinterface(classinfo *c);

is called. This function computes the highest interface index of the
passed interface and returns the value. This is done by recursively calling
class highestinterface with each interface from the interfaces array
of the passed interface as argument. The highest index value found is the
interface table length of the currently linking class or interface.

Now that the linker has completely computed the size of the virtual func-
tion table, the memory can be allocated, casted to an vftbl structure (see
figure 2.8) and filled with the previously calculated values.

Afterwards the fields of the currently linked class or interface are pro-
cessed. The CACAO linker computes the instance size of the class or inter-
face and the offset of each field inside. For each field in the classinfo field
fields which is non-static, the type-size is resolved via the desc typesize

function call. Then a new instancesize is calculated with



CHAPTER 2. CLASS LOADER 26

c->instancesize = ALIGN(c->instancesize, dsize);

which does memory alignment suitable for the next field. This newly
computed instancesize is the offset of the currently processed field. The
type-size is then added to get the real instancesize.

The next step of the CACAO linker is to initialize two virtual function
table fields, namely interfacevftbllength and interfacetable. After the
initialization is done, the interfaces of the currently linked class and all it’s
superclasses, up to java.lang.Object, are processed via the

static void class_addinterface(classinfo *c, classinfo *ic);

function call. This function adds the methods of the passed interface to
the virtual function table of the passed class or interface. If the method count
of the passed interface is zero, the function adds a method fake entry, which
is needed for subtype tests.

For each method of the passed interface, the methods of the passed target
class or interface and all superclass methods, up to java.lang.Object, are
checked if they can overwrite the interface method via method canoverwrite.

The class addinterface function is also called recursively for all inter-
faces the interface passed implements.

After the interfaces were added and the currently linked class or interface
is not java.lang.Object, the CACAO linker tries to find a function which
name and descriptor matches finalize()V. If an appropriate function was
found and the function is non-static, it is assigned to the finalizer field of
the classinfo structure. CACAO does not assign the finalize()V function
to java.lang.Object, because this function is inherited to all subclasses
which do not explicitly implement a finalize()V method. This would mean,
for each instantiated object, which is marked for garbage collection in the
Java Virtual Machine, an empty function would be called from the garbage
collector when a garbage collection takes place. This would add an needless
overhead to a garbage collection run.

The final task of the linker is to compute the baseval and diffval values
from the subclasses of the currently linked class or interface. These values
are used for runtime type checking.

After the baseval and diffval values are newly calculated for all classes
and interfaces in the Java Virtual Machine, the internal linker function
class link intern returns the currently linking classinfo structure pointer,
to indicate that the linker function did not raise an error or exception.
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2.5 Initialization

A class or interface can have a static initialization function called static
class initializer. The function has the name and signature <clinit>()V.
This function must be invoked before a static function of the class is called
or a static field is accessed via ICMD PUTSTATIC or ICMD GETSTATIC. In
CACAO

classinfo *class_init(classinfo *c);

is responsible for the invocation of the static class initializer. It is, like for
class loading and class linking, just a wrapper function to the main initializing
function

static classinfo *class_init_intern(classinfo *c);

The wrapper function has the following purposes:

• enter a monitor on the classinfo structure, so that only one thread
can initialize the same class or interface at the same time

• check if the class or interface is initialized or initializing, if one
is true, leave the monitor and return

• tag the class or interface as initializing

• call the internal initialization function class init intern

• if the internal initialization function returns non-NULL, the class or in-
terface is tagged as initialized

• reset the initializing flag

• leave the monitor

The intern initializing function should not be called directly, because of
race conditions of concurrent threads. Two or more different threads could
access a static field or call a static function of an uninitialized class at
almost the same time. This means that each single thread would invoke the
static class initializer and this would lead into some problems.

The CACAO initializer needs to tag the class or interface as currently
initializing. This is done by setting the initializing field of the classinfo
structure to true. CACAO needs this field in addition to the initialized

field for two reasons:
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• Another concurrently running thread can access a static field of the
currently initializing class or interface. If the class or interface of the
static field was not initialized during code generation, some special
code was emitted for the ICMD PUTSTATIC and ICMD GETSTATIC inter-
mediate commands. This special code is a call to an architecture depen-
dent assembler function named asm check clinit. Since this function
is speed optimized for the case that the target class is already initial-
ized, it only checks for the initialized field and does not take care
of any monitor that may have been entered. If the initialized flag
is false, the assembler function calls the class init function where
it probably stops at the monitor enter. Due to this fact, the thread
which does the initialization can not set the initialized flag to true

when the initialization starts, otherwise potential concurrently running
threads would continue their execution although the static class initial-
izer has not finished yet.

• The thread which is currently initializing the class or interface can
pass the monitor which has been entered and thus needs to know if this
class or interface is currently initialized.

Firstly class init intern checks if the passed class or interface is loaded
and linked. If not, the particular action is taken. This is just a safety
measure, because—CACAO internally—each class or interface should have
already been loaded and linked before class init is called.

Then the superclass, if any specified, is checked if it is already initialized.
If not, the initialization is done immediately. The same check is performed
for each interface in the interfaces array of the classinfo structure of the
current class or interface.

After the superclass and all interfaces are initialized, CACAO tries to
find the static class initializer function. If no static class initializer method
is found in the current class or interface, the class link intern functions
returns immediately without an error. If a static class initializer method is
found, it’s called with the architecture dependent assembler function

java_objectheader *asm_calljavafunction(methodinfo *m, void *arg1, void *arg2,

void *arg3, void *arg4);

Exception handling of an exception thrown in an static class initializer is a
bit different than usual. It depends on the type of exception. If the exception
thrown is an instance of java.lang.Error, the class init intern function
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just returns NULL. If the exception thrown is an instance of java.lang.Exception,
the exception is wrapped into a java.lang.ExceptionInInitializerError.
This is done via the new exception throwable function call. The newly gen-
erated error is set as exception thrown and the class init intern returns
NULL.

If no exception occurred in the static class initializer the internal initial-
izing function returns the current classinfo structure pointer to indicate
that the initialization was successful.



Chapter 3

The Just-In-Time Compiler

3.1 Introduction

A Java Virtual Machine can implement four different approaches of executing
Java byte code:

• Interpreter

• Ahead-Of-Time Compiler

• Just-In-Time Compiler

• Mixed Mode

An Interpreter interprets every single virtual machine instruction in the
language the Java Virtual Machine is written in, mainly C. Due to this
fact an interpreter based Java Virtual Machine is easily portable, but the
execution speed is very slow, up to ten times slower than a current Just-In-
Time Compilers or similar code written in C.

An Ahead-Of-Time Compiler compiles every Java method of a class when
the class is loaded. This reduces the compiler overhead since the compilation
of the class methods is done in one step and at runtime the method called
can be executed immediately. The drawback of this approach is the fact
that every single method is compiled, even if it’s not needed. This can use a
serious amount of memory and time since the java libraries contain a lot of
methods.

30
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A Just-In-Time Compiler is the solution to the memory and compilation
time problem of the Ahead-Of-Time compiler. A Just-In-Time compiler only
compiles a method when it is called the first time. The drawback of this
approach is the deferred execution of the called method since it must be
compiled before.

The Mixed Mode is mostly a mixture of an Interpreter and a Just-In-
Time Compiler. Normally the code is interpreted, but code parts which are
frequently executed are compiled to native machine code with an Just-In-
Time Compiler. This technique is used by Sun’s and IBM’s JVM.

CACAO implements a compile-only approach with a Just-In-Time Com-
piler and has no interpreter. The main target of CACAO was to build a
fast executing Java Virtual Machine with short compilation times. Thus
the CACAO development team decided to only implement a fast compiling
Just-In-Time Compiler. So every single Java method executed is compiled
to native machine code.

The following sections decribe some basics of the Java Virtual Machine,
byte code to machine code compilation and how the CACAO Just-In-Time
Compiler works in detail.

3.2 The Java Virtual Machine

The JavaVM is a typed stack architecture [LY99]. There are different in-
structions for integer, long integer, floating point and address types. Byte
and character types have only special memory access instructions and are
treated as integers for arithmetic operations. The main instruction set con-
sists of arithmetic/logical and load/store/constant instructions. There are
special instructions for array access and for accessing the fields of objects
(memory access), for method invocation and for type checking. A JavaVM
has to check the program for type correctness and executes only correct pro-
grams. The following examples show some important JavaVM instructions
and how a Java program is represented by these instructions.

iload n ; load contents of local variable n

istore n ; store stack top in local variable n

imul ; product of 2 topmost stack elements

isub ; difference of 2 topmost stack elements

The Java assignment statement a = b - c * d is translated into
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iload b ; load contents of variable b

iload c ; load contents of variable c

iload d ; load contents of variable d

imul ; compute c * d

isub ; compute b - (c * d)

istore a ; store stack top in variable a

Accessing the fields of objects is handled by the instructions getfield

and putfield. The instruction getfield expects an object reference on the
stack and has an index into the constant pool as an operand. The index into
the constant pool must be a reference to a pair containing the class name
and a field name. The types of the classes referenced by the constant pool
index and by the object reference must be compatible, a fact which is usually
checked statically at load time. The object reference has to be different from
the null pointer, a fact which must usually be checked at run time.

Array accesses are handled by the aload and astore instructions. Sep-
arate versions of these instructions exist for each of the basic types (byte,
int, float, ref, etc.). The aload instruction expects a reference to an array
and an index (of type int) on the stack. The array reference must not be
the null pointer. The index must be greater than or equal to zero and less
than the array length.

There are special commands for method invocation. Each method has
its own virtual stack and an area for local variables. After the method in-
vocation, the stack of the caller is empty and the arguments are copied into
the first local variables of the called method. After execution of a return

instruction, the called method returns to its caller. If the called method is a
function, it pops the return value from its own stack and pushes it onto the
stack of the caller.

The instanceof and checkcast instructions are used for subtype testing.
Both expect a reference to an object on the stack and have an index into the
constant pool as operand. The index must reference a class, array or interface
type. The two instructions differ in their result and in their behavior if the
object reference is null.

3.3 Translation of stack code to register code

The architecture of a RISC—Reduced Instruction Set Computer—or a CISC—
Complex Instruction Set Computer—processor is completely different from
the stack architecture of the Java Virtual Machine.
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RISC processors have large sets of registers. The Alpha architecture has
32 integer registers and 32 floating point registers which are both 64-bits
wide. They execute arithmetic and logic operations only on values which are
held in registers. RISC machines are a load-store architecture, which means
load and store instructions are provided to move data between memory and
registers. Local variables of methods usually reside in registers and are saved
to memory only during a method call or if there are too few registers. The
use of registers for parameter passing is defined by the particular calling
conventions.

CISC processors have a relatively small set of registers, like the IA32
architecture with 8 integer general purpose registers or the AMD64 archi-
tecture with 16 integer general purpose registers. But, as the name implies,
CISC processors have a large and complex machine instruction set. Unlike
the load-store architecture of RISC machines, CISC instructions can operate
on operands residing in registers and in memory locations. Local variables
of methods should reside in registers, but due to the limited number of reg-
isters this case is very rare and most local variables are stored on the stack.
Detailed information of the IA32 and AMD64 architecture can be found in
section 3.6 and section 3.7 respectively.

3.3.1 Machine code translation examples

The previous expression example a = b - c * d would be translated by an
optimizing C compiler to the following two Alpha instructions (the variables
a, b, c and d reside in registers):

MULL c,d,tmp0 ; tmp0 = c * d

SUBL b,tmp0,a ; a = b - tmp0

If JavaVM code is translated to machine code, the stack is eliminated
and the stack slots are represented by temporary variables usually residing
in registers. A naive translation of the previous example would result in the
following Alpha instructions:

MOVE b,t0 ; iload b

MOVE c,t1 ; iload c

MOVE d,t2 ; iload d

MULL t1,t2,t1 ; imul

SUBL t0,t1,t0 ; isub

MOVE t0,a ; istore a
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The problems of translating JavaVM code to machine code are primarily
the elimination of the unnecessary copy instructions and finding an efficient
register allocation algorithm. A common but expensive technique is to do
the naive translation and use an additional pass for copy elimination and
coalescing.

3.4 The translation algorithm

The new translation algorithm can get by with three passes. The first pass
determines basic blocks and builds a representation of the JavaVM instruc-
tions which is faster to decode. The second pass analyses the stack and gen-
erates a static stack structure. During stack analysis variable dependencies
are tracked and register requirements are computed. In the final pass register
allocation of temporary registers is combined with machine code generation.

The new compiler computes the exact number of objects needed or com-
putes an upper bound and allocates the memory for the necessary temporary
data structures in three big blocks: the basic block array, the instruction ar-
ray and the stack array..

3.4.1 Basic block determination

The first pass scans the JavaVM instructions, determines the basic blocks
and generates an array of instructions which has a fixed size and is easier to
decode in the following passes. Each instruction contains the opcode, two
operands and a pointer to the static stack structure after the instruction
(see next sections). The different opcodes of JavaVM instructions which
fold operands into the opcode are represented by just one opcode in the
instruction array.

3.4.2 Basic block interfacing convention

Basic blocks have a fixed interface at basic block boundaries. Every stack
slot at a basic block boundary is assigned a fixed interface register. The
stack analysis pass determines the type of the register and if it has to be
saved across method invocations. To enlarge the size of basic blocks method
invocations do not end basic blocks. To guide the compiler design some static
analysis on a large application written in Java was done: the javac compiler
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stack depth 0 1 2 3 4 5 6 >6
occurrences 7930 258 136 112 36 8 3 0

Table 3.1: distribution of stack depth at block boundary

and the libraries it uses. Table 3.1 shows that in more than 93% of the cases
the stack is empty at basic block boundaries and that the maximal stack
depth is 6. Using this data it becomes quite clear that some join handling
would not improve the quality of the machine code.

3.4.3 Copy elimination

To eliminate unnecessary copies, the loading of values is delayed until the
instruction is reached which consumes the value. To compute the information
the run time stack is simulated at compile time. Instead of values the compile
time stack contains the type of the value, if a local variable was loaded to
a stack location and similar information. Adl-Tabatabai [ATCL+98] used a
dynamic stack which is changed at every instruction. A dynamic stack only
gives the possibility to move information from earlier instructions to later
instructions. CACAO uses a static stack structure which enables information
flow in both directions.

Figure 3.1 shows the instruction and stack representation. An instruction
has a reference to the stack before the instruction and the stack after the
instruction. The stack is represented as a linked list. The two stacks can
be seen as the source and destination operands of an instruction. In the
implementation only the destination stack is stored, the source stack is the
destination of stack of the previous instruction.
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Figure 3.1: instruction and stack representation

This representation can easily be used for copy elimination. Each stack
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element not only contains the type of the stack slot but also the local variable
number of which it is a copy, the argument number if it is an argument, the
interface register number if it is an interface. Load (push the content of a
variable onto the stack) and store instructions do no generate a copy machine
instruction if the stack slot contains the same local variable. Generated
machine instructions for arithmetic operations directly use the local variables
as their operands.

There are some pitfalls with this scheme. Given the example of figure 3.2.
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Figure 3.2: anti dependence

The stack bottom contains the local variable a. The instruction istore a

will write a new value for a and will make a later use of this variable invalid.
To avoid this a copy of the local variable to a stack variable is necessary.
An important decision is at which position the copy instruction should be
inserted. Since there is a high number of dup instructions in Java programs
(around 4%) and it is possible that a local variable resides in memory, the
copy should be done with the load instruction. Since the stack is represented
as a linked list only the destination stack has to be checked for occurrences of
the offending variable and these occurrences are replaced by a stack variable.

To answer the question of how often this could happen and how expensive
the stack search is, again the javac compiler was analysed. In more than
98% of the cases the stack is empty (see table 3.2). In only 0.2% of the cases
the stack depth is higher than 1 and the biggest stack depth is 3.

stack depth 0 1 2 3 >3
occurrences 2167 31 1 3 0

Table 3.2: distribution of store stack depth

To avoid copy instructions when executing a store it is necessary to
connect the creation of a value with the store which consumes it. In that
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case a store not only can conflict with copies of a local variable which result
from load instructions before the creator of the value, but also with load

and store instructions which exist between the creation of value and the
store. In figure 3.3 the iload a instruction conflicts with the istore a

instruction.
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Figure 3.3: anti dependence

The anti dependences are detected by checking the stack locations of the
previous instructions for conflicts. Since the stack locations are allocated as
one big array just the stack elements which have a higher index than the
current stack element have to be checked. Table 3.3 gives the distribution of
the distance between the creation of the value and the corresponding store.
In 86% of the cases the distance is one.

chain length 1 2 3 4 5 6 7 8 9 >9
occurrences 1892 62 23 62 30 11 41 9 7 65

Table 3.3: distribution of creator-store distances

The output dependences are checked by storing the instruction number
of the last store in each local variable. If a store conflicts due to dependences
the creator places the value in a stack register. Additional dependences arise
because of exceptions. The exception mechanism in Java is precise. Therefore
store instructions are not allowed to be executed before an exception raising
instruction. This is checked easily be remembering the last instruction which
could raise an exception. In methods which contain no exception handler this
conflict can be safely ignored because no exception handler can have access
to these variables.

3.4.4 Register allocator

he current register allocator of CACAO is a very simple, straightforward al-
locator. It simply assigns free registers with a first-come-first-serve based
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algorithm. This is mostly suitable for RISC architectures with large regis-
ter sets like Alpha or MIPS with 32 integer registers and 32 floating-point
registers. For these architectures the current register allocator was designed
for.

Basically the allocation passes of the register allocator are:

• interface register allocation

• scratch register allocation

• local register allocation

The javac compiler also supports this simple first-come-first-serve ap-
proach CACAO uses and does a coloring of the local variables and assigns
the same number to variables which are not active at the same time. The
stack variables have implicitly encoded their live ranges. When a value is
pushed, the live range start. When a value is popped, the live range ends.

Complications arise only with stack manipulation instructions like dup

and swap. We flag therefore the first creation of a stack variable and mark
a duplicated one as a copy. The register used for this variable can be reused
only after the last copy is popped.

During stack analysis stack variables are marked which have to survive
a method invocation. These stack variables and local variables are assigned
to callee saved registers. If there are not enough registers available, these
variables are allocated in memory.

Efficient implementation of method invocation is crucial to the perfor-
mance of Java. Therefore, we preallocate the argument registers and the
return value in a similar way as we handle store instructions. Input argu-
ments (in Java input arguments are the first variables) for leaf procedures
(and input arguments for processors with register windows) are preassigned,
too.

Since CACAO has now also been ported to CISC architectures like IA32
and AMD64, the first-come-first-serve register allocator has hit it’s limits.
The results produced for an architecture with 8 integer general purpose reg-
isters like IA32 or 16 integer general purpose registers like AMD64, is far
from perfect. Further details to register allocation of these architectures can
be found in section 3.6.5 and section 3.7.5 respectively.

The CACAO development team is currently working on a new register
allocator based on a linear scan algorithm. This allocator should produce
much better results on CISC machines than the current register allocator.
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3.4.5 Instruction combining

Together with stack analysis we combine constant loading instructions with
selected instructions which are following immediately. In the class of combin-
able instructions are add, subtract, multiply and divide instructions, logical
and shift instructions, compare/branch and array store instructions.

These combined immediate instructions are:

• ICMD IADDCONST, ICMD ISUBCONST, ICMD IMULCONST, ICMD IDIVPOW2,
ICMD IREMPOW2

• ICMD LADDCONST, ICMD LSUBCONST, ICMD LMULCONST, ICMD LDIVPOW2,
ICMD LREMPOW2

• ICMD IANDCONST, ICMD IORCONST, ICMD IXORCONST

• ICMD LANDCONST, ICMD LORCONST, ICMD LXORCONST

• ICMD ISHLCONST, ICMD ISHRCONST, ICMD IUSHRCONST

• ICMD LSHLCONST, ICMD LSHRCONST, ICMD LUSHRCONST

• ICMD IFxx

• ICMD IF Lxx

• ICMD xASTORECONST

During code generation the constant is checked if it lies in the range
for immediate operands of the target architecture and appropriate code is
generated.

Arithmetic and logical instructions are processed straightforward. The
intermediate command opcode of the current instruction is changed and the
immediate value from the previous instruction is stored in the current in-
struction. The register pressure is always reduced by one register by this
optimization.

ICMD IDIV and ICMD IREM divisions by a constant which is a power of two
are handled in a special way. They are converted into ICMD IDIVPOW2 and
ICMD IREMPOW2 respectively. For ICMD IDIVPOW2 an immediate value is as-
signed which represents the left shift amount of 0x1 to get the divisor value.
In the code generation pass a very fast shift-based machine code can be gen-
erated for this instruction. For ICMD IREMPOW2 the intermediate value gets
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one subtracted. The generated machine code consists of logical and’s, neg’s
and a conditional jump. For both instructions the generated machine code is
much fast than an integer division. ICMD LDIV and ICMD LREM intermediate
commands are handled respectively.

ICMD IxSHx instructions by a constant value are converted to ICMD IxSHxCONST

instructions. Nearly every architecture has machine shift instructions by a
constant value. This optimization always reduces the register pressure by one
register. ICMD LxSHx intermediate commands are converted to ICMD LxSHxCONST

commands respectively.

ICMD IF ICMPxx intermediate commands are converted to ICMD IFxx com-
mands. This commands compare the source operand directly with an im-
mediate value if possible. The generated machine code depends on the ar-
chitecture. On the IA32 or AMD64 architecture the immediate value can
always be inlined. On RISC architectures the immediate value range is lim-
ited, like the Alpha architecture where the immediate value may be between
0 and 255. On architectures which support conditional branches on a source
register, like Alpha or MIPS, the compare with 0 is optimized to a single in-
struction. This optimization can reduce the register pressure by one register.
ICMD IF Lxx intermediate commands are handled respectively.

The ICMD xASTORE optimization was actually implemented for the IA32
and AMD64 architecture. These architectures can handle inline immediate
values up to their address pointer size, this means 32-bit for IA32 and 64-bit
for AMD64 respectively. For RISC architectures which have a REG ZERO—a
register which always contains the values zero—this array store optimization
can be used only for zero values. Address array stores—ICMD AASTORE—can
only be optimized in the null pointer case because of the dynamic type
check. In this case the optimization not only reduces the register pressure by
one register, but the dynamic type check subroutine call can be eliminated.

3.4.6 Complexity of the algorithm

The complexity of the algorithm is mostly linear with respect to the number
of instructions and the number of local variables plus the number of stack
slots. There are only a small number of spots where it is not linear.

• At the begin of a basic block the stack has to be copied to separate the
stacks of different basic blocks. Table 3.1 shows that the stack at the
boundary of a basic block is in most cases zero. Therefore, this copying
does not influence the linear performance of the algorithm.
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• A store has to check for a later use of the same variable. Table 3.2
shows that this is not a problem, too.

• A store additionally has to check for the previous use of the same
variable between creation of the value and the store. The distances
between the creation and the use are small (in most case only 1) as
shown by table 3.3.

Compiling javac 29% of the compile time are spent in parsing and ba-
sic block determination, 18% are spent in stack analysis, 16% are spent in
register allocation and 37% are spent in machine code generation.

3.4.7 Example

Figure 3.4 shows the intermediate representation and stack information as
produced by the compiler for debugging purposes. The Local Table gives
the types and register assignment for the local variables. The Java compiler
reuses the same local variable slot for different local variables if there life
ranges do not overlap. In this example the variable slot 3 is even used for
local variables of different types (integer and address). The JIT-compiler
assigned the saved register 12 to this variable.

One interface register is used in this example entering the basic block
with label L004. At the entry of the basic block the interface register has to
be copied to the argument register A00. This is one of the rare cases where
a more sophisticated coalescing algorithm could have allocated an argument
register for the interface.

At instruction 2 and 3 you can see the combining of a constant with
an arithmetic instruction. Since the instructions are allocated in an array
the empty slot has to be filled with a NOP instruction. The ADDCONSTANT

instruction already has the local variable L02 as destination, an information
which comes from the later ISTORE at number 4. Similarly the INVOKESTATIC
at number 31 has marked all its operands as arguments. In this example all
copy (beside the one to the interface register) have been eliminated.

3.5 Compiling a Java method

The CACAO JIT compiler is invoked via the
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methodptr jit_compile(methodinfo *m);

function call. This function is just a wrapper function to the internal
compiler function

static methodptr jit_compile_intern(methodinfo *m);

The argument of the compiler function is a pointer to a methodinfo

structure (see figure 2.6) allocated by the system class loader. This function
should not be called directly and thus is declared static because the wrapper
function has to ensure some conditions:

• enter a monitor on the methodinfo structure to make sure that only
one thread can compile the same Java method at the same time

• check if the method already has a entrypoint, if so the monitor is left
and the entrypoint is returned

• measure the compiling time if requested

• call the internal compiler function

• leave the monitor and return the functions’ entrypoint

The internal compiler function jit compile intern does the actual com-
pilation of the Java method. It calls the different passes of the JIT compiler.

If the passed Java method does not have a Code Attribute (see 2.2.4) a
methodptr to a do nothing function is returned.

If the method has the ACC STATIC flag bit set and the methods’ class is
not yet initialized, class init is called with the methods’ class as argument

Then the compiler passes are called:

1. reg init: initializes the register allocator

• allocates the registerdata structure

• calculate the number of callee saved, temporary and argument
registers

2. reg setup: sets up the register allocator data which is changed in every
compiler run
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3. codegen setup: initializes the code generator

• allocates the codegendata structure

• allocate code and data memory

4. parse: parse pass

• parse the Java Virtual Machine instructions and convert them into
CACAO intermediate commands

• determine basic blocks

5. analyse stack: analyse stack pass

6. regalloc: register allocation pass

7. codegen: code generation pass

8. reg close: release all allocated register allocator memory

9. codegen close: release all allocated code generator memory

After all compiler passes were run and no exception or error occured, the
entrypoint of the compiled method is returned.

The CACAO JIT compiler is designed to be reentrant. This design deci-
sion was taken to easily support exception throwing during one of the com-
piler passes and to support concurrent compilation in different threads run-
ning. Concurrent compilation can speed up startup and run time especially
on multi processor machines.
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java.io.ByteArrayOutputStream.write (int)void

Local Table:

0: (adr) S15

1: (int) S14

2: (int) S13

3: (int) S12 (adr) S12

Interface Table:

0: (int) T24

[ L00] 0 ALOAD 0

[ T23] 1 GETFIELD 16

[ L02] 2 IADDCONST 1

[ L02] 3 NOP

[ ] 4 ISTORE 2

[ L02] 5 ILOAD 2

[ L00 L02] 6 ALOAD 0

[ T23 L02] 7 GETFIELD 8

[ T23 L02] 8 ARRAYLENGTH

[ ] 9 IF_ICMPLE L005

...............

[ ] 18 IF_ICMPLT L003

[ ] L002:

[ I00] 19 ILOAD 3

[ I00] 20 GOTO L004

[ ] L003:

[ I00] 21 ILOAD 2

[ A00] L004:

[ L03] 22 BUILTIN1 newarray_byte

[ ] 23 ASTORE 3

[ L00] 24 ALOAD 0

[ A00] 25 GETFIELD 8

[ A01 A00] 26 ICONST 0

[ A02 A01 A00] 27 ALOAD 3

[ A03 A02 A01 A00] 28 ICONST 0

[ L00 A03 A02 A01 A00] 29 ALOAD 0

[ A04 A03 A02 A01 A00] 30 GETFIELD 16

[ ] 31 INVOKESTATIC java/lang/System.arraycopy

[ L00] 32 ALOAD 0

[ L03 L00] 33 ALOAD 3

[ ] 34 PUTFIELD 8

[ ] L005:

...............

[ ] 45 RETURN

Figure 3.4: Example: intermediate instructions and stack contents
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3.6 IA32 (x86, i386) code generator

3.6.1 Introduction

The IA32 architecture is the most important architecture on the desktop
market. Since the current IA32 processors are getting faster and more pow-
erful, the IA32 architecture also becomes more important in the low-end and
mid-end server market. Major Java Virtual Machine vendors, like Sun or
IBM, have highly optimized IA32 ports of their Virtual Machines, so it’s
fairly important for an Open Source Java Virtual Machine to have a good
IA32 performance.

Porting CACAO to the IA32 platform was more effort than expected.
CACAO was designed to run on RISC machines from ground up, so the
whole code generation part has to be adapted. The first approach was to
replace the simple RISC macros with IA32 code, but this turned out to be
not successful. So new IA32 code generation macros were written, with no
respect to the old RISC macros.

Some smaller problems occured since the IA32 port was the first 32 bit tar-
get platform, like segmentation faults due to heap corruption, which turned
out to be a simple for loop bug only hit on 32 bit systems. Most of the
CACAO system already was 32-bit-ready, namely an architecture dependent
types.h with definitions of the used datatypes and some feature flags, which
features the processor itself natively supports. Most noticeable change was
the s8 and u8 datatype, changed from long to long long to support 64 bit
calculations.

3.6.2 Code generation

One big difference in writing the new code generation macros was, that the
IA32 architecture is not a load-store architecture like the RISC machines,
but the machine instructions can handle both memory operands and register
operands. This led to a much more complicated handling of the various
ICMDs. The typical handling of an ICMD on RISC machines looks like this
(on the example of the integer add ICMD):

case ICMD_IADD:

var_to_reg_int(s1, src->prev, REG_ITMP1);

var_to_reg_int(s2, src, REG_ITMP2);

d = reg_of_var(iptr->dst, REG_ITMP3);
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M_IADD(s1, s2, d);

store_reg_to_var_int(iptr->dst, d);

break;

This means loading the two source operands from memory to temporary
registers, if necessary, getting a destination register, do the calculation and
store the result to memory, if the destination variable resides in memory.
If all operands are assigned to registers, only the calculation is done. This
design also works on IA32 machines but leads to much bigger code size,
reduces decoding bandwith and increases register pressure in the processor
itself, which results in lower performance [Int03]. Thus CACAO uses all
kinds of instruction types that are available and decide which one is used in
some if statements:

if (IS_INMEMORY(iptr->dst)) {

if (IS_INMEMORY(src) && IS_INMEMORY(src->prev)) {

...

} else if (IS_INMEMORY(src) && !IS_INMEMORY(src->prev)) {

...

} else if (!IS_INMEMORY(src) && IS_INMEMORY(src->prev)) {

...

} else {

...

}

} else {

if (IS_INMEMORY(src) && IS_INMEMORY(src->prev)) {

...

} else if (IS_INMEMORY(src) && !IS_INMEMORY(src->prev)) {

...

} else if (!IS_INMEMORY(src) && IS_INMEMORY(src->prev)) {

...

} else {

...

}

}

For most ICMDs the generated code can be further optimized when one
source variable and the destination variable share the same local variable.

To be backward compatible, mostly in respect of embedded systems, all
generated code can be run on i386 compatible systems.
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Another problem was the access to the functions’ data segment. Since
RISC platforms like Alpha and MIPS have a procedure vector register, for the
IA32 platform there had to be implemented a special handling for accesses
to the data segment, like ICMD PUTSTATIC and ICMD GETSTATIC instructions.
The solution is like the handling of jump references or check cast refer-
ences, which also have to be code patched, when the code and data segment
are relocated. This means, there has to be an extra immediate-to-register
move (i386 mov imm reg()) before every ICMD PUTSTATIC/ICMD GETSTATIC

instruction, which moves the start address of the procedure, and thus the
start address of the data segment, in one of the temporary registers (code
snippet from ICMD PUTSTATIC):

i386_mov_imm_reg(0, REG_ITMP2);

dseg_adddata(mcodeptr);

The dseg adddata() call inserts the current postion of the code genera-
tion pointer into a datastructure which is later processed by codegen finish(),
where the final address of the data segment is patched.

3.6.3 Constant handling

Unlike RISC machines the IA32 architecture has immediate move instruc-
tions which can handle the maximum bitsize of the registers. Thus the IA32
port of CACAO does not have to load big constants indirect from the data
segment, which means a memory load instruction, but can move 32 bit con-
stants inline into their destination registers.

i386_mov_imm_reg(0xcafebabe, REG_ITMP1);

For constants bigger than 32 bits up to 64 bits, we split the move up into
two immediate move instructions.

3.6.4 Calling conventions

The normal calling conventions of the IA32 processor is passing all function
arguments on the stack [Int02]. The store size on the stack depends on the
data type (see table 3.4).

This convention has been changed for CACAO in a way, that each datatype
uses always 8 bytes on the stack. due to this fact after calling the function
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JAVA Data Type Bytes
boolean

byte

char

short 4
int

void

float

long

double 8

Table 3.4: IA32 calling convention stack store sizes

void sub(int i, long l, float f, double d);

the stack layout looks like in figure 3.5.

�
+4 bytes

stack pointer

d

unused

f

l

unused

i

return address

Figure 3.5: CACAO IA32 stack layout after function call

If the function passes a 32-bit variable, CACAO just push 4 bytes onto
the stack and leave the remaining 4 bytes untouched. This does not make any
problems since CACAO does not read a 64-bit value from a 32-bit location.
Passing a 64-bit value is straightforward.

With this adaptation, it is possible to use the stack space allocation al-
gorithm without any changes. The drawback of this decision is, that all
arguments of a native function calls have to be copied into a new stack frame
and the memory footprint is slightly bigger.
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But calling a native function always means a stack manipulation, because
the JNI environment, and additionally for static functions the class pointer,
have to be stored in front of the function parameters. So this negligible.

For some BUILTIN functions there are assembler function counterparts,
which copy the 8 byte parameters in their correct size in a new stack frame.
But this only affects BUILTIN functions with more than one function param-
eter. To be precise, two functions, namely arrayinstanceof and newarray.
So this is not a big speed impact.

Return parameters are stored in different places, this depends on the
return type of the function:

• boolean, byte, char, short, int, void: return value resides in %eax

(REG RESULT)

• long: return value is split up onto the register pair %edx:%eax (REG RESULT2:REG RESULT,
high 32-bit in %edx, low 32-bit in %eax)

• float, double: return value resides in the top of stack element of the
floating point unit stack (st(0), described in more detail in section
3.6.7)

3.6.5 Register allocation

Register usage was another problem in porting the CACAO to IA32. An
IA32 processor has 8 integer general-purpose registers (GPR), of which one
is the stack pointer (SP) and thus can not be used for arithmetic instructions.
From the remaining 7 registers, in worst-case instructions like CHECKCAST or
INSTANCEOF, 3 temporary registers need to be reserved for storing temporary
values. Due to this fact there are 4 integer registers available for arithmetic
operations.

CACAO uses %ebp, %esi, %edi as callee saved registers, which are callee
saved registers in the IA32 ABI and %ebx as scratch register, which is also a
callee saved register in the IA32 ABI. The remaining %eax, %ecx and %edx

registers are used as the previously mentioned temporary registers.

The register allocator itself is very straightforward, this means, it does nei-
ther linear scan nor any other analyse of the methods variables, but allocates
registers for the local variables in order as they are defined—first-come-first-
serve. This may result in a fairly good register allocation on RISC machines,
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as there are almost always enough registers available for the functions local
variables, but can result in a really bad allocation on IA32 processors.

So the first step to make the IA32 port more competitive with Sun’s or
IBM’s JVM would be to rewrite the register allocator.

Only small register allocator changes were necessary for the IA32 port.
Since CACAO—on the IA32 architecture—stores all long variables, because
of lack of integer general-purpose registers, in memory locations (described
in more detail in section 3.6.6) the register allocator has to be adapted to
support this feature. This means all long variables are assigned to stack
locations and tagged with the INMEMORY flag.

3.6.6 Long arithmetic

Unlike the PowerPC port, the IA32 port cannot easily store long’s in two
32-bit integer registers, since there are too little of them. Maybe this could
bring a speedup, if the register allocator would be more intelligent or in leaf
functions which have only long variables. But this is not implemented yet.
So, the current approach is to store all long’s in memory, this means they
are always spilled.

Nearly all long instructions are inline, except two of them: ICMD LDIV

and ICMD LREM. These two are computed via BUILTIN calls. It would also be
possible to inline them, but the code size would be too big and the latency of
the idiv machine instruction is so high, that the function calls are negligible.

The IA32 processor has some machine instructions which are specifically
designed for 64-bit operations. With them several 64-bit integer arithemtic
operations can be implemented very efficiently [Adv02]. Some of them are

• cltd — Convert Signed Long to Signed Double Long

• adc — Integer Add With Carry

• sbb — Integer Subtraction With Borrow

Thus some of the 64-bit calculations like ICMD LADD or ICMD LSUB could
be executed in two instructions, if both operand would reside in registers.
But this does not apply to CACAO, yet.

The generated machine code of intermediate commands which operate on
long variables instructions always operate on 64-bit, even if it is not neces-
sary. The dependency information that would be required to just operate on
the lower or upper half of the long variable, is not generated by CACAO.
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st(x) FPU Data Register Stack
0 TOS (Top Of Stack)
1
2
3
4
5
6
7

Table 3.5: x87 FPU Data Register Stack

3.6.7 Floating point arithmetic

Since the i386, with it’s i387 extension or the i486, the IA32 processor has
a floating point unit (FPU). This FPU is implemented as a stack with 8
elements (see table 3.5).

This stack is designed to wrap around if values are loaded to the top of
stack (TOS). For this reason, it has a special register which points to the
TOS. This pointer is increased if a load instruction to the TOS is executed
and decreased for a store from the TOS.

At first sight, the stack design of the FPU is perfect for the stack based
design of a Java Virtual Machine. But there is one problem. The JVM stack
has no fixed size, so it can grow up to much more than 8 elements and this
simply results in an stack wrap around and thus an stack overflow. For this
reason it it necessary to implement an stack-element-to-register-mapping.

A very basic design idea, is to define a pointer to the current TOS offset
(fpu st offset). With this offset the current register position in the FPU
stack of an arbitrary register can determined. From the 8 stack elements
the last two ones (st(6), st(7)) are reserved, so two memory operands
can be loaded onto the stack and to preform an arithmetic operation. Most
IA32 floating point arithmetic operations have an do arithmetic and pop one
element version of the instruction, that means the float arithmetic is done
and the TOS element is poped off. The remaining stack element has the
result of the calculation. On the example of the ICMD FADD intermediate
command with two memory operands, it looks like this:

/* load 1st operand in st(0), increase fpu_st_offset */
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Precision PC Field
single-precision (32 bit) 00B
reserved 01B
double-precision (64 bit) 10B
double extended-precision (80 bit) 11B

Table 3.6: Precision Control Field (PC)

var_to_reg_flt(s1, src->prev, REG_FTMP1);

/* load 2nd operand in st(0), increase fpu_st_offset */

var_to_reg_flt(s2, src, REG_FTMP2);

/* add 2 uppermost elements st(1) = st(1) + st(0), pop st(0) */

i386_faddp();

/* decrease fpu_st_offset from previous pop */

fpu_st_offset--;

/* store result -- decrease fpu_st_offset */

store_reg_to_var_flt(iptr->dst, d);

This mapping works very good with scratch registers only. Defining callee
saved float registers makes some problemes since the IA32 ABI has no callee
saved float registers. This would need a special handling in the native stub
of a native function, namely saving the registers and cleaning the whole FPU
stack, because a C function expects a clear FPU stack.

Basically the IA32 FPU can handle 3 float data types:

• single-precision (32 bit)

• double-precision (64 bit)

• double extended-precision (80 bit)

The FPU has a 16 bit control register which has a precision control field
(PC) and a rounding control field (RC), each of 2 bit length (see table 3.6
and 3.7).
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Rounding Mode RC Field
round to nearest (even) 00B
round down (toward -∞) 01B
round up (toward +∞) 10B
round toward zero (truncate) 11B

Table 3.7: Rounding Control Field (RC)

The internal data type used by the FPU is always the double extended-
precision (80 bit) format. Therefore implementing a IEEE 754 compliant
floating point code on IA32 processors is not trivial.

Correct rounding to single-precision or double-precision is only done if
the value is stored into memory. This means for certain instructions, like
ICMD FMUL or ICMD FDIV, a special technique called store-load, has to be
implemented [OKN03]. This technique is in fact very simple but takes two
memory accesses more for this instruction.

For single-precision floats the store-load code could looks like this:

/* store single-precision float to stack */

i386_fstps_membase(REG_SP, 0);

/* load single-precision float from stack */

i386_flds_membase(REG_SP, 0);

Another technique which has to be implemented to be IEEE 754 compli-
ant, is precision mode switching. Mode switching on the IA32 processor is
made with the fldcw—load control word—instruction. A fldcw instruction
has a quite large overhead, so frequently mode switches should be avoided.
For this technique there are two different approaches:

• Mode switch on float arithmetic — switch the FPU on initial-
ization in one precision mode, mostly double-precision mode because
double arithmetic is more common. With this setting doubles are cal-
culated correctly. To handle floats in this approach, the FPU has to
be switched into single-precision mode before each float instruction
and switched back afterwards. Needless to say, that this is only useful,
if float arithmetic is sparse. For a simple calculation like



CHAPTER 3. THE JUST-IN-TIME COMPILER 54

float f = 1.234F;

float g = 2.345F;

float e = f * f + g * g;

the generated ICMD’s look like this (with comments where precision
mode switches take place):

...

<fpu in double-precision mode>

FLOAD 1

FLOAD 1

<switch fpu to single-precision mode>

FMUL

<switch fpu to double-precision mode>

FLOAD 2

FLOAD 2

<switch fpu to single-precision mode>

FMUL

<switch fpu to double-precision mode>

<switch fpu to single-precision mode>

FADD

<switch fpu to double-precision mode>

FSTORE 3

...

For this corner case situation the mode switches are extrem, but the
example should demonstrate how this technique works.

• Mode switch on float data type change — switch the FPU on ini-
tialization in on precision mode, like before, in double-precision mode.
But the difference on this approach is, that the precision mode is only
switched if the float data type is changed. That means if your calcu-
lation switches from double arithmetic to float arithmetic or back-
wards. This technique makes much sense due to the fact that there are
always a bunch of instructions of the same data type in one row in a
normal program. Now the same example as before with this approach:

...
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<fpu in double-precision mode>

FLOAD 1

FLOAD 1

<switch fpu to single-precision mode>

FMUL

FLOAD 2

FLOAD 2

FMUL

FADD

FSTORE 3

...

After this code sequence the FPU is in single-precision mode and if a
function return would occur, the caller function would not know which
FPU mode is currently set. One solution would be to reset the FPU
to double-precision mode on a function return, if the actual mode is
single-precision.

Each of these FPU techniques described have been implemented in CA-
CAO’s IA32 port, but the results were not completly IEEE 754 compliant.
So the CACAO developer team decided to be on the safe side and to store all
float variables in memory, until we have found a solution which is fast and
100% compliant.

3.6.8 Exception handling

The exception handling for the IA32 architecture is implemented as intended
to be for CACAO. To handle the common and unexpected, but often checked,
java.lang.NullPointerException very fast, CACAO uses hardware null-
pointer checking. That means a signal handler for the SIGSEGV operating
system signal is installed. If the signal is hit, the CACAO signal handler
forwards the exception to CACAO’s internal exception handling system. So
if an instruction tries to access the memory at address 0x0, a SIGSEGV signal
is raised because the memory page is not read or writeable. After the signal
is hit, the handler has to be reinstalled, so that further exceptions can be
catched. This is done in the handler itself.

The SIGSEGV handler is used on any architecture CACAO has been ported
to. Additionally on the IA32 architecture a handler for the SIGFPE signal
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is installed. With this handler a java.lang.ArithmeticException’s for
integer / by zero can be catched in hardware and there is no need to write
helper functions, like asm builtin idiv, which check the division operands
as this is done for the Alpha or MIPS port.
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3.7 AMD64 (x86 64) code generator

3.7.1 Introduction

The AMD64 [AMD04b] architecture, formerly known as x86 64, is an im-
provement of the Intel IA32 architecture by AMD—Advanced Micro De-
vices [AMD04a]. The extraordinary success of the IA32 architecture and the
upcoming memory address space problem on IA32 high-end servers, led to
a special design decision by AMD. Unlike Intel, with it’s completely new
designed 64-bit architecture—IA64—AMD decided to extend the IA32 in-
struction set with a new 64-bit instruction mode.

Due to the fact that the IA32 instructions have no fixed length, like this
is the fact on RISC machines, it was easy for AMD to introduce a new prefix
byte called tablerexprefixbytefields. The REX prefix enables the 64-bit
operation mode of the following instruction in the new 64-bit mode of the
processor.

A processor which implements the AMD64 architecture has two main
operating modes:

• Long Mode

• Legacy Mode

In the Legacy Mode the processor acts like an IA32 processor. Any 32-bit
operating system or software can be run on these type of processors without
changes, so companies running IA32 servers and software can change their
hardware to AMD64 and their systems are still operational. This was the
main intention for AMD to develop this architecture. Furthermore the Long
Mode is split into two coexistent operating modes:

• 64-bit Mode

• Compatibility Mode

The 64-bit Mode exposes the power of this architecture. Any memory
operation now uses 64-bit addresses and ALU instructions can operate on
64-bit operands. Within Compatibility Mode any IA32 software can be run
under the control of 64-bit operating system. This, as mentioned before, is
yet another point for companies to change their hardware to AMD64. So
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Mnemonic Bit Position Definition
- 7-4 0100

REX.W 3 0 = Default operand size
1 = 64-bit operand size

REX.R 2 1-bit (high) extension of the ModRM reg field,
thus permitting access to 16 registers.

REX.X 1 1-bit (high) extension of the SIB index field,
thus permitting access to 16 registers.

REX.B 0 1-bit (high) extension of the ModRM r/m field,
SIB base field, or opcode reg field, thus
permitting access to 16 registers.

Table 3.8: REX Prefix Byte Fields

their software can be slowly migrated to the new 64-bit systems, but not
every type of software is faster in 64-bit code. Any memory address fetched
or stored into memory needs to transfer now 64-bits instead of 32-bits. This
means twice as much memory transfer as on IA32 machines.

Another crucial point to make the AMD64 architecture faster than IA32,
is the limited number of registers. Any IA32 architecture, from the early
i386 to the newest generation of Intel Pentium 4 or AMD Athlon, has only
8 general-purpose registers. With the REX prefix, AMD has the ability to
increase the amount of accessible registers by 1 bit. This means in 64-bit
Mode 16 general-purpose registers are available. The value of a REX prefix
is in the range 40h through 4Fh, depending on the particular bits used (see
table 3.8).

3.7.2 Code generation

AMD64 code generation is mostly the same as on IA32. All new 64-bit
instructions can handle both memory operands and register operands, so
there is no need to change the implementation of the IA32 ICMDs.

Much better code generation can be achieved in the area of long arith-
metic. Since all 16 general-purpose registers can hold 64-bit integer values,
there is no need for special long handling, like on IA32 were we stored all
long varibales in memory. As example a simple ICMD LADD on IA32, best case
shown for AMD64 — s1 == d:
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i386_mov_membase_reg(REG_SP, s1 * 8, REG_ITMP1);

i386_alu_reg_membase(I386_ADD, REG_ITMP1, REG_SP, d * 8);

i386_mov_membase_reg(REG_SP, s1 * 8 + 4, REG_ITMP1);

i386_alu_reg_membase(I386_ADC, REG_ITMP1, REG_SP, d * 8 + 4);

First memory operand is added to second memory operand which is at
the same stack location as the destination operand. This means, there are
four instructions executed for one long addition. If we would use registers
for long variables we could get a best-case of two instructions, namely add
followed by an adc. On AMD64 we can generate one instruction for this
addition:

x86_64_alu_reg_reg(X86_64_ADD, s1, d);

This means, the AMD64 port is four-times faster than the IA32 port
(maybe even more, because we do not use memory accesses). Even if we
would implement the usage of registers for long variables on IA32, the
AMD64 port would be at least twice as fast.

To be able to use the new 64-bit instructions, we need to prefix nearly
all instructions—some instructions can be used in their 64-bit mode without
escaping—with the mentioned REX prefix byte. In CACAO we use a macro
called

x86_64_emit_rex(size,reg,index,rm)

to emit this byte. The names of the arguments are respective to their
usage in the REX prefix itself (see table 3.8).

The AMD64 architecture introduces also a new addressing method called
RIP-relative addressing. In 64-bit mode, addressing relative to the contents
of the 64-bit instruction pointer (program counter) — called RIP-relative ad-
dressing or PC-relative addressing — is implemented for certain instructions.
In this instructions, the effective address is formed by adding the displace-
ment to the 64-bit RIP of the next instruction. With this addressing mode,
we can replace the IA32 method of addressing data in the method’s data
segment. Like in the ICMD PUTSTATIC instruction, the IA32 code

a = dseg_addaddress(&(((fieldinfo *) iptr->val.a)->value));

i386_mov_imm_reg(0, REG_ITMP2);

dseg_adddata(mcodeptr);

i386_mov_membase_reg(REG_ITMP2, a, REG_ITMP2);
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can be replaced with the new RIP-relative addressing code

a = dseg_addaddress(&(((fieldinfo *) iptr->val.a)->value));

x86_64_mov_membase_reg(RIP, -(((s8) mcodeptr + 7) - (s8) mcodebase) + a,

So we can save one instruction on the read or write of an static variable.
The additional offset of + 7 is the code size of the instruction itself. The
fictive register RIP is defined with

#define RIP -1

Thus we can determine the special RIP-relative addressing mode in the
code generating macro x86 64 emit membase(basereg,disp,dreg) with

if ((basereg) == RIP) {

x86_64_address_byte(0,(dreg),RBP);

x86_64_emit_imm32((disp));

break;

}

and generate the RIP-relative addressing code. As shown in the code
sample, it’s an special encoding of the address byte with mod field set to zero
and RBP (%rbp) as baseregister.

3.7.3 Constant handling

As on IA32, the AMD64 code generator can use immediate move instructions
to load integer constants into their destination registers. The 64-bit exten-
sions of the AMD64 architecture can also load 64-bit immediates inline. So
loading a long constant just uses one instruction, despite of two instructions
on the IA32 architecture. Of course the AMD64 code generator uses the
move long (movl) instruction to load 32-bit int constants to minimize code
size. The movl instruction clears the upper 32-bit of the destination register.

case ICMD_ICONST:

...

x86_64_movl_imm_reg(cd, iptr->val.i, d);

...
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JAVA Data Type Bytes
boolean 1
byte

char

short 2
int 4
float

long 8
double

void

Table 3.9: JAVA Data Type sizes on AMD64

case ICMD_LCONST:

...

x86_64_mov_imm_reg(cd, iptr->val.l, d);

...

float and double values are loaded from the data segment via the move
doubleword or quadword (movd) instruction with RIP-relative addressing.

3.7.4 Calling conventions

The AMD64 calling conventions are described here [HJM04]. CACAO uses
a subset of this calling convention, to cover its requirements. CACAO just
needs to pass the JAVA data types to called functions, no other special
features are required. The byte sizes of the JAVA data types on the AMD64
port are shown in table 3.9.

Integer arguments

The AMD64 architecture has 6 integer argument registers. The order of the
argument registers is shown in table 3.10.

As on RISC machines, the remaining integer arguments are passed on the
stack. Each integer argument, regardless of which integer JAVA data type,
uses 8 bytes on the stack.
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Register Argument Register
%rdi 1st

%rsi 2nd

%rdx 3rd

%rcx 4th

%r8 5th

%r9 6th

Table 3.10: AMD64 Integer Argument Register

Integer return values of any integer JAVA data type are stored in REG RESULT,
which is %rax.

Floating-point arguments

The AMD64 architecture has 8 floating point argument registers, namely
%xmm0 through %xmm7. %xmm registers are 128-bit wide floating point registers
on which SSE and SSE2 instructions can operate. Remaining floating point
arguments are passed, like integer arguments, on the stack using 8 bytes per
argument, regardless to the floating-point JAVA data type.

Floating point return values of any floating-point JAVA data type are
stored in %xmm0.

As shown, the calling conventions for the AMD64 architecture are similar
to the calling conventions of RISC machines, which allows to use CACAOs
register allocator algorithm and stack space allocation algorithm without any
changes.

Calling native functions means register moves and stack copying like on
RISC machines. This depends on the count of the arguments used for the
called native function. For non-static native functions the first integer argu-
ment has to be the JNI environment variable, so any arguments passed need
to be shifted by one register, which can include creating a new stackframe
and storing some arguments on the stack. Additionally for static native func-
tions the class pointer of the current objects’ class is passed in the 2nd integer
argument register. This means that the integer argument registers need to
be shifted by two registers.

One difference of the AMD64 calling conventions to RISC type machines,
like Alpha or MIPS, is the allocation of integer and floating point argument
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registers with mixed integer and floating point arguments. Assume a function
like this:

void sub(int a, float b, long c, double d);

On a RISC machine, like Alpha, we would have an argument register
allocation like in figure 3.6. a? represent integer argument registers and fa?

floating point argument registers.

a0 = a a2 = c

fa1 = b fa3 = d

Figure 3.6: Alpha argument register usage for void sub(int a, float b,

long c, double d);

On AMD64 the same function call would look like in figure 3.7.

a0 = a a1 = c

fa0 = b fa1 = d

Figure 3.7: AMD64 argument register usage for void sub(int a, float

b, long c, double d);

The register assigment would be a0 = %rdi, a1 = %rsi, fa0 = %xmm0

and fa1 = %xmm1. This special usage of the argument registers required
some changes in the argument register allocation algorithm for function calls
during stack analysis and some changes in the code generator itself.
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Register Usage Callee-saved
%rax return register, reserved for code generator no
%rcx 4th argument register no
%rdx 3rd argument register no
%rbx temporary register no
%rsp stack pointer yes
%rbp callee-saved register yes
%rsi 2nd argument register no
%rdi 1st argument register no
%r8 5th argument register no
%r9 6th argument register no
%r10 - %r11 reserved for code generator no
%r12 - %r15 callee-saved register yes
%xmm0 1st argument register, return register no
%xmm1 - %xmm7 argument registers no
%xmm8 - %xmm10 reserved for code generator no
%xmm11 - %xmm15 temporary registers no

Table 3.11: AMD64 Register usage in CACAO

3.7.5 Register allocation

As mentioned in the introduction, the AMD64 architecture has 16 integer
general-purpose registers and 16 floating-point registers. One integer general-
purpose register is reserved for the stack pointer—namely %rsp—and thus
cannot be used for arithmetic instructions. The register usage as used in
CACAO is shown in table 3.11.

There is only one change to the original AMD64 application binary in-
terface (ABI). CACAO uses %rbx as temporary register, while the AMD64
ABI uses the %rbx register as callee-saved register. So CACAO needs to
save the %rbx register when a JAVA method is called from a native func-
tion, like a JNI function. This is done in asm calljavafunction located in
jit/x86 64/asmpart.S.

In adapting the register allocator there was a problem concerning the or-
der of the integer argument registers. The order of the first four argument
register is inverted. This fact can be seen in table 3.11 which is ordered
ascending by the processors’ internal register numbers. That means the
ascending search algorithm for argument registers in the register allocator
would allocate the first four argument registers in the wrong direction. So
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there is a little hack implemented in CACAOs register allocator to handle
this fact. After searching the register definition array for the argument reg-
isters, the first four argument registers are interchanged in their array. This
is done by a simple code sequence (taken from jit/reg.inc):

/*

* on x86_64 the argument registers are not in

* ascending order

* a00 (%rdi) <-> a03 (%rcx) and

* a01 (%rsi) <-> a02 (%rdx)

*/

n = r->argintregs[3];

r->argintregs[3] = r->argintregs[0];

r->argintregs[0] = n;

n = r->argintregs[2];

r->argintregs[2] = r->argintregs[1];

r->argintregs[1] = n;

3.7.6 Floating-point arithmetic

The AMD64 architecture has implemented two sets of floating-point instruc-
tions:

• x87 (i387)

• SSE/SSE2

The x87 floating-point unit (FPU) implementation is completely compat-
ible to the IA32 implementation, since the i386 with its i387 coproccessor,
with all the advantages and drawbacks, like the 8 slot FPU stack.

The SSE/SSE2 technique is taken from the newest generation of Intel
processors, introduced with Intel’s Pentium 4, and can process scalar 32-bit
float values and scalar 64-bit double values in the 128-bit wide xmm floating-
point registers. While SSE instructions operate on 32-bit float values, SSE2
is responsible for 64-bit double values. In CACAO we implemented the JAVA
floating-point instructions using SSE/SSE2, because SSE/SSE2 is much eas-
ier to use and should be the technique of the future. In some areas SSE/SSE2
is slower than the old x87 implementation, even on the new designed AMD64
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architecture, but SSE/SSE2 offers 16 floating-point registers, which should
speed up daily JAVA floating-point calculations. Another big advantage
of SSE/SSE2 to x87 is the missing single-double precision-rounding prob-
lem, as described in detail in the “IA32 code generator” section 3.6. With
SSE/SSE2 the 32-bit float and 64-bit double arithmetic is calculated and
rounded completely IEEE 754 compliant, so no further adjustments need to
take place to fullfil JAVAs floating-point requirements.

In floating-point value to integer value conversions a JVM has to check
for corner cases as described in the JVM specification. This is done via a
simple inline integer compare of the integer result value and a call to spe-
cial assembler wrapper functions for builtin calls, like asm builtin f2i for
ICMD F2I — float to int conversion. These corner cases are then computed
in a builtin C function with respect to all special cases like Infinite or NaN
values.

3.7.7 Exception handling

Since the AMD64 architecture is just an extension to the IA32 architecture,
an AMD64 processor itself raises the same signals as an IA32 processor, so
we can catch the same signals in our own signal handlers. This includes the
signals SIGSEGV and SIGFPE.

When a signal of this type is raised and the signal hits our signal handler,
we reinstall the handler, create a new exception object and jump to a—in
assembler—written exception handling code. The difference to the excep-
tion handling code of RISC machines, is the fact that RISC machines have
a procedure vector (PV) register. So it’s easy to find the methods’ data seg-
ment, which starts at the PV growing down to smaller addresses like a stack.
For the IA32 and AMD64 architecture we had to implement a method tree
which contains the start program counter (PC) and the end PC for every
single JAVA method compiled in CACAO, to find for any exception PC the
corresponding method and thus the PV. We need the data segment for the
methods’ exception table (for a detailed description see section ”Exception
handling”).

We use SIGSEGV for hardware null-pointer checking, so we can handle this
common exception as fast as possible in CACAO. The signal handler creates
a java.lang.NullPointerException.

SIGFPE is used to catch integer division by zero exceptions in hardware.
The signal handler generates a java.lang.ArithmeticException with / by

zero as detail message.
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Both exceptions are handled in hardware by default, but they can also be
catched in software when using CACAOs commandline switch -softnull.
On the RISC ports only the null-pointer exception is checked in software
when using this switch, but on IA32 and AMD64 both are checked, SIGSEGV
and SIGFPE.
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Evaluation

4.1 Environment

For the measurements the current development version of CACAO at the
time of writing this document has been used. The currently integrated GNU
Classpath is version 0.10. The measurements were performed on an Alpha
21164 600 Mhz with 512 MB physical memory running GNU/Linux. This
rather slow machine was choosen to minimize the measuring error in the
rather short loading times and overall run times of the benchmarked pro-
grams.

The second test machine was an Intel Penitum 4 2.26 GHz with 1 GB
physical memory. On this machine comparisons between different Java Vir-
tual Machine were performed because most Just-In-Time compilers are avail-
able for the IA32 architecture.

The third test machine was a dual AMD Opteron 246 2 GHz with 2 GB
physical memory. This machine was used to make some further constant
array store benchmarks.

All benchmark class files and the GNU classpath files were stored plainly
in the filesystem and were not packed in a zip or jar file.

The following sections describe in more detail the different optimizations
shown throughout this document and implemented in CACAO. Section 4.2
describes the speedup of CACAO startup times between eager class loading
and lazy class loading. Section 4.3 shows the speedup gained by the imple-
mentation of constant array stores. Section 4.4 shows some run time results
of CACAO in comparison with other well-known Java Virtual Machines.

68
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Benchmark eager lazy shortage/
loading loading speedup

HelloWorld class loads 513 121 4.23
loaded methods 5236 1301 4.02
class loading time (in sec) 0.510 0.130 3.92
overall run time (in sec) 0.667 0.248 2.69

kjc class loads 985 496 1.99
loaded methods 9222 4917 1.88
class loading time (in sec) 1.125 0.205 5.48
overall run time (in sec) 2.185 1.675 1.30

javac class loads 710 314 2.26
loaded methods 7438 3770 1.97
class loading time (in sec) 0.912 0.539 1.69
overall run time (in sec) 1.738 1.329 1.31

Table 4.1: Eager class loading vs. lazy class loading on Alpha

4.2 Eager class loading vs. lazy class loading

The startup times of the CACAO Java Virtual Machine with lazy class load-
ing should be improved significantly. Since the current implementation of the
eager class loading algorithm still has some minor problems concerning the
bootstrapping of java.lang.Object, CACAO was compiled with the con-
figure option --disable-threads. Without threads the eager class loading
algorithm works without a glitch on every target platform.

Table 4.1 shows the difference of some simple benchmarks between eager
class loading and lazy class loading.

As the results show the number of loaded classes is reduced seriously.
In a simple HelloWorld the loaded classes are reduced by a mean factor
of 4.23. This results in a speedup of the class loading time by a factor of
3.92. The overall run time speedup of the HelloWorld program is not as
high as the class loading speedup, because the JIT compilation time and the
code execution times are of course the same as with eager class loading but
nonetheless it is a remarkable speedup by a factor of 2.69.

The kjc benchmark is a simple compilation of a HelloWorld.java source
file with the Kopi Java Compiler [Lac01] [KJC04] version 2.1B. The bench-
mark was invoke via
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cacao -time -stat at.dms.kjc.Main -O0 HelloWorld.java

As the table shows the class load shortage from kjc is by a factor 2
smaller than from HelloWorld. This is due to the fact that the Kopi compiler
classes itself are loaded anyway and these classes mostly reference to it’s own
compiler classes. This fact also reflects in the number of loaded methods. On
the other hand the class loading time is decreased dramatically. The class
loading is nearly 5.5 times faster than with eager class loading. The overall
run time is only decreased by a factor of 1.3 because of the rather long run
time of the Kopi compiler itself.

The javac benchmark was performed with the classfiles from Sun’s J2SE
1.4.2. The benchmark was invoked via

cacao -time -stat com.sun.tools.javac.Main \

-g:none HelloWorld.java

The results are quite comparable to the kjc results. The Java compiler
benchmarks were choosen because they are very complex, use a fairly huge
amount of class files and should have a small startup and execution time.

It’s not quite obvious why the lazy class loading time in the kjc bench-
mark is that much faster than with eager class loading. This fact has to be
researched in more detail.

This overall speedup is applicable to all architectures CACAO has been
ported to. But it is best measured on this rather slow Alpha machine which
has been used.

4.3 Constant array stores

Some architectures support storing of immediate values directly into memory
without loading them first into registers, mainly IA32 and AMD64. This
constant array store optimization has been implemented into CACAO. This
short code sample

no_prime[i] = false;

taken from the sieve benchmark is translated into four CACAO inter-
mediate commands:
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Benchmark Architecture w/o constant array stores w/ constant array stores speedup
overall run time (in sec) overall run time (in sec)

sieve Alpha 8.877 8.462 1.05
IA32 2.500 1.870 1.34
AMD64 1.636 1.575 1.04

Table 4.2: Constant array stores

[ l01] 0 ALOAD 1

[ l03 l01] 1 ILOAD 3

[ t10 l03 l01] 2 ICONST 0

[ ] 3 IASTORE

The fact that the stored int value is constant can be used to com-
bine the ICMD ICONST and ICMD IASTORE commands into one intermediate
command—ICMD IASTORECONST—which stores the constant value directly
into the appropriate array position:

[ l01] 0 ALOAD 1

[ l03 l01] 1 ILOAD 3

[ ] 2 IASTORECONST 0

Some RISC architectures have a special register which always contains
the value zero—in CACAO called REG ZERO. In the case shown above the
optimization can also take place on this RISC machines like an Alpha or
MIPS. REG ZERO can be used as source register so no previous immediate
load or register move needs to take place.

Table 4.2 shows the measured times on different architectures with and
without constant array stores. The sieve benchmark was run without loop
optimizations or removed bound checks. The invoked command was

cacao -time sieve 10000 10000

On the Alpha architecture the sieve algorithm was inverted, that means
the prime array was initialized with true values and false was stored when
a prime number was found. With this inversion CACAO was able to optimize
the array store with the zero register.
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Benchmarks Architecture ICMDs ICMD xASTORECONSTs Ratio

kjc Alpha 51,931 118 0.0023
IA32 51,846 1495 0.0288

javac Alpha 39,980 38 0.0010
IA32 39,484 762 0.0193

Table 4.3: Number of constant array stores generated

Constant array stores speed up the execution of such a constant array
store intensive program about 5%. The major speedup on the IA32 archi-
tecture is caused by the fact that the register allocator produces a worse
allocation. The mostly used variable i is stored on the stack. With constant
array stores the register pressure is reduced and one register is freed. This
newly freed register is assigned to i and thus all variables now reside in a
register. With a linear scan register allocator the measured speedup should
be in the range of the AMD64.

Execution times of kjc and javac with and without constant array stores
where to close and could be treated as error in measurement. Thus they are
not shown in the table. Therefore table 4.3 shows the number of generated
constant array store commands in the Java compilers. Again the compiled
source file was HelloWorld.java.

On an IA32 architecture which supports immediate-to-memory stores the
amount of generated commands is about 2%. On an Alpha the amount is so
small that is it negligible.

4.4 CACAO vs. well-known Java Virtual Ma-

chines

The next measurement is a comparison between CACAO and well-known
Java Virtual Machines with Just-In-Time compilers on the IA32 architecture.
Used Java Virtual Machines are from major vendors as well as open source
software. In detail the used Java Virtual Machines are:

• Sun J2SE 1.4.2 05, build 1.4.2 05-b04, mixed mode

• IBM J2SE 1.4.2, IBM build cxia321420-20040626

• Kaffe 1.1.4, Engine: Just-in-time v3
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Benchmark Java Virtual Machine overall run time speedup
(in sec)

kjc CACAO 0.35 -
Sun JVM (client) 0.73 2.09
Sun JVM (server) 1.38 3.94
IBM JVM 0.96 2.74
Kaffe 0.45 1.29

javac CACAO 0.31 -
Sun JVM (client) 0.81 2.61
Sun JVM (server) 1.81 5.84
IBM JVM 1.05 3.39
Kaffe 0.41 1.32

Table 4.4: Java Virtual Machine comparison on IA32

Table 4.4 shows the overall run time results in seconds and the speedup
of CACAO in comparison to the used Java Virtual Machine.

For this benchmarks CACAO has been recompiled with native threads
enabled to get no performance gain. The benchmarks used were the same as
used in the first measurement, that means a compilation of a HelloWorld.java
source file with the specified compiler. The overall run times were measured
with the time(1) system utility. All Java Virtual Machines and benchmarks
have been invoked without any options, that means the default behaviour
was measured. This decision was based on the fact that the invocation with-
out options is the most likely case in everyday usage. The Sun JVM, as
labeled in the table, was measured in both modes: client and server.

As the measurements show the program speedup when executed with CA-
CAO in comparison to major vendor Java Virtual Machines are dramatically.
Even compared to Kaffe the speedup is about 30%.

One interesting point not shown in the table is that every Java Virtual
Machine has used nearly 100% of CPU time except Sun’s. For both bench-
marks the highest CPU usage in client mode was 85% and in server mode
70% although the machine had no load at all. The mean CPU load for client
mode was 75% and for server mode about 45%. This means the Sun Java
Virtual Machine would be in fact faster, but the results shown in the table
are the times measured in practice.
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Related work

In the following related work to the different chapters of this document is
presented. For better clarity the related work chapter is seperated into sec-
tions.

5.1 Class loader

The class loading algorithm of a Java Virtual Machine is completely described
in [LY99]. Jensen et al. [JMT98] proposed a formalization of dynamic class
loading in a Java Virtual Machine. This formal approach confirmed the type
safety problem with class loaders. [BL99] presents the notion of class loaders
and demonstrate some of their interesting uses.

Dynamic class loading is also implemented in other programming lan-
guages. In [Nor00] dynamic class loading in C++ is presented.

5.2 The Just-In-Time Compiler

The Java Programming Language has got more interesting with the intro-
duction of Just-In-Time compilers. [LW00] shows some performance eval-
uation between Java and C++. [GSW+] describes the design of the Jikes
RVM—formerly known as Jalapẽno—optimizing compiler. This Java Virtual
Machine uses the same compile approach as CACAO namely compile-only
which means it just uses a Just-In-Time compiler and no interpreter.

74



CHAPTER 5. RELATED WORK 75

5.3 IA32 code generator

Nearly all well-known Java Virtual Machines available have an optimizing
Just-In-Time compiler for the IA32 architecture like Sun’s JVM [Mic04],
IBM’s JVM [IBM04] or Kaffe [Wil97].

Porting a Java Virtual Machine to the IA32 architecture is always chal-
lenging. In [ABC+02] the experiences of porting the Jikes RVM [AAB+00]
to Linux/IA32 are described.

5.4 AMD64 code generator

The AMD64 architecture is a reasonably young architecture, released in April
2003. At the writing of this document the only available 64-bit operating
systems for AMD64 are GNU/Linux from different distributors, FreeBSD,
NetBSD and OpenBSD. Microsoft Windows is not available yet, although it
was announced to be released in the first half of 2004.

The first available 64-bit JVM for the AMD64 architecture was GCC’s
GCJ—The GNU Compiler for the Java Programming Language [GCJ04].
gcj itself is a portable, optimizing, ahead-of-time compiler for the JAVA
Programming Language, which can compile:

• JAVA source code directly to native machine code

• JAVA source code to JAVA bytecode (class files)

• JAVA bytecode to native machine code

One part of the GCJ is gij, which is the JVM interpreter. Much of the
porting effort for the GNU Compiler Collection to the AMD64 architecture
was done by people working at SUSE [SUS04].

Long time no AMD64 JIT was available, till Sun [SUN04] released their
AMD64 version of J2SE 1.4.2-rc1 for GNU/Linux by Blackdown [Bla03] in
December 2003. At this time our AMD64 JIT was already working for
months, but we were not able to release CACAO, because of the common
status of CACAO to be a compliant JVM. The Sun JVM uses the HotSpot
Server VM by default, the HotSpot Client VM is not available for AMD64
at this time.

The Kaffe [Wil97] JVM has ported their interpreter to the AMD64 archi-
tecture for GNU/Linux, but they still have no plans to port their JIT.
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