International Journal of Parallel Programming, Vol. 31, No. 1, February 2003 (© 2003 )

Exploiting Distributed-Memory and
Shared-Memory Parallelism on
Clusters of SMPs with Data

Parallel Programs

Siegfried Benkner' and Viera Sipkova'

Received August, 2002, revised October, 2002

Clusters of SMPs are hybrid-parallel architectures that combine the main con-
cepts of distributed-memory and shared-memory parallel machines. Although
SMP clusters are widely used in the high performance computing community,
there exists no single programming paradigm that allows exploiting the hierar-
chical structure of these machines. Most parallel applications deployed on SMP
clusters are based on MPI, the standard API for distributed-memory parallel
programming, and thus may miss a number of optimization opportunities
offered by the shared memory available within SMP nodes. In this paper we
present extensions to the data parallel programming language HPF and asso-
ciated compilation techniques for optimizing HPF programs on clusters of
SMPs. The proposed extensions enable programmers to control key aspects
of distributed-memory and shared-memory parallelization at a high-level of
abstraction. Based on these language extensions, a compiler can adopt a hybrid
parallelization strategy which closely reflects the hierarchical structure of SMP
clusters by automatically exploiting shared-memory parallelism based on
OpenMP within cluster nodes and distributed-memory parallelism utilizing MPI
across nodes. We describe the implementation of these features in the VFC
compiler and present experimental results which show the effectiveness of these
techniques.

KEY WORDS: Hybrid parallelization; SMP clusters; HPF; OpenMP; MPI.

! Institute for Software Science, University of Vienna, Liechtensteinstrasse 22, A-1090 Vienna,
Austria. E-mail: {sigi,sipka}@par.univie.ac.at

3

0885-7458/03/0200-0003 /0 © 2003 Plenum Publishing Corporation



4 Benkner and Sipkova

1. INTRODUCTION

Clusters of (symmetric) shared-memory multiprocessors (SMPs) are
playing an increasingly important role in the high-performance computing
arena. Examples of such systems are multiprocessor clusters from SUN,
SGI, IBM, a variety of multi-processor PC clusters, supercomputers like
the NEC SX-6 or the Japanese Earth Simulator and the ASCI White
machine. SMP clusters are hybrid-parallel architectures that consist of a
number of nodes which are connected by a fast interconnection network.
Each node contains multiple processors which have access to a shared
memory, while the data on other nodes may usually be accessed only by
means of explicit message-passing. Most application programs developed
for SMP clusters are based on MPI," a standard API for message-passing
which has been designed for distributed-memory parallel architectures.
However, MPI programs which are executed on clusters of SMPs usually
do not directly utilize the shared memory available within nodes and thus
may miss a number of optimization opportunities. A promising approach
for parallel programming attempts to combine MPI with OpenMP,®
a standardized shared-memory API, in a single application. This strategy
aims to fully exploit SMP clusters by relying on data distribution and
explicit message-passing between the nodes of a cluster, and on data
sharing and multi-threading within nodes.*® Although combining MPI
and OpenMP allows optimizing parallel programs by taking into account
the hybrid architecture of SMP clusters, applications written in this way
tend to become extremely complex.

In contrast to MPI and OpenMP, High Performance Fortran (HPF)”
is a high-level parallel programming language which can be employed
on both distributed-memory and shared-memory machines. HPF programs
can also be compiled for clusters of SMPs, but the language does not
provide features for directly exploiting their hierarchical structure. Current
HPF compilers usually ignore the shared-memory aspect of SMP clusters
and treat such machines as pure distributed-memory systems.

In order to optimize HPF for clusters of SMPs, we have extended the
mapping mechanisms of HPF by high-level means for controlling the key
aspects of distributed and shared-memory parallelization. The concept of
processor mappings enables the programmer to specify the hierarchical
structure of SMP clusters by mapping abstract processor arrays onto
abstract node arrays. The concept of hierarchical data mappings allows
the separate specification of inter-node data mappings and intra-node data
mappings. Furthermore, new intrinsic and library procedures and a new
local extrinsic model have been developed. By using node-local extrinsic
procedures, hybrid parallel programs may be constructed from OpenMP



Exploiting Distributed-Memory and Shared-Memory Parallelism 5

routines within an outer HPF layer. Based on these extensions, the VFC
compiler® adopts a hybrid parallelization strategy which closely reflects
the hierarchical structure of SMP clusters. VFC compiles an extended HPF
program into a hybrid parallel program which exploits shared-memory
parallelism within nodes relying on OpenMP and distributed-memory
parallelism across nodes utilizing MPI.

This paper is organized as follows: In Section 2 we describe language
extensions for optimizing HPF programs for SMP clusters. In Section 3 we
give an overview of the main features of the VFC compiler and outline
its parallelization strategy adopted for SMP clusters. Section 4 presents
an experimental evaluation of the hybrid parallelization strategy. Section 5
discusses related work, followed by conclusions and a brief outline of
future work in Section 6.

2. HPF EXTENSIONS FOR SMP CLUSTERS

HPF has been primarily designed for distributed-memory machines,
but can also be employed on shared-memory machines and on clusters.
However, HPF lacks features for exploiting the hierarchical structure of
SMP clusters. Available HPF compilers usually ignore the shared-memory
aspect of SMP clusters and treat such machines as pure distributed-
memory systems. These issues have been the main motivation for the
development of cluster-specific extensions.

2.1. Abstract Node Arrays and Processor Mappings

HPF offers the concept of abstract processor arrays for defining an
abstraction of the underlying parallel architecture. Processor arrays are
used as the target of data distribution directives, which specify how data
arrays are to be distributed to processor arrays. Although suitable for dis-
tributed-memory machines and shared-memory machines, processor arrays
are not sufficient for describing the structure of SMP clusters. In order to

R O R CRO N [ N 4 A [

node brocessor
'hpf$ processors P(8) 'hpf$ processors Q(2,8)
IhpfC nodes N(4) 'hpfC nodes N(4)
IhpfC distribute P(block) onto N IhpfC distribute Q(*,block) onto N

Fig. 1. Examples of processor mappings: (left) 4 x 2 SMP cluster, (right) 4 x 4 cluster.



6 Benkner and Sipkova

specify the hierarchical topology of SMP clusters we introduce abstract
node arrays and processor mappings (see Fig. 1).

Processor mappings may be specified using the extended DISTRIBUTE
directive with a processor array as distributee and a node array (declared
by means of the NODES directive) as distribution target. Within processor
mappings the HPF distribution formats BLOCK, GEN_BLOCK or “*”
may be used. For example, the processor mapping directive DISTRIBUTE
P(BLOCK) ONTO N, maps each processor of the abstract processor array
P to a node of the abstract node array N according to the semantics of the
HPF BLOCK distribution format.

The new intrinsic function NUMBER_OF_NODES is provided in
order to support abstract node arrays whose sizes are determined upon
start of a program. NUMBER_OF_NODES returns the actual number of
nodes used to execute a program while the HPF intrinsic function
NUMBER_OF_PROCESSORS returns the total number of processors in
a cluster. Using these intrinsic functions, programs may be parallelized
regardless of the actual number of nodes and processors per nodes.

2.1.1. Heterogeneous Clusters

While for homogeneous clusters the BLOCK distribution format is
used in processor mappings, heterogeneous clusters, e.g., clusters where the
number of processors per node varies, can be supported by means of the
GEN_BLOCK distribution format of the Approved Extensions of HPF.
Figure 2 shows a heterogeneous SMP cluster, consisting of 4 nodes with 2,
3, 4, and 3 processors, respectively. Here the GEN_BLOCK distribution
format of HPF is utilized to specify that the number of processors within
nodes varies.

2.1.2. Semantics of Processor Mappings

A processor mapping specifies for each processor array dimension
whether distributed-memory parallelism, shared-memory parallelism or
both may be exploited according to the following rules:

(oo [{ eee [{oooe]{ 000

integer, dimension(4):: SIZE = (/2,3,4,3/)
Ihpf$ processors R(12)
IhpfC nodes N(4)
IhpfC distribute R(gen_block(SIZE)) onto N

Fig. 2. Specification of a heterogeneous SMP cluster using the GEN_BLOCK
distribution format within a processor mapping directive.



Exploiting Distributed-Memory and Shared-Memory Parallelism 7

(1) If a dimension of a processor array is distributed by BLOCK or
GEN_BLOCK, contiguous blocks of processors are mapped to
the nodes in the corresponding dimension of the specified node
array. As a consequence, both distributed-memory parallelism
and shared-memory parallelism may be exploited for all array
dimensions that are mapped to a distributed processor array
dimension.

IE 31

(2) If for a dimension of a processor array a is specified as
distribution format, only shared-memory parallelism may be
exploited across array dimensions that are mapped to that
processor array dimension.

For example, in Fig. 1(b) only shared-memory parallelism may be
exploited across the first dimension of Q, while both shared-memory
and distributed-memory parallelism may be exploited across the second
dimension.

By combining data distributions and processor mappings, inter-node
mappings and intra-node mappings can be derived by the compiler.

An inter-node mapping determines for each node those parts of A that
are owned by it. The implicit assumption is that those portions of an array
owned by a node are allocated in an unpartitioned way in the shared
memory of this node. Inter-node mappings are used by the compiler to
control distributed-memory parallelization, i.e., data distribution and
communication across nodes.

An intra-node mapping determines a mapping of the local part of an
array assigned to a node of a cluster with respect to the processors within
the node. Intra-node mappings are utilized by the compiler to organize
shared-memory parallelization, i.e., work scheduling (work sharing) across
concurrent threads within nodes. These issues are described in more detail
in Section 3.

2.2. Hierarchical Data Mappings

In this section we describe additional extensions which allow users to
specify hierarchical mappings for data arrays. A hierarchical data mapping
comprises an explicit inter-node mapping and an explicit intra-node
mapping, each specified by a separate directive. Compared to the basic
concept of processor mappings as described previously, hierarchical data
mappings provide a more flexible mechanism for the distribution of data
on clusters of SMPs. However, in order to take advantage of this increased



8 Benkner and Sipkova

flexibility, it will be usually necessary to modify the mapping directives of
existing HPF programs.

2.2.1. Explicit Inter-Node Data Mappings

In order to specify a mapping of data arrays to the nodes of an SMP
cluster, the DISTRIBUTE directive is extended by allowing node arrays to
appear as distribution target. Such a mapping is referred to as explicit inter-
node mapping. It maps data arrays to abstract nodes in exactly the same
way as an original HPF distribute directive maps data arrays to abstract
processors. Inter-node mappings are utilized by the compiler to organize
distributed-memory parallelization, i.e., data distribution and communica-
tion across nodes. In the following example, array A is mapped to an
abstract node array N.

IhpfC nodes N(2,2)
real, dimension (8,8) :: A
IhpfC distribute A (block,block) onto N ! inter-node mapping

As a consequence of the extended distribute directive, the section
A(1:4, 1:4) is mapped to node N(1, 1), A(5:8, 1:4) to N(2, 1), A(1:4, 5:8)
to N(1, 2), and A(5:8, 5:8) is mapped to node N(2, 2).

2.2.2. Explicit Intra-Node Data Mappings

In order to specify a mapping of node-local data with respect to
the processors within a node, the SHARE directive has been introduced.
A mapping defined by the SHARE directive is referred to as explicit intra-
node data mapping. As the name of the directive suggests, an intra-node
mapping controls the work sharing (scheduling) of threads running within
nodes. Besides the usual HPF distribution formats BLOCK, CYCLIC,
and GEN_BLOCK, the OpenMP work-sharing formats DYNAMIC and
GUIDED may be employed for this purpose.

The information provided by means of the share directive is pro-
pagated by the compiler to parallel loops. Various code transformations
ensure that loops can be executed by multiple threads which are scheduled
according to the specified work sharing strategy.

Hierarchical data mappings may be specified regardless of whether a
processor mapping has been specified or not. For example, in the code
fragment



Exploiting Distributed-Memory and Shared-Memory Parallelism 9

IhpfC nodes N(4)

real, dimension (32,16) :: A
IhpfC distribute A(*, block) onto N ! inter-node mapping
IhpfC share A (block,*) ! intra-node mapping

Ihpf$ independent
do i=1, 32
a(i,:)=...
end do

the extended distribute directive specifies that the second dimension of A
is distributed by BLOCK to the nodes of a cluster. The SHARE directive
specifies that computations along the first dimension of A should be per-
formed in parallel by multiple threads under a BLOCK work-scheduling
strategy. If we assume that each node is equipped with four processors, the
loop iteration space would be partitioned into four blocks of eight itera-
tions and each block of iterations would be executed by a separate thread.

Note that although in some cases a hierarchical mapping can also be
expressed by means of a usual HPF data distribution directive and a pro-
cessor mapping, this is not true in general.

3. HYBRID PARALLELIZATION STRATEGY

In this section we outline how HPF programs that make use of the
proposed extensions are compiled with the VFC compiler for clusters of
SMPs according to a hybrid parallelization strategy that combines MPI
and OpenMP.

3.1. Overview of VFC

VFC® is a source-to-source parallelization system which translates
HPF+ programs into explicitly parallel programs for a variety of parallel
target architectures. HPF+® is an extension of HPF with special support
for an efficient handling of irregular codes. In addition to the basic features
of HPF, it includes generalized block distributions and indirect distribu-
tions, dynamic data redistribution, language features for communication
schedule reuse" and the halo concept™ for controlling irregular non-local
data access patterns. VFC provides powerful parallelization strategies for a
large class of non-perfectly nested loops with irregular runtime-dependent
access patterns which are common in industrial codes. In this context, the
concepts of communication schedule reuse and halos allow the user to
minimize the potentially large overhead of associated runtime compilation
strategies.



10 Benkner and Sipkova

Initially, VFC has been developed for distributed-memory parallel
machines. For such machines, VFC translates HPF programs into expli-
citly parallel, single-program multiple-data (SPMD) Fortran 90/MPI
message-passing programs. Under the distributed-memory execution
model, the generated SPMD program is executed by a set of processes,
each executing the same program in its local address space. Usually there
is a one-to-one mapping of abstract processors to MPI processes. Each
processor only allocates those parts of distributed arrays that have been
mapped to it according to the user-specified data distribution. Scalar data
and data without mapping directives are allocated on each processor. Work
distribution (i.e., distribution of computations) is mainly based on the
owner-computes rule. Access to data located on other processors is realized
by means of message-passing (MPI) communication. VFC ensures that all
processors executing the target program follow the same control flow in a
loosely synchronous style.

In the following we focus on the extensions of VFC for clusters of
SMPs.

3.2. Hybrid Execution Model

The parallelization of HPF+ programs with cluster-specific extensions
relies on a hybrid-parallel execution model. As opposed to the usual HPF
compilation where a single-threaded SPMD node program is generated,
a multi-threaded SPMD node program is generated under the hybrid exe-
cution model.

Under the hybrid model, an HPF program is executed on an SMP
cluster by a set of parallel processes, each of which runs usually on a
separate node. Each process allocates data it owns in shared memory,
according to the derived (or explicitly specified) inter-node data mapping.
Work distribution across node processes is usually realized by applying the
owner computes strategy, which implies that each process performs only
computations on data elements owned by it. Communication across node
processes is realized by means of appropriate MPI message-passing primi-
tives. In order to exploit additional shared-memory parallelism, each MPI
node process generates a set of OpenMP threads which run concurrently in
the shared address space of a node. Usually the number of threads spawned
within node processes is equal to the number of processors available within
nodes. Data mapped to a node is allocated in a non-partitioned way in
shared memory, regardless of intra-node mappings. Intra-node data map-
pings are however utilized to organize parallel execution of threads by
applying code transformations and inserting appropriate OpenMP directives.



Exploiting Distributed-Memory and Shared-Memory Parallelism 1

3.3. Outline of the Hybrid Parallelization Strategy

The parallelization of extended HPF programs for clusters of SMPs
can be conceptually divided into three main phases (1) inter-node and intra-
node mapping analysis, (2) distributed-memory parallelization, and (3)
shared-memory parallelization.

3.3.1. Deriving Inter-Node and Intra-Node Data Mappings

After the conventional front-end phases, the VFC compiler analyzes
the distribution directives and processor mapping directives. As a result of
this analysis, each dimension of a distributed array is classified as DM,
SM, DM /SM, or SEQ, depending on the type of parallelism that may be
exploited. Then for each array dimension an inter-node data mapping and
an intra-node data mapping is determined.

Assuming the following declarations

'hpf$ processors P(4) ! usual HPF processor array
IhpfC nodes N(2) ! abstract node array
IhpfC distribute P(block) onto N ! processor mapping

real, dimension (100) :: A
Ihpf$ distribute A(block) onto P ! usual HPF distribution

the inter-node and intra-node mapping of A derived by the compiler are
equivalent to those explicitly specified by the following directives:

lhpfC distribute A(block) onto N ! "derived inter-node mapping"
lhpfC share A(block) I "derived intra-node mapping"

As a consequence, both distributed and shared-memory parallelism will be
exploited for array A.

On the basis of inter-node and intra-node mappings, the ownership of
data both with respect to processes (nodes), and with respect to threads
(processors within nodes) is derived and represented in symbolic form.
Ownership information is then propagated to all executable statements
and, at an intermediate code level, represented by means of ON_HOME
clauses which are generated for assignment statements and loops accessing
distributed arrays. Each loop is then classified as DM, SM, DM/SM or
SEQ depending on the classification of the corresponding array dimension
in the associated ON_HOME clause.

3.3.2. Distributed-Memory Parallelization

During the distributed-memory parallelization phase VFC generates
an intermediate SPMD message-passing program based on inter-node data
mappings. Array declarations are modified in such a way that each MPI



12 Benkner and Sipkova

process allocates only those parts of distributed arrays that are owned by it
according to the inter-node mapping. Work distribution is realized by strip-
mining all loops which have been classified as DM across multiple MPI
processes. If access to non-local data is required, appropriate message-
passing communication primitives are generated and temporary data
objects for storing non-local data are introduced. Several communication
optimizations are applied, including elimination of redundant communica-
tion, extraction of communication from loops, message vectorization, and
the use of collective communication instead of point-to-point communica-
tion primitives.

The intermediate SPMD message-passing program generated after this
phase could already be executed, however it would exploit only a single
processor on each node of the cluster.

3.3.3. Shared-Memory Parallelization

The intermediate message-passing program is parallelized for shared
memory according to the intra-node data mapping derived by VFC. The
shared-memory parallelization phase makes use of OpenMP in order to
distribute the work of a node among multiple threads. Work distribution of
loops and array assignments is derived from the intra-node data mapping
of the accessed arrays and realized by inserting corresponding OpenMP
work-sharing directives and/or appropriate loop transformations (e.g.,
strip-mining). In this context, variables which have been specified as NEW
in an HPF INDEPENDENT directive are specified as PRIVATE within the
generated OpenMP directives.

Consistency of shared data objects is enforced by inserting OpenMP
synchronization primitives (critical sections or atomic directives).

Furthermore, various optimizations are performed in order to avoid
unnecessary synchronization. The potential overheads of spawning teams
of parallel threads is reduced by merging parallel regions. Most of these
optimization steps are conceptually similar to the communication optimi-
zations performed during distributed-memory parallelization. Special
optimizations are applied to loops performing irregular reductions on
arrays for which a halo has been specified In order to minimize synchro-
nization overheads for loops that perform irregular reductions on arrays
for which a halo has been specified, special optimization techniques are
applied.®?

Note that our current implementation of the hybrid parallelization
strategy ensures that only the master thread performs MPI communication.

In Figs. 3 to 5 the hybrid parallelization strategy as realized by VFC
is sketched. Figure 3 shows the original HPF code, Fig. 4 sketches the



Exploiting Distributed-Memory and Shared-Memory Parallelism 13

'hpf$ processors P(number_of_processors())

'hpfC nodes N(number_of_ncdes()) ! abstract node array
'hpfC distribute P(block) onto N ! processor mapping
real, dimension (N) :: A

Ihpf$ distribute A(block) onto P

Thpf$ independent
do i = NL, NU
a(i) = ... a(..J)
end do

Fig. 3. Original HPF program fragment with cluster-specific extensions (!hpfC)

IhpfC share A(block) | derived inter-node mapping
real, allocatable :: A(:)
type(rt_dsc), pointer :: A_dsc ! runtime descriptor of A
ca | set up runtime descriptors
allocate (A(vhpf_extent (A_dsc,1))) ! allocate node-local part of A

| compute node-local bounds
ca11 vhpf_loc_bounds_SM(A_dsc,NL,NU,1b_DM,ub_DM)

call vhpf_comm(...) | perform MPI communication

do i = 1b_DM, ub_DM I process—local iterations
a(i) =

end do

Fig. 4. Intermediate (pseudo-)code after mapping analysis and DM parallelization for
the program fragment shown in Fig. 3.

real, allocatable :: A(:)

type(rt_dsc), pointer :: A_dsc ! runtime descriptor of A

| set up runtime descriptors
allocate (A(vhpf_extent(A_dsc,1))) ! allocate node-local part cof A

call vhpf_comm(...) ! perform MPI communication
| spawn parallel threads
I $omp parallel private(i,A_loc_1b_SM,A_loc_ub_SM)
| compute thread-local bounds
call vhpf_loc_bounds_SM(A_dsc,1b_DM,ub_DM,1b_SM,ub_SM)
do i = 1b_SM, ub_SM ! thread-local iterations
a(i) = ...
end do
!$omp end parallel

Fig. 5. Final (pseudo-)code after DM and SM parallelization (OpenMP) for the program
fragment shown in Fig. 3.



14 Benkner and Sipkova

intermediate message-passing program obtained after DM parallelization,
and Fig. 5 the final (pseudo-)code after DM and SM parallelization.

As shown in Figs. 4 and 5, during shared-memory parallelization the
intermediate SPMD message-passing program is transformed by inserting
OpenMP directives in order to exploit shared-memory parallelism within
the nodes of the cluster. The OpenMP parallel directive ensures that
multiple threads are generated on each node. Inside this parallel region the
runtime routine vhpf_loc_bounds_SM computes from the iterations
assigned to a node (i.e., the iterations from |lb_DM to ub_DM) the chunk
of iterations executed on each individual thread according to the derived
intra-node data mapping.

3.3.4. Potential Advantages of Hybrid Parallelization

The hybrid parallelization strategy offers a number of advantages
compared to the usual distributed-memory parallelization strategy as
realized by most HPF compilers. The hybrid strategy reflects closely the
topology of SMP clusters by exploiting distributed-memory parallelism
across the nodes and shared-memory parallelism within nodes. It allows a
direct utilization of the shared memory within nodes and usually requires
less total memory than the DM parallelization strategy. For example,
replicated data arrays, which are mostly accessed in a read only way, have
to be allocated only once per node, while in the distributed-memory model
replicated arrays have to be allocated by each process, resulting in multiple
copies on each node.

Moreover, the hybrid model usually allows a more efficient handling
of communication. Since data is distributed only across nodes and com-
munication is performed only by the master thread, the hybrid model
results in less messages as well as larger messages. However, on certain
architectures, such a strategy, where only the master thread performs
communication, may reduce the overall communication bandwidth.

Another important issue are unstructured computations, where data
arrays are accessed indirectly by means of array subscripts. Under the dis-
tributed-memory model, an HPF compiler has to apply expensive runtime
techniques to parallelize loops with indirect array accesses. However, if
array dimensions which are accessed indirectly are mapped to the proces-
sors within a node, the overheads of runtime parallelization can be avoided
due to the shared access.

Despite these differences both models usually result in the same degree
of parallelism. Thus, for many applications only minor performance dif-
ferences can be observed. In particular, this is true for codes which are
characterized by a high degree of locality and independent computations.



Exploiting Distributed-Memory and Shared-Memory Parallelism 15

In the following we present an experimental evaluation of the new
language extensions and the hybrid parallelization strategy as provided by
VFC using two benchmark codes on a Beowulf-type SMP PC cluster.

4. EXPERIMENTAL RESULTS

For the performance experiments, we used a kernel from a crash-sim-
ulation code which originally has been developed for HPF+, and kernel
from a numerical pricing module™ developed in the context of the
AURORA Financial Management System.¥ Both kernels are based on an
iterative computational scheme with an outer time-step loop. The main
computational parts are performed in nested loops where large arrays are
accessed by means of vector subscripts. In order to minimize the overheads
that would be caused by usual runtime parallelization strategies (e.g.,
inspector/executor), non-local data access patterns are explicitly specified
at runtime based on the concept of halos. Moreover, in both kernels the
reuse of runtime generated communication schedules for indirectly accessed
arrays is enforced by means of appropriate language features for commu-
nication schedule reuse.!*®

Both kernels have been parallelized with the VFC compiler® and
executed on a Beowulf cluster consisting of 16 nodes connected via
Myrinet. Each node is equipped with four Pentium III Xeon processors
(700 MHz) and 2GB RAM.

For both kernels we compared a pure MPI version to a hybrid-parallel
version based on MPI/OpenMP. Both versions have been generated from
an HPF+ source program, in the latter case, with additional cluster-specific
extensions. The pgf90 compiler from Portland Group Inc. which also
supports OpenMP has been used as a backend-compiler of VFC.

All kernels have been measured on up to 16 nodes, where on each
node either four MPI processes (MPI only) or four OpenMP threads
(MPI/OpenMP) were run. Speed-up numbers have been computed with
respect to the sequential version of the code (i.e., HPF compiled with the
Fortran 90 compiler).

In Fig. 6 the speedup curves of the financical optimization kernel are
shown on the left hand side. For up to 8 processors (2 nodes) the pure MPI
version and the hybrid MPI/OpenMP version are almost identical.
However, on more than 8 processors the MPI/OpenMP version becomes
superior. The main reason for this performance difference is that the
computation/communication ratio of the pure MPI version decreases
faster than for the MPI/OpenMP version. In the pure MPI version the
total number of messages is approximately four times larger than in the
MPI/OpenMP version. Also the overall memory requirements of the pure



16 Benkner and Sipkova

Financial Optimization Kernel Crash Simulation Kernel

64 64

56 A—A MPI only 1 56 1 A— MPI only

48 | ¥—¥ MPI/OpenMP y a8 | ¥—¥ MPI/OpenMP
a a 40 +
= =
S| =]
Q Q
L Q
& &

4(1) 8(2) 16(4) 32(8) 64(16) 4(1) 8(2) 16(4) 32(8) 64(16)
number of processors (number of nodes) number of processors (number of nodes)

Fig. 6. Performance comparison of kernels parallelized with VFC under the distributed-
memory parallelization strategy (MPI only) and under the hybrid parallelization strategy
(MPI/OpenMP).

MPI version are higher since the kernel contains several replicated arrays
which are allocated in the pure MPI version in each process, resulting in
four copies per node, while in the MPI/OpenMP version only one copy per
node is required.

For the crash simulation kernel (see Fig. 6, right hand side) the situa-
tion is similar. Here the pure MPI version is superior on up to 32 proces-
sors (8 nodes). On 64 processors, however, the MPI/OpenMP version
achieves a better speedup.

Note that for both kernels we could not achieve any speedups with
commercial HPF compilers due to an inadequate handling of loops with
irregular (vector-subscripted) data accesses.

5. RELATED WORK

Some of the extensions for SMP clusters described in this paper have
been implemented also in the ADAPTOR compilation system.!%!
ADAPTOR supports also the automatic generation of hybrid-parallel
programs from HPF based on appropriate default conventions for proces-
sor mappings.

Several researchers have investigated the advantages of a hybrid pro-
gramming model based on MPI and OpenMP against a unified MPI-only
model. Cappelo et al.® investigated a hybrid-parallel programming strat-
egy in comparison with a pure message-passing approach using the NAS
benchmarks on IBM SP systems. In their experiments the MPI-only
approach has provided better results than a hybrid strategy for most codes.



Exploiting Distributed-Memory and Shared-Memory Parallelism 17

They conclude that a hybrid-parallel strategy becomes superior when fast
processors make the communication performance significant and the level
of parallelization is sufficient. Henty"” reports on experiments with a
Discrete Element Modeling code on various SMP clusters. He concludes
that current OpenMP implementations are not yet efficient enough for
hybrid parallelism to outperform pure message-passing. Haan® performed
experiments with a matrix-transpose showing that a hybrid-parallel
approach can significantly outperform message-passing parallelization. On
the Origin2000, the SGI data placement directives"® form a vendor specific
extension of OpenMP. Some of these extensions have similar functionality
as the HPF directives, e.g., “affinity scheduling” of parallel loops is the
counterpart to the ON clause of HPF. Compaq has also added a new set of
directives to its Fortran for Tru64 UNIX that extend the OpenMP Fortran
API to control the placement of data in memory and the placement of
computations that operate on that data.’” Chapman, Mehrotra, and
Zima® have proposed a set of OpenMP extensions, similar to HPF
mapping directives, for locality control. PGI proposes a high-level pro-
gramming model®"*? that extends the OpenMP API with additional data
mapping directives, library routines and environment variables. This model
extends OpenMP in order to control data locality with respect to the nodes
of SMP clusters. In contrast to this model, HPF, with the extensions
proposed in this paper, supports locality control across nodes as well as
within nodes.

All these other approaches introduce data mapping features into
OpenMP in order to control data locality, but still utilize the explicit work
distribution via the PARALLEL and PARDO directives of OpenMP. Our
approach is based on HPF and relies on an implicit work distribution
which is usually derived from the data mapping but which may be explicitly
controlled by the user within nodes by means of OpenMP-like extensions.

A number of studies have addressed the issues of implementing
OpenMP on clusters of SMPs relying on a distributed-shared memory
(DSM) software layer. Hu et al.® describe the implementation of
OpenMP on a network of shared-memory multiprocessors by means of
a translating OpenMP directives into calls to a modified version of the
TreadMarks software distributed-memory system. Sato et al.®® describe
the design of an OpenMP compiler for SMP clusters based on a compiler-
directed DSM software layer.

6. CONCLUSIONS

Processor mappings provide a simple but convenient means for adapt-
ing existing HPF programs with minimal changes for clusters of SMPs.



18 Benkner and Sipkova

Usually only a node array declaration and a processor mapping directive
have to be added to an HPF program. Based on a processor mapping, an
HPF compiler can adopt a hybrid parallelization strategy that exploits dis-
tributed-memory parallelism across nodes, and shared-memory parallelism
within nodes, closely reflecting the hierarchical structure of SMP clusters.
Additional extensions are provided for the explicit specification of inter-
node and intra-node data mappings. These features give users more control
over the shared-memory parallelization within nodes, by using the SHARE
directive.

As our experimental evaluation has shown, using these features per-
formance improvements for parallel programs on clusters of SMPs can be
achieved in comparison to a pure message-passing parallelization strategy.
Another potential advantage is that with the hybrid-parallelization strategy
shared memory within nodes can be exploited directly, often resulting in
lower memory requirements.

For the future we plan to extend the hybrid compilation strategy of
VFC by relaxing the current restriction that only the master threads on
each process can perform MPI communication. This implies that a thread-
safe MPI implementation supporting the features of MPI-2 for thread-
based parallelization (cf. Section 8.7 of the MPI-2 Specification) must be
available on the target SMP cluster. However, currently this is not the case
on most clusters.

ACKNOWLEDGMENTS

This work was supported by the Special Research Program SFB F011
“AURORA” of the Austrian Science Fund and by NEC Europe Ltd. as
part of the NEC/Univ. Vienna ADVANCE project in co-operation with
NEC C&C Research Laboratories.

REFERENCES

1. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Vers. 1.1,
June 1995, MPI-2: Extensions to the Message-Passing Interface, 1997.

2. The OpenMP Forum, OpenMP Fortran Application Program Interface, Version 1.1,
November 1999, http: //www.openmp.org.

3. F. Cappello and D. Etieble, MPI versus MPI+OpenMP on the IBM SP for the NAS
Benchmarks, In Proceedings of SC 2000: High Performance Networking and Computing
Conference, Dallas (November 2000).

4. O. Haan, Matrix Transpose with Hybrid OpenMP/MPI Parallelization. Technical
Report, http: //www.spscicomp.org/2000/userpres.html#haan, 2000.

5. R. D. Loft, S. J. Thomas, and J. M. Dennis, Terascale Spectral Element Dynamical Core
for Atmospheric General Circulation Models. In Proceedings SC2001, Denver (November
2001).



Exploiting Distributed-Memory and Shared-Memory Parallelism 19

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. V. Luong, C. P. Breshears, and L. N. Ly, Costal Ocean Modeling of the U.S. West
Coast with Multiblock Grid and Dual-Level Parallelism. In Proceedings of SC2001,
Denver (November 2001).

. High Performance Fortran Forum, High Performance Fortran Language Specification,

Version 2.0, Department of Computer Science, Rice University (1997).

. S. Benkner, VFC: The Vienna Fortran Compiler, Scientific Programming, 7(1):67-81

(1999).

. S. Benkner, HPF+-High Performance Fortran for Advanced Scientific and Engineering

Applications, Future Generation Computer Systems, Vol. 15 (3) (1999).

S. Benkner, P. Mehrotra, J. Van Rosendale, and H. Zima, High-Level Management of
Communication Schedules in HPF-like Languages, In Proceedings of the International
Conference on Supercomputing (ICS’98), pp. 109-116, Melbourne, Australia, ACM Press
(July 13-17, 1998).

S. Benkner, Optimizing Irregular HPF Applications Using Halos, Concurrency: Practice
and Experience, Wiley (2000).

S. Benkner and T. Brandes, Exploiting Data Locality on Scalable Shared Memory
Machines with Data Parallel Programs, In Euro-Par 2000 Parallel Processing, Lecture
Notes in Computer Science 1900, Munich, Germany (September 2000).

H. Moritsch and S. Benkner, High Performance Numerical Pricing Methods, In Fourth
Int’l. HPF Users Group Meeting, Tokyo (October 2000).

E. Dockner, H. Moritsch, G. Ch. Pflug, and A. Swietanowski, AURORA financial
management system: From Model Design to Implementation, Technical report AURORA
TR1998-08, University of Vienna (June 1998).

S. Benkner and T. Brandes. High-Level Data Mapping for Clusters of SMPs, In Proceed-
ings 6th International Workshop on High-Level Parallel Programming Models and Suppor-
tive Environments, San Francisco, Springer-Verlag (April 2001).

T. Brandes and F. Zimmermann, ADAPTOR-—A Transformation Tool for HPF
Programs, In K. M. Decker and R. M. Rehmann (eds.), Programming Environments for
Massively Parallel Distributed Systems, Birkhauser Verlag (1994).

D. S. Henty, Performance of Hybrid Message-Passing and Shared-Memory Parallelism
for Discrete Element Modeling, In Proceedings of SC 2000: High Performance Networking
and Computing Conference, Dallas (November 2000).

Silicon Graphics Inc. MIPSpro Power Fortran 77 Programmer’s Guide: OpenMP Mul-
tiprocessing Directives, Technical Report Document 007-2361-007 (1999).

J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. Nelson, and C. Offner,
Extending OpenMP for NUMA Machines, In Proceedings of SC 2000: High Performance
Networking and Computing Conference, Dallas (November 2000).

B. Chapman, P. Mehrotra, and H. Zima, Enhancing OpenMP with Features for Locality
Control, In Proc. ECWMF Workshop “Towards Teracomputing—The Use of Parallel
Processors in Meteorology” (1998).

M. Leair, J. Merlin, S. Nakamoto, V. Schuster, and M. Wolfe, Distributed OMP—
A Programming Model for SMP Clusters, In Eighth International Workshop on Compilers
for Parallel Computers, pp. 229-238, Aussois, France (January 2000).

J. Merlin, D. Miles, and V. Schuster, Extensions to OpenMP for SMP Clusters. In
Proceedings of the Second European Workshop on OpenMP, EWOMP (2000).

Y. Hu, H. Lu, A. Cox, and W. Zwaenepel, Openmp for networks of smps, In Proceedings
of IPPS. (1999).

M. Sato, S. Satoh, K. Kusano, and Y. Tanaka, Design of openmp compiler for an smp
cluster, In Proceedings EWOMP ’99, pp. 32-39 (1999).



	1. INTRODUCTION
	2. HPF EXTENSIONS FOR SMP CLUSTERS
	3. HYBRID PARALLELIZATION STRATEGY
	4. EXPERIMENTAL RESULTS
	5. RELATED WORK
	6. CONCLUSIONS
	

