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Abstract
Embedded systems have an extremely short time to market and
therefore require easily retargetable compilers. Architecture de-
scription languages (ADLs) provide a single concise architecture
specification for the generation of hardware, instruction set simu-
lators and compilers. In this article, we present an ADL for com-
piler generation. From a specification, we can derive an optimized
tree pattern matching instruction selector, a register allocator and
an instruction scheduler. Compared to a hand-crafted back end, the
generated compiler produces smaller and faster code.

The ADL is rich enough that other tools, such as assemblers,
linkers, simulators and documentation, can all be obtained from a
single specification.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Retargetable compilers, code generation,
translator writing systems and compiler generators

General Terms Algorithms, Languages

Keywords compiler generation, architecture description language,
code generation

1. Introduction
Current embedded applications which deliver high performance at
low cost require application specific architectures. Because of the
size of the applications, these architectures have to be programmed
efficiently in a high level programming language. Highly optimiz-
ing compilers are necessary to exploit all the features of the pro-
cessor. An extremely short time to market, typical of embedded
systems, requires that easily retargetable compilers be available.

A good approach is to use an architecture description language
(ADL) to specify the complete architecture. A single specification
can be used for hardware synthesis and for generation of simula-
tors, compilers and other tools. However, specification of the com-
piler’s code generator is difficult. An instruction specification has
different requirements from a code generator. A proven technique
for the generation of code generators, and the method which we ad-
vocate, is tree pattern matching. And the patterns needed for code
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generation are not easy to extract from an architecture specification
where the focus is on hardware synthesis or simulator generation.

In this paper, we advocate the inclusion of rules for a tree
pattern matching code generator in the architecture specification. It
is not necessary to include a full specification. Only the basic tree
patterns have to be specified. All other information can be extracted
from the other parts of the specification, and optimizations can
be generated automatically. We have developed an ADL based
on XML and a generator for highly optimized code generators.
We implemented both a manually developed tree pattern matching
code generator and a code generator specified in our ADL for the
xDSPcore digital signal processing architecture [KHPP04]. The
ADL specification is less error prone (the rule specification has
been reduced to one fifth the size), and it produces up to 3 percent
smaller and up to 9 percent faster machine code.

The xDSPcore is a five-way variable-length VLIW (very long
instruction word) load/store digital signal processor (DSP) with
pipelined inorder execution. Up to five instructions, either short or
long, are executed in each cycle. It supports some common exten-
sions for the DSP domain, such as SIMD (single instruction mul-
tiple data) instructions, multiply-accumulate instructions, various
addressing modes for loads and stores with simultaneous update of
the address register, multiple memory banks, fixed point arithmetic,
predicated execution, etc. The processor’s register file consists of
two banks, one for data registers, the other for address registers.
Each data register is 40 bits wide, but can also be used as a 32 bit
register, or as two registers of 16 bit width.

The architecture description language details are explained in
section 2. In section 3 we present our code generator generator and
in section 4 we give an experimental evaluation of the resulting
code generator. In section 5 we discuss related work.

2. The Architecture Description Language
The design of the architecture description language (ADL) was
driven by the following principles:

• a concise instruction set definition,

• avoidance of duplicate information,

• grouping of related information,

• extensibility,

• human readability, and

• usability for automatic processing.

With these principles in mind, a language was developed which
is used for defining the instruction set and generating software com-
ponents and development tools. The initial language design tar-
geted automatic generation of documentation and instruction set
simulators and was later extended for compiler generation. Extend-
ing the language was straight forward and did not impact the al-
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ready existing tools. Currently, generators exist to build a com-
piling simulator (csim_impl) [KFH05], an interpreting simula-
tor (xsim_impl), compiler components (rule_gen), and all docu-
mentation from the ADL.

The syntax is based on the widely used markup language XML,
which eases editing, validation and automatic processing. For ex-
ample, a document type definition is provided that enables editors
and parsers to validate the ADL document and to offer editing aids
like syntax highlighting and word completion.

2.1 Resource definitions

An architecture specification is split into two parts: the configura-
tion and the instruction set definition. The configuration contains
an enumeration of available resources, such as pipeline stages, ex-
ecution units, registers, memories, caches (limited at the moment)
and buses which connect the resources.

A pipeline specification contains the names, the order and the
width of each stage. Figure 1 shows the definition of an instruction
fetch stage. The <config> element has two attributes: a unique
name identifying the resource and a type specifying what is to be
defined, in this case, a pipeline stage. Properties of the resources are
defined by the <data> element. As can be seen in the example, the
pipeline stages are ordered by the pipeline_order value. Two
stages may not share the same position in the ordering, implying
that it is currently not possible to define independent data paths with
separate pipelines (e.g. one data path for integers and one for float-
ing point instructions). The attribute number_of_instructions
defines the number of instructions that may be executed in parallel
in a stage.

<config type="PipelineStage" name="IF">
<data name="phase" value="fetch"/>
<data name="pipeline_order" value="1"/>
<data name="number_of_instructions" value="5"/>

</config>

Figure 1. The fetch pipeline stage

Register sets are described by several register definitions, each
containing basic information, such as bit width and ‘endianness’,
as well as optional information, such as encoding and calling con-
ventions. The ADL supports several register sets and banks that
may share registers. It is also possible to define overlaps and other
dependencies between registers. An example of a 32 bit wide data
register set is shown in figure 2. The <meta_data> element de-
fines optional attributes that are used by generators — in the figure
the calling convention for the register allocator generator is given.
The calling convention defines how registers are to be saved and
restored upon function calls. It is possible to define a register to be
an argument register, saved or scratch. Saved registers have to
be saved and restored by the called function, while the caller has to
take care of scratch registers. Argument registers are used to pass
argument values to the called function. If an argument register is
not used to pass a value, the saved calling convention is implied.

<config type="RegisterFile" name="Registers">
<config type="Register" name="D0">
<data name="width" value="32"/>
<meta_data name="callingconvention"

value="argument0"/>
</config>

</config>

Figure 2. A simple register set

Memories are defined by size, cell size (size of an addressable
data word), number of ports and the bus interface. It is possible

to define banked memories using the most significant bits of the
address to select the bank.

Currently only fully set associative caches are supported, they
are defined analogously to memories. It is possible to specify the
number of cache lines, the block size and the total size of the cache.

<config type="Memory" name="DataMemory">
<data name="max_address" value="65535"/>
<data name="mem_cell_size" value="16"/>
<data name="mem_bus_size" value="32"/>
<data name="number_of_memory_busses" value="2"/>

</config>

Figure 3. A memory definition

The configuration section also contains functional units that are
solely used to model resource constraints. For example, figure 4
depicts a unit that may be used to implement integer arithmetic
instructions. The resource constraints introduced here are used by
the instruction scheduler. It is important to note that no functions
or semantics for the units are specified here.

<config type="ExecutionUnit" name="ALU">
<data name="order" value="1"/>
<data name="instruction_type" value="INTALU"/>

</config>

Figure 4. Functional unit

2.2 Instruction set definition

The central part of an architecture description is the instruction
specification. Each instruction of the target architecture is enumer-
ated and its syntax, encoding, timing, resource constraints and se-
mantics are described. To enable reuse, the description is decom-
posed into smaller pieces that are referenced within an instruction
definition (see figure 5):

• The <operands> of an instruction are described via this sec-
tion. Operands may be registers or immediate fields. It is im-
portant to note that the operands are derived from the instruc-
tion encoding (e.g. for register operands the index of the register
is available from the instruction’s encoding). Memory locations
and registers that are addressed through a computed index are
not considered to be operands.

• The <opcode> tag specifies the instruction’s binary encoding.
As can be seen, the encoding is built up using a string of
digits and characters. The digits encode fixed values that do
not depend on the instruction’s operands, while the characters
represent place holders that are replaced by concrete digits
depending on the instruction’s operands.

• The <instruction_type> is used to model resource con-
straints, as described for functional units. Instructions may only
execute on units that support instructions of the given type.

• The <execution_model> references an abstraction of the ex-
ecution phases of an instruction. It declares abstract opera-
tions that build up the instruction and assigns the operations
to pipeline stages. These operations do not carry any function-
ality or semantics. The information defined here is used by the
instruction scheduler for dependence analysis.

• The <execution_cycle> element maps the abstract opera-
tions defined in the execution model to concrete semantic speci-
fications, the so called µ-instructions. In fact, the µ-instructions
contain several specifications for different generator tools; the
text snippets are written in tool specific languages, for example
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<instruction name="add" >
<opcode>10p00000aaaabbbbcccc</opcode>
<instruction_type>INTALU</instruction_type>
<execution_model>binary_model</execution_model>
<operands>
<operand char="a" order="1">

<operand_type>DATA_REGISTER</operand_type>
</operand>
<operand char="b" order="2">

<operand_type>DATA_REGISTER</operand_type>
</operand>
<operand char="c" order="3">

<operand_type>DATA_REGISTER</operand_type>
</operand>

</operands>
<execution_cycle>
<map key="READ_OPERAND_1">

<define_value>MACRO_READ_REGISTER_OPERAND_1(op1)
</define_value>

</map>
<map key="READ_OPERAND_2">

<define_value>MACRO_READ_REGISTER_OPERAND_2(op2)
</define_value>

</map>
<map key="WRITE_OPERAND_3">

<define_value>MACRO_ADD</define_value>
<define_value>MACRO_WRITE_REGISTER(op3)
</define_value>

</map>
</execution_cycle>
<mnemonic>
<define_value>add</define_value>

</mnemonic>
<syntax>
<define_value>op1, op2, op3</define_value>

</syntax>
</instruction>

Figure 5. example instruction specification

C++ or tree patterns. The user is responsible for writing cor-
rect macro specifications which are accepted by the tool gen-
erators. In the example the abstract operations for reading the
operands are mapped to a register read (depicted in Figure 7),
while the definition of the destination operand is mapped to
an add operation and a register write (see Figure 8). The ele-
ment csim_impl contains C++ code for the compiling simula-
tor, while the rule_gen element contains rule patterns. Finally
the semantics element is used for the instruction scheduler to
define how operands are used by the instruction, for example if
an operand is read, written, stored to memory, etc.

• The syntax of the instruction is defined by two tags, the
<mnemonic> is a symbolic name for the instruction (e.g. add)
that is placed at the beginning of the instruction’s syntax. An
instruction may have several mnemonics which select differ-
ent variants of the instruction. In such a case, the <mnemonic>
element contains a mapping which specifies the bits in the en-
coding to set for each variant. The rest of the syntax is given by
<syntax>.

3. Compiler Generation
The compiler is based on the highly optimizing open compiler en-
vironment (OCE) from Atair. Nearly all the standard analyses and
optimizations are available. The abstract syntax tree is augmented
with static single assignment (SSA) information. Accurate alias and
array dependence analyses provide the information for vectoriza-
tion, scheduling and software pipelining. A classical graph color-

<define type="binary_model">
<define type="READ_OPERAND_1">

<value name="pipeline_stage">EX1</value>
<value name="cycle_phase">begin</value>

</define>
<define type="WRITE_OPERAND_2">

<value name="pipeline_stage">EX1</value>
<value name="cycle_phase">end</value>

</define>
</define>

Figure 6. execution model

<define type="MACRO_READ_REGISTER_OPERAND_1">
<define_value name="semantics">
use

</define_value>
<define_value name="csim_impl">
%newtmp(operand1, $1)
%tmp(operand1) = REG_READ_%reg_name($1)();

</define_value>
<define_value name="rule_gen">
$op1 := $1

</define_value>
</define>

Figure 7. A µ-instruction for reading a register operand

<define type="MACRO_ADD">
<define_value name="csim_impl">
%tmp(result) = %tmp(operand1) + %tmp(operand2);

</define_value>
<define_value name="rule_gen">
$res := IrAdd($op1, $op2)
</define_value>

</define>

Figure 8. A µ-instruction of an addition

ing register allocator and an optimal allocator based on partitioned
boolean quadratic programming (PBQP) are included [HKS03]. In-
struction selection is implemented by tree pattern matching. Using
the OCE, a compiler for the xDSPCore [KHPP04] has been devel-
oped by writing the instruction selection rules manually.

The compiler is divided into a machine independent front end
and a machine dependent back end. The front end does all the re-
quired analyses and machine independent optimizations. The back
end does instruction selection, register allocation, if conversion, in-
struction combination for memory access instructions and instruc-
tion scheduling and grouping. Instruction selection takes an ab-
stract syntax tree as input and transforms it into a list of machine in-
structions, assuming an unlimited number of virtual registers. Reg-
ister allocation replaces the virtual registers by real registers. If the
number of machine registers is not sufficient, some virtual registers
are spilled to memory. Memory access instructions can be com-
bined with address computations when the same register is used. If
conversion transforms short basic blocks into guarded instructions
to reduce the number of branches. Instruction scheduling reorders
instructions and groups them into VLIW bundles. Finally, assembly
language source code is emitted.

3.1 Tree Pattern Matching Instruction Selection

Tree pattern matching is a very powerful method for transforming
the abstract syntax tree to machine operations in linear time. Tree
pattern matching searches for an optimal covering (optimal in run
time or code size) of the abstract syntax tree with instruction trees.
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The tree pattern matcher included in the open compiler environ-
ment is an extension of lburg, which is more powerful than many
other tree pattern matchers and makes sharing of information easy.

%MATCH d = IrAdd(l, IrConstant)
%IF { IrConstant->const >= 0 }
%COST { 1 }
%OUT { some lines of C++ for emitting code }

Figure 9. tree pattern rule

Fig. 9 describes a tree pattern rule for an addition with a con-
stant. The %MATCH directive describes a subtree for an addition of
a constant. The %IF directive allows the specification of conditions
for rule selection. The %COST directive specifies the cost of select-
ing this rule, for example the latency of the instruction or the code
size. The %OUT directive contains C++ code for entering the se-
lected instruction in the machine instruction list. Writing these rules
manually is time consuming and error prone.

3.2 Rule Generation

The aim of specifying the compiler by extending the ADL specifi-
cation was to reduce the development effort of the compiler. A lot
of the information necessary for the compiler is already contained
in the specification for the instruction set simulator. The cost of an
instruction can be computed from the information in an execution
model (see fig. 6). The C++ code for generating a machine code
instruction list and emitting assembly language source code is gen-
erated. Conditions like checks for the size of immediate operands in
the instruction selection rules are generated from the operand size
specifications. Additional conditions can be added. In the ADL it is
no longer necessary to specify the %COST and %OUT directives (see
fig. 8).

In the ADL generated compiler, only a subset of the specifica-
tion is necessary. In the following, we describe how information
is collected from the ADL specification, how a set of instruction
selection rules is generated and how the rule set is optimized by
exploiting algebraic laws.

The rule generator analyzes the instruction set to detect instruc-
tions with the same semantics. Instructions that have the same mi-
cro operations with the same timings are considered to be equiva-
lent. Such a group of instructions is called a semantic group. The
reason for instructions with the same semantics is that there might
be several encodings with different sizes for immediate values, a
short instruction for small numbers and a long version for larger
ones. The rule generator creates rules for the most generic instruc-
tion in a semantic group. The code generator will choose the short-
est instruction that fits in the last stage.

The rule generator iterates over the instruction elements in the
instruction set that have not been deselected by the analysis de-
scribed above. For each instruction, it inspects the micro operation
list. The list of micro operations is traversed, and the rules for each
one are looked up in the micro operation-set and parsed accord-
ing to the grammar presented earlier. If a micro operation lacks the
rules, the operation is skipped and no rules are generated.

The alternatives found in all rules are collected and all valid
combinations are considered. Let m be the number of micro oper-
ations of the current instruction and Ai the set of rule-alternatives
of micro operation i. Then an ordered sequence

〈a1, . . . , am〉
where ai ∈ Ai is called a path. It follows that there are

mY

i=1

|Ai|

possible paths. Figure 10 shows a fictitious instruction with three
micro operations. The first one has only a single alternative, the
second one has three and the last micro operation has two alterna-
tives. There are six possible paths, they are listed on the right side
of the figure.

a1

a2 a′
2 a′′

2

a3 a′
3

〈a1, a2, a3〉
〈a1, a

′
2, a3〉

〈a1, a
′′
2 , a3〉

〈a1, a2, a
′
3〉

〈a1, a
′
2, a

′
3〉

〈a1, a
′′
2 , a′

3〉

A1

A2

A3

Figure 10. Multiple paths caused by several alternatives

In the next step, mode directives are evaluated on each path.
Modes (see Fig. 12) are used to invalidate certain combinations of
alternatives. The semantics of a mode is determined by the prefix
of its identifier.

The paths that are invalidated by the above rules are discarded,
they don’t play any role in the further processing.

As an example, we consider a saturated addition instruction
where we provide an example of usage and an attempt at a rationale
for the mode directives. Figure 11 lists the micro operations used
in a normal addition instruction (without saturation) on the left side
and the associated data for the rule generator on the right side. The
saturated addition instruction has an additional SATURATION micro
operation after the ADD. This causes a problem because, at the level
of the abstract syntax tree, the saturated addition is represented by a
single operator IrSatAdd. At this point, the mode directives come
into play. The solution is to offer both alternatives — the normal
IrAdd and the saturated IrSatAdd — in the rules of the micro
operation ADD. Then, with the help of mode directives, only one is
allowed depending on whether SATURATION follows the addition
or not. Figure 12 shows this idea. For a normal addition. only the
first alternative will be chosen; saturated addition is handled by the
second alternative.

READ OP 1(o1) $op1 := $1

READ OP 2(o2) $op2 := $1
ADD $res := IrAdd($op1, $op2)
WRITE RES(o2) $1 := $res

Figure 11. micro operations for the add instruction and associated
rules

ADD $res := IrAdd($op1, $op2)
%MODE IFNOT saturated

|
$res := IrSatAdd($op1, $op2)
%MODE IF saturated

SATURATE %MODE SET saturated

Figure 12. Extensions to allow saturated additions

The next step after the evaluation of the mode directives is to
build a single tree by combining all the trees found in the rule
alternatives. It is important to note that the operand nodes until now
refer to the arguments of the micro operation their tree belongs to.
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Thus the operand-node $1 possibly represents different operands
in different trees for the same instruction. Therefore, the operand
nodes must now be associated with the instruction operands they
point to. Following this step, all trees of the form

variable-node := tree

are considered. Such an assignment binds the tree t on the right-
hand-side to the identifier v of the variable-node. For all other trees
not having this structure, occurrences of a variable-node with the
identifier v are replaced with the tree t until no variable-nodes are
left.

This substitution process is illustrated with the add instruction
that was already mentioned a few times and whose micro opera-
tions were listed in Figure 11. Figure 13 shows the steps of the sub-
stitution, beginning with the only tree that doesn’t define a variable-
node and substituting one variable-node with the associated tree in
each row. Additionally, in the operand-nodes, $n was replaced with
the real operands of the add instruction.

If these substitutions do not produce exactly one tree, no match-
rules can be generated. Multiple trees mean that more than one
result is generated. This situation occurs with instructions that write
results to several registers, for instance, load and store instructions
which automatically increment an address register at the same time.
Such instructions are simply incompatible with tree-grammar code
selection.

op2 := $result
op2 := IrAdd($oper1, $oper2)

op2 := IrAdd(op1, $oper2)
op2 := IrAdd(op1, op2)

Figure 13. Tree substitution for the add instruction

One advantage of generating match rules automatically is that
arbitrary transformations can be performed on the match trees.
Currently the only transformation implemented is the exploitation
of commutativity laws. The generator iterates over the tree and
looks for subtrees with the form a(b,c). If a is a commutative
operator, an additional rule with swapped operands is generated.
Rules covering the same patterns will be removed before being
emitted.

The cost of a rule is determined automatically. Currently the
cost is computed by the formula

cost = size + cycles

where size is the number of memory cells the instruction’s encod-
ing occupies and cycles is the number of cycles the instruction
needs to compute the result. The number of cycles is computed by
scanning the µ-instructions for the last write access to the register
file. size tries to minimise the code size, cycles the critical path.
The arguments of eventual cost-directives are appended to the gen-
erated cost.

3.3 Instructions with multiple results

Instructions with multiple results, such as memory access instruc-
tions with simultaneous update of the address register or divide in-
structions which generate both a quotient and a remainder, can-
not be handled by tree pattern matching. A tree can only have one
result. Furthermore, the suboperations of such instructions are in
different expression trees. A separate pass is required where com-
binable instructions inside a basic block are discovered and then
combined.

The instruction combiner constructs the data dependence graph
of a basic block. Then it makes a forward scan over the graph

for memory access operations and searches for an address com-
putation operation which uses the same address register, and com-
bines these two operations into one memory access instruction with
post-address update. In a second backward scan, operations are
combined into memory access instructions with pre-address up-
date. Currently, we do not combine instructions across basic block
boundaries and we do not employ program transformations to in-
crease the number of combined instructions. Our greedy algorithm
is so effective that we did not evaluate more costly algorithms
which search for all possible combinations.

Currently the instruction combiner is hardcoded. We are devel-
oping a generator which emits the C++ code for the matching func-
tion from a concise matching table.

3.4 Register File Model

The register specification (see Fig. 2) is quite flexible. There is sup-
port for multiple register files with shared registers. While reading
the architecture configuration, the compiler builds up an internal
model of the register file. The model is basically a forest, where reg-
isters that are contained within other registers become child nodes
of their containing parent nodes, and each independent hardware
register becomes the root of a tree. The trees are augmented by
edges indicating where sign- or zero-extension has to be performed
when a child register is written. Parts of registers that cannot be
accessed independently from their parent, like the guard bits of an
accumulator, are represented by specially marked nodes. Figure 14
shows an example of a 40-bit accumulator containing a 32-bit long
register that is itself divided into two 16-bit short registers.

The only restriction this model puts on the register specification
is that, whenever two registers share bits, one of them must be
completely contained in the other one.

The relations between symbolic registers created by the com-
piler must be isomorphic to subgraphs of the register model. Usu-
ally symbolic registers are isolated nodes, but there are cases with a
more complex structure, for example when the low and high word
of a register are loaded by separate machine instructions.

Calling conventions specify register usage for function calls.
The register model is the input both for the graph coloring and the
PBQP based register allocator and it is used in all calculations of
data dependency.

Figure 14. Register model of a 40-bit accumulator

3.5 USE/DEF Semantics

The instruction scheduler and VLIW grouper (based on list schedul-
ing) and the software pipeliner (based on iterative module schedul-
ing) depend on two aspects of the architecture description. On the
one hand, information about definitions and uses of operands is
needed for calculating exact data dependencies. On the other hand,
hardware resources required by each instruction have to be consid-
ered.
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For the purpose of determining data dependencies, the descrip-
tion of each µ-instruction contains a semantics value that speci-
fies whether the µ-instruction defines or uses an operand. Figure 7
shows an example of a µ-instruction using an operand. Table 1
lists possible USE/DEF semantics of µ-operations. use and def
have the obvious meaning for register operands. The other key-
words are needed for assembling USE/DEF information for mem-
ory operands.

use use as value
def define value
useaddr use as address
defaddr define address
absaddr immediate absolute address
memoffset add immediate relative offset
load memory load from the address in the operand
store memory store to the address in the operand

Table 1. USE/DEF semantics of µ-operations

The compiler combines these semantic specifications with the
execution model of the instruction to build a table which lists which
operands are defined or used by the instruction at each pipeline
stage. This information is used for calculating data dependence
distances for scheduling and by the interference graph builder of
the register allocator.

3.6 Resource Requirements

The resource requirements of each instruction are represented by a
vector of integers with one component for each type of resource. A
global vector gives the number of available resources for each type.

This simple model is based on the assumption that all instruc-
tions using a resource R require it in the same pipeline stage and
for the duration of a single cycle. A natural extension would be
to move the resource specification into the individual µ-instruction
descriptions and have the compiler build a resource matrix for each
instruction with one row vector for each pipeline stage. This would
allow modeling instructions that use the same resource in different
pipeline stages or for more than one cycle.

4. Empirical Evaluation
In the empirical evaluation, we compare the manually developed
compiler for the xDSPcore with the generated one. Although much
effort has been devoted to optimize the rule set for the manually
developed compiler, some optimization opportunities have been
missed.

Table 2 shows the number of handwritten rules before and after
preprocessing and the sizes of them for the old and the new ADL
matcher (comments were stripped before computing sizes). As
already mentioned, preprocessing macros are used to decrease the
number of rule copies for very similar rules. The number of rules
in the ADL µ-instructions is down to almost a fifth of the original
number.

old ADL
Number of handwritten rules 144 30

after preprocessing 169 53
Size (in kB) 98.3 19.3

Table 2. Comparison of handwritten rules

Table 3 shows statistical data about the generated rules. It lists
the number of µ-instructions for which rule-data had to be written,
the size of that data, the number of rules that are generated and the
number of instructions for which rules are generated.

Number of µ-instructions with rule-data 66
Size of rule-data (in kB) 15.2
Number of generated rules 373
Number of instructions 94

Table 3. Statistics for the generated rules

The code selector was evaluated for code size and run time of
the generated code. Table 4 compares the size of the generated code
for a number of applications. Among them is the architecture’s
C library (clib), a few cryptographic programs and some typical
DSP algorithms. Next to the column that lists the benchmark name,
the number of instruction words of the code generated by the old
handwritten and the new generated matcher are presented. The
right-most column shows the comparison. For all benchmarks the
machine code generated by the new matcher needs less instruction
memory. The improvements range from one tenth of a percent up
to more than three percent.

The second comparison concerns the run-time performance of
the generated code. Table 5 compares the number of cycles needed
for the execution of the same set of benchmarks. The C library is
missing because it consists of a number of independent functions.
The cycle numbers were obtained by running the generated code
on a simulator. The improvements here are below one percent for
all but four benchmarks. The best results are achieved in the cmac
benchmark where the new code is almost ten percent faster.

The dct32 benchmark is the only one that shows a performance
degradation. A manual inspection of the code revealed that, even
though the selected code was more efficient, the differences led
to performance losses in the compiler’s register allocation and
instruction scheduling passes which are executed after instruction
selection.

Name ADL Matcher old Matcher % Improvement
clib 10594 10739 1.369
adpcm 710 721 1.549
cmac 3740 3744 0.107
g721 1735 1747 0.692
ghs 2971 3001 1.010
dct32 1142 1157 1.313
dct8x8 933 945 1.286
viterbi 1029 1049 1.944
rijndael 3437 3545 3.142
serpent 4390 4453 1.435
twofish 2900 2934 1.172
aan dct 5741 5783 0.732
hadamard 5321 5343 0.413
hpme 5831 5856 0.429
pixel 6504 6541 0.569

Table 4. Code-size comparison

5. Related Work
5.1 Architecture Description Languages

Pees et al. developed the architecture description language LISA
which simplifies the specification of pipelined processors and
is used to automatically generate interpreted and compiled in-
struction set simulators [PHM00]. To support the generation of
compilers, Braun et al. added a semantic extension to the opera-
tions in LISA [BNS+04]. There, micro-operations are used to de-
fine an operator’s meaning. The semantics of a micro-operation
are kept in a separate library. In [CHL+05], Ceng et al. show
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Name ADL Matcher old Matcher % Improvement
adpcm 619357 619367 0.002
cmac 1101426 1206827 9.570
g721 18127364 18147825 0.113
ghs 5974 6029 0.921
dct32 2783 2763 -0.719
dct8x8 65628 65886 0.393
viterbi 2899659 2904415 0.164
rijndael 184397 185382 0.534
serpent 1292231 1297372 0.398
twofish 2026935 2028915 0.098
aan dct 660752286 671556087 1.635
hadamard 203425511 203430073 0.002
hpme 52166566 52470332 0.582
pixel 572051 599409 4.782

Table 5. Run-time performance comparison

how rules for a tree pattern matcher are generated from the
micro-operations. The compiler uses basic rules which are sets
of machine-independent templates that transform IR operators to
micro-operations. For instructions that cannot be handled by these
transformations (eg. SIMD instructions), compiler intrinsics are
provided. Cengs micro-operations can easily be mapped to rule
patterns similar to the patterns presented in this work. Our approach
of using the patterns directly offers more power and flexibility. We
are not bound to an abstract semantic, but may express any rule
patterns.

EXPRESSION [HGG+99] is an architecture description lan-
guage that takes a mixed approach between specification of struc-
ture and behavior. The EXPRESS compiler [HSDN01] uses the in-
formation from the EXPRESSION language for its configuration.
For the front-end, the GNU Compiler Collection is utilized. The
compiler features resource directed loop pipelining and trailblazing
percolation scheduling. The transmutation framework recognizes
regions with different characteristics in the code and optimizes the
code according to the current region. The framework allows a spe-
cific order of optimization passes for each identified region type.

The AVIV compiler [HD98] uses an ISDL machine description.
In this compiler, the statements of a basic block are converted
into split-node directed acyclic graphs. In such a split-node DAG,
the operation nodes are duplicated for each functional unit that is
able to perform the operation. Then the compiler does operation
grouping, functional assignment, a preliminary register allocation
and instruction scheduling at once based on several heuristics.

Qin et al. introduced the Mescal Architecture Description Lan-
guage [QRM04] (MADL). MADL supports the generation of in-
struction set simulators and its information is also used in the reg-
ister allocation and instruction scheduling modules of a compiler.

In MIMOLA [Mar84], a processor is described by a netlist of
hardware modules. In [LM95], Leupers et al. present a BDD-based
technique to extract an instruction set from a MIMOLA processor
model. The RECORD compiler [LM97] uses these instructions in
its code selection algorithm by generating a tree grammar from the
extracted register transfer (RT) templates. For hardware entities that
can store values (e.g. registers), non-terminals are created, while
processor ports, hardware operators and hardwired constants are
mapped to terminals of the grammar. Each RT template is converted
into a rule using the corresponding terminals and non-terminals.
iburg [FHP92a] is then used to generate a code selector from
the grammar. The grammar generated by the RECORD system
contains a large number of nonterminals and rules, that have to
be evaluated at runtime. Many of these rules model intermediate
results that may only be used in a limited context. Our approach

combines these intermediate results into one single rule for each
instruction, thus reducing the number of rules and the runtime
overhead.

Fauth et al. developed the architecture description language
nML [FPF95]. Two compilers have been built around nML. The
CHESS code generation environment [LPK+95] is retargetable
only to a limited set of processors: it targets fixed-point digital
signal processors. The nML model is translated into an instruction
set graph for its internal usage. CHESS does not use common tree
matching algorithms but a special bundling algorithm for its code
selection. The CBC compiler [FHMK94] also retargets itself by a
nML description. A phase called macro expansion transforms the
IR into operations of the target processor. To cope with graphs, and
not just expression trees, the heuristic node duplication technique is
performed on the IR. CBC also uses the iburg matcher generator.

5.2 Tree Pattern Matching

Aho and Johnson [AJ76] were the first to apply a dynamic program-
ming algorithm to select code for expression trees. Later, Aho et
al. improved on and simplified these ideas and developed the twig
tool [AGT89]. They separated register allocation from code selec-
tion as this did not adversely affect the code quality and provided
more flexibility. twig uses a modified version of the Aho-Corasick
algorithm to match trees.

Balachandra et al. [BDB90] made an important discovery that
increases the performance of the tree pattern matching algorithm.
By precomputing itemsets at code selector generation time and
storing the results in tables, the cost analysis can be avoided at
matching time. This makes the algorithm run in time which is linear
in the size of the expression tree.

The tool BEG [ESL89] is another code selector generator. Each
rule in BEG can be supplied with a condition that is evaluated when
the produced matcher is run and that prevents a rule from matching
if it evaluates to false. BEG has an optional built-in register allocator.

Fraser et al. developed a tool called burg [FHP92b]. It reads a
tree grammar and produces a tree pattern matcher in the C program-
ming language. Its main development goal was to be fast. Thus it
uses the technique from Balachandra et al. to compute the costs at
generation time.

The tool iburg [FHP92a] reads the same input as burg. The
difference is that iburg uses the standard dynamic algorithm that
computes the costs at code selection time. While this approach is
slower, it is easier to debug and smaller. Also delaying cost com-
putation until the time the tree matching is done has the advantage
that properties of the IR tree can be used when computing the cost
(e.g. the value of a constant).

Ertl et al. [ECG06] save the computed states for tree nodes in
a hash table. This approach retains the flexibility of dynamic cost
computations at nearly the speed of precomputed states.

6. Conclusion
In this paper, we have presented an Architecture Description Lan-
guage for compiler generation that allows the generation of an in-
struction selector, a register allocator and an instruction scheduler
from a single specification. This specification is 5 times more con-
cise than the usual specification. The resulting compiler achieves
similar and, in several cases, even better code quality in terms of
code size and performance than an existing highly optimized, hand-
crafted, back end.
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