
Pointer Alignment Analysis for Processors with SIMD
Instructions

Ivan Pryanishnikov and Andreas Krall
Technische Universität Wien

Institut für Computersprachen
Argentinierstrasse 8
1040 Wien, Austria

{prianich,andi}@complang.tuwien.ac.at

Nigel Horspool
University of Victoria

Department of Computer Science
Victoria, BC

Canada V8W 3P6

nigelh@uvic.ca

ABSTRACT
Embedded processors for media applications usually have
SIMD instructions. SIMD instructions provide a form of
vectorization where a large machine word is viewed as a
vector of subwords and the same operation is performed
on all subwords in parallel. Systematic usage of SIMD in-
structions can significantly improve program performance.
Usually each memory access must be aligned with the in-
struction’s data access size. With C becoming the domi-
nant language for programming embedded devices, there is
a clear need for C compilers which optimize the use of SIMD
instructions. An important problem in designing such com-
pilers is the question of determining whether a C pointer is
aligned, i.e., whether it refers to the beginning of a machine
word.

In this paper, we describe a method which determines the
alignment of pointers at compile time. The alignment infor-
mation is used to reduce the number of dynamic alignment
checks and the overhead incurred by them. Our method
uses an interprocedural analysis which analyzes pointer val-
ues propagated through function calls. The effectiveness of
our method is substantiated by experimental results which
show that the alignments of about 50% of the pointers can
typically be statically determined.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compil-
ers; optimization;

General Terms
Algorithms, Measurement, Theory

Keywords
DSP, SIMD, vectorization, alignment analysis, static pointer
analysis

1. INTRODUCTION
Digital Signal Processors (DSPs) are highly specialized em-
bedded microprocessors designed for real time processing of
digitized analog signals. Such processors have emerged in
recent years to handle audio, video, graphics, and commu-
nication tasks. These processors are known as media pro-
cessors. They operate on very specific media data, and are
designed for a relatively narrow set of applications. There-
fore, they are usually equipped with unique instruction sets,
and their architectural features are designed to provide high
performance.

A typical computing scenario involves executing the same
or almost the same sequence of operations on different ele-
ments of a large data set, e.g. an array. In this situation,
a traditional computing model, where a single instruction
(such as load, store, or integer addition) operates on a single
data element, is not very efficient. The Single Instruction
Multiple Data (SIMD) model is designed to improve pro-
gram execution performance by performing the same type
of computation on different data items in parallel [10, 7].
For example, a typical SIMD instruction operates on two
adjacent bytes simultaneously.

To use a block of data in a load or store instruction, the ele-
ments of the block must be adjacent in memory. Typically,
a block is a 32 or 64 bit machine word, and the elements are
single bytes or short integers. Since a block load or store
is carried out as a one word instruction, the SIMD model
usually requires that a block of data be naturally aligned,
i.e., be mapped to an address which is zero modulo the block
size. In other words, a block has to coincide with a natural
machine word.

In this paper, we are primarily interested in LOAD/STORE
architectures, where LOAD and STORE are the only in-
structions which interact with the main memory. Arith-
metic and logical SIMD instructions cannot reference mem-
ory directly; instead they must access registers and con-
stants. This leaves two principal directions for optimizing
SIMD code: (i) we may use arithmetic and logical SIMD in-
structions to parallelize independent computations, and (ii)
we may use LOAD and STORE operations to access data
vectors in memory efficiently.

As many hardware features have to be taken care of, em-

short void f(short a[]) {
int *b = (int*)a;

· · ·
}

(a) b is aligned

short void f(short a[]) {
int *b = (int*)(a+1);

· · ·
}

(b) b is unaligned

Figure 1: Aligned versus unaligned pointer access

bedded software for media processors has traditionally been
programmed in assembler. Recently, however, the C pro-
gramming language, using highly optimizing compilers, has
also been used for programming media processors. The C
language allows use of pointers to memory locations. We
say that a pointer is aligned if its value is zero modulo the
access size. In general, C pointer arithmetic may result in
unaligned pointers, and thus lead to unaligned data buffers.
Unaligned pointers are often the result of casts between dif-
ferent types of pointers, as seen in Figure 1. (Untyped point-
ers, declared as void* are quite common in C code.)

Depending on the computer architecture, the use of an un-
aligned data operand for a SIMD instruction has unfortu-
nate effects at run-time. The effects may be incorrect re-
sults, an error interrupt, or a severe degradation in perfor-
mance. In all cases, the compiler should avoid generating
code that accesses unaligned data with SIMD LOAD and
STORE instructions. Therefore the compiler should either
statically verify or generate code that dynamically verifies
whether the pointers are aligned before they are used as
operands of SIMD instructions.

Although refined dynamic methods have been presented [9],
dynamic checking of address alignment usually increases pro-
gram size and requires run-time checks. Compile-time check-
ing of alignments using a static analysis method should al-
ways be the preferred approach, with the compiler gener-
ating code appropriate for the alignments that have been
determined. Dynamic checks should be used only for cases
where the static techniques have failed to yield useful in-
formation. The goal is to have a powerful static analysis
method where dynamic checks are rarely needed.

In this paper, we present an interprocedural static pointer
alignment analysis for the SIMD model based on a C com-
piler prototype. Alignment analysis considerably reduces
the number of dynamic checks, and helps shrink both the
code size and the number of executed cycles. In addition,
our analysis enables further code optimizing transformations
which adjust unaligned buffers to fit the alignment require-
ments.

The paper is organized as follows: The compiler framework
and basic SIMD optimization are given in Section 2. De-
tailed descriptions of our interprocedural alignment analysis

is provided in Section 3. Experimental results are presented
in Section 4. Section 5 provides an overview of related work.
Section 6 concludes.

2. COMPILER OPTIMIZATIONS FOR SIMD
INSTRUCTIONS

The C compiler used for the experiments described in this
paper is based on the OCE compiler framework from Atair
[1]. This framework contains a front end which includes
many classical machine-independent compiler optimizations.
The code generator of the compiler presented in [6] is de-
signed to handle irregular architecture features, such as re-
stricted register sets, hardware loops, and special address
modes.

The compiler has a special optimization pass to create SIMD
instructions. The implementation is based on the algorithm
presented in [7], and described in detail also in [13]. The
SIMD optimization pass operates on individual C functions,
using the machine-independent intermediate representation
generated by the front end of the compiler. The algorithm
combines several structurally equivalent expressions with 8
or 16 bit operands into one expression with 32 bit operands
and corresponding SIMD-operators. The same algorithm
works for larger word lengths as well.

The most promising code fragments for use of SIMD instruc-
tions are loops which process data arrays. When these loops
are unrolled a few times, it is often possible to use SIMD in-
structions. More formally, the innermost loops of a function
are unrolled K times, where K depends on the data types.
For example, if the array contains 16 bit elements, and the
operands are 32 bits, K = 2. A loop where the number of
iterations is not a multiple of K may be made amenable to
SIMD optimization by preceding the unrolled loop with a
preloop. Consider for example a program of the form:

for (i = 0; i<N; i++)

Π(i);

where Π stands for a piece of code using variable i (assum-
ing that i is not modified by Π), and N is the number of
iterations. The preloop for this program is

for (i = 0; i<N%K; i++)

Π(i);

while the unrolled loop assumes the form:

for (i = N%K+1; i<N; i += K) {
Π(i);
Π(i+1);
· · ·
Π(i+K-1);

}

Depending on the alignment information about pointers in
Π, we may need a postloop instead of a preloop. The con-

short *a, *b, *c;

for (i = 0; i<N; i += 2) {
a[i] = b[i]+c[i];

a[i+1] = b[i+1]+c[i+1];

}

(a) original program

short *a, *b, *c;

if (a&3 || b&3 || c&3) {
/* at least one pointer is unaligned, so

execute more general version of loop */

for (i = 0; i<N; i += 2) {
a[i] = b[i]+c[i];

a[i+1] = b[i+1]+c[i+1];

}
} else {

/* all pointers are aligned, so process

two array elements at a time */

for (i = 0; i<N; i += 2) {
a[i:i+1] = b[i:i+1]+c[i:i+1];

}
}

(b) program with dynamic checks

Figure 2: Dynamic alignment checking of pointers.

struction is completely analogous. These loop transforma-
tions for C programs are implemented at the intermediate
representation level.

The unrolled loop is inspected to identify candidates for
SIMD instructions. The candidates must be executed in
each loop iteration. Several candidate operations can be
combined into one SIMD instruction only if there are no true
dependencies or output dependencies between them. Once
this has been verified, SIMD statements are generated, re-
placing the corresponding candidates.

If a statement in the original code contains a scalar ex-
pression, the SIMD optimization computes a suitable K-
dimensional non-scalar expression to replace it. The ele-
ments of an expanded scalar equal the value of the scalar
from which the expression was expanded. For example, for
the statement

a[i] = b[i] + c;

with scalar c, and with array elements of type short the
non-scalar expression will be c′[] = {c, c}.

Another common operation is computing the sum of the
elements of an array. This operation is not directly vec-
torizable, and a K element auxiliary array is required. Its
elements are used to accumulate partial sums in parallel,
from which the final sum can then be computed by another
addition (accumulator splitting).

As mentioned earlier, to use a block of data for SIMD load

and store instructions it must be verified if the block is
aligned, i.e., if it starts at an address which is zero mod-
ulo the block size. Consider the example in Figure 2. The
two statements in the loop body of Figure 2a can be used for
SIMD load and store instructions directly, if the addresses
of a[0], b[0] and c[0] are aligned. If this information is
not available at compilation time, a dynamic check must
be inserted in the program, cf. Figure 2b. At present, our
compiler is equipped with an alignment verification mech-
anism that takes care of the alignment requirements. The
verification mechanism integrates both a static alignment
analysis and dynamic check. Our static alignment analysis
is presented in the next section.

3. ALIGNMENT ANALYSIS
Using a retargetable C compiler, we have to deal with two
kinds of pointers: (1) pointers to memory locations used
as data values in the original C program, and (2) auxil-
iary pointers created by various optimizations at the in-
termediate representation level. In this section we present
our machine-independent alignment analysis for both user-
defined and auxiliary pointers. The analysis determines
alignment information by considering the low order (least
significant) bits of pointer values. First, we present an al-
gorithm for collecting alignment information for one proce-
dure. Then, we describe our interprocedural context-sensitive
alignment analysis.

3.1 Intraprocedural Alignment Analysis
The goal of the intraprocedural alignment analysis is to an-
notate definitions of all pointers within a single procedure
with information about the possible values of the least sig-
nificant bits (may analysis). For example, the three least
significant bits determine the values of the addresses modulo
2,4,8, and thus determine the alignment information. There-
fore, static alignment analysis amounts to pointer analysis,
and to developing suitable data structures for the alignment
information.

Let us fix a number k, e.g. k = 4, and consider addresses
modulo k. Intuitively, the idea of our analysis is that for
each pointer definition, we keep a set of possible remainders
modulo k. If the set is the singleton set {0}, we know that
the pointer is aligned modulo k. If, for a given modulo k

at a certain point of the program, more than one remainder
value is computed, then all of the remainders are stored.
The alignment information is propagated independently for
each k.

When a data array is defined or is dynamically allocated,
we assume that its first element is aligned modulo 8, i.e.,
its remainder modulo 8 is equal to 0. Starting from this
initial information, we propagate the alignment information
though the program.

Let us first consider an example to demonstrate the way we
propagate and store the alignment information. Figure 3
represents an example program (a), for which the alignment
information modulo 4 is calculated (b). In statements S1,
S2, and S3 pointers a, b, and c of type short are initial-
ized, and depending on the array element they point to, the
alignment information follows. For instance, c:{0} in S4(b)
means that the address value held by pointer c at this pro-

S0 : short array[N+1]; S0 :
S1 : short *a=&array[0]; S1 : a: {0}
S2 : short *b=&array[1]; S2 : b: {2}
S3 : short *c=&array[0]; S3 : c: {0}
S4 : for (i=0; i < N; i++) { S4 :
S5 : if (i&3) *c=1; S5 :
S6 : else *c=0; S6 :
S7 : c++; S7 : c: {0, 2}
S8 : } S8 :
S9 : for (i=0; i < N; i+=2) { S9 :
S10: *a=*b+10; S10:
S11: a=a+1; S11: a: {2}
S12: b=b+1; S12: b: {0}
S13: *a=*b+10; S13:
S14: a=a+1; S14: a: {0}
S15: b=b+1; S15: b: {2}
S16: } S16:

(a) example program (b) alignments

Figure 3: Propagation of intraprocedural alignment
information for addresses modulo 4.

gram point is 0 modulo 4. In S7(b) pointer c is annotated
with two values: {0, 2}, since both values are possible. In
contrast, all remainder values for the pointer definitions in
the second loop are known precisely.

Now, we will give a formal definition of the annotation pro-
cess. Let C be the set of control flow graph (CFG) nodes,
and P be the set of pointer variables. For a set X, let P(X)
denote its powerset, i.e., the set of subsets of X. A modulo
k annotation is a function

ak : C × P −→ P({0, . . . , k − 1})

which associates a set of possible values modulo k with each
pointer variable at any given node in the CFG. (In Figure 3,
we show the annotations only in those places where they
are defined, and provide new annotations only where they
change.) In this paper, we consider the annotation func-
tions a2, a4, a8 which describe alignment information mod-
ulo 2,4,8. The annotations and the analysis are a special
case of abstract interpretation. Consider for example the
powerset P({0, 1, 2, 3}). Here, a4(c, p) = {0, 1, 2, 3} denotes
that each value modulo 4 is possible, i.e., nothing is known
about the actual value modulo 4. It corresponds to the ⊥
element of the lattice. a4(c, p) = P({2}) denotes that we
know that the value of p at CFG node c modulo 4 equals
2. An empty set, such as a4(c, p) = {}, means that no mod-
ulo values for p have been computed yet and it corresponds
to the > element of the lattice. The meet operation of the
lattice corresponds to set union of the alignment sets.

An iterative dataflow algorithm is used to collect the align-
ment information for each procedure. The algorithm tra-
verses the control flow graph of the procedure in a top-down
manner, and propagates the alignment information. Static
single assignment form (SSA) [2] is used for basic blocks
to collect all previous variable definitions. The right-hand
side of each assignment to a pointer variable is analyzed to
extract the alignment information. Addition, substraction,
and multiplication operations commonly used in address cal-
culation (i.e., “pointer arithmetic”) are handled. The algo-

rithm terminates when no set changes its value in the latest
iteration.

Finally, to decide whether a data buffer b is aligned at a
certain point in the program, the alignment information for
the last definition of a pointer, which points to b is required.
Suppose this definition is given at CFG node cb and for
pointer pb. Then an exact value modulo k can be obtained
if the annotation information ak(cb, pb) for the definition
contains only a single value, i.e., ak(cb, pb) = {r}. Conse-
quently, if ak(cb, pb) = {0}, we conclude that the buffer b is
aligned modulo k.

3.2 Interprocedural Alignment Analysis
Analyzing each procedure in isolation leads to very conser-
vative estimates. Therefore, in order to estimate the effects
of procedure calls on alignment information, we perform a
context-sensitive interprocedural alignment analysis. The
general idea of the analysis is that the alignment informa-
tion at the call-site is propagated to the called procedure
(i.e., the called C function) to be used as alignment input
information. The information is propagated through the
body function, and the output obtained is then in turn used
to update the alignment information at the call-site.

To perform the interprocedural analysis, we exploit the call
graph of the program. The call graph is a directed graph.
Each node of the graph represents a function, and each edge
of the graph stands for a function call. There is one ad-
ditional node, which represents all functions for which no
source code is available, e.g. functions defined in standard
libraries. Names of actual arguments of the caller function
differ from names of corresponding formal parameters of the
called function. Our call graph allows correct transmission
of alignment information from the call-site to the called pro-
cedure and vice versa.

Interprocedural alignment analysis captures alignment in-
formation across functions influenced by both function pa-
rameters and global variables. Note that in the C lan-
guage, all parameters are passed by value. (A pointer which
is passed by value is similar in effect to call-by-reference.)
Therefore, the interprocedural alignment information com-
prises three information sets for

(i) global pointers G,

(ii) actual pointer arguments P passed by value, and

(iii) return pointers R returned by the called function.

We first explain the transition of the alignment information
across a function call for each of the three information sets.
A memory location referenced by a global pointer may be
changed by the called function. Consequently, a set rep-
resenting the alignment information for global variables is
constructed, and propagated through the program. In con-
trast, a formal parameter of a function receives its value by
assignment when the function is called. Information about
the parameter’s alignment flows only into the function; no
information flows out at the end of the function. An oppo-
site situation occurs when the function result is a pointer.

int *p1, *p2; /* globals */

main() {
int *p3, *arg1, *arg2;

· · ·
p3 = f(arg1,arg2);

· · ·
}

int* f(int *parm1, int* parm2) {
int *p4;

· · ·
return p4;

}

(a) example program

 call f
G = {p1, p2}
P = {arg1, arg2}

 enter f
G = {p1, p2}
P = {parm1, parm2}

 exit f
G = {p1’, p2’}
R = {p4}

 return from f
G = {p1’, p2‘}
R = {p3}

called function fcall−site in main

body funcion

(b) transition of alignment information

Figure 4: Transition of the alignment information
across a function call.

In this case, alignment information flows out only from the
called function to the call-site.

Our interprocedural analysis follows the sequence of func-
tions in the program. Analysis of the program starts from
the main function. Each function call is visited sequentially.
Intraprocedural analysis is used to compute the intraproce-
dural information sets for the function, until a function call
is reached. These sets are used to update the correspond-
ing interprocedural sets. After the update, the intermediate
intraprocedural information is no longer needed.

Consider Figure 4 for an example program containing two
functions, main() and f(). We show the transition of the
interprocedural information across function calls. The call
graph of the program is used to store context-sensitive in-
formation for each call.

The possibility of recursion amongst the functions means
that an iterative approach must be used. If the input–output
set of a function differs from the set in the previous iteration,
the two sets are merged, and the new input set is used for
the next iteration. The analysis algorithm terminates when
no changes occur during an iteration.

To use the alignment information for SIMD optimization
within a function body, the algorithm merges all possible
calling contexts for that function, thus accounting for the

multiple calling paths leading to the function.

Merging the different calling contexts may have the effect
that different possible values for ak(c, p) are obtained from
different calling paths, so that in some cases no alignment
information can be obtained. In these cases, one may clone
the function and create new copies of the function which
have different alignment requirements for its parameters.

4. EXPERIMENTAL RESULTS AND DISCUS-
SION

In this section we evaluate the performance of our pointer
alignment analysis. We have implemented the described
analysis algorithms using the OCE compiler framework. In
our experiments, we used several DSP kernels and some typ-
ical DSP applications as the C programs to be compiled.
These show the effectiveness of the proposed algorithms for
realistic multimedia processor tasks.

We have assembled a suite of benchmarks that includes typ-
ical DSP routines used in the real world. Our benchmark
suite consists of the following DSP kernels: array assign-
ments, dot product, matrix operations, and filtering. For
the DSP kernel test cases, we compared the SIMD perfor-
mance using dynamic checks to the performance using our
static alignment analysis. The quality measures used are the
number of processor cycles (obtained from a DSP processor
simulator), and the length of the generated assembler code.
The detailed numbers are described below.

We evaluated the quality of the pointer alignment analysis
by determining the fraction of pointers in the program for
which exact alignment information can be obtained. Align-
ment information is considered to be exact if the set of pos-
sible modulo values contains only one number. To obtain
these statistics, we used C implementations of typical DSP
applications: gsm codec, fast fourier transform (fft), and
cerebella model arithmetic computer (cmac). The result-
ing statistics are provided in Figure 5. The white columns
show the total number of pointer definitions in the program,
and the black columns denote the number of pointer defini-
tions for which the alignment information is detected by the
analysis. For address values modulo 4 the analysis reports
that 47% (fft), 61% (cmac), and 43% (gsm) of pointer def-
initions are annotated with explicit alignment information.
Note that the vertical axis in the graph denotes numbers of
pointer definitions, and not percentages.

As described above, we used the SIMD optimization to com-
pile a set of kernel programs from the DSPStone benchmark
suite. In this set of experiments, we assumed that the input
pointers for all functions are naturally aligned. In Table 1
we compare four compilations for each kernel:

1. The first compilation does not use any SIMD instruc-
tions; the two columns under “No SIMD” show the
processor cycles and the code size for the different pro-
grams.

2. In the next case (“no align info”), we do not use any
alignment information but we can still sometimes use
SIMD instructions to parallelize operations. For exam-
ple, two independent additions or multiplications can

Figure 5: Statistics of pointer annotation.

be performed with SIMD instructions. In this case, we
do not generate wide memory accesses. Instead we ac-
cess the subwords of a register with separate memory
access instructions.

3. In the third case (“dynamic align info”), we use dy-
namic checks to verify that all the pointers in a loop
are naturally aligned. If this is the case, the program
uses wide memory access instructions. Otherwise, the
program uses subword memory access instructions. As
in the previous case, SIMD instructions are used for
parallelizing independent operations.

4. The fourth case (“static align info”) extends the pre-
vious algorithm by using the static alignment informa-
tion to avoid dynamic checks wherever possible.

Table 2 contains essentially the same information as Table 1,
but in percentages. The figures are normalized with respect
to the results of the non-SIMD compilation. We can see that,
on average, the SIMD compilations with dynamic checks and
static information show almost the same results in execution
cycles, but the code size in the dynamic case is three times
as large as in the non-SIMD and static cases.

Finally, in Table 3, we investigate the third case of Table 1
(“dynamic align info”) in more detail. In contrast to the
above experiments, we do not assume that all input pointers
are aligned, but use some arbitrary alignment information;
therefore the numbers in Table 1 and Table 3 do in general
not coincide. In Table 3, the columns under “partial check”
correspond to the dynamic check described in Table 1. In
contrast to this, the columns under “exhaustive check“ de-
scribe a more systematic dynamic check which distinguishes
cases when within one loop, some pointers are aligned, and
some are not. The small numbers in parentheses are per-
centage values relative to “partial check”.

Table 3 shows that the static analysis gives much better
performance than the partial dynamic checks. On the other
hand, the numbers of processor cycles are nearly the same
for the compilations with exhaustive dynamic check as for
static information. However static analysis allows a reduc-
tion in the code size by a factor of five on average. In some

cases, the factor is as much as 10. The results clearly demon-
strate that our optimizations have the potential to greatly
improve code quality.

5. RELATED WORK
In this paper we present SIMD optimizations including SIMD
instruction generation and interprocedural static alignment
analysis. The latter is similar to pointer analysis. Therefore,
in this section we discuss related work on each of these: code
transformation for the SIMD model, pointer analysis, and
alignment issues.

For an extensive overview on the state of the art in code
optimization for embedded processors, the reader is referred
to [10].

5.1 Code Transformation for the SIMD Model
Recently, many research efforts have focussed on exploiting
SIMD instructions for DSPs. The most closely related work
to SIMD implementation is in [7]. The basic idea of the al-
gorithm is to unroll the loop a few times depending on the
operand type. The loop body is inspected, and structurally
equivalent expressions are grouped if there is no data depen-
dency between the elements. A vectorizing compiler similar
in style to [7] was presented by Larsen Amarasimghe [8].
The algorithm performs loop unrolling, which is used to
detect independent isomorphic statements within a basic
block. Such statements are grouped together, and can be
executed in parallel. The algorithm is provided with a cost
function which estimates the effect of parallel instructions.
Govindarajan and Sreraman [11] presented an implementa-
tion of a vectorizing compiler for MMX extension. Instead
of the unrolling technique, their compiler identifies parallel
data sections. To improve the performance of the algorithm,
they introduced optimizing code transformations: strip min-
ing, scalar expansion, grouping and reduction, loop fission,
and loop distribution. Such code transformations may also
be beneficial with our approach.

5.2 Pointer Analysis
Interprocedural data flow analysis has been studied in depth
for many years. Different analyses provide different trade-
offs between accuracy and efficiency. The most efficient anal-
yses are flow-insensitive, i.e. they compute a conservative
summary, and do not take into account control-flow informa-
tion of a procedure (see e.g. [12]). Flow-sensitive algorithms
propagate appropriate information in each procedure, and
compute information for every point in the program. This
approach usually postpones analyzing a called procedure un-
til the analysis of the current procedure converges. A de-
tailed description of a flow-sensitive algorithm can be found,
for instance, in [5]. The algorithm, we present in this paper,
is context-sensitive. Context-sensitive algorithms preserve
the calling context along each path of the call graph, which
may require that each procedure may be analyzed for each
call path. The basic structure of our algorithm is similar
in style to the analysis in [4]. We analyze the program se-
quentially in the order in which function calls appear in the
program. An iterative approach is used to handle recursion.
We do not currently handle function pointers. Although
the algorithm is exponential in nature, there is potential for
further optimization.

Table 1: DSPStone kernels (in actual values)

procedure No SIMD SIMD
no align info dynamic align info static align info

cycles code
size

cycles code
size

cycles code
size

cycles code
size

sum assign 3033 12 2532 15 1557 50 1533 13
mult assign 4025 13 4526 21 3556 56 3526 18
zero assign 1024 9 1027 12 1035 25 523 10
dot product 5025 21 4134 35 2547 54 2529 26
n real updates 1346 36 955 45 671 91 655 42
startup 246 51 182 58 158 124 120 60
matrix1 5355 31 4088 37 2883 74 2842 36
matrix2 4933 38 3817 46 2309 161 2258 44
mat1x3 2065 17 1644 18 1177 30 1084 18
fir2dim 6567 50 5384 55 3942 245 3684 54

total sum 33619 278 28289 342 19835 910 18754 321

Table 2: DSPStone kernels (in percentages)

procedure no align info dynamic align info static align info
cycles code

size
cycles code

size
cycles code

size
sum assign 83 125 51 417 51 108
mult assign 112 162 88 431 88 138
zero assign 100 133 101 278 51 111
dot product 82 167 51 257 50 124
n real updates 71 125 50 253 49 117
startup 74 114 64 243 49 118
matrix1 76 119 54 239 53 116
matrix2 77 121 47 424 46 116
mat1x3 80 106 57 176 52 106
fir2dim 82 110 60 490 56 108

averages 84 123 59 327 58 115

Table 3: Comparison of the exhaustive and partial dynamic check

procedure dynamic align info static align info
partial check exhaustive check

cycles code
size

cycles code
size

cycles code
size

sum assign 2558 50 2068 (81) 120 (240) 2033 (79) 13 (26)

dot product 4150 54 3264 (79) 94 (174) 3229 (78) 26 (48)

startup 188 124 160 (85) 176 (142) 144 (77) 60 (48)

matrix1 4122 74 3284 (80) 104 (141) 3146 (76) 36 (49)

fir2dim 5624 245 4216 (75) 452 (184) 4036 (72) 54 (22)

total sum 16642 547 12992 (78) 946 (173) 12588 (76) 189 (35)

5.3 Alignment Issues
Another related area is the work done in detecting memory
addresses. Davidson and Jinturkar [3] present an algorithm
for coalescing redundant memory accesses in loops. The
algorithm utilizes memory by means of combining narrow
load and store instructions into wider memory operations.
To perform transformations, the wide memory address has
to be naturally aligned. Therefore, they determine whether
it is necessary to insert dynamic alignment checks. Larsen
et. al [9] present a static analysis for detecting congruence
of memory addresses with respect to a modulo value. They
also propose transformations which increase the number of
congruent references. These methods aim to improve clus-
tered memory designs, e.g., decentralized memory banks.
The analysis has been implemented on a low level interme-
diate representation.

6. CONCLUSIONS
In this paper we have shown how pointer alignment analysis
can be used to improve code quality for multimedia pro-
cessors with SIMD instruction sets. We have described a
method which statically determines alignment information
for program pointers, and implemented our method using
the OCE compiler framework. Initial experiments indicate
that our method can significantly improve the quality of the
code when compared to dynamic alignment checking. The
code size can be reduced up to a factor of 4.5 by removing
the dynamic checks. The number of cycles can be reduced
by the degree of SIMD parallelism. We believe that avoiding
the code duplication which comes with dynamic alignment
checks eliminates unnecessary redundancies and complexity
in the generated code, and thus facilitates efficient use of
other optimization and analysis techniques.

In addition, the alignment information can serve as a basis
for program transformations which will be the subject of fu-
ture work. One possibility is to use alignment information
to cause the compiler to layout arrays in memory differently.
For example, if the alignment analysis shows that an array
is unaligned for access by a loop where SIMD instructions
would be appropriate, the array could be placed at a differ-
ent address and thereby avoid the need for preloop code.

7. ACKNOWLEDGEMENTS
This work was supported by the Christian Doppler Forschungs-
gesellschaft and Infineon.

8. REFERENCES
[1] Atair. Open compiler environment. www.atair.co.at.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[3] J. W. Davidson and S. Jinturkar. Memory access
coalescing: A technique for eliminating redundant
memory accesses. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 186–195, 1994.

[4] M. Emami, R. Ghiya, and L. J. Hendren.
Context-sensitive interprocedural points-to analysis in

the presence of function pointers. In SIGPLAN
Conference on Programming Language Design and
Implementation, pages 242–256, 1994.

[5] M. Hind, M. Burke, P. Carini, and J.-D. Choi.
Interprocedural pointer alias analysis. ACM
Transactions on Programming Languages and
Systems, 21(4):848–894, 1999.

[6] U. Hirnschrott. DSP compiler optimisation. Master’s
thesis, Institut für Computersprachen, Technische
Universität Wien, December 2001.

[7] A. Krall and S. Lelait. Compilation techniques for
multimedia processors. International Journal of
Parallel Programming, 28(4):347–361, 2000.

[8] S. Larsen and S. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets.
ACM SIGPLAN Notices, 35(5):145–156, 2000.

[9] S. Larsen, E. Witchel, and S. Amarasinghe. Increasing
and detecting memory address congruence. In
International Conference on Parallel Architectures and
Compilation Techniques, pages 18–29, 2002.

[10] R. Leupers. Code Optimization Techniques for
Embedded Processors. Methods, Algorithms, and Tools.
Kluwer Academic Publisher, Boston, 2000.

[11] N. Sreraman and R. Govindarajan. A vectorizing
compiler for multimedia extensions. International
Journal of Parallel Programming, 28(4):363–400, 2000.

[12] B. Steensgaard. Points-to analysis in almost linear
time. In Symposium on Principles of Programming
Languages, pages 32–41, 1996.

[13] K. Vögler. A DSP C-compiler. Master’s thesis,
Institut für Computersprachen, Technische Universität
Wien, April 2002.

