
Superinstructions and Replication
in the Cacao JVM interpreter

M. Anton Ertl∗ Christian Thalinger Andreas Krall
TU Wien

Abstract
Dynamic superinstructions and replication can provide large
speedups over plain interpretation. In a JVM implementation
we have to overcome two problems to realize the full potential
of these optimizations: the conflict between superinstructions
and the quickening optimization; and the non-relocatability
of JVM instructions that can throw exceptions. In this paper,
we present solutions for these problems. We also present
empirical results: We see speedups of up to a factor of 4
on SpecJVM98 benchmarks from superinstructions with all
these problems solved. The contribution of making potentially
throwing JVM instructions relocatable is up to a factor of
2. A simple way of dealing with quickening instructions is
good enough, if superinstructions are generated in JIT style.
Replication has little effect on performance.

1. Introduction
Virtual machine interpreters are a popular programming
language implementation technique, because they combine
portability, ease of implementation, and fast compilation.
E.g., while the Mono implementation of .NET has JIT com-
pilers for seven architectures, it also has an interpreter in
order to support other architectures (e.g., HP-PA and Alpha).
Mixed-mode systems (such as Sun’s HotSpot JVM) employ
an interpreter at the start to avoid the overhead of compilation,
and use the JIT only on frequently-executed code.

The main disadvantage of interpreters is their run-time
speed. There are a number of optimizations that reduce this
disadvantage. In this paper we look at dynamic superinstruc-
tions (see Section 2.1) and replication (see Section 2.2), in the
context of the Cacao JVM interpreter.

While these optimizations are not new, they pose some
interesting implementation problems in the context of a JVM
implementation, and their effectiveness might differ fromthat
measured in other contexts. The main contributions of this
paper are:

• We present a new way of combining dynamic superin-
structions with the quickening optimization (Section 3).

• We show how to avoid non-relocatability for VM instruc-
tion implementations that may throw exceptions (Sec-
tion 4).

• We present empirical results for various variants of dy-
namic superinstructions and replication combined with
different approaches to quickening and to throwing JVM
instructions (Section 5). This shows which of these issues
are important and which ones are not.

∗ Correspondence Address: Institut für Computersprachen,Technis-
che Universität Wien, Argentinierstraße 8, A-1040 Wien, Austria;
anton@mips.complang.tuwien.ac.at

VM Code VM instruction routines

Machine code for iadd
Dispatch next instruction

Machine code for imul
Dispatch next instruction

imul
iadd
iadd
...

Figure 1. Threaded-code representation of VM code

2. Background
This section explains some of the previous work on which the
work in this paper is built.

2.1 Dynamic Superinstructions

This section gives a simplified overview of dynamic superin-
structions [RS96, PR98, EG03].

Normally, the implementation of a virtual machine (VM)
instruction ends with the dispatch code that executes the next
instruction. A particularly efficient representation of VMcode
is threaded code [Bel73], where each VM instruction is repre-
sented by the address of the real-machine code for executing
the instruction (Fig. 1); the dispatch code then consists just of
fetching this address and jumping there.

A VM superinstruction is a VM instruction that performs
the work of a sequence of simple VM instructions. By replac-
ing the simple VM instructions with the superinstruction, the
number of dispatches can be reduced and the branch predic-
tion accuracy of the remaining dispatches can be improved
[EG03].

One approach for implementing superinstructions is dy-
namic superinstructions: Whenever the front end1 of the inter-
pretive system compiles a VM instruction, it copies the real-
machine code for the instruction from a template to the end of
the current dynamic superinstruction; if the VM instruction
is a VM branch, it also copies the dispatch code, ending the
superinstruction; the VM branch has to perform a dispatch in
order to perform its control flow, otherwise it would just fall
through to the code for the next VM instruction. As a result,
the real-machine code for the dynamic superinstruction is the
concatenation of the real-machine code of the component VM
instructions (see Fig. 2).

In addition to the machine code, the front end also pro-
duces threaded code; the VM instructions are represented by
pointers into the machine code of the superinstruction.

During execution of the code in Fig. 2, a branch to the
iload b performs a dispatch through the first VM instruction
slot, resulting in the execution of the dynamic superinstruc-

1 More generally, the subsystem that generates threaded code, e.g.,
the loader or, in the case of the Cacao interpreter, the JIT compiler.



data segment
threaded VM Code

code segment
VM routine template

Machine code for iload
Dispatch next

iload
b

iload
c

isub
istore

a

Machine code for isub
Dispatch next

data segment
dyn. superinst code

Machine code for iload
Machine code for iload
Machine code for isub
Machine code for istore
...
Dispatch next

Machine code for istore
Dispatch next

...

Figure 2. A dynamic superinstruction for a simple JVM sequence

tion code starting at the first instance of the machine code for
iload, and continues the execution of the dynamic superin-
struction until it finally executes another dispatch through an-
other VM instruction slot to another dynamic superinstruc-
tion.

As a result, most of the dispatches are eliminated, and
the rest have a much better prediction accuracy on CPUs
with branch target buffers, thus eliminating most of the dis-
patch overhead. In particular, there is no dispatch overhead in
straight-line code.2

There is one catch, however: Not all VM instruction im-
plementations work correctly when executed in another place.
E.g., if a piece of code contains a relative address for some-
thing outside the piece of code (e.g., a function call on the
IA32 architecture), that relative address would refer to the
wrong address after copying; therefore this piece of code is
not relocatable for our purposes.3 The way to deal with this
problem is to end the current dynamic superinstruction be-
fore the non-relocatable VM instruction, let the VM instruc-
tion slot for the non-relocatable VM instruction point to its
original template code (which works correctly in this place),
and start the next superinstruction only afterwards.

Dynamic superinstructions can provide a large speedup at
a relatively modest implementation cost (a few days even with
the additional issues discussed in this paper). It does require a
bit of platform-specific code for flushing the instruction cache
(usually one line of code per platform), but if this code is
not available for a platform, one can fall back to the plain
threaded-code interpreter on that platform.

2.2 Replication

As described above, two equal sequences of VM instructions
result in two copies of the real-machine code for the superin-
struction (replication [EG03]).

An alternative is to check, after generating a superinstruc-
tion, whether its real-machine code is the same as that for a
superinstruction that was created earlier4; if so, the threaded-
code pointers can be directed to the first instance of the real-

2 Some people already consider this to be a simple form of JIT
compilation. In this paper we refer to it as an interpreter technique, for
the following reasons: 1) It can be added with relatively little effort
and very portably (with fall-back to plain threaded code if necessary)
to an existing threaded-code interpreter; 2) The executed machine
code still accesses the VM code for immediate arguments and for
control flow.
3 Why do we not support a more sophisticated way of relocating
code that does not have this problem? Because that relocation method
would be architecture-specific, and thus we would lose the portability
advantage of interpreters; it would also make the implementation
significantly more complex, reducing the simplicity advantage.
4 Of course, instead of checking the real-machine code afterwards,
one could also check the virtual-machine code beforehand, but that is
an implementation detail.

ACONST

ARRAYCHECKCAST

CHECKCAST

GETFIELD CELL

GETFIELD INT

GETFIELD LONG

GETSTATIC CELL

GETSTATIC INT

GETSTATIC LONG

INSTANCEOF

INVOKEINTERFACE

INVOKESPECIAL

INVOKESTATIC

INVOKEVIRTUAL

MULTIANEWARRAY

NATIVECALL

PUTFIELD CELL

PUTFIELD INT

PUTFIELD LONG

PUTSTATIC CELL

PUTSTATIC INT

PUTSTATIC LONG

Figure 3. Instructions in the (JVM-derived) Cacao inter-
preter VM that reference the constant pool

machine code, and the new instance could be freed (non-
replication).

Replication is good for indirect branch prediction accuracy
on CPUs with branch target buffers (BTBs) and is easier to
implement, whereas non-replication reduces the real-machine
code size significantly and can reduce the I-cache misses.

2.3 Cacao interpreter

For the present work, we revitalized the Cacao interpreter
[EGKP02] and adapted it to the changes in the Cacao system
since the original implementation (in particular, quickening,
and OS-supported threads).

The most unusal thing about the Cacao interpreter is that
it does not interpret the JVM byte code directly; instead, a
kind of JIT compiler (actually a stripped-down variant of
the normal Cacao JIT compiler) translates the byte code into
threaded code for a very JVM-like VM, which is then inter-
preted. The advantage of this approach is that the interpreter
can use the fast threaded-code dispatch, and the immediate ar-
guments of the VM instructions can be accessed much faster,
because they are properly aligned and byte-ordered for the
architecture at hand. Moreover, this makes it easier to imple-
ment dynamic superinstructions and enables some minor op-
timizations.

The Cacao interpreter is implemented using Vmgen [EGKP02],
which supports a number of optimizations (e.g., keeping the
top-of-stack in a register), making our baseline interpreter
already quite fast.

3. Quickening
This section discusses one of the problems of the JVM and
.NET when implementing dynamic superinstructions.

3.1 The problem

A number of JVM instructions (see Fig. 3) refer to the con-
stant pool, and through it to components of (possibly) other



data segment
threaded VM Code

code segment
VM routine template

Machine code for iload
Dispatch next

iload
b

getfield_quick
Example.i

offset
istore

a

Machine code for getfield
Dispatch next

data segment
dyn. superinst code

Machine code for iload
Dispatch next

Machine code for istore
...

Dispatch next

Machine code for istore
Dispatch next

... Machine code for getfield_quick
Dispatch next

before executing getfield
after executing getfield

Figure 4. Simple solution: Exclude slow and quick instructions from dynamic superinstructions.

classes. A class should be loaded and must be initialized ex-
actly when the first instruction refering to it is executed.

Performing all the overhead of checking whether the class
is already loaded and initialized, and resolving the class and
component information into the actual information needed (an
offset in the case ofgetfield) on every execution is very
expensive: in experiments with an old version of Kaffe5 we
found that optimizing this overhead away gives a speedup on
the SpecJVM98 benchmarks by about a factor of 3.

The original Java interpreter optimizes suchslow instruc-
tionsby rewriting them and their immediate operand(s) in the
VM code intoquick instructionswhen they are executed the
first time [LY97, Chapter 9]. This optimization is calledquick-
ening.

The immediate operand of the quick instruction is the re-
sult of resolving the operand of the slow instruction. E.g.,for
the slowgetfield instruction the immediate operand is a
constant-pool reference to the field of a class, whereas the im-
mediate operand ofgetfield quick is the offset of the field.
In our examples (e.g., Fig. 4) as well as in our implementa-
tion, we have separate slots for these two operands; in the ex-
amples, this makes it easier to show what is happening; in the
implementation, this reduces the need for locking [GH03].

This approach does not work with dynamic superinstruc-
tions: In general, rewriting the VM code is not enough; we
would also have to rewrite or patch the real-machine code
generated for the superinstruction; and the difficulties there
are that the real-machine code of the slow and the quick in-
struction usually have a different length; moreover, the slow
instruction and its quick equivalent might not be both relocat-
able (usually, the slow instruction is not relocatable, andthe
quick instruction is).

3.2 A simple solution

A simple solution is to exclude slow instructions from being
integrated into dynamic superinstructions (just as it is done for
non-relocatable instructions). A preceding dynamic superin-
struction would end right before the slow instruction and dis-
patch to the slow instruction as usual in threaded code. The
slow instruction could then rewrite itself into the quick in-
struction, as in a plain threaded-code interpreter.

The disadvantages of this solution are:

• Usually two additional VM instruction dispatches are per-
formed per execution of the quick instruction that would
not be performed if it was integrated in the dynamic su-
perinstruction: One for ending the preceding superinstruc-
tion, and one by the quick instruction itself. This hurts

5 http://www.complang.tuwien.ac.at/java/kaffe-threaded/

mainly CPUs without BTBs (branch target buffers) or
similar indirect-branch predictors.

• The quick instruction is not replicated, leading to a low
prediction accuracy for the dispatch by the quick instruc-
tion on CPUs with BTBs. This disadvantage could be
eliminated in, e.g., the following way: When the slow in-
struction rewrites itself into the quick instruction, it repli-
cates the quick instruction (including its dispatch) and lets
the instruction slot point to the new replica. However, this
approach will lead to less spatial locality and thus more
I-cache misses than the normal arrangement of dynamic
superinstructions with replication.

• When applying additional optimizations, such as static su-
perinstructions [EGKP02] or static stack caching [EG04a],
the natural approach to take would be to also exclude
the to-be-quickened instructions from these optimizations.
Everything else would require additional implementation
costs similar to more sophisticated approaches for this
problem.

These disadvantages lead to significant slowdowns (com-
pared to more sophisticated approaches) when all slow in-
structions are treated in this way [GH03].

However, the Cacao interpreter translates the JVM byte-
code into threaded code using a JIT compiler with method
granularity. If the JIT compiler encounters a slow JVM in-
struction that references a class that has already been loaded
and initialized, it translates it into a quick instruction with-
out the intermediate state of a slow threaded-code instruction.
These quick instructions can be integrated into dynamic su-
perinstructions without a problem.

So, in the Cacao interpreter, only a subset of the slow
instructions from the original JVM code have the problems
mentioned above even with this simple solution. If the parts
of the code containing this subset are only executed rarely,the
performance disadvantage of the simple solution is negligible.
Our results (see Section 5) indicate that this is indeed the case.

However, we did not know this from the start, so we also
looked into more sophisticated approaches. Moreover, more
sophisticated approaches do have their merits in settings (like
SableVM) where no JIT translation into threaded code with
superinstructions is used: At least our sophisticated approach
is simpler to implement than a JIT translator.

3.3 Previous sophisticated solutions

Like the Cacao interpreter, SableVM translates the JVM byte-
code into threaded code with dynamic superinstructions. One
difference is that SableVM keeps only the instruction slot for
the first VM instruction in a superinstruction, whereas the Ca-
cao interpreter keeps all the VM instruction slots around (even



data segment
threaded VM Code

code segment
VM routine template

Machine code for iload
Dispatch next

iload
b

getfield_quick
offset
istore

a
Machine code for getfield
Dispatch next

data segment
dyn. superinst code

Machine code for skip_operand
Machine code for iload

Machine code for getfield_quick
Machine code for istore

...
Dispatch next

Machine code for istore
Dispatch next

...

Machine code for getfield_quick
Dispatch next
Machine code for goto
Dispatch next
Machine code for replace
Dispatch next

super|goto
prepseq

iload
b

getfield
Example.i

op-ptr

istore
a
...

before executing prepseq
after executing prepseq

replace
super
inst-ptr

goto
behind

unused slot

Figure 5. SableVM’s preparation sequence for the first execution and the dynamic superinstruction including a quick instruc-
tion for subsequent executions

though only the first one is used when the superinstruction is
executed); to avoid confusion, we show the same approach in
all the examples: all VM instruction slots are kept.

SableVM deals with quickening by creating an out-of-line
preparation sequence in VM code (see Fig. 5), as well as
the superinstruction (which incorporates the quick versions of
any instructions to be quickened instruction). On first execu-
tion the VM code jumps to the preparation sequence, which
performs the first execution (including a variant of the slow
instruction that patches the operand elsewhere), and rewrites
the goto to the preparation sequence into an invocation of
the superinstruction; finally, the preparation sequence jumps
to the first (super)instruction behind the VM code covered by
the superinstruction. On the next execution, the VM code just
executes the superinstruction.

Casey et al. [CEG05, Section 5.4] have also implemented
dynamic superinstructions in a JVM interpreter. They treat
the slow instruction as non-relocatable, as in the simple so-
lution, but leave space in the real-machine-code area for the
(real-machine code of the) corresponding quick instruction;
on quickening, they copy the real-machine code for the quick
instruction into that space, resulting in a dynamic superin-
struction that includes the quick instruction. This solution re-
quires that all VM instruction slots are kept around.

3.4 Our sophisticated solution

Figure 6 shows our approach: When we generate the threaded
code for a block, we also generate the real-machine code for
the superinstruction; however, if we encounter a slow instruc-
tion, we generate the real-machine code for the appropriate
quick instruction.

However, if there is a slow instruction in the block, we do
not let the threaded code point to the dynamic superinstruction
right away. Instead, we first generate conventional threaded
code, which does not reference the dynamic superinstruction

in any way, and that code contains the slow instructions.
We also record what the last slow instruction in the block
is, and use this in a table called superstart: the last slow
instruction is the lookup key, and it also contains a pointer
to the superinstruction real-machine code for the block, and
the first threaded-code word in the block.

When a slow instruction is executed, it first performs all
the necessary loading and initialization work. Then it looks
itself up in the superstart table, and patches the threaded-
code word at the block start to point to the real-machine code
for the superinstruction.6 The next time the basic block is
executed, it will use the dynamic superinstruction.

We did not define above what we mean byblock: It is the
VM code covered by a dynamic superinstruction. It is essen-
tially the same as a basic block, with one additional boundary
condition: If there is a VM instruction with non-relocatable
real-machine code, that also terminates the superinstruction
(and thus the block); the next superinstruction starts after the
non-relocatable VM instruction.

In earlier work [EG03] we let superinstructions continue
straight-line across control-flow joins. We cannot do this here;
consider the case of a superinstruction consisting of two ba-
sic blocks, with each basic block containing one slow VM
instruction:

• When the first slow instruction is reached, this is not the
last slow instruction in the superinstruction, so we cannot
do the patching; if we did, we would get a race condition:
another thread could execute the quick instruction imple-
mentation in the superinstruction before this thread has
performed the necessary class loading and initializations.

6 We need to patch only the first threaded-code word, because, once
we are executing the dynamic superinstruction, the other threaded-
code words are not used.



data segment
threaded VM Code

code segment
VM routine template

Machine code for iload
Dispatch next

super|iload
b

getfield
Example.i

offset
istore

a

Machine code for getfield
Dispatch next

data segment
dyn. superinst code

Machine code for iload
Machine code for getfield_quick

Machine code for istore
...

Dispatch next

Machine code for istore
Dispatch next

... Machine code for getfield_quick
Dispatch next

superstart table
last slow inst threaded code start real-machine code

before executing getfield
after executing getfield

Figure 6. Cacao’s sophisticated solution: first execute threaded code; the last slow instruction rewrites the first instruction in
the sequence into the superinstruction.

• When the second slow instruction is reached, it does not
know if it can patch the start of the first basic block, be-
cause it does not know if that basic block and its slow
instruction has been executed, and the appropriate initial-
izations done.

As a result, the part of the superinstruction for the first
basic block would never be used.

In earlier work we also let superinstructions continue
across fall-through edges of conditional branches. We also
do not do this here: If there is a slow instruction in the fall-
through path, but the branch is always taken, the superinstruc-
tion might never be activated.

One could work around these issues, but that would re-
quire significant complexity.

Note that the simple solution (Section 3.2) does not have
these restrictions and thus can be better than our sophisticated
solution (depending on the dynamic frequencies of originally-
slow instructions vs. basic block ends and not-taken condi-
tional branches).

Another thing worth noting is that our solution requires
that the superinstruction keeps all the VM instruction slots,
because the first time the code is executed as plain threaded
code. In terms of the SableVM solution, we use the origi-
nal sequence combined with the entry in the superstart ta-
ble as preparation sequence. So keeping all the slots leads
to a significant simplification here, as well as in other con-
texts, such as superinstructions across basic block boundaries
[EG03] and optimal selection of static superinstructions.

Finally, one of the advantages of our sophisticated ap-
proach over the simple solution and over the solution of Casey
et al. [CEG05] is that our solution is easier to adapt to situ-
ations where dynamic superinstructions are combined with
static stack caching and/or static superinstructions: While
generating the dynamic superinstruction, we use static stack
caching or static superinstructions without having to consider
complications from quickening, and the threaded code for the
first execution need not use these optimizations.

4. Relocatability and exceptions
Only relocatable real-machine code can be used in dynamic
superinstructions (see Section 2.1). In order to be relocatable,
a code fragment must not contain relative references to targets

IALOAD

LALOAD

AALOAD

BALOAD

CALOAD

SALOAD

IASTORE

LASTORE

BASTORE

CASTORE

IDIV

IREM

GETFIELD CELL

GETFIELD INT

GETFIELD LONG

PUTFIELD CELL

PUTFIELD INT

PUTFIELD LONG

INVOKEVIRTUAL

INVOKESPECIAL

INVOKEINTERFACE

ARRAYLENGTH

CHECKNULL

Figure 7. Instructions in the (JVM-derived) Cacao inter-
preter VM that can throw exceptions

outside the code fragment, nor absolute references to targets
inside the code fragment.

There are a number of JVM instructions that can throw an
exception, but usually don’t (see Fig. 7); e.g.,getfield (and
its quick variants) can throw a null pointer exception.

The code for throwing an exception is quite complex, so
we don’t want to replicate it with frequently occuring instruc-
tions like getfield. Moreover, it involves a function call,
which makes the code non-relocatable on most architectures
(it is a relative reference to code outside the fragment).

What we actually would like to do is to keep the throw
code common, and jump to it from the various potentially
exception-generating VM instructions. Unfortunately, when
implemented directly, this usually still makes the exception-
generating VM instructions non-relocatable, because the di-
rect jump uses relative addressing on most architectures.

Our way to deal with this is to use an indirect jump instead
of the direct jump. Since exceptions are rarely thrown and,
when thrown, cost a lot of time anyway, the additional cost of
the indirect jump is negligible.

We implement the indirect call by putting the addresses
of the throw code in a local variable, and then jumping to it
with goto *. We have to take some care to confuse the con-
stant propagation7, otherwise gcc will “optimize” the indirect

7 We make the local variable appear to be non-constant by having an
assignment of another value to it in some code fragment that appears
to be reachable.



branch back into a direct branch. An additional problem is
that we have to work around the bugs that recent gccs have in
this area: PR15242 and PR25285.

Both SableVM [GH03] and Casey et al.’s work [CEG05]
solve this problem in a way similar to our’s8, but they do not
discuss it in their papers, and do not provide data about the
effectiveness of this work.

5. Empirical results
5.1 Setup

The hardware we used in our experiments was a 2.2GHz
Athlon 64 X2 4400+, a 2.26GHz Pentium 4, and a 1GHz
Pentium III. The main difference between these CPUs for our
experiments is in the size of the instruction cache: while the
I-cache of the Athlon 64 is relatively large (64KB), it is much
smaller in the Pentium III (16KB) and the Pentium 4 (12K
microinstructions); so, negative effects of replication should
become visible on the latter CPUs first.

All systems were running under Linux 2.6.13 or 2.6.14.
We used SpecJVM98 as benchmark; we ran each benchmark
three times, and report the median result.

5.2 Superinstructions

We benchmarked a threaded-code Cacao interpreter without
any kind of superinstructions (plain), and the Cacao inter-
preter with dynamic superinstructions with all combinations
of the following variants:

throw Instructions that can throw an exception cannot (-)
or can (+) be integrated in a dynamic superinstruction
(Section 4).

simple/soph The approach used for dealing with quickening:
simple (Section 3.2) or our sophisticated solution (Sec-
tion 3.4).

replication Without or with replication (Section 2.2).

We compiled the Cacao interpreter with gcc-2.95. We used
GNU Classpath 0.19 as Java library for Cacao.

One thing worth noting is that the performance of the
Cacao interpreter is strongly influenced by how many VM
registers end up in real-machine registers. In the present case
we managed to get the most important VM registers (ip, sp,
TOS) in real-machine registers, but with more recent gcc
versions, or when compiling the interpreter into a dynamically
linkable library, the results are significantly worse. We used
the same interpreter executable for all these measurements,
with the variants determined by command-line options. This
ensures that all the variants use the same register allocation.

Figure 8, 9 show the timing results; for space reasons we
do not show the Pentium III results, but they are similar to the
Athlon 64 X2 results.

We see that the best variant of dynamic superinstructions
provides a huge speedup over plain threaded code, compa-
rable to the effects we saw for Forth [EG03]. The speedup
is even bigger on the Pentium 4 (which we did not measure
earlier), probably because this CPU has a relatively higher
branch misprediction penalty.

Looking at the variations, we see thatthrow has a large
performance effect. By contrast, both replication and our so-
phisticated quickening usually have a small and not consis-
tently positive effect on performance.

Our result for our sophisticated quickening is remarkable
because the results for SableVM show a large speedup of so-
phisticated quickening over simple quickening [GH03]. Our

8 Email communications with Etienne Gagnon and David Gregg.

explanation for this is that Cacao converts many instructions
(and apparently most of the frequently-executed ones) into
quick instructions already during the translation from byte-
code (so there is no need to quicken them at run-time and they
can be integrated into superinstructions like ordinary instruc-
tions), whereas SableVM goes through the slow-instruction
stage for all slow instructions in the bytecode.

Another interesting result is that, despite Java’s reputation
for bloat, replication does not hurt much on any of the bench-
marks, not even on the Pentium 4 and III with their small I-
caches. So at least the SpecJVM98 benchmarks have good
temporal locality. Implementing the non-replication option
cost only three hours of work, so it may still be worthwhile
(as an option) for CPUs that do not predict indirect branches
with BTBs.

5.3 Other systems

Figure 10 shows the performance of various other JVM sys-
tems, both interpreters and JIT/mixed-mode systems com-
pared to the Cacao interpreter with dynamic superinstruc-
tions.

The first interesting result is that already theplain Cacao
interpreter (without superinstructions) is quite competetive.
Surprisingly, it regularly beats even SableVM (which does use
dynamic superinstructions), probably thanks to better register
allocation.

The Cacao interpreter with dynamic superinstructions
(+throw soph +repl) is quite a bit faster, as discussed above.

JIT and mixed-mode systems are generally even faster
(except, usually, Kaffe). The most comparable of these is, of
course, the Cacao JIT compiler, which provides speedups by
up to a factor of 3.3. So, dynamic superinstructions provide
performance that is halfway between plain threaded code and
a JIT compiler, for much less than half the effort.

6. Related work
The work most closely related to our work is the work on dy-
namic superinstructions in the JVM in SableVM [GH03] and
by Casey et al. [CEG05, Section 5.4]. Both papers discuss the
problem of combining quickening with dynamic superinstruc-
tions; the sophisticated solutions they present are more com-
plex than our sophisticated solution (for a more detailed dis-
cussion, read Section 3.3). One significant difference is that
we use a JIT-style translation, which allows us to use quick
instructions right from the start in many cases, and this makes
the simple approach competetive, whereas SableVM always
goes through the slow instructions, and sees a big slowdown
from the simple approach. Another difference between our
work and the previous ones is that we discuss the issue of the
relocatability of instructions that can throw exceptions,and
we present results.

Choi et al. [CGHS99] point out the large effect that poten-
tial exception-throwing instructions have on a JIT compiler
and present some solutions in that context, but do not discuss
or solve the problems that are addressed in the present paper.

With static superinstructions the set of superinstructions is
fixed at interpreter build time (or earlier). Static superinstruc-
tions, and the related, but more complex concepts of super-
combinators [Hug82] and superoperators [Pro95, HATvdW99]
have been used for a long time in interpreters. This includes
an earlier version of the Cacao interpreter [EGKP02]; in that
work we did not encounter the conflict between superinstruc-
tions and quickening, because that version of Cacao (incor-
rectly) initialized classes on compiling, not on first execution.
So one of the advances of this work over the earlier work is
a proper solution for this conflict. The other important differ-



compress jess db javac mpegaudio mtrt jack

speedup
Athlon 64 X2

2.8

2

1.4

1.0

plain
-throw simple -repl -throw soph -repl -throw simple +repl -throw soph +repl
+throw simple -repl +throw soph -repl +throw simple +repl +throw soph +repl

Figure 8. Speedup of dynamic superinstruction variants overplain on an Athlon 64 X2 4400+ (log. scale)

compress jess db javac mpegaudio mtrt jack

speedup
Pentium 4

4

2.8

2

1.4

1.0

plain
-throw simple -repl -throw soph -repl -throw simple +repl -throw soph +repl
+throw simple -repl +throw soph -repl +throw simple +repl +throw soph +repl

Figure 9. Speedup of dynamic superinstruction variants overplain on a 2.26GHz Pentium 4 (log. scale)

compress jess db javac mpegaudio mtrt jack

speedup Athlon 64 X2
10

5

2

1.0

0.5

0.2

0.1

0.05

0.02

Kaffe int JamVM gij HotSpot int J9 int SableVM plain +throw soph +repl
cacao jit HotSpot mixed J9 mixed Jikes RVM jrockit kaffe jit

Figure 10. Relative speeds of various JVM systems on an Athlon 64 X2 4400+ (log. scale)



ence between these earlier works and this work is that in this
work we look at dynamic superinstructions.

Dynamic superinstructions [RS96, PR98] (also known as
selective inlining) are a relatively recent invention. Replica-
tion [EG03] was developed to improve BTB indirect branch
prediction accuracy, and combines nicely with dynamic su-
perinstructions for improved performance with reduced im-
plementation effort. The present work applies these concepts
in the context of the JVM, and solves the problems that arise
in this context: combining dynamic superinstructions withthe
quickening optimization; and ensuring that VM instructions
that can throw exceptions can be included in superinstruc-
tions.

As a further step after dynamic superinstructions with
replication, one can generate code that includes immediatear-
guments and performs control flow directly instead of through
the threaded code, turning the system into a simple native-
code compiler. The work based on Forth [EG04b] showed a
nice speedup, but the work based on Tcl [VA04] did not show
a speedup over the baseline interpreter (without superinstruc-
tions or replication) for many application benchmarks, be-
cause it led to a large increase in I-cache misses. This problem
would certainly also arise in an implementation of dynamic
superinstructions with replication (where the resulting code is
typically a little bit larger than for the more advanced tech-
nique above). Therefore, we were a little worried, how well
dynamic superinstructions and especially replication would
work for the JVM; we answer these questions in the present
work.

7. Conclusion
Applying dynamic superinstructions and replication to the
JVM poses two challenges, which we solve in this paper:

• These optimizations conflict with thequickeningopti-
mization for the first-execution resolution of constant-
pool references. A simple approach just excludes slow
instructions from dynamic superinstructions. As our em-
pirical results show, this method works well enough in
the context of a JIT-style compiler with method granu-
larity, because it usually translates slow instructions to
quick instructions already when generating the dynamic
superinstruction.

We also present a more sophisticated approach that is eas-
ier to implement than previous sophisticated approaches
and is useful if the system does not use JIT-style transla-
tion to threaded code.

• Instructions that can throw an exception would normally
have non-relocatable real-machine code and could not be
included in dynamic superinstructions, leaving a lot of the
speedup potential from dynamic superinstructions unused.
We solve this problem by converting the direct branches
to the throwing code (which are the cause of the non-
relocatability) into indirect branches (which are relocat-
able).

We also present empirical results on a number of plat-
forms: The overall speedup we see is quite large, up to a
factor of 4, with a factor of about 2 being more typical. The
effect of making instructions that can throw exceptions relo-
catable is also quite large (up to a factor of 2). Replication
has a relatively small effect. A simple approach to quickening
combined with a JIT-style translation into threaded code with
dynamic superinstructions usually works about as well as a
sophisticated approach to quickening.

Acknowledgments
The anonymous reviewers provided comments that helped
improve this paper.

References
[Bel73] James R. Bell. Threaded code.Communications of

the ACM, 16(6):370–372, 1973.

[CEG05] Kevin Casey, M. Anton Ertl, and David Gregg.
Optimizing indirect branch prediction accuracy in
virtual machine interpreters. Submitted to ACM
TOPLAS, 2005.

[CGHS99] Jong-Deok Choi, David Grove, Michael Hind, and
Vivek Sarkar. Efficient and precise modeling
of exceptions for the analysis of Java programs.
In Program Analysis for Software Tools and
Engineering (PASTE’99), 1999.

[EG03] M. Anton Ertl and David Gregg. Optimizing indi-
rect branch prediction accuracy in virtual machine
interpreters. InSIGPLAN ’03 Conference on Pro-
gramming Language Design and Implementation,
2003.

[EG04a] M. Anton Ertl and David Gregg. Combining stack
caching with dynamic superinstructions. InIVME
’04 Proceedings, pages 7–14, 2004.

[EG04b] M. Anton Ertl and David Gregg. Retargeting JIT
compilers by using C-compiler generated executable
code. InParallel Architecture and Compilation
Techniques (PACT’ 04), pages 41–50, 2004.

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and
Bernd Paysan.vmgen — a generator of efficient
virtual machine interpreters.Software—Practice
and Experience, 32(3):265–294, 2002.

[GH03] Etienne Gagnon and Laurie Hendren. Effective
inline-threaded interpretation of java bytecode using
preparation sequences. InCompiler Construction
(CC ’03), volume 2622 ofLNCS, pages 170–184.
Springer, 2003.

[HATvdW99] Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum,
and Rik van de Wiel. A code compression system
based on pipelined interpreters.Software—Practice
and Experience, 29(11):1005–1023, September
1999.

[Hug82] R. J. M. Hughes. Super-combinators. InConference
Record of the 1980 LISP Conference, Stanford, CA,
pages 1–11, New York, 1982. ACM.

[LY97] Tim Lindholm and Frank Yellin.The Java Virtual
Machine Specification. Addison-Wesley, first edition
edition, 1997.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing direct
threaded code by selective inlining. InSIGPLAN
’98 Conference on Programming Language Design
and Implementation, pages 291–300, 1998.

[Pro95] Todd A. Proebsting. Optimizing an ANSI C
interpreter with superoperators. InPrinciples of
Programming Languages (POPL ’95), pages 322–
332, 1995.

[RS96] Markku Rossi and Kengatharan Sivalingam. A
survey of instruction dispatch techniques for
byte-code interpreters. Technical Report TKO-
C79, Faculty of Information Technology, Helsinki
University of Technology, May 1996.

[VA04] Benjamin Vitale and Tarek S. Abdelrahman. Cate-
nation and specialization for Tcl virtual machine
performance. InIVME ’04 Proceedings, pages 42–
50, 2004.


