
A Scalable Embedded DSP Core for SoC Applications 

C. Panis U.Himschrott, S.Farfeleder, G.Laure, W.Lazian J. Numi  
Carinthian Tech A.Krall Infineon Technologies Tampere 

Institute Vienna University of Austria University of 
c.uanis@,cti. ac. at Technology plaure@sshox. tu- Technology 

stefanfliacomulanp.tuwien.ac.at wluzian@sbox.tu- 
uli@,complanp. tuwien.ac.at praz.ac.at jari.nurmi@tut. fi 

andi@,comulanp. tuwien. ac. at graz.ac. at 

Abstract 
lncreasing system complexity of SoC (System-on-Chip) 

and Sip (System-in-Package) applications leads to the 
strong demand of plafoini based solutions. Sofmare 
programmable embedded cores are required to provide 
flexibility io these platforms. Compared with dedicated 
hardware implementations the provided flexibility leads 
to increased silicon area and power dissipation, which is 
problematic for high volume products. 

This paper introduces xDSPcore, U scalable embedded 
DSP processor which allows io scale major architectural 
features to application specijk requirements. 
Compatibility issues caused by different core versions are 
covered by the support of eflcientprogramming in high- 
level languages like C, which is achieved by an 
optimizing C-compiler and by a compiler $+end& core 
architecture. A particular core definition is specifkd by a 
XML based configuration $le. 

1. Introduction 

Increasing complexity of SoC and SiP applications 
increases the demand on powerful embedded cores. The 
flexibility provided by the usage of software 
programmable cores quite often leads to an increase in 
consumed silicon area and an increased power dissipation. 
Therefore dedicated hardware has been favored over 
software-based platform solutions. The picture is 
changing. Increasing mask costs (due to the use of 
advanced process technologies) and difficulties to enter 
such high-volume products to the heterogeneous market 
(to justify the high non-recurring cost) together increase 
the pressure for developing product platforms. These 
platforms are used for a group of applications such that 
software executed on programmable core architectures is 
used for differentiating the products. 

Embedded general purpose core architectures cause an 
inefficient use of the core resources. Each class of 
applications has requirements, which cannot be efficiently 
covered by a general-purpose architecture in terms of area 
and power consumption. To close the gap between 
dedicated hardware and software-based solutions, a 

platform-specific adaptation of the core architecture is 
required. 

For embedded DSP cores (Digital Signal Processors) 
an additional problem is virulent. Due to non-orthogonal 
core architectures (which have been preferred because of 
obtaining better performance and less area consumption 
when mapping DSP algorithms onto a processor) DSPs 
are still often programmed manually in assembly 
language. The price for the better usage of the available 
processor resources is an architecture-dependent 
description of the algorithms which makes changes in the 
core architecture difficult and costly (due to compatibility 
issues) and prohibits application-specific adaptations. 
Therefore products based on a programmable core 
architecture are sticking to the same architecture for a 
long time frame, even if not state-of-the-art any more. 
Additional risks and costs by changing the core 
architecture thus lead to solutions that are not competitive. 

This paper introduces xDSPcore, a scalable embedded 
DSP core for SoC applications. The first part of the paper 
gives an overview of existing solutions and positions the 
xDSPcore project. The second part gives an overview of 
the main architectural features of the core architecture. 
The third part introduces some architectural decisions 
influenced by the compiler development. 

2. State of the art 

This section briefly introduces available DSP concepts 
and differentiates the core project presented in this paper 
&om them. 

2.1. Traditional DSP core architectures 

The latest announcements and products of traditional 
DSP core architectures are the Starcore SC1200/SC1400 
[ I ]  announced by Starcore LCC, which is a cooperation 
between Motorola, Agere and Infineon Technologies, and 
Blacffin [2] ,  the outcome of a cooperation between 
Analog Devices and Intel Inc. Both core concepts are 
RISC-based load-store architectures, claiming to be 
efficiently programmable in high-level languages like 
C/C++. The ISA (Instruction Set Architecture) and the 
micro architecture are fixed. This prevents application 

0-7803-8558-6/04/%20.00 02004 IEEE. a5 



specific modifications, which would be needed to close 
the gap between hardwired implementations and software. 

2.2. Scalable core architectures 

The best known examples of scaleable architectures are 
provided by ARC and Tensilica. Both are based on 
traditional microcontroller architectures. Therefore 
efficient implementation of traditional DSP algorithms is 
difficult and issues such as minimizing the worst-case 
execution time are mostly ignored. software support for 
using DSP-specific features is inadequate. The philosophy 
of integrating "just an additional MAC unit" directs the 
focus towards increasing theoretical performance, instead 
of an analysis of the overall system performance. 

2.3. Architecture description languages 

LISA (Language for Instruction Set Architecture) from 
Coware, mainly developed at RWTH Aachen [3], is the 
hest known architecture description language. Later 
projects are for example, the ArchC project in Brazil [4]. 
The concept of defining your own specific core 
architecture to fulfill the requirements of your application 
code sounds unbeatable at f is t  glance. In the very large 
solution space provided by an architectural description 
language, very many core architectures can be defined, 
but only a few of them are compatible with the 
development of an optimizing high-level language 
compiler. Most design teams are interested in integrating a 
core into their SoC or SIP solution. To use an architecture 
description language like LISA and to generate efficient 
solutions, deep knowledge of processor architecture is 
required. 

Unfortunately, automatic generation of high-level 
language compilers for DSP cores is still not feasible. 
Even with approaches like COSY from ACE, the quality 
of the code produced by an automatically generated 
compiler is poor. This may mislead designers into making 
had decisions in regard to architectural modifications. The 
problem can be summed up as follows - understanding 
how the application requirements affect the core 
architecture needs an efficient high-level language 
compiler, but this cannot be generated automatically with 
acceptable quality and certainly not for each core. 

2.4. xDSPcore 

The xDSPcore approach introduced in this paper is our 
attempt to solve the problems described above. xDSPcore 
is a general-purpose DSP core architecture; it is based on 
a RISC load-store model and it enables efficient execution 
of traditional DSP algorithms. During definition of the 
microarchitecture system aspects like the possibility of 
minimizing the worst-case execution time have been 
considered. To close the gap between hardwired ASIC 
implementations and software based system solutions, the 

core concept enables scaling of the main architectural 
features, while the micro-architectural model is not 
changed. The micro-architecture has been defined so that 
the requirements for developing an 0ptimizip.g C compiler 
are satisfied. The C compiler permits analysis of the 
design space of specific application code. To keep the 
validation and verification effort low, a unique 
configuration file based on XML is used. The 
configuration file allows to scale core features while 
taking care that the effects of all changes are propagated 
to hardware, tools and documentation. 

3. Core architecture 

XDSPcore is based on a modified dual Harvard load- 
store architecture [5][6]. VLIW (Very Long Instruction 
Word) is the chosen programming model. Static 
scheduling allows shifting dependency resolution into the 
C compiler and therefore reduces the complexity of the 
core architecture. However VLIW produces poor code 
density. To overcome this problem, xLIW (licalable Long 
Instruction Word) is introduced [7]. xLIW is based on 
VLES (Variable Length Execution Set), which enables 
decoupling of fetch and execution bundles. Compared to 
VLES, xLIW allows a reduction in the size of the program 
memory port (and therefore reduces the ,wiring effort) 
without limiting the peak performance of the core 
architecture. To speed up the execution of inner loops of 
DSP algorithms, we introduced an instructim buffer that 
overcomes the possible bandwidth mismatch resulting 
60m the reduced size of the program memory port. A 
typical program memory port size would be 4 instruction 
words whereas a xLIW instruction can use up to 10 
instruction words. The buffer also reduces transition 
activity at the program memory port during execution of 
hardware and software loops. Once the loop body is 
fetched, no further program memory access is needed, and 
this reduces dynamic power dissipation. 

3.1. Register file 

For load-store architectures, the register file is a central 
part of the core architecture. Separate instructions are 
used for moving data between a register file and data 
memory; all arithmetic instructions use operands stored in 
the register file. The register file of XDSPcore is split into 
three parts: data register file, address register file 
including modifier registers and a separale branch file 
(which is not fully visible to the instruction set 
architecture). The data register file supports three types of 
register sizes. Data registers are 16-bit wide: whereas long 
registers are 32-bit wide and accumulator registers are 
either 40 or 64 bits wide depending on th.: core variant 
(however the size of the registers is scalable according to 
the application). Two consecutive data register can be 
accessed as one long register. The long register with 

86 



additional guard bits for an increased range of fixed point 
values f o m  the accumulator register. 64-bit wide 
accumulator registers are used for xDSPcore variants 
which execute four MAC operations in SIMD instructions 
concurrently. 

The structure of the register file is orthogonal. There 
are no restrictions on the usage of registers for special 
instructions. The same is true for the address register. 
Each 32- bit wide address register has a modifier register, 
which is used for modulo addressing and bit-reversal 
address mode (introduced for a more efficient 
implementation of FFT algorithms). 

The third part of the register file is the branch file. The 

xDSPcore supports a rich set of predicated or 
conditional execution instructions, thus reducing the 
kequency of branch instructions and therefore avoiding 
branch delays [8]. When executing control code, 
predicated execution can significantly reduce the number 
of unused branch delay slots [9].  

3.3. Pipeline 

xDSPcore features a RISC-like three phase pipeline: 
instruction fetch, decode and execute. Each of the phases 
can be split into several clock cycles, which results in 
higher clock frequencies. However, splitting the 

Figure 1: Core overview 

branch file contains StaNS information of the core 
architecture. It holds static information about the register 
content (e.g. sign and zero flag for each register of the 
data register file) and dynamic information updated by the 
data flow (e.g. overflow flags or flags indicating loop 
status). Static information is updated each time register 
contents are changed. Therefore it is not necessary to 
update static information during interrupt handling or task 
switching. However dynamic information bas to be 
handled by the user. A separate branch file has been 
chosen to relax the number of readhi te  ports associated 
with the register files, which is already stressed by the 
orthogonality requirements. 

3.2. Predicated Execution 

Status information stored in the branch file is used for 
conditional branch instructions and to control predicated 
execution. 

instruction fetch into several clock cycles increases the 
number of branch delays. Spending several clock cycles 
on the execution phase increases load-use and define-use 
dependencies. Compensation methods for the arising 
drawbacks (bypasses, branch prediction) are available [9] 
but increase core complexity and silicon area. 

3.4. SIMD 

Code density is a measurement of how efficiently an 
algorithm can make use of the chosen core architecture. 
To increase code density and exploit available parallelism, 
xDSPcore supports SIMD instructions. Filter operations 
can be speeded up by executing two MAC instructions in 
parallel (adding the results of the two multiplications into 
one accumulator, which reduces register pressure). The 
ALU data paths can be used for executing two instructions 
in parallel on the same data path (e.g. two 16-hit additions 
taking place on the same adder structure). SIMD on the 
ALU paths permits both increased code density and a 

87 



reduction in the clock cycles needed to execute an 
algorithm. To reduce the number of move operations 
between registers in the register file, SIMD cross 
operations are supported. The high and low words of long 
registers can be used for SIMD operations, combining one 
high operand with one low operand in a crosswise 
manner, and vice versa. 

4. Compiler aspects 

This section introduces some examples for design 
considerations to enable the development of an optimizing 
C-compiler providing efficient code generation. 

4.1. Orthogonal instruction set 

Orthogonal instruction set in the term as defined in [6] 
requires instructions with free choose of resources and to 
each instruction the complement instruction (e.g. an add 
requires a subtract). None of the instructions of XDSPcore 
contains implicit operand addressing (e.g. as in the SC140 
[l]) or micro architectural limitations in the sense of mode 
dependent resource allocation, which can be e.g. found at 
ARM Thumb [IO]. 

about 50%, resulting in only half of the progjam memory 
[ l l ] .  The first prototype implementation approaching end 
of this year is done in a 13Onm Chartered, 6-metal layer 
CMOS technology, featuring 150 MHz military worst 
case conditions (5-way VLIW, two MAC Unyts). 

6. Conclusion 

This paper introduces XDSPcore, an embedded DSP 
core architecture, whose major architectural features can 
be scaled to application-specific requkements. To 
overcome compatibility issues programming of the core 
architecture in architecture independent high-level 
languages like C is supported. Beside a brief overview of 
the key aspects of xDSPcore, design considerations are 
introduced, reflecting requirements of the compiler. 

7. Acknowledgment 

The work has been supported by the IiC under the 
project SOC-Mobinet (IST-2000-30094), the Christian 
Doppler Gesellschaft and Infineon Technoloj5es Austria. 

8. References 

4.2. No mode registers [ I ]  “SC140 DSP Core Reference Manual”, IMotorola Inc., 
MNSCI4OCORE/D, Revision 3, November 2001. 

[2] “Blackfin DSP Instruction Set Reference”, Digital Signal 
Processor Division, Analog Devices Inc., First Revision, 
March 2002. 

[3] “Lisa 2.0 Language Reference Mariual, Manual 
RM_2002.02”, LisaTek February 2002. 

[4] “The ArchC Architecture Description Language vO.X.1, 
Reference Manual”, www.archc.org, 2004. 

Mode registers are often introduced to increase code 
density, which enables a kind of paging mechanism for 
the instruction set. But mode registers limit instruction 
scheduling whereas the instructions introduced to set and 
reset modes can lead to a decreased code density. 
XDSPcore does not support mode registers, whereas 
available features are encoded in regular instructions. 

4.3. Simple issue rules 

The lean pipeline structure allows omitting bypass 
circuits for operand forwarding. Further it reduces the 
number of issue rules which simplifies resource checking 
during instruction scheduling. No implicit dependencies 
are introduced between instructions; predicated execution 
is destination register based and therefore the implicit 
dependency between condition generation and evaluation 
is reduced. 

4.4. Orthogonal register set 

None of the registers of the register file is assigned to 
dedicated instructions. Both aspects would limit the 
register allocator and instruction scheduler and can lead to 
a reduced usage of the available hardware resources. 

5. Results 

Application code benchmarks like EFR (Enhanced Full 
Rate Encoder) compiled for xDSPcore and competitive 
core architectures illustrates an increased code density of 

[ 5 ]  J. L. Hennessy, D. A. Patterson, Computer .4rchitecture. A 
Quanrirative Approach, Morgan Kauftnann Publishers, San 
Mateo CA, 1996. 

[6] P. Lapsley, 1. Bier, A. Shoham and EA. Lee, DSP 
Processor Fundamentals, Architectures and Fearures, IEEE 
Press, New York, 1997. 

[7] C. Panis, R. Leitner, H. Griinhacher, J. Nurmi, “xLW ~ a 
Scaleable Long Insmction Word”, in Proc. :“he 2003 IEEE 
Intemarional Symposium on Circuits and Systems (ISCAS 
2003), Bangkok, Thailand, May 25-28,2003, pp. V69-VI2 

[XI C. Panis, U. Himschrott, A. Krall, G. Laure, W. Lazian, J. 
Numi, “FSEL ~ Selective Predicated Execution for a 
Configurable DSP Core”, in Proceedings o,r IEEE Annual 
Symposium on VLSI (ISVLSI-04), Lafayette, Louisiana, 
USA, February l9-20,2004, pp. 3 17-320. 

191 D. Sima, T. Fountain, P. Kacsuk, Advanced Compurer 
Architectures: A Design Space Approach, Addison Wesley 
Publishing Company, Harlow, 1997. 

[IO] “An Introduchon to Thumb”, Advanced N S C  Machines 
Ltd., Version 2.0, March 1995. 

[ 1 I ]  C. Panis, “Scalable DSP Core Architechire Addressing 
Compiler Requirements”, PhD thesis at Tampere University 
of Technology, Tampere, Finland, August 2004. 

88 

http://www.archc.org

