
Leveraging Predicated Execution for Multimedia
Processing

Dietmar Ebner Florian Brandner Andreas Krall

Institut für Computersprachen
Technische Universität Wien

Argentinierstr. 8, A-1040 Wien, Austria
{ebner,brandner,andi}@complang.tuwien.ac.at

Abstract—Modern compression standards such as H.264, DivX,
or VC-1 provide astonishing quality at the costs of steadily
increasing processing requirements. Therefore, efficient solutions
for mobile multimedia devices have to effectively leverage in-
struction level parallelism (ILP), which is often achieved by the
deployment of EPIC (Explicitly Parallel Instruction Computing)
architectures. A characteristical architectural feature to increase
the available ILP in the presence of control flow is predicated
execution. Compilers targeting those hardware platforms are
responsible to carefully convert control flow into condition-
al/predicated instructions – a process called if-conversion.

We describe an effective if-conversion algorithm for the CHILI
– a novel hardware architecture specifically designed for digital
video processing and mobile multimedia consumer electronic.
Several architectural characteristics such as the lack of branch
prediction units, large delay slots, and the provided predication
model are significantly different from previous work, typically
aiming mainstream architectures such as Intel Itanium.

The algorithm has been implemented for an optimizing com-
piler based on LLVM. Experimental results using a cycle accurate
simulator for the well known benchmark suite MiBench and
several multimedia codecs show a speed improvement of about
18% on average. On the same programs, our compiler achieves
a speedup of 21% in comparison to the existing code generator
based on gcc.

I. INTRODUCTION

With the emergence of modern compression standards such
as H.264, DivX, and VC-1, the complexity of multimedia
systems ranging from mobile multimedia devices to high
definition video systems rises steadily, imposing new demands
on both software and hardware design. Highly optimizing
compilers are needed to build efficient systems leveraging the
particular hardware architecture despite of increasing time-to-
market pressure. At the same time, high performance require-
ments necessitate the ability to execute multiple instructions
per cycle. EPIC (Explicitly Parallel Instruction Computing)
architectures supporting predicated execution models are more
and more applied for multimedia applications.

Compilers targeting those hardware platforms are respon-
sible to explicitly group instructions together and to acquire
enough instruction level parallelism to keep the processor
busy. The latter is often achieved by eliminating control
dependencies sequentializing the surrounding instructions by
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the use of properly predicated machine instructions whose
result is conditionally nullified – a process often referred as if-
conversion. This allows to execute instructions from different
paths in the control flow graph within the same basic block,
thereby exposing more parallelism to the scheduler. Addition-
ally, the control flow graph (CFG) is simplified which often
enables further optimizations such as software pipelining,
vectorization, or certain loop transformations.

An important issue is when to carry out if-conversion in
the compilation process. One option is to apply it very early
during code generation, thereby requiring subsequent analysis
and optimizations to deal with predicated code [2]. This allows
to take full advantage of predication within the compiler
framework. However, it is very hard to estimate the real benefit
of a certain transformation at this level, therefore typically
requiring a form of reverse if-conversion if it turns out that a
transformation has been counterproductive. Another option is
to defer if-conversion right before code layout and instruction
scheduling [11]. This often facilitates prior passes and allows
for more precise cost calculations.

Another questions that has to be addressed carefully is what
should be converted into a predicated form. In order to achieve
efficient execution, a delicate balance has to be found that is
strongly dependent on the particular architecture and related
scheduling decisions.

In this work, we describe an if-conversion algorithm for
the CHILI architecture – a novel 4-way VLIW processor by
ON DEMAND Microelectronics with extensive support for
conditional execution. This platform is specifically designed
for digital video processing and mobile multimedia consumer
electronic. An overview with a short description of the dis-
tinctive predication model is given in Section III.

Our algorithm is implemented as a target architecture depen-
dent component of a static compiler based on LLVM1 and is
applied late in the compilation process right before instruction
scheduling/bundling and code layout. It differs from previous
work in the special predication model that requires an addi-
tional slot per predicated instruction and the inherent support
for code duplication; see Section IV. We provide detailed
experimental results and conclusions in sections V and VI.

1http://www.llvm.org



II. RELATED WORK

Allen et al. [1] were the first to describe if-conversion –
the conversion of control dependencies to data dependencies
– in a vectorizing compiler. This transformation enables vec-
torization of sections of code which otherwise could not be
converted by the Parallel Fortran Converter. It is noted that if-
conversion has many application areas beyond vectorization.

In [5] Dehnert et al. describe the hardware support of the
Cydra 5 for software pipelining. Important are the single-bit
Iteration Control Registers (ICRs) which are used to control
predicated execution. If-conversion plays an important role in
software pipelining for loop bodies up to 20 basic blocks.

Warter et al. [12] were the first to introduce reverse if-
conversion that transforms scheduled if-converted code back to
the control flow graph representation. They defined a predicate
intermediate representation (predicate IR) and transformations
from the control flow graph to predicate IR and back. With
this transformations, the task of global scheduling is reduced
to local scheduling.

Efficient execution of code generated for a processor with
predicated execution requires to balance between control flow
and predication. August et al. [3] present the partial reverse
control framework that allows the compiler to maximize the
benefits of predication as a compiler representation while
delaying the final balancing of control flow and predication to
scheduling time. The partial reverse if-conversion framework
achieves great speedups over the hyperblock framework.

Fang et al. [6] describe an algorithm which not only
minimizes the number of predicates used for basic blocks,
but also moves the predicate assignments as early as pos-
sible to relax dependency constraints introduced by the if-
conversion. Additionally, common subexpression elimination
for if-converted code is presented. No empirical data about the
effectiveness of the algorithm is given.

Choi et al. [4] did a comprehensive study to evaluate three
different levels of if-conversion aggressiveness measuring the
effects on overall execution time, register pressure, code size,
and branch behavior. If-conversion could remove 29% of the
branch mispredictions, but the speedup is quite small.

Usually, if-conversion is done early in the compilation
process. Snavely et al. [11] present a link-time optimizer
which does predicate analysis and if-conversion very late in the
compilation process at the same time as instruction scheduling
and just before code layout. The link-time optimized code is
denser and almost as fast as the best code produced by the
Intel ecc compiler. For the same programs compiled with the
gcc compiler the average speedup is almost 6%.

Hazelwood and Conte [8] developed a lightweight algorithm
for if-conversion during dynamic optimization. This algorithm
uses dynamic branch prediction information (not including
the warm up phase) to apply if-conversion and reverse if-
conversion to optimize the code of the static compiler. The
method effectively balances the effects of static if-conversion,
achieving speedups of up to 14.7%.
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Fig. 1. Overview of the CHILI architecture.

III. TARGET ARCHITECTURE DESCRIPTION

The effects of if-conversion strongly depend on several
architectural characteristics such as the absence or presence
of branch prediction, the extend of support for predicated
execution, or the number of available branch units, e.g.,
previous work [10] shows that the performance gain is reduced
almost by half when using two instead of one branch unit(s).
Therefore, this section describes the most important properties
of our target architecture and gives an overview of the provided
predication model.

CHILI is a 4-way VLIW (Very Long Instruction Word)
architecture specifically aimed for efficient (mobile) video
processing. An Overview of the architecture is given in Fig-
ure 1. Each slot has access to a general purpose register file
offering 64 32-bit registers. Loads and Stores can be issued
on each of the four slots and are executed out of order in
the data memory subsystem. Branches can only be issued in
the first slot and expose a large delay slot of five cycles, i.e.,
instructions directly succeeding a branch are executed in any
case.

Most existing general purpose architectures have either
only partial support for predicated execution (mostly restricted
to conditional moves, e.g., DEC Alpha, Sun Sparc v9) or
nullify the result based on the value of an additional boolean
source predicate (Itanium, ARM), which has to be evaluated
beforehand. The CHILI differs from these architectures in
that conditions are evaluated alongside to the instruction to be
predicated within the same bundle. Therefore, the full range
of binary comparisons is provided in addition to special test
instructions that evaluate to true if a particular bit is set or
unset respectively. However, these computations require an
additional slot in the instruction word. In particular, even slots
can be used to evaluate the predicate for the instruction in the
directly succeeding slot. The only exception are currently load
and store instructions, which cannot be executed conditionally.
If multiple instructions are defining a register within the same



int min(int a, int b) {
return a < b ? a : b;

}

min:
{ ret; r0 = r1; if (r2 <= r1) r0 = r2; }
{ nop; nop; nop; nop } //repeated 4 times

Fig. 2. Simple minimum computation for the CHILI architecture.

bundle, the value produced in the slot with the highest index
is kept.

As an example, consider the simple minimum function
depicted in Figure 2. Register r0 denotes the return value
while r1 and r2 are arguments one and two respec-
tively. Semicolons are used as a delimiter among instruc-
tions of the same bundle. Note, that the conditional assign-
ment if (r2 <= r1) r0 = r2; occupies two consecu-
tive slots in total. The ret instruction has a five cycle delay
slot that has to be filled up with no-ops.

The additional costs for predicated instructions in terms of
resource usage and code size have to be carefully considered
during if-conversion. On the other hand, the large instruction
word and the long delay slot of branches usually expose a sig-
nificant amount of spare resources that can be effectively used
for if-conversion. We provide detailed experimental results of
our if-conversion algorithm in Section V.

IV. INCREASING ILP BY IF-CONVERSION

This section describes our if-conversion approach that has
been implemented for a C/C++ compiler backend for the
CHILI architecture. The compiler is based on LLVM – a
carefully designed set of libraries that can be easily com-
bined in order to build optimizing static compilers as well
as dynamic code generators. While most parts of LLVM
operate on a well defined, target independent IR (intermediate
representation), our if-conversion procedure operates on an
abstract representation of concrete target dependent machine
instructions, already after instruction selection and register
allocation.

None of those early code generation passes are aware of the
VLIW design of the CHILI and treat machine instructions as
a sequential list of operations. A special scheduling/bundling
pass is responsible for grouping them together to VLIW
bundles that adhere scheduling and resource constraints and
make effective use of branch delay slots.

An important issue is to decide when to carry out if-
conversion in the compilation process. Our approach is to
perform the transformation right before bundling and code
layout. This allows us to treat if-conversion as a separate
– optional – phase and keep the rest of the backend small
and simple. Previous work [11] shows that such an approach
is capable to retain most of the optimization opportunities
present in the input program. A major advantage is that code
transformations such as spill code insertion have already been
carried out. This allows us to if-convert the final machine
instructions without taking care of subsequent passes.

It is important to note that the final scheduling and the cre-
ation of VLIW bundles is carried out in a dedicated pass after
the if-conversion procedure. The main drawback is that we can
only roughly estimate the profitability of transformations due
to the limited knowledge of the final instruction bundling. On
the other hand, this allows the scheduler to effectively exploit
the increased parallelism present in the if-converted code in
general.

A. Algorithm Description

The overall structure of our if-conversion algorithm is
outlined in Figure 3. In each transformation, a single block
of the control flow graph (CFG) is merged into one of its
predecessors, thereby always preserving the semantics of the
original program. Nodes with a single predecessor can be
removed entirely after the conversion. A basic block S is
said to be if-convertible if all instructions can be executed
conditionally without side-effects on the remaining program.

A simple example showing the stepwise transformation of
a CFG fragment is outlined in Figure 4. The sample assumes
that all of the blocks involved are eligible for if-conversion.

Since conditional execution of instructions requires an addi-
tional slot, our aim is to execute them unconditionally when-
ever possible. Therefore, we compute and maintain liveness
information for the insertion point (the original location of
the branch to be replaced). Instructions without side-effects
that do not clobber any register that is live in the predecessor
block can be inserted without predication.

Several aspects of the algorithm deserve comment:
• It is important to note that we do not exclude blocks

with more than one predecessor from consideration.
Thus, those blocks might be effectively duplicated several
times. Therefore, it is essential to process the CFG in
breath first order to ensure that all predecessors of a
particular block have already been considered when vis-
iting a particular node in order to avoid unfavorable code
duplication, e.g., compare the transformation sequence
depicted in Figure 4 with an order where either block
five or six is processed prior to their predecessors.

• Predicates are represented as a triple (a,�, b) while a and
b are operands and � denotes the comparison operator.
While a is always a machine register, b might also be
an immediate value. Due to the implicit re-evaluation
of conditions, we can easily negate conditions at no
additional cost by replacing � with the inverse operator.
However, there are two issues to consider:

– If there is an instruction that clobbers one of the
operands and there is at least one succeeding instruc-
tion that has to be predicated, we have to backup the
original value using a temporary register and modify
the condition accordingly.

– When if-converting instructions that are already
predicated, we have to compute the logical con-
junction of both conditions, which is quite costly.
Therefore, we maintain a set of available predicates
that have already been computed within a block and



1: compute liveness information
2: for all basics blocks B in breath first order do
3: for all successors S of B do
4: normalize S and B
5: if S is if-convertible into B then
6: if there is a branch instruction that can be eliminated when if-converting S into B then
7: if it is profitable to if-convert S into B then
8: for all instructions s in S do
9: if s has side effects or clobbers any register live at the insertion point then

10: insert an appropriately predicated version of s into B
11: else
12: clone s and insert it into B
13: update liveness information appropriately
14: if B was the only predecessor of S then
15: remove S entirely from the control flow graph
16: cleanup unnecessary branches and merge blocks if possible

Fig. 3. General outline of the if-conversion algorithm.
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Fig. 4. Stepwise transformation of complex CFG fragments.

have not been invalidated by consecutive instruc-
tions. This is a very common case for large blocks,
e.g., instructions in basic block four in Figure 4 have
to be predicated with the logical conjunction of the
conditions corresponding to edges (1, 3) and (3, 4).

• If-conversion is complicated by basic blocks that might
fall through into their immediate successor. Therefore, we
identify those blocks and normalize them, i.e., explicit
jump instructions are inserted. After if-conversion, we
perform the inverse operation and cleanup those unnec-
essary branches. Additionally, basic block chains without
side exits and entries are merged into a single block. In
general, this exposes more parallelism to the basic block
local scheduling/bundling pass.

A very delicate question is to determine whether it is
profitable to if-convert a particular block. Therefore, we use a
combination of several heuristic criteria:

1) Loop Depth: Let l(B) denote the loop nesting level of
block B, then we do not if-convert a block B′ into B if
l(B′) < l(B), i.e., we do not move code into loop bodies.

2) Block Size: The sum of latencies of instructions combined
with additional costs for instructions that have to be
predicated is compared to an experimentally determined,
architecture dependent threshold; see Section V. The
value is intended to be a measure for the size of the
block. Instructions with high latencies are accounted
accordingly. For blocks with more than one predecessor, a
different – much smaller – threshold is applied to account
for additional costs in terms of code size.

3) DDG Depth: Typically, it is very hard to acquire enough
ILP to keep a 4-way machine busy and most instructions
that have been if-converted can be efficiently scheduled
along with the remaining blocks. However, converting
blocks with a lot of dependencies among the instructions
can severely increase the execution time of (possibly
frequent) paths that are taken if the particular predicate is
false. Thus, we additionally compute the maximum depth
of the corresponding data dependence graph (DDG) and
exclude those basic blocks from consideration that exceed
a specific threshold.



benchmark lines code size
of code no if-conv full if-conv

CRC32 136 736770 736502 -0.03%
FFT 276 839581 839401 -0.02%
adpcm 183 695836 694324 -0.21%
basicmath 326 936928 933069 -0.41%
bitcount 549 656739 656172 -0.08%
blowfish 1185 722480 721897 -0.08%
dijkstra 142 980352 980168 -0.01%
h.263 4789 1802461 1757438 -2.49%
jpeg 15026 1929910 1899473 -1.57%
mp3 8758 1193236 1166789 -2.21%
sha 205 699281 698345 -0.13%
stringsearch 3130 651436 651192 -0.03%
susan 1454 1102714 1085149 -1.59%

TABLE I
BENCHMARK CHARACTERISTICS

V. EXPERIMENTAL RESULTS

We evaluate our algorithm using a cycle accurate simulator
for the CHILI architecture. There is no operating system layer
– all benchmarks are simulated to run directly on the hardware.
Since simulation is a very time consuming task, the default
inputs for some of the benchmarks are slightly shortened.

Most of the test programs are taken from the MiBench suite
[9], [7], a free and commercially representative benchmark
suite for embedded architectures. We omit those that cannot be
compiled with newlib because of dependencies on operating
system features such as sockets and pipes. In addition, we add
some multimedia decoders such as h.263, jpeg, and mp3.
Some characteristics of our test programs are shown in Table I.

As we describe in Section IV, the decision if a block
is going to be if-converted depends on several architecture
dependent thresholds. The average improvement for various
combinations of instruction and depth threshold is shown in
Figure 5. The results have been gathered with a set of ten
benchmarks that could be simulated in reasonable time (less
than 30 minutes per instance). For blocks with more than
one predecessor, we apply a constant threshold of two. It can
be seen that too large thresholds even lead to a decrease of
performance. However, this effect is slightly obscured by the
missing support for conditional loads and stores, which are
likely to be present in large basic blocks.

The speedup achieved by if-conversion for our benchmark
set is shown in Figure 6. While some small instances do
not offer many possibilities for if-conversion, benchmarks
such as adpcm are sped up by an astonishing factor of
2.82. The average improvement over the whole benchmark
set is 18%. Interestingly, a significant fraction of the speedup
is already achieved by simple conditional move instructions
(7%). Ignoring the huge speedup of adpcm, the average
improvement is 5% and 3% respectively.

In contrast to our expectations, if-conversion seems to have
a throughout positive effect on code size; see Table I. None of
the benchmarks has been increased while the average savings
are about 0.71%.

Interestingly, code duplication does not have much effect on
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Fig. 6. Speedup achieved through if-conversion for the LLVM compiler.
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Fig. 7. Speedup in comparison to the existing compiler based on gcc.

both performance and code size. The average improvement in
code size is slightly decreased from 0.71% to 0.69% while
the speedup in comparison to a version with disabled code
duplication is less than one percent.

In comparison to an existing compiler based on gcc 4.2
that has a much more conservative approach to if-conversion,
the average speedup is about 21%; see Figure 7.

VI. CONCLUSIONS

In this work, we describe a simple and yet effective proce-
dure to convert control dependencies into data dependencies
for an embedded 4-way VLIW multimedia processor with full
predication support. Our algorithm has been implemented for
a static compiler backend based on the LLVM framework. In
contrast to most previous work, if-conversion is done very
late in the compilation process. Apart from a subsequent
scheduling/bundling pass, the backend is neither aware of
predicated execution nor of the VLIW nature of the target
platform.

Experimental results using a cycle accurate simulator for the
well known benchmark suite MiBench and several multimedia
codecs show a speed improvement of about 18% on average.
On the same programs, our compiler achieves a speedup of
21% on the best code produced by the existing code generator
based on gcc. Interestingly, code duplication does neither
have a big effect on the resulting code size nor on runtime.

For some of the benchmarks, if-conversion shows no or
even slightly negative effects. Apparently, this is due to bad
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if-conversion decisions, which are based on criteria that do
not depend on the scheduling of the surrounding blocks. This
keeps the compiler backend simple and modular but appears to
be a major burden for further improvements. Therefore, future
work will include a tighter integration of the if-conversion
procedure with the existing scheduling/bundling pass and/or
reverse if-conversion techniques.
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