
Diplomarbeit

Optimal Crossing Minimization

using Integer Linear Programming

Ausgeführt am
Institut für Computergraphik und Algorithmen

der Technischen Universität Wien

Unter der Anleitung von
Univ.Prof. Dr. Petra Mutzel

und

Univ.Ass. Dr. Gunnar W. Klau sowie
Univ.Ass. Dr. René Weiskircher

durch

Dietmar Ebner
Schlagergasse 6/15

1090 Wien

Februar 2005

Acknowledgments

First of all I want to thank my advisor Petra Mutzel and her group at the department of
Algorithms and Data Structures at the Technical University of Vienna for the possibility
to write my thesis about this interesting topic and for the outstanding support during
the last years. Her great experience and expert knowledge in the field of Graph Drawing
was a great help and her enthusiasm for this topic was always a great motivation. This
work originated from ideas developed by her group and a number of contributing people
and the results could never have been achieved without her support.

My special thanks also belong to Gunnar Klau and René Weisskircher. In addition to
this thesis they provided me with a number of interesting topics for practical classes and
their courses have always been interesting and instructive. Especially I want to thank
Gunnar, who took upon him to proofread this thesis and some other papers, and for the
large number of fruitful discussions.

The major part of the practical work of this thesis was done during a six month stay
at the University of La Laguna in Tenerife. I want to thank Prof. Dr. Maŕıa Belén
Melián Batista and her group at the institute for Estad́ıstica, Investigación Operativa
y Computación for providing me with the necessary facilities, their support and for the
possibility to spend a great time on this wonderful island.

Furthermore I want to thank Christoph Buchheim, who provided me with a proof-of-
concept implementation of our algorithm and for his large number of useful suggestions
and ideas.

Thanks also to Prof. Barth for representing Prof. Mutzel and to Prof. Raidl and Prof.
Krall for holding the final exam.

Last but not least I want to thank all my friends for the wonderful time we spent together
and my parents for their support during all those years.

i

Short Abstract

In this thesis we study the Crossing Minimization Problem. We are looking for a drawing
for a given graph in the plane, such that a minimum number of edges cross. Although
this problem was shown to be NP hard, algorithms are needed in practice. Application
areas occur, e.g., in the area of Graph Drawing and VLSI design.

While the problem mostly is attacked using heuristic approaches in practice, we present
an algorithm that is able to solve medium sized instances to provable optimality in
reasonable computation time.

We show how we can solve the “general” Crossing Minimization Problem by “reducing”
the problem to simple drawings using a transformation on the input graphs. We call
a drawing simple, if every edge crosses at most one other edge. The latter problem
is attacked using a Branch-and-Cut algorithm in combination with Integer Linear Pro-
gramming. This technique could be successfully applied to attack many prominent NP
hard combinatorial optimization problems in the past.

The performance of our new algorithm in terms of solution quality and runtime is tested
on a large benchmark set derived from real world graphs and the results are compared
to existing heuristic methods.

ii

Deutsche Zusammenfassung

Diese Diplomarbeit behandelt das sogenannte Kreuzungsminimierungsproblem. Gesucht
ist eine Zeichnung eines gegebenen Graphen in der Ebene, sodass sich möglichst wenige
der Kanten kreuzen. Durch zahlreiche Anwendungsgebiete in der Praxis, z.b. im au-
tomatischen Zeichnen von Graphen oder im Bereich des VLSI Entwurfs, ist der Bedarf
an entsprechenden Algorithmen hoch.

Aufgrund der Komplexität des Problems verwenden die meisten praktischen Anwen-
dungen heuristische Ansätze. Im Gegensatz dazu präsentieren wir einen exakten Al-
gorithmus, der in der Lage ist, Instanzen mittlerer Grösse innerhalb weniger Minuten
beweisbar optimal zu lösen.

Das Kreuzungsminimierungsproblem wird vorerst auf einfache Zeichnungen reduziert.
Einfache Zeichnungen sind solche, in denen jede Kante maximal eine andere Kante
kreuzt. Für einfache Zeichnungen präsentieren wir einen Algorithmus basierend auf
Ganzzahliger Linearer Programmierung und Branch-and-Cut. Diese Technik wurde
in den letzten Jahren bereits erfolgreich zur Lösung zahlreicher prominenter kombina-
torischer Optimierungsprobleme angewendet.

Wir untersuchen die Leistungsfähigkeit des Algorithmus in Bezug auf Lösungsqualität
und Laufzeit mittels Testinstanzen, die von Echtdaten abgeleitet wurden und vergleichen
die Ergebnisse mit bestehenden heuristischen Verfahren.

iii

Contents

1 Introduction 1
1.1 Practical Applications . 3

1.1.1 Automatic Graph Drawing . 3
1.1.2 VLSI Design . 8

1.2 Guide to this Thesis . 8

2 Preliminaries 10
2.1 Graph Theory . 10
2.2 (Integer) Linear Programming . 13
2.3 Dealing with Large Linear Programs . 14

2.3.1 Column Generation . 14
2.3.2 Branch-and-Cut . 15

3 The Crossing Minimization Problem 17
3.1 Problem Definition and Computational Complexity 17
3.2 Variants of Crossing Number . 22

3.2.1 t-Polygonal Crossing Number . 22
3.2.2 Linear Crossing Number . 22
3.2.3 Pairwise and Odd Crossing Number 23
3.2.4 Restrictions on the Number of Crossings per Edge 24

3.3 Known Bounds . 25
3.3.1 Bounds for particular Families of Graphs 25
3.3.2 General Bounds . 26

3.4 Crossing Minimization in Practice . 28

4 Solving the Crossing Minimization Problem to Optimality 33
4.1 Simple Drawings of Graphs . 33
4.2 An ILP Formulation for simple Drawings 36
4.3 Saving Variables . 39

4.3.1 Adjacent Edges and Self-Crossings 39
4.3.2 Biconnected Components . 41

4.4 Preprocessing . 46
4.5 Putting it All Together . 48

iv

Contents v

5 Computational Results 53
5.1 Implementation Details . 53
5.2 The Benchmark Suite . 56
5.3 The Effects of Preprocessing . 58
5.4 Determining Biconnecting Components 58
5.5 Computing the Skewness . 59
5.6 Results of our exact Approach . 60

6 Discussion 74

List of Figures

1.1 Two different drawings of the same graph with many crossings (a) and an
optimum of two crossings (b). 4

1.2 A planar graph drawn with different layout algorithms: (a) Tutte, (b) De
Fraysseix et al., (c) Schnyder, (d) extended version of Tamasia’s algorithm. 6

1.3 The same nonplanar graph drawn with a spring embedder (a) and a hierar-
chical layout using the Barycenter heuristic for the crossing minimization
step (b). 7

2.1 Sample drawings of the complete graph K5 (a) and the complete bipartite
graph K3,3 (b). 11

2.2 Different embeddings of the same planar graph 12

3.1 Instance of a Bipartite Crossing Number Problem corresponding to an
instance of Optimal Linear Arrangement 19

3.2 Instance of a Crossing Number Problem corresponding to an instance of
Bipartite Crossing Number . 21

3.3 Linear Drawing of a graph G. Vertices are placed on a horizontal line and
edges are drawn as semi-ellipses. 23

3.4 Drawing of K6,6 with a minimum number of 36 crossings using Zarankiewicz’s
rule. 25

3.5 Drawing of K8 with a minimum number of 18 crossings. 26
3.6 A sample graph with skewness one and arbitrary high Crossing Number. . 28
3.7 Example of a graph (a) and its extended dual graph (b). 30
3.8 Optimum solution for the insertion of the dashed edge for a fixed embed-

ding (a) and for a optimal embedding (b) 32

4.1 Optimal simple drawing of K6 with three crossings. 34
4.2 Optimal drawing of a graph with two crossings (a) and an optimum simple

drawing of the same graph with three crossings (b). Both drawings were
produced with our exact algorithm presented in Section 4.2. 35

4.3 Edges are replaced with a path of length l by inserting l− 1 dummy nodes. 35
4.4 A sample graph drawn drawn with only one crossing. Figure (a) shows

a subdivision of K5 while Figure (b) outlines a subdivision of K3,3 in the
same drawing. 39

4.5 Reducing the number of crossings by avoiding self crossings 40

vi

List of Figures vii

4.6 Reducing the number of crossings by avoiding crossings of adjacent edges 40
4.7 Reducing multiple crossings of non-adjacent edges 41
4.8 A sample graph and its biconnected components 42
4.9 A sample graph and the corresponding DFS tree. Solid edges denote tree

edges while dashed edges are back edges. Every node is labeled with the
pair (p, l) denoting the order in the preorder traversal p and its low-number l. 44

4.10 Sample graphs that can be simplified using a preprocessing procedure. . . 47

5.1 Overview of the classes in AGD. The figure is taken from the AGD user
manual . 55

5.2 Number of graphs included in the benchmark set sorted by (a) number of
nodes and (b) number of edges . 56

5.3 Total number of graphs and number of planar graphs sorted by the number
of nodes . 57

5.4 Minimum, maximum and average number of edges per node sorted by the
number of nodes . 57

5.5 Consecutive removal of degree-two nodes in the preprocessing procedure
leads to multiple edges between two nodes v and w. 58

5.6 Absolute number of reduced edges (a) and the percentage of reduced edges
(b) during the preprocessing phase. 59

5.7 Average number of edges with and without preprocessing sorted by the
number of nodes . 60

5.8 Number of biconnected components sorted by the number of nodes (a) and
the number of graphs with a certain number of biconnected components
(b) . 61

5.9 Average and maximum number of edges per biconnected component sorted
by the number of edges . 62

5.10 Average skewness (a) for graphs up to 40 nodes. Figure (b) shows the
number of graphs with a certain skewness and Figure (c) shows the cor-
responding average computation time. 63

5.11 Number of required Variables in our ILP with and without edge transfor-
mation . 64

5.12 Number of graphs solved by our exact algorithm for graphs up to 40 nodes
with (a) and without (b) supporting multiple crossings per edge 65

5.13 Percentage of graphs solved by our exact algorithm for graphs up to 40
nodes with (a) and without (b) supporting multiple crossings per edge . . 66

5.14 Computation time for graphs up to 40 nodes with (a) and without (b)
supporting multiple crossings per edge . 68

5.15 Average computation time for graphs G sorted by cr(G) (a) respective
crs(G) (b) . 69

5.16 Comparison between heuristic results and the crossing numbers computed
with our exact algorithm. 70

5.17 Relative Improvement of the exact algorithm in respect to the heuristic
solutions. 71

1 Introduction

Three Utilities

Suppose you are an architect in a small village. Your task is to supply the three houses
A,B and C with water, gas and electricity (W,G, E) such that the pipes do not cross
each other. How can every house be fully equipped?

Looking for an answer is not worth the trouble since there is no solution to this puzzle
unless we allow some “tricks” such as pipes that pass through one of the buildings or
drawings on the surface of a torus.

It is obvious to translate the puzzle into the framework of graph theory. A graph is a
collection of nodes and edges connecting a pair of nodes. Usually graphs are visualized
by representing nodes with points in the plane and edges are drawn as curves connecting
the nodes.

In graph theoretic terms our sample corresponds to the complete bipartite graph K3,3.
We can partition the nodes into two distinct sets F and H (factories and houses) such
that for each pair of vertices u ∈ F , v ∈ H there is an edge (u, v). F and H have both
cardinality three. What is remarkable about this graph is that it is impossible to embed
it into the plane without any edge crossings. A graph that can be drawn in this way is
called a planar graph.

Another interesting example is the complete graph K5. It consists of five nodes and
there is an edge e for every pair of distinct nodes. As we will see later, the Polish

1

2

mathematician Kazimierz Kuratowski provided a full characterization of planar graphs
based on this two simple structures. He proved that a graph is planar if and only if
it contains no subdivision of K5 or K3,3. This important result is widely known as
Kuratowski’s Theorem.

Even if a graph is not planar we often need to answer the following question. What is the
minimum number of edge crossings in any drawing of a given graph in the plane? This
problem is also known as the Crossing Number Problem while the Crossing Minimization
Problem asks for a drawing in the plane with a minimum number of crossings.

P. Turàn posed this problem for the first time in his “Notes of Welcome” in the first
issue of the Journal of Graph Theory. In following quotation he describes his experiences
in a labor camp during the Second World War (see [46]).

We worked near Budapest, in a brick factory. There where some kilns
where the bricks were made and some open storage yards where the
bricks where stored. All the kilns were connected by rail with all the
storage yards. The bricks were carried on small wheeled trucks to the
storage yards. All we had to do was to put the bricks on the trucks
at the kilns, push the trucks to the storage yards and unload them
there. We had a reasonable piece rate for the trucks and the work itself
was not difficult; the trouble was only at the crossings. The trucks
generally jumped the rails there, and the bricks fell out of them; in
short, this caused a lot of trouble and loss of time which was rather
precious to all of us (for reasons not to be discussed here). We were
all sweating and cursing at such occasions, I too; but nolens-volens the
idea occurred to me that this loss of time could have been minimized
if the number of crossings of the rails had been minimized. But what
is the minimum number of crossings? I realized after several days that
the actual situation could have been improved, but the exact solution
of the general problem with m kilns and n storage yards seemed to be
very difficult.

In other words, Turàn was looking for the Crossing Number of the complete bipartite
graph Kn,m. In 1953, K. Zarankiewicz and K. Urbańık independently claimed a solution
for this problem.

cr(Km,n) = bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c (conjecture)

In 1965, P. Kainen and G. Ringel found an error in the induction argument of the proof.
Nevertheless it can be used as an upper bound for the crossing number of a complete
bipartite graph. Further details are given in Section 3.3.

This work concentrates on the Crossing Minimization Problem for general graphs. Al-
though it was shown to be NP hard, algorithms are needed in practice. While the

1.1. Practical Applications 3

problem typically is attacked using heuristic approaches we give an optimal algorithm
based on Integer Linear Programming (ILP) and branch-and-cut.

To complete this section we present two important application areas, automatic graph
drawing and VLSI design. Furthermore we give an overview of this thesis in Section 1.2.

1.1 Practical Applications

1.1.1 Automatic Graph Drawing

Graphs are a widely used technique to model and visualize relations between objects.
The growth of complexity and the large number of applications leads to an increasing
need for automatic layout tools, e.g., in business process modelling, software engineering
and database design. Therefore this relatively new research area in computer sciences
received more and more attention in the last years.

The main goal is to draw graphs such that they are easy to read and understand.
Thus the quality of a layout often depends on the particular use case and it is difficult to
model the “niceness” of a layout. However, there is a number of widely accepted aesthetic
criteria to measure the quality of a given drawing. Vertices should be even distributed
over the available space, symmetries should become visible, overlaps between nodes and
other objects should be avoided and the length of edges should be small. Furthermore a
small drawing area is desired in many cases. Often those criterias are contradictory and
preferences have to be defined depending on the particular application.

H. Purchase published a study about the effects of different aesthetic criteria on human
understanding (see [40]). It points out that crossing minimization is the most important
criterion. Crossings decrease the readability of a drawing since it is often difficult to fol-
low the edges. The complexity of a drawing strongly grows with its number of crossings.
Figure 1.1 shows two sample drawings of the same graph drawn with many 1.1(a) and
few 1.1(b) crossings.

Algorithms for Planar Graphs

Planar graphs are a relatively well studied class of graphs in respect to automatic lay-
outs. There are linear time algorithms for testing the planarity of a given graph (see
Section 2.1). We can divide algorithms for the layout of planar graphs in those that use
only straight lines and those that allow bends on the edges.

Wagner was upon the first who showed that every planar graph can be drawn without
crossings using only straight lines to represent the edges (see [48]). Tutte presented in
[47] an algorithm that produces a straight line drawing for planar graphs. A sample
layout produced with Tutte’s algorithm is shown in Figure 1.2(a). Furthermore there
are algorithms by De Fraysseix, Pach and Pollack (see [11]) and by Schnyder (see [42])
that draw graphs with n vertices on a grid of size O(n2). We show sample drawings of
their algorithms in Figure 1.2(b) and Figure 1.2(c).

1.1. Practical Applications 4

0

1

2

3

4

5

6

7 8 9

10

11

12

13

1415

16

17

18

19

(a)

0

1

2

3

4

5

6

7

8

910

11

1213

14

15

16

17

18

19

(b)

Figure 1.1: Two different drawings of the same graph with many crossings (a) and an
optimum of two crossings (b).

1.1. Practical Applications 5

If we allow bends for edges we can use an algorithm proposed by Tamassia (see [44]). The
algorithm produces an orthogonal drawing if the maximum degree of any node of the
given graph is at most four. Orthogonal drawings use horizontal and vertical straight
line segments to represent the edges. Tamassia’s algorithm minimizes the number of
bends for a fixed combinatorial embedding by transforming the problem to a network
flow problem.

There are extensions of the basic algorithm to graphs with maximum degree greater
than four. Figure 1.2(d) shows the sample graph drawn with a pseudo orthogonal layout.
Further information concerning this extensions can be found in [26].

Algorithms for Nonplanar Graphs

Nonplanar graphs are usually solved heuristically using a planarization approach. After
computing a maximum or maximal planar subgraph we can use an algorithm for planar
graphs to compute a combinatorial embedding. Afterwards the remaining edges are
reinserted while trying to keep the number of crossings low. We discuss this approach
in detail in Section 3.4.

In addition to this approach there are two more widespread techniques, the so called
spring embedder method and the hierarchical method.

Spring embedders were introduced by Eades in [13]. The graph is interpreted as a
physical system. Vertices are balls that repel each other and edges are modeled as
springs between the balls. The preferred edge length can be influenced by changing the
virtual spring constant of each edge. The algorithm tries to reach a state of minimum
energy by moving the edges alongside their resulting force vector. Usually this method
yields to an even distribution of the vertices on the available space and even edge lengths.
Since crossings do not influence the overall energy of the system, the quality in respect
to the number of crossings is usually poor, even for planar graphs. We show a sample
drawing produced by a spring embedder in Figure 1.3(a).

The hierarchical method goes back to Sugiyama, Tagawa and Toda (see [43]). Their
method works in three steps.

1. Assign vertices to layers such that no two adjacent nodes are placed at the same
layer

2. Find a permutation of the nodes for each layer such that the number of crossings
is minimized.

3. Compute the actual coordinates of the vertices. The nodes of a single layer are
usually drawn on a straight line.

We show a drawing using the hierarchical layout in Figure 1.3(b). The algorithm works
well if the input graph has a “natural” layering or a hierarchical drawing is preferred,
e.g., in flow- or sequence diagrams.

1.1. Practical Applications 6

0
1

2

3

4

5

6 7

8

9

10

11
12

13

14

(a)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c)

0

1

2

3

4 5

6

7

8

9 1011

12

13

14

(d)

Figure 1.2: A planar graph drawn with different layout algorithms: (a) Tutte, (b) De
Fraysseix et al., (c) Schnyder, (d) extended version of Tamasia’s algorithm.

1.1. Practical Applications 7

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

17

18

19

(a)

0

1

2 3

4

5

6

7

8

9

10

11

1213

14

1517

18

19

(b)

Figure 1.3: The same nonplanar graph drawn with a spring embedder (a) and a hier-
archical layout using the Barycenter heuristic for the crossing minimization
step (b).

1.2. Guide to this Thesis 8

1.1.2 VLSI Design

VLSI Design (Very Large Scale Integration) deals with the layout of integrated circuits
on a single chip. There is no exact definition but the number of transistors usually
exceeds 10000 items. We can understand a chip layout as a collection of components
that are connected by wires. Since chips are usually produced in a high number of items
the layout of the circuit on the board plays a major role in the design of integrated
circuits. There are several quality criteria that have to be met, such as the minimization
of the layout areas, the total edge length or the number of bends per wire.

One of the most important problems in the design phase are crossings of wires. A
widely used method is based on a two-layer approach. Components are placed on one
layer and crossings between wires are resolved by routing one of the wires to the second
layer immediately before the crossing. After the wire has passed the crossing point it
can be routed back to the primary layer.

Those changes between the two layers are realized by using contact cuts. They occupy
a large area and thus increase the total size of the layout. Furthermore the total edge
length grows usually with the number of crossings and the wires tend to cross-talk at
these points. This means that a change of the signal at one wire influences the voltage
on the second wire which decreases the reliability of chips. Thus minimizing the number
of crossing is one of the most important steps in the layout phase.

Due to the large number of components the method to minimize the number of cross-
ings described in this paper is not yet suitable for this application area. Furthermore
there are a number of conditional constraints such as a maximum edge length or a
minimal distance to the neighboring wire that complicate this task. Therefore practi-
cal layout tools rely on fast and specialized heuristics to accomplish this task. However,
new insights concerning the Crossing Minimization Problem could lead to better working
heuristics.

1.2 Guide to this Thesis

In Chapter 2.1 we introduce some basic definitions concerning graphs and define the
terminology that is used in the rest of the paper. We give a description of Kuratowski’s
Theorem and mention some linear time algorithms to test the planarity of a graph.
Furthermore Section 2.2 gives an introduction to (Integer) Linear Programming and
points out some important results like weak and strong duality. We also summarize the
column generation approach to deal with a large number of variables. At last we describe
the cutting plane approach and show how we can combine it with the branch-and-bound
method to solve ILPs without an optimal algorithm that solves the associated separation
problem.

In Chapter 3 we give an overview of the “state of the art” in crossing minimization.
We sketch the NP-completeness proof by Garey and Johnson and describe several know
variants of the Crossing Number Problem. As far as they are known we furthermore
present relations between the different definitions. A important “ingredient” for the

1.2. Guide to this Thesis 9

branch-and-cut approach are tight lower and upper bounds. We summarize known
results for special classes of graphs and general bounds on the Crossing Number in
Section 3.3. Moreover we describe the most important heuristic method for the crossing
minimization of nonplanar graphs, the so called planarization approach.

The main algorithm is addressed in Chapter 4. We present an ILP formulation for the
“general” Crossing Minimization Problem by reducing the problem to the Crossing Min-
imization Problem restricted to drawings such that each edge crosses at most one other
edge. We call such drawings simple drawings and present some related theoretical results
in Section 4.1. In order to decrease the number of variables in the given formulation we
neglect crossings between adjacent edges or edges in different biconnected components
and show that this step does not affect the optimality of our results. The last Section
describes how the particular components can be combined to develop a branch-and-cut
based algorithm that solves the Crossing Minimization Problem to optimality.

Clearly this algorithm can take exponential time. We test its performance on a widely
used benchmark set derived from real world graphs and compare the solution quality
and runtime to the best known heuristic methods in Chapter 5.

2 Preliminaries

This chapter presents the basic definitions and concepts which will be used in the rest
of the thesis and introduces some basic results in graph theory and linear programming.
Furthermore, Section 2.3.2 gives an overview of the branch-and-cut approach. Some of
the definitions in this chapter are taken from [50].

2.1 Graph Theory

A graph is a mathematical structure often used to define relationships between objects.
It consists of a set of vertices V and pairs of vertices connecting them (edges).

Definition 2.1.1 (Graph). A tuple G = (V,E) is considered a graph if V is a finite
set of vertices (nodes) and E is a finite multiset of edges (arcs). An edge is a tuple
v, w ∈ V . A graph is called directed if its edges are ordered tuples of two nodes and
undirected otherwise.

If an edge e = (v, w) is directed, the node v (w) is called the source (target) of e. Two
edges with a common end vertex or two vertices v, w ∈ V which are connected by an
edge e = (v, w) ∈ E are called adjacent. The vertices v and w are incident to e.

We denote with δ(v) the set of edges incident to vertex v ∈ V , |δ(v)| is called the
degree of v. If G is directed |δ+(v)| and |δ−(v)| denotes the out- respective indegree of
v. A graph is called r-regular if all vertices v ∈ V have degree r.

A path in a graph G is a sequence of vertices such that from each of the vertices there
is an edge to the successor vertex. A path is called simple if none of the vertices in the
path are repeated. A cycle is a path starting and ending at the same node.

Definition 2.1.2 (k-connectivity). A graph G = (V,E) is k-connected (k-edge-connected)
if at least k vertices (edges) must be deleted to disconnect G. A graph that is 2-connected
(3-connected) is also called biconnected (triconnected).

A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. We
call G the supergraph of G′. An edge e = (v, v) is called a loop. A graph without loops
and parallel edges is called a simple graph.

Let G = (V,E) and G′ = (V ′, E′) be two simple graphs. We call G and G′ isomorphic
if there exists a one-to-one function ϕ : V → V ′ with the property that e = (u, v) ∈ E if
and only if e′ = (ϕ(u), ϕ(v)) ∈ E′.

A simple directed graph is called bidirected if each edge e = (v, w) has a unique reversal
edge ê = (w, v).

The complete graph Kn is defined as a simple graph G with |V | = k and the property
that for every pair of nodes u, v ∈ V there is an edge e = (u, v) ∈ E. A graph G is

10

2.1. Graph Theory 11

(a) (b)

Figure 2.1: Sample drawings of the complete graph K5 (a) and the complete bipartite
graph K3,3 (b).

bipartite if its set of vertices V can be partitioned into two sets A and B such that all
edges e ∈ E have one incident vertex in A and one in B. A complete bibartite graph
Kn,m is a bipartite graph such that |A| = n, |B| = m and for each pair of vertices a ∈ A
and b ∈ B there is and edge e = (a, b) ∈ E. Figure 2.1 shows a sample drawing of K5

and K3,3.

Drawings of Graphs A Drawing of a graph G = (V,E) in the plane is a mapping of
each vertex v ∈ V to a distinct point and each edge e = (v, w) ∈ E to an arc connecting
the incident vertices v and w without passing through any other vertex. A drawing is
called a good drawing, if it satisfied the following conditions

i no edge crosses itself

ii adjacent edges do not cross

iii non-adjacent edges cross at most once

A common point of two edges in a drawing that is not an incident vertex is called a
crossing. The crossing number cr(G) is defined as the minimum number of crossings
in any drawing of G. Graphs that can be drawn without any crossings (cr(G) = 0)
are also called planar graphs. There is an infinite number of different drawings of a
planar graph, nevertheless they can be divided into a finite set of equivalence classes of
drawings called the embeddings of a graph. Drawings that realize the same embedding
are in a topological sense equivalent. Figure 2.2 shows a simple example of two different
embeddings of a planar graph.

Each planar embedding partitions the plane into connected components, called faces.
There is one face with unbouded area, called outer face. A planar embedding induces
for each node v ∈ V a counterclockwise ordering of the edges incident to v. All planar

2.1. Graph Theory 12

1 0

2 3

4

01

2 3

4

Figure 2.2: Different embeddings of the same planar graph

embeddings with the same cyclic ordering for each vertex form an equivalence class which
is called a combinatorial embedding Π(G). Each face in a combinatorial embedding can
be the outer face of a corresponding planar embedding. An alternative and equivalent
way to define a combinatorial embedding is to specify the set of circuits which bound
the faces.

Euler has shown a close connection between the number of edges, nodes and faces in
a connected planar graph, known as Euler’s formula.

Theorem 2.1.3 (Euler’s formula). Let G be a simple connected planar graph with n
vertices and m edges, then in every combinatorial embedding Π(G) of G the number of
faces is

f = m− n + 2 (2.1)

Kuratowski’s Theorem Already in 1930, the Polish mathematician Kazimierz Kura-
towski provided a characterization of planar graphs, now known as Kuratowski’s theo-
rem. It follows from Euler’s formula that the number of edges m in a simple connected
planar graph with n nodes is bound by

m ≤ 3n− 6 (2.2)

If in addition the graphs contains no cycles of length 3, then

m ≤ 2n− 4 (2.3)

It follows from inequality 2.2 that K5 is not planar and from inequality 2.3 that K3,3 is
not planar. Therefore no graph containing a subdivision of K5 or K3,3 can be planar.
A subdivision S of a graph G is obtained by repeatedly replacing edges e by a path of
length two.

Kuratowski proved that also the converse is true which leads to

2.2. (Integer) Linear Programming 13

Theorem 2.1.4 (Kuratowski’s theorem). A finite graph is planar if and only if it
contains no subgraph that is isomorphic to or is a subdivision of K5 or K3,3.

A proof of Euler’s formula and Kuratowski’s theorem can be found in [36].

Planarity Testing This section shortly summarizes two important results concerning
planarity tests and planar embeddings: the algorithm by Hopcroft and Tarjan (see [22])
and the algorithm due to Booth and Lueker (see [8]).

The algorithm of Hopcroft and Tarjan is a simplified version of a linear time planarity
testing algorithm presented in 1971 by Tarjan in his thesis. The algorithm is based on
depth-first search and a divide-and-conquer strategy by Auslander and Parter (see [2]).

Booth and Lueker’s algorithm is based on the vertex addition algorithm proposed by
Lempel, Even and Cederbaum in [29] and runs also in linear time. After starting with
a single vertex, a sequence of induced subgraphs of G is constructed. In every step
the current subgraph is tested for planarity. The runtime of the original algorithm of
O(|V |2) could be improved to a linear time algorithm by Booth and Lueker using a new
data structure: PQ-trees.

Both algorithms can be extended to compute a combinatorial embedding without
increasing their computational complexity.

2.2 (Integer) Linear Programming

A Linear Program (LP) is an optimization problem consisting of an objective function
and several constraints. George B. Dantzig proposed the following standard model:

maximize cT x
subject to Ax ≤ b

x ≥ 0

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm. The linear function cT x : Rn → R is called the
objective function and the inequalities in the system Ax ≤ b are called constraints.

We can easily transform inequalities of the form aT x ≥ b by multiplying them with
−1, which leads to −aT x ≤ −b and equations (aT x = b) can be expressed by the
two inequalities aT x ≤ b and aT x ≥ b. Furthermore, we can transform minimization
problems to maximization problems by multiplying the objective function cT x by −1.

Definition 2.2.1 (Linear Programming Problem). Given a matrix A ∈ Rm×n, and
vectors b ∈ Rm, c ∈ Rn, find a vector x̂ ∈ Rn with

cT x̂ = max {cT x | Ax ≤ b} (2.4)

2.3. Dealing with Large Linear Programs 14

Linear Programs can be solved in polynomial time. The most widespread algorithms
are the simplex- (see [9]), the ellipsoid- and the interior point method (see [41]). There
are a number of well developed and optimized implementations that efficiently solve
linear programs, even on a very large scale.

Definition 2.2.2. For every Linear Program P = max {cT x | Ax ≤ b} (primal problem)
the dual problem D is defined as D = min {yT b | AT y = cT , y ≥ 0}.

Primal and their dual problems are closely connected. If D is the dual problem of a
primal problem P , then the dual of D is equal to P . Duality can be used to prove the
optimality of linear programs in an elegant way.

Theorem 2.2.3 (Weak duality). If x̂ is a feasible solution of P and ŷ is a feasible
solution of D, then cT x̂ ≤ ŷT b.

In other words: every feasible solution of D gives us a bound on the optimum value
of D.

Theorem 2.2.4 (Strong duality). If P has an optimum solution x̂, then D has an
optimum solution ŷ and cT x̂ = ŷT b.

Integer Linear Programming When we try to formulate combinatorial optimization
problems using linear programs, some or all of the variables often have to take integer
values. Adding so called integrality constraints leads to a mixed integer linear program
(MILP), if we require all variables to be integer we call the program integer linear
program (ILP). A special but very common case occurs when all variables have to be
zero or one (decision variables). Such programs are also referred as (mixed) zero-one
integer linear programs.

Unfortunately, the integrality constraints render the problem NP-complete in the gen-
eral case (see [15] for a proof). Assuming P 6= NP, there is no polynomial time algorithm
that is able to find a vector x̂ such that cT x̂ = max {cT x | Ax ≤ b, xi integer ∀i ∈ I} for
a subset I ⊆ {1, ..., n}.

2.3 Dealing with Large Linear Programs

In large linear programs, especially for NP-hard optimization problems, the number of
variables and/or constraints often becomes too large to be handled by the LP-solver. In
both cases there are techniques that start with a subset of variables (inequalities) and
add new ones only if required during the runtime of the algorithm.

2.3.1 Column Generation

Column generation is a widely used technique to work around a huge number of vari-
ables. Instead of solving the original linear program, we solve a reduced LP L(J) =
max {

∑
j∈J cjxj |

∑
j∈J Ai,jxj ≤ b} for some J ⊆ {1, ..., n}. Using the dual variables ŷ

we can search for a j /∈ J such that cj − ŷAj > 0. If there is such a j we can add it to
J and solve the new LP, otherwise we have an optimal solution over all columns.

2.3. Dealing with Large Linear Programs 15

2.3.2 Branch-and-Cut

Cutting Planes

The cutting plane approach starts with a small subset of constraints and computes an
optimum solution. If there are no more constraints that are violated by the current
solution, we have an optimum solution for the original linear program. Otherwise we
add the violated constraint and resolve the LP.

It is not required to have a complete “list” of all constraints, but we need a method
to identify constraints that are violated by the current solution but are valid for the
original LP. This is called the general separation problem and defined as follows:

Definition 2.3.1 (General Separation Problem). Given a class of valid inequalities
and a vector y ∈ Rn, either prove that y satisfies all inequalities in the class, or find an
inequality which is violated by y.

We call an algorithm for the general separation problem an exact separation algorithm.
If the algorithm can not guarantee that there are no violated inequalities if none was
found, we call it heuristic separation algorithm.

When we want to apply the cutting plane approach to zero-one ILPs (as we will do),
we can transform the ILP I = max {cT x | Ax ≤ b, x ∈ {0, 1}n} to a linear program by
dropping the integrality constraints and adding for each variable xi an inequality xi ≤ 1.
The resulting linear program L = max {cT x | Ax ≤ b, 0 ≤ xi ≤ 1,∀i ∈ {1, ..., n}} is called
the linear relaxation of I.

Every optimum solution x̂ of L that is integral (xi ∈ {0, 1} ∀i ∈ {0, ..., n}) is also an
optimum solution for our original problem I. If x̂ is fractional we can try to find further
problem specific inequalities to “cut off” the fractional solutions. Another possibility is
the use of general purpose cutting planes, for example, Gomory Cuts (see [17]). They
are not specific to the particular linear program and can be used in conjunction with
every combinatorial optimization problem.

For a large number of NP-hard optimization problems no efficient exact separation
algorithms are known. However, we can use the cutting plane approach in combination
with an enumeration procedure called branch-and-bound (see next subsection).

Branch-and-Bound

The branch-and-bound approach is a simple divide-and-conquer approach that tries to
solve the original problem by splitting it in smaller subproblems. On each node of the
resulting search tree upper and lower bounds are computed. An upper bound is called
local if it is only valid for the current subproblem and global otherwise.

In the case of zero-one integer linear programs the root of the search tree corresponds
to the original problem. At each node a local upper bound can be computed by solving
the linear relaxation of the particular subproblem. If the solution is feasible and its
objective value is higher than the best found feasible solution, it is stored and the global
lower bound is increased accordingly. If the local upper bound is smaller than the current
global lower bound, we can discard the subproblem. Otherwise (the local upper bound

2.3. Dealing with Large Linear Programs 16

is higher than the best feasible solution known so far), we select a fractional branching
variable and create two new subproblems by setting the branching variable to zero,
respectively one.

The procedure is repeated until the list of unsolved subproblems becomes empty. In
this case we can guarantee that the best feasible solution is an optimum solution for the
root problem.

Branch-and-Cut

The branch-and-cut approach was first used by Grötschel, Jünger and Reinelt in [31] for
the linear ordering problem. It is a combination of the branch-and-bound method and
the cutting plane approach.

In addition to the pure branch-and-bound approach we try to find violated cuts which
are added to the LP relaxation and the subproblem is solved again. The branching
process continues when no more cuts can be separated. A more detailed description can
be found in [25].

3 The Crossing Minimization Problem

This chapter gives an overview of the “state of art” in crossing minimization. Section 3.1
outlines the NP-completeness proof by Garey and Johnson. We furthermore describe
several variants of the “general” Crossing Number, such as the t-Polygonal Crossing
Number, the Linear Crossing Number and the Pairwise and Odd Crossing Number de-
fined by Pach and Tóth. Moreover Section 3.2.4 contains some results concerning draw-
ings with a limited number of crossings per edge.

An important ingredient for a successful branch-and-cut algorithm are tight lower and
upper bounds. We summarize known results for particular families of graphs such as
for complete graphs and complete bipartite graphs and give some known general lower
bounds for the crossing number of graphs in Section 3.3.

Due to the complexity of the Crossing Minimization Problem practical applications
rely on good heuristics. Section 3.4 describes the so-called planarization approach which
is the most widespread technique to attack the problem in practice. We furthermore
summarize a number of improvements for the basic heuristic and discuss computational
studies to compare the solution quality of different strategies for the planarization- and
the edge re-insertion step.

3.1 Problem Definition and Computational Complexity

In Section 2.1 we already defined cr(G) to be the minimum number of crossings in any
drawing of a graph G. Using this notation we define the Crossing Number Decision
Problem as follows:

Definition 3.1.1 (Crossing Number Decision Problem). Let G = (V,E) be a
graph and K a positive integer. Is cr(G) ≤ K?

Garey and Johnson proved the NP-completeness of the Crossing Number Decision
Problem in [16]. They provided a reduction of the Optimal Linear Arrangement Prob-
lem, which is already known to be NP-complete, to the crossing number problem in
polynomial time. Optimal Linear Arrangement is defined as follows:

Definition 3.1.2 (Optimal Linear Arrangement Problem). Let G = (V,E) be a
simple graph and K a positive integer. Is there a one-to-one function f : V → {1, ..., |V |}
such that ∑

e=(v,w)∈E

|f(v)− f(w)| ≤ K (3.1)

The reduction is done in two steps. First, Optimal Linear Arrangement is reduced to
the Bipartite Crossing Number, which is defined as follows:

17

3.1. Problem Definition and Computational Complexity 18

Definition 3.1.3 (Bipartite Crossing Number). Let G = (V1, V2, E) be a bipartite
graph and K a positive integer. Can G be drawn in a unit square such that all vertices
in V1 are on the northern boundary, all vertices in V2 are on the southern boundary, all
edges are within the square, and there are at most K crosssings?

Then, Bipartite Crossing Number is reduced to Crossing Number.

Lemma 3.1.4. Optimal Linear Arrangement can be reduced to Bipartite Crossing Num-
ber in polynomial time.

Proof. Given a pair [G, K] with G = (V,E) and V = {v1, v2, ..., vn} of an instance of
Optimal Linear Arrangement, Garey and Johnson define a corresponding instance of
Bipartite Crossing Number [G′,K ′] with G′(V1, V2, E1 ∪ E2) as follows:

V1 = {u1, u2, ..., un}
V2 = {w1, w2, ..., wn}
E1 = {|E|2 copies of (ui, wi) ∀i ∈ {1, 2, ..., n}}
E2 = {(ui, wj) | i, j ∈ {1, 2, ..., n}, i < j, (vi, vj) ∈ E}
K ′ = |E|2(K − |E|) + (|E|2 − 1)

To show that an Instance of Optimal Linear Arrangement [G, K] and its corresponding
instance of Bipartite Crossing Number [G′,K ′] are equivalent, we need to prove that the
answer for [G, K] is “yes” if and only if the answer for [G′,K ′] is “yes”

Given an ordering function f for G such that
∑

e=(u,v)∈E |f(u)− f(v)| ≤ K, we can
construct a drawing of G′ as follows: We place the vertices ui ∈ V1 uniformly distributed
at the upper boundary of the unit square in the order given by f(ui), e.g., if f(ui) = n
then ui is drawn as the n-th node from left to right. In the same way nodes wi ∈ V2

are placed at lower boundary. We can easily insert the |E|2 edges e ∈ E1 without any
crossings as shown in Figure 3.1. When inserting the edges e = (ui, wj) ∈ E2, every edge
crosses exactly |f(ui)− f(wj)| − 1 “bundles” of |E|2 edges from E1. The total number
of crossings between edges from E1 and edges from E2 is at most∑

e=(u,v)∈E

(|f(u)− f(v)| − 1)|E|2 ≤ |E|2(K − |E|) (3.2)

The total number of crossings among E2 is at most
(|E|

2

)
≤ |E|2 − 1. Thus the total

number of crossings is at most |E|2(K − |E|) + (|E|2 − 1) = K ′.

To prove the remaining direction, suppose the answer to the Bipartite Crossing Number
problem [G′,K ′] is “yes”, which means there is a drawing of G′ with less than K ′

crossings. We can construct a bijection f1 : V1 → {1, ..., n} from the ordering of the
vertices from V1 on the upper boundary in a natural way. In the same way we get a
one-to-one function f2 : V2 → {1, ..., n} from the ordering on the lower boundary. It is
easy to prove that f1 and f2 must be identical. If we can find i, j ∈ {1, 2, ..., n} such that
without loss of generality f1(vi) < f1(vj) and f2(vi) > f2(vj), then the drawing would

3.1. Problem Definition and Computational Complexity 19

(0,0) (1,0)

(0,1) (1,1)u
 1

u
 2

u
 3

u
 4

u
 5

u
 6

w
 1

w
 2

w
 3

w
 4

w
 5

w
 6

Figure 3.1: Instance of a Bipartite Crossing Number Problem corresponding to an in-
stance of Optimal Linear Arrangement

3.1. Problem Definition and Computational Complexity 20

contain at least |E|4 crossings (since at least two “bundles” of |E|2 edges cross). This is
a contradiction to our bound on K ′ limiting the number of crossings in the drawing.

Since all nodes on the upper and lower boundary are ordered as outlined in Figure 3.1
each edge e = (ui, wj) ∈ E2 is involved in at least (|f1(vi) − f(vj)| − 1)|E|2 crossings.
Then ∑

e=(u,v)∈E

(|f(u)− f(v)| − 1)|E|2 ≤ K ′ = |E|2(K − |E|) + (|E|2 − 1) (3.3)

If we divide the whole inequality by |E|2 and take into account that |E|2−1
|E|2 < 1 we get∑

e=(u,v)∈E

(|f(u)− f(v)| − 1) ≤ K − |E|+ 1 ≤ K (3.4)

and f1 satisfies the Linear Arrangement Problem.

The next step is to reduce Bipartite Crossing Number to Crossing Number.

Lemma 3.1.5. Bipartite Crossing Number can be reduced to Crossing Number in Poly-
nomial time

Proof. Similar to the proof of Lemma 3.1.4, Garey and Johnson define for every instance
of Bipartite Crossing Number [G, K] with G = (V1, V2, E) an instance of Crossing Num-
ber [G′,K] with G′ = (V ′, E ∪ E1 ∪ E2 ∪ E3) as follows:

V ′ = V1 ∪ V2 ∪ {u0, w0}
E1 = {3K + 1 copies of (u0, u) ∀u ∈ V1}
E1 = {3K + 1 copies of (w0, w) ∀w ∈ V2}
E3 = {3K + 1 copies of (u0, w0)}

Again, G′ can easily be constructed in polynomial time. It should be noted that K is
identical for both problem instances. We need to show that G has a drawing in the unit
square as required in Definition 3.1.3 with at most K crossings if and only if G′ has a
drawing in the plane with at most K crossings.

Given a drawing of G in the unit square, we can easily add the additional vertices and
edges of G such that the crossing number is not increased as outlined in Figure 3.2.

It remains to show that, given a drawing of G′ in the plane with K crossings, there
is also a drawing of G with no more than K crossings. The proof is done using four
normalization steps. Since it is rather technical it is not included here. Details can be
found in [16].

3.1. Problem Definition and Computational Complexity 21

u
 0

w
 0

Figure 3.2: Instance of a Crossing Number Problem corresponding to an instance of
Bipartite Crossing Number

3.2. Variants of Crossing Number 22

3.2 Variants of Crossing Number

In contrast to the “general” Crossing Minimization Problems, a number of variants re-
stricted to special types of graphs or additional properties can be found in the literature.

3.2.1 t-Polygonal Crossing Number

A well studied variant of the Crossing Number Problem is the Rectilinear Crossing
Number, defined as follows.

Definition 3.2.1 (Rectilinear Crossing Number). Let G = (V,E) be a non-planar,
simple graph. The Rectilinear Crossing Number cr1(G) is the minimum number of
crossings in a drawing of G where all edges are drawn as straight lines.

Since any solution of the Rectilinear Crossing Number Problem is also a solution for
the “general” Crossing Number Problem, it is easy to see that cr(G) ≤ cr1(G) for any
graph G.

Bienstock and Dean proved in [6] that for graphs with crossing number at most three,
the Rectilinear Crossing Number and the Crossing Number are equal.

Theorem 3.2.2. If cr(G) ≤ 3 then cr1(G) = cr(G).

They could further show that there are graphs G such that cr1(G) is arbitrary large,
even if cr(G) is only four.

Theorem 3.2.3. For every m > k ≥ 4 there is a graph G with cr(G) = 4, but cr1(G) ≥
m.

As a generalization to the Rectilinear Crossing Number, Bienstock introduced in [5]
the concept of the t-Polygonal Crossing Number.

Definition 3.2.4 (t-Polygonal Crossing Number). Let G = (V,E) be a graph. A
t-polygonal drawing of G, for t ≥ 1, is a good drawing where every edge is drawn as a
t-polygonal line, i.e., a polygonal line with at most t segments. The t-Polygonal Crossing
Number crt(G) is defined as the minimum number of crossings in any t-polygonal drawing
of G.

For t = 1 the t-Polygonal Crossing Number is equal to the Rectilinear Crossing Num-
ber. Bienstock also showed that there can be no polynomial time algorithm for producing
optimal t-polygonal drawings of G unless P = NP and that there is no fixed t such that
cr(G) = crt(G) for any graph G.

3.2.2 Linear Crossing Number

Given a simple graph G, a drawing of G is called a linear drawing if all vertices lie on a
straight line and edges are drawn as semi-ellipses above and below this line.

Figure 3.3 shows an example with one crossing of a linear drawing. The Crossing
Minimization Problem restricted to linear drawings is known as Linear Crossing Mini-
mization Problem and is defined as follows.

3.2. Variants of Crossing Number 23

Figure 3.3: Linear Drawing of a graph G. Vertices are placed on a horizontal line and
edges are drawn as semi-ellipses.

Definition 3.2.5 (Linear Crossing Minimization Problem). Let G = (V,E) be a
simple graph. Find a linear drawing of G such that the number of crossings is minimal
among all linear drawings of the given graph. The number of crossings of a minimum
linear drawing is denoted as µ(G).

A special variant of the Linear Crossing Number Problem arises, when the arcs are
only allowed to be drawn on one side of the line. We denote the number of crossings in
an optimum drawing in this case with µ+(G). We can state that cr(G) ≤ µ(G) ≤ µ+(G)
since any linear embedding (with only one degree of freedom) cannot have less crossings
than any embedding in the two dimensional space.

There is a connection to the “general” Crossing Minimization Problem proved by
Nicholson in [35]:

Theorem 3.2.6. Any graph drawn in the plane with a minimum number of crossings
can be redrawn with an equivalent crossing structure such that the resulting drawing has
the following properties:

i all vertices are placed on a horizontal line

ii all edges are drawn as a series of semi-ellipses such that successive semi-ellipses lie
on different sides of the horizontal line.

It is interesting to see that the complexity of the problem stays the same, even if we fix
the ordering of the vertices of V . This variant is known as the Fixed Linear Crossing
Minimization Problem and is formally defined as follows.

Definition 3.2.7 (Fixed Linear Crossing Minimization Decision Problem).
Given a graph G = (V,E), a fixed ordering on the vertices and an integer K, find a
linear drawing of G with the specified ordering of the vertices such that µ(G) ≤ K.

Masuda et al. proved in [32] that even this variant is NP-complete.

3.2.3 Pairwise and Odd Crossing Number

In their paper “Which Crossing Number is it Anyway?” Pach and Tóth define two
further possibilities how to count the number of crossings in a graph (see [38]).

3.2. Variants of Crossing Number 24

Definition 3.2.8. Let G = (V,E) be a simple graph.

i The pairwise crossing number of G pcr(G) is the minimum number of pairs of edges
(e1, e2) ∈ E2, e1 6= e2 such that e1 and e2 determine at least one crossing, over all
drawings of G.

ii The odd-crossing number of G ocr(G) is the minimum number of pairs of edges
(e1, e2) ∈ E2, e1 6= e2 such that e1 and e2 cross an odd number of times.

The authors also prove that ocr(G) ≤ pcr(G) ≤ cr(G) ≤ cr1(G) and show the following
theorems.

Theorem 3.2.9. For every graph G, we have

cr(G) ≤ 2(ocr(G))2 (3.5)

Theorem 3.2.10. Given a graph G and a positive integer K, it is NP-complete to decide
whether pcr(G) ≤ K, or whether ocr(G) ≤ K.

3.2.4 Restrictions on the Number of Crossings per Edge

In Chapter 4 we concentrate on a special variant of the Crossing Minimization Problem.
We only consider drawings of a graph G = (V,E) where every edge e ∈ E crosses at
most one other edge.

As a result of Euler’s Formula, the number of edges m in any planar graph with n
nodes is bounded by 3n − 6 (see Equation 2.2). Denoting the maximum number of
crossings per edge with k, Pach and Tóth generalize this bound in [37] for k ≤ 4:

Theorem 3.2.11. Let G = (V,E) be a simple graph drawn in the plane so that every
edge is crossed by at most k others. If 0 ≤ k ≤ 4, then we have

|E| ≤ (k + 3)(|V | − 2) (3.6)

They could further prove that this bound cannot be improved for 0 ≤ k ≤ 2 and that
for any k ≥ 1 the following inequality holds:

|E| ≤
√

16.875k|V | ≈ 4.108
√

k|V | (3.7)

Another interesting result by Bodlaender and Grigoriev can be found in [7]. The authors
prove the following theorem:

Theorem 3.2.12. The problem to determine if a given graph G can be embedded on the
plane with crossing parameter 1 is NP-complete.

The proof is done by a reduction of the well known strongly NP-complete problem
3-PARTITION (see [7] for details).

3.3. Known Bounds 25

Figure 3.4: Drawing of K6,6 with a minimum number of 36 crossings using Zarankiewicz’s
rule.

3.3 Known Bounds

3.3.1 Bounds for particular Families of Graphs

Complete Bipartite Graphs

Already in 1953, K. Zarankiewicz and K. Urbańık claimed a solution for the Crossing
Number Problem on Complete Bipartite Graphs:

cr(Km,n) = bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c (conjecture) (3.8)

The right hand side of Equation 3.8 is denoted in the following as Z(m,n). Any complete
bipartite graph Km,n can be drawn with Z(m,n) crossings by placing the vertices in
vertex set A at coordinates (i(−1)i, 0) for all i = 1, ...,m and the vertices of vertex set
B at coordinates (0, j(−1)j) for all j = 1, ..., n. All edges are drawn as straight lines.
Figure 3.4 shows a sample drawing of K6,6 with 36 crossings.

In 1965, P. Kainen and G. Ringel found an error in the induction argument of
Zarankiewicz’s proof, hence Equality 3.8 is only a conjecture so far. However, the pro-
vided drawing rule gives us an upper bound for cr(Km,n).

3.3. Known Bounds 26

Figure 3.5: Drawing of K8 with a minimum number of 18 crossings.

Complete Graphs

As for complete bipartite graphs there is also a conjecture for the number of crossings
of a complete graph Kn with n nodes.

cr(Kn) =
1
4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c (conjecture) (3.9)

From constructions of drawings (see [21]) we know that Equation 3.9 is an upper
bound for cr(Kn). For complete graphs up to ten nodes, the correctness of 3.9 has been
verified by Guy in [20]. Figure 3.5 shows a sample drawing of the complete graph K8

with a minimum number of 18 crossings.
In [14], Erdös and Guy furthermore prove the following lower bound for cr(Kn):

cr(Kn) ≥ 1
80

n (n− 1) (n− 2) (n− 3) (3.10)

3.3.2 General Bounds

Unfortunately there are nearly no known general upper bounds for cr(G). The only
bound can be obtained from the observation that the crossing number of a graph G with
n nodes cannot exceed the crossing number of the complete graph Kn. Hence we have

cr(G) ≤ cr(Kn) ≤ 1
4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c (3.11)

A simple lower bound can be obtained from Euler’s formula. Since any planar simple
connected graph G with n nodes cannot have more than 3n − 6 edges, clearly cr(G) ≥
m− 3n + 6. If, in addition, G contains no triangle then cr(G) ≥ m− 2n + 4.

3.3. Known Bounds 27

In 1983, Leighton used induction on the number of nodes to show the following theorem
(see [28]). We denote with G(n, m) the family of simple graphs with n vertices and m
edges.

Theorem 3.3.1. Let G ∈ G(n, m). If m ≥ 4n, we have

cr(G) ≥ 1
100

m3

n2
(3.12)

Ajtai et al. obtained the same result independently with a smaller constant of 1
375 in

[1].

We already discussed an important paper presented by Pach and Tóth in Section 3.2.4.
As a consequence of Theorem 3.2.11 the authors derive a general lower bound on the
Crossing Number of a graph (see [37]).

Theorem 3.3.2. Let G ∈ G(n, m), then the Crossing Number cr(G) satisfies

cr(G) ≥ 1
33.75

m3

n2
− 0.9n (3.13)

Apart from bounds with respect to the number of vertices and edges we can try to obtain
lower bounds from other properties of a graph, e.g., the skewness.

Definition 3.3.3 (Skewness). Let G ∈ G(n, m). The skewness sk(G) is the minimum
number of edges that must be deleted from G to obtain a planar subgraph.

Each of the removed edges produces at least one crossing, hence it is not difficult to
see that

cr(G) ≥ sk(G) (3.14)

for any graph G. Cimikowski showed in [10] that a planar graph can have skewness one,
but an arbitrary high Crossing Number (see Figure 3.6). Computing the skewness is
equivalent to the maximum planar subgraph problem. While we can easily compute a
maximal planar subgraph in polynomial time, the maximum planar subgraph problem
was shown to be NP-hard by Liu and Geldmacher in [30]. While the maximum planar
subgraph problem asks for planar subgraph with maximum cardinality among all sub-
graphs, a planar subgraph G′ = (V ′, E′) of G = (V,E) is called maximal, if the addition
of any edge e ∈ V \ V ′ destroys the planarity of G′. Any maximum planar subgraph is
clearly also a maximal planar subgraph while there are simple examples that disprove
the opposite.

For the complete and complete bipartite graph, the skewness is known.

sk(Kn) =
n(n− 1)

2
− 3n + 6 (3.15)

sk(Km,n) = mn− 2(m + n) + 4 (3.16)

3.4. Crossing Minimization in Practice 28

e

Figure 3.6: A sample graph with skewness one and arbitrary high Crossing Number.

3.4 Crossing Minimization in Practice

Due to its complexity, the crossing minimization problem is usually solved heuristi-
cally using a 2-step approach. The first step is to compute a maximum (or maximal)
planar subgraph GP ⊆ G. After determining a combinatorial embedding Π(GP) the
deleted edges are reinserted such that the number of crossings is minimized. Since
there is a large number of algorithms for drawing planar graphs, the crossings are usu-
ally replaced by artificial vertices, which are removed afterwards. The following proce-
dure summarizes these steps to compute a combinatorial embedding for a given graph
G = (V,E):
1: Compute a maximum (maximal) planar subgraph GP = (V ′, E′) ⊆ G. Let F =

E \ E′.
2: Determine a combinatorial embedding Π(GP)
3: Reinsert all edges in F preserving the combinatorial embedding Π(GP) while trying

to keep the number of crossings low.
4: Replace crossings by new artificial vertices
5: Draw the resulting graph using a planar graph drawing algorithm.
6: Remove the artificial vertices inserted in Step 5

3.4. Crossing Minimization in Practice 29

As already mentioned above, the maximum planar subgraph problem is NP-hard. How-
ever, for medium sized instances the branch-and-cut approach suggested in [24] can be
used to compute optimal subgraphs in an acceptable amount of time. The runtime de-
pends heavily on the number of edges that have to be deleted. Besides this there is a
large number of heuristics for the computation of maximal planar subgraphs. There is an
algorithm presented by Djidjev in [12] that uses SPQR-trees and runs in time O(n+m).
Another widespread O(n2)-time algorithm by Jayakumar et al. can be found in [23].

A very simple but widely used heuristic for the computation of a maximal planar
subgraph is to start with an empty set of edges and iteratively try to add the edges of
G. In every step a planarity testing algorithm is used to determine if the insertion of
the edge would lead to a non-planar graph. If so, we disregard the new edge, otherwise
it is added permanently. Since we can perform a planarity test in time O(|V |) (see
Section 2.1) the overall runtime of this heuristic is O(|V ||E|).

Improvements can be achieved by the use of incremental planarity testing algorithms.
Instead of testing a whole graph for planarity, those algorithms test if an additional edge
can be added to a planar graph without loosing planarity. Di Battista and Tamassia
propose such an algorithm in [4]. It runs in time O(log(|V |)) (worst case) and leads
to a O(|E| log(|V |)) time algorithm for the maximal planar subgraph problem. Also
Westbrook proposes in [49] a datastructure, that allows to perform an incremental pla-
narity test for biconnected graphs in amortized time O(α(|E|, |V |)). We denote with
α(|E|, |V |) the inverse of the Ackermann function. La Poutré improves this result in [39]
and presents an O(|V |+ |E|α(|E|, |V |)) time algorithm for the maximal planar subgraph
problem.

A more complete overview as well as a number of related results are given by Mutzel
in [33].

The second major part of the planarization method is also known as the Constrained
Crossing Minimization Problem. Given a planar graph G = (V,E), a combinatorial
embedding Π(G) and a set of additional edges F connecting vertices in V , we try to find
a crossing configuration of G′ = (V,E ∪ F) that preserves the combinatorial embedding
Π(G) and minimizes the number of crossings. Also this step can be solved to optimality,
i.e., using the branch-and-cut algorithm presented by Ziegler in [50], for small instances,
although it is shown to be NP-hard.

The best known heuristic methods for the constrained crossing minimization prob-
lem rely on the so-called extended dual graph. If we denote the combinatorial dual
graph of a graph G = (V,E) with respect to the combinatorial embedding Π(G) with
G∗ = (V ∗, E∗), we can derive the extended dual graph as follows (Π(G∗) denotes the
corresponding combinatorial embedding of G∗).

For every vertex v that is an end vertex of an edge e ∈ F we add a vertex v∗ to V ∗

and place those vertices inside the face of Π(G∗) that correspond to v. Furthermore,
we connect each inserted node v∗ to every node that appears at the boundary of the
corresponding face f∗ ∈ Π(G∗). The combinatorial embedding Π(G∗) is updated in a
natural way as outlined in Figure 3.7. The left figure shows a graph G, its combina-

3.4. Crossing Minimization in Practice 30

0

1

2 3 4

5

67

(a)

0

1

2 3 4

5

67

ab

c

d

e

f

g

(b)

Figure 3.7: Example of a graph (a) and its extended dual graph (b).

torial embedding Π(G) and the set of edges F denoted as dashed lines while the right
figure shows G together with its extended dual graph and the associated combinatorial
embedding. The figure is taken from [50].

One of the best known heuristic methods based on the extended dual graph relies on
the observation that we can insert one edge e = (u, v) into the combinatorial embedding
Π(G) of G with a minimum number of crossings as follows. Let G∗ be the extended
dual graph of G with respect to Π(G) and F = {e}. The graph G∗ contains only two
additional vertices u∗ and v∗ corresponding to the end vertices u and v of e. It can
be shown that e can be inserted with a minimum number of crossings by computing a
shortest-path from u∗ to v∗ in the extended dual graph. Each edge e∗ on the shortest
from u∗ to v∗ indicates a crossing of e with the corresponding edge in G.

We can use this method iteratively to reinsert all edges e ∈ F in the following
way:
1: G′ = G, Π(G′) = Π(G)
2: while F 6= ∅ do
3: Choose e = (u, v) ∈ F , F = F \ {e}
4: Compute the extended dual graph G∗ of G′ with respect to Π(G′) and {e}
5: Insert e with a minimum number of crossings in Π(G′) by computing a shortest

path in G∗ between u∗ and v∗.
6: Replace crossings in G′ by artificial vertices
7: end while
8: Replace all artificial vertices by crossings

3.4. Crossing Minimization in Practice 31

The total number of crossings produced by the above procedure strongly depends on
the insertion order of the edges in F . There are exponentially many permutations of
the edges in F and for each edge there can also be exponentially many shortest paths
in the extended dual graph. Unfortunately, even if we check all possible insertion orders
and all possible shortest paths for each edge, we cannot guarantee to get an optimum
solution. Ziegler presents in [50] an example graph with an optimum of 8 crossings such
that the optimum solution is never found by the heuristic.

However, there are a number of modifications that try to improve the quality of the
basic heuristic.

• Permutation Heuristics Instead of using a fixed random insertion order, the whole
procedure is called n times with a different randomly generated permutation of
the edges in F . The result of the algorithm is the solution of the permutation with
the smallest number of crossings

• Shortest First Heuristic This variant computes the length of the shortest path in
the extended dual graph for all edges in F and inserts the edge with the smallest
number of crossings. This step is repeated until all edges have been inserted.

The idea is that a large number of crossings extend the length of the shortest path
for subsequent insertions and thus produces a larger number of overall crossings.

• Remove and Reinsert Heuristic Whenever we insert an edge into the combinatorial
embedding Π(G′) we change the situation for previous inserted edges. If the edge
is crossed by some subsequent inserted edges of F it could be “cheaper” to use
another path in the extended dual graph.

One possibility to improve this drawback is a postprocessing procedure that re-
moves each edge and tries to reinsert it again by a shortest-path computation.
Since any edge can always be inserted exactly as it was routed before, the number
of crossings never increases after each step. After all edges have been reinserted,
the situation could have changed again, so the whole procedure is repeated until
no further improvement can be achieved.

In addition to the insertion order, the quality of the produced solution also highly de-
pends on the chosen combinatorial embedding Π(G). Figure 3.8 shows the optimum
solution for the insertion of the dashed edge in two different embeddings. The left figure
requires at least two crossings while the edge can be inserted in the embedding on the
right with only one crossing. Gutwenger et al. give in [18] a linear time algorithm based
on SPQR-trees which is able to insert one edge optimally into a planar graph G over all
combinatorial embeddings of G.

The algorithm is based on the observation that only R-nodes of the SPQR-tree of G
are crossing-critical. After determining a unique path in the SPQR-tree, the algorithm
computes for each R-node u a shortest path in the skeleton of u. The total number of
crossings can be computed by the sum of the lengths of the shortest paths.

3.4. Crossing Minimization in Practice 32

0

1

2

34

5

6

7

(a)

0

1

2

34

5

6

7

(b)

Figure 3.8: Optimum solution for the insertion of the dashed edge for a fixed embedding
(a) and for a optimal embedding (b)

Gutwenger and Mutzel present in [19] an extensive experimental study of heuristics for
crossing minimization based on the planarization approach. The authors compare the
effects of various methods for the computation of a maximal planar subgraph and for the
edge re-insertion as well as several postprocessing algorithms. The algorithm proposed
in [18] performs outstandingly well, especially in conjunction with further modifications
of the basic planarization approach.

4 Solving the Crossing Minimization
Problem to Optimality

While many NP-hard combinatorial optimization problems could be attacked with math-
ematical programming in combination with the branch-and-cut technique for practical
instances in the last years, there is no such approach for the Crossing Minimization
Problem.

We present in this chapter an ILP formulation for the “general” Crossing Minimization
Problem by reducing the problem to the Crossing Minimization Problem restricted to
drawings such that each edge crosses at most one other edge. We call such drawings
simple drawings and present the transformation as well as some related theoretical results
in Section 4.1.

In Section 4.2 we describe our ILP formulation for simple drawings and prove its
correcteness. Moreover we show in Section 4.3 how we can save variables in order to
improve the given ILP and describe an algorithm to decompose a graph in its biconnected
components in linear time.

We describe how we can simplify graphs in many cases to improve the runtime in
Section 4.4 and outline the branch-and-cut approach based on the given ILP formulation
in Section 4.5.

4.1 Simple Drawings of Graphs

In Section 3.2.4 we already considered drawings of graphs such that the number of
crossings for each edge is at most k. It can be shown that the number of edges m for a
graph G = (V,E) with n nodes that is drawable in the plane such that each edge crosses
at most k other edges is restricted to (k + 3)(n− 2) for 0 ≤ k ≤ 4 (see Theorem 3.2.11).

We will consider the special case k = 1 and denote a drawing that satisfies this restriction
as a simple drawing.

Definition 4.1.1 (Simple Drawing). Given a graph G = (V,E). A good drawing of
G is called a simple drawing if every edge e ∈ E crosses at most one other edge.

In fact there cannot be a simple drawing if the number of edges exceeds 4n − 8. Since
any complete graph Kn has a number of n(n−1)

2 edges, there is no such drawing if
n(n−1)

2 > 4n−8 which is true for all n ≥ 7. Figure 4.1 shows a sample simple drawing of
K6 while there is no such drawing for K7. We can obtain similar results for the complete
bipartite graph Kn,m.

33

4.1. Simple Drawings of Graphs 34

0

1

2

3

4

5

Figure 4.1: Optimal simple drawing of K6 with three crossings.

Even if the number of edges is less than 4n − 8, Bodlaender and Grigoriev prove in [7]
that it is NP-complete to decide whether a given graph G has a simple drawing. If there
is a simple drawing of G we denote the minimum number of crossings among all simple
drawings of G by crs(G).

Definition 4.1.2. Let G be a graph that is drawable in the plane such that each edge
crosses at most one other edge. We define crs(G) to be the minimum number of crossings
in any simple drawing of G.

It is easy to see that cr(G) ≤ crs(G) since any simple drawing is also a good drawing
of G. We cannot state equality because there are graphs G such that crs(G) > cr(G).
Consider the sample graph in Figure 4.2. The left drawing shows an optimum drawing
with two crossings while the right drawing shows an optimum drawing among all simple
drawings. Note that edge (2, 8) crosses edges (12, 13) and (14, 15).

Given an integer l and a graph G = (V,E) such that l ≥ |E| we can create a graph
G∗ = (V ∗, E∗) by replacing every edge e ∈ E with a path of length l. Figure 4.3 shows
an example that illustrates this transformation. The graph G∗ contains a total number
of |V |+ (l − 1)|E| nodes and l|E| edges.

Lemma 4.1.3. G can be drawn with n crossings if and only if there is a simple drawing
of G∗ with n crossings.

Proof. Given a simple drawing of G∗ we can easily create a drawing of G with the same
number of crossings as follows. For every dummy node di ∈ V ∗ \ V let e = (u, di) and
f = (di, v) be the only two adjacent edges. We successively delete all dummy nodes and
replace the original edges e and f with the edge (u, v). After all dummy nodes have
been deleted the resulting graph is isomorphic to G and contains the same number of
crossings as the simple drawing for G∗.

On the other hand we can construct a simple drawing of G∗ preserving the number of
edges in a good drawing of G by introducing at least one of the dummy nodes between

4.1. Simple Drawings of Graphs 35

0

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

(a)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b)

Figure 4.2: Optimal drawing of a graph with two crossings (a) and an optimum simple
drawing of the same graph with three crossings (b). Both drawings were
produced with our exact algorithm presented in Section 4.2.

u v

u v
d

1
d

2
d

l-1
d

l-2

Figure 4.3: Edges are replaced with a path of length l by inserting l − 1 dummy nodes.

4.2. An ILP Formulation for simple Drawings 36

two consecutive crossings of an edge e. Since the number of dummy nodes is defined to
be greater than the number of original edges this is always possible.

Since an edge e = (u, v) never crosses itself or any adjacent edge it is sufficient to replace
e with a path of length |E| − |δ(u)| − |δ(v)| − 1. Lemma 4.1.3 also shows that it is
“sufficient” to solve the Crossing Minimization Problem restricted to simple drawings in
order to solve the “general” Crossing Minimization Problem and the NP-completeness
follows immediately from the proof by Garey and Johnson ([16]).

4.2 An ILP Formulation for simple Drawings

A basic approach to attack the Crossing Minimization Problem using Mathematical
Programming for a given graph G = (V,E) is to introduce for each pair of edges (e, f) ∈
E2 a zero-one decision variable xe,f such that xe,f = 1 if and only if e and f crosses in
a consistent drawing. For each subdivision of K5 or K3,3 we can add constraints that
force at least one of the involved variables to 1.

Mutzel and Jünger point out the problems with this formulation in [34]. To our knowl-
edge there is no known polynomial time separation algorithm to identify these con-
straints. Moreover those constraints are not strong enough since it is not guaranted that
there is a consistent drawing if at least one of the involved crossing variables is one in
every Kuratowski subdivision.

Another problem of this formulation is the so-called Realizability Problem which is
defined as follows.

Definition 4.2.1 (Realizability Problem). Given a simple graph G = (V,E) and a
vector x ∈ {0, 1}(

E
2). Is there a drawing of G such that edges e and f cross if and only

if xe,f = 1?

Kratochv́ıl proved in [27] the NP-completeness of the Realizability Problem. To com-
pute a consistent drawing we also need the order of the crossings for a particular edge
e. This would enable us to insert dummy nodes on each crossing in the given order and
use a linear-time planarity testing algorithm to solve the problem.

To avoid the Realizablity Problem we concentrate on simple drawings. Section 4.1
already describes how to solve the general Crossing Minimization Problem if there is an
algorithm for crossing minimization restricted to simple drawings.

Given a graph G = (V,E) and a set of unordered pairs of edges D ⊆ E2. We call D
simple if for every e ∈ E there is at most one f ∈ E such that (e, f) ∈ D. Furthermore,
D is called realizable if there is a drawing of G such that there is a crossing between
edges e and f if and only if (e, f) ∈ D.

4.2. An ILP Formulation for simple Drawings 37

For every graph G we denote with GD the graph that can be obtained by introducing
a dummy node de,f for each pair of edges (e, f) ∈ D. The edges e = (ue, ve) and
f = (uf , vf) are replaced by the four edges (ue, de,f), (de,f , ve), (uf , de,f) and (de,f , vf).
GD contains a total number of |V |+ |D| nodes and E + 2|D| edges.

For a subgraph H = (V ′, E′) ⊆ GD we denote with Ĥ ⊆ E the subset of edges in G
such that e = (u, v) ∈ Ĥ if and only if e ∈ E and u ∈ V ′ or v ∈ V ′.

Corollary 4.2.2. Let D be simple. D is realizable if and only if GD is planar.

Using a linear time planarity testing algorithm we can test in time O(|V |+ |D|) if D is
realizable and compute a consistent drawing if so.

Definition 4.2.3. For a set of pairs of edges D ⊆ E2 we define

xD
e,f =

{
1 if (e, f) ∈ D
0 otherwise

Proposition 4.2.4. Let D be simple and realizable. For an arbitrary set of pairs of
edges D′ ⊆ E2 of G = (V,E) and any subdivision H of K5 or K3,3 in GD′ the following
inequality holds:

CD′,H :
∑

(e,f)∈Ĥ2\D′

xD
ef ≥ 1−

∑
(e,f)∈Ĥ2∩D′

(1− xD
ef) (4.1)

Proof. Suppose Inequality 4.1 is violated. Since every xD
e,f ∈ {0, 1} the left side of the

inequality must be zero and the right hand side must be one which means that

xD
e,f = 0 ∀ (e, f) ∈ Ĥ2 \D′

and
xD

e,f = 1 ∀ (e, f) ∈ Ĥ2 ∩D′

If we only consider the subgraph induced by Ĥ, it follows that Ĥ2 ∩D′ = Ĥ2 ∩D (see
Definition 4.2.3). This means that the edges (e, f) ∈ Ĥ2 cross in respect of D′ if and
only if they cross in respect of D and H is also a “forbidden” subgraph in GD. It follows
from Kuratowski’s theorem (see Theorem 2.1.4) that GD is not planar. This contradicts
the realizability of D (Corollary 4.2.2).

Theorem 4.2.5. Let G=(V,E) be a simple graph. A set of pairs of edges D ⊆ E2 is
simple and realizable if and only if the following set of inequalities holds:

xD
e,f ∈ {0, 1} ∀ e, f ∈ E, e 6= f∑
f∈E xD

e,f ≤ 1 ∀ e ∈ E

CD′,H for every simple D′ ⊆ E2 and every forbidden Subgraph H in GD′

4.2. An ILP Formulation for simple Drawings 38

Proof. It is easy to see that the constraints from the second row are satisfied if and
only if D is simple. It remains to show that a simple D is realizable if and only if the
conditions CD′,H from the last row hold. For a realizable D every CD′,H is satisfied
according to the proof of Proposition 4.2.4.

We have to show that any set of pairs of edges D that is not realizable violates at
least one of the constraints CD′,H . It follows from Corollary 4.2.2 that GD is not planar
if D is not realizable and we know from Theorem 2.1.4 that there exists a subdivision
H of K5 or K3,3 of GD. Let D′ = D and consider the constraint CD,H .

CD,H :
∑

(e,f)∈Ĥ2\D

xD
ef ≥ 1−

∑
(e,f)∈Ĥ2∩D

(1− xD
ef) (4.2)

It follows from the definition of xD that every xD
e,f ∈ Ĥ2 \ D is zero, hence the

left hand side of Inequality 4.2 is also zero. Since Ĥ2 ∩ D ⊆ D we also know that∑
(e,f)∈Ĥ2∩D(1− xD

ef) is zero and the right hand side of CD,H is one.

Since it is easy to compute a corresponding drawing for a simple and realizable D we can
reformulate the Crossing Minimization Problem for simple drawings as “Given a graph
G = (V,E). Find a simple realizable subset D ⊆ E2 of minimum cardinality”. This
leads to the following ILP-Formulation. We use x(F) as an abbreviation for the term∑

(e,f)∈F xe,f .

minimize x(E2)

subject to∑
f∈E xe,f ≤ 1 ∀ e ∈ E

x(Ĥ2 \D′)− x(Ĥ2 ∩D′) ≥ 1− |Ĥ2 ∩D′| for every simple D′ and every
forbidden subgraph H in GD′

xe,f ∈ {0, 1} ∀ e, f ∈ E

Given a simple set of crossings D we can easily check if D is realizable by applying
a planarity testing algorithm to GD. If the answer is “no” we also get a forbidden
subdivision H of GD and we can separate an additional constraint CD,H according to
the proof of Theorem 4.2.5 that excludes D.

It should be noted that the number of Kuratowski subdivisions does not correspond
to the number of crossings. Consider the sample drawing in Figure 4.4. The graph
can be drawn with only one crossing while it includes a subdivision of K5 as well as a
subdivision of K3,3. The figure also shows that we do not necessarily have to separate
all Kuratowski subdivisions in order to obtain a realizable crossing configuration.

4.3. Saving Variables 39

0 12

3

4

5

(a)

0 12

3

4

5

(b)

Figure 4.4: A sample graph drawn drawn with only one crossing. Figure (a) shows a
subdivision of K5 while Figure (b) outlines a subdivision of K3,3 in the same
drawing.

4.3 Saving Variables

The ILP given in Section 4.2 contains a zero-one variable for every pair of edges (e, f) ∈
E2 that encodes the crossing information between e and f . Edges e and f cross in a
consistent drawing if and only if xe,f = 1.

Due to the encoding there can only be one crossing between two edges. We show in
the following that any optimum drawing satisfies this restriction and how we can save
variables to increase the performance of an algorithm implementing the given ILP.

4.3.1 Adjacent Edges and Self-Crossings

Lemma 4.3.1. Any optimum drawing of a graph G = (V,E) satisfies the following
conditions:

(I) no edge crosses itself

(II) adjacent edges do not cross

(III) non-adjacent edges cross at most once

Proof. For the proof of Proposition I suppose there is an optimum drawing of G such
that there is an edge e ∈ E that crosses itself at point p. We can transform the drawing
according to Figure 4.5 by deleting the line segment starting and ending at point p

4.3. Saving Variables 40

pp

Figure 4.5: Reducing the number of crossings by avoiding self crossings

p

p

Figure 4.6: Reducing the number of crossings by avoiding crossings of adjacent edges

which immediately reduces the number of crossings by at least one. This contradicts the
assumed optimality of the drawing.

To prove that adjacent edges do not cross (Proposition II) let p be the first crossing
of edge e = (u, v) ∈ E and f = (u, w) ∈ E. We can transform the given drawing by
replacing the line segment starting at node u and ending at point p of edge e with the
corresponding segment of edge f . Moving the line segments in point p slightly apart
reduces the number of crossings by exactly one and again contradicts the optimality.
Figure 4.6 illustrates this transformation.

It remains to show that non-adjacent edges cross at most once (Proposition III). We can
sort the crossings of edge e ∈ E and edge f ∈ E in order of their appearance on e. Let
p and q be two consecutive crossings between e and f . As in the proof of Proposition II
we replace the line segments between p and q and move the two edges slightly apart such
that they do not touch anymore (see Figure 4.7). We can repeat this transformation to

4.3. Saving Variables 41

p q

p q

Figure 4.7: Reducing multiple crossings of non-adjacent edges

“remove” any even number of crossings between two non-adjacent edges.

A drawing that satisfies the conditions of Lemma 4.3.1 is called a good drawing. Since
the value of any variable xe,f of an optimum solution is zero if e = f or e and f are
adjacent edges we can neglect them in the given ILP.

4.3.2 Biconnected Components

Consider a connected graph G = (V,E). A graph is called biconnected if we have to
delete at least two edges in order to disconnect G (see also Section 2.1). A vertex (edge)
whose removal disconnects G is called a separation vertex (edge). The following three
definitions of a biconnected graph are equivalent.

Definition 4.3.2 (Biconnected Graph). Given a connected graph G = (V,E). The
following three definitions are equivalent:

I) G contains no separation edges and no separation vertices

II) For any two vertices u, v ∈ V u 6= v there are at least two disjoint simple paths
between u and v.

III) For any two vertices u, v ∈ V u 6= v there is a simple cycle containing u and v.

A biconnected component of G is a maximal biconnected subgraph or a subgraph con-
sisting of a separation edge es = (u, v) and its end vertices u and v. Every edge e ∈ E

4.3. Saving Variables 42

0

1 2 3

4

5 6

78

Figure 4.8: A sample graph and its biconnected components

and every nonseparation vertex v ∈ V belongs to exactly one biconnected component of
G while a separation vertex belongs to two or more biconnected components. Figure 4.8
shows a sample graph with its biconnected components. Separation vertices are drawn
as rectangles and separation edges as dashed straight lines. Note that any pair of bicon-
nected components has at most one vertex in common and this vertex is a separation
vertex.

It is easy to show that the partition of G into its biconnected components forms a
equivalence relation on the edges of G. Two edges e and f are equivalent (denoted
by e ≡ f) if and only if they are in the same biconnected component. The symmetry
(e1 ≡ e2 → e2 ≡ e1) and the reflexivity (e ≡ e) are obvious. It remains to show the
transitivity:

e1 ≡ e2 and e2 ≡ e3 → e1 ≡ e3

Proof. Since e1 ≡ e2 and e2 ≡ e3 there are simple cycles C1 and C2 such that e1, e2 ∈ C1

and e2, e3 ∈ C2. We need to show that there is a simple cycle that contains both e1 and
e3. If e3 ∈ C1 we are done. Otherwise we can search for the longest path in C2 that
contains e3 such that only its end points u, v are also part of C1. The union of this path
with the part of C1 between u and v that contains e1 forms a simple cycle that contains
e1 as well as e3.

We will now present a linear time algorithm to compute the biconnected components
based on Depth-first search (DFS), that goes back to Tarjan (see [45]).

Algorithm 4.3.1 outlines the basic structure of a DFS-traversal using a stack to keep
track of the order in which edges are processed. S is the set of visited nodes. The order
p : V → {1, ..., |V |} in which the nodes are added to S is called preorder. Edges that
lead to an addition of nodes to S form a tree with root node s (the start node) and are
also called tree edges while “unused” edges are referred as back edges.

We can derive an algorithm to compute the biconnected components from the following
observation.

4.3. Saving Variables 43

Algorithm 4.3.1: depth first search(G, s)
1: S = {s}
2: for all e ∈ δ(s) do
3: push(e) onto stack
4: end for
5: while stack not empty do
6: pop edge e = (u, v) from stack
7: if v /∈ S then
8: S = S ∪ {v}
9: for all f ∈ δ(v) do

10: push(f) onto stack
11: end for
12: end if
13: end while

Lemma 4.3.3. Let (u, v) and (v, w) be consecutive tree edges of a DFS tree for a graph
G = (V,E), (u, v) ≡ (v, w) if and only if there is a back edge from a descendent of w (or
w itself) to an ancestor of u (or u itself).

Proof. Assume there is a back edge (a, b) such that a is an ancestor of u and b is a
descendent of w in the DFS tree. Then u → v → w b → a u is a simple cycle
containing (u, v) and (v, w). Thus the edges (u, v) and (v, w) must be part of the same
biconnected component.

On the other hand assume (u, v) ≡ (v, w). We know from Definition 4.3.2 that there
must be a simple cycle containing (u, v) and (v, w). If we consider the subgraph of w in
the DFS tree we can always find an edge (a, b) that is not part of the subtree and leads
to an ancestor of v or v itself. Such an edge must exist because the simple cycle “goes
back” to u at some point. Since a tree is defined to be a connected graph without cycles
the edge (a, b) must be a back edge.

For every node v we can compute the smallest number p(u) over all nodes u that lie on
some simple cycle with v in linear time. We denote this number with low(v). There is
a simple cycle from v to u if we can reach u from v using a (possibly empty) tree path
to a descendent of v and a single back edge. We can easily compute low(v) using the
following recursive definition.

Definition 4.3.4 (low : V → {1, ..., |V |}). For any node v, low(v) is defined as

low(v) = min


min low(u) u is a child of v
min p(u) (v, u) is a back edge
p(v)

4.3. Saving Variables 44

(1,1)

(2,2)

(3,2) (7,7)

(4,2)

(5,3)

(8,8)

(12,12) (9,8)

(10,8)

(11, 11)

(6,6)

Figure 4.9: A sample graph and the corresponding DFS tree. Solid edges denote tree
edges while dashed edges are back edges. Every node is labeled with the pair
(p, l) denoting the order in the preorder traversal p and its low-number l.

We can easily compute low(v) for every node v using a preorder traversal of the DFS
tree. We initialize low(v) with p(v) for every node v and update the value with the
minimum of the current value and low(w) whenever returning from a child node w. If
we discover a backward edge (v, u) we keep the minimum of low(v) and p(u). This can
clearly be done in linear time.

Figure 4.9 shows a sample graph with a DFS tree and the corresponding preorder p.
Every node v is further labeled with its value low(v). Tree edges are drawn as solid
straight lines and back edges are dashed arcs.

Given the low-numbers we can determine if a vertex v is a separation vertex by check-
ing if one of the following conditions holds.

i) v is the root of the DFS tree and is incident to at least two tree edges

ii) v is not the root and there is a child w of v such that low(w) ≥ p(v)

Algorithm 4.3.2 outlines in pseudocode how we can modify a recursion based version of

4.3. Saving Variables 45

the DFS algorithm in order to label the nodes in preorder, compute the low-values and
identify the separation nodes in a single pass.

Algorithm 4.3.2: identify separation nodes(v)
1: visit[v] = true
2: low[v] = p[v] = ++time
3: for all w ∈ δ(v) do
4: if visit[w] == false then
5: pred[w] = v
6: identify separation nodes(w)
7: low[v] = min{low[v], w}
8: if pred[v] == unset then
9: {v is a root node}

10: if v has more than one child then
11: is separation point[v] = true
12: end if
13: else if low[w] ≥ p[v] then
14: is separation point[v] = true
15: end if
16: else if w 6= pred[v] then
17: {(v, w) is a back edge}
18: low[v] = min{low[v], p(w)}
19: end if
20: end for

To actually separate the set of edges into the biconnected components we can make
use of a stack to trace back the recursive calls of the algorithm. An edge (u, x) is either
processed by a recursive call on vertex x, or (u, x) is identified as a back edge in line 16.
Whenever we do so we push that edge onto the stack.

Later, if we identify u as an articulation point, all the edges from the top of the stack
down to (u, x) form the edges of one biconnected component, and we pop them from the
stack.

It is easy to see that the algorithm runs in time O(|E|).

Many practical graphs are not biconnected and can be divided into different biconnected
components. We can save many variables in the ILP given in Section 4.2 by employing
the following lemma.

Lemma 4.3.5. In an optimum drawing of a graph G = (V,E), edges belonging to
different biconnected components do not cross.

Proof. Let C1, C2, ..., Cn be the biconnected components of a graph G = (V,E). Any
two components Ci and Cj 1 ≤ i < j ≤ n have at most one vertex v in common and
this vertex is a separation vertex.

4.4. Preprocessing 46

Given two optimal drawings of Ci and Cj we can create a drawing for Ci ∪ Cj such
that cr(Ci ∪ Cj) = cr(Ci) + cr(Cj). If Ci and Cj have no node in common we are done.
Otherwise let C∗

i respective C∗
j be the graph that can be obtained by introducing a

dummy node for each crossing in the usual way. The cyclic ordering of the edges for
each vertex defines a combinatorial embedding Π(C∗

i) respective Π(C∗
j). We can obtain

a planar embedding with the same number of crossing by choosing an adjacent face of
node v as the outer face. By combining this planar embeddings at node v we obtain a
planar embedding for Ci ∪ Cj without introducing new crossings.

The same procedure can be repeated to add further biconnected components since the
number of common vertices is again at most one. We can use this procedure to merge
all biconnected components to obtain a crossing minimal drawing for G such that the
number of crossings is the sum of the crossings of its biconnected components.

Now, suppose there is a crossing minimal drawing for G such that two edges e and f
belonging to different biconnected components cross. We can obtain a drawing for each
component by deleting all vertices (and nodes v with |δ(v)| = 0) that do not belong to
this component. Using the construction for a crossing minimal drawing given above we
can obtain a drawing for G with a smaller number of crossings. This clearly contradicts
the optimality of the original drawing.

Since every edge belongs to exactly one biconnected component we can remove variables
xe,f if e ∈ Ci, f ∈ Cj and i 6= j.

4.4 Preprocessing

Another possibility to improve the runtime of a branch-and-cut algorithm implementing
the ILP in Section 4.2 is to remove parts of the input graph that do not influence the
number of crossings. Those subgraphs are, e.g., trees starting at a single node v or pairs
of adjacent edges connected by a node w with degree 2. The aim is to transform a given
graph G to a graph G′ such that we can obtain a combinatorial embedding for G from
a combinatorial embedding for G′.

Figure 4.10 shows some sample situations that can be easily simplified without chang-
ing the number of crossings. We describe the particular samples in the following in more
detail.

Removing Degree-One Nodes Let v ∈ V be a node of a connected graph G such
that |δ(v)| = 1 and let Π(G′) denote a combinatorial embedding for a planarized graph
G′ = (V \ {v}, E \ δ(v)).

Node v is incident to a single edge e = (v, w). We can easily transform the combinato-
rial embedding Π(G′) to a combinatorial embedding Π(G) by inserting e at an arbitrary
position in the counterclockwise ordering of the incident edges of w (see Figure 4.10(a)
for an example).

4.4. Preprocessing 47

w

v

(a)

a

v

b

(b)

w

v

(c)

a

v

b

(d)

a

b

(e)

Figure 4.10: Sample graphs that can be simplified using a preprocessing procedure.

4.5. Putting it All Together 48

Removing Degree-Two Nodes Given a node v with degree two we can use a similar
approach. Let (a, v) and (v, b) be the only two incident edges of v and let G′ = (V \
{v}, E \ {(a, v), (v, b)} ∪ {(a, b)}). We can easily split edge (a, b) in G′ by inserting the
original vertex v at an arbitrary position (that is not a crossing) on the arc associated
with (a, b) in any drawing for G′. This leads to a drawing for G. Figure 4.10(b) outlines
this case. The dashed edge represents the dummy edge replacing (a, v) and (v, b).

A special situation occurs if v is connected to a single node w by two edges. Since
parallel edges – as well as self loops – do not impact on the number of crossings, we can
remove them as in the case of degree-one nodes (Figure 4.10(c)).

Since we do not consider multigraphs in our implementation we must further check
if there is already an edge (a, b). If we remove the edges (a, v) and (v, b) in this case,
a crossing of (a, b) would “cost” two crossings in a corresponding drawing of G and a
drawing for G′ cannot be transformed to a drawing for G without increasing the number
of crossings (Figure 4.10(d)).

After the removal of each node we have to check again if any of its neighbours can be
removed, even it was not possible before. Consider the example in Figure 4.10(e). After
repeatedly applying the transformations given above the whole subgraph can be replaced
by the edge (a, b).

4.5 Putting it All Together

We will now use the ILP given in Section 4.2 to develop a branch-and-cut algorithm. In
addition to the basic concepts of this method presented in Section 2.3.2, Algorithm 4.5.1
outlines the general structure of a branch-and-cut algorithm. We will understand this
method as a “recipe” and describe the particular “ingredients” in order to solve the
Crossing Minimization Problem to provable optimality in this section.

In the case of zero-one integer linear programs, the set of unsolved subproblems L is or-
ganized as a binary tree, called the branch-and-bound tree. Each subproblem corresponds
to a node in the tree and the list of unsolved problems L is represented by its leaves. If
we need to split a problem Π into subproblems we choose a fractional branching variable
and create two new subproblems by setting the branching variable to zero, respectively
one.

As in the branch-and-bound approach we store a global upper bound of the best found
feasible solution. We can obtain a initial upper bound by applying the heuristic method
described in Section 3.4. Another bound can be obtained from the observation that the
crossing number of a graph G with n nodes cannot exceed the crossing number of the
complete graph Kn.

cr(G) ≤ cr(Kn) ≤ 1
4
bn
2
cbn− 1

2
cbn− 2

2
cbn− 3

2
c

If we find a feasible solution during the branch-and-cut process we can update the

4.5. Putting it All Together 49

Algorithm 4.5.1: Branch-and-Cut “Recipe”
1: L = initial Problem {L denotes the list of unsolved problems}
2: repeat
3: Choose a subproblem Π and let L = L \Π
4: repeat
5: Let x̂ be an optimal solution for the linear relaxation of Π
6: if x̂ is not feasible for Π then
7: Separate violated inequalities and add them to the LP
8: end if
9: until no more violated inequalities can be found

10: if no feasible solution for Π could be found then
11: Split Π into subproblems and add them to L
12: end if
13: until L = {}
14: Print the best found feasible solution

global upper bound if its value exceeds the objective value of the feasible solution of the
subproblem.

Whenever we split a problem into two subproblems by setting the branching variable
to zero respective one we can compute a local lower bound. This is the best value for
the objective function that can be obtained subject to the assignments of values for the
branching variables up to the root node. If this value is greater than the global upper
bound we can discard all descendents of the current subproblem since they can never
improve the current feasible solution.

Processing Given an input graph Gin we first eliminate all degree-one and degree-
two nodes to simplify the instance as described in Section 4.4. For each dummy edge
replacing the two edges (a, v) and (v, b) we store one of the original edges to be able to
reconstruct a drawing for Gin from a drawing for the simplified graph. We call the graph
that is obtained after the preprocessing procedure G = (V,E).

The next step is to compute a first heuristic solution H that serves two purposes:

• The number of crossings in H can be used as a initial global upper bound for the
number of crossings and we can easily compute a first feasible solution vector for
the ILP.

• As described in Section 4.1 we replace every edge by a path of length l since our
ILP formulation allows at most one crossing per edge. Clearly the parameter l
has a strong influence on the number of variables and should be chosen as tight
as possible. Let h denote the number of crossings in H. Any optimal solution
contains at most h crossings per edge and thus we can use h as an upper bound
for the edge transformation.

4.5. Putting it All Together 50

To continue with the notation of Section 4.1 we call the graph after transforming each
edge by a path of length l G∗ = (V ∗, E∗). We call nodes in V ∗ \ V and edges in E∗ \E
dummy nodes (edges).

During the preprocessing phase we eliminate all degree-two nodes except those that
are adjacent to nodes u and v which are already connected by an edge e = (u, v) (see
Figure 4.10(d) for an example). Furthermore every dummy node v ∈ V ∗ \ V has degree
two and is incident to exactly two dummy edges e ∈ E∗ \ E. It is easy to show that
edges belonging to a common path P such that each node alongside P has degree two
do not cross. The proof is according to the proof of Proposition I of Lemma 4.3.1 if we
remove the dummy nodes and reinsert them after computing an optimal drawing.

We can easily identify these paths using the procedure given in Algorithm 4.5.2. We
compute a function path : E → {1, ..., n} such that path(e) = path(f) if and only if e
and f belong to a common path alongside degree-two nodes.

Algorithm 4.5.2: path decomposition(G = (V,E))
1: for all e ∈ E do
2: path[e] = −1 {Initialization}
3: end for
4: n = 0
5: for all e = (u, v) ∈ E do
6: if path[e] == −1 then
7: for all w ∈ {u, v} do
8: while |δ(w)| == 2 do
9: Let f = (w,w′) be the incident edge of w such that path[f] == −1

10: path[f] = n
11: w = w′

12: end while
13: end for
14: path[e] = n + +
15: end if
16: end for

Furthermore we compute the biconnected components C1, ..., Cc for G∗ as described
in Section 4.3.2. Every edge e ∈ E∗ belongs to exactly one biconnected component.

Initial ILP We create a zero-one variable xe,f for every unordered pair of edges (e, f) ∈
E∗ × E∗ that satisfies the following conditions

• e 6= f

• path(e) 6= path(f)

• e and f belong to the same biconnected component

4.5. Putting it All Together 51

• e and f are non-adjacent edges

The objective function is defined to be

minimize
∑
∀xe,f

xe,f

We furthermore create starting constraints that ensure at most one crossing per edge.∑
f∈E∗

xe,f ≤ 1 ∀ e ∈ E∗

Given a lower bound l for the number of crossings in G we can create a special constraint
that forces at least l variables to be one.∑

∀xe,f

xe,f ≥ l

As already described in Section 3.3 we can obtain a general lower bound by the number
of nodes n of a graph G (see Theorem 3.3.2).

cr(G) ≥ 1
33.75

n3

n2
− 0.9n

Unfortunately this bound is not very useful in practice since the term often becomes
negative. A better bound can be obtained from the skewness of the graph G. Although
the computation of the skewness of a graph is known to be NP complete (see [30]), there
are exact approaches that are able to solve medium-sized instances of the problem in
reasonable time. We therefore used a branch-and-cut algorithm based on ABACUS that
is able to solve practical instances within a few minutes (see [24]).

Feasibility Test Let x be an integral solution vector. We can test in linear time if x
represents a feasible solution in the following way. Let D = {(e, f) | xe,f = 1} be the
set of pairs of edges that cross each other. As described in Section 4.2 we can compute
the graph G∗

D by inserting a dummy node for each (e, f) ∈ D. We can use one of the
linear time planarity test algorithms mentioned in Section 2.1 to test if G∗

D contains a
subdivision of K5 or K3,3 and compute a corresponding planar embedding if not.

Separation of Inequalities Suppose the fact that the answer of the planarity test is
“no”, we also get a Kuratowski subdivision H ⊆ E∗. In this case it is easy to separate an
additional constraint CD,H that excludes the current infeasible solution (see the proof
of Theorem 4.2.5). In many cases it is possible to separate additional constraints by
removing a random edge e ∈ H from G∗ and searching for further Kuratowski Subdivi-
sions.

The main problem is that the solution vector x for the linear relaxation of the ILP
contains fractional values that cannot be used directly to compute a set D ⊆ E×E. We

4.5. Putting it All Together 52

have to round the current fractional solution in order to decide if we introduce a dummy
node for (e, f). Therefore we experimented with different strategies and compared their
performance against each other. We present those results in Chapter 5.

We can not guarantee that there is no violated inequality if G∗
D is planar. In this case

we have to select a branching variable and split the current problem Π into subproblems
Π0 and Π1 by setting the branching variable to zero, respectively one. Due to this fact
we “only” present a heuristic solution for the Separation Problem.

5 Computational Results

This chapter presents the computational results of our algorithm on a widely used bench-
mark set descrived from real world data. All experiments were done on an an Intel P4
2.4 GHz with 512KB of cache memory and 1 GB of main memory using Linux 2.4.

In Section 5.1 we give some implementation details of our algorithm and shortly de-
scribe the used libraries. Furthermore we give an overview of AGD (Algorithms for
Graph Drawing) and show how we can integrate our algorithm into this software library
in order to combine it with different layout algorithms.

The rest of this Chapter describes the used benchmark set and presents the results
obtained from an extensive computational study. We close this work by discussing those
results and further improvements that are not part of this work in Chapter 6

5.1 Implementation Details

The algorithm presented in Chapter 4 has been implemented using C++ and the class
library LEDA. We used the commercial optimization library CPLEX in order to solve
the Integer Linear Program and implemented the branch-and-cut strategy using its built
in features. The whole module has been integrated into AGD, a library of Algorithms
for Graph Drawing. We now shortly describe those libraries and sketch out the design
of AGD. Further we describe how our new algorithm fits into the design of this library
and how it can be combined with existing modules to compute layouts with a minimum
number of crossings.

LEDA is an abbreviation for Library of Efficient Data Structures and Algorithms. It is
a C++ library that offers combinatorial and geometric data types and a number of highly
optimized basic algorithms. While the project has been started by Kurt Mehlhorn at
the “Max-Plank-Institut für Informatik” it is now maintained by Algorithmic Solutions
Software GmbH (http://www.algorithmic-solutions.de).

The package includes excellent data types for graphs and a number of graph algorithms
that were used in our implementation. Due to the close relationship between LEDA and
AGD it was easy to use those implementations, e.g., for the computation of biconnected
components and linear time planarity testing.

CPLEX Many NP-hard optimization problems could be attacked in the last years using
Linear Programming in conjunction with the branch-and-cut approach. Due to the high
flexibility of mathematical programming this approach became very popular and is often

53

http://www.algorithmic-solutions.de

5.1. Implementation Details 54

used to solve practical (combinatorial) optimization problems. The need for practical
implementations led to a large number of highly optimized LP solvers.

Our implementation is based on CPLEX (version 8), which is a commercial optimiza-
tion tool that is available from ILOG (http://www.ilog.com). It offers interfaces to a
large number of programming languages and can be extended using so called callbacks
to develop a branch-and-cut style algorithm.

AGD As already mentioned, AGD is a powerful library that offers a broad range of ex-
isting algorithms for two-dimensional graph drawing. It originated from a DFG-funded
project in 1996 and is now developed in a cooperations of groups of the Technical Uni-
versity of Vienna, Cologne and the Max Planck Institute for Computer Science.

One of the most notable design feature is the representation of algorithms as objects
that provide a common method for calling the algorithm. All Algorithms that implement
the same functionality belong to a common base class and can easily be exchanged by
each other. Algorithms of the same “type” implement a common call interface, which
allows the development of generic algorithms that do not need to be aware of the details
of an exchangeable module.

In addition, each algorithm can define pre- and postconditions that are maintained
by the framework. An instance of an algorithm together with this conditions is called
a module. Those conditions can either be properties of the input graph, e.g., planar or
biconnected, or properties of the produced layout (i.e., orthogonal or straight line).

Figure 5.1 is taken from the AGD user manual and shows an overview of the available
modules. Some of the modules make use of other modules to perform particular subtasks.
Those modules can be exchanged at runtime by different modules of the same type.
Arrows in Figure 5.1 indicate the module options for each module and the required
type.

The class LayoutModule is a common base class for drawing algorithms. It defines
a common interface to those algorithms. Every layout algorithm maps the nodes to
points in the plane and edges are represented by a a list of bend points with a source
and target anchor point. A specialization of this class is the module GridLayoutModule,
which serves as a common base class for layout algorithms that place nodes at integer
points.

A widespread technique to draw nonplanar graphs is to replace crossings by artificial
vertices. Those graphs can be drawn using algorithms for planar graphs and the tempo-
rary vertices are removed afterwards. We already described this technique in Section 3.4.
AGD therefore provides the class PlanarizationLayout. A PlanarizerModule is ap-
plied in order to transform a given graph into a planar representation which is drawn
afterwards. Both, the planarizer module and the planar layout algorithms are exchange-
able modules.

In order to match the design of AGD, our new algorithm is implemented as a Pla-
narizerModule and can be used as a replacement to the planarization heuristic, which is

http://www.ilog.com

5.1. Implementation Details 55

V
is

ib
ili

ty
R

ep
re

se
nt

at
io

n

C
on

ve
xL

ay
ou

t

C
on

ve
xD

ra
w

La
yo

ut

F
P

P
La

yo
ut

Sc
hn

yd
er

La
yo

ut

au
gm

en
te

r

au
gm

en
te

r

au
gm

en
te

r
Tu

tte
La

yo
ut

Sp
ri

ng
La

yo
ut

Tr
ee

La
yo

ut

Su
gi

ya
m

aL
ay

ou
t

ra
nk

in
g

cr
os

s_
m

in
co

m
p_

co
or

d

Pl
an

ar
iz

at
io

nL
ay

ou
t

pl
an

ar
iz

er
pl

an
ar

_l
ay

ou
t

pl
an

ar
iz

er
pl

an
ar

_l
ay

ou
t

A
ug

m
en

ta
tio

nM
od

ul
e

L
ay

ou
tM

od
ul

e

G
ri

dL
ay

ou
tM

od
ul

e

su
bg

ra
ph

in
se

rt
er

Su
bg

ra
ph

P
la

na
ri

ze
r

Pl
an

ar
iz

er
M

od
ul

e

Sh
or

te
st

P
at

hI
ns

er
te

r

E
dg

eI
ns

er
tio

nM
od

ul
e

Pl
an

ar
iz

at
io

nG
ri

dL
ay

ou
t

Pl
an

ar
D

ra
w

La
yo

ut

Pl
an

ar
St

ra
ig

ht
La

yo
ut

M
ix

ed
M

od
el

La
yo

ut

co
m

pa
ct

or

co
m

pa
ct

or

Q
ua

si
O

rt
ho

go
na

lL
ay

ou
t

LE
D

A
M

ak
eB

ic
on

ne
ct

ed

O
pt

Pl
an

A
ug

Pl
an

A
ug

B
ar

yc
en

te
rH

eu
ri

st
ic

M
ed

ia
nH

eu
ri

st
ic

Sp
lit

H
eu

ri
st

ic

G
re

ed
yI

ns
er

t

G
re

ed
yS

w
itc

h

fa
st

H
ie

ra
rc

hy
La

yo
ut

T
w

oL
ay

er
C

ro
ss

M
in

R
an

kA
ss

ig
nm

en
t

H
ie

ra
rc

hy
L

ay
ou

tM
od

ul
e

O
pt

C
ro

ss
M

in

H
ie

ra
rc

hi
ca

lR
an

ki
ng

su
bg

ra
ph

D
fs

R
an

ki
ng

no
_c

ro
ss

in
gs

P
ur

eO
rt

ho
go

na
lL

ay
ou

t
co

m
pa

ct
or

C
om

pa
ct

io
nM

od
ul

e

F
lo

w
C

om
pa

ct
io

n

O
pt

C
om

pa
ct

io
n

Lo
ng

es
tP

at
hC

om
pa

ct
io

n
O

rt
ho

go
na

lL
ay

ou
t

Su
bg

ra
ph

M
od

ul
e

Pl
an

ar
Su

bg
ra

ph

O
pt

Pl
an

ar
Su

bg
ra

ph pl
an

ar

LE
D

A
M

ak
eA

cy
cl

ic

O
pt

A
cy

cl
ic

Su
bg

ra
ph

m
ax

im
al

_a
cy

cl
ic

Figure 5.1: Overview of the classes in AGD. The figure is taken from the AGD user
manual

5.2. The Benchmark Suite 56

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f G
ra

ph
s

Number of Vertices

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160

N
um

be
r o

f G
ra

ph
s

Number of Edges

(b)

Figure 5.2: Number of graphs included in the benchmark set sorted by (a) number of
nodes and (b) number of edges

implemented in SubgraphPlanarizer. The result of our algorithm is a planar embed-
ding Π(G′) while G′ is the graph that is obtained by introducing a dummy node at each
crossing point in G. This enables us to use any of the existing planar layout algorithms
to produce a drawing for G with cr(G) crossings. Most of the examples in this thesis
are computed using the MixedModelLayout module.

5.2 The Benchmark Suite

In order to test the performance of our new algorithm and compare its solution quality
to existing heuristics, we used a benchmark set of graphs of the University of Rome III,
used by Di Battista et al. in [3].

The set contains 11389 graphs that consist of 10 to 100 vertices and 9 to 158 edges.
Those graphs were generated from a core set of 112 “real life” graphs used in database
design and software engineering applications. Di Battista et al. developed a software tool
that emulates typical operations on graphs in practice. Generated graphs were tested
for suitability according to objective and subjective criteria (see [3]). Figure 5.2 shows
the number of graphs included in the benchmark set that contain a certain number of
edges respective nodes. A number of 3280 graphs are already planar. Figure 5.3 shows
the number of planar graphs sorted by the number of vertices. As expected their number
decreases with increasing size of the graphs.

Most of the graphs are sparse, which is a usual property in most application areas
in automatic graph drawing. The average ratio between the number of edges and the
number of nodes of the graphs from the benchmark set is about 1.35. The minimum,
maximum and average ratio depending on the number of nodes is given in Figure 5.4.

5.2. The Benchmark Suite 57

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f G
ra

ph
s

Number of Vertices

Number of planar Graphs

TOTAL
PLANAR

Figure 5.3: Total number of graphs and number of planar graphs sorted by the number
of nodes

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f E
dg

es
 p

er
 N

od
e

Number of Vertices

Ratio between Number of Edges and Number of Nodes

MAX
AVERAGE

MIN

Figure 5.4: Minimum, maximum and average number of edges per node sorted by the
number of nodes

5.3. The Effects of Preprocessing 58

w

v

2

1

Figure 5.5: Consecutive removal of degree-two nodes in the preprocessing procedure
leads to multiple edges between two nodes v and w.

5.3 The Effects of Preprocessing

We implemented the preprocessing procedure described in Section 4.4 and applied it to
the input graphs of our benchmark set. Since the size of the graphs is relatively small,
the runtime of the algorithm is only about some milliseconds and can be neglected.

Whenever we remove a node of degree-one or two, the resulting graph is also reduced
by exactly one edge. The only exception occurs if there is a node v of degree two that
is connected to a different node w by two edges (v, w). None of the input graphs is
a multigraph, but those situations can be the result of previous preprocessing steps.
Consider the sample in Figure 5.5. After each of the degree-two nodes is replaced
by a dummy edge in the denoted order, we get a circle of length two that can be
removed without influencing the crossing number as in the case of degree-one nodes.
Those situations only occurred in 131 of the 11389 graphs, thus we only consider the
number of removed edges in Figure 5.6. For very small instances we could remove all
of the edges and the average percentage over the whole benchmark set is 47.83%, which
corresponds to an average of 30.6 removed edges. This leads to a major improvement
of the runtime of our branch-and-cut algorithm. Due to the effectiveness and simplicity
of the preprocessing procedure it is also suitable for other algorithms for the Crossing
Minimization Problem. Figure 5.7 shows the average number of edges with and without
preprocessing sorted by the number of nodes.

5.4 Determining Biconnecting Components

We described a linear time algorithm based on DFS to compute the biconnected com-
ponents of a graph in detail in Section 4.3.2. Edges belonging to different biconnected
components do not cross, which allows us to neglect a large number of variables in our
ILP formulation if the graph is not already biconnected.

We used an implementation contained in LEDA and present the results for our bench-

5.5. Computing the Skewness 59

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 N
um

be
r o

f r
em

ov
ed

 E
dg

es

Number of Edges

Number of removed Edges in the Preprocessing Phase

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 re

m
ov

ed
 E

dg
es

Number of Edges

Percentage of removed Edges in the Preprocessing Phase

(b)

Figure 5.6: Absolute number of reduced edges (a) and the percentage of reduced edges
(b) during the preprocessing phase.

mark set in this section. The runtime of the algorithm can be neglected since the time
needed to read the input files and write the output almost exceeds the runtime of only
some milliseconds.

Figure 5.8(a) shows the minimum, average and maximum number of biconnected
components sorted by the number of nodes in our benchmark set. The number of
biconnected components is surprisingly high. Figure 5.8(b) shows the number of graphs
with a certain number of biconnected components. The average number of biconnected
components over the whole benchmark set is about 14.37 and there are only 58 graphs
that are already biconnected.

In Figure 5.9 we consider the number of nodes per biconnected component. While
the average number of edges per component is relatively small, the maximum number
of edges grows nearly linear with the number of edges. This shows that a bulk of our
instances consists of one biconnected component covering nearly all the edges and a
relatively high number of very small components.

5.5 Computing the Skewness

In order to compute tight lower bounds for the Crossing Number of an input graph G, we
used an exact branch-and-cut algorithm for the maximum planar subgraph problem to
compute the skewness of G. We defined the skewness in Section 3.3 to be the minimum
number of edges that must be deleted from G in order to obtain a planar subgraph GP .
Although the maximum planar subgraph problem was shown to be NP hard (see [30]),
we could successfully solve instances of medium size using the algorithm proposed by
Jünger and Mutzel ([24]) and Mutzel ([33]).

The algorithm is based on ABACUS (A Branch-And CUt System), which is a frame-

5.6. Results of our exact Approach 60

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 N
um

be
r o

f E
dg

es

Number of Vertices

Number of Edges with and without Preprocessing

ORIGINAL
PREPROCESSING

Figure 5.7: Average number of edges with and without preprocessing sorted by the num-
ber of nodes

work for the implementation of branch-and-cut algorithms. Details can be found in [25].
There is already an implementation of this algorithm in AGD, which was used to perform
the computational results. The corresponding module is named OptPlanarSubgraph.

Due to the complexity of the Crossing Minimization Problem we only considered in-
stances up to 40 nodes. Figure 5.10(a) shows the maximal, minimal and average skew-
ness of graphs from our benchmark set up to 40 nodes. The computation time strongly
depends on the number of edges that have to be removed in order to obtain a maximal
planar subgraph. While instances with skewness up to four take only some milliseconds,
the computation of more complex graphs takes some minutes. Therefore we show the
number of graphs sorted by their skewness in Figure 5.10(b) and give the average com-
putation time in Figure 5.10(c). Since the skewness of planar graphs is always zero we
only consider nonplanar instances.

5.6 Results of our exact Approach

We now present the results of our exact algorithm for the Crossing Minimization Prob-
lem.

We need to round the current fractional solution to integer values in order to separate
violated inequalities. Therefore we experimented with different strategies and compared
their performance against each other.

5.6. Results of our exact Approach 61

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f B
ic

on
ne

ct
ed

 C
om

po
ne

nt
s

Number of Vertices

Number of Biconnected Components

MAX
AVG
MIN

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80

N
um

be
r o

f G
ra

ph
s

Number of Biconnected Components

Number of Graphs with a certain Number of Biconnected Components

(b)

Figure 5.8: Number of biconnected components sorted by the number of nodes (a) and
the number of graphs with a certain number of biconnected components (b)

5.6. Results of our exact Approach 62

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 N
um

be
r o

f E
dg

es
/C

om
po

ne
nt

Number of Edges

Average Size of Biconnected Components

MAX
AVG

Figure 5.9: Average and maximum number of edges per biconnected component sorted
by the number of edges

• R1 We round every value that is greater than 1− ε to one. All other variables are
mapped to zero.

• R05 Every variable with a value greater or equal than 0.5 is rounded to one.

• R0208 If the value of a variable is less than 0.2 or greater than 0.8 it is mapped to
zero respective one. In the interval [0.2, 0.8] we flip a coin with equal probability
between zero and one.

Once we obtained an integer solution vector, we start to look for a Kuratowski subdi-
vision H and add the constraint CD,H to the linear relaxation if it is violated by the
fractional solution vector. As a heuristic we remove one of the edges from H and try
to find further forbidden subdivisions in order to separate more than one constraint in
each cut phase.

We considered graphs up to 40 nodes and compared the number of solved instances of
the different strategies against each other. All computations were done with and without
transforming the graph by replacing the edges by a path of length u, while u denotes
an upper bound for the crossing number of the particular graph. In the latter case we
can not guarantee to find the crossing number cr(G) of a graph G since any optimum
drawing can contain at least one edge that crosses more than one other edge. We denote
the minimum number of crossings in any simple drawing of G as in Chapter 4 with
crs(G). This constraint strongly reduces the number of required variables and enables

5.6. Results of our exact Approach 63

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40

S
ke

w
ne

ss

Number of Vertices

Skewness of Graphs up to 40 Nodes

MAX
AVG
MIN

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7

N
um

be
r o

f G
ra

ph
s

Skewness

Number of Graphs

(b)

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7

A
ve

ra
ge

 T
im

e
[s

ec
]

Skewness

Computation Time

(c)

Figure 5.10: Average skewness (a) for graphs up to 40 nodes. Figure (b) shows the
number of graphs with a certain skewness and Figure (c) shows the corre-
sponding average computation time.

5.6. Results of our exact Approach 64

us to solve more instances in the same amount of time. There are only 24 graphs of all
nonplanar instances up to 40 nodes in our benchmark set, such that crs(G) > cr(G) and
the difference is at most one. The average number of variables in our ILP sorted by the
number of edges is shown in Figure 5.11. SMON denotes the number of variables with
enabled edge transformation and SMOFF shows their number for the computation of
simple drawings. Note the logarithmic scale for the average number of variables.

 10

 100

 1000

 10000

 100000

 1e+06

 15 20 25 30 35 40 45 50 55 60 65

A
ve

ra
ge

 N
um

be
r o

f V
ar

ia
bl

es

Number of Edges

Number of required Variables

SMON
SMOFF

Figure 5.11: Number of required Variables in our ILP with and without edge transfor-
mation

Number of solved Instances Figure 5.12 shows the number of graphs that could be
solved within a time limit of 5 minutes on an Intel Pentium 4 with 2.4 GHz and 1 GB
of main memory. As a baseline we further included the number of planar graphs and
the total number of graphs with a certain number of nodes. As expected, the difference
between our implementation for cr(G) and crs(G) grows with the size of the graphs.
Another interesting aspect is that the particular strategy to round the fractional values
does not seem to have great impact on the solution quality. Figure 5.13 shows the
percentage of solved instances sorted by the number of nodes. The smaller amount of
variables without using the edge decomposition leads to a significantly higher number
of instances that could be solved within the time limit. While the percentage of solved
graphs goes down to about 65% for the general crossing number for instances with 40
nodes, we can still solve about 80% of those instances without supporting multiple edge
crossings.

5.6. Results of our exact Approach 65

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40

N
um

be
r o

f G
ra

ph
s

Number of Vertices

Number of Instances solved to Optimality

TOTAL
R01
R05

R0208
PLANAR

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40

N
um

be
r o

f G
ra

ph
s

Number of Vertices

Number of Instances solved to Optimality for simple Drawings

TOTAL
R01
R05

R0208
PLANAR

(b)

Figure 5.12: Number of graphs solved by our exact algorithm for graphs up to 40 nodes
with (a) and without (b) supporting multiple crossings per edge

5.6. Results of our exact Approach 66

 65

 70

 75

 80

 85

 90

 95

 100

 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 s

ol
ve

d
In

st
an

ce
s

Number of Vertices

Percentage of Instances solved to Optimality

R1
R05

R0208

(a)

 80

 85

 90

 95

 100

 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 s

ol
ve

d
In

st
an

ce
s

Number of Vertices

Percentage of Instances solved to Optimality for simple Drawings

R1
R05

R0208

(b)

Figure 5.13: Percentage of graphs solved by our exact algorithm for graphs up to 40
nodes with (a) and without (b) supporting multiple crossings per edge

5.6. Results of our exact Approach 67

Average Computation Time Figure 5.14 shows the average computation time for in-
stances that could be solved within 5 minutes by all of the considered strategies to round
the fractional solution. While there was nearly no notable difference in respect to the
number of solved instances between the different strategies, the comparison of the run-
time shows a surprising results. There neither is a clear winner nor a clear loser in our
study. While each of the strategies performs well on a certain range of graphs, there are
also examples where the same strategy leads to a larger computation time.

As for the maximum planar subgraph problem, the required time to solve a particular
instance strongly depends on its crossing number. To illustrate this fact we plot the
average computation time of graphs with a particular crossing number in Figure 5.15
with and without supporting multiple edge crossings. Again we only considered instances
that could be solved by all strategies within 5 minutes.

Comparison with heuristic Results Clearly we are interested in the quality of our re-
sults in comparison to heuristic approaches. For the computation of heuristic values we
used the planarization approach described in Section 3.4. The algorithm is already im-
plemented in AGD (the module is named SubgraphPlanarizer) and serves furthermore
for the computation of upper bounds for our ILP.

Gutwenger and Mutzel present in [19] an extensive computational study of crossing
minimization heuristics. The authors investigate the effects of various methods for the
computation of a maximal planar subgraph and different edge re-insertion strategies
for the planarization approach. Furthermore they study the impact of post processing
heuristics.

In addition to the iterative algorithm for the computation of a maximal planar sub-
graph described in Section 3.4 (MAXIMAL), the authors also use an algorithm based
on PQ-trees that is suggested in [23]. The first step of this algorithm is to compute a
st-numbering. The particular choice for s and t has an impact on the solution quality
and the authors study the effects of randomly choosing an edge e = (s, t) ∈ E for up to
100 calls. This method is denoted by PQ1, PQ10, PQ50 and PQ100 for 1, 10, 50 and
100 iterations.

The edge re-insertion step is done for a fixed embedding (FIX) and over the set
of all possible planar embeddings (VAR). As a post processing procedure the authors
iteratively delete an edge and re-insert it into the planar embedding. Therefore they
consider different selection strategies

• INS: Only edges that are not part of the maximal planar subgraph are considered
for the re-insertion procedure.

• ALL: The whole set of edges is used for the post processing procedure

• MOST x%: The authors use only x percent of the total set of edges for the post
processing method. The selected edges are chosen according to the number of
crossings they are involved in.

Furthermore the authors propose a permutation variant that repeats the whole proce-
dure for a different initial ordering of the edges that are not part of the maximal planar

5.6. Results of our exact Approach 68

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40

A
ve

ra
ge

 T
im

e
[s

ec
]

Number of Vertices

Computation Time

R01
R05

R0208

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40

A
ve

ra
ge

 T
im

e
[s

ec
]

Number of Vertices

Computation Time for simple Drawings

R01
R05

R0208

(b)

Figure 5.14: Computation time for graphs up to 40 nodes with (a) and without (b)
supporting multiple crossings per edge

5.6. Results of our exact Approach 69

 0

 50

 100

 150

 200

 250

 300

 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 T
im

e
[s

ec
]

Number of Crossings

Average Computation Time

R01
R05

R0208

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 T
im

e
[s

ec
]

Number of Crossings

Average Computation Time for simple Drawings

R01
R05

R0208

(b)

Figure 5.15: Average computation time for graphs G sorted by cr(G) (a) respective
crs(G) (b)

5.6. Results of our exact Approach 70

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 15 20 25 30 35 40

A
ve

ra
ge

 N
um

be
r o

f C
ro

ss
in

gs

Number of Nodes

Number of Crossings in Comparison to heuristic Results

HEUBASIC
HEUBEST

OPTSIMPLE
OPT

Figure 5.16: Comparison between heuristic results and the crossing numbers computed
with our exact algorithm.

subgraph. This method is denoted by PERM1, PERM2, PERM10 and PERM20 for 1,
2, 10 and 20 repetition rounds.

It points out that one of the best strategies is the combination of PQ100 together
with VAR for the edge re-insertion and ALL for the post processing step. Furthermore
PERM20 is the best choice for the permutation procedure. We denote this combination
by HEUBEST.

Figure 5.16 shows the average number of crossings sorted by the number of nodes for
the basic planarization approach (HEUBASIC) and the improved version HEUBEST.
Furthermore we compare this results to those of our exact approach with (OPT) and
without (OPTSIMPLE) supporting multiple edge crossings. To highlight the improve-
ments in more detail we only considered graphs that could be solved to optimality within
the time limit.

We can clearly improve the heuristic results for the basic approach, even for the
relatively small instances considered in our computational study. Also upon the best
known heuristic methods we achieve a notable improvement for some larger instances.
The average improvement over the whole considered benchmark set is about 15.8% for
the basic heuristic and 4.7% for the best known strategy. Figure 5.17 shows the average
improvement in percent of the exact algorithm in respect to the heuristic values.

5.6. Results of our exact Approach 71

 0

 5

 10

 15

 20

 25

 30

 10 15 20 25 30 35 40

Im
pr

ov
em

en
t [

%
]

Number of Nodes

Average Improvements of our Algorithm in Comparison to heuristic Results

HEUBASIC
HEUBEST

Figure 5.17: Relative Improvement of the exact algorithm in respect to the heuristic
solutions.

Further Statistics To close this chapter we present interesting parameters of the branch-
and-cut process for some “hard” instances in more detail. Therefore we select some
typically graphs that could be solved by our algorithm but took at least one minute of
computation time. All those computations were done with enabled edge decomposition
and the round strategy R05. Table 5.1 lists a selection of those instances sorted by the
total runtime ttotal. The columns have the following meaning.

- Instance Filename of the particular instance G

- ttotal Total runtime of our algorithm without the time for in- and output and the
computation of the skewness

- tsep Total runtime of the separation procedure

- Variables Number of variables in the ILP

- Satisfied Number of constraints CD,H that were computed for the rounded solution
vector of the LP relaxation but that were already satisfied by the current solution.

- Treesize Number of nodes in the Branch-and-Cut tree

- cr(G) Crossing Number of G

5.6. Results of our exact Approach 72

Instance ttotal tsep Variables Cuts Satisfied Treesize cr(G)
grafo11376.38 60.3 32.8 4338 501 974 334 3
grafo1368.31 68.0 35.4 4088 645 1473 400 3
grafo7347.40 72.2 56.4 10557 490 333 74 2
grafo11644.38 76.7 39.5 4338 513 1253 437 3
grafo1711.33 83.6 44.5 3523 1274 2786 1251 3
grafo6003.37 91.7 76.6 14494 288 319 26 3
grafo9852.38 92.7 49.1 4338 664 1536 573 3
grafo9999.39 101.7 53.4 4344 379 1715 514 3
grafo10401.38 105.8 61.7 4338 452 2149 609 3
grafo6984.39 117.1 50.1 6401 247 1463 185 4
grafo11661.38 120.6 58.8 4338 854 1720 673 3
grafo6049.36 134.0 46.9 2019 1984 2575 1189 2
grafo3813.39 161.8 88.7 4708 1095 2682 775 3
grafo5525.40 189.9 102.6 10495 1202 2295 687 3
grafo5857.38 192.0 106.1 5540 720 1601 353 3
grafo10342.37 198.2 63.0 2846 1586 2791 970 3
grafo5536.38 200.6 135.3 7848 576 1403 224 3
grafo3954.37 212.4 115.4 7319 1155 1764 871 3
grafo10770.35 218.3 135.0 5948 1012 2584 419 3
grafo10888.35 252.5 149.4 5948 1223 2670 431 3
grafo3281.34 270.0 143.6 7768 1570 5483 1066 3
grafo10087.39 299.4 181.8 7332 846 2817 710 3
grafo3225.37 313.8 178.6 10492 1309 1864 513 3
grafo7111.40 333.4 206.7 5116 864 6537 1807 3
grafo3019.39 374.9 269.3 12265 1128 2691 525 3
grafo11240.36 395.1 144.2 3969 2161 3406 1322 3
grafo3974.37 430.1 259.0 6798 2185 8457 1645 3
grafo1456.29 435.8 288.9 13479 1771 1755 388 3
grafo6455.39 453.7 261.1 5975 331 6896 1286 3
grafo11284.37 468.9 263.1 7345 1547 2738 646 3
grafo5657.33 497.9 287.2 4337 1211 7307 2291 3
grafo3646.37 549.8 414.5 8674 267 6008 1083 3
grafo2878.19 558.9 432.2 10026 923 6298 1203 3
grafo7222.40 591.9 372.9 11539 413 3866 520 3
grafo3722.40 597.3 385.8 17442 530 2261 240 3
grafo2742.39 624.7 372.6 5950 1453 6427 1514 3
grafo5763.39 1154.9 943.0 14754 454 5493 741 3
grafo7475.40 1337.9 999.6 10795 572 6436 991 3
grafo6593.38 2355.6 864.0 4354 3785 17226 4504 3

Table 5.1: Branch-and-Cut parameters for some instances that could be solved in more
than 100 seconds.

5.6. Results of our exact Approach 73

The average percentage of the required time for the separation procedure in respect to
the total runtime ttotal is about 60%. This is quite a lot and can be explained by the
large number of constraints that are computed but not added to the current ILP since
they are already satisfied by the last solution vector. While the average number of added
cuts in our selection is about 1030, we rejected 3590 computed constraints on average.
The average number of subproblems that were computed in the branch-and-cut tree is
about 870.

6 Discussion

Despite the complexity of the Crossing Minimization Problem, the results obtained so
far are promising. Our implementation is able to solve sparse instances up to about
30 nodes within a few seconds to provable optimality on average hardware. Even for
such small graphs we can improve upon a widley used heuristic by 15% and upon the
best known heuristic strategies by about 5% on average. We can expect to achieve even
better results on larger graphs.

Unfortunately the required computation time strongly depends on the number of
crossings and quickly exceeds practical limits for larger graphs. However, there is still
much room for further improvements.

We can try to find further or stronger constraints by the investigation of the polytope
associated to the underlying combinatorial optimization problem. We can represent
those polytopes either as a convex hull of the extreme points or by a system of linear
equations and inequalities. There is a software package called PORTA – available from
the University of Heidelberg (www.uni-heidelberg.de) – that is able to enumerate all
integral solution vectors for a given set of inequalities and transform this representation
back to a system of inequalities.

First experiments with this software led to promising results, but even the computation
of the smallest interesting examples blew the available computation time. However, this
approach can be useful for the search for stronger constraints.

Another problem that prevents the use in practical applications until now is the strongly
increasing number of variables in our ILP formulation. We can try to work around this by
the use of column generation. A brief overview of this approach is given in Section 2.3.1.
However, until now it is not clear how we efficiently insert new variables without violating
the existing constraints.

A straight-forward way to improve the runtime of our algorithm is probably the combina-
tion with good heuristics during the Branch-and-Cut process. We can strongly decrease
the required computation time by finding tight upper bounds early in the optimization
process. This allows us to discard whole subtrees whose lower bound exceeds our global
limit, and explore more promising branches early. Important improvements may also be
achieved by better strategies for the node selection phase.

Even when we are not able to find an optimum solution within a certain time limit,
we can try to use the fractional values in order to compute good heuristic solutions.
Variables with a relatively large value may indicate good candidates for a crossing in a

74

www.uni-heidelberg.de

75

corresponding drawing.

Bibliography

[1] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free subgraphs.
Annals of Descrete Mathematics, 12:9–12, 1982.

[2] L. Auslander and S. Parter. On embedding graphs in the sphere. Journal of Math-
ematics and Mechanics, 12(3):517–523, 1961.

[3] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An
experimental comparison of four graph drawing algorithms. Comput. Geom. Theory
Appl., 7(5-6):303–325, 1997.

[4] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th annual
Symposium on Foundations of Computer Science, October 30–November 1, 1989,
Research Triangle Park, North Carolina, pages 436–441. IEEE Computer Society
Press, 1989.

[5] D. Bienstock. Some provably hard crossing number problems. Discrete Comput.
Geom., 6(5):443–459, 1991.

[6] D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. J. Graph
Theory, 17(3):333–348, 1993.

[7] H. Bodlaender and A. Grigoriev. Algorithms for graphs embeddable with few cross-
ings per edge. Research Memoranda 036, Maastricht : METEOR, Maastricht Re-
search School of Economics of Technology and Organization, 2004. available at
http://ideas.repec.org/p/dgr/umamet/2004036.html.

[8] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, inter-
val graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13(3):335–379, 1976.

[9] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983.

[10] R.J. Cimikowski. Graph planarization and skewness. Congressus Numerantium,
88:21–32, 1992.

[11] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

[12] H.N. Djidjev. A linear algorithm for the maximal planar subgraph problem, 1995.

76

Bibliography 77

[13] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

[14] P. Erdös and R.K. Guy. Crossing number problems. The American Mathematical
Monthly, 80:52–58, 1973.

[15] M. Garey and D. Johnson. Computers and interactability: A guide to the theory
of NP-completeness, 1979.

[16] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4:312–316, 1983.

[17] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Society, 64:275–278, 1958.

[18] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph.
In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 246–255. Society for Industrial and Applied Mathematics, 2001.

[19] C. Guwenger and P. Mutzel. An experimental study of crossing minimization heuris-
tics. In Graph Drawing, volume 2912 of Lecture Notes in Computer Science, pages
13–24. Springer, 2004.

[20] R.K. Guy. Crossing numbers of graphs. In Graph Theory and Applications (Pro-
ceedings), Lecture Notes in Mathematics, pages 111–124. Springer, 1972.

[21] R.K. Guy, T.A. Jenkyns, and J.Schaer. The toroidal crossing number of the com-
plete graph. Journal of Combinatorial Theory, 4:376–390, 1968.

[22] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

[23] R. Jayakumar, K. Thulasiramans, and M.N.S. Swamy. On O(n2) algorithms for
graph planarization. IEEE Transactions on Computer Aided Design, 8:257–267,
1989.

[24] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Prac-
tical layout tools. Algorithmica, 16(1):33–59, 1996.

[25] M. Jünger and S. Thienel. Introduction to ABACUS—a branch-and-cut system.
Operations Research Letters, 22:83–95, 1998.

[26] G. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Research
Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany, May 1998.

[27] J. Kratochv́ıl. String graphs. II.: Recognizing string graphs is NP-hard. J. Comb.
Theory Ser. B, 52(1):67–78, 1991.

Bibliography 78

[28] F.T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange
graph and other networks. MIT Press, 1983.

[29] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: International Symposium, pages 215–232, 1967.

[30] P. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph. In
Proceedings of the 10th Southeastern Conference on Combinatorics, Graph Theory,
and Computing, pages 727–738, Boca Raton, FL, 1977.

[31] M. Jünger M. Grötschel and G. Reinelt. A cutting plane approach for the linear
ordering problem. Operations Research, 32:1195–1220, 1984.

[32] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization
in linear embeddings of graphs. IEEE Trans. Comput., 39(1):124–127, 1990.

[33] P. Mutzel. The Maximum Planar Subgraph Problem. PhD thesis, Universität zu
Köln, 1994.

[34] Petra Mutzel and Michael Jünger. Graph drawing: Exact optimization helps! In
M. Grötschel, editor, The Sharpest Cut, Series on Optimization. MPS - SIAM, 2001.
Festschrift zum 60. Geburtstag von Manfred Padberg.

[35] T.A.J. Nicholson. Permutation procedure for minimising the number of crossings
in a network. IEE Proceedings, 115:21–26, 1968.

[36] T. Nishizeki and N. Chiba. Planar graphs: Theory and applications, 1988.

[37] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997.

[38] J. Pach and G. Tóth. Which crossing number is it anyway? J. Comb. Theory Ser.
B, 80(2):225–246, 2000.

[39] J.A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 706–715. ACM Press, 1994.

[40] H.C. Purchase. Which aesthetic has the greatest effect on human understanding? In
GD 97: Proceedings of the 5th International Symposium on Graph Drawing, pages
248–261. Springer-Verlag, 1997.

[41] C. Roos and T. Terlaky. Advances in linear optimization, 1997.

[42] W. Schnyder. Embedding planar graphs on the grid. In SODA ’90: Proceedings
of the first annual ACM-SIAM symposium on Discrete algorithms, pages 138–148.
Society for Industrial and Applied Mathematics, 1990.

[43] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125, 1981.

Bibliography 79

[44] R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987.

[45] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Com-
puting, 1(2):146–160, 1972.

[46] P. Turán. A note of welcome. Journal of Graph Theory, 1:7–9, 1977.

[47] W.T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13:743–768,
1963.

[48] K. Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 46:26–32, 1936.

[49] J. Westbrook. Fast incremental planarity testing. In Proc. 19th Int. Colloquium on
Automata, Languages and Programming, pages 342–353. Lecture Notes in Computer
Science, Springer-Verlag 623, Berlin, 1992.

[50] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis, Max-
Planck-Instiut für Informatik, 2000.

	Introduction
	Practical Applications
	Automatic Graph Drawing
	VLSI Design

	Guide to this Thesis

	Preliminaries
	Graph Theory
	(Integer) Linear Programming
	Dealing with Large Linear Programs
	Column Generation
	Branch-and-Cut

	The Crossing Minimization Problem
	Problem Definition and Computational Complexity
	Variants of Crossing Number
	t-Polygonal Crossing Number
	Linear Crossing Number
	Pairwise and Odd Crossing Number
	Restrictions on the Number of Crossings per Edge

	Known Bounds
	Bounds for particular Families of Graphs
	General Bounds

	Crossing Minimization in Practice

	Solving the Crossing Minimization Problem to Optimality
	Simple Drawings of Graphs
	An ILP Formulation for simple Drawings
	Saving Variables
	Adjacent Edges and Self-Crossings
	Biconnected Components

	Preprocessing
	Putting it All Together

	Computational Results
	Implementation Details
	The Benchmark Suite
	The Effects of Preprocessing
	Determining Biconnecting Components
	Computing the Skewness
	Results of our exact Approach

	Discussion

