Compiler Generation from Structural Architecture
Descriptions -

Florian Brandner

Dietmar Ebner

Andreas Krall

Institut fir Computersprachen
Technische Universitat Wien
Argentinierstrasse 8/E185
1040 Vienna, Austria)
{brandner,ebner,andi}@complang.tuwien.ac.at

ABSTRACT

With increasing complexity of modern embedded systems,
the availability of highly optimizing compilers becomes more
and more important. At the same time, application spe-
cific instruction-set processors (ASIPs) are used to fine-tune
hardware platforms to the intended application, demanding
the availability of retargetable components throughout the
whole tool chain.

A very promising approach is to model the target archi-
tecture using a dedicated description language that is rich
enough to generate hardware components and the required
tool chain, e.g., assembler, linker, simulator, and compiler.

In this work we present a new structural architecture de-
scription language (ADL) that is used to derive the architec-
ture dependent components of a compiler backend — most
notably an instruction selector based on tree pattern match-
ing. We combine our backend with gcc, thereby opening up
the way for a large number of readily available high level
optimizations. Experimental results show that the automat-
ically derived code generator is competitive in comparison
to a handcrafted compiler backend.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors — Retar-
getable compilers; Code generation;

General Terms

Algorithms, Languages, Measurement, Performance

Keywords
ADL, Architecture Description, Retargetable Compiler

*This work is supported in part by ON DEMAND Mi-
croelectronics and the Christian Doppler Forschungsgesell-
schaft.

(©ACM, (2007). This is the author’s version of the work. It
is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Proceed-
ings of the 2007 international conference on Compilers, architecture,
and synthesis for embedded systems (September 30—October 3, 2007)
http://doi.acm.org/10.1145/1289881.1289886

1. INTRODUCTION

In order to meet the requirements of modern embedded
applications in terms of efficiency and performance, tech-
niques such as hardware/software codesign, design space ex-
ploration, and application specific instruction-set processors
(ASIPs) are more and more used to tailor hardware archi-
tectures to a particular application. At the same time, the
complexity of those applications rises steadily, demanding
the availability of highly optimizing compilers to exploit fea-
tures of the target platform.

A very flexible and sustainable approach to accomplish re-
targetability of compiler backends is the use of architecture
description languages (ADLs) in order to specify the target
architecture. A single specification can be used to develop
a variety of (semi-)automatically retargetable components
such as compilers, assemblers, linker, simulators and hard-
ware synthesis tools.

Such systems have gained much interest both in academia
and industry in the recent past and can be roughly divided
into two categories according to the way in which architec-
tures are specified:

e Structural Model The target processor model is de-
scribed by an (abstract) netlist. Datapaths and com-
ponent structures are explicitly specified and transpar-
ent to the particular tools.

e Behavioral Model Processors are specified in terms of
their instruction set from a programmer’s point of view.

While behavioral models are in general well suited for retar-
getable compilers and simulators, automatic hardware syn-
thesis becomes almost impossible. In addition, structural
models reflect a component based approach, as it is used in
hardware design, very well and have significant advantages
in terms of reusability and compactness of the description.
We propose a new structural ADL based on XML that is
suitable for both automatic tool chain retargeting and hard-
ware synthesis. Our approach follows a component based
paradigm that enables the reuse of existing modules and
is both extendable and comprehensible. In this work we
give an overview of our ADL and the design of an optimiz-
ing retargetable compiler backend for DSP architectures. In
particular we describe how to derive the rule set for an in-
struction selector based on tree pattern matching, thereby
bridging the gap between the structural model of our de-
scription and the behavioral model used in a compiler.

Our backend is loosely coupled with the architecture inde-
pendent frontend of gee, the GNU Compiler Collection [21],
and allows us to reuse a large number of readily available
high level optimizations. We present some characteristics
of ADL descriptions for the MIPS R2000 and the CHILI,
a novel DSP architecture developed by ON DEMAND Mi-
croelectronics. Experimental results indicate that the code
quality is competitive compared to a handcrafted instruction
selector.

2. RELATED WORK

In [26], Pees et al. present LISA — an ADL that aims
to simplify the specification of pipelined processors and is
used to automatically generate interpreted and compiled in-
struction set simulators. In order to support the genera-
tion of compilers, Braun et al. added a semantic extension
to the operations in LISA [4]. There, micro-operations are
used to define each operator’s meaning. The semantics of
a micro-operation are kept in a separate library. In [5],
Ceng et al. present a method to derive rules for a tree pat-
tern matcher from micro-operations. The compiler uses ba-
sic rules, which are sets of machine-independent templates,
that transform IR operators to micro-operations. For in-
structions that cannot be handled by these transformations,
e.g., SIMD instructions, compiler intrinsics are provided.

Expression, a language for design exploration of Systems-
On-Chip is presented by Halambi et al. [15]. It supports
the retargeting of a compiler and simulator, as well as the
generation of VHDL models [23]. An architecture descrip-
tion comnsists of three major sections: the specification of
the instruction set, a structural model, and tree patterns
for the compiler. All major compiler components, such as
the instruction selector, instruction scheduler and register
allocator are (semi-)automatically retargeted.

The AVIV compiler [16] uses an ISDL machine descrip-
tion. In this compiler, the statements of a basic block are
converted into split-node directed acyclic graphs. Within
such a DAG, operation nodes are duplicated for each func-
tional unit that is able to perform the operation. The com-
piler does operation grouping, functional assignment, a pre-
liminary register allocation, and instruction scheduling at
the same time based on several heuristics.

Qin et al. introduce the Mescal Architecture Description
Language [27] (MADL). It supports the generation of in-
struction set simulators and can be used for register alloca-
tion and instruction scheduling modules of a compiler.

In MIMOLA [22], a processor is described by a netlist of
hardware modules. Leupers et al. present in [19] a BDD-
based technique to extract an instruction set from a MI-
MOLA processor model. The RECORD compiler [20] uses
these instructions in its code selection algorithm by gener-
ating a tree grammar from the extracted register transfer
(RT) templates. For hardware entities that can store val-
ues (e.g. registers), non-terminals are created, while proces-
sor ports, hardware operators, and hardwired constants are
mapped to terminals of the grammar. Each RT template is
converted into a rule using the corresponding terminals and
nonterminals. They use iburg [10] to generate an instruc-
tion selector from the grammar.

The Trimaran compiler uses the MDes [14] machine de-
scription language to automatically customize the register
allocator and instruction scheduler. In particular the re-
source tables used during scheduling are derived from MDes

specifications. A simulator may be derived for variants of
the HPL-PD architecture only, retargetability of the simulator
is thus limited.

Fauth et al. developed the architecture description lan-
guage nML; see [8]. Two compilers have been built around
nML. The CHESS code generation environment [17] targets
mainly fixed-point digital signal processors. The nML model
is translated into an instruction set graph that is processed
using a special bundling algorithm for code selection.

The CBC compiler [7] also retargets itself using a nML
description. A phase called macro expansion transforms the
IR into operations of the target processor. The authors ap-
ply a heuristic node duplication technique to extend their
method to graphs and use the iburg matcher generator.

Seng et al. propose PD-XML [29], a XML based hardware
description language. They have separate descriptions for
the instruction set architecture (ISA) and the microarchi-
tecture and demonstrate how their language might interface
with existing hardware description languages.

Azevedo et al. [2] developed ArchC, an architecture de-
scription language for piplined processors based on System
C. It is possible to derive System C models, simulators and
assemblers from ArchC specifications. Descriptions consist
of an architecture model, defining the instruction set, regis-
ters, memories, and pipeline. The behavior of instructions
is described separately using System C functions.

Recently, Farfeleder et al. [6] proposed an ADL that is
used to derive an instruction selector for the xDSPcore —
a five-way variable-length VLIW architecture. Contrary to
our approach, their descriptions contain tool specific speci-
fications, e.g., rules for the tree pattern matcher generator,
that are — to some extent — recombined automatically.

The Xtensa system from Tensilica simplifies the addition
of extensions to Tensilicas core processor [31, 12]. Exten-
sions are described using a specialized language, and the
processor and tool chain are automatically generated. How-
ever, it is not possible to modify the core architecture lim-
iting the possibilities for design exploration.

3. CONTRIBUTION AND STRUCTURE

In this paper, we present a fully retargetable compiler
backend based on a newly developed structural ADL. The
language is designed with a strong focus on extensibility,
compactness, and comprehensibility. In contrast to previous
approaches at our group [6], specifications for the particular
components are derived automatically from a simple and
compact semantic description, thereby shifting complexity
from the architecture description to the generator tools.

The language is expressive enough to describe practical
architectures while remaining conceptually simple in order
to be processable by automatic tools, thereby opening the
door for the generation of further parts of the tool chain,
hardware synthesis, and hardware verification.

We describe in detail how to derive the architecture de-
pendent parts of a compiler backend — most notably an
optimizing instruction selector — and present experimental
results, comparing them to two handcrafted compiler back-
ends.

The rest of this paper is organized as follows. Section 4
gives a brief overview of our compiler backend and its ar-
chitecture dependent components. In Section 5 we present
the main concepts of our new ADL and give an overview
of an example specification. We show in Section 6 how to

(Embedded) C
—

assembler

reg. allocator | scheduler

static backend

architecture
description

lowering | tree matcher

I I I I

reg. model

operation tables

[architecture dependent [architecture independent

Figure 1: Overview of the main components of our
backend. Dashed lines represent compiler compile
time input that is an inherent component of the final
executable.

derive a tree pattern based instruction selector from a given
specification and present experimental results in Section 7.
Concluding remarks can be found in Section 8.

4. COMPILER OVERVIEW

The goal of our backend is to serve as a testbed for the
development of new optimization techniques and designs for
embedded systems. The abstraction of the target machine
provided by the architecture description allows us to easily
compare the effect of different optimizations and modifica-
tions for a large number of architectures and variants.

Figure 1 shows the main components of our backend and
their interaction. A modified version of gcc 4.1 is used to
export the internal intermediate representation (IR) of the
source program to a XML file, which is imported into our
own high level intermediate language. High level constructs,
such as array references, function calls and variable decla-
rations, are converted into an architecture independent low
level form. In addition, an ABI interface allows to rewrite
function calls and global symbols. Code generation is done
using a modified version of lburg [11, 10], a tree pattern
matcher generator. Virtual registers are replaced with hard
registers using an extended Briggs style global graph color-
ing register allocator; see [28]. Both before and after register
allocation, a list scheduler is invoked that reorders machine
instructions to heuristically minimize the number of stalls.
In order to detect structural and data hazards, we make use
of the operation table approach [30, 24].

A separate generator tool, that is invoked solely during
compiler compile time, generates a register file model, oper-
ation tables for instruction scheduling, and a set of rules for
our instruction selector. All these architecture dependent
compiler components are derived from a single architecture
specification; see Section 6.

S. ARCHITECTURE DESCRIPTION

Most ADLs found in literature were designed with a spe-
cific application in mind and later extended or slightly mod-
ified in order to enrich them with additional information.

Languages initially intended for simulator generation typ-
ically provide a detailed model of the architecture using a
subset of C/C++. It is hard to extract a behavioral model

<!—— define register type R_t —>

<RegisterType name="R_t" width="32"
repeatcount="8">

<Port name="Rs" writeable="false" />

<Port name="Rt" writeable="false" />

<Port name="Rd" readable="false" />

<Port name="Rd_hi" offset="16"

width="16" />

<Constant index="0" value="0" />

</RegisterType>

\</—— define a concrete register file—>

<Register name="R" type="R_t"
category="integer baseindex" />

Listing 1: Sample declaration of a register file con-
sisting of eight 32 bit registers. Port Rd_hi accesses
only the upper halfword and register 0 is a hard-
wired constant.

from these descriptions, that is suitable for other task, e.g.,
compiler generation. Usually this problem is solved by in-
cluding a specification for both the simulator and the com-
piler. However, it is difficult to guarantee consistency be-
tween these two models and reusing them for different ap-
plications is almost impossible. LISA [26, 5] and previous
work at our group [6] are examples of this approach.

We propose a new ADL that facilitates the reuse of archi-
tecture specifications for various purposes and easy integra-
tion with other software systems, e.g., compiler or simulator
frameworks. Based on a structural description of the ar-
chitecture, we are able to derive a behavioral model of the
instruction set; both models may be used for further pro-
cessing.

In our ADL architecture specifications consist of a set of
components interconnected by data links. Components may
either correspond to hardware, e.g., registers, caches, mem-
ories and functional units, or may represent abstractions,
such as immediates (values embedded into the instruction
word) and constants. Hardware components are associated
with ports that allow data links to be connected, while im-
mediates and constants are directly connected to the netlist.
All components are instantiations of a particular type — a
kind of template used to create multiple identical compo-
nents. Types facilitate the reuse and exchange of compo-
nents across different architecture descriptions.

In addition to the hardware model, our ADL allows to
express assembler syntax, binary encoding, and parts of the
application binary interface (ABI).

5.1 Register Files and Memories

A register type defines the number and width of registers,
as well as ports of a register file. Ports might be read-only or
write-only respectively and can be restricted to a contiguous
range of bits within a particular register, e.g., a particular
halfword or a single bit. Some of the registers within a reg-
ister type can be defined to represent hardwired constants.
Listing 1 shows the declaration of a register type and sub-
sequent instantiation of a register.

A memory type defines basic properties such as size, la-
tency and ports. In addition to the data width, the ports
of memories and caches also define the particular address
width. Cache types specify the particular cache organiza-

<UnitType name="EX_t">

<Input name="RS" width="32" />
<Input name="RT" width="32" />
<Output name="RD" width="32" />

<0Operation name="addi" syntax="op3_s" >
<Syntax syntax="op3_s" token="mnemonic"
value="addi" />
<Predicate name="addr" />
<Body>
<add a="RS" b="RT" d="RD" />
</Body>
</Operation>

</UnitType>

Listing 2: An excerpt of the specification of the ex-
ecute unit type.

<Unit name="EX" type="EX_t" >
<Input input="RS" select="DE.RS_o"
stageboundary="true" />
<Input input="RT" select="DE.RT_o"
stageboundary="true" />

<Output output="RD" select="Memory.@read" />
</Unit>

Listing 3: Instantiation of the execute unit type, and
connections to other components.

tion which has to be known to the consuming tools. Each
cache is connected to a particular memory at the point of
instantiation.

In order to support input values that are encoded within
the instruction word, one can define immediates. They con-
sist of a length specification and can be connected freely to
input ports of other components.

5.2 Units

The central part in an architecture specification are unit
types and instances thereof. Unit types may contain a com-
plete network of sub-components (including units) or repre-
sent semantic information using operations.

Operations contain a sequence of micro-operations, that
define the effect of an operation on the units output ports
and local registers. Micro-operations may read from local
registers, temporaries or the units input ports, and may
write to local registers, temporaries and output ports. Tem-
poraries are volatile local storage, i.e., the value is not pre-
served across different invocations of an operation. Table 2
lists some predefined micro-operations provided by the ADL.
While it is possible to define additional micro-operations, the
existing built-ins are sufficient for many embedded architec-
tures.

Listing 2 shows a simplified unit type of the MIPS R2000
execute unit. It specifies two 32 bit input ports, RS and RT,
and a 32 bit output port RD. The values supplied by the
two input ports are accumulated and written to the output
port using the add micro-operation. Besides the behavioral
model, also a reference to a syntax template and the defini-
tion of a predicate is shown. Syntax templates describe the
assembler syntax of instructions using verbatim text inter-
mixed with syntax variables. In this example the mnemonic

Move move cmove

Conversion | sext zext trunc
Comparison | ceq cneq clt cltu cle cleu cgt cgtu cge cgeu
Logic and or xor not

Shift rol ror shl shr ashr

Arithmetic | abs add sub divrem divremu mult multu

Figure 2: Built-in micro-operations for integer arith-
metic.

is modeled using a syntax variable that is bound to the value
addi for this particular operation. The predicate addr indi-
cates that the values produced by this operation may be used
for address calculations by subsequent units/operations; a
detailed description of predicates is given in the following
section.

The instantiation of the execute unit from a unit type
is shown in Listing 3. The two input ports defined by the
execute unit type are connected to output ports RS_o and
RT_o of the decode unit DE. The output port is connected to
an instance of a data memory Memory.

5.3 Instruction Set

The instruction set is defined implicitly along paths
through the netlist of the underlying architecture. Paths are
automatically identified using a breadth first search starting
at end points. An end point is a cache, memory or unit
that either has no output ports, or has all output ports con-
nected to registers only, i.e., the execution of instructions
is finished at the given component. Only data written to
registers and/or memories during the instructions execution
persists after this point.

The netlist is traversed in reverse order collecting com-
ponents and data links until a register or immediate is en-
countered. The components found during this process are
ordered according to the data dependencies implied by the
data links. Note, that data link connections may be am-
biguous, i.e., several output ports may be connected to the
same input port. In this case all possible combinations
are enumerated and paths created accordingly. The behav-
ioral model of instructions is created from operations defined
along a given path.

Predicates and conditions restrict instructions to certain
combinations of unit types, unit instances, and operations.
A predicate is a symbol that is visible along a path, starting
at its definition. Conditions verify the existence of a given
predicate and discard invalid instructions.

The structure of the pipeline is automatically derived us-
ing data links marked as stage boundaries, which roughly
corresponds to a pipeline register between the two ends of
the link. Data forwarding between pipeline stages is de-
scribed using special forwarding links, leading from a units
output port to another units input port. The pipeline in-
formation is available to the instruction set representation,
allowing detailed timing analysis.

Figure 3 shows an example netlist describing a simple
pipelined architecture, loosely based on the MIPS R2000
[25]. The example contains the register files PC and R, an
immediate Imm and a data memory Memory. The register file
R offers four ports, two read-only ports Rs and Rt, a write-
only port Rd, and a port Rd_hi, that is both readable and

v

FE DE EX wB
Memory
fetch decode bne LKL writeback
>l addi -

Figure 3: Example netlist for an architecture with
four pipeline stages.

Micro-operations Stage Unit
PC.p[0,0] = add(PC.p[0,0], 4) 0 FE
DE.Imm_o = sext(Imm) 1 DE
DE.Rs_o = move(R.Rs[0,31]) 1 DE
EX.Rd_o = add(DE.Rs_o, DE.Imm_o) 2 EX
R.RA[0,31] = move(EX.Rd_o) 3 WB

Figure 4: Semantics of the addi instruction.

writeable. All but the last one access bits 0 through 31 of a
given register, while Rd_hi accesses bits 16 through 31. The
remaining components are functional units, each having at
least one operation. Stage boundaries are represented using
bold lines, forwarding links using dotted lines.

Branches, arithmetic computations, and address calcula-
tions are carried out by the execute unit EX. However, using
the execute unit for different tasks may lead to undesirable
effects. For example using the bne (branch on not equal)
operation of the execute unit for address calculations is il-
legal, although certainly possible considering the hardware
connections. This restriction is described using a condition
laddr at the data memory. Only instructions that have the
addr predicate defined are considered legal, all others are
rejected. In this example only the addi operation may be
used for address calculations, thus a corresponding predicate
is added to the operations definition; see Listing 2.

Applied to the example netlist, the path finding algorithm
yields three paths: FE-DE-EX-Memory-WB, FE-DE-EX-Memory
and FE-DE-EX-WB. Accounting for conditions and predicates
('addr), four instructions are identified along these paths:
addi, load, store and bne. Figure 4 shows the sequence of
micro-operations of the addi instruction.

6. CODE SELECTION

Code Selection is one of the major phases of a compiler
backend and aims to translate the internal IR of a com-
piler into machine instructions. One of the most popular
approaches is tree pattern matching — a very fast and prov-
ably optimal (for single statements) method based on dy-
namic programming.

While we can derive most architecture dependent parts
from our ADL without significant difficulty, the specifica-
tion of an optimizing code selector requires some more ef-
fort. This section gives a very brief introduction into tree
pattern matching and describes how to automatically derive
a specification from a given architecture description.

6.1 Tree Pattern Matching

Tree pattern matching is a well known technique and
goes back to Aho and Johnson [1], who were the first to
propose a dynamic programming algorithm for the problem
of code selection. Balachandra et al. present in [3] an
important extension that reduces the algorithm to linear
time by precomputing itemsets, i.e., static lookup tables, at
compiler compile time.

The same technique was applied by Fraser et al. in [11]
in order to develop burg — a tool that converts a speci-
fication in form of a tree grammar into an optimized tree
pattern matcher written in C. While burg computes costs at
generator generation time and thus requires constant costs,
iburg [10] can handle dynamic costs by shifting the dynamic
programming algorithm to code selection time. This allows
the use of dynamic properties for cost computations, e.g.,
concrete values of immediates. However, the additional flex-
ibility is traded for a small penalty in execution time.

Our code generator is based on a modified version of lburg
— the tree pattern matcher generator available from the LCC
ANSI C compiler [9].

6.2 Rule Generation

A tree grammar consists of finite sets N and T' of nonter-
minal and terminal symbols and a set of mapping rules P.
Each rule in P is a tree pattern with associated costs that
covers a tree fragment of the IR. An optimal cover is a full
cover of the expression tree with rules in P such that the
sum of costs is minimized; see [10].

Terminal symbols T essentially describe the operations in
the compiler’s IR. Nonterminals usually reflect registers or
particular modes and have to be generated from the archi-
tecture specification. Likewise, P specifies how a particular
tree fragment is translated to machine instructions.

6.2.1 Deriving Nonterminals

Nonterminals are usually used as a kind of temporary
“variable” in order to chain different rules together. We use
nonterminals to represent immediates and registers defined
by the architecture description.

The concrete data representation of immediates is not
explicitly defined by the ADL but is given by the micro-
operations using them. Thus immediates are mapped to a
single nonterminal — immediate — that matches symbols and
constants in the IR. Mapping rules verify that the involved
data representations, i.e., the bit width and signedness, of
the IR and the rule pattern match.

Registers and their associated ports correspond to register
classes during instruction selection. Instructions reading
from a given register port must be supplied with virtual
registers of the corresponding register class after instruction
selection. For each register class a separate nonterminal is
created, representing register class constraints on mapping
rules.

The register file, depicted in the example netlist from
Figure 3, offers four ports in total. Three of them access the
same region of a register (bits 0 through 31), thus these three
ports are summarized by one nonterminal called RC_R. The
fourth port generates a second nonterminal, RC_R_16_31.

(1) RC_R_16_31:SHR (RC_R, 16)
(2) RC_R: BIT_INSERT(RC_R, RC_R_16_31, 16, 16)

Figure 5: Conversion rules derived from the example
netlist.

6.2.2 Deriving Conversion Rules

Two register ports access possibly overlapping ranges of
data bits of the same register. If the two ranges overlap,
data written to one port may be read through the other.
This is equivalent to a conversion between the corresponding
register classes at no cost. Even if the two ranges do not
overlap it is possible to convert between the two register
classes, using a shift instruction to move data between the
two ports.

Conversion rules for both cases are created automatically.
However, the conversion between two register classes is only
permitted if the data representation required by the IR can
be preserved, i.e., the bitwidth of the destination port is
sufficient to hold the data type of the IR.

In our example netlist the Rd_hi port of the register file
may be used to read the upperhalf of a register for free. In
the IR this corresponds to a shift operation, as depicted by
the first rule in Figure 5. Likewise, writing to the Rd_hi
port matches a bit insertion operation of the IR, i.e., 16 bits
of the second operand are inserted into the first operand
starting at position 16.

6.2.3 Deriving Rules

Deriving mapping rules from the instructions of an ar-
chitecture is more complex, as instructions may have side
effects. Currently, two classes of side effects are considered:
memory accesses and control flow changes (e.g., branches,
exceptions).

In general, it is not safe to use instructions accessing mem-
ory for computations other than the memory access. For
example a memory store with a pre-increment addressing
mode, can not be used to increment a register. Thus only
patterns matching LOAD and STORE operations of the IR are
generated from these instructions. This is a limitation of the
tree pattern matching approach, that is only applicable to
expression trees. Instructions with memory side effects can
be modeled using a DAG, but not using a tree. Usually a
postprocessing pass, e.g., a peephole optimizer, recombines
these instructions to circumvent this limitation.

Control flow is modeled by (conditionally) defining the
program counter (pc). Regular instructions are assumed
to increment the pc by a constant value, other instructions,
e.g., branches, are analyzed and classified as shown in Figure
6. In addition to this classification the analysis also identifies
call instructions that store the program counter to a register
or memory. If an instruction is identified to be a branch or
call, specific mapping rules are generated matching GOTO and
CALL operations of the IR.

Considering instructions without side effects only, map-
ping rules are created by processing the list of micro-oper-
ations of each instruction. A rule is created for each as-
signment to a register port. Micro-operations supplying
values to the assignment are added to the pattern of the
rule and are directly mapped to operations of the IR us-
ing a lookup table. Values produced by preceding micro-
operations are translated to patterns recursively until a move

reg. instructions pc = pc + const.

abs. branch pc = imm.

abs. branch pc = reg.

cond. abs. branch pc = (cond.) ? imm. : pc + const.
cond. abs. branch pc = (cond.) ? reg. : pc + const.
rel. branch pc = pc + imm

rel. branch pc = pc + reg

cond. rel. branch pc = pc + (cond. ? imm. : const.)
cond. rel. branch pc = pc + (cond. ? reg. : const.)

Figure 6: Control flow characteristics of instruc-
tions.

micro-operation is encountered reading the value of a reg-
ister or immediate. Register operands are replaced by the
nonterminals of the particular register class and immediates
by the immediate nonterminal respectively.

Note, that tree patterns may only produce a single result.
This restriction does not apply to the micro-operations in
our ADL. To overcome this shortcoming, we duplicate rules
for each result produced. The same situation arises with
instructions having multiple results. Here we generate mul-
tiple independent rules and try to recombine redundant in-
structions using a postprocessing procedure after instruction
selection is completed.

Along with the construction of rule patterns, conditions
are created that have to be satisfied for a mapping rule to
be applicable during instruction selection. These conditions
cover the representation of data, such as the bit width, sign
information and type of the IR. Finally, for each rule, costs
are calculated from the pipeline model and an emit function
is created that is used to derive machine instructions once a
cost minimal cover is obtained by the dynamic programming
algorithm.

6.2.4 Specializations and Templates

In order to derive a complete code selector, each operation
of the IR has to be implemented by at least one rule.
However, in general the instruction set will not directly
match all the required operations in the IR.

One such case occurs when a particular operation in the IR
is “simulated” by a more general instruction by hardwiring
some of the inputs, e.g., a MOVE operation can be easily im-
plemented by adding zero to the source operand. Likewise,
certain useful operations can be obtained by specifying the
same input to its operands. We call a rule to be a specializa-
tion, if it is derived from an instruction by predefining some
of its inputs.

Similarly, many DSP architectures implement only a sub-
set of the operations in the IR. This reduces both complexity
of the hardware layout and required code size. The missing
operations have to be emulated by a series of available in-
structions.

Moreover, the code selector will in general produce more
efficient code if it is able to exploit algebraic laws, e.g.,
commutativity or associativity of certain operations. Many
of those simple optimizations can be easily expressed in
terms of tree patterns that can be handled by the dynamic
programming algorithm.

Our rule generator is able to handle those cases using a
set of built-in templates. Templates consist of a set of tree
patterns and a combine function. The tree patterns specify,

(1) RC_R: PLUS (RC_R, SEXT (imm))

(2) RC_R: PLUS (SEXT (imm), RC_R)

(3) RC_R: PLUS(RC_R, imm)

(4) RC_R: PLUS (imm, RC_R)

(5) RC_R: SEXT (imm)

(6) RC_R: imm

(7) RC_R: RC_R

(a)

(1) stmt: COND(NEQ(RC_R, RC_R), GOTO (imm))
(2) stmt: COND(RC_R, GOTO (imm))

(b)

Figure 7: Patterns derived from the addi and bne
instructions.

(1) %TmpL: SHL (%Value, SHORT_SIZE)
(2) YResult: ASHR (/,TmpL, SHORT_SIZE)
(a) Required tree patterns.

%Result: SEXT (%Value)
(b) Resulting pattern

Figure 8: Template for the sign-extend operation.

in an architecture independent way, which instructions need
to be available to simulate the desired operation. The
combine function specifies how these instructions have to
be emitted during instruction selection.

The generator repeatedly checks if a particular template
is applicable, i.e., all required tree patterns used in the tem-
plate body are available, and generates a specialized rule by
replacing nonterminal variables in the template with con-
crete nonterminals of the tree patterns used to simulate the
desired operation. A template might use temporary regis-
ters but must not clobber registers or memory addresses that
would have been left untouched by the original operation.

We use templates mainly to provide default implementa-
tions for “complex” operations of the IR using basic instruc-
tions that are expected to be available on each architecture.
Those templates are kept in a separate module and can be
easily extended if necessary.

For example, the semantics of a sign-extend operation
can be simulated by a combination of shift instructions.
Figure 8 depicts the required, as well as the resulting tree
patterns. SHORT_SIZE represents the size of a short int,
other names preceded by % are nonterminal variables, that
are bound to concrete nonterminals. Note, that names
occurring multiple times always have to represent the same
nonterminal, otherwise the template is not applicable.

Figure 7 shows rule patterns created from the addi and
bne instructions of our example netlist, assuming that one
register is bound to the constant value zero. The first
patterns are initially derived from the instruction, while
the others are generated using specialization and algebraic
simplifications. The SEXT of the addi instruction is removed
for patterns 3, 4 and 6. Instead, a check is introduced that
restricts the immediate operands to signed integers during
instruction selection.

Lines | Paths | Instr. | gen. Rules | Rules
MIPS | 791 3 46 158 163
CHILI | 968 5 674 145 150

Figure 11: Architecture description characteristics.

7. EXPERIMENTAL RESULTS

We have used the ADL proposed in Section 5 in order to
create hardware descriptions for the integer instruction set of
a MIPS R2000 core and the CHILI, a novel DSP processors
developed by ON DEMAND Microelectronics.

CHILI is a 4-way VLIW (Very Long Instruction Word)
architecture specifically aimed for efficient (mobile) video
processing. Each slot has access to a general purpose register
file offering 64 32-bit registers. Loads and stores can be
issued on each of the four slots and are executed out of
order in the data memory subsystem. Branches can only be
issued in the first slot and expose a large delay of five cycles.
To compensate for the large delay all instructions, except
memory loads and stores, can be executed conditionally. All
conditional variants occupy two slots and need to be issued
on even slots.

While the MIPS R2000 specification has been developed
as a sample specification in sync with the ADL, we could
come up with a CHILI specification written from scratch
within a couple of days. The CHILI model consists of 968
lines of ADL code and defines 674 instructions (including all
conditional variants). The MIPS R2000 model is consider-
ably smaller, and consists of 791 lines of ADL code.

In comparison, a model of a MIPS R4000 based architec-
ture described using the Expression [15] language consists
of 4183 lines. About 1200 lines are needed for the specifi-
cation of the integer and floating point instruction set, the
structural model of the architecture is described using about
600 lines. The biggest part of the description is made up by
pattern specifications for the compiler (about 2800 lines).

A description of the integer instruction set of the MIPS
R3000 using the ArchC' [2] language consists of 2632 lines.
478 lines specify the instruction set, including the syntax and
encoding of instructions. The behavioral model consists of
additional 2154 lines of System-C code.

So far, the backend derived solely from those specifications
is able to compile medium sized integer benchmarks. While
this is the first C compiler available for the CHILI, we are
able to make comparisons with existing compilers for the
MIPS R2000 architecture. All experiments were executed
using a cycle accurate simulator [2]. Benchmarks were taken
from the MiBench [13] and Mediabench [18] suites, omitting
those with floating point operations. cmac, dct32, dct8x8,
serpent, and twofish are additional benchmarks supplied
by our research partner. These benchmarks are medium
sized, ranging from 800 to 4400 lines of code.

To evaluate the automatically derived instruction selector
we compared the runtime and codesize of our benchmarks to
LCC, a retargetable ANSI C compiler developed by Fraser
et al. [9]. It does not offer any optimizations apart from the
code generator and a heuristic register allocator. The most
frequently used local variables are allocated to registers,
while the less frequently used are kept on the stack. The
instruction selector is generated from a handcrafted set of

3

o
©

o

adpclh ‘de"‘ods,
b/tcou,”

S0y, -

Cnge

Cregs

ez,

Figure 9: Performance improvement of the

[Hadi-00 [adi-01 [l gec-O1

generated backend in comparison to LCC.

Shy

M‘?ﬁsh
avg,
"age

$
g
£
=
B

Figure 10: Speedup of the generated backend (ADL) and the traditional gcc compiler (GCC).

mapping rules using Iburg. The rule set consists of 181 rules,
with 1120 lines of rule specifications and C code.

All high level optimizations in the gcc frontend of our
compiler were disabled for this comparison. In many cases
the code generated by our instruction selector is faster
than the code generated by LCC; see Figure 9. Only two
benchmarks, cmac, and stringsearch, show a significantly
decreased performance, due to useless jumps introduced by
a bad ordering of basic blocks. The code size of the two
compilers is almost identical, with less than 1% difference
on all benchmarks. The results indicate that the rule
set derived by our generator tool is competitive to the
handcrafted rule set of LCC.

In addition, we compared the ADL based compiler to
the original, highly optimized gcc backend. While we
benefit from a number of high level loop transformations and
optimizations, most of the traditional backend optimizations
are implemented on RTL level and are thus not available in
the ADL compiler.

Figure 10 shows the speedup of gcc and our automatically
generated backend in comparison to the baseline compiler
(gcc -00) for two different optimization levels (00, 01). The
average improvement in comparison to the baseline compiler
is about 39%. Even with optimizations enabled we still reach
about 85% of gcc’s performance on average. Apart from the
code generator, register allocator and instruction scheduler,
currently no other optimizations are available in our back-
end. Thus we are lacking redundancy elimination and loop
invariant code motion for address calculations, leading to a

performance penalty. The high level optimizations available
in gecc are not as effective as initially expected. Enabling
additional optimizations often does not yield any improve-
ments to the input of our backend, while optimizations at
the RTL level of gcc show significant improvements to the
code quality. On average the high level optimizations avail-
able to our compiler improve the runtime of the benchmarks
by about 20%. The cmac and stringsearch benchmarks
benefit the most, with an improvement of 55% and 37% re-
spectively.

We expect to close the performance gap by adding some
simple code transformations to our backend, e.g., the elimi-
nation of redundant address computations. In addition, we
expect improvements from future versions of gcc, as RTL
based optimizations are gradually replaced with high level
optimizations.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a fully retargetable compiler
backend based on a structural ADL that is designed to be
flexible enough for the generation of further parts of the tool
chain, i.e., assemblers, linker, optimized simulators, and also
automatic tools for hardware synthesis and verification.

While it is straightforward to automatically derive the
first group of tools, the latter group might be much more
challenging. However, the prospective benefits for both
hardware and software development are persuasive, which
motivates us to continue work in those directions.

Computational results for a testbed description of a MIPS
R2000 core show that our automatically derived instruction
selector is competitive in comparison to the handcrafted
code generators of LCC and gcc.

[11]

REFERENCES

Alfred V. Aho and Stephen C. Johnson. Optimal code
generation for expression trees. Journal of the ACM,
23(3):488-501, July 1976.

Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu,
Guido Araujo, Cristiano Araujo, and Edna Barros.
The archc architecture description language and tools.
Int. J. Parallel Program., 33(5):453-484, 2005.

A. Balachandran, D. M. Dhamdhere, and S. Biswas.
Efficient retargetable code generation using bottom-up
tree pattern matching. Computer Languages,
15(3):127-140, 1990.

Gunnar Braun, Achim Nohl, Weihua Sheng, Jianjiang
Ceng, Manuel Hohenauer, Hanno Scharwéchter,
Rainer Leupers, and Heinrich Meyr. A novel approach
for flexible and consistent ADL-driven ASIP design. In
DAC ’04: Proceedings of the 41st Design Automation
Conference, pages 717-722. ACM Press, June 2004.
Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers,
Gerd Ascheid, Heinrich Meyr, and Gunnar Braun. C
compiler retargeting based on instruction semantics
models. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Furope, pages
1150-1155. IEEE Computer Society, March 2005.
Stefan Farfeleder, Andreas Krall, Edwin Steiner, and
Florian Brandner. Effective compiler generation by
architecture description. In LCTES ’06: Proceedings
of the 2006 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded
Systems. ACM Press, June 2006.

Andreas Fauth, Giinter Hommel, Carsten Miiller, and
Alois Knoll. Global code selection of directed acyclic
graphs. In CC' ’94: Proceedings of the 5th
International Conference on Compiler Construction,
pages 128-142. Springer, April 1994.

Andreas Fauth, Johan Van Praet, and Markus
Freericks. Describing instruction set processors using
nML. In EDTC °95: Proceedings of the 1995 FEuropean
Design and Test Conference, pages 503-507. IEEE
Computer Society, March 1995.

C. W. Fraser and D. R. Hanson. A retargetable
compiler for ANSI C. Technical Report
CS-TR-303-91, Princeton, N.J., 1991.

Christopher W. Fraser, David R. Hanson, and

Todd A. Proebsting. Engineering a simple, efficient
code-generator generator. ACM Letters on
Programming Languages and Systems, 1(3):213-226,
September 1992.

Christopher W. Fraser, Robert R. Henry, and Todd A.
Proebsting. BURG — fast optimal instruction selection
and tree parsing. ACM SIGPLAN Notices,
27(4):68-76, April 1992.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

David Goodwin and Darin Petkov. Automatic
generation of application specific processors. In
CASES ’03: Proceedings of the 2003 international
conference on Compilers, architecture and synthesis
for embedded systems, pages 137-147, New York, NY,
USA, 2003. ACM Press.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proceedings of the IEEFE jth Annual
Workshop on Workload Characterization, December
2001.

J. Gyllenhaal. A machine description language for
compilation. Master’s thesis, 1994.

Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh
Khare, Nikil Dutt, and Alex Nicolau. Expression: a
language for architecture exploration through
compiler/simulator retargetability. In DATE ’99:
Proceedings of the conference on Design, automation
and test in Europe, page 100, New York, NY, USA,
1999. ACM Press.

Silvina Hanono and Srinivas Devadas. Instruction
selection, resource allocation, and scheduling in the
AVIV retargetable code generator. In DAC ’98:
Proceedings of the 35th Design Automation
Conference, pages 510-515. ACM Press, June 1998.
Dirk Lanneer, Johan Van Praet, Augusli Kifli, Koen
Schoofs, Werner Geurts, Filip Thoen, and Gert
Goossens. CHESS: Retargetable code generation for
embedded DSP processors. In Peter Marwedel and
Gert Goossens, editors, Code Generation for
Embedded Processors, pages 85—102. Kluwer Academic
Publishers, 1995.

Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons
systems. In International Symposium on
Microarchitecture, pages 330-335, 1997.

Rainer Leupers and Peter Marwedel. A BDD-based
frontend for retargetable compilers. In EDTC ’95:
Proceedings of the 1995 European Design and Test
Conference, pages 239-243. IEEE Computer Society,
March 1995.

Rainer Leupers and Peter Marwedel. Retargetable
generation of code selectors from HDL processor
models. In EDTC ’97: Proceedings of the 1997
European Design and Test Conference, pages 140-145.
IEEE Computer Society, March 1997.

The gnu compiler collection. http://gcc.gnu.org/.
Peter Marwedel. The Mimola design system: Tools for
the design of digital processors. In DAC ’84:
Proceedings of the 21st Design Automation
Conference, pages 587-593. IEEE Press, June 1984.
Prabhat Mishra, Arun Kejariwal, and Nikil Dutt.
Synthesis-driven exploration of pipelined embedded
processors. In VLSID ’04: Proceedings of the 17th
International Conference on VLSI Design, page 921,
Washington, DC, USA, 2004. IEEE Computer Society.

[24]

[27]

Sanghyun Park, Eugene Earlie, Aviral Shrivastava,
Alex Nicolau, Nikil Dutt, and Yunheung Paek.
Automatic generation of operation tables for fast
exploration of bypasses in embedded processors. In
Proceedings of the Conference on Design, Automation
and Test in Europe, DATE 2006, Munich, Germany,
March 6-10, 2006, pages 1197-1202. European Design
and Automation Association, Leuven, Belgium, 2006.
David A. Patterson and John L. Hennessy. Computer
Organization € Design: The Hardware/Software
Interface. Morgan Kaufmann, 1994.

Stefan Pees, Andreas Hoffmann, and Heinrich Meyr.
Retargeting of compiled simulators for digital signal
processors using a machine description language. In
DATE ’00: Proceedings of the conference on Design,
Automation and Test in Europe, pages 669-673. IEEE
Computer Society, March 2000.

Wei Qin, Subramanian Rajagopalan, and Sharad
Malik. A formal concurrency model based architecture
description language for synthesis of software
development tools. In LCTES ’04: Proceedings of the
2004 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded
Systems, pages 47-56. ACM Press, June 2004.

(28]

29]

(30]

(31]

Johan Runeson and Sven-Olof Nystrom. Retargetable
graph-coloring register allocation for irregular
architectures. In Andreas Krall, editor, Software and
Compilers for Embedded Systems, 7Tth International
Workshop, SCOPES 2003, Vienna, Austria,
September 24-26, 2003, Proceedings, volume 2826 of
Lecture Notes in Computer Science, pages 240-254.
Springer, 2003.

S. P. Seng, K. V. Palem, R. M. Rabbah, W. F. Wong,
W. Luk, and P.Y.K Cheung. PD-XML: extensible
markup language for processor description. In
Field-Programmable Technology, pages 437—440, 2002.
Aviral Shrivastava, Eugene Earlie, Nikil D. Dutt, and
Alexandru Nicolau. Operation tables for scheduling in
the presence of incomplete bypassing. In Proceedings
of the 2nd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System
Synthesis, CODES+I1SSS 2004, Stockholm, Sweden,
September 8-10, 200/, pages 194-199. ACM, 2004.
Albert Wang, Earl Killian, Dror Maydan, and Chris
Rowen. Hardware/software instruction set
configurability for system-on-chip processors. In DAC
’01: Proceedings of the 38th conference on Design
automation, pages 184-188, New York, NY, USA,
2001. ACM Press.

