
Embedded JIT Compilation with CACAO on YARI

Florian Brandner
Institute of Computer

Languages
Vienna University of
Technology, Austria

brandner@complang.tuwien.ac.at

Tommy Thorn
Unaffiliated Research

California, USA
tommy@thorn.ws

Martin Schoeberl
Institute of Computer

Engineering
Vienna University of
Technology, Austria

mschoebe@mail.tuwien.ac.at

ABSTRACT
Java is one of the most popular programming languages for the
development of portable workstation and server applications avail-
able today. Because of its clean design and typesafety, it is also
becoming attractive in the domain of embedded systems. Unfor-
tunately, the dynamic features of the language and its rich class
library cause considerable overhead in terms of runtime and mem-
ory consumption. Efficient techniques to implement Java Virtual
Machines (JVM), that are suitable for use in resource constrained
environments are thus needed. In this work we present a solu-
tion for very restricted environments based on CACAO. CACAO
is a just-in-time (JIT) compiling JVM implementation, combining
high speed and small size. We have modified the original JVM to
run without an underlaying operating system within only 1 MB of
memory. In addition we present a new technique to selectively pre-
compile methods during the initialization phase of real-time Java
applications to prevent unwanted interaction between the JIT com-
pilation and critical tasks. Furthermore we present the YARI soft-
core as the execution platform of CACAO within an FPGA. We
compare our implementation with two well known Java proces-
sors, JOP and Sun’s picoJava-II, on the same FPGA technology.
Although JOP achieves a higher clock frequency and picoJava-II
occupies nearly 4 times the resource of YARI, our solution is ca-
pable to outperform both of them by a factor of up to 2.2 and 1.7
respectively.

Categories and Subject Descriptors
D.3.4 [Processors]: [Run-time environments]; C.1.1 [RISC/CISC,
VLIW architectures]: [RISC soft-core]; D.3.2 [Programming
Languages]: [Java]

Keywords
Embedded Java, JIT compilation, Real-time system, Java processor

1. INTRODUCTION
In the last years Java became one of the most popular program-

ming languages for application development on workstations and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

servers. This can be attributed to the languages simplicity, safety,
and portability. Because of these properties Java is also becom-
ing more and more attractive to developers of embedded systems.
Due to resource constraints, technologies utilized by Java Virtual
Machines (JVM) on workstations are not practical for embedded
systems. Just-in-time (JIT) code generation and adaptive optimiza-
tions lead to increased power and memory consumption, and may
incur unacceptable runtime penalties.

The memory overhead of a fully compliant Java implementa-
tion can be overcome by offering only a subset of the rich Java li-
brary. The Java Platform Micro Edition (JavaME) is a widely used
variant of such a restricted environment intended for use in mobile
and embedded devices. JavaME consists of a minimal set of core
classes required for a JVM to operate, and a set of optional ex-
tensions targeting specific domains, e.g. MIDP for mobile phones.
Java Card offers an even smaller core library for more restricted
environments, such as smart cards.

To further reduce the memory footprint the JVM itself has to
be optimized for code and data size. Complex techniques such as
JIT-compilation, runtime profiling, and adaptive optimizations can
usually not be applied, instead, slow interpreters execute the Java
bytecode.

Embedded systems very often have to fulfill timing constraints
to operate correctly, e.g., to guarantee quality of service and exter-
nal components need to be controlled in a timely fashion. Inter-
preters and JIT compilation do not allow to guarantee tight real-
time bounds. The slow interpretation techniques impose a natural
limit for response time and throughput, similarly accounting for the
expensive compilation step of a JIT system leads to overly conser-
vative bounds of the programs overall execution time. Compiling
the Java programs offline – ahead-of-time – allows to overcome
these limitations by trading flexibility with small code size and fast
execution within predictable time bounds. The use of dynamic fea-
tures of the Java language is heavily restricted.

A popular alternative is the use of a native Java processor to
speed up the execution of Java bytecode. These processors im-
plement a subset of the Java bytecode instruction set in hardware
or microcode. More complex operations (such as object creation)
are emulated using a software layer.

In this paper we present a just-in-time compiling JVM solution
for small embedded systems. We have adapted the CACAO re-
search JVM [10] to run without an underlaying operating system
in an environment offering only 1 MB of memory. Based on the
execution model of Safety Critical Java [9, 22], we propose a new
technique called mission-start-compilation. Critical methods are
precompiled upon transition to the mission phase, eliminating un-
wanted interference of the JIT compilation process with real-time
tasks. Furthermore, we present YARI, a soft-core RISC processor

as the execution platform within a field-programmable gate array
(FPGA).

All software tools required for our solution are publicly available
open source projects – including the GNU build tools, the Newlib
C library, the phoneMe Java class library, the CACAO JVM, and
the YARI soft-core. We hope that this open source approach will
facilitate the research on and development of JVMs in embedded
systems.

The major contributions presented in this work are as follows:

• An open source JVM implementation for embedded systems,
including hard- and software components

• A Java JIT system running in a resource constrained environ-
ment offering only 1 MB of memory

• A new technique called mission-start-compilation that allows
the use of JIT compilation on systems with timing constraints

In the remainder of this paper we will present related work in
Section 2. Section 3 introduces the YARI RISC soft-core used as
the execution environment for our JVM. In Section 4 we present
the CACAO JVM, along with a detailed description of the required
changes to run Java programs in a resource constrained environ-
ment. Mission-start-compilation is described in Section 5. We
present results of the empirical evaluation in Section 6, comparing
our solution with the JOP and picoJava-II Java processors. Finally
we conclude and discuss future work in Section 7.

2. RELATED WORK
The presented project touches several areas in the embedded do-

main: embedded Java, Java processors, and RISC soft-cores for
FPGAs. The following sections gives a brief overview of the most
relevant work in each area.

2.1 Java for Embedded Systems
A detailed performce comparison of embedded Java systems can

be found in [19]. This paper also describes the benchmark we use
in our evaluation in more detail.

SimpleRTJ [17] is a JVM intended for small embedded systems.
SimpleRTJ is an interpreting JVM and requires about 18–24 KB
of memory to run. In [2] a lightweight JIT compilation system,
targeted for resource-constrained environments, is presented.

The Squawk VM [23] is an embedded JVM mostly written in
Java that is now open source1. Squawk was originally developed
for a wireless sensor platform based on ARM, the Sun SPOT2. It
runs on the bare metal and provides functionality typical found in
operating systems, e.g., device drivers, in Java.

Muvium [4] is an ahead-of-time compiling JVM solution for
very resource constraint microcontrollers (Microchip PIC). Mu-
vium introduces an Abstract Peripheral Toolkit (APT), that con-
tains a large collection of classes to represent devices common in
embedded systems.

2.2 Java Processors
Sun introduced the first version of picoJava [13] in 1997, al-

though this processor was never released as a product by Sun. A
redesign followed in 1999, known as picoJava-II that is now freely
available. It is the most complex Java processor available, and im-
plements, among other optimization, a folding mechanism in hard-
ware, that allows to execute short sequences of Java bytecodes as a
single RISC-like instruction.
1https://squawk.dev.java.net/
2http://www.sunspotworld.com/

The JEMCore from aJile is a Java processor that is available as
both an IP core and a stand alone processor [7]. It is based on the
32-bit JEM2 Java chip developed by Rockwell-Collins.

The Cjip processor [6, 8] supports multiple instruction sets, al-
lowing Java, C, C++ and assembler to coexist. The JVM is im-
plemented largely in microcode (about 88% of the Java bytecodes).
Microcode instructions execute in two or three cycles. A JVM byte-
code requires several microcode instructions.

Komodo [11] is a multithreaded Java processor for embedded
real-time systems. The unique feature of Komodo is the concept
of interrupt service threads. Komodo is now commercialized under
the name jamuth [25].

JOP [21] is a Java processor designed especially for embedded
real-time systems. The main design goal was a time predictable
processor. All hard to analyze processor features, such as prefetch-
ing or automatic stack dribbling as found in picoJava, have been
avoided. To still provide acceptable performance a special stack
cache and a WCET analyzable method cache have been developed.
SHAP [27] is a new Java processor based on the architecture of
JOP and enhanced by a hardware garbage collector.

2.3 FPGA RISC Soft-cores
As FPGAs have grown in size and capabilities, it has increas-

ingly proven beneficial to employ microprocessors as part of the
design to handle less time-critical state machines. The major FPGA
vendors offer various solutions for this, including embedding one
or more microprocessors in the FPGAs, for example, the Virtex 4 FX
which includes PowerPCTMhard-cores.

Highly configurable and optimized soft-cores are also offered by
FPGA vendors. Among these 32-bit soft-cores, probably the best
known are MicroBlaze from Xilinx [26], Nios II from Altera [1],
and Mico32 from Lattice [12]. Nios II and MicroBlaze are propri-
etary, whereas Mico32 is available under an open source licence.
All of these are supported by complete development kits with com-
pilers, libraries, and debuggers.

Besides the soft-cores just mentioned, there are a large number
of open sourced soft-cores. We cannot possibly cover all of them,
but instead restrict ourselves to one of the better known: LEON.
LEON [5] is an implementation of the SPARC V8 architecture.
LEON, implemented on the same FPGA board we use for YARI,
consumes about 8,000 LCs,3 11 KB on-chip memory and can be
clocked at 35 MHz. Initially designed with for the purpose of ra-
diation hardened implementations, LEON has been released under
an open source licence.

3. YARI
YARI (Yet Another RISC Implementation), is an open source [24]

FPGA microprocessor implementation, created as a vehicle to in-
vestigate implementation ideas. To avoid the burden of having to
provide a complete tool-chain the instruction set is designed to be
mostly compatible with the MIPSTM-I architecture, a seminal, thor-
oughly documented, and, for our purpose, sufficiently simple RISC
architecture.

The core philosophy of the RISC methodology is to aim for the
best balance between hardware and software, and thus also to cre-
ate an architecture that is optimally suited to the underlying tech-
nology, e.g. VLSI. FPGAs differ from VLSI in the relative cost and
speed of primitives: random logic, wires, and thus muxes, are rel-
atively slow, whereas memory and adders are relatively fast, reg-
isters cheap, etc. As a consequence, the MIPS-ITMarchitecture,
designed for VLSI, may not be an optimal architecture for FPGAs.
3The basic resource in Altera FPGA is the Logic Cell (LC), which
essentially is a four-bit lookup table and a registers.

https://squawk.dev.java.net/
http://www.sunspotworld.com/

!"#$%&'

("&)%&* ("&)%&*

&+ &,

-./,%0+ -.
&'+,%&,

",1'& 2"03! 45!

4

6./,%0+ 6.

)%7/#89

2"%*/%230:

;<=

;<>

6<

-?

@A

:'9,/$!

<B+13(,

)%7/#89!"#$%&'

Figure 1: The YARI data path

From earlier experiments we have found that pipeline stalling
can have surprisingly complicated interactions with branch delay
slots and pipeline restarts, leading to hard to find bugs. Further-
more, the control path for the stall logic is inherently timing crit-
ical, as the stall signal has to control every flip-flop in the stages
it stalls. Given this, the design of YARI avoids pipeline stall com-
pletely. The only means to disrupt the pipeline is through a pipeline
restart which flushes part of the pipeline depending on the nature
of the hazard. While this can result in more pipeline bubbles than
stalling, the resulting simpler logic leads to a shorter cycle time,
and thus, higher frequency.

Great emphasis has been placed on load/store performance. For
this reason YARI is equipped with a four-way associative instruc-
tion cache, a four-way write-through data cache, and a store buffer.

3.1 Simulation and Co-Simulation
The development of YARI has relied extensively on simulation

and co-simulation. A simple architectural interpreter was devel-
oped and maintained as a “golden reference model” for the FPGA
implementation. Any new feature was first implemented in the ar-
chitectural simulator and the software was tested there.

This effort has payed back in countless ways. It is much easier
and simpler to test and debug the software on the interpreter, which
can be instrumented to catch events of particular interest.

For performance enhancements it has proven paramount to first
extend the interpreter to collect statistics. For example, planned
work on a better (but expensive) cache replacement policy was
abandoned when simulation revealed an insignificant miss rate on
a large number of benchmarks.

However, by far the most important benefit of the interpreter has
been its use in co-simulation. By simulating the YARI FPGA im-
plementation in parallel with running the same workload on the
interpreter and checking that the two agree on committing opera-
tions we can pin-point bugs in the FPGA implementation. The vast
majority of bugs have occurred within a handful of cycles of where
the divergence was detected.

The use of co-simulation has enabled us to locate bugs very
quickly and effortlessly and has eliminated the need for a battery
of directed tests, something known to be very time consuming (and
tedious) to develop and maintain.

For the committed state we only look at the writes to user reg-
isters. As all control decisions in MIPS are register based, state
changes outside the registers and memory tends to propagate to
registers fairly quickly. Once a divergence is found, the last part of
the FPGA simulation output is emitted together with the expected
result.

Workload Instructions Cycles CPI Branches (%I/%C) Load-use hazards (%I/%C) I$ miss D$ miss

Sieve 192,004,736 315,009,920 1.64 29,412,650 (15.3%/ 9.3%) 29,516,077 (15.4%/28.1%) 274,959 80,351
Kfl 192,733,376 301,150,976 1.56 37,074,095 (19.2%/12.3%) 21,914,081 (11.4%/21.8%) 651,340 117,646
UdpIp 204,952,816 332,401,024 1.62 33,646,768 (16.4%/10.1%) 26,763,089 (13.1%/24.2%) 1,155,853 115,345
Lift 186,618,112 304,367,840 1.63 31,802,817 (17.0%/10.4%) 27,395,432 (14.7%/27.0%) 316,685 95,253
Micro 2,765,275,264 3,955,059,056 1.43 477,021,107 (17.3%/12.1%) 243,378,471 (8.8%/18.5%) 409,956 113,305

Table 1: Source of pipeline inefficiencies on five CACAO benchmarks.

3.2 The Pipeline
YARI has a mostly classic five stage pipeline: instruction fetch

(IF), instruct decoding/register files access (DE), execution / mem-
ory (EX/ME1), memory (ME2), and write back (WB). Unlike in
VLSI technology, adders in FPGAs are fast and muxes slow, thus it
proved advantageous to perform the address calculation in the de-
coding stage, enabling the slow sub-word extraction and optional
sign-extension for the different MIPS load instructions to occupy a
full cycle. Figure 1 shows the essential data path in YARI pipeline.

Unlike VLSI, where adding one input to a gate generally carries
a very small fixed incremental cost, logic structures in FPGAs are
built from four-input lookup tables (LUT4). Thus, adding an input
could (ignoring routing resources) range from being free to adding
an additional level of lookup tables. Thus, as a rule of thumb we
try to minimize the number of inputs to logical expressions. As a
consequence, pipeline registers are not cleared when the stage is
flushed. Instead each state carries a “valid” bit which is only con-
sulted at points where outputs of a pipeline stage changes architec-
tural state. That includes restart signals, writes to the registers file,
and stores.

3.3 Pipeline Control
In any cycle, one or more hazards can occur simultaneously,

forcing a restart of the pipeline. The amount of pipeline stages
flushed and the resulting latency in responding to the hazard is a
major factor contributing to the cycles-per-instruction (CPI) met-
ric, thus inversely proportional to the observed performance.

We can distinguish between intentional hazards, e.g., branches,
and the remaining unintentional hazards. Restarts for intentional
hazards are issued from the EX stage. Thanks to the branch delay
slot, only the IF stage needs to be flushed, in other words, YARI
handles all branches with one cycle penalty.

There are eight unintentional hazards, four of which are directly
related to memory and are generally unpredictable: instruction cache
miss, data cache miss, store buffer full, and branch delay slot cache
miss. The latency of the cache fill depends on memory contention
and memory speed. For the platform used for this paper, we can
fill the 16-byte cache lines in about 10 cycles when the full mem-
ory bandwidth is available. Restarting a load can further add up to
three cycles of additional latency.

The branch delay slot cache miss hazard can occur when the in-
struction in the delay slot of a taken branch misses in the instruction
cache. If left as is, the branch would be taken, the pipeline flushed
and, once the cached had serviced the miss, restarted from the tar-
get address without the delay slot ever being executed. If we could
stall the pipeline until the cache is ready, then this would not be an
issue. Instead we simply restart the branch every time this hazard
is encountered. The penalty for this is at most three cycles, but it is
a relatively rare hazard.

The remaining four unintentional hazards are multiplier/divider
structural hazard, synci, load-hit-store, and load-use.

In the configuration used in this paper, YARI is configured with
a radix-2 multiplier and divider, thus the result is only available
roughly 33 cycles after issuing the operation. Any attempt at ac-
cessing the result earlier will cause a restart of that instruction.

Since YARI uses a split data and instruction cache without co-
herency, it is necessary that code writing data intended as instruc-
tions flush that region from the instruction cache using the synci
instruction to force an update. Handling this flush has a five cycle
penalty.

The data cache is a classic implementation: the four tags are ac-
cessed in parallel for the four cache ways, followed by a late select
based on which tag (if any) matched. As stores are destructive, we
must know the destination way before we can execute it. Thus, the
actual store to the cache way happens in the ME2 stage. The con-
sequence is that a load immediately following a store of the same
address, will see stale data. This is known as load-hit-store. While
we could add logic to forward the store data to the load, this case is
so rare4 that we instead trade off the occasional pipeline restart for
a simpler data path.

Finally, the load-use hazard occurs when an instruction immedi-
ately following a load tries to use the load result. By construction,
the result isn’t ready to be forwarded, and we have to restart the
load-use. This hazard is detected in EX and has a two cycle penalty.
GCC’s instruction scheduler knows about this hazard and never
generates code that violates it. Unfortunately, CACAO doesn’t re-
spect this load-use hazard resulting in the number one source of
pipeline inefficiencies.

Table 1 shows the behavior on five workloads, including the
number of branches observed, load-use hazards, instruction cache
misses, and data cache misses. For branches and load-use we also
show these numbers in terms of fraction of overall instructions and
cycles (remembering the one-cycle penalty for branches and the
three-cycle penalty for a load-use). For example, the Sieve bench-
mark spends 28.1% of all cycles dealing with restarts due to load-
use hazards. We will return to the pipeline efficiency in the conclu-
sion.

4. CACAO
CACAO [10] is a research platform developed at the Vienna Uni-

versity of Technology. Over the years it was steadily improved
and eventually grew into a stable and fast JVM for workstation and
server applications, such as the Eclipse platform and the Tomcat
application server. Because of its small size and fast JIT compila-
tion it has become an attractive alternative for the development of
Java enabled embedded systems. So far several projects success-
fully employed CACAO running on Embedded Linux for MIPS
and ARM platforms. We were able to eliminate the need for an un-

4Optimizing compilers generally avoid reloading a just stored
value.

derlaying operating system and enable CACAO to run in a minimal
execution environment on top of the YARI soft-core.

4.1 Just-in-Time Compilation
In contrast to most high performance JVM implementations CA-

CAO adopts a compile only approach, i.e., all Java bytecode is
compiled to machine code of the target machine before its exe-
cution. This approach greatly simplifies the internal organization,
but also entails some drawbacks. Infrequently executed code, e.g.,
static class initializers and other initialization code, causes consid-
erable overhead in terms of compilation time and memory con-
sumption. To reduce the compilation overhead CACAO offers a
highly tuned JIT compiler.

Code generation is divided into four major steps, namely pars-
ing, stack analysis, register allocation, and machine code emission.
First the Java bytecode is translated into an intermediate representa-
tion (IR), that is better suited for further processing than the stack-
oriented Java bytecode. This internal representation is register-
oriented similar to a simple RISC machine. In the next step stack
slots containing intermediate results are converted to virtual regis-
ters. Mapping stack slots to registers is straightforward for basic
blocks. However, on control flow splits and joins copy operations
need to be inserted, to correctly reflect the state of the stack at basic
block boundaries. The register allocation phase maps the virtual
registers to machine specific registers. During a linear traversal of
the IR, first virtual registers corresponding to intermediate results
on the stack are assigned, then spare registers left over are assigned
to local variables. The last step of code generation is the emission
of the final machine code. This is done using a simple macro ex-
pansion of operations in the IR to instructions of the target machine.
It is important to note that all these phases are at most linear in run-
time. More information on the internals of CACAO’s JIT compiler
can be found in [10].

Because JIT compilation is relatively expensive, methods are
compiled on demand, i.e., only when a method is to be executed
the first time. Similarly, if the target method of a call is not yet
compiled, the code generator emits a call stub instead of a regu-
lar method call. The stub triggers the compilation of the method
if required, and is replaced by a regular call using a code patching
mechanism afterwards. This lazy approach may cause considerable
delay during the startup phase of a program.

In fact it is hard to predict beforehand when the JIT compiler is
actually invoked, making timing analysis for JIT based systems im-
possible. To overcome this limitation we propose a new technique
called mission-start-compilation, that allows to precompile critical
parts of a program, in order to prevent JIT compilation to inter-
fere with real-time tasks. Details on this approach are presented in
Section 5.

4.2 A Minimal Execution Environment
In its default configuration CACAO has several prerequisites that

have to be met in order to run Java programs. Most notably a full
operating system, typically Linux, is required to manage I/O op-
erations, memory and threads. Operating systems in turn demand
more powerful hardware, offering virtual memory and protection
mechanisms. For systems using Java as their sole execution plat-
form the operating system can, and should be, avoided in order to
safe memory resource and lower the hardware requirements.

The Newlib project by RedHat5 offers a minimal, but complete,
C library implementation that allows to run programs without an
underlaying operating system on top of a bare processor. It specif-
ically targets small embedded devices and thus has minimal pre-

5http://sourceware.org/newlib/

requisites. Porting Newlib to YARI required only marginal mod-
ifications of the well supported MIPS, more specifically mips-elf,
port.

A fully compliant implementation of all standard I/O operations
(e.g., open, close, read, write, printf, etc.) is available. By default
most of these functions do not contain a useful implementation, and
merely report well defined I/O errors. In order to perform basic
I/O, a minimal implementation to redirect the standard file streams
stdin, stdout, and stderr to the serial line has been implemented.
Other file operations will still fail, they are currently not required
anyway, because CACAO has been extended to load the Java class
files from internal buffers, as we explain later. To safeguard against
heap overflow the default implementation of the sbrk system func-
tion has been replaced. Time measurement is available through the
standard C routine times, which reads the cycle counter of YARI
and reports the elapsed time since the applications startup in mil-
liseconds.

The Newlib project does not aim to offer a complete replacement
for operating systems, and thus lacks some functionality. Most no-
tably Newlib does not offer any kind of process or thread manage-
ment. Nevertheless all critical functions are reentrant, which allows
Newlib to be used in a multithreaded environment. Similarly, sig-
nal handling is not provided. Among other tasks CACAO relies on
signals to invoke the code generator, the garbage collector, and to
handle traps and Java exceptions.

In addition to standard C library functions CACAO extensively
utilizes additional library, operation system, and architecture spe-
cific features. For example, CACAO heavily relies on memory
protection features available on standard operating systems. Un-
fortunately no such functionality is available with Newlib, memory
protection is not supported by YARI either. Thus, checks for null
pointers, array overflow, and similar faults need to be implemented
using a software emulation. The dynamic generation of code in
combination with separate data and instruction caches necessitates
a minimal set of operations to invalidate contents of the instruc-
tion cache that became stale. These functions are highly architec-
ture and operating system specific. YARI specific support functions
have been added to Newlib accordingly.

4.3 Extensions to CACAO
In order to run in a restricted environment minor extensions and

modifications to the core of CACAO are required. Most of these
modifications disable features of the standard JavaSE implemen-
tation. For example networking support, all encryption and secu-
rity related features, file compression, and similar components of a
workstation Java implementation are disabled. In addition the size
of many internal buffers has been adapted for use in an embedded
system. Most notably the size of the Java heap, which usually oc-
cupies 128 MB of memory, is reduced to only a few KB.

Resolving native methods at runtime using a dynamic loader is
not possible without an operating system. As a consequence na-
tive methods need to be statically linked into the executable binary.
Resolving these functions by name is performed via a lookup table
that is statically determined during the build process from symbol
information of the intermediate objects files. Similarly, classes re-
quired during the system startup phase need to be embedded into
the executable binary. A minimal set of these bootstrap classes is
determined by static analysis, wrapped into regular object files, and
finally linked with the CACAO executable file. Figure 2 depicts
the necessary steps to embed a Java application into CACAO and
download it to YARI.

CACAO objectfiles

Java boot classes

Embedded classes

JVM Image

FPGA / YARI

Other Java classes
 (e.g., serial line)

Wrap

Download

Link

Figure 2: Downloading a Java application to YARI.

4.4 Java Library
The rich Java class library is, in combination with the language

features, a corner stone of Java’s success story. In contrast to other
object oriented languages (e.g., C++), Sun early established a rich
set of functions, classes, and infrastructure. Today the term Java is
often used interchangeably to denote the Java language and the Java
class library. In the domain of embedded systems the development
of a common platform did not receive broader attention up until
the recent past. Even Sun’s effort, JavaME, is a mere conglomerate
of different technologies (CDC, CLDC, MIPD, etc.) that still lack
homogeneity.

CACAO is already designed to support different Java class li-
braries. The popular GNU Classpath project is enabled by de-
fault, but also the open source JavaSE and JavaME implementa-
tions, OpenJDK and phoneME by Sun, are supported out of the
box. Although theoretically all three class libraries are ready to
run with CACAO, the much smaller size of the phoneME package
lends itself for embedded systems. More specifically the CLDC
core class library is used as the basis for this project. The use of
phoneME has, besides its small memory footprint, the advantage to
be compatible with other JavaME based technologies, such as the
Real Time Specificaton for Java (RTSJ) [3] and JSR 302 on Safety
Critical Java [9, 22]. Although we strive for compatibility some
features are not fully compliant with the JavaME platform:

Java Native Interface Although the JavaME platform explicitly
excludes all JNI functionality, our system allows to retain all the
JNI functionality available with CACAO on workstation systems.

Garbage Collection The widely adopted Böhm garbage collec-
tor is used to reclaim memory. Because of its large size, it is not
feasible to make use of Böhm in a resource constrained system,
thus the garbage collector is currently disabled. Development of a
replacement for the current garbage collector, which is expected to
be considerable smaller, is still in progress.

Multithreading As noted in the previous section, Newlib does
not provide any process management functionality, multithreading
in Java programs is thus disabled. Prior versions of CACAO imple-
mented green threads, i.e., threads are managed by a software layer
within CACAO, to work around this issue. Unfortunately in cur-
rent versions of CACAO green threads are not functional anymore.

Because of this deficiency, multithreading support is currently not
available.

5. JIT FOR REAL-TIME SYSTEMS
JIT compilation is usually avoided for real-time systems due to

its unpredictability. An exact analysis of bounds for the execution
time of the original Java program is in general impossible, because
it is uncertain when the JIT compilation will actually take place.
Modern systems often choose to interpret most methods several
times, until a threshold is reached indicating that a given piece of
code is worth the effort of the expensive JIT compilation. Some
systems even contain several optimization levels for the compila-
tion, i.e., methods that are already compiled, but still dominate the
execution time, may be selected for recompilation to further im-
prove performance. Especially in the case of mixed interpretation
and compilation, and multiple optimization levels it is hard for an
offline timing analysis to predict the code that actually will be exe-
cuted, which further complicates timing analysis.

As shortly described in Section 4.1, CACAO follows a compile-
only approach, eliminating some of the problems beforehand. The
code generation scheme is largely based on simple macro expan-
sion, in addition CACAO does not offer multiple optimization lev-
els. Recompilation may still occur in rare cases, if inlining deci-
sions become invalidated through dynamic class loading. It is thus
relatively easy to predict basic properties of the code that will actu-
ally be executed. Therefore, if we can tolerate the overhead induced
by JIT compilation during the warmup phase, CACAO is an option
for soft real-time systems.

In general, however, this overhead is not acceptable for real-time
systems. The uncertainty at what time compilation will be nec-
essary still impedes the calculation of meaningful bounds for the
programs execution time. To avoid compilation during the criti-
cal phase of a real-time task, we propose compilation during the
non-critical initialization phase of the application. We adopt the
programming model for safety-critical Java (level 1) [15, 22] that
defines three major phases: the initialization, the mission start, and
finally the mission, that runs forever. It has to be noted that we
do not target safety-critical applications, at least not the most rigid
levels of DO-178B [16], with our CACAO/YARI system. We just
borrow the concept for less demanding real-time applications.

We propose and have implemented a compile at mission start
model. During the initialization phase all classes are loaded and
data structures allocated. On the transition to the mission phase
– the start mission – we analyze the application on the target and
build a list of all methods that are possibly invoked during the mis-
sion phase. The listed methods are then precompiled using the reg-
ular compiler. JIT overhead during the mission phase is completely
eliminated, allowing a more accurate timing analysis.

Precompiling Java programs offline is well known, and usually
referred to as ahead-of-time (AOT) compilation. Systems relying
on AOT compilation usually do not allow for dynamic features of
the Java language, e.g., class loading. The main benefit of our
new mission-start-compilation is, that dynamic class loading can
be done during the initialization phase without any limitation. For
example, an application can, at each reboot, check for updates of in-
dividual classes, and even download and make use of these classes
using dynamic class loading over a network. Especially in the case
of expensive communication, e.g., because of low-bandwidth and
high power consumption of radio elements, this approach is bene-
ficial, as the amount of data that needs to be transferred is heavily
reduced. In the case of AOT compilation, selectively downloading
individual classes is not possible. Instead the complete applica-
tion binary needs to be downloaded, stored it into the systems flash

Soft-Core Logic Cells Memory Frequency

JOP 3,300 7.6 KB 100 MHz
YARI 7,008 18.9 KB 75 MHz
pico-Java-II 27,560 47.6 KB 40 MHz

Table 2: FPGA synthesis results of the JOP, YARI, and
picoJava-II soft-cores.

Sieve Kfl UdpIp Lif t

0

0,5

1

1,5

2

2,5

1,19
1,3

1,41 1,351,36

2,17
2,09 2,06

JOP picoJava-II CACAO

S
p
e
e
d
u
p

Figure 3: Performance of picoJava-II and CACAO/YARI for
some embedded benchmarks, normalized to JOP.

memory, and an additional reboot performed in order to acquire
updates.

6. EVALUATION
In this section we provide a first evaluation of the combination

of CACAO and YARI within an FPGA. We show execution per-
formance on a set of embedded Java benchmarks (JBE)6 and some
micro-benchmarks. We compare the obtained results to two Java
processors, namely JOP [18] and an FPGA implementation of Sun’s
picoJava-II [13, 14]. All three soft-cores are synthesized using the
free Altera design software Quartus 7.1 for an Altera FPGA; YARI
and JOP for the Cyclone EP1C12C6 FPGA and picoJava-II for a
larger Cyclone II FPGA. Table 2 lists the basic properties of the
synthesized soft-cores. The FPGA is integrated on an evaluation
board offering 1 MB of external 32-bit asynchronous SRAM with
15 ns access time. The board also uses a serial line for program
download and used by stdout and stdin during program execution.

All benchmarks where executed on the same platform, with all
required Java classes readily available in the systems memory. In
the case of CACAO all required classes where embedded into the
executable binary. This allows for an interesting comparison be-
tween the two Java processors and a compiling Java solution run-
ning on a RISC.

6JavaBenchEmbedded V 1.1 available at http://www.jopwiki.
com/JavaBenchEmbedded

Bench. JOP picoJava-II CACAO

Sieve 6496 7721 8861
Kfl 18275 23813 39742
UdpIp 8467 11950 17702
Lift 18649 25444 38437

Table 3: Number of iterations per second for the JBE applica-
tion benchmarks. A higher number means faster.

Micro-Benchmark JOP picoJava-II CACAO

iload3 iadd 2 2 1
iinc 4 3 2
ldc 9 3 5
if icmplt taken 6 6 4
if icmplt not taken 6 - 3
getfield 16 3 5
getstatic 15 5 9
iaload 11 3 11
invoke 128 24 15
invokestatic 100 24 14
invokeinterface 144 196 19

Table 4: Cycles required to execute specific Java bytcodes for
JOP, picoJava-II, and CACAO/YARI.

6.1 Performance
Our new solution, based on CACAO running on top of YARI, of-

fers the best performance compared to the two other options. Fig-
ure 3 shows the speedup of picoJava-II and CACAO/YARI relative
to JOP. Although JOP achieves the highest frequency in our setup,
the results show the least performance for the four benchmarks of
the JBE suite. For all our tests the CACAO JVM is faster by a factor
of 1.36 to 2.17 in comparison to JOP. CACAO is also able to out-
perform the picoJava-II, resulting in a speedup of a factor between
1.15 and 1.67. Absolute iteration counts are provided for reference
in Table 3.

In addition to an overall comparison based on these larger bench-
mark programs, we also conducted experiments to evaluate the ef-
ficiency of each approach for individual Java bytecodes. The JBE
suite contains several micro-benchmarks for this purpose. Each
micro-benchmark tests only one or two specific Java bytecodes and
reports the number of cycles required for its execution. The results
of this experiment are summarized in Table 4. For simple byte-
codes, e.g., iadd, JOP and picoJava-II basically require the same
amount of cycles. CACAO on YARI, in comparison, executes most
of these opcodes in about half the cycles. More complex opcodes,
e.g., invokeinterface, are considerably more expensive on all three
platforms. Nevertheless CACAO executes these opcodes by far
more efficient, with speedups of up to a factor of 10. Because of
inaccuracy in determining the overhead of surrounding code of the
micro-benchmarks it is not always possible to derive meaningful
cycle counts. The value of if icmplt not taken for picoJava-II is
omitted because of such an inaccuracy.

6.2 Memory Consumption
For resource constrained embedded systems memory consump-

tion is of utmost importance. Memory typically contributes a fair
amount to the overall costs of such a system, and is thus mini-
mized as much as possible. All benchmarks presented in the last

http://www.jopwiki.com/JavaBenchEmbedded
http://www.jopwiki.com/JavaBenchEmbedded

Benchmark Classes Code Data Heap Total

Sieve 56,861 346,584 81,223 230,533 715,201
Kfl 72,526 346,584 80,990 267,074 767,174
UdpIp 69,059 346,584 81,465 267,796 764,824
Lift 62,167 346,584 81,117 251,159 741,027

Table 5: Memory consumption in bytes for class files, static
code, data, and heap.

Bench. JIT Methods Bc-instr. (size) Mips-instr. (size)

Sieve 94 78/405 1,421 (3,419 B) 5,609 (22,436 B)
Kfl 153 117/465 2,913 (6,577 B) 8,342 (33,368 B)
UdpIp 136 107/455 2,404 (5,443 B) 8,327 (33,308 B)
Lift 111 89/422 2,005 (4,522 B) 6,893 (27,572 B)

Table 6: Statistics on JIT compilation, showing the number
of JIT invocations, methods compiled, bytecode instructions
translated, and the number of resulting MIPS machine instruc-
tions.

section were run within 1 MB of memory. In the case of CACAO
the whole JVM, the original Java classes, the dynamically gener-
ated code, and all data of the Java programs need to fit into this
small amount of RAM. Table 5 summarizes the amount of mem-
ory required to hold the Java classes of the benchmark, static code
and data of the CACAO JVM, and finally the peak amount of heap
memory allocated at runtime. In addition Table 6 presents details
on the JIT compilation performed at runtime. In general only a
small amount, between 19% and 25%, of the available methods are
actually compiled, and thus, the fraction of dynamically generated
code is relatively small and never exceeds 4.3% of the overall con-
sumed memory.

In JOP the main part of the JVM is implemented in hardware and
the Java library is very restricted. The memory requirements are
thus by far less demanding. For example, the memory consumption
of the linked class files for a Hello World program is about 36 KB.

6.3 Mission Start Compilation
We have evaluated our compile at mission start approach using

a small Java real-time application, Kfl from the JBE suite. The
program is a simple control algorithm that monitors and controls
a set of sensors and actuators of the environment, that is also sim-
ulated in Java. The test executes a control function repetitively in
a loop. However, at different iterations of the loop different meth-
ods get invoked, depending on the internal state of the controller
and its virtual environment. As a consequence JIT compilation in-
evitably interrupts the regular execution of the program to translate
new methods that are executed for the first time. In normal opera-
tion, i.e. no exceptional event occurred, the last method is compiled
in iteration 46.

For soft real-time systems the JIT overhead may be tolerated
during a warmup phase, even if some deadlines are missed – our
example application is a control loop that tolerates and regulates
disturbance from the environment anyway. However, in general
this can not be accepted. Even after the warmup phase compilation
may be necessary, e.g., in the case of exceptional events and failure
situations. JIT compilation of error handlers can not be tolerated in
critical systems.

With our mission-start-compilation strategy we are able to com-
pletely eliminate unwanted compilation during the critical phase of
a real-time task. Figure 4 shows a comparison of the execution
time of the first few iterations of the control loop. The bars in black
show the execution time of each iteration for the regular JIT ap-
proach, while the gray bars represent our new approach – please
note the logarithmic scale. As can be seen the overhead of dynamic
compilation is completely eliminated. Even the first few iterations
closely resemble the behavior of the application in its steady state.
Because of initialization overhead contained in the Java program
itself, the first iterations still show a slightly increased execution
time. This behavior is inherent to the program and can not be elim-
inated.

7. CONCLUSION AND FUTURE WORK
From our evaluation we see that the combination of a well de-

signed RISC core with JIT compilation of Java performs better than
a processor designed for Java. Especially when compared with the
highly optimized, but resource hungry picoJava. In terms of FPGA
resources, picoJava is about three times as big as YARI, but our
RISC approach outperforms picoJava by 30%.

When comparing CACAO/YARI against JOP the speed advan-
tage is even bigger. However, JOP was designed for time pre-
dictability and therefore omitted all architectural features (e.g., a
general purpose data cache) that improve only average case through-
put. Execution time of most bytecodes can be estimated cycle ac-
curate [20] for JOP. When we relate performance to size, JOP is
half the size of YARI and the memory consumption is lower than
with CACAO. However, even a dual core version of JOP will not be
as fast as CACAO/YARI as speed scales usually logarithmic with
hardware resources.

Although JIT compilation is usually avoided in real-time Java
systems we have found a way to reduce the influence of the com-
piler on real-time performance. JIT at mission start reintroduces
some dynamics, e.g. class loading during the initialization phase,
into real-time Java without compromising real-time constraints.

While the performance of CACAO/YARI is already very good,
there are clear avenues for improvements. Work is already pro-
gressing on the next version of YARI with a focus on cycle time
improvements and lower penalty for branch and load-use hazards.
The expected performance improvement for the Java based bench-
marks is 44%.

The open source stack from the processor up to the JVM pro-
vides opportunities for future work. For example, Java specific
extensions of the instruction set of YARI would allow major im-
provements. The original RISC design was optimized for procedu-
ral languages such as C and not for object oriented and managed
languages such as Java or C#. From the micro-benchmarks we no-
tice quite an overhead for field and array access. Both operations
have to perform a null pointer check, the array access in addition
also needs to check for array bounds. Dedicated, trapping instruc-
tions would clearly allow to improve the overall performance.

CACAO already produces simple sequences of RISC instruc-
tions for fast compilation. Therefore, with the detailed knowledge
of the YARI pipeline, it should be possible to analyze those se-
quences for worst-case execution time (WCET). It should even be
possible to estimate execution times for the instruction sequences
that represent bytecode instructions, which would eventually allow
to perform WCET analysis at bytecode level.

In its current state some major features, such as multithreading
and garbage collection, are disabled. Thus future work on CACAO
for embedded systems will also concentrate on providing a more
compliant JavaME implementation.

1 10 20 30 40 50 60
500

5000

50000

500000

5000000

Just-In-Time-Compilation Mission-Start-Compilation

Iteration

#
 C

yc
le

s

Figure 4: Execution time per iteration for just-in-time-compilation vs. mission-start-compilation over time

The modified version of CACAO as well as the YARI soft-core
are available using the software code management tool git from:
http://repo.or.cz/w/yari.git

Acknowledgment
We would like to thank Christian “Twisti” Thalinger, the main de-
veloper and maintainer of CACAO, for his support and insights on
CACAO.

8. REFERENCES
[1] Altera Corporation. Nios II. http://www.altera.com/

products/ip/processors/nios2/ni2-index.html,
2008.

[2] C. Badea, A. Nicolau, and A. V. Veidenbaum. A simplified
java bytecode compilation system for resource-constrained
embedded processors. In CASES ’07: Proceedings of the
2007 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 218–228, New
York, NY, USA, 2007. ACM.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[4] J. Caska. micro [µ] virtual-machine. http://muvium.com/.
[5] J. Gaisler. A portable and fault-tolerant microprocessor based

on the SPARC v8 architecture. In DSN ’02: Proceedings of
the 2002 International Conference on Dependable Systems
and Networks, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] T. R. Halfhill. Imsys hedges bets on Java. Microprocessor
Report, August 2000.

[7] D. S. Hardin. Real-time objects on the bare metal: An
efficient hardware realization of the Java virtual machine. In
Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, page 53.
IEEE Computer Society, 2001.

[8] Imsys. Im1101c (the cjip) technical reference manual /
v0.25, 2004.

[9] Java Expert Group. Java specification request JSR 302:
Safety critical java technology. Available at
http://jcp.org/en/jsr/detail?id=302.

[10] A. Krall and R. Grafl. CACAO – A 64 bit JavaVM
just-in-time compiler. In G. C. Fox and W. Li, editors,
PPoPP’97 Workshop on Java for Science and Engineering
Computation, Las Vegas, June 1997. ACM.

[11] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and
Microsystems, 27(1):19–31, 2003.

[12] Lattice Semiconductor Corporation. Mico32.
http://www.latticesemi.com/products/
intellectualproperty/ipcores/mico32/index.cfm,
2007.

[13] J. M. O’Connor and M. Tremblay. picoJava-I: The Java
virtual machine in hardware. IEEE Micro, 17(2):45–53,
1997.

[14] W. Puffitsch. picoJava-II in an FPGA. Master’s thesis,
Vienna University of Technology, 2007.

[15] P. Puschner and A. Wellings. A profile for high integrity
real-time Java programs. In 4th IEEE International
Symposium on Object-oriented Real-time distributed
Computing (ISORC), 2001.

[16] RTCA/DO-178B. Software considerations in airborne
systems and equipment certification. December 1992.

[17] RTJ Computing. simpleRTJ a small footprint Java VM for
embedded and consumer devices. online at
http://www.rtjcom.com/.

[18] M. Schoeberl. Java technology in an FPGA. In Proceedings
of the International Conference on Field-Programmable
Logic and its Applications (FPL 2004), Antwerp, Belgium,
August 2004.

[19] M. Schoeberl. Evaluation of a Java processor. In
Tagungsband Austrochip 2005, pages 127–134, Vienna,
Austria, October 2005.

[20] M. Schoeberl. A time predictable Java processor. In
Proceedings of the Design, Automation and Test in Europe
Conference (DATE 2006), pages 800–805, Munich,
Germany, March 2006.

[21] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

http://repo.or.cz/w/yari.git
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/index.cfm
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/index.cfm

[22] M. Schoeberl, H. Sondergaard, B. Thomsen, and A. P. Ravn.
A profile for safety critical java. In 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’07), pages 94–101, Santorini
Island, Greece, May 2007. IEEE Computer Society.

[23] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In Proceedings of the 2nd international
conference on Virtual execution environments (VEE 2006),
pages 78–88, New York, NY, USA, 2006. ACM Press.

[24] T. Thorn. Yet another RISC implementation.
http://thorn.ws/yari, 2008.

[25] S. Uhrig and J. Wiese. jamuth: an ip processor core for
embedded java real-time systems. In JTRES ’07:
Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, pages
230–237, New York, NY, USA, 2007. ACM Press.

[26] Xilinx Corporation. MicroBlaze.
http://www.xilinx.com/products/design_resources/
proc_central/microblaze.htm, 2008.

[27] M. Zabel, T. B. Preuber, P. Reichel, and R. G. Spallek.
Secure, real-time and multi-threaded general-purpose
embedded java microarchitecture. In Prceedings of the 10th
Euromicro Conference on Digital System Design
Architectures, Methods and Tools (DSD 2007), pages 59–62,
Aug. 2007.

http://thorn.ws/yari
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm

	Introduction
	Related Work
	Java for Embedded Systems
	Java Processors
	FPGA RISC Soft-cores

	YARI
	Simulation and Co-Simulation
	The Pipeline
	Pipeline Control

	CACAO
	Just-in-Time Compilation
	A Minimal Execution Environment
	Extensions to CACAO
	Java Library

	JIT for Real-time Systems
	Evaluation
	Performance
	Memory Consumption
	Mission Start Compilation

	Conclusion and Future Work
	References

