(A. A.4. A.4.7.)

Start of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

(A. A.4. A.4.7.)

A.5. Other Applicative Expressions A.5.1. Simple let Expressions

Simple (i.e., nonrecursive) **let** expressions:

let $\mathbf{a} = \mathcal{E}_d$ in $\mathcal{E}_b(\mathbf{a})$ end

is an "expanded" form of:

 $(\lambda \mathbf{a}. \mathcal{E}_b(\mathbf{a}))(\mathcal{E}_d)$

April 22, 2016, 16:31, Vienes Lacures, April 2006	ns Bjønst 2010, Fredsvej 11, DK-2840 Holte, Denmark	April 22, 2010, 16:31, Vienea Lettures, April 2010	© Disse Bjørner 2010, Fredsvej 11, DK-2840 Holts, Denmark
On a Triptych of Software Development	260	On a Triptych of Software Development	261
(A. A.5. Other Applicative Expressions A.5.1. Simple let Expressions)		(A. A.5. Other Applicative Expressions A.5.2. Recursive let Expressions)	
A.5.2. Recursive let Expressions Recursive let expressions are written as:		 A.5.3. Non-deterministic let Clause The non-deterministic let clause: 	
let $f = F(f)$ in $E(f,a)$ end where $F \equiv \lambda g \lambda a E(g,a)$ let $f = \mathbf{Y}F$ in $B(f,a)$ end where $\mathbf{Y}F = F(\mathbf{Y}F)$		• expresses the non-deterministic selection of a value a of type A	
		• which satisfies a predicate $\mathcal{P}(\mathbf{a})$ for ev	aluation in the body $\mathcal{B}(\mathbf{a})$
		• which satisfies a predicate $r(a)$ for evaluation $r(a)$	and and the body $\mathcal{D}(a)$.
		• If no $a:A \bullet P(a)$ the clause evaluates t	o chaos.

258

263

(A. A.5. Other Applicative Expressions A.5.3. Non-deterministic let Clause) $% \left(A_{1}^{2}\right) =0$

A.5.4. Pattern and "Wild Card" let Expressions

Patterns and *wild cards* can be used:

let $\{a\} \cup s = set in \dots end$ let $\{a, _\} \cup s = set in \dots end$

 $\begin{array}{l} \textbf{let} (a,b,\ldots,c) = cart \ \textbf{in} \ \ldots \ \textbf{end} \\ \textbf{let} \ (a,\underline{},\ldots,c) = cart \ \textbf{in} \ \ldots \ \textbf{end} \end{array}$

let $\langle a \rangle^{\hat{}} \ell = \text{list in } \dots \text{ end}$ let $\langle a, \underline{}, b \rangle^{\hat{}} \ell = \text{list in } \dots \text{ end}$

 $\begin{array}{l} \textbf{let} [a \mapsto b] \cup m = map \ \textbf{in} \ ... \ \textbf{end} \\ \textbf{let} [a \mapsto b, _] \cup m = map \ \textbf{in} \ ... \ \textbf{end} \end{array}$

On a Triptych of Software Development

April 22, 2010, 16:31, Vienna Lectures, April 2010

April 22, 2010, 16:31, Vienna Lectures, April 2010

264

C Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

- **Example** 44 **Choice Pattern Case Expressions: Insert Links:** We consider the meaning of the Insert operation designators.
- 21. The insert operation takes an Insert command and a net and yields either a new net or chaos for the case where the insertion command "is at odds" with, that is, is not semantically well-formed with respect to the net.
- 22. We characterise the "is not at odds", i.e., is semantically well-formed, that is:
 - pre_int_Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the below relation between the command arguments and the net is satisfied. Let (hs,ls) be a value of type N.

(A. A.5. Other Applicative Expressions A.5.4. Pattern and "Wild Card" let Expressions)

A.5.5. Conditionals

if b_expr then c_expr end $\equiv /*$ same as: */ if b_expr then c_expr else skip end

if b_expr_1 then c_expr_1 elsif b_expr_2 then c_expr_2 elsif b_expr_3 then c_expr_3

... elsif b_expr_n then c_expr_n end

$\mathbf{case} \; \mathrm{expr} \; \mathbf{of}$

April 22, 2010, 16:31, Vienna Lectures, April 2010

choice_pattern_1 $\rightarrow \exp 1$, choice_pattern_2 $\rightarrow \exp 2$,

choice_pattern_n_or_wild_card $\rightarrow \text{expr_n} \text{ end}$

 $On \ a \ Triptych \ of \ Software \ Development$

C Diges Bigraer 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

- 23. If the command is of the form 20ldH(hi',I,hi') then
 - $\star 1$ hi' must be the identifier of a hub in hs,
 - $\star s2$ l must not be in ls and its identifier must (also) not be observable in ls, and
 - $\star 3$ hi" must be the identifier of a(nother) hub in hs.
- 24. If the command is of the form 10ldH1newH(hi,l,h) then
 - $\star 1$ hi must be the identifier of a hub in hs,
 - $\star 2\,\mathrm{I}$ must not be in Is and its identifier must (also) not be observable in Is, and
 - $\star 3$ h must not be in hs and its identifier must (also) not be observable in hs.

25. If the command is of the form 2newH(h',l,h'') then

- $\star 1~\text{h}'$ left to the reader as an exercise (see formalisation !),
- $\star 2$ I left to the reader as an exercise (see formalisation !), and
- $\star 3 h''$ left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second \star s, \star 2, in the above three cases) can be expressed independent of the insert command category.

```
value
  21 int_Insert: Insert \rightarrow N \xrightarrow{\sim} N
        pre_int_Insert: Ins \rightarrow N \rightarrow Bool
  22'
  22"
         pre_int_lnsert(lns(op))(hs,ls) \equiv
                  s_l(op) \notin ls \land obs_Ll(s_l(op)) \notin iols(ls) \land
\star 2
    case op of
  23)
              2oldH(hi',l,hi'') \rightarrow \{hi',hi''\} \in iohs(hs),
  24)
             1 \text{oldH1} \text{newH}(\text{hi},\text{l},\text{h}) \rightarrow
            hi ∈ iohs(hs) \land h∉ hs \land obs_HI(h)∉ iohs(hs),
  25)
              2\text{newH}(h',l,h'') \rightarrow
             \{h',h''\} \cap hs = \{\} \land \{obs_Hl(h'),obs_Hl(h'')\} \cap iohs(hs) = \{\}
    end
```

On a Triptych of Software Development

April 22, 2010, 16:31, Vienna Lectures, April 201

268

C Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

 $(A. \quad A.5. \ \textbf{Other Applicative Expressions} \ A.5.5. \ \textbf{Conditionals} \)$

- 26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some hub in the net, $xtr_H(hi)(hs,ls)$ extracts the hub with that identifier.
- 27. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some link in the net, xtr_L(li)(hs,ls) extracts the hub with that identifier.

value

26: $xtr_H: HI \rightarrow N \xrightarrow{\sim} H$ 26: $xtr_H(hi)(hs,_) \equiv let h:H h \in hs \land obs_HI(h)=hi in h end$ pre hi \in iohs(hs) 27: $xtr_L: HI \rightarrow N \xrightarrow{\sim} H$ 27: $xtr_L(li)(_,ls) \equiv let l:L \in ls \land obs_LI(l)=li in l end$ pre li \in iols(ls) On a Triptych of Software Development

April 22, 2010, 16:31, Vienna Lectures, April 201

269

C Diges Bigraer 2010 Fredsvei 11 DK-2840 Holte Denmai

267

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

- 28. When a new link is joined to an existing hub then the observable link identifiers of that hub must be updated to reflect the link identifier of the new link.
- 29. When an existing link is removed from a remaining hub then the observable link identifiers of that hub must be updated to reflect the removed link (identifier).

value

April 22, 2010, 16:31, Vienna Lectures, April 201

 $\begin{array}{l} \text{aLI: } \mathsf{H} \times \mathsf{LI} \to \mathsf{H}, \, \mathsf{rLI: } \mathsf{H} \times \mathsf{LI} \xrightarrow{\sim} \mathsf{H} \\ \text{28: } \mathsf{aLI}(\mathsf{h},\mathsf{li}) \text{ as } \mathsf{h}' \\ \mathbf{pre} \, \mathsf{li} \not\in \mathsf{obs_Lls}(\mathsf{h}) \\ \mathbf{post} \, \mathsf{obs_Lls}(\mathsf{h}') = \{\mathsf{li}\} \cup \mathsf{obs_Lls}(\mathsf{h}) \wedge \mathsf{non_l_eq}(\mathsf{h},\mathsf{h}') \\ \text{29: } \mathsf{rLI}(\mathsf{h}',\mathsf{li}) \text{ as } \mathsf{h} \\ \mathbf{pre} \, \mathsf{li} \in \mathsf{obs_Lls}(\mathsf{h}') \wedge \mathbf{card} \, \mathsf{obs_Lls}(\mathsf{h}') \geq 2 \\ \mathbf{post} \, \mathsf{obs_Lls}(\mathsf{h}) = \mathsf{obs_Lls}(\mathsf{h}') \setminus \{\mathsf{li}\} \wedge \mathsf{non_l_eq}(\mathsf{h},\mathsf{h}') \end{array}$

```
© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmar
```

(A. A.5. Other Applicative Expressions A.5.5. Conditionals

 $int_lnsert(op)(hs,ls) \equiv$ \star_i case op of 30 $2\mathsf{newH}(\mathsf{h}',\mathsf{l},\mathsf{h}'') \to (\mathsf{hs} \cup \{\mathsf{h}',\mathsf{h}''\},\mathsf{ls} \cup \{\mathsf{l}\}),$ $1 \text{oldH1} \text{newH}(\text{hi},\text{l},\text{h}) \rightarrow$ 31 let $h' = aLI(xtr_H(hi,hs),obs_LI(I))$ in 31.1 $(hs \{xtr_H(hi,hs)\} \cup \{h,h'\}, ls \cup \{l\})$ end, 31.2 32 $2oldH(hi',l,hi'') \rightarrow$ 32.1 let $hs\delta = \{aLI(xtr_H(hi',hs),obs_LI(I))\}$ aLl(xtr_H(hi["],hs),obs_Ll(l))} in 32.2 $(hs \{xtr_H(hi',hs),xtr_H(hi'',hs)\} \cup hs\delta, ls \cup \{l\})$ end 32.3 \star_i end \star_k pre pre_int_lnsert(op)(hs,ls)

On a Triptych of Software Development

April 22, 2010, 16:31, Vienna Lectures, April 201

April 22, 2010, 16:21, Vienna Lecturer, April 20

273

C Diges Bigraer 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

value

33 int_Remove: $Rmv \rightarrow N \xrightarrow{\sim} N$ 34 int_Remove(Rmv(li))(hs,ls) \equiv 34(a)) let $l = xtr_L(li)(ls)$, {hi',hi''} = obs_Hls(l) in 34(b)) let {h',h''} = {xtr_H(hi',hs),xtr_H(hi'',hs)} in 34(c)) let hs' = cond_rmv(h',hs) \cup cond_rmv_H(h'',hs) in 34(d)) (hs\{h',h''} \cup hs',ls\{l}) end end end 34(a)) pre li \in iols(ls)

 $\begin{array}{ll} \mbox{cond_rmv: } LI \times H \times H\mbox{-set} \rightarrow H\mbox{-set} \\ \mbox{cond_rmv}(li,h,hs) \equiv \\ 34((c))i) & \mbox{if obs_HIs}(h) = \{li\} \mbox{ then } \{\} \\ 34((c))ii) & \mbox{else } \{sLI(li,h)\} \mbox{ end} \\ \mbox{pre } li \in obs_HIs}(h) \end{array}$

- 30. If the Insert command is of kind $2 new H(h^\prime,l,h^{\prime\prime})$ then the updated net of hubs and links, has
 - the hubs hs joined, \cup , by the set {h',h"} and
 - \bullet the links Is joined by the singleton set of {I}.
- 31. If the Insert command is of kind 10ldH1newH(hi,l,h) then the updated net of hubs and links, has
 - 31.1 : the hub identified by hi updated, hi', to reflect the link connected to that hub.
 - $31.2\,$: The set of hubs has the hub identified by hi replaced by the updated hub hi' and the new hub.
- 31.2 : The set of links augmented by the new link.
- 32. If the Insert command is of kind 20ldH(hi',I,hi") then
- 32.1–.2 : the two connecting hubs are updated to reflect the new link,
 - 32.3 : and the resulting sets of hubs and links updated.

April 22, 2010, 16:31, Vienna Lectures, April 2010

On a Triptych of Software Development

272

C Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

© Dines Bierner 2010, Fredsvei 11, DK-2840 Holte, Denmark

(A. A.5. Other Applicative Expressions A.5.5. Conditionals

- 33. The remove command is of the form Rmv(li) for some li.
- 34. We now sketch the meaning of removing a link:
 - (a) The link identifier, li, is, by the pre_int_Remove pre-condition, that of a link, l, in the net.
 - (b) That link connects to two hubs, let us refer to them as h' and h'.
 - (c) For each of these two hubs, say h, the following holds wrt. removal of their connecting link:
 - i. If I is the only link connected to \boldsymbol{h} then hub \boldsymbol{h} is removed. This may mean that
 - either one
 - or two hubs

April 22, 2010, 16:31, Vienna Lectures, April 201

- are also removed when the link is removed.
- ii. If I is not the only link connected to h then the hub h is modified to reflect that it is no longer connected to l.
- (d) The resulting net is that of the pair of adjusted set of hubs and links.

April 22, 2010, 16:31, Vienna Lectures, April 2010

© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark

April 22, 2010, 16:31, Vienna Lectures, April 2010

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

A.5.6. Operator/Operand Expressions

```
 \begin{array}{l} \langle \mathrm{Expr} \rangle ::= & \langle \mathrm{Prefix\_Op} \rangle \langle \mathrm{Expr} \rangle \\ & | \langle \mathrm{Expr} \rangle \langle \mathrm{Infix\_Op} \rangle \langle \mathrm{Expr} \rangle \\ & | \langle \mathrm{Expr} \rangle \langle \mathrm{Suffix\_Op} \rangle \\ & | \dots \\ \langle \mathrm{Prefix\_Op} \rangle ::= & \\ & - | \sim | \cup | \cap | \mathbf{card} | \mathbf{len} | \mathbf{inds} | \mathbf{elems} | \mathbf{hd} | \mathbf{tl} | \mathbf{dom} | \mathbf{rng} \\ \langle \mathrm{Infix\_Op} \rangle ::= & \\ & = | \neq | \equiv | + | - | * | \uparrow | / | < | \leq | \geq | > | \land | \lor | \Rightarrow \\ & | \in | \notin | \cup | \cap | \setminus | \subset | \subseteq | \supseteq | \supset | \cap | \downarrow | \circ \\ & | \mathrm{Suffix\_Op} ::= ! \end{array}
```

End of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark