
On a Triptych of Software Development 258

(A. A.4. A.4.7.)

Start of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 259

(A. A.4. A.4.7.)

A.5. Other Applicative Expressions
A.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 260

(A. A.5. Other Applicative Expressions A.5.1. Simple let Expressions)

A.5.2. Recursive let Expressions
Recursive let expressions are written as:

let f = λa•E(f,a) in B(f,a) end

let f = (λgλa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λgλa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 261

(A. A.5. Other Applicative Expressions A.5.2. Recursive let Expressions)

A.5.3. Non-deterministic let Clause

• The non-deterministic let clause:

let a:A • P(a) in B(a) end

• expresses the non-deterministic selection of a value a of type A

• which satisfies a predicate P(a) for evaluation in the body B(a).

• If no a:A • P(a) the clause evaluates to chaos.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 262

(A. A.5. Other Applicative Expressions A.5.3. Non-deterministic let Clause)

A.5.4. Pattern and “Wild Card” let Expressions
Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 263

(A. A.5. Other Applicative Expressions A.5.4. Pattern and “Wild Card” let Expressions)

A.5.5. Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 264

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

Example 44 – Choice Pattern Case Expressions: Insert Links:
We consider the meaning of the Insert operation designators.

21. The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command
“is at odds” with, that is, is not semantically well-formed with respect
to the net.

22. We characterise the “is not at odds”, i.e., is semantically well-formed,
that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions,
op, and nets, (hs.ls), and yields a truth value if the below relation
between the command arguments and the net is satisfied. Let (hs,ls)
be a value of type N.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 265

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

23. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

24. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 266

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

25. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three
cases) can be expressed independent of the insert command category.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 267

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

value

21 int Insert: Insert → N
∼
→ N

22′ pre int Insert: Ins → N → Bool

22′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

23) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
24) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h) 6∈ iohs(hs),
25) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 268

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be
observed from some hub in the net, xtr H(hi)(hs,ls) extracts the hub
with that identifier.

27. Given a net, (hs,ls), and given a link identifier, (li), which can be
observed from some link in the net, xtr L(li)(hs,ls) extracts the hub
with that identifier.

value

26: xtr H: HI → N
∼
→ H

26: xtr H(hi)(hs,) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

27: xtr L: HI → N
∼
→ H

27: xtr L(li)(,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 269

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

28. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.

29. When an existing link is removed from a remaining hub then the
observable link identifiers of that hub must be updated to reflect the
removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

28: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

29: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 270

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

30. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and
links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

31. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs
and links, has

31.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

31.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′

and the new hub.

31.2 : The set of links augmented by the new link.

32. If the Insert command is of kind 2oldH(hi’,l,hi”) then

32.1–.2 : the two connecting hubs are updated to reflect the new link,

32.3 : and the resulting sets of hubs and links updated.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 271

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

int Insert(op)(hs,ls) ≡
⋆i case op of

30 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
31 1oldH1newH(hi,l,h) →
31.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

31.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
32 2oldH(hi′,l,hi′′) →
32.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
32.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

32.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 272

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

33. The remove command is of the form Rmv(li) for some li.

34. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l,
in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.

(c) For each of these two hubs, say h, the following holds wrt. removal of their
connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean
that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect
that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 273

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

value

33 int Remove: Rmv → N
∼
→ N

34 int Remove(Rmv(li))(hs,ls) ≡
34(a)) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

34(b)) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

34(c)) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

34(d)) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

34(a)) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
34((c))i) if obs HIs(h)={li} then {}
34((c))ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

End of Example 44
April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 274

(A. A.5. Other Applicative Expressions A.5.5. Conditionals)

A.5.6. Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 274

(A. A.5. Other Applicative Expressions A.5.6. Operator/Operand Expressions)

End of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

April 22, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

