On a Triptych of Software Development

236 On a Triptych of Software Development 237
(A A2, A29. A293) (A A2, A29. A293.)
A.3. The RSL Predicate Calculus
A.3.1. Propositional Expressions
e Let identifiers (or propositional expressions) a, b, ..., ¢ designate Boolean values
(true or false [or chaos]).
Start of Lecture 8: RSL: PREDICATE CALCULUS and A-CALCULUS oTh
en:
false, true

a, b, ..., ¢ ~a, aAb, avb, a=b, a=b, a#b

e are propositional expressions having Boolean values.
e ~ A, V, =, = and # are Boolean connectives (i.e., operators).

e They can be read as: not, and, or, if then (or implies), equal and not equal.

March 2, 2010, 19:10, Vienna Lectures, April 2010

© Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

March 2, 2010, 19:10, Vienna Lectures, April 2010

© Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 238 On a Triptych of Software Development 239

(A. A3. The RSL Predicate Calculus A.3.1. Propositional Expressions)

A.3.2. Simple Predicate Expressions

(A. A3. The RSL Predicate Calculus A.3.2. Simple Predicate Expressions)

A.3.3. Quantified Expressions

e Let identifiers (or propositional expressions) a, b, ..., ¢ designate

e Let X, Y, ..., Cbhe type names or type expressions,
Boolean values,

e and let P(x), Qy) and R(z) designate predicate expressions in

e let x, y, ..., z (or term expressions) designate non-Boolean values which x,y and z are free.

e and let i, j, ..., k designate number values, e Then:

e then: VxX-P(x)

false, true 3y:Y - Qly)

a b .. c 3! 27 -R(2)

;j;/i/(\;;/,a\/b, a=b, a=b, a7b e are quantified expressions — also being predicate expressions.

i<j, i<j, i>], i#j, i>], 1>]

e are simple predicate expressions.

March 2, 2010, 19:10, Vienna Lectures, April 2010

© Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

March 2, 2010, 19:10, Vienna Lectures, April 2010

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 240
(A. A3. The RSL Predicate Calculus A.3.3. Quantified Expressions)
Example 40 — Predicates Over Net Quantities:

e From earlier examples we show some predicates:

e Example 28: Right hand side of function definition is_two_way link(l):
dlo:LY - lo € wHE()Acard lo=2

On a Triptych of Software Development 242

(A. A3. The RSL Predicate Calculus A.3.3. Quantified Expressions)
— The Cartesians + Maps + Wellformedness part:

* Right hand side of the wf-HUBS wellformedness function definition:
Y hi:HI - hi € dom hubs = wHIhubs(hi)=hi
* Right hand side of the wf_LINKS wellformedness function definition:
Y li:Ll- li € dom links = wLllinks(li)=Ii
* Right hand side of the wf N(7 hs,ls,g) wellformedness function definition:
[c] dom hs = dom g A
d] U {dom g(hi)|hi:HI - hi € dom g} = dom links A
e|] U {rng g(hi)|hi:HI - hi € dom g} = dom g A
fIV hi:HI - hi € dom g =V [i:LI- li € dom g(hi) = (g(hi))(li)#hi
g|V hi:HI- hi € dom g =V li:LI- li € dom g(hi) =
3 hi:Hl - hi € dom g=- 3! li:LI- li € dom g(hi) =
(a(hi)) (1) = hi A (g(hi))(1) = hi

m End of Example 40

On a Triptych of Software Development
(A. A3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

e Example 30:
— The Sorts + Observers + Axioms part:

241

* Right hand side of the wellformedness function wf N(n) defini-

tion:

V n:N-card wHs(n)>2 N\ cardwls(n)>1 A [5——8] of exam-

ple 1

* Right hand side of the wellformedness function wf N(hs,Is) defi-

nition:
card hs>2 A card Is>1 ...

On a Triptych of Software Development

(A. A3. The RSL Predicate Calculus A.3.3. Quantified Expressions)
A.4.)-Calculus + Functions
A.4.1. The)X-Calculus Syntax

type /x A BNF Syntax: x/
(L) == (V) [(F) [(A) [({A))
(V) ::= /% variables, i.e. identifiers %/
(F) = MV) - (L)
(A) == (L)L)
value /* Examples */
(L): e, f, a, ...
(V): x
(F): /\ X-e,
(A): fa, (fa), f(a), (E)(a), -

243

On a Triptych of Software Development 244

(A. A4. X\-Calculus + Functions A.4.1. The \-Calculus Syntax)

A.4.2. Free and Bound Variables
Let x,y be variable names and e, f be \-expressions.

e (V): Variable z is free in .
o (F): xis free in \y -e if © # y and z is free in e.

e (A): xis free in f(e) if it is free in either f or e (i.e., also in both).

On a Triptych of Software Development 246

(A. A4 \-Calculus + Functions A.4.3. Substitution)

A.4.4. a-Renaming and (3-Reduction

e a-renaming: Ax-M
If x, y are distinct variables then replacing x by y in Ax-M results
in Ay-subst([y/x|M). We can rename the formal parameter of a \-
function expression provided that no free variables of its body M
thereby become bound.

e [G-reduction: (Ax-M)(N)
All free occurrences of x in M are replaced by the expression N

provided that no free variables of N thereby become bound in the
result. (Ax-M)(N) = subst([N/x|M)

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 245

(A. A4 \-Calculus + Functions A.4.2. Free and Bound Variables)

A.4.3. Substitution
e subst([N/x|x) = N;
e subst([N/x|a) = a,
for all variables a# x;
e subst([N/x|(P Q)) = (subst([N/x|P) subst([N/x|Q));
e subst([N/x|(Az-P)) = A y-P;
e subst([N/x|(X y-P)) = A\y- subst([N/x|P),
if x#£y and y is not free in N or x is not free in P;
e subst([N/x|(\y-P)) = Azsubst([N/z|subst([z/y|P)),
if y#x and y is free in N and x is free in P

(where z is not free in (N P)).

On a Triptych of Software Development 247
(A. A4. X\-Calculus + Functions A.4.4. a-Renaming and (-Reduction)
A.4.5. An Example
Example 41 — Network Traffic:
e We model traffic by introducing a number of model concepts.
e We simplify

— — without loosing the essence of this example, namely to show the use of \-
functions —

— by omitting consideration of dynamically changing nets.
e These are introduced next:

— Let us assume a net, n:/\V.

— There is a dense set, T, of times — for which we omit giving an appropriate
definition.

— There is a sort, V, of vehicles.
— TS is a dense subset of T.

— For each ts: TS we can define a minimum and a maximum time.

On a Triptych of Software Development 248
(A. A4. M\-Calculus + Functions A.4.5. An Example)
—The MIN and MAX functions are meta-linguistic.

— At any moment some vehicles, v:V, have a pos:Position on the net
and VP records those.

— A Position is either on a link or at a hub.

— An onLink position can be designated by the link identifier, the
identifiers of the from and to hubs, and the fraction, fF, of the
distance down the link from the from hub to the to hub.

— An atHub position just designates the hub (by its identifier).

— Traffic, tf-TF, is now a continuous function from Time to NP
(“recordings”).

— Modelling traffic in this way entails a (“serious”) number of well-
formedness conditions. These are defined in wf TF (omitted: ...).

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

On a Triptych of Software Development 250
(A. A4 \-Calculus + Functions A45. An Example)
e We have defined the continuous, composite entity of traffic.
e Now let us define an operation of inserting a vehicle in a traffic.
e To insert a vehicle, v, in a traffic, tf, is prescribable as follows:

— the vehicle, v, must be designated;
—a time point, ¢, “inside” the traffic £f must be stated;
— a traffic, vt f, from time t of vehicle v must be stated;

—as well as traffic, tf, into which vtf is to be “merged”.
e The resulting traffic is referred to as tf’.

value
insert V:Vx T xTF —-TF — TF
insert V(v,t,vtf)(tf) as tf

On a Triptych of Software Development 249

(A. A4 \-Calculus + Functions A.4.5. An Example)

value
n:N
type
T,V
TS = T-infset
axiom
V ts:TS - 3 tmin,tmax:T: tmin € ts Atmax € ts AV t:T -t € ts = tmin < t < tmax
[that is: ts = { MZN(ts).. MAX(ts)}]

type
VP =V 5 Pos
TF =T — VP, TF = {|th: TF-wf TF(tf)(n)|}

Pos = onL | atH

onL == mkLPos(hi:HI li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)
value

wf_TF: TF— N — Bool

wf TF(tf)(n) = ...

DOMAIN: TF — TS

MIN, MAX: TS — T

On a Triptych of Software Development 251
(A. A4. \-Calculus + Functions A.4.5. An Example)

e The function insert V is here defined in terms of a pair of pre/post
conditions.

e The pre-condition can be prescribed as follows:
— The insertion time ¢ must be within to open interval of time points
in the traffic ¢f to which insertion applies.
— The vehicle v must not be among the vehicle positions of ¢ f.

— The vehicle must be the only vehicle “contained” in the “inserted”
traffic vt f.

pre: MIN(DOMAIN (tf)<t<MAX(DOMATN (tf)) A
VT -t € DOMAIN(tf) = v & dom tf(t) A
MIN(DOMAIN (vif)) =t A
Vt: Tt € DOMAZN (vtf) = dom vtf(t)={v}

On a Triptych of Software Development 252 On a Triptych of Software Development 253

(A. A4. M\-Calculus + Functions A.4.5. An Example) (A. A4 \-Calculus + Functions A.4.5. An Example)
post: tf = At"
let ts = DOMATN (tf) U DOMATN (vtf) in

e The post condition “defines” ¢f’, the traffic resulting from merging

vtf with tf: ! ,/
— Let ts be the time points of ¢ f and vt f, a time interval. 1ft/I\1/éiN(ts) St S MAX(s)

— The result traffic, tf/, is defines as a A-function. ((t<t) — (),

—For any " in the time interval (t>t) — [vi— if vy then (tf(t))(v) else (vtf(t))(v) end])
—if " is less than t, the insertion time, then tf’ isastf; else chaos end

—if t is t or larger then tf’ applied to t”, i.e., tf'(t") end

assumption: wf TF(vtf)Awf TF(tf)
theorem: wf TF(tf)

e We leave it as an exercise for the student to define functions for:

x for any v’ : V different from v yields the same as (tf(t))(v'),
* but for v it yields (vt f(t))(v).

— removing a vehicle from a traffic,
— changing to course of a vehicle from an originally (or changed) vehicle traffic to

another.
— etcetera. m End of Example 41
On a Triptych of Software Development 254 On a Triptych of Software Development 255
(A. A4. \-Calculus + Functions A.4.5. An Example) (A. A4 \-Calculus + Functions A.4.6. Function Signatures)
A.4.6. Function Signatures Example 42 — Hub and Link Observers:

For sorts we may want to postulate some functions:
e Let a net with several hubs and links be presented.

type :
A B, .. C e Now observer functions
value —wHs and
wB:A—B — wls
WO A s C can be demonstrated:
—one simply “walks” along the net, pointing out
e These functions cannot be defined. — this hub and
e Once a domain is presented — that link,

—in which sort A and sorts or types B, ... and C occurs — one-by-one

— these observer functions can be demonstrated. — until all the net has been visited.

On a Triptych of Software Development 256
(A. A4 \-Calculus + Functions A.4.6. Function Signatures)
e The observer functions

—wHI and

—wlLl

can be likewise demonstrated, for example:

—when a hub is “visited”

— its unique identification

— can be postulated (and “calculated”)

— to be the unique geographic position of the hub

— one which is not overlapped by any other hub (or link),

e and likewise for links. m End of Example 42

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 258

(A. A.4. \-Calculus 4+ Functions A.4.7. Function Definitions)

Or functions can be defined implicitly:

value g ASB
f: A—B g(a_expr) as b
f(a_expr) as b pre P'(a_expr)
post P(a_expr,b) post P(a_expr,b)

P: AxB—Bool P: A—Bool

where b is just an identifier.

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 257

(A. A4 \-Calculus + Functions A.4.6. Function Signatures)

A.4.7. Function Definitions
Functions can be defined explicitly:

type
A B g: A = B [a partial function |
value g(a expr) = b expr

f: A — B [a total function |
f(a_expr) = b expr

pre P(a expr)
P: A — Bool

® a_expr, b_expr are
e A respectively B valued expressions

e of any of the kinds illustrated in earlier and later sections of this
primer.

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

On a Triptych of Software Development 259
(A. A4. \-Calculus + Functions A.4.7. Function Definitions)
e Finally functions, f, g, ..., can be defined in terms of axioms

e over function identifiers, f, g, ..., and over identiers of function argu-
ments and results.

type
A B, C D, ..
value
:A—B
g C—D

axiom
vV aA, b:B, ¢:C, d:D, ...
Pi(f,a,b) A ... A Pp(fab)

él(g,c,d) A . N Qplg,c,d)

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark

On a Triptych of Software Development 260
(A. A4. X\-Calculus + Functions A.4.7. Function Definitions)
Example 43 — Axioms over Hubs, Links and Their Observers:
e Example 1 on page 39 Items [4]-[8]

e clearly demonstrates how a number of entities and observer functions
are constrained

e (that is, partially defined)

e by function signatures and axioms. m End of Example 43

March 2, 2010, 19:10, Vienna Lectures, April 2010 © Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

On a Triptych of Software Development 260

(A. A4. M\-Calculus + Functions A.4.7. Function Definitions)

'End of Lecture 8:

RSL: PREDICATE CALCULUS and \-CALCULUS]

March 2, 2010, 19:10, Vienna Lectures, April 2010

© Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

