
On a Triptych of Software Development 236

(A. A.2. A.2.9. A.2.9.3.)

Start of Lecture 8: RSL: PREDICATE CALCULUS and λ–CALCULUS

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 237

(A. A.2. A.2.9. A.2.9.3.)

A.3. The RSL Predicate Calculus

A.3.1. Propositional Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values
(true or false [or chaos]).

• Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

• are propositional expressions having Boolean values.

• ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

• They can be read as: not, and, or, if then (or implies), equal and not equal.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 238

(A. A.3. The RSL Predicate Calculus A.3.1. Propositional Expressions)

A.3.2. Simple Predicate Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values,

• let x, y, ..., z (or term expressions) designate non-Boolean values

• and let i, j, . . ., k designate number values,

• then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

• are simple predicate expressions.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 239

(A. A.3. The RSL Predicate Calculus A.3.2. Simple Predicate Expressions)

A.3.3. Quantified Expressions

• Let X, Y, . . ., C be type names or type expressions,

• and let P(x), Q(y) and R(z) designate predicate expressions in
which x, y and z are free.

• Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

• are quantified expressions — also being predicate expressions.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 240

(A. A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

Example 40 – Predicates Over Net Quantities:

• From earlier examples we show some predicates:

• Example 28: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ ωHΣ(l)∧card lσ=2

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 241

(A. A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

• Example 30:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) defini-
tion:
∀ n:N • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧ [5−−8] of exam-
ple 1

∗ Right hand side of the wellformedness function wf N(hs,ls) defi-
nition:
card hs≥2 ∧ card ls≥1 ...

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 242

(A. A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ ωHIhubs(hi)=hi

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ ωLIlinks(li)=li

∗ Right hand side of the wf N(7 hs,ls,g) wellformedness function definition:
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

End of Example 40

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 243

(A. A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

A.4. λ-Calculus + Functions

A.4.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 244

(A. A.4. λ-Calculus + Functions A.4.1. The λ-Calculus Syntax)

A.4.2. Free and Bound Variables

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 245

(A. A.4. λ-Calculus + Functions A.4.2. Free and Bound Variables)

A.4.3. Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 246

(A. A.4. λ-Calculus + Functions A.4.3. Substitution)

A.4.4. α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results
in λy•subst([y/x]M). We can rename the formal parameter of a λ-
function expression provided that no free variables of its body M
thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N
provided that no free variables of N thereby become bound in the
result. (λx•M)(N) ≡ subst([N/x]M)

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 247

(A. A.4. λ-Calculus + Functions A.4.4. α-Renaming and β-Reduction)

A.4.5. An Example

Example 41 – Network Traffic:

• We model traffic by introducing a number of model concepts.

• We simplify

– – without loosing the essence of this example, namely to show the use of λ–
functions –

– by omitting consideration of dynamically changing nets.

• These are introduced next:

– Let us assume a net, n:N.

– There is a dense set, T, of times – for which we omit giving an appropriate
definition.

– There is a sort, V, of vehicles.

– TS is a dense subset of T.

– For each ts:TS we can define a minimum and a maximum time.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 248

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

– The MIN and MAX functions are meta-linguistic.

– At any moment some vehicles, v:V, have a pos:Pos ition on the net
and VP records those.

– A Pos ition is either on a link or at a hub.

– An onLink position can be designated by the link identifier, the
identifiers of the from and to hubs, and the fraction, f:F, of the
distance down the link from the from hub to the to hub.

– An atHub position just designates the hub (by its identifier).

– Traffic, tf:TF, is now a continuous function from T ime to NP
(“recordings”).

– Modelling traffic in this way entails a (“serious”) number of well-
formedness conditions. These are defined in wf TF (omitted: ...).

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 249

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[that is: ts = {MIN (ts)..MAX (ts)}]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 250

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

• We have defined the continuous, composite entity of traffic.

• Now let us define an operation of inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 251

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

• The function insert V is here defined in terms of a pair of pre/post
conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points
in the traffic tf to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted”
traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 252

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

• The post condition “defines” tf ′, the traffic resulting from merging
vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf (t))(v′),

∗ but for v it yields (vtf (t))(v).

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 253

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

post: tf′ = λt′′

•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end])

else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

• We leave it as an exercise for the student to define functions for:

– removing a vehicle from a traffic,

– changing to course of a vehicle from an originally (or changed) vehicle traffic to
another.

– etcetera. End of Example 41

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 254

(A. A.4. λ-Calculus + Functions A.4.5. An Example)

A.4.6. Function Signatures

For sorts we may want to postulate some functions:

type

A, B, ..., C
value

ωB: A → B
...
ωC: A → C

• These functions cannot be defined.

• Once a domain is presented

– in which sort A and sorts or types B, ... and C occurs

– these observer functions can be demonstrated.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 255

(A. A.4. λ-Calculus + Functions A.4.6. Function Signatures)

Example 42 – Hub and Link Observers:

• Let a net with several hubs and links be presented.

• Now observer functions

– ωHs and

– ωLs

can be demonstrated:

– one simply “walks” along the net, pointing out

– this hub and

– that link,

– one-by-one

– until all the net has been visited.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 256

(A. A.4. λ-Calculus + Functions A.4.6. Function Signatures)

• The observer functions

– ωHI and

– ωLI

can be likewise demonstrated, for example:

– when a hub is “visited”

– its unique identification

– can be postulated (and “calculated”)

– to be the unique geographic position of the hub

– one which is not overlapped by any other hub (or link),

• and likewise for links. End of Example 42

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 257

(A. A.4. λ-Calculus + Functions A.4.6. Function Signatures)

A.4.7. Function Definitions

Functions can be defined explicitly:

type

A, B
value

f: A → B [a total function]
f(a expr) ≡ b expr

g: A
∼
→ B [a partial function]

g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

• a expr, b expr are

• A, respectively B valued expressions

• of any of the kinds illustrated in earlier and later sections of this
primer.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 258

(A. A.4. λ-Calculus + Functions A.4.7. Function Definitions)

Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼
→B

g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 259

(A. A.4. λ-Calculus + Functions A.4.7. Function Definitions)

• Finally functions, f, g, ..., can be defined in terms of axioms

• over function identifiers, f, g, ..., and over identiers of function argu-
ments and results.

type

A, B, C, D, ...
value

f: A → B
g: C → D
...

axiom

∀ a:A, b:B, c:C, d:D, ...
P1(f,a,b) ∧ ... ∧ Pm(f,a,b)
...
Q1(g,c,d) ∧ ... ∧ Qn(g,c,d)

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 260

(A. A.4. λ-Calculus + Functions A.4.7. Function Definitions)

Example 43 – Axioms over Hubs, Links and Their Observers:

• Example 1 on page 39 Items [4]–[8]

• clearly demonstrates how a number of entities and observer functions
are constrained

• (that is, partially defined)

• by function signatures and axioms. End of Example 43

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 260

(A. A.4. λ-Calculus + Functions A.4.7. Function Definitions)

End of Lecture 8: RSL: PREDICATE CALCULUS and λ–CALCULUS

March 2, 2010, 19:10, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

