
On a Triptych of Software Development 188

(A. A.1. A.1.2. A.1.2.3.)

Start of Lecture 7: RSL: VALUES & OPERATIONS

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 189

(A. A.1. A.1.2. A.1.2.3.)

A.2. Concrete RSL Types: Values and Operations

A.2.1. Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 190

(A. A.2. Concrete RSL Types: Values and Operations A.2.1. Arithmetic)

A.2.2. Set Expressions

A.2.2.1. Set Enumerations

Let the below a’s denote values of type A, then the below designate
simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 191

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Example 34 – Set Expressions over Nets:

• We now consider hubs to abstract cities, towns, villages, etcetera.

• Thus with hubs we can associate sets of citizens.

• Let c:C stand for a citizen value c being an element in the type C of
all such.

• Let g:G stand for any (group) of citizens, respectively the type of all
such.

• Let s:S stand for any set of groups, respectively the type of all such.

• Two otherwise distinct groups are related to one another if they share
at least one citizen, the liaisons.

• A network nw:NW is a set of groups such that for every group in
the network one can always find another group with which it shares
liaisons.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 192

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Solely using the set data type and the concept of subtypes, we can model
the above:

type

C
G′ = C-set, G = {| g:G′

• g6={} |}
S = G-set

L′ = C-set, L = {| ℓ:L′

• ℓ 6={} |}
NW′ = S, NW = {| s:S • wf S(s) |}

value

wf S: S → Bool

wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
share: G×G → Bool

share(g,g′) ≡ g6=g′ ∧ g ∩ g′ 6= {}
liaisons: G×G → L
liaisons(g,g′) = g ∩ g′ pre share(g,g′)

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 193

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Annotations:

• L stands for proper liaisons (of at least one liaison).

• G′, L′ and N′ are the “raw” types which are constrained to G, L and N.

• {| binding:type expr • bool expr |} is the general form of the subtype expression.

• For G and L we state the constraints “in-line”, i.e., as direct part of the subtype
expression.

• For NW we state the constraints by referring to a separately defined predicate.

• wf S(s) expresses — through the auxiliary predicate — that s contains at least two
groups and that any such two groups share at least one citizen.

• liaisons is a “truly” auxiliary function in that we have yet to “find an active need”
for this function!

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 194

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

• The idea is that citizens can be associated with more than one city,
town, village, etc.

• (primary home, summer and/or winter house, working place, etc.).

• A group is now a set of citizens related by some “interest”

• (Rotary club membership, political party “grassroots”, religion, et.).

• The student is invited to define, for example, such functions as:

– The set of groups (or networks) which are represented in all hubs [or in only one
hub].

– The set of hubs whose citizens partake in no groups [respectively networks].

– The group [network] with the largest coverage in terms of number of hubs in
which that group [network] is represented.

End of Example 34

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 195

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

A.2.2.2. Set Comprehension

• The expression, last line below, to the right of the ≡, expresses set
comprehension.

• The expression “builds” the set of values satisfying the given predi-
cate.

• It is abstract in the sense that it does not do so by following a
concrete algorithm.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 196

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 197

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

Example 35 – Set Comprehensions:

• Example 30 on page 171 illustrates, in the Cartesians + Maps

+ Wellformedness part the following set comprehensions in the
wf N(hs,ls,g) wellformedness predicate definition:

– [d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g}

∗ It expresses the distributed union

∗ of sets (dom g(hi)) of link identfiers

∗ (for each of the hi indexed maps from (definition set, dom) link
identiers

∗ to (range set, rng) hub identifiers, where hi:HI ranges over dom

g).

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 198

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

– [e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g}

∗ It expresses the distributed union

∗ of sets (rng g(hi)) of hub identfiers

∗ (for each of the hi indexed maps from (definition set, dom) link
identiers

∗ to (range set, rng) hub identifiers, where hi:HI ranges over
deom g).

End of Example 35

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 199

(A. A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

A.2.3. Cartesian Expressions

A.2.3.1. Cartesian Enumerations

• Let e range over values of Cartesian types involving A, B, . . ., C,

• then the below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 200

(A. A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

Example 36 – Cartesian Net Types:

• So far we have abstracted hubs and links as sorts.

• That is, we have not defined their types concretely.

• Instead we have postulated some attributes such as:

– observable hub identifiers of hubs and

– sets of observable link identifiers of links connected to hubs.

• We now claim the following further attributes of hubs and links.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 201

(A. A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

• Concrete links have

– link identifiers,

– link names – where two or more connected links may have the same link name,

– two (unordered) hub identifiers,

– lenghts,

– locations – where we do not presently defined what we main by locations,

– etcetera

• Concrete hubs have

– hub identifiers,

– unique hub names,

– a set of one or more observable link identifiers,

– locations,

– etcetera.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 202

(A. A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

type

LN, HN, LEN, LOC
cL = LI × LN × (HI × HI) × LOC × ...
cH = HI × HN × LI-set × LOC × ...

End of Example 36

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 203

(A. A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

A.2.4. List Expressions

A.2.4.1. List Enumerations

• Let a range over values of type A,

• then the below expressions are simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

• The last line above assumes ai and aj to be integer-valued expres-
sions.

• It then expresses the set of integers from the value of ei to and
including the value of ej.

• If the latter is smaller than the former, then the list is empty.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 204

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.1. List Enumerations)

A.2.4.2. List Comprehension

• The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 205

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

Example 37 – Routes in Nets:

• A phenomenological (i.e., a physical) route of a net is a sequence of
one or more adjacent links of that net.

• A conceptual route is a sequence of one or more link identifiers.

• An abstract route is a conceptual route

– for which there is a phenomenological route of the net

– for which the link identifiers of the abstract route

– map one-to-one onto links of the phenomenological route.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 206

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

type

N, H, L, HI, LI
PR′ = L∗

PR = {| pr:PR′
• ∃ n:N • wf PR(pr)(n)|}

CR = LI∗

AR′ = LI∗

AR = {| ar:AR′
• ∃ n:N • wf AR(ar)(n) |}

value

wf PR: PR′ → N → Bool

wf PR(pr)(n) ≡
∀ i:Nat • {i,i+1}⊆inds pr ⇒

ωHIs(l(i)) ∩ ωHIs(l(i+1)) 6= {}
wf AR′: AR′ → N → Bool

wf AR(ar)(n) ≡
∃ pr:PR • pr ∈ routes(n) ∧ wf PR(pr)(n) ∧ len pr=len ar ∧

∀ i:Nat • i ∈ inds ar ⇒ ωLI(pr(i))=ar(i)

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 207

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

• A single link is a phenomenological route.

• If r and r′ are phenomenological routes

– such that the last link r

– and the first link of r′

– share observable hub identifiers,

then the concatenation r̂r′ is a route.

This inductive definition implies a recursive set comprehension.

• A circular phenomenological route is a phenomenological route whose first and last
links are distinct but share hub identifiers.

• A looped phenomenological route is a phenomenological route where two distinctly
positions (i.e., indexed) links share hub identifiers.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 208

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

value

routes: N → PR-infset

routes(n) ≡
let prs = {〈l〉|l:L•ωLs(n)} ∪

∪ {pr̂pr′|pr,pr′:PR•{pr,pr′}⊆prs∧ωHIs(r(len pr))∩ωHIs(pr′(1)) 6={}}
prs end

is circular: PR → Bool

is circular(pr) ≡ ωHIs(pr(1))∩ωHIs(pr(len pr))6={}

is looped: PR → Bool

is looped(pr) ≡ ∃ i,j:Nat • i6=j∧{i,j}⊆index pr ⇒ ωHIs(pr(i))∩ωHIs(pr(j))6={}

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 209

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

• Straight routes are Phenomenological routes without loops.

• Phenomenological routes with no loops can be constructed from phe-
nomenological routes by removing suffix routes whose first link give
rise to looping.

value

straight routes: N → PR-set

straight routes(n) ≡
let prs = routes(n) in {straight route(pr)|pr:PR•ps ∈ prs} end

straight route: PR → PR
straight route(pr) ≡
〈pr(i)|i:Nat•i:[1..len pr] ∧ pr(i) 6∈ elems〈pr(j)|j:Nat•j:[1..i]〉〉

End of Example 37

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 210

(A. A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

A.2.5. Map Expressions

A.2.5.1. Map Enumerations

• Let (possibly indexed) u and v range over values of type T1 and T2,
respectively,

• then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u 7→v], ..., [u1 7→v1,u27→v2,...,un 7→vn],...} ⊆ M

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 211

(A. A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.1. Map Enumerations)

A.2.5.2. Map Comprehension

• The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 212

(A. A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

Example 38 – Concrete Net Type Construction:

• We Define a function con[struct] Nγ (of the Cartesians + Maps

+ Wellformedness part of Example 30.

– The base of the construction is the fully abstract sort definition of
Nα in the Sorts + Observers + Axioms part of Example 30
– where the sorts of hub and link identifiers are taken from earlier
examples.

– The target of the construction is the Nγ of the Cartesians +

Maps + Wellformedness part of Example 30.

– First we recall the ssential types of that Nγ.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 213

(A. A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

type

Nγ = HUBS × LINKS × GRAPH
HUBS = HI →m H
LINKS = LI →m L
GRAPH = HI →m (LI →m HI)

value

con Nγ: Nα → Nγ

con Nγ(nα) ≡
let hubs = [ωHI(h) 7→ h | h:H • h ∈ ωHs(nα)],

links = [ωLI(h) 7→ l | l:L • l ∈ ωLs(nα)],
graph = [ωHI(h) 7→ [ωLI(l) 7→ ι(ωHIs(l)\{ωHI(h)})

| l:L • l ∈ ωLs(nα)∧li ∈ ωLIs(h)]
| H:h • h ∈ ωHs(nα)] in

(hubs.links,graph) end

ι: A-set
∼
→ A [A could be LI-set]

ι(as) ≡ if card as=1 then let {a}=as in a else chaos end end

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 214

(A. A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

theorem:

nα satisfies axioms [2,5–8] for N of Example 1 ⇒ wf Nγcon Nγ(nα)

End of Example 38

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 215

(A. A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

A.2.6. Set Operations
A.2.6.1. Set Operator Signatures

value

9 ∈: A × A-infset → Bool

10 6∈: A × A-infset → Bool

11 ∪: A-infset × A-infset → A-infset

12 ∪: (A-infset)-infset → A-infset

13 ∩: A-infset × A-infset → A-infset

14 ∩: (A-infset)-infset → A-infset

15 \: A-infset × A-infset → A-infset

16 ⊂: A-infset × A-infset → Bool

17 ⊆: A-infset × A-infset → Bool

18 =: A-infset × A-infset → Bool

19 6=: A-infset × A-infset → Bool

20 card: A-infset
∼
→ Nat

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 216

(A. A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.1. Set Operator Signatures)

A.2.6.2. Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 217

(A. A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.2. Set Examples)

A.2.6.3. Informal Explication

9. ∈: The membership operator expresses that an element is a member of a set.

10. 6∈: The nonmembership operator expresses that an element is not a member of a
set.

11. ∪: The infix union operator. When applied to two sets, the operator gives the set
whose members are in either or both of the two operand sets.

12. ∪: The distributed prefix union operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.

13. ∩: The infix intersection operator. When applied to two sets, the operator gives
the set whose members are in both of the two operand sets.

14. ∩: The prefix distributed intersection operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 218

(A. A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.3. Informal Explication)

15. \: The set complement (or set subtraction) operator. When applied
to two sets, the operator gives the set whose members are those of
the left operand set which are not in the right operand set.

16. ⊆: The proper subset operator expresses that all members of the
left operand set are also in the right operand set.

17. ⊂: The proper subset operator expresses that all members of the
left operand set are also in the right operand set, and that the two
sets are not identical.

18. =: The equal operator expresses that the two operand sets are iden-
tical.

19. 6=: The nonequal operator expresses that the two operand sets are
not identical.

20. card: The cardinality operator gives the number of elements in a
finite set.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 219

(A. A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.3. Informal Explication)

A.2.6.4. Set Operator Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡
if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 220

(A. A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.4. Set Operator Definitions)

A.2.7. Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 221

(A. A.2. Concrete RSL Types: Values and Operations A.2.7. Cartesian Operations)

A.2.8. List Operations

A.2.8.1. List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 222

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.1. List Operator Signatures)

A.2.8.2. List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 223

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.2. List Operation Examples)

A.2.8.3. Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is
removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a
nonempty list. For empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct ele-
ments in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ
having a number of elements larger than or equal to i, gives the ith
element of the list.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 224

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.3. Informal Explication)

• ̂: Concatenates two operand lists into one. The elements of the
left operand list are followed by the elements of the right. The order
with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are iden-
tical.

• 6=: The nonequal operator expresses that the two operand lists are
not identical.

The operations can also be defined as follows:

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 225

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.3. Informal Explication)

A.2.8.4. List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 226

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.4. List Operator Definitions)

q(i) ≡
case (q,i) of

(〈〉,1) → chaos,
(,1) → let a:A,q′:Q • q=〈a〉̂q′ in a end

→ q(i−1)
end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 227

(A. A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.4. List Operator Definitions)

A.2.9. Map Operations

A.2.9.1. Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 228

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.1. Map Operator Signatures and Map Operation Examples)

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b 7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 229

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.1. Map Operator Signatures and Map Operation Examples)

A.2.9.2. Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to

in a map.

• rng: Range/Image Set gives the set of values which are mapped to

in a map.

• †: Override/Extend. When applied to two operand maps, it gives
the map which is like an override of the left operand map by all or
some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of
these maps.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 230

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

• \: Restriction. When applied to two operand maps, it gives the map which

is a restriction of the left operand map to the elements that are not in the right

operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is

a restriction of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are
identical.

• 6=: The nonequal operator expresses that the two operand maps are
not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, m1, to the range elements of the

right operand map, m2, such that if a is in the definition set of m1 and maps into

b, and if b is in the definition set of m2 and maps into c, then a, in the composition,

maps into c.

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 231

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

Example 39 – Miscellaneous Net Expressions: Maps: Ex-
ample 30 on page 171 left out defining the well-formedness of the map
types:

value

wf HUBS: HUBS → Bool

[a] wf HUBS(hubs) ≡ ∀ hi:HI • hi ∈ dom hubs ⇒ ωHIhubs(hi)=hi
wf LINKS: LINKS → Bool

[b] wf LINKS(links) ≡ ∀ li:LI • li ∈ dom links ⇒ ωLIlinks(li)=li
wf Nγ: Nγ → Bool

wf Nγ(hs,ls,g) ≡
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 232

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

• [c] HUBS record the same hubs as do the net corresponding GRAPHS (dom hs =
dom g ∧).

• [d] GRAPHS record the same links as do the net corresponding LINKS (∪ {dom

g(hi)|hi:HI • hi ∈ dom g} = dom links).

• [e] The target (or range) hub identifiers of graphs are the same as the domain of
the graph (∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g), that is none missing, no
new ones !

• [f] No links emanate from and are incident upon the same hub (∀ hi:HI • hi ∈ dom

g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi).

• [g] If there is a link from one hub to another in the GRAPH, then the same link also
connects the other hub to the former (∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom

g(hi) ⇒ ∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧
(g(hi′))(li) = hi).

End of Example 39

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 233

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

A.2.9.3. Map Operation Redefinitions

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 234

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 234

(A. A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

End of Lecture 7: RSL: VALUES & OPERATIONS

April 19, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

