A. An RSL Primer A.1. Types A.1.1. Type Expressions

- Type expressions are expressions whose value are type, that is,
- possibly infinite sets of values (of "that" type).

A.1.1.1. Atomic Types

- Atomic types have (atomic) values.
- That is, values which we consider to have no proper constituent (sub-)values,
- i.e., cannot, to us, be meaningfully "taken apart".

On a Triptych of Software Development

March 2, 2010, 16:48, Vienna Lectures, April 2010

165

© Diges Bigmer 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

(.)

Start of Lecture 6: RSL: TYPES

type

[1] Bool	[4] Real
[2] Int	[5] Char
[3] Nat	[6] Text

- 1. The Boolean type of truth values **false** and **true**.
- 2. The integer type on integers ..., -2, -1, 0, 1, 2,
- 3. The natural number type of positive integer values 0, 1, 2, ...
- 4. The real number type of real values,

i.e., values whose numerals can be written as an integer, followed by a period ("."), followed by a natural number (the fraction).

5. The character type of character values "a", "b", ...

6. The text type of character string values "aa", "aaa", ..., "abc", ...

On a Triptych of Software Development

March 2, 2010, 16:48, Vienna Lectures, April 201

166

© Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

Example 28 – Basic Net Attributes:

- For safe, uncluttered traffic, hubs and links can 'carry' a maximum of vehicles.
- Links have lengths. (We ignore hub (traveersal) lengths.)
- One can calculate whether a link is a two-way link.

170

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

type

MAX = NatLEN = Real $is_Two_Way_Link = Bool$ value ω Max: (H|L) \rightarrow MAX ω Len: L \rightarrow LEN is_two_way_link: $L \rightarrow is_Two_Way_Link$ is_two_way_link(I) $\equiv \exists \ l\sigma: L\Sigma \cdot l\sigma \in \omega H\Sigma(I) \land card \ l\sigma=2$

■ End of Example 28

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

A.1.1.2. Composite Types

- Composite types have composite values.
- That is, values which we consider to have proper constituent (sub-)values,
- i.e., can, to us, be meaningfully "taken apart".

[7] A-set	$[13] A \rightarrow B$
[8] A-infset	$[14] A \xrightarrow{\sim} B$
$[9] A \times B \times \times C$	[15] (A)
$[10] A^*$	[16] A B C
$[11] A^{\omega}$	$[17]$ mk_id(sel_a:A,,sel_b:B)
$[12] A \xrightarrow{m} B$	$[18]$ sel_a:A sel_b:B

March 2, 2010, 16:48, Vienna Lectures, April 2010	⊙ Dines Bjørner 2010, Fredavej 11, DK-2840 Holte, Denmark	March 2, 2010, 16:45, Vienna Lactures, April 2010	S Dins Bjørner 2010, Fredevej 11, DK-2840 Holte, Denma
On a Triptych of Software Development	169	On a Triptych of Software Development	17
(A. An RSL Primer A.1. Types A.1.1. Type Expressions	A.1.1.2. Composite Types)	(A. An RSL Primer	A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)
Example 29 – Composite Net Type 29 – Composite Net Type 20 – Composite Net Type 29 – Composite Net Type 20 – Composite	pressions:	value	
• The type clauses of function signatures:		ω HIs: L \rightarrow HI-set	Example 1 Item [5]
		$\omega LIs: \ H \to LI-set$	Example 1 Item [6]
value		μ H Σ · H \rightarrow HT-set	Example 1 Item [10]

f: $A \rightarrow B$

- often have the type expressions A and/or B
- be composite type expressions:

ω Hls: L \rightarrow Hl-set	Example 1 Item [5]
$\omega Lls: \ H \to Ll-set$	Example 1 Item [6]
$\omega H\Sigma$: $H \to HT\text{-}\mathbf{set}$	Example 1 Item [10]
$set_{H} H \Sigma \colon H \times H \Sigma \to H$	Example 2 Item [12]

172

174

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

• Right-hand sides of type definitions often have composite type expressions.

type

- N = H-set $\times L$ -set Example 1 Item [2] $HT = LI \times HI \times LI$ Example 1 Item [9] $LT' = HI \times LI \times HI$ Example 7 Item [32]

■ End of Example 29

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types) A.1.2. Type Definitions

A.1.2.1. Concrete Types

- Types can be concrete
- in which case the structure of the type is specified by type expressions:

type $A = Type_expr$

March 2, 2010, 16:48, Vienna Lectures, April 2010	inn Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark	March 2, 2010, 16:48, Vienea Lactures, April 2010	C Dires Bjørner 2010, Predavej 11, DK-2840 Holte, Denmark
On a Triptych of Software Development	173	On a Triptych of Software Development	174
(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)		(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)	
Example 30 – Composite Net Types:		type	
• There are many ways in which nets can be concrete	ely modelled:	[sorts] N $_{lpha}$, H, L, HI, LI	

- Sorts + Observers + Axioms: First we show an example of type definitions without right-hand side, that is, of sort definitions. From a net one can observe many things.
- Of the things we focus on are the hubs and the links.
- A net contains two or more hubs and one or more links.

 \mathbf{v}_{α} , , ∟, , ,,, value ω Hs: N $_{\alpha} \rightarrow$ H-set $\omega \mathsf{Ls:} \ \mathsf{N}_{\alpha} \to \mathsf{L-set}$ axiom $\forall n: \mathbb{N}_{\alpha} \cdot \operatorname{card} \omega \operatorname{Hs}(n) \geq 2 \wedge \operatorname{card} \omega \operatorname{Ls}(n) \geq 1 \wedge \dots$

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Cartesians + Wellformedness: A net can be considered as a Cartesian of sets of two or more hubs and sets of one or more links.

type

 $\begin{array}{l} [\operatorname{sorts}] \ \mathsf{H}, \ \mathsf{L} \\ \mathsf{N}_{\beta} = \mathsf{H}\text{-}\operatorname{set} \times \mathsf{L}\text{-}\operatorname{set} \\ \mathbf{value} \\ \operatorname{wf}_{-}\mathsf{N}_{\beta} : \ \mathsf{N}_{\beta} \to \mathbf{Bool} \\ \operatorname{wf}_{-}\mathsf{N}_{\beta}(\mathsf{hs},\mathsf{ls}) \equiv \mathbf{card} \ \mathsf{hs}{\geq}2 \land \mathbf{card} \ \mathsf{ls}{\geq}1 \ \ldots \\ \operatorname{inject}_{-}\mathsf{N}_{\beta} : \ \mathsf{N}_{\alpha} \xrightarrow{\sim} \mathsf{N}_{\beta} \ \mathbf{pre} : \ \operatorname{wf}_{-}\mathsf{N}_{\beta}(\mathsf{hs},\mathsf{ls}) \\ \operatorname{inject}_{-}\mathsf{N}_{\beta}(\mathsf{n}_{\alpha}) \equiv (\omega \mathsf{Hs}(\mathsf{n}_{\alpha}), \omega \mathsf{Ls}(\mathsf{n}_{\alpha})) \end{array}$

- Cartesians + Maps + Wellformedness: Or a net can be modelled as a triple of
 - hubs (modelled as a map from hub identifiers to hubs),
 - links (modelled as a map from link identifiers to links), and
 - a graph from hub h_i identifiers h_{i_i} to maps from identifiers l_{ij_i} of hub h_i connected links l_{ij} to the identifiers h_{j_i} of link connected hubs h_j .

March 2, 2010, 16:88, Vienus Lectures, April 2010	© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark	March 2, 2010, 16:48, Viena Letture, April 2010	⊙ Diess Bjørner 2010, Fredavej 11, DK-2840 Holte, Denmark
On a Triptych of Software Development	177	On a Triptych of Software Development	178
(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Co	ncrete Types)	(A. An RSL Primer A.1. Types A.1.2. Ty	pe Definitions A.1.2.1. Concrete Types)
type [sorts] H, HI, L, LI		• Schematic type definitions: $\begin{bmatrix} 1 \end{bmatrix}$ Type name = Type expr. /* w	ithout s or subtypes */
$N_{\gamma} = HUBS \times LINKS \times GRAPH$ [a] HUBS = HI \overrightarrow{m} H [b] LINKS = LI \overrightarrow{m} L [c] GRAPH = HI \overrightarrow{m} (LI -m> HI)		[1] Type_name = Type_expr / πw [2] Type_name = Type_expr_1 T [3] Type_name == mk_id_1(s_a1:Type_name_a1, 	ype_expr_2 Type_expr_n .,s_ai:Type_name_ai)
 [a,b] hs:HUBS and ls:LINKS are maps from h hubs (links) where one can still observe these hubs (link). 	ub (link) identifiers to identfiers from these	mk_id_n(s_z1:Type_name_z1, [4] Type_name :: sel_a:Type_name [5] Type_name = { v:Type_name	,s_zk:Type_name_zk) _a sel_z:Type_name_z $\cdot \mathcal{P}(v) \mid$
• Example 39 on page 233 defines the well-form the above map types.	edness predicates for		

■ End of Example 30

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• where a form of [2–3] is provided by combining the types:

 $Type_name = A | B | ... | Z$ $A == mk_id_1(s_a1:A_1,...,s_ai:A_i)$ $B == mk_id_2(s_b1:B_1,...,s_bj:B_j)$... $Z == mk_id_n(s_z1:Z_1,...,s_zk:Z_k)$

axiom

∀ a1:A_1, a2:A_2, ..., ai:Ai · s_a1(mk_id_1(a1,a2,...,ai))=a1 ∧ s_a2(mk_id_1(a1,a2,...,ai))=a2 ∧ ... ∧ s_ai(mk_id_1(a1,a2,...,ai))=ai ∧ ∀ a:A · let mk_id_1(a1',a2',...,ai') = a in a1' = s_a1(a) ∧ a2' = s_a2(a) ∧ ... ∧ ai' = s_ai(a) end

Example 31 – Net Record Types: Insert Links:

- 7. To a net one can insert a new link in either of three ways:
- (a) Either the link is connected to two existing hubs and the insert operation must therefore specify the new link and the identifiers of two existing hubs;
- (b) or the link is connected to one existing hub and to a new hub and the insert operation must therefore specify the new link, the identifier of an existing hub, and a new hub;
- (c) or the link is connected to two new hubs and the insert operation must therefore specify the new link and two new hubs.
- (d) From the inserted link one must be able to observe identifier of respective hubs.
- 8. From a net one can remove a link.³ The removal command specifies a link identifier.

^{3–} provided that what remains is still a proper net

On a Triptych of Software Development

March 2, 2010, 16:48, Vienna Lectures, April 201

181

C Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

179

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

- 7 Insert == $lns(s_ins:lns)$
- 7 Ins = 2xHubs | 1x1nH | 2nHs
- 7(a) $2xHubs == 2oldH(s_hi1:HI,s_l:L,s_hi2:HI)$
- 7(b) $1x1nH == 1oldH1newH(s_hi:HI,s_l:L,s_h:H)$
- 7(c) $2nHs == 2newH(s_h1:H,s_l:L,s_h2:H)$
- 8 Remove == $\text{Rmv}(s_\text{Ii}:LI)$

axiom

7(d) \forall 2oldH(hi',I,hi''):Ins \cdot hi' \neq hi'' \land obs_LIs(I)={hi',hi''} \land \forall 1old1newH(hi,I,h):Ins \cdot obs_LIs(I)={hi,obs_HI(h)} \land \forall 2newH(h',I,h''):Ins \cdot obs_LIs(I)={obs_HI(h'),obs_HI(h'')}

Example ?? on page ?? presents the semantics functions for *int_Insert* and *int_Remove*. ■ End of Example 31

On a Triptych of Software Development

March 2. 2010, 16:48, Vienna Lectures, April 2010

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

A.1.2.2. Subtypes

- In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
- The set of values b which have type B and which satisfy the predicate \mathcal{P} , constitute the subtype A:

type

$\mathbf{A} = \{ | \mathbf{b}: \mathbf{B} \cdot \mathcal{P}(\mathbf{b}) | \}$

© Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmar

182

180

Example 32 – Net Subtypes:

sians and Maps.

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

- For the first we gave an example, **Sorts + Observers + Axioms**,

- For the second and third we gave concrete types in terms of Carte-

"purely" in terms of sets, see *Sorts — Abstract Types* below.

• In Example 30 on page 173 we gave three examples.

186

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the **Sorts + Observers + Axioms** part of Example 30

- -a net was defined as a sort, and so were its hubs, links, hub identifiers and link identifiers:
- axioms making use of appropriate observer functions make up the wellformedness condition on such nets.

We now redefine this as follows:

March 2, 2010, 16:48, Vienna Lectures, April 2010 C Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmark March 2, 2010, 16:48, Vienna Lectures, April 201 C Diges Bigraer 2010 Fredsvei 11 DK-2840 Holte Denmar On a Triptych of Software Development 185 On a Triptych of Software Development (A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes) (A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes) • In the **Cartesians + Wellformedness** part of Example 30 type [sorts] N′, H, L, HI, LI -a net was a Cartesian of a set of hubs and a set of links $\mathsf{N} = \{ |\mathsf{n}: \mathsf{N}' \cdot \mathsf{wf}_{-}\mathsf{N}(\mathsf{n})| \}$ - with the wellformedness that there were at least two hubs and at value least one link wf N: N' \rightarrow Bool - and that these were connected appropriately (treated as ...). $wf_N(n) \equiv$ \forall n:N · card ω Hs(n) \geq 2 \wedge card ω Ls(n) \geq 1 \wedge We now redefine this as follows: $\begin{bmatrix} 5-8 \end{bmatrix}$ of example 1 type N' = H-set $\times L$ -set

 $\mathsf{N} = \{|\mathsf{n}:\mathsf{N}' \cdot \mathsf{wf}_{-}\mathsf{N}(\mathsf{n})|\}$

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

type

• Example 39 on page 233 presents a definition of *wf_GRAPH*.

■ End of Example 32

C Diges Bigraer 2010 Fredsvei 11 DK-2840 Holte Denmar

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2. A.1.2.3. Sorts — Abstract	2. Subtypes) Fypes	
iptych of Software Development	189	
	IST THE PARTY ATTACK PROVIDENT TO THE SAME PROVIDE THE TRADE	

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Cartesians + Maps + Wellformedness part of Example 30

-a net was a triple of hubs, links and a graph,

- each with their wellformednes predicates.

We now redefine this as follows:

- Types can be (abstract) sorts
- in which case their structure is not specified:

type

March 2 20

On a T

A, B, ..., C

On a Triptych of Software Development

March 2, 2010, 16:48, Vienna Lectures, April 2011

190

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

Example 33 – **Net Sorts:**

- In formula lines of Examples 30–32
- we have indicated those type clauses which define *sorts*,
- by bracketed [sorts] literals.

End of Example 33

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

End of Lecture 6: RSL: TYPES

March 2, 2010, 16:48, Vienna Lectures, April 2010

C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark