
On a Triptych of Software Development 163

(.)

Start of Lecture 6: RSL: TYPES

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 164

A. An RSL Primer

A.1. Types

A.1.1. Type Expressions

• Type expressions are expressions whose value are type, that is,

• possibly infinite sets of values (of “that” type).

A.1.1.1. Atomic Types

• Atomic types have (atomic) values.

• That is, values which we consider to have no proper constituent
(sub-)values,

• i.e., cannot, to us, be meaningfully “taken apart”.

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 165

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false

and true.

2. The integer type on integers ..., –2, –1,
0, 1, 2,

3. The natural number type of positive
integer values 0, 1, 2, ...

4. The real number type of real values,

i.e., values whose numerals can be writ-
ten as an integer, followed by a period
(“.”), followed by a natural number
(the fraction).

5. The character type of character values
′′a′′, ′′b′′, ...

6. The text type of character string val-
ues ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 166

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

Example 28 – Basic Net Attributes:

• For safe, uncluttered traffic, hubs and links can ‘carry’ a maximum of
vehicles.

• Links have lengths. (We ignore hub (traveersal) lengths.)

• One can calculate whether a link is a two-way link.

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 167

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

type

MAX = Nat

LEN = Real

is Two Way Link = Bool

value

ωMax: (H|L) → MAX
ωLen: L → LEN
is two way link: L → is Two Way Link
is two way link(l) ≡ ∃ lσ:LΣ • lσ ∈ ωHΣ(l)∧card lσ=2

End of Example 28

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 168

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

A.1.1.2. Composite Types

• Composite types have composite values.

• That is, values which we consider to have proper constituent (sub-)-
values,

• i.e., can, to us, be meaningfully “taken apart”.

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 169

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

Example 29 – Composite Net Type Expressions:

• The type clauses of function signatures:

value

f: A → B

• often have the type expressions A and/or B

• be composite type expressions:

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 170

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

value

ωHIs: L → HI-set Example 1 Item [5]
ωLIs: H → LI-set Example 1 Item [6]
ωHΣ: H → HT-set Example 1 Item [10]
set HΣ: H × HΣ → H Example 2 Item [12]

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 171

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

• Right-hand sides of type definitions often have composite type expres-
sions:

type

N = H-set × L-set Example 1 Item [2]
HT = LI × HI × LI Example 1 Item [9]
LT′ = HI × LI × HI Example 7 Item [32]

End of Example 29

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 172

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

A.1.2. Type Definitions

A.1.2.1. Concrete Types

• Types can be concrete

• in which case the structure of the type is specified by type expres-
sions:

type

A = Type expr

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 173

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

Example 30 – Composite Net Types:

• There are many ways in which nets can be concretely modelled:

• Sorts + Observers + Axioms: First we show an example of type
definitions without right-hand side, that is, of sort definitions.

From a net one can observe many things.

Of the things we focus on are the hubs and the links.

A net contains two or more hubs and one or more links.

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 174

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

[sorts] Nα, H, L, HI, LI
value

ωHs: Nα → H-set

ωLs: Nα → L-set
axiom

∀ n:Nα • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧ ...

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 175

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Cartesians + Wellformedness: A net can be considered as a
Cartesian of sets of two or more hubs and sets of one or more links.

type

[sorts] H, L
Nβ = H-set × L-set

value

wf Nβ: Nβ → Bool

wf Nβ(hs,ls) ≡ card hs≥2 ∧ card ls≥1

inject Nβ: Nα
∼
→ Nβ pre: wf Nβ(hs,ls)

inject Nβ(nα) ≡ (ωHs(nα),ωLs(nα))

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 176

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Cartesians + Maps + Wellformedness: Or a net can be mod-
elled as a triple of

– hubs (modelled as a map from hub identfiers to hubs),

– links (modelled as a map from link identfiers to links), and

– a graph from hub hi identifiers hii to maps from identfiers liji
of

hub hi connected links lij to the identfiers hji of link connected
hubs hj.

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 177

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

[sorts] H, HI, L, LI
Nγ = HUBS × LINKS × GRAPH

[a] HUBS = HI →m H
[b] LINKS = LI →m L
[c] GRAPH = HI →m (LI −m> HI)

– [a,b] hs:HUBS and ls:LINKS are maps from hub (link) identifiers to
hubs (links) where one can still observe these identfiers from these
hubs (link).

• Example 39 on page 233 defines the well-formedness predicates for
the above map types.

End of Example 30

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 178

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Schematic type definitions:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′

• P(v) |}

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 179

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• where a form of [2–3] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 180

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

Example 31 – Net Record Types: Insert Links:

7. To a net one can insert a new link in either of three ways:

(a) Either the link is connected to two existing hubs — and the insert operation
must therefore specify the new link and the identifiers of two existing hubs;

(b) or the link is connected to one existing hub and to a new hub — and the insert
operation must therefore specify the new link, the identifier of an existing hub,
and a new hub;

(c) or the link is connected to two new hubs — and the insert operation must
therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of respective hubs.

8. From a net one can remove a link.3 The removal command specifies a link identifier.

3– provided that what remains is still a proper net

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 181

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

7 Insert == Ins(s ins:Ins)
7 Ins = 2xHubs | 1x1nH | 2nHs
7(a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
7(b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
7(c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)
8 Remove == Rmv(s li:LI)

axiom

7(d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

Example ?? on page ?? presents the semantics functions for int Insert

and int Remove. End of Example 31

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 182

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

A.1.2.2. Subtypes

• In RSL, each type represents a set of values. Such a set can be
delimited by means of predicates.

• The set of values b which have type B and which satisfy the predicate
P , constitute the subtype A:

type

A = {| b:B • P(b) |}

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 183

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

Example 32 – Net Subtypes:

• In Example 30 on page 173 we gave three examples.

– For the first we gave an example, Sorts + Observers + Axioms,
“purely” in terms of sets, see Sorts — Abstract Types below.

– For the second and third we gave concrete types in terms of Carte-
sians and Maps.

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 184

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Sorts + Observers + Axioms part of Example 30

– a net was defined as a sort, and so were its hubs, links, hub identi-
fiers and link identifiers;

– axioms – making use of appropriate observer functions - make up
the wellformedness condition on such nets.

We now redefine this as follows:

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 185

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

type

[sorts] N′, H, L, HI, LI
N = {|n:N′

• wf N(n)|}
value

wf N: N′ → Bool

wf N(n) ≡
∀ n:N • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧
[5−−8] of example 1

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 186

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Cartesians + Wellformedness part of Example 30

– a net was a Cartesian of a set of hubs and a set of links

– with the wellformedness that there were at least two hubs and at
least one link

– and that these were connected appropriately (treated as ...).

We now redefine this as follows:

type

N′ = H-set × L-set
N = {|n:N′

• wf N(n)|}

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 187

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Cartesians + Maps + Wellformedness part of Example 30

– a net was a triple of hubs, links and a graph,

– each with their wellformednes predicates.

We now redefine this as follows:

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 188

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

type

[sorts] L, H, LI, HI
N′ = HUBS × LINKS × GRAPH
N = {|(hs,ls,g):N′

• wf HUBS(hs)∧wf LINKS(ls)∧wf GRAPH(g)(hs,ls)|}
HUBS′ = HI →m H
HUBS = {|hs:HUBS′

• wf HUBS(hs)|}
LINKS′ = LI → L
LINKS = {|ls:LINKS′

• wf LINKS(ls)|}
GRAPH′ = HI →m (LI →m HI)
GRAPH = {|g:GRAPH′

• wf GRAPH(g)|}
value

wf GRAPH: GRAPH′ → (HUBS × LINKS) → Bool

wf GRAPH(g)(hs,ls) ≡ wf N(hs,ls,g)

• Example 39 on page 233 presents a definition of wf GRAPH.

End of Example 32

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 189

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

A.1.2.3. Sorts — Abstract Types

• Types can be (abstract) sorts

• in which case their structure is not specified:

type

A, B, ..., C

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 190

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

Example 33 – Net Sorts:

• In formula lines of Examples 30–32

• we have indicated those type clauses which define sorts,

• by bracketed [sorts] literals.

End of Example 33

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 190

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

End of Lecture 6: RSL: TYPES

March 2, 2010, 16:48, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

