
On a Triptych of Software Development 97

(3. 3.8.)

Start of Lecture 4: REQUIREMENTS ENGINEERING

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 98

4. Requirements Engineering

• Whereas

– a domain description presents a domain as it is,

– a requirements prescription presents a domain as it would be

if some required machine was implemented (from these require-
ments).

• The machine is the hardware plus software to be designed from
the requirements.

• That is, the machine is what the requirements are about.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 99

(4. Requirements Engineering)

• We distinguish between three kinds of requirements:

– the domain requirements are those requirements which can
be expressed solely using terms of the domain;

– the machine requirements are those requirements which can
be expressed solely using terms of the machine and

– the interface requirements are those requirements which
must use terms from both the domain and the machine in order
to be expressed.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 100

(4. Requirements Engineering)

• We make a distinction between goals and requirements.

• Goals are what we expect satisfied by the software implemented from
the requirements.

• But goals could also be of the system for which the software is re-
quired.

• First we exemply the latter, then the former.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 101

(4. Requirements Engineering)

Example 14 – Goals of a Toll Road System

• A goal for a toll road system may be

– to decrease the travel time between certain hubs and

– to lower the number of traffic accidents between certain hubs,

End of Example 14

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 102

(4. Requirements Engineering)

Example 15 – Goals of Toll Road System Software

• The goal of the toll road system software is to help automate

– the recording of vehicles entering, passing and leaving the toll road
system

– and collecting the fees for doing so.

End of Example 15

• Goals are usually expressed in terms of properties.

• Requirements can then be proved to satisfy the Goals: D,R |= G.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 103

(4. Requirements Engineering)

Example 16 – Arguing Goal-satisfaction of a Toll Road System

• By endowing links and hubs with average traversal times for both
ordinary road and for toll road links and hubs

– one can calculate traversal times between hubs

– and thus argue that the toll road system satisfies “quicker” traversal times.

• By endowing links and hubs with traffic accident statistics (real, re-
spectively estimated)

– for both ordinary road and for toll road links and hubs

– one can calculate estimated traffic accident statistics between all hubs

– and thus argue that the combined ordinary road plus toll road system
satisfies lower traffic fatalities.

End of Example 16

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 104

(4. Requirements Engineering)

Example 17 – Arguing Goal-satisfaction of Toll Road System

Software

• By recording

– tickets issued and collected at toll boths and

– toll road hubs and links entered and left

– as per the requirements specification brought in
(forthcoming) Examples 19-23,

• we can eventually argue that

– the requirements of (the forthcoming) Examples 19-23

– help satisfy the goal of Example 15 on page 102.

End of Example 17

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 105

(4. Requirements Engineering)

• We shall assume that the (goal and) requirements engineer elicit both
Goals and Requirements from requirements stakeholders.

• But we shall focus only on

– domain and

– interface

requirements such as “derived” from domain descriptions.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 106

(4. Requirements Engineering)

4.1. Business Process Re-engineering

• There are the business processes of the domain before installation of the required
computing systems.

• The potential of installing computing systems invariably requires revision of es-
tablished business processes.

• Business process re-engineering (BPR) is a development of new business processes

– – whether or not complemented by computing and communication.

• BPR, such as we advocate it,

– proceeds on the basis of an existing domain description and

– outlines needed changes (additions, deletions, modifications) to entities, ac-
tions, events and behaviours

– following the six domain facets.

• The goals help us formulate the BPR prescriptions.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 107

(4. Requirements Engineering 4.1. Business Process Re-engineering)

Example 18 – Rough-sketching a Re-engineered Road Net

• Our sketch centers around a toll road net with toll booth plazas.

• The BPR focuses

– first on entities, actions, events and behaviours,

– then on the six domain facets.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 108

(4. Requirements Engineering 4.1. Business Process Re-engineering)

64 Re-engineered Entities:

• We shall focus on a linear sequence of toll road intersections (i.e.,
hubs) connected by pairs of one-way (opposite direction) toll roads
(i.e., links).

• Each toll road intersection is connected by a two way road to a toll
plaza.

• Each toll plaza contains a pair of sets of entry and exit toll booths.

• (Example 20 brings more details.)

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 109

(4. Requirements Engineering 4.1. Business Process Re-engineering)

65 Re-engineered Actions:

• Cars enter and leave the toll road net through one of the toll plazas.

• Upon entering, car drivers receive, from the entry booth, a plas-
tic/paper/electronic ticket which they place in a special holder in
the front window.

• Cars arriving at intermediate toll road intersections choose, on their
own, to turn either “up” the toll road or “down” the toll road —
with that choice being registered by the electronic ticket.

• Cars arriving at a toll road intersection may choose to “circle”
around that intersection one or more times — with that choice
being registered by the electronic ticket.

• Upon leaving, car drivers “return” their electronic ticket to the exit
booth and pay the amount “asked” for.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 110

(4. Requirements Engineering 4.1. Business Process Re-engineering)

66 Re-engineered Events:

• A car entering the toll road net at a toll both plaza entry booth
constitutes an event.

• A car leaving the toll road net at a toll both plaza entry booth
constitutes an event.

• A car entering a toll road hub constitutes an event.

• A car entering a toll road link constitutes an event.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 111

(4. Requirements Engineering 4.1. Business Process Re-engineering)

67 Re-engineered Behaviours:

• The journey of a car,
– from entering the toll road net at a toll booth plaza,

– via repeated visits to toll road intersections

– interleaved with repeated visits to toll road links

– to leaving the toll road net at a toll booth plaza,

constitutes a behaviour — with
– receipt of tickets,

– return of tickets and

– payment of fees

being part of these behaviours.

• Notice that a toll road visitor is allowed to cruise “up” and “down”
the linear toll road net – while (probably) paying for that pleasure
(through the recordings of “repeated” hub and link entries).

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 112

(4. Requirements Engineering 4.1. Business Process Re-engineering)

68 Re-engineered Intrinsics:

• Toll plazas and abstracted booths are added to domain intrinsics.

69 Re-engineered Support Technologies:

• There is a definite need for domain-describing the failure-prone toll
plaza entry and exit booths.

70 Re-engineered Rules and Regulations:

• Rules for entering and leaving toll booth entry and exit booths must
be described as must related regulations.

• Rules and regulations for driving around the toll road net must be
likewise be described.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 113

(4. Requirements Engineering 4.1. Business Process Re-engineering)

71 Re-engineered Scripts:

• No need.

72 Re-engineered Management and Organisation:

• There is a definite need for domain describing

• the management and possibly distributed organisation

• of toll booth plazas.

73 Re-engineered Human Behaviour:

• Humans, in this case car drivers, may not change their behaviour in
the spectrum from diligent and accurate via sloppy and delinquent
to outright traffic-law breaking – so we see no need for any “re-
engineering”.

End of Example 18

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 114

(4. Requirements Engineering 4.1. Business Process Re-engineering)

4.2. Domain Requirements

• For the phase of domain requirements the requirements stakeholders
“sit together” with the domain cum requirements engineers and read
the domain description, line-by-line, in order to “derive” the domain
requirements.

• They do so in five rounds (in which the BPR rough sketch is both
regularly referred to and possibly, i.e., most likely regularly updated).

• Domain requirements are “derived” from the domain description.

• The goals then determine the derivations: which projections, instan-
tiations, determinations, etcetera, to perform.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 115

(4. Requirements Engineering 4.2. Domain Requirements)

4.2.1. Projection

By domain projection we understand an operation

• that applies to a domain description

• and yields a domain requirements prescription.

• The latter represents a projection of the former

• in which only those parts of the domain are present

• that shall be of interest in the ongoing requirements development

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 116

(4. Requirements Engineering 4.2. Domain Requirements 4.2.1. Projection)

Example 19 – Projection

• Our requirements is for a simple toll road:

– a linear sequence of links and hubs outlined in Example 18:

∗ see Items [1–11] of Example 1 on page 39

∗ and Items [32–35] of Example 7 on page 68.

End of Example 19

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 117

(4. Requirements Engineering 4.2. Domain Requirements 4.2.1. Projection)

4.2.2. Instantiation

• By domain instantiation we understand an operation

– that applies to a (projected) domain description,
i.e., a requirements prescription,

– and yields a domain requirements prescription,

– where the latter has been made more specific,
usually by constraining a domain description.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 118

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

Example 20 – Instantiation

• Here the toll road net topology as outlined in Example 18 on page 107
is introduced:

– a straight sequence of toll road hubs

– pairwise connected with pairs of one way links

– and with each hub two way link connected to a toll road plaza.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 119

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

type

H, L, P = H
N′ = (H × L) × H × ((L × L) × H × (H × L))∗

N′′ = {|n:N′

•wf(n)|}
value

wf N′′: N′ → Bool

wf N′′((h,l),h′,llhpl) ≡ ... 6 lines ... !
αN: N′′ → N
αN((h,l),h′,llhpl) ≡ ... 2 lines ... !

• wf N′′ secures linearity;

• αN allows abstraction from more concrete N′′ to more abstract N.

End of Example 20

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 120

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

4.2.3. Determination

• By domain determination we understand an operation

– that applies to a (projected and possibly instantiated) domain
description, i.e., a requirements prescription,

– and yields a domain requirements prescription,

– where (attributes of) entities, actions, events and behaviours have
been made less indeterminate.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 121

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

Example 21 – Determination

• Pairs of links between toll way hubs are open in opposite directions;

• all hubs are open in all directions;

• links between toll way hubs and toll plazas are open in both directions.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 122

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

type

LΣ = (HI×HI)-set, LΩ = LΣ-set

HΣ = (LI×LI)-set, HΩ = HΣ-set

N′ = (H × L) × H × ((L × L) × H × (H × L))∗

value

ωLΣ: L → LΣ, ωLΩ: L → LΩ
ωHΣ: H → HΣ, ωHΩ: H → HΩ

axiom

∀ ((h,l),h′,llhhl:〈(l′,l′′),h′′,(h′′′,l′′′)〉̂llhhl′):N′′
•

ωLΣ(l)={(ωHI(h),ωHI(h′)),(ωHI(h′),ωHI(h))}∧
ωLΣ(l′′′)={(ωHI(h′′),ωHI(h′′′)),(ωHI(h′′′),ωHI(h′′))}∧
∀ i,i+1:Nat • {i,i+1}⊆inds llhhl ⇒
let ((li,li′),hi,(hi′′,li′′))=llhhl(i), (,hj,(hj′′,lj′′))=llhhl(i+1) in

ωLΩ(li)= {{(ωHI(hi),ωHI(hj))}}∧ωLΩ(li′)={{(ωHI(hj),ωHI(hi))}}∧
ωHΩ(hi)= { ... } ... 3 lines end

End of Example 21

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 123

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

4.2.4. Extension

• By domain extension we understand an operation

– that applies to a (projected and possibly determined and instanti-
ated) domain description, i.e., a (domain) requirements prescrip-
tion,

– and yields a (domain) requirements prescription.

– The latter prescribes that a software system is to support, partially
or fully, entities, operations, events and/or behaviours that were
not feasible (or not computable in reasonable time or space) in a
domain without computing support, but which are now are not
only feasible but also computable in reasonable time and space.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 124

(4. Requirements Engineering 4.2. Domain Requirements 4.2.4. Extension)

Example 22 – Extension

• We extend the domain by introducing toll road entry and exit booths as well as
electronic ticket hub sensors and actuators.

• There should now follow a careful narrative and formalisation of these three ma-
chines:

– the car driver/machine “dialogues” upon entry and exit

– as well as the sensor/car/actuator machine “dialogues” when cars enter hubs.

• The description

– should first, we suggest, be ideal;

– then it should take into account

∗ failures of booth equipment,

∗ electronic tickets,

∗ car drivers,

∗ and of sensors and actuators.

End of Example 22

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 125

(4. Requirements Engineering 4.2. Domain Requirements 4.2.4. Extension)

4.2.5. Fitting

• By domain requirements fitting we understand an operation

– which takes two or more (say n) domain requirements prescrip-
tions, dri

,

– that are claimed to share entities, actions, events and/or be-
haviours and

– map these into n+1 domain requirements prescriptions, δri
,

– where one of these, δrn+1 capture the shared phenomena and con-
cepts and the other n prescriptions, δri

,

– are like the n “input” domain requirements prescriptions, dri
,

– except that they now, instead of the “more-or-less” shared pre-
scriptions,

– that are now consolidated in δrn+1, prescribe interfaces between
δri

and δrn+1 for i : {1..n}.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 126

(4. Requirements Engineering 4.2. Domain Requirements 4.2.5. Fitting)

Example 23 – Fitting

• We assume three ongoing requirements development projects, all focused around
road transport net software systems:

– (i) road maintenance,

– (ii) toll road car monitoring and

– (iii) bus services on ordinary plus toll road nets.

• The main shared phenomenon is the road net, i.e., the links and the hubs.

• The consolidated, shared road net domain requirements prescription, δrn+1
, is to

become a prescription for the domain requirements for shared hubs and links.

• Tuples of these relations then prescribe representation of all hub, respectively all
link attributes – common to the three applications.

• Functions (including actions) on hubs and links become database queries and up-
dates. Etc.

End of Example 23

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 127

(4. Requirements Engineering 4.2. Domain Requirements 4.2.5. Fitting)

4.2.6. Discussion:

• This section has very briefly surveyed and illustrated domain require-
ments.

• The reader should take cognizance of the fact that these are indeed
“derived” from the domain description.

• They are not domain descriptions, but, once the business process
re-engineering has been adopted

• and the required software has been installed,

• then the domain requirements become part of a revised domain de-
scription !

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 128

(4. Requirements Engineering 4.2. Domain Requirements 4.2.6. Discussion:)

4.3. Interface Requirements

• By interface requirements we understand such requirements which
are concerned with the phenomena and concepts shared between the
domain and the machine.

• Thus such requirements can only be expressed using terms from both
the domain and the machine.

• We tackle the problem of “deriving”, i.e., constructing interface re-
quirements by tackling four “smaller” problems:

– those of “deriving” interface requirements for

∗ entities,

∗ actions,

∗ events and

∗ behaviours

respectively.

– Again goals help state which phenomena and concepts are to be shared.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 129

(4. Requirements Engineering 4.3. Interface Requirements)

4.3.1. Entity Interfaces

• Entities that are shared between the domain and the machine must
initially be input to the machine.

• Dynamically arising or attribute value changing entities must like-
wise be input and all such machine entities must have their attributes
updated, when need arise.

• Requirements for shared entities thus entail

– requirements for their representation

– and for their human/machine and/or machine/machine transfer-
dialogues.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 130

(4. Requirements Engineering 4.3. Interface Requirements 4.3.1. Entity Interfaces)

Example 24 – Shared Entities

• Main shared entities are those of hubs and links.

• We suggest that eventually a relational database be used for repre-
senting hubs links in relations.

• As for human input,

– some man/machine dialogue

– based around a set of visual display unit screens

– with fields for the input of hub,

– respectively link attributes

can then be devised.

• Etc.

End of Example 24

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 131

(4. Requirements Engineering 4.3. Interface Requirements 4.3.1. Entity Interfaces)

4.3.2. Action Interfaces

• By a shared action we mean an action that can only be partly com-
puted by the machine.

• That is, the machine, in order to complete an action,

– may have to inquire with the domain

– (some measurable, time-varying entity attribute value, or some
domain stakeholder)

– in order to proceed in its computation.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 132

(4. Requirements Engineering 4.3. Interface Requirements 4.3.2. Action Interfaces)

Example 25 – Shared Actions

• In order for a car driver to leave an exit toll both the following com-
ponent actions must take place:

– the driver inserts the electronic pass in the exit toll booth machine;

– the machine scans and accepts the ticket and calculates the fee for
the car journey from entry booth via the toll road net to the exit
booth;

– the driver is alerted to the cost and is requested to pay this amount;

– once paid the exit booth toll gate is raised.

• Notice that a number of details of the new support technology is left out.

• It could either be elaborated upon here, or be part of the system design.

End of Example 25

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 133

(4. Requirements Engineering 4.3. Interface Requirements 4.3.2. Action Interfaces)

4.3.3. Event Interfaces

• By a shared event we mean an event

– whose occurrence in the domain

– need be communicated to the machine

– and, vice-versa, an event

– whose occurrence in the machine

– need be communicated to the domain.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 134

(4. Requirements Engineering 4.3. Interface Requirements 4.3.3. Event Interfaces)

Example 26 – Shared Events

• The arrival of a car at a toll plaza entry booth is an event that must
be communicated to the machine so that the entry booth may issue
a proper pass (ticket).

• Similarly for the arrival at a toll plaza exit booth so that the machine
may request the return of the pass and compute the fee.

• The end of that computation is an event that is communicated to
the driver (in the domain) requesting that person to pay a certain fee
after which the exit gate is opened.

End of Example 26

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 135

(4. Requirements Engineering 4.3. Interface Requirements 4.3.3. Event Interfaces)

4.3.4. Behaviour Interfaces

• By a shared behaviour we understand

– a sequence of zero, one or more

∗ shared actions and

∗ shared events.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 136

(4. Requirements Engineering 4.3. Interface Requirements 4.3.4. Behaviour Interfaces)

Example 27 – Shared Behaviour

• A typical toll road net use behaviour is as follows:

– Entry at some toll plaza: receipt of electronic ticket,

– placement of ticket in special ticket “pocket” in front window,

– the raising of the entry booth toll gate;

– drive up to [first] toll road hub (with electronic registration of time of occurrence),

– drive down a selected link (with electronic registration of time of occurrence of
entry to and exit from link),

– then a repeated number of zero, one or more

∗ toll road hub and

∗ link visits –

∗ some of which may be “repeats” –

– ending with a drive down from a toll road hub to a toll plaza

– with the return of the electronic ticket, etc.

End of Example 27

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 137

(4. Requirements Engineering 4.3. Interface Requirements 4.3.4. Behaviour Interfaces)

4.3.5. Discussion

• Once the machine has been installed

• it, the machine, is part of the new domain !

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 138

(4. Requirements Engineering 4.3. Interface Requirements 4.3.5. Discussion)

4.4. Machine Requirements

• We shall not cover this stage of requirements development other than
saying that it consists of the following concerns:

– performance requirements (storage, speed, other resources),

– dependability requirements (availability, accessibility, integrity, re-
liability, safety, security),

– maintainability requirements (adaptive, extensional, corrective,
perfective, preventive),

– portability requirements (development platform, execution plat-
form, maintenance platform, demo platform) and

– documentation requirements.

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 139

(4. Requirements Engineering 4.4. Machine Requirements)

• Only dependability seems to be subjectable to rigorous, formal treat-
ment.

• The discussions of earlier carry over to this paragraph.

• That is, once the machine has been installed it, the machine, is part
of the new domain !

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 139

(4. Requirements Engineering 4.4. Machine Requirements)

End of Lecture 4: REQUIREMENTS ENGINEERING

April 8, 2010, 16:31, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

