
On a Triptych of Software Development 59

(2. 2.4.)

Start of Lecture 3: DOMAIN ENGINEERING

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 60

3. Domain Engineering

• We focus on the facet components of a domain description

• and shall not here cover such aspects of domain engineering as

– stakeholder identification and liaison,

– domain acquisition and analysis,

– terminologisation,

– verification, testing, model-checking, validation and

– domain theory formation.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 61

(3. Domain Engineering)

• By understanding, first, the facet components

– the domain engineer is in a better position to effectively

– establish the regime of stakeholders,

– pursue acquisition and analysis,

– and construct a necessary and sufficient terminology.

• The domain description components each cover their domain facet.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 62

(3. Domain Engineering)

• We outline six such facets:

– intrinsics,

– support technology,

– rules and regulations,

– scripts (licenses and contracts),

– management and organisation, and

– human behaviour.

• But first we cover a notion of business processes.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 63

(3. Domain Engineering)

3.1. Business Processes

• By a business process we understand

– a set of one or more, possibly interacting behaviours

– which fulfill a business objective.

• We advocate that domain engineers,

– typically together with domain stakeholder groups,

– rough-sketch their individual business processes.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 64

(3. Domain Engineering 3.1. Business Processes)

Example 6 – Some Transport Net Business Processes

• With respect to one and the same underlying road net

• we suggest some business-processes

• and invite the reader to rough-sketch these.

27 Private citizen automobile transports: Private citizens use the
road net for pleasure and for business, for sightseeing and to get to
and from work.

A private citizen automobile transport “business process rough-sketch”
might be:

A car owner drives to work: Drives out, onto the street, turns
left, goes down the street, straight through the next three
intersections, then turns left, two blocks straight, etcetera,
finally arrives at destination, and finally turns into a garage.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 65

(3. Domain Engineering 3.1. Business Processes)

28 Public bus (&c.) transport: Province and city councils contract
bus (&c.) companies to provide regular passenger transports according
to timetables and at cost or free of cost.

A public bus transport “business process rough-sketch” might be:

A bus drive from station of origin to station of final destination:
Bus driver starts from station of origin at the designated
time for this drive; drives to first passenger stop; open doors
to let passenger in; leaves stop at time table designated
time; drives to next stop adjusting speed to traffic condi-
tions and to “keep time” as per the time table; repeats this
process: “from stop to stop”, letting passengers off and on
the bus; after having (thus, i.e., in this manner) completed
last stop “turns” bus around to commence a return drive.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 66

(3. Domain Engineering 3.1. Business Processes)

29 Road maintenance and repair: Province and city councils hire
contractors to monitor road (link and hub) surface quality, to main-
tain set standards of surface quality, and to “emergency” re-establish
sudden occurrences of low quality.

30 Toll road traffic: State and province governments hire contractors
to run toll road nets with toll booth plazas.

31 Net revision: road (&c.) building: State government and province
and city councils contract road building contractors to extend (or
shrink) road nets.

• The detailed description of the above rough-sketched business process
synopses now becomes part of the domain description as partially
exemplified in the previous and the next many examples.

End of Example 6

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 67

(3. Domain Engineering 3.1. Business Processes)

• Rough-sketching such business processes helps bootstrap the process
of domain acquisition.

3.2. Intrinsics

• By intrinsics we shall understand

– the very basics,

– that without which none of the other facets can be described,

– i.e., that which is common to two or more, usually all of these
other facets.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 68

(3. Domain Engineering 3.2. Intrinsics)

Example 7 – Intrinsics

• Most of the descriptions of earlier examples model intrinsics.

• We add a little more:

32 A link traversal is a triple of a (from) hub identifier, an along link
identifier, and a (towards) hub identifier

33 such that these identifiers make sense in any given net.

34 A link state is a set of link traversals.

35 And a link state space is a set of link states.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 69

(3. Domain Engineering 3.2. Intrinsics)

value

n:N
type

[32] LT′ = HI × LI × HI
[33] LT = {|lt:LT′

•wfLT(lt)(n)|}
[34] LΣ′ = LT-set

[34] LΣ = {|lσ:LΣ′
•wf LΣ(lσ)(n)|}

[35] LΩ′ = LΣ-set

[35] LΩ = {|lω:LΩ′
•wf LΩ(lω)(n)|}

value

[33] wfLT: LT → N → Bool

[33] wfLT(hi,li,hi′)(n) ≡
[33] ∃ h,h′:H•{h,h′}⊆ωHs(n)∧
[33] ωHI(h)=hi∧ωHI(h′)=hi′∧
[33] li ∈ ωLIs(h)∧li ∈ ωLIs(h′)

End of Example 7

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 70

(3. Domain Engineering 3.2. Intrinsics)

3.3. Support Technologies

• By support technologies we shall understand

– the ways and means by which

∗ humans and/or

∗ technologies

∗ support

· the representation of entities and

· the carrying out of actions.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 71

(3. Domain Engineering 3.3. Support Technologies)

Example 8 – Support Technologies

• Some road intersections (i.e., hubs) are controlled by semaphores

– alternately shining red–yellow–green

– in carefully interleaved sequences

– in each of the in-directions from links incident upon the hubs.

• Usually these signalings are initiated as a result of road traffic sensors
placed below the surface of these links.

• We shall model just the signaling:

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 72

(3. Domain Engineering 3.3. Support Technologies)

36 There are three colours: red, yellow and green.

37 Each hub traversal is extended with a colour and so is the hub state.

38 There is a notion of time interval.

39 Signaling is now a sequence, 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′,
tδ′···′)〉 such that the first hub state hσ′ is to be set first and followed
by a time delay tδ′ whereupon the next state is set, etc.

40 A semaphore is now abstracted by the signalings that are prescribed
for any change from a hub state hσ to a hub state hσ′.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 73

(3. Domain Engineering 3.3. Support Technologies)

type

[36] Colour == red | yellow | green
[37] X = LI×HI×LI×Colour [crossings of a hub]
[37] HΣ = X-set [hub states]
[38] TI [time interval]
[39] Signalling = (HΣ × TI)∗

[40] Semaphore = (HΣ × HΣ) →m Signalling
value

[37] ωHΣ: H → HΣ
[40] ωSemaphore: H → Sema,
[41] chg HΣ: H × HΣ → H
[41] chg HΣ(h,hσ) as h′

[41] pre hσ ∈ ωHΩ(h) post ωHΣ(h′)=hσ

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 74

(3. Domain Engineering 3.3. Support Technologies)

[39] chg HΣ Seq: H × HΣ → H
[39] chg HΣ Seq(h,hσ) ≡
[39] let sigseq = (ωSemaphore(h))(ωΣ(h),hσ) in

[39] sig seq(h)(sigseq) end

[39] sig seq: H → Signalling → H
[39] sig seq(h)(sigseq) ≡
[39] if sigseq=〈〉 then h else

[39] let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);
[39] wait tδ;
[39] sig seq(h′)(tl sigseq) end end end

End of Example 8

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 75

(3. Domain Engineering 3.3. Support Technologies)

3.4. Rules and Regulations

• By a rule we shall understand

– a text which describe how the domain is
— i.e., how people and technology are —

– expected to behave.

• The meaning of a rule is

– a predicate over “before/after” states of actions
(simple, one step behaviours):

– if the predicate holds then the rule has been obeyed.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 76

(3. Domain Engineering 3.4. Rules and Regulations)

• By a regulation we shall understand

– a text which describes actions to be performed

– should its corresponding rule fail to hold.

• The meaning of a regulation is therefore

– a state-to-state transition,

– one that brings the domain into a rule-holding “after” state.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 77

(3. Domain Engineering 3.4. Rules and Regulations)

Example 9 – Rules We give two examples related to railway systems
where train stations are the hubs and the rail tracks between train stations
are the links:

41 Trains arriving at or leaving train stations:

(a) (In China:) No two trains

(b) must arrive at or leave a train station

(c) in any two minute time interval.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 78

(3. Domain Engineering 3.4. Rules and Regulations)

42 Trains travelling “down” a railway track. We must introduce a notion
of links being a sequence of adjacent sectors.

(a) Trains must travel in the same direction;

(b) and there must be at least one “free-from-trains” sector

(c) between any two such trains.

We omit showing somewhat “lengthy” formalisations.
. End of Example 9

We omit exemplification of regulations.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 79

(3. Domain Engineering 3.4. Rules and Regulations)

3.5. Scripts, Licenses and Contracts
3.5.1. Scripts

• By a script we understand

– a usually structured set of pairs of rules and regulations —

– structured, for example, as a simple “algorithm description”.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 80

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

Example 10 – Timetable Scripts

43 Time is considered discrete. Bus lines and bus rides have unique names
(across any set of time tables).

44 A T imeTable associates Bus Line Identifiers (blid) to sets of Journies.

45 Journies are designated by a pair of a BusRoute and a set of BusRides.

46 A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or
more intermediate Bus Stops and a destination Bus Stop.

47 A set of BusRides associates, to each of a number of Bus Identifiers
(bid) a Bus Schedule.

48 A Bus Schedule is a triple of the initial departure T ime, a list of zero,
one or more intermediate bus stop T imes and a destination arrival
T ime.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 81

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

49 A Bus Stop (i.e., its position) is a Fraction of the distance along
a link (identified by a Link Identifier) f rom an identified hub to an
identified hub.

50 A Fraction is a Real properly between 0 and 1.

51 The Journies must be well f ormed in the context of some net.

52 A set of journies is well-formed if

53 the bus stops are all different,

54 a bus line is embedded in some line of the net, and

55 all defined bus trips of a bus line are equivalent.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 82

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

type

[43] T, BLId, BId
[44] TT = BLId →m Journies
[45] Journies′ = BusRoute × BusRides
[46] BusRoute = BusStop × BusStop∗ × BusStop
[47] BusRides = BId →m BusSched
[49] BusSched = T × T∗ × T
[50] BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
[51] Frac = {|r:Real•0<r<1|}
[45] Journies = {|j:Journies′

•∃ n:N • wf Journies(j)(n)|}
value

[52] wf Journies: Journies → N → Bool

[52] wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
[53] diff bus stops(bs1,bsl,bsn) ∧
[54] is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
[55] commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

End of Example 10

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 83

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

• Timetables are used in Example 11 on the following page.

3.5.2. Licenses and Contracts

• By a license (a contract) language we understand a pair of lan-
guages

– of licenses and

– of the set of actions allowed by the license

– such that non-allowable license (contract) actions

∗ incur moral obligations

∗ (respectively legal responsibilities).

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 84

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

Example 11 – Public Bus Transport Contracts

• An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations
{"conduct","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (in-
cluding contracting) takes place and in which the implicit net is defined.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 85

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

• Concrete examples of actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license shown earlier is almost like an action; here is the
action form:

(d) cid: contractor cnm′ is granted a contract cid′

to perform operations
{”conduct”,”cancel”,”insert”,sublicense”}

with respect to timetable tt′.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 86

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

• All actions are being performed by a sub-contractor in a context which
defines

– that sub-contractor cnm,

– the relevant net, say n,

– the base contract, referred here to by cid (from which this is a
sublicense), and

– a timetable tt of which tt′ is a subset.

• contract name cnm′ is new and is to be unique.

• The subcontracting action can (thus) be simply transformed into a
contract as shown on Slide 84.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 87

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

type

Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Conduct | Cancel | Insert
Conduct == µConduct(s blid:BLId,s bid:BId)
Cancel == µCancel(s blid:BLId,s bid:BId)
Insert = µInsert(s blid:BLId,s bid:BId)
SubCon == µSubCon(s cid:CId,s cnm:CNm,s body:body)

where body = (s ops:Op-set,s tt:TT)

End of Example 11

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 88

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

3.6. Management and Organisation

• By management we shall understand

– the set of behaviours which perform

∗ strategic,

∗ tactical and

∗ operational

actions.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 89

(3. Domain Engineering 3.6. Management and Organisation)

• By organisation we shall understand

– the decomposition of these behaviours into, for example, clearly
separate

∗ strategic,

∗ tactical and

∗ operational

“areas”,

∗ possibly further decomposed

∗ by geographical and/or

∗ “subject matter” concerns.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 90

(3. Domain Engineering 3.6. Management and Organisation)

• To explain differences between strategic, tactical and operational
issues we introduce notions of

– strategic, tactical and operational funds, FS,T ,O,

– and other resources, R,

– a notion of contexts, C,

– and a notion of states, S.

• Contexts bind resources to bindings from locations to disjoint time
intervals (allocation and scheduling),

• states bind resource identifiers to resource values.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 91

(3. Domain Engineering 3.6. Management and Organisation)

• Simplified types of the strategic, tactical and operational actions are
now of the following types:

– executive functions apply to contexts, states and funds and obtain
and redistribute funds;

– strategic functions apply to contexts and strategic funds and cre-
ate new contexts and states and consume some funds;

– tactical functions apply to resources, contexts, states tactical funds
and create new contexts while consuming some tactical funds;

– etcetera.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 92

(3. Domain Engineering 3.6. Management and Organisation)

type

R, RID, RVAL,FS , FT , FO
C = R →m ((T × T) →m L)
S = RID →m RVAL

value

ωRID: R → RID

ωRVAL: R → RVAL

Executive functions: C × S × FS,T ,O → FS,T ,O
Strategic functions: C × FS → FS × R × C × S

Tactic functions: R × C × S × FT → C × FT
Operational functions: C × S × FO → S × FO

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 93

(3. Domain Engineering 3.6. Management and Organisation)

Example 12 – Public Bus Transport Management We relate to
Example 11:

56 The conduct, cancel and insert bus ride actions are operational
functions.

57 The actual subcontract actions are tactical functions;

58 but the decision to carry out such a tactical function may very well be
a strategic function as would be the acquisition or disposal of busses.

59 Forming new timetables, in consort with the contractor, is a strategic
function.

We omit formalisations. End of Example 12

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 94

(3. Domain Engineering 3.6. Management and Organisation)

3.7. Human Behaviour

• By human behaviour we shall understand

– those aspects of the behaviour of domain stakeholders

– which have a direct bearing on the “functioning” of the domain

• Behaviours “fall” in a spectrum

– from diligent

– via sloppy

– to delinquent and

– outright criminal neglect

in the observance of maintaining

– entities,

– carrying our actions and

– responding to events.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 95

(3. Domain Engineering 3.7. Human Behaviour)

Example 13 – Human Behaviour Cf. Examples 11–12:

60 no failures to conduct a bus ride must be classified as diligent;

61 rare failures to conduct a bus ride must be classified as sloppy if no
technical reasons were the cause;

62 occasional failures · · · as delinquent;

63 repeated patterns of failures · · · as criminal.

We omit showing somewhat “lengthy” formalisations.
. End of Example 13

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 96

(3. Domain Engineering 3.7. Human Behaviour)

3.8. Discussion

• We have briefly outlined six concepts of domain facets and we have
exemplified each of these.

• Real-scale domain descriptions are, of course, much larger than what
we can show. Typically, say for the domain of logistics, a basic de-
scription is approximately 30 pages; for “small” parts of railway
systems we easily get up to 100–200 pages – both including formali-
sations.

• You should now have gotten a reasonably clear idea as to what con-
stitutes a domain description.

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 97

(3. Domain Engineering 3.8. Discussion)

• As mentioned, in the introduction to this lecture, we shall not cover
post-modelling activities such a validation and domain theory forma-
tion. The latter is usually part of the verification (theorem proving,
model checking and formal testing) of the formal domain description.

• Final validation of a domain description is with respect to the nar-
rative part of the narrative/formalisation pairs of descriptions.

• The reader should also be able to form a technical opinion about
what can be formalised, and that not all can be formalised within
the framework of a single formal specification language, cf. Sect. .

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 97

(3. Domain Engineering 3.8. Discussion)

End of Lecture 3: DOMAIN ENGINEERING

April 8, 2010, 17:41, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

